Date of Award

Fall 2012

Document Type


Degree Name

Doctor of Philosophy (PhD)


Biomedical Engineering

First Advisor

Alan W. L. Chiu


Non-invasive electroencephalography (EEG) based brain-computer interface (BCI) is able to provide alternative means for people with disabilities to communicate with and control over external assistive devices. A hybrid BCI is designed and developed for following two types of system (control and monitor).

Our first goal is to create a signal decoding strategy that allows people with limited motor control to have more command over potential prosthetic devices. Eight healthy subjects were recruited to perform visual cues directed reaching tasks. Eye and motion artifacts were identified and removed to ensure that the subjects' visual fixation to the target locations would have little or no impact on the final result. We applied a Fisher Linear Discriminate (FLD) analysis for single-trial classification of the EEG to decode the intended arm movement in the left, right, and forward directions (before the onsets of actual movements). The mean EEG signal amplitude near the PPC region 271-310 ms after visual stimulation was found to be the dominant feature for best classification results. A signal scaling factor developed was found to improve the classification accuracy from 60.11% to 93.91% in the two-class (left versus right) scenario. This result demonstrated great promises for BCI neuroprosthetics applications, as motor intention decoding can be served as a prelude to the classification of imagined motor movement to assist in motor disable rehabilitation, such as prosthetic limb or wheelchair control.

The second goal is to develop the adaptive training for patients with low visual working memory (VWM) capacity to improve cognitive abilities and healthy individuals who seek to enhance their intellectual performance. VWM plays a critical role in preserving and processing information. It is associated with attention, perception and reasoning, and its capacity can be used as a predictor of cognitive abilities. Recent evidence has suggested that with training, one can enhance the VWM capacity and attention over time. Not only can these studies reveal the characteristics of VWM load and the influences of training, they may also provide effective rehabilitative means for patients with low VWM capacity. However, few studies have investigated VWM over a long period of time, beyond 5-weeks.

In this study, a combined behavioral approach and EEG was used to investigate VWM load, gain, and transfer. The results reveal that VWM capacity is directly correlated to the reaction time and contralateral delay amplitude (CDA). The approximate "magic number 4" was observed through the event-related potentials (ERPs) waveforms, where the average capacity is 2.8-item from 15 participants. In addition, the findings indicate that VWM capacity can be improved through adaptive training. Furthermore, after training exercises, participants from the training group are able to improve their performance accuracies dramatically compared to the control group. Adaptive training gains on non-trained tasks can also be observed at 12 weeks after training.

Therefore, we conclude that all participants can benefit from training gains, and augmented VWM capacity can be sustained over a long period of time. Our results suggest that this form of training can significantly improve cognitive function and may be useful for enhancing the user performance on neuroprosthetics device.