Date of Award

Fall 2009

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Micro and Nanoscale Systems

First Advisor

Chester Wilson

Abstract

The ongoing threat of nuclear terrorism presents major challenges to maintaining national security. Currently, only a small percentage of the cargo containers that enter America are searched for fissionable bomb making materials. This work reports on a multi-channel radiation detection platform enabled with nanoparticles that is capable of detecting and discriminating all types of radiation emitted from fissionable bomb making materials. Typical Geiger counters are limited to detecting only beta and gamma radiation. The micro-Geiger counter reported here detects all species of radiation including beta particles, gamma/X-rays, alpha particles, and neutrons. The multi-species detecting micro-Geiger counter contains a hermetically sealed and electrically biased fill gas. Impinging radiation interacts with tailored nanoparticles to release secondary charged particles that ionize the fill gas. The ionized particles collect on respectively biased electrodes resulting in a characteristic electrical pulse. Pulse height spectroscopy and radiation energy binning techniques can then be used to analyze the pulses to determine the specific radiation isotope. The ideal voltage range of operation for energy discrimination was found to be in the proportional region at 1000VDC. In this region, specific pulse heights for different radiation species resulted. The amplification region strength which determines the device sensitivity to radiation energy can be tuned with the electrode separation distance. Considerable improvements in count rates were achieved by using the charge conversion nanoparticles with the highest cross sections for particular radiation species. The addition of tungsten nanoparticles to the microGeiger counter enabled the device to be four times more efficient at detecting low level beta particles with a dose rate of 3.2uR/hr (micro-Roentgen per hour) and just under three times more efficient than an off the shelf Geiger counter. The addition of lead nanoparticles enabled the gamma/X-ray microGeiger counter channel to be 28 times more efficient at detecting low level gamma rays with a dose rate of 10uR/hr when compared to a device without nanoparticles. The addition of 10B nanoparticles enabled the neutron microGeiger counter channel to be 17 times more efficient at detecting neutrons. The device achieved a neutron count rate of 9,866 counts per minute when compared to a BF3 tube which resulted in a count rate of 9,000 counts per minute. By using a novel micro-injection ceramic molding and low temperature (950°C) silver paste metallizing process, the batch fabrication of essentially disposable micro-devices can be achieved. This novel fabrication technique was then applied to a MEMS neutron gun and water spectroscopy device that also utilizes the high voltage/temperature insulating packaging.

Share

COinS