Date of Award

Summer 2015

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Biomedical Engineering

First Advisor

Sven Eklund

Abstract

A fluorescence-based sensor in a transverse flow/stop measurement platform has been developed to determine real-time changes in oxygen consumption rates for cell metabolic studies. The oxygen sensitive fluorophore platinum octaethylporphyrin was embedded in a cellulose acetate matrix and affixed to a fiber optic bundle, which provided for transmission of the excitation and emission wavelengths of the film. The fiber optic bundle was sealed in a sensor head that can be used in standard 24-well plates common to research labs. The utility of the sensor and sensing platform were determined by measuring the changes in oxygen consumption rates of Candida albicans during 90/30 s flow/stop cycles. Exposure of these cells to metabolic antagonists and an enhancer showed the expected decrease and increase in oxygen consumption rates in real time. The applicability of the platform to biological studies is illustrated by determination of synergistic activities between antifungal drugs and fluoride exposure in Candida albicans. The robustness of the fluorophore film is demonstrated by perfusion with different media and analyte conditions in the absence of cells. For stop cycle time intervals less than 1 minute the sensor exhibited a rapid and fairly linear change in fluorescence intensity to changing oxygen concentrations in the measurement chamber. Flow cycle fluorescence intensities were used as a baseline correction for treating the stop cycle fluorescence peaks.

Share

COinS