Date of Award

Summer 2019

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Micro and Nanoscale Systems

First Advisor

Prabhu Arumugam

Abstract

Abnormal neurochemical signaling is often the underlying cause of brain disorders. Electrochemical microsensors are widely used to monitor neurochemicals with high spatial-temporal resolution. This research aimed to understand and develop highperformance microsensors to detect two types of neurotransmitters: glutamate and dopamine. This work included optimizing multiple parameters used to determine performance of an enzyme-based glutamate microsensor or carbon nanomaterials-based dopamine microsensor. The parameters included sensor surfaces, glutamate oxidase, interferent exclusive layers, storage methods, self-referencing, carbon nanotube coating, polymer exclusive layer applications et al. The developed sensor was also tested in animals.

Tuning key parameters allowed the developed microsensors to exhibit a sensitivity as high as 530±34 nA/cm2µM (Mean ± SEM), an excellent ascorbic acid selectivity of 841±54 (Mean ± SEM) for in vitro beaker studies. The microsensor achieved excellent long-term stability in a wet storage method. A microsensor was also used successfully for real time measuring of glutamate ex vivo in brain slices with a fast response time and in vivo in a free-behaving rat after introduced status epilepsy.

As for dopamine sensor development, a carbon nanotube modified diamond microelectrode was developed for improved detection of dopamine. Modified microelectrodes were then characterized by cyclic voltammetry, scanning electron microscopy, x-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy (EIS). With regard to implantable microsensors, the as-received platinum surface with a thin nafion coating has a comparatively low sensitivity to dopamine of 0.62±0.02 µA/cm2µM, but a competitive selectivity of 670±50 and limit of detection of 25 nM. Furthermore, after carbon nanotube coating, we found a drastic increase in sensitivity (45.7±2.3 µA/cm2µM), and limit of detection was reduced to 5 nM. With an additional ionic-exclusive layer of thick Nafion, we obtained a high selectivity of 683±17 at the cost of sacrificing sensitivity down to 13.5±0.6 µA/cm2µM. This sensor was found to last for at least one month when dry stored in the box.

In summary, this dissertation formed a systematic study of electrochemical microsensors for neurochemical detection. Improved glutamate and dopamine microsensors have been developed; this work led to a comprehensive understanding of microsensor microarrays in brain chemical application.

Signature Page - Chao Tan.pdf (276 kB)
Signature Page Signed

Share

COinS