Date of Award

Summer 2014

Document Type


Degree Name

Doctor of Philosophy (PhD)


Molecular Science and Nanotechnology

First Advisor

Eric Guilbeau


This research demonstrates the feasibility of a novel method for performing thermoelectric enzyme-linked immunosorbent assay (ELISA) in a microfluidic device. The feasibility of the thermoelectric ELISA is demonstrated by measuring the concentration of 8-hydroxy 2-deoxyguanosine (8OHdG) in urine samples from amyloid precursor protein (APP) transgenic mice. The detection method is based on formation of a complex between 8OHdG and anti-8OHdG capture antibody conjugated to biotin. The complex is immobilized over the measuring junctions of a thermopile via biotin streptavidin interaction. The concentration of the analyte is determined by using enzyme linked secondary IgG antibody specific to the primary one. The concentration of 8OHdG is determined by the initiation of an enzymatic reaction between glucose and glucose oxidase that is conjugated to the secondary IgG antibody. The heat released by the reaction of glucose and glucose oxidase is measured using an antimony-bismuth thermopile integrated in a microfluidic device. The amount of heat detected by the sensor is inversely proportional to the concentration of 8OHdG. A standard calibration curve using known concentrations of synthetic 8OHdG is generated and used to determine the concentration of the oxidized guanine in mouse urine samples.