Date of Award

Summer 2016

Document Type


Degree Name

Doctor of Philosophy (PhD)


Cyberspace Engineering

First Advisor

Rastko R. Selmic


The first problem considered in this dissertation is the decentralized non-planar formation control of multiple unmanned vehicles using graph rigidity. The three-dimensional formation control problem consists of n vehicles operating in a plane Q and r vehicles that operate in an upper layer outside of the plane Q. This can be referred to as a layered formation control where the objective is for all vehicles to cooperatively acquire a predefined formation shape using a decentralized control law. The proposed control strategy is based on regulating the inter-vehicle distances and uses backstepping and Lyapunov approaches. Three different models, with increasing level of complexity are considered for the multi-vehicle system: the single integrator vehicle model, the double integrator vehicle model, and a model that represents the dynamics of a class of robotics vehicles including wheeled mobile robots, underwater vehicles with constant depth, aircraft with constant altitude, and marine vessels. A rigorous stability analysis is presented that guarantees convergence of the inter-vehicle distances to desired values. Additionally, a new Neural Network (NN)-based control algorithm that uses graph rigidity and relative positions of the vehicles is proposed to solve the formation control problem of unmanned vehicles in 3D space. The control law for each vehicle consists of a nonlinear component that is dependent on the closed-loop error dynamics plus a NN component that is linear in the output weights (a one-tunable layer NN is used). A Lyapunov analysis shows that the proposed distance-based control strategy achieves the uniformly ultimately bounded stability of the desired infinitesimally and minimally rigid formation and that NN weights remain bounded. Simulation results are included to demonstrate the performance of the proposed method.

The second problem addressed in this dissertation is the cooperative unmanned vehicles search. In search and surveillance operations, deploying a team of unmanned vehicles provides a robust solution that has multiple advantages over using a single vehicle in efficiency and minimizing exploration time. The cooperative search problem addresses the challenge of identifying target(s) in a given environment when using a team of unmarried vehicles by proposing a novel method of mapping and movement of vehicle teams in a cooperative manner. The approach consists of two parts. First, the region is partitioned into a hexagonal beehive structure in order to provide equidistant movements in every direction and to allow for more natural and flexible environment mapping. Additionally, in search environments that are partitioned into hexagons, the vehicles have an efficient travel path while performing searches due to this partitioning approach. Second, a team of unmanned vehicles that move in a cooperative manner and utilize the Tabu Random algorithm is used to search for target(s). Due to the ever-increasing use of robotics and unmanned systems, the field of cooperative multi-vehicle search has developed many applications recently that would benefit from the use of the approach presented in this dissertation, including: search and rescue operations, surveillance, data collection, and border patrol. Simulation results are presented that show the performance of the Tabu Random search algorithm method in combination with hexagonal partitioning.