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ABSTRACT 
 

 

Credit card fraud is one of the most critical threats affecting individuals and 

companies worldwide, particularly with the growing number of financial transactions 

involving credit cards every day. The most common threats are likely to come from 

database breaches and identity theft. All these threats threat put the security of financial 

transactions at severe risk and require a fundamental solution. 

This dissertation aims to suggest a secure online payment system that 

significantly improves credit card security. Our system can be particularly resilient to 

potential cyber-attacks, unauthorized users, man-in-the-middle, and guessing attacks for 

credit card number generation or illegal financial activities by utilizing a secure 

communication channel between the cardholder and server. Our system uses a shared 

secret and a verification token that allow both sides to communicate through encrypted 

information. Furthermore, our system is designed to generate a one-time credit card 

number at the user’s machine that is verified by the server without sharing the credit card 

number over the network. Our approach combines the machine learning (ML) algorithms 

with unique temporary credit card numbers in one integrated system, which is the first 

approach in the online credit card protection system. The new security system generates a 

one-time-use credit card number for each transaction with a predetermined amount of 

money. Simultaneously, the system can detect potential fraud utilizing ML algorithm 
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with new critical features such as the IMEI or I.P. address, the transaction’s location, and 

other features.  

The contribution of this research is two-fold: (1) a method is proposed to generate 

a unique, authenticatable one-time credit card number to effectively defend against the 

database breaches, and (2) a credit card fraud prevention system is proposed with 

multiple security layers that are achieved by the integration of authentication, ML-based 

fraud detection, and the one-time credit card number generation. 

The dissertation improves consumers’ trust and confidence in the credit card 

system’s security and enhances satisfaction with credit cards’ various financial 

transactions. Further, the system uses the current online credit card infrastructure; hence 

it can be implemented without tangible infrastructure cost.
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CHAPTER 1 

 

INTRODUCTION 
 

 

Today, the credit card system is widely used to settle payments in modern 

economies and facilitate business transactions worldwide. Given the popularity of the 

credit card system, it became a target for cyberattacks and fraud worldwide. This calls for 

a more secure approach to avoid potential breaches and unauthorized users. In particular, 

the most recognized credit card threats often come from database breaches and identity 

theft issues. Generally, the credit card system looks vulnerable to various risks, hence the 

pressing need for a more secure financial transaction worldwide. 

Historically, the Diners’ Club Inc. introduced the first universal credit card in 

1950, followed by another powerful system of this type, known as a Travel and 

Entertainment card by the American Express Company in 1958. In the same vein, the 

Bank of America in California introduced the first national plan, called BankAmerica 

card in 1958, and licensed in 1966, later renamed VISA in 1976 [1]. 

Currently, the credit card system suffers from many cyber-attacks every second 

worldwide. The biggest cybercrime in the history of the credit card system happened in 

July 2019 through the database of the Capital One Bank [2]. 106 million accounts’ 

information was stolen, 100 million were from the United States, and the rest were from 

Canada. According to Reuter’s sources, the approximate cost was estimated up to $150 

million [3]. The second biggest cybercrime took place in January 2009 on The Heartland 
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company payment system [4]. The data and personal identification of 160 million credit 

cards were stolen, with an approximate cost of $140 million. 

According to The Nilson Report [6], card fraud loss worldwide was $23.97 billion 

in 2017, increased to $27.85 billion in 2018, and is projected to reach $40.63 billion in 10 

years [3]. The United States accounts for 22.19% of the total volume worldwide of 

financial card fraud in 2019, making 33.57% of gross losses worldwide. Financial card 

fraud reached $19.03 billion for all other countries in 2019, which equaled 5.79¢ per 

$100 in total volume [31]. 

The massive financial losses through credit/debit cards are climbing every year 

and may contribute to a potential financial crisis in the world. Hence, this situation’s 

urgency calls for a more secure financial transaction system. In this research, we will rely 

on the Secure Socket Layer (SSL) for the connections through webpages and will focus 

mainly on the processing of information to defend against online fraud. This research 

provides a secure system to help individuals and companies conduct their business 

transactions with trust and confidence. 

 

1.1 Credit Card Fraud: Statistics 

 

Although many proposed systems attempted to improve the credit card system’s 

security over the past five decades, the amount of lost money and the number of reported 

cybercrimes are increasing dramatically over time. As cyberattacks badly victimized 

many individuals and companies, tremendous efforts were made to improve the credit 

card system’s security to make it more reliable and secure. A survey was conducted on 

consumer feedback by the Identity Theft Resource Center’ in 2018 and updated in 2019 

[7]. This survey shows that 85.71% of the victims felt worried, angry, and frustrated, 
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while 83.7% felt violated, and 69.4% could not trust others and felt unsafe. The study 

revealed that credit card fraud was significantly growing over time, as illustrated in 

Figure 1-1. The credit card fraud issue is serious in the United States’ financial system, 

and potentially in other places in the world worsened. 

 

 

Figure 1-1: Credit card fraud reports in the United States [7][35] 

 

 

Further, the study shows that money lost due to fraud by the method of contact 

and data breaches by the business sector in 2018, as illustrated in Figure 1-2. 

 

 
 

Figure 1-2: Money lost due to fraud by method of contact [7] 
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Clearly, most identity theft and credit card fraud were done by phone or through 

websites (as shown in Figure 1-2). Thus, the growing need to find a suitable solution that 

eliminates these cybercrimes strongly motivates this dissertation’s work. 

John S Kiernan’s report summarized the most severe credit card data breaches in 

the period 2005-2014 in Table 1-1 [8]. Figures in the table show that millions of accounts 

were affected by database breaches. 

 

Table 1-1: Worst Data Breaches in History Due to Credit Card Frauds [8] 

 

COMPANY YEAR 
NUMBER OF ACCOUNTS 

AFFECTED 

CARD SYSTEM SOLUTION. 2005 40 Million 

TJX COMPANIES, INC. 2006 94 Million 

US VETERANS’ AFFAIRS  2006 17.5 Million 

CERTEGY 2007 8.5 Million 

FIDELITY NATIONAL 

INFORMATION SERVICES 
2007 3.5 Million 

HEARTLAND PAYMENT SYSTEM 2008 134 Million 

BANK OF NEW YORK MELLON 2008 12.5 Million 

HANNAFORD BROS. 

SUPERMARKET CHAIN 
2008 4.2 Million 

SONY 2011 12 Million 

GLOBAL PAYMENTS 2012 1 Million 

TARGET 2013 40 Million 

HOME DEPOT 2014 56 Million 

 

 

The vast numbers in Table 1-1 show a severe need to improve the credit card 

security systems to ensure high security and a safe environment for the customers. 

According to this report [8], identity theft cases in the U.S. have increased from 444,358 
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in 2018  to 650,572 in 2019. Credit card fraud is considered one of the most common 

types of identity theft as of January 2020. 

Another type of threat is identity theft crimes. According to a study revealed by 

the Shift Credit Card Processing website in 2018 and updated in 2020 [7], credit card 

fraud was the most common identity theft. It accounted for 29% of all identity theft 

reporting in 2018, as shown in Figure 1-3. 

 

 
 

Figure 1-3: Identity theft fraud reports [7][31] 
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Figure 1-4: Identity theft cases in the United States [7][35] 
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contrast, Online fraud occurs when a thief uses the stolen information from someone’s 

credit card to commit fraud through the internet.  

1.2.2  Telecommunication Fraud 

 

The telecommunication industry has grown dramatically worldwide in the last 

decade, particularly with several technologies using phones [10]. With this extensive use 

of phone technology, global mobile phone fraud is increasing accordingly. This global 

problem causes significant annual losses for many companies, businesses, and 

communication service providers. 

Telecommunication fraud is considered the simplest, with the lowest risk for 

fraudsters to make money illegally. Telecommunication fraud has two types: subscription 

fraud and superimposed fraud. Subscription fraud happens when fraudsters obtain an 

account without the intention to pay the bill, which performs at the level of a phone 

number. Hence, all transactions made by the received phone number will be fraudulent. 

These accounts are most likely used for call selling by committing fraud through phone 

calls or any other criminal practices. In the meantime, superimposed fraud involves 

stealing a legitimate account. In this case, the unusual usage is superimposed on top of 

the routine use of genuine customers. An example of superimposed fraud is cellular 

cloning. Furthermore, telecommunication fraud might occur from an insider when an 

employee sells information to a fraudulent attacker for illegal purposes. 

Our proposed system should protect the credit card users in both 

telecommunication fraud types since our system focuses on detecting unusual payment 

activity through a machine learning algorithm and stopping any possible fraudulent 

transaction. Moreover, the proposed approach uses the one-time credit card number for 
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every online transaction. Thus, even the insiders would not be able to sell the users’ 

information to anybody because these cards’ information would be useless. 

1.2.3  Computer Intrusion 

 

Computer intrusion is defined as a cyber-crime that includes hacking into private 

computers and cell phones or other electronic devices, manipulating, or stealing 

information for illegal purposes [11]. In other words, it is an unauthorized attempt to 

access information. This type of crime typically targets individuals. Computer intrusion is 

often committed by an insider who knows the infrastructure and the design of the system. 

The intruder can also be an outsider (hacker). The proposed system also comes to address 

this kind of fraud by determining the source (location) of each payment transaction so the 

system can ban suspicious transactions. On the other hand, our approach has another 

protection level by utilizing the one-time credit card number. 

1.2.4  Bankruptcy Fraud 

 

Bankruptcy is intended to give an individual or a company a chance to rearrange 

and settle their financial issues [12]. Bankruptcy fraud here means using a credit card by 

someone who has a prior intention to declare a state of bankruptcy. Bankruptcy fraud is 

counted as one of the most complex scams to predict because the credit card issuer does 

not know precisely their customer’s financial status, so they will have to cover the losses 

themselves in case of any customer’s bankruptcy. One solution to stop this kind of fraud 

is by checking with the credit bureau to know the customers’ financial history. The credit 

bureau [13] helps banks and credit card issuers investigate the financial history of 

applicants who want to have a credit card. 
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1.2.5  Theft Fraud 

 

Theft fraud here means using a credit/debit card that is not yours. The fraudster 

steals a victim’s credit card and attempts to use it as many times as possible before the 

actual customer has reported suspicious transactions on his/her account and required the 

card issuer to block the card. The sooner the reporting by the victimized customer, the 

faster the response of the bank. 

These kinds of fraud can also be addressed through our system. Our approach 

offers a virtual credit card using mobile and computer applications. Therefore, users don’t 

need to have a physical card for online transactions to prevent theft fraud. 

1.2.6  Application Fraud 

 

Application fraud occurs when someone applies for a credit card with incorrect 

information [14]. A study carried by Phua and others examined more than 300 million 

fraudulent account applications and concluded that 88% of those fraudulent accounts 

were opened using identity fraud techniques [15].  

Two different situations of application fraud can be recognized: Duplicate 

application and identity fraudsters. Duplicate application happens when applications 

come from identical users with identical information. In this case, cross-matching 

techniques are used to detect such duplication by generating a suspicious numeric score 

on credit card applications based on implicit links to each other in real-time. Identity 

fraud occurs when applications come from different individuals with similar features. 

However, most banks require applicants to fill out a form with specific information to 

confirm credit card eligibility. This information contains identification, address, contact 

number, personal details, and some other relevant information. Most of the required 
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information is used for searching for duplicates and identification purposes. In general, 

ML algorithms can avoid this kind of fraud since ML can be used to detect such 

malicious applications in the future. 
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CHAPTER 2 

 

LITERATURE BACKGROUND 

 

 

2.1 Related Work 

 

Many research studies have attempted to minimize credit card fraud worldwide, 

including fraud detection algorithms, by monitoring users’ behavior to eliminate 

suspicious credit card transactions. Saxena and Ponnapalli [16] pioneered a research 

study to reduce credit card fraud by producing a “one-time credit card number.” The 

study proposed a system that generates a one-time credit card number at the user’s side 

offline without contacting the server or being online. The system uses a shared key that 

generates a credit card number. Transaction details can be signed in with a private key for 

each specific customer, providing non-repudiation of the online transaction. The authors 

use the current credit card numbering structure to continue processing online transactions 

with conventional infrastructure. 

Meredith et al. [17] conducted a project in which they designed a method to detect 

any credit card fraud via mobile device location tracking. This project included a 

processor that calculated a fraud percentage through tracking the user’s device associated 

with the credit card account with the first area location where the user sets up his/her 

credit card account. Rajasekaran and Varadarajan [18] developed a new model to reduce 

the potential credit card fraud by a one-time credit card number generator and single 

round-trip authentication. This model generates a one-time credit card number at the
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user’s device and sends the generated number to the card issuer and the merchant. The 

card issuer applies some authentication criteria in order to verify the user’s identity, such 

as a one-way password or a string of letters that the user should use to verify the 

transaction. There is a shared key between the user and server to move forward, and the 

server accepts the generated one-time credit card number on the user’s device and 

matches the generated number with the user’s number sent to the merchant. The user is 

granted an authentication if the numbers are matched.  

In 2013, Lynam et al. [19] invented a system called “System and Method for 

Authenticating Payment Transactions.” This system is designed to find potential fraud 

based on the I.P. address or the IMEI number of the device where the transaction comes 

from. The system stores the I.P. address or the IMEI number first associated with the 

genuine cardholder when the credit/ debit card is activated. Then the system matches the 

stored IP/IMEI number in the history of the previous payment transactions with the 

upcoming transactions. If the system finds a match, the transaction will be authenticated 

and authorized; otherwise, the system sends a message to the cardholder indicating a 

suspicious transaction. 

Essebag et al. [23] developed a model using a comprehensive dynamic security 

code system. The system can change the security code CVV (Card Verification Value) of 

a prepaid, debit, or credit card. The system provides dynamic security code values that 

have limited use to online transactions only and can be calculated by the dynamic 

security code generator and used within existing payment infrastructures. The system can 

also be used in different environments not related to payments, such as balance inquiries.  
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Ashfield [24] developed a method and apparatus for using at least a portion of a 

one-time password as a dynamic CVV. A credit/debit card can generate a dynamic CVV. 

The user can be authorized according to a dynamic CVV by getting a transaction 

authorization request for a specific credit/debit card, wherein the transaction 

authorization request includes a dynamic CVV. The dynamic CVV is compared to at 

least a portion of a one-time password generated for the specific credit/debit card. A one-

time password is used for logging in to the system for every online transaction. A 

transaction authorization can be sent to the merchant when the dynamic CVV matches all 

or a portion of the one-time password. 

Patel [25] developed a dynamic CVV temporary task system that increases 

credit/debit card security or other similar financial apparatus security. The dynamic CVV 

is read, modified, and rewritten to the card with each online transaction. The proposed 

system provides a static CVV to facilitate online shopping. Alternatively, the static CVV 

can be used to evoke a user when the user cannot remember an unmarked static, such as 

reading the digits in an order requested by a user, like a PIN number.  

McDonald [26] addressed the credit card security issue in a different way by a 

system for cardless secure online purchasing using a credit/debit card. The study was 

based on the presented online purchaser performing the online purchase and at least one 

online credit/debit card service provider holding an online purchaser interface. An e-

authentication and credential service provider should have an online purchaser interface. 

The system authenticates users using a Personal Digital Identity Token or (PDIT). The 

PDIT is biometric of the cardholder with a means that provides a link to a set of proven 

civil identity credentials. The system maintains at least one online credit/debit card 
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service provider and provides a means for secure online transactions. It provides 

anonymity to the online purchase by covering credit/debit card data during the online 

purchase, making the purchase invisible to identity thieves and hackers.  

Barbour [27] invented a system to execute one or more financial transactions over 

a communication route for a cardholder holding an account linked with a permanent 

account number. The card count number is deactivated for financial transactions over a 

communication path. A single-use number associated with the permanent account 

number is issued, and funds are approved for transfer using the single-use number 

extracted from the account holder’s account.  

The single-use number is activated after the cardholder inquiries about the 

activation of the single-use number. Funds are then transferred from the account in 

response to the account holder’s authorization, using a single-use account number. The 

single-use number is then deactivated after accomplishing the transfer of funds. 

Gupta and Johari [28] published a paper that reviews and analyzes the current 

progress in online authentication procedures, including biometrics, one-time-password 

systems, mobile devices, and Public Switched Telephone Network for cardholder 

authentication. The authors propose an entirely new framework for both onsite and online 

(online shopping) credit card transactions. 

Yingjiu and Zhang [29] used a hash function in the generation of one-time credit 

card numbers. The next one-time number is computed by hashing the current one-time 

number with a secret known only by the cardholder and issuer. This system uses a small 

chip that is embedded into each credit card for hash computations and for storage of a 
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past credit card token (CCT). Their proposed scheme places less overhead on credit card 

issuers and can be easily used in both online and offline payment scenarios. 

Trivedi, Kumar, et al. [30] introduced a credit card fraud detection mechanism, 

including a feedback system, dependent on machine learning algorithms. The feedback 

approach contributes to enhancing the classifier’s detection rate. The authors examined 

the performance of different ML methodologies--Random Forest, Decision Tree, 

Artificial Neural Networks (ANN), SVM, Naïve Bayes, machine, Logistic Regression, 

and Gradient Boosting Classifier Strategies—on a slightly skewed credit card fraud 

dataset. They showed that Random Forest has better results with 95% precision compared 

to other machine learning classifiers. However, R.F. is considered a time-consuming 

model. 

Gupta, Shalini, and Johari [66] discussed and analyzed the current online 

authentication procedures, including biometrics, one-time-password (OTP) systems, 

mobile devices, and Public Switched Telephone Network for cardholder authentication. 

The one-time-password (OTP) system involves single-use one-time passwords for 

user authentication. When the cardholder’s credit card information is passed to the 

payment gateway for authentication, the gateway sends a one-time password to the 

cardholder, either on his mobile device or to his e-mail address. The merchant then urges 

the cardholder to enter that one-time password specific to the transaction on his device or 

website in case of online shopping. If the one-time password is entered successfully, the 

cardholder’s authenticity is proved, and the transaction is completed. This approach 

causes a high overhead on the cardholder since he/she is required to enter the one-time 

password every online transaction for authentication. 
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Some popular credit card issuers offer virtual credit card numbers. For example, 

Capital One’s Bank provides this service for all its customers. This service must go 

through a third-party Eno, an “intelligent assistant” that provides Capital One customers 

with various tasks. To generate a virtual credit card number through Eno, you need to be 

on a computer and have the Eno extension for Google Chrome or Mozilla Firefox. 

Capital One’s customers are not able to use this service using any other internet browser. 

Eno does not have customers’ payment history, so they are only responsible for providing 

the virtual credit card number service to Capital One’s customers. Thus, they will not be 

able to detect fraudulent transactions based on the customer’s payment history. The Eno 

system assigns a credit card number to each merchant for future transactions [44]. 

Another example of a credit card issuer that offers virtual credit card numbers is 

City Bank. But this service is limited to a specific customer’s category who use “Only 

Select Citi cards.” Still, the process is straightforward for those cards that do qualify. The 

user needs to register his/her Citi credit card in the program, and then they can generate a 

virtual credit card number through the online interface. Any generated virtual card 

number remains valid for up to 12 months. This service is limited to a specific website, 

and customers can use the virtual number as much as they want until they go to their 

accounts and request another number. Simply, the fraudster can use the virtual number 

until the customer notices any abnormal activity on his/her account. Then the customer 

can log in to his/her account and change the credit card number. 

 

2.2  Related Work of Credit Card Fraud Detection Techniques 

 

In this section, the six main techniques that are used for credit card fraud 

detection are identified. 
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2.2.1  Support Vector Machine (SVM) 

 

SVM is a good example of supervised learning that can be implemented for 

classification and regression issues. Support Vector Machine decides the best fitting 

technique for classifying our dataset’s information [43]. 

A separate hyper-plane formally defines a Support Vector Machine as a 

discriminative classifier. In other words, given the specified training, the model finds an 

optimal hyper-plane produced by the algorithm that classifies new cases. This hyper-

plane is a line dividing a plane into two segments (two-dimensional spaces) where it is 

specified on either side in each class. 

Data points on the right side of the hyper-planes are classified as legitimate 

transactions, while the other points are classified as fraudulent transactions. 

The optimal hyperplane correctly classifies the data points by fraud. Still, the 

most effective hyper-plane is the one that achieves a similar level of accuracy when 

unknown data points need to be classified. SVM selects the optimal hyper-plane based on 

the line distance. The SVM separates the class to the nearest point. This range is called 

the margin, and the margin point is known as support vectors. 

Sahin and Duman [38] investigated credit card fraud detection using Decision 

Trees and Support Vector Machines. The authors show that the proposed classifiers of the 

Decision Tree approach better than SVM does in credit card fraud detection. As the 

training data scales, SVM model detection accuracy equals the Decision Tree models but 

falls short in the number of frauds detected. 

Bhattacharyya et al. [39] evaluate Logistic Regression performance with two 

advanced data mining approaches, Support Vector Machine, and Random Forest, for 
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credit card fraud detection. This study shows that Logistic Regression maintains 

comparable performance with different under-sampling levels. In contrast, SVM 

performance points to an increase with a lower proportion of fraud in the training data. 

On the other hand, Logistic Regression shows appreciable performance, usually 

exceeding that of the SVM models with different parts. 

2.2.2 Naïve Bayes 

John and Langley first introduced the Naïve Bayes algorithm in 1995 [45]. This 

model is a probabilistic classifier model. This model indicates that it can obtain 

predictions for multiple classes at once. 

This model is based on the Bayes Theorem. Naïve Bayes has probabilistic 

classifiers that make this model able to predict multiple classes. The decision is made 

based on conditional probability. This model utilizes a set of algorithms rather than a 

single algorithm, but all of these have a common principle. This model implies that each 

variable makes an equal and unique contribution to the result. Furthermore, this model 

has a particular advantage over other models as it requires only a small amount of 

training data [46]. 

Naïve Bayes classifier is based on the Bayes theorem [47][63] that picks the 

highest probability-based decision. Bayesian probability is estimated from known values 

and known probabilities. 

Naïve Bayes is a supervised machine learning algorithm that is represented by the 

following formula. 

𝑝(𝐴|𝐵) =
𝑝(𝐴|𝐵).𝑝(𝐴)

𝑝(𝐵)
                                           Eq. 2-1 
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Bayes theorem gives a method of determining the posterior likelihood P (A|B), 

the likelihood of outcome (A) provided special conditions (B). The Bayes Theorem 

calculates the later probability by utilizing a probability ratio P (B|A) = P (B) to relate it 

to the result’s previous probability without any knowledge of clear conditions. The 

theorem of the Naïve Bayes has based on the theory that each factor influences the 

outcome independently and is therefore naïve.  

Phua et al. [34] have applied Back-Propagation (B.P.), together with Naïve 

Bayesian (N.B.) and C4.5 algorithms, to skewed data partitions derived from minority 

oversampling with replacement. The paper shows that the innovative use of Naïve 

Bayesian, C4.5 and Back-Propagation classifiers to process the same partitioned 

numerical data has the potential of cutting costs (stacking-bagging of data cost). 

Sherly [41] presented a comparative assessment of supervised data mining 

techniques for fraud prevention. The author evaluated several methods, Decision Tree, 

Neural Networks, and Naïve Bayes classifiers. The study reported that neural network 

classifiers are suitable for more extensive databases and take a long time to train the 

model. Bayesian classifiers are much more accurate and faster to train and ideal for 

different data sizes but are slower when applied to new instances. 

Pun and Lawryshyn [42] applied a meta-classification strategy to improve credit 

card fraud detection. The approach comprises three base classifiers constructed using the 

Decision Tree, Naïve Bayesian, and K-Nearest Neighbor algorithms. The result shows a 

28% improvement in performance using the naïve Bayesian algorithm as the meta-level 

algorithm to combine the base classifier predictions. 
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2.2.3 Decision Tree 

The Decision Tree (D.T.) approach has been developed by Quinlan [48], which 

can deal with consecutive data. The Decision Tree is a table of tree appearances made of 

leave nodes, root nodes, and internal nodes. 

As in Figure 2-1, the decision tree makes a decision based on the trained system 

that comes up with a set of conditions at each level. The decision tree is based on data 

mining techniques that recursively partition a dataset of records utilizing the depth-first 

greedy or the breadth-first approach [49] [50]. All nodes and leaves are connected with 

lines. Each node might be a branch node followed by more nodes or only one leaf node 

allocated by the Decision Tree classification method. 

 

 
 

Figure 2-1: Decision tree  
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Figure 2-1 shows an example of the Decision Tree construction and how this 

model makes a decision based on the used variables. The Decision Tree solves complex 

problems by separating them into simple ones and resolves them by constructing a 

Decision Tree based on the earned knowledge through the data mining technique. The 

Decision Tree model’s basis is building a tree with high precision and a tiny scale. 

A research paper by Save et al. [22] used the Decision Tree with a combination of 

Luhn’s algorithm and Hunt’s algorithm to detect fraudulent transactions. The paper 

matched the billing address with the shipping address of the genuine user. It is assumed 

that these addresses should be matched in order to proceed as a legitimate transaction. 

Otherwise, the transaction is classified as a suspicious one since a fraudulent one is more 

likely to differ from the genuine user’s address. The paper called this process “Outlier 

detection” and concluded that validation of the card is genuine and has low false alarms. 

2.2.4 Logistic Regression 

Logistic Regression (L.R.) [51] [52] uses a functional strategy that predicts a 

binary response probability based on one or more variables. The Logistic Regression 

model includes data mining tasks with more statistical models involving discriminant 

analysis, regression analysis, multiple-logistic regression, and some other analysis. 

The Logistic Regression model has many benefits in credit card fraud situations; 

it can predict some results of the presence or absence of characteristic values based on a 

set of variables (predictor variables). Logistic Regression coefficients can be used to 

evaluate odds ratios for each of the model’s independent variables. It applies to a broader 

range of research situations than characteristic analysis. 
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A comparison of Logistic Regression and Naïve Bayes is presented by Jordan et 

al. [32]. The authors provided the mathematical analysis of each algorithm, and they 

found that the discriminative Logistic Regression algorithm has a lower asymptotic error. 

Hence, the generative Naïve Bayes classifier may also converge more promptly to its 

asymptotic error. Some cases have been reported in which Logistic Regression’s 

performance underperformed Naïve Bayes, but this is recognized primarily in small 

datasets. 

Shen et al. [36] have tested three different classification methods (Decision Tree, 

Neural Networks, and Logistic Regression) for their applicability in fraud detection. The 

authors show that the proposed classifier of Neural Networks and Logistic Regression 

procedures work better than the Decision Tree to solve the problem under investigation. 

In another study by Sahin and Duman [40], classification models based on 

Artificial Neural Networks (ANN) and Logistic Regression (L.R.) are applied to credit 

card fraud detection problems using highly skewed data. This study shows that the 

suggested ANN classifiers outperform L.R. classifiers in solving the problem under 

investigation. The L.R. classifiers manage to fit the training data as they increase due to a 

lack of adequate work sampling. 

2.2.5 Random Forest 

The Random Forest model is an aggregate classifier. It uses multiple trees by 

combining many decision tree classifiers. The main idea behind utilizing numerous trees 

is to train the trees enough, such that participation from each of them comes in the 

structure of a model. After constructing the tree, the result would be combined through 

the majority. This model uses multiple decision trees to depend on a particular dataset 
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possessing similar distribution throughout the tree [53]. This model can be used to solve 

both classifications and regression problems. 

Lakshmi et al. [67] investigate different ML algorithms, Logistic Regression, 

Decision Tree, and Random Forest performance for credit card fraud detection. They 

used a popular credit card transaction dataset from Kaggle that comprises 284,808 credit 

card transactions of a European bank data set. The three techniques are applied for the 

dataset using the R programming language. The performance of the methods is evaluated 

for different variables based on sensitivity, specificity, accuracy, and error rate. They 

have investigated a different number of variables separately, 5, 10, 21 variables. The 

average result shows that the accuracy for logistic regression, Decision tree, and random 

forest classifier are 90.0, 94.3, 95.5, respectively. 

 

2.3 Other Related Work of ML Algorithms 

 

Bentley et al. [20] suggested an algorithm called “Fuzzy Darwinian Detection of 

Credit Card Fraud.” They proposed a system that detects credit card fraud through Fuzzy 

Clustering, Neural Networks, and Genetic programming by classifying financial 

transactions into two categories: suspicious and non-suspicious transactions. The findings 

illustrated that Fuzzy Logic could be an accurate and intelligible classification of 

complex data. The Fuzzy Logic approach used in this paper is considered one of the 

oldest approaches to the current ML algorithms, such as Logistic Regression and 

Decision Forest. 

Behera and Panigrahi [21] suggested a system that detects credit card fraud using 

Fuzzy Clustering & Neural Network in three phases: initial user authentication and 

verification of the card details; Fuzzy c-means clustering algorithm; and Neural Network 
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algorithm. The credit card transaction should pass these three phases to determine 

whether the transaction is fraudulent, suspicious, or legitimate. Once the transaction is 

found as a suspicious one, the neural network learning mechanism is applied. This system 

can minimize the generation of false alarms and leads to a more accurate credit card fraud 

detection system, but the computation time also increases. 

Maes et al. [33] studied another comparative study on credit card fraud detection 

using Bayesian and Neural Networks. The result shows that the Bayesian Networks yield 

better results concerning fraud detection with shorter training periods, but the fraud 

detection process is faster with Artificial Neural Networks. 

Paniarahi et al. [37] proposed a fusion approach using Dempster-Shafer theory 

and Bayesian Learning for detecting credit card fraud. They concluded that Bayesian 

Learning brings down the false-positive rates to values close to 5%. Based on the 

stochastic synthetic transactions used in this study, the analysis of the system’s 

performance shows that it yielded up to 98% true positive ratio and less than 10% false 

positive ratio. 

 

2.4 Assessment of the Related Work 

 

In this section, assessment among credit card fraud detection techniques will be 

applied in terms of cost, time, and performance, as discussed earlier (see Table 2-1). 
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Table 2-1: Advantages and Disadvantages of Fraud Detection Techniques 

 
 Fraud Detection 

Technique 

Advantages Disadvantages 

1. Support Vector Machine A. Effective with high dimensional 

data 

A. Poor performance with overlapping 

classes 

B. Works for both classification 

and regression problems 

B. Time-consuming with large datasets 

C. Works with image data C. Difficult to understand the produced 

vectors compared with D.T. 

2. Naïve Bayes A. Requires small training A. All the attributes need to be 

mutually independent 
B. Easy to implement B. Data scarcity 

C. Fast 

 

C. Zero frequency 

D. Highly scalable 

3. Decision Tree A. Very flexible A. Checks transaction conditions in 

sequence one by one 

B. Easy to implement B. Slow 

C. Easy to understand C. Expensive 

D. High accuracy 

4. Logistic Regression A. More accurate with a larger 

sample size and predictor 

variables 

A. Dependency on one multi predictor 

variables for more accuracy 

B. Low cost 

5. Random Forest A. Reduces overfitting and 

improve accuracy 
A. High computational capability is 

required 

B. Works for both classification 

and regression problems 

B. It takes a long time for training 

C. No data normalization required 

D. Fast and high performance 

 

 

We can observe the advantages and disadvantages of each credit card fraud 

technique explained in Table 2-1. A variety of characteristics are found for these 

techniques in terms of cost, time, efficiency, and the sample size that fits some of these 

techniques to achieve more accurate and reliable results. Some of these techniques 

require high computing capability. For example, the Random Forest algorithm is 

considered very powerful and precise with many transactions and very compatible with 

vital database infrastructure, but it needs high computing capability. Thus, this model is 

considered a slow and time-consuming model because it constructs several decision trees 

based on the dataset size. 
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On the other hand, we discovered some other inexpensive techniques to 

implement to obtain good results, such as the Naïve Bayes fraud detection algorithm. 

However, this model suffers from a few problems, such as data scarcity and zero 

frequency. Zero frequency happens when a category of any categorical variable is not 

seen in the training dataset. In that case, the model assigns a zero probability to the 

category with no fraudulent transactions, and then a prediction cannot be made. In 

contrast, data scarcity is when a category of any categorical variable has few observations 

that do not represent the category properly. 

We found that the Support Vector Machine is considered one of the slowest fraud 

detection techniques, although it is an effective model. It can obtain a good accuracy 

compared with other approaches; besides, it is more appropriate with small datasets. The 

decision tree is also considered very expensive and relatively slow because it checks 

transactions one by one. Still, on the other hand, it has higher accuracy and flexibility 

than other fraud detection systems.  

One of the low-cost techniques adopted for fraud detection is the Logistic 

Regression fraud detection system, but it is more accurate with more predictive variables. 

Moreover, L.R. is considered one of the fastest models and is easy to implement. 

This dissertation addresses these weaknesses. In particular, this study combines 

more than one factor to detect and prevent any potential fraud to ensure the highest 

possible security for both customers and card issuers. 

In the previous section, we have discussed most of the literature in the credit card 

security field. According to the literature, we can observe some weaknesses and 

strengthens of different kinds of fraud detection. Research has been conducted to improve 
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the financial payment systems, including credit cards. This research focuses on online 

credit card payment systems and tries to enhance the payment system security through 

some fraud detection algorithms and other methods to prevent any potential fraud or any 

database breaches in the future. 

Based on the literature review, many proposed systems focused on one factor to 

enhance the credit card security system and ignored other important factors that might be 

a very powerful way to detect credit card fraud. 

Previous research by Rajasekaran and Varadaragan [18] and Yingjiu and Zhang 

[29] used the one-time credit card number similar to the temporary credit card number for 

online purchases. The authors proposed good systems to prevent credit card fraud 

through the one-time credit card system. Still, they ignored many important factors such 

as the user’s geographical location, the device that issues the transaction from, the 

delivery address, and many more attributes that might ensure higher security for 

cardholders and card issuers. They could improve their systems by adding one or more 

predictable factors such as average consumption for each cardholder to ensure more 

security and reduce error percentage [18, 29]. 

Many one-time credit card approaches have been adopted for a long time. One of 

the systems developed by Saxena and Ponnapalli uses a one-time credit card number that 

generates the credit card number at the user’s side offline without contacting the server or 

being online. Hence, this system will not be able to look up each user’s transaction 

history to observe the user’s spending behavior before providing the user with the one-

time credit card number. 
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Rajasekaran’s model uses a one-time credit card number generator. This kind of 

model generates a one-time credit card number at the user’s device and sends the 

generated number to the card issuer and the merchant. Herein, we can conclude that this 

model does not use any databases to store users’ activities to build a solid background of 

each user’s spending behavior or the user’s location that is used to make a payment. 

These factors might be a good indicator to use for future transactions, so the card issuer 

cannot determine whether it’s a fraudulent transaction or not based on the user’s 

transaction history.  

These systems might be useful and powerful in detecting credit card fraud, but 

many companies are not flexible enough to update their conventional systems to fit these 

new systems. Many customers are also comfortable with the currently used system and 

are unwilling to make any changes to accommodate these systems. However, these 

systems may not be appropriate with some other companies due to compatibility issues or 

costs. Also, several techniques use the one-time credit card payment system in an offline 

mode. These systems are robust and have less overhead for the customer. Still, they don’t 

consider users’ spending behavior in fraud detection. In some cases, these systems can’t 

confirm if the cardholder has exceeded his/her credit limit or not. 

 

2.5 Conclusion 

 

Previously, many credit card fraud detection techniques have been discussed. 

These fraud detection techniques aim to detect and prevent credit card fraudulent 

transactions, leading to high security to the cardholders and protecting their personal 

information. Credit card issuer companies must use more than one method 

simultaneously to ensure higher protection. Applying these fraud detection techniques to 
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any credit card company helps the company to minimize the annual losses due to credit 

card fraud that happen every day. 
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CHAPTER 3 

 

THE PROPOSED SYSTEM 
 

 

This chapter will discuss the current credit card payment system and the proposed 

system in detail. 

 

3.1 Traditional Online Credit Card Payment System 

 

Security is the main issue in the credit card system for individual and corporate 

finance transactions. To observe the difference between the proposed system and the 

conventional system, we should understand how the current credit card system works for 

online transactions. 

 

 
 

Figure 3-1: The stages of the regular (current) online transaction. 
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Figure 3-1 shows that the customers’ cycle starts when they enter their credit card 

number and the 3-digit CVV (Card Verification Value) directly to the merchant’s 

website. All connections from the cardholder through to the issuer bank are secured by 

conventional security systems such as Secure Socket Layer (SSL). The customer uses the 

merchant’s website to send his/her credit card information to pay for the purchased goods 

or services. In turn, the merchant passes on the received information to Visa/Mastercard 

company or another card issuer company to verify the cardholder’s identity using the 

provided credentials. Then the card issuer checks if the cardholder has sufficient 

funds/credit line to proceed with the transaction. The whole procedure throughout the 

transaction cycle is processed in a matter of seconds for an online transaction. As for a 

point-of-sale transaction, the cardholder swipes the credit card at the point-of-sale instead 

of entering the 16-digit credit card number and the CVV code to the merchant’s website. 

The rest of the procedure is similar to the online transaction, which similarly takes a few 

seconds. This is how the current online payment system works using a credit card. 

 

3.2 The Proposed System 

In this section, we are going to describe the proposed system in detail. The proposed 

approach is constructed to enhance credit card security in online transactions. 

The proposed system’s basic requirements include an internet connection and a 

smartphone or computer application to be able to implement the proposed system. Every 

user should sign up to the system and fill out a registration form with the required 

information (the user’s name, date of birth, mailing address, phone number, e-mail 

address, and three security questions if the user forgets his/her username or password). 

Moreover, every user must set up a password which must include an uppercase letter, 
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special character, and number. Also, our system uses the user’s password as a part of the 

shared secret between the user and the card issuer. The cardholder should control any 

payment transaction by using his/her credentials to log in to the system to handle the 

online transactions without the need to have a physical credit card. 

3.2.1 Server’s Side 

The server is the most important part of our system since it integrates an ML 

algorithm for fraud detection. Also, it is responsible for doing several tasks. The server 

receives requests from users that include the transaction information such as transaction 

amount, merchant’s name, and hidden information such as the user’s longitude and 

latitude, transaction time, and the IP/IMEI number. The server handles the following 

tasks: 

1. Authenticates users to log in to their accounts: 

The server will verify the user’s username and password to ensure that the one-

time credit card request comes from the genuine user. Then the user should be 

able to obtain the credit card number through his/her account. 

2. Stores all online transactions information in a database: 

All requests will be stored in the database, making transactions history. 

3. Runs the machine learning algorithm for fraud detection: 

The server will run the ML algorithm for fraud detection based on the stored 

transaction history in the database. 

4. Verifies high-risk transactions: 

The server will send a verification message to the user’s phone number if it has 

been evaluated as a high-risk transaction by the ML algorithm. Once the user 
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verified the transaction’s information, the server will activate the user’s one-time 

credit card number and store the transaction information in the database. 

5. Activates the one-time credit card number along with the CVV number to the 

user: 

The server is responsible for activating the one-time credit card number and the 

CVV number directly if it has been evaluated as a legitimate transaction by the 

ML fraud detection algorithm. 

Once the server activated the one-time credit card number and the CVV number, 

he/she will be able to make an online purchase using the generated one-time number, and 

each time the user needs to generate a new number for a new online transaction. 

3.2.2 Description of the Proposed System 

 

The proposed system comes up with an additional phase (the purple arrows in 

Figure 3-2) before proceeding to the regular transaction using the same conventional 

equipment. The new phase is expected to provide higher security to the cardholder as 

well as the card issuer (see Figure 3-2). 

After the user’s login to the system through a smartphone or a personal computer 

using the user’s login credentials, the system will move forward to the first step in the 

new phase. The user generates a one-time credit card number and a CVV code associated 

with a specific online transaction. In step #1, the cardholder requests the server to 

confirm the generated one-time credit card number. The user’s request comprises the 

following pieces of payment information: The transaction amount, merchant’s website, 

time of the transaction, and the public key. The user’s request also comprises other 

hidden information without the user’s acknowledgment, such as the user’s location 
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(longitude, latitude) and the IMEI (mobile login)/I.P. address (P.C. login). In turn, the 

server should be able to generate the same one-time credit card number based on the 

provided information by the user and confirm the transaction. The server will process the 

given information and store every transaction in a database as a transaction history for 

machine learning training purposes. The transaction should be done within a limited time 

session. Otherwise, the server will require the user to generate a new one-time credit card 

number with new information. The server sets up an amount limit so the merchant cannot 

charge the cardholder any extra amount of money beyond the requested amount of 

money. 

 

 
 

Figure 3-2: The proposed system (online transaction) 
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The server uses the IMEI/IP address and the other embedded information in the 

user’s request to apply a fraud detection algorithm using machine learning algorithms to 

prevent any possible fraudulent transactions. The fraud detection algorithms include the 

user’s location, IMEI/IP address, transaction time, and the average consumption of money 

based on the user’s credit card transaction history.  

The server, in turn, should be able to verify each transaction using the shared 

secret (user’s password) at the user’s machine. The server confirms the user’s 

information and activates the one-time credit card number with a predetermined amount 

of money if the number is uniquely generated. The ML algorithm considers the repeated 

information provided by the user as a normal transaction. The normal transaction is the 

transaction that comes from the same IP/IMEI address, location (longitude, latitude) that 

the user used to make the online transactions from, and within the average user’s 

consumption. The moderate transaction is the transaction that somehow follows the 

user’s spending behavior. The risky transaction is the one that doesn’t follow the genuine 

user’s spending behavior. The prior user-server communication comes to avoid any 

potential fraudulent transaction. 

3.2.3 Deployment Overview 

 

Due to the added phase, as shown in Figure 3-3, before continuing to the regular 

credit card transaction, the user needs to have customized client software installed or log 

in to his/her account through our website as a user. In order to apply our approach, the 

following elements are needed: 

1. Smartphone/personal computer. The user needs to either use a smartphone or a 

personal computer to get the one-time credit card number and provide the server 
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with the transaction’s details, such as the transaction amount, the merchant’s 

website. In addition, the user needs to verify his/her identity by entering the 

username and password to perform any transaction. 

2. Webserver. The system performs most operations at the server-side, including 

verifying the user’s identity, storing the transaction details in the database, 

applying fraud detection algorithms to determine the transaction’s risk, and 

responding accordingly. 

3. Database. The system should have a database to store all user’s information and 

all credit card transactions. 

4. Internet connection. Both client and the server should be connected to the internet 

to perform the desired transaction. 

 

Figure 3-3: System overview 

 

As previously discussed, the proposed system uses the current infrastructure and 

the existing network security systems such as SSL (secure socket layer). The user must 

create an account, and every created account information should be stored in the system’s 
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database for future login activities and verification purposes. The procedure is depicted as 

flow charts in Figures 3-4, 3-5. 

 

 
 

Figure 3-4: One-time number generation 
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Figure 3-5: ML integration 
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Figure 3-3 shows the flow chart of the one-time credit card number uniqueness 

verification. The user generates a one-time credit card number and a CVV code to the 

corresponding transaction at the user’s machine. The user sends a public key with the 

transaction information for every online transaction for verification. The server should be 

able to obtain the same credit card number using the shared public key, shared secret, and 

verify that the generated number is unique by checking the server’s database for 

duplication. If the one-time number is unique, the server passes the user’s request to the 

next stage (LR ML algorithm) for fraud detection based on the user’s transaction history. 

It sends a confirmation message to the user informing the user that the generated credit 

card number is activated and ready to use if the transaction is considered legitimate. 

Otherwise, the server asks the user to regenerate a new one-time credit card number. If 

the one-time number is not existing in the server’s database, the server passes the 

transaction to the ML algorithm. 

According to Figure 3-4, the ML integration flow chart, the server confirms the 

transaction if it is considered legitimate based on the ML decision. Otherwise, the server 

takes further action; it sends a transaction confirmation message that includes the 

requested transaction’s full information to the user’s phone number. The user must be 

able to confirm the transaction’s information by clicking “Yes” or decline the transaction 

by clicking “No.” This procedure helps the server verify the cardholder’s identity, update 

the database with the new verified information, or stop the payment transaction 

considering it as a high-risk transaction if the confirmation message is not confirmed. 

According to the payment card industry data security standard (PCI DSS) [54], 

the 16-digit credit card number is made of three groups, and each group represents a 
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different code. The first six digits were used to identify the card issuer institution, such as 

Mastercard, Visa, or American Express, etc. The card issuer must assign a unique 

identifier to the proposed system to avoid any possible collisions with the real credit card 

numbers. The following 7-15-digits are used as a cardholder identifier. Hence, the system 

will generate a unique 9-digit number as a cardholder identifier.  

Furthermore, the system will not reissue the same number for any online 

transaction until the number is used and discarded to avoid credit card number collision. 

The last digit is a check number generated using Luhn [55] algorithm to ensure that the 

credit card number has been entered correctly. 

Once the user completes the transaction, the generated credit card number will be 

stored in the database for a month if any product returns to the same credit card number. 

In this period of time, the stored credit card number will no longer be valid for future 

transactions. The proposed system uses three security dimensions (one-time credit card 

number, secure communication medium, integrated with ML fraud detection algorithm) 

to ensure high security for every online credit card transaction. 

 

3.3 Generation of the One-Time Credit Card Number 

 

The unique one-time credit card number will be generated based on three 

variables: transaction time, transaction amount, and a random number. This combination 

is used to generate a unique one-time credit card number and to avoid a possible 

collision. Mainly, the transaction time itself is a unique variable, especially when we use 

the transaction time in microseconds. However, the server checks the one-time number 

for duplication in the database before activating the one-time number to ensure that the 

generated number is not stored in the server’s database. 
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The one-time credit card number will be generated at both user and server’s sides. 

Both numbers should be matched. Hence, there is no need to share the one-time number 

between the user and the server. As discussed earlier, the system generates only the 

middle 9-digit of the credit card number, which is the cardholder identifier number, to 

maintain the usability of this number at any merchant’s online store. 

To ensure high security of the credit card number, the server and user use a secret 

key. The secret key is made of the user’s login password that is stored on both sides 

concatenated with the result of the time (T) multiplied by the transaction amount (A) to 

generate the same one-time number. Herein, we will have different “Sha256” hash chains 

for every transaction. The user generates a random number (N) 1-99,999 range to use as a 

hash exponential value of the hashed secret key. The user applies N hash operations to 

the secret key to get a public key (verification token) to be sent over to the server. The 

following equation shows the hash operation implemented at the user’s side: 

𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 = 𝑆𝐻𝐴256^(𝑁)(𝑠𝑒𝑐𝑟𝑒𝑡 𝑘𝑒𝑦 ||(𝑇 ∗ 𝐴))              Eq. 3-1 

The first 5-digits of the 9-digits will be produced from another hash function’s 

result. The system extracts the first five integer numbers of the following formula’s 

result: 

𝑑𝑖𝑔𝑖𝑡𝑠 = 𝑠ℎ𝑎256(𝑁 ∗ 𝐴 + 𝑇)                                    Eq. 3-2 

The following 4-digits are generated based on the transaction’s time (T) in 

microseconds and the transaction’s amount (A) according to the following formula: 

𝑋 = 𝑓𝑙𝑜𝑜𝑟𝑖𝑛𝑔 (
𝑇∗𝐴

𝑁
) %10000                                    Eq. 3-3 

The last digit will be computed by the Luhn algorithm based on the previous 15-

digits to meet the current credit card infrastructure. The public key will be sent to the 
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server with the transaction’s amount and time to generate the same one-time number. The 

server uses the public key and the stored secret key to obtain the same generated one-time 

number (the code is included in Appendix A.6). 

The server also uses the transaction’s amount and time to find the following 4-

digits using the same formula used at the user’s side. By applying the Luhn algorithm to 

obtain the last digit, the server will have the same one-time credit card number. The 

server checks the credit card number for duplication and activates the number if the 

generated number does not exist in the server’s database. 

The CVV (card verification value) will be generated at both user and server’s side 

based on the shared public key with the transaction time according to the following 

formula: 

𝐶𝑉𝑉 = (𝑁 ∗ 𝑇)%1000                                       Eq. 3-4 

The CVV number will be associated with the one-time credit card number for 

each online transaction. 

 

3.4 Machine Learning Fraud Detection Component 

 

The proposed system integrates the machine learning fraud detection algorithm to 

enhance the security of our system with several features, such as:  

1. Location (longitude, latitude)  

2. I.P. address (If the transaction was made through a P.C.) 

3. IMEI number (If the transaction was made through a smartphone) 

4. Time (The time in hours of the day) 

5. Time difference between every two transactions (The difference in days of every 

consecutive transaction) 
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6. Transaction amount 

The proposed system will apply the L.R. algorithm based on the features as a 

second security layer. The server stores every transaction in a database. Hence, the L.R. 

algorithm can build a consumption pattern based on the transaction’s history for every 

cardholder. Our system is designed to decline suspicious transactions based on the L.R. 

algorithm decision. 

Use case scenario: suppose that a user wants to use his/her credit card to make an 

online transaction from Amazon. The desired product is priced at $100. The user must 

log in to his/her account using his/her username and password. Then, the user should be 

able to generate a one-time credit card number to use for a specific transaction. Also, the 

user should provide the server with the transaction’s information, such as the merchant’s 

website “Amazon,” the amount of the transaction “$100,” and a public key that is 

associated with this certain transaction. The information will be sent to the server with 

other hidden information through the client-server communication, such as the user’s 

location (longitude, latitude), IP/IMEI number, and transaction time. The server will 

generate the same one-time number at its end and store it in a database. Furthermore, the 

server checks if the generated one-time number exists in the database, so the user needs 

to regenerate another one-time number. Once no duplication is found, the server will pass 

the transaction to the ML algorithm for fraud detection.  

The server will use the provided information to evaluate the transaction by 

integrating the ML fraud detection algorithm based on the user’s transaction history. If 

the transaction is evaluated as a legitimate transaction, the server will activate the one-

time number. The generated number has a limited amount of $100, so the user cannot 
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spend more than $100 using the same one-time credit card number. Suppose the 

transaction has been evaluated as a fraudulent transaction. In that case, the server will 

send a verification code to the user’s phone number in order to verify that the request 

comes from the genuine user. If verified, the server would activate the one-time credit 

card number. Otherwise, the transaction would be declined.  

We will use a credit card transactions dataset that is used widely in many research 

papers. This dataset is made by European cardholders in September 2013 [56]. The 

provided data is a PCA (Principal Component Analysis) transformed in this dataset due 

to confidentiality and privacy issues. Also, we will use artificial datasets that incorporate 

our new features. 

We will apply several machine learning algorithms to the dataset, such as the 

Decision Tree algorithm, Logistic Regression algorithm (L.R.), Random Forest, Support 

Vector Machine (SVM), and the Naïve Bayes. These machine learning algorithms will 

help us determine each feature’s influence of using more than one attribute to detect 

potential fraud. Herein, we can observe the difference between using all variables rather 

than using some of them. Our system is expected to overcome the current systems’ 

weaknesses since all reviewed literature focuses on a few variables and ignores some 

other variables.  

The proposed system will be based on the transaction history to predict future 

potential fraudulent transactions. Therefore, the more data we have stored in the database, 

the more accurate the system can perform, whereas a small dataset might result in higher 

false-positive cases. 
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3.5 User Interface 

 

The user interface allows the user to obtain a one-time credit card number after 

logging into the user’s account using a username and password. The user should 

determine the amount of money that he/she wants to spend and where to spend it. This 

provided information will improve the customer’s security since the server can constrain 

the generated one-time credit card number. Figure 3-6 shows how the user’s interface 

looks. 

 

 
 

Figure 3-6: User’s interface 

 

 

After filling out the required fields, the user hits the “GENERATE RANDOM 

CREDIT CARD NUMBER” button to obtain a one-time credit card number determined 

for a specific transaction to a particular store. 

This information helps the system to set up a limitation to the generated credit 

card number. Also, the system will match the provided information by the user with the 

merchant’s information during the online transaction. 
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CHAPTER 4 

 

EXPERIMENTS OF ML ALGORITHMS  
 

 

This chapter discusses experiments with multiple ML algorithms to determine the 

best performing algorithm in terms of accuracy and time efficiency that will be used in 

our system. 

4.1 Datasets 

 

This section describes the datasets that have been used in this research. We have 

used multiple datasets in our project: 

4.1.1 Real Dataset 

 

The first dataset is the one that many researchers around the world widely use. 

This dataset consists of 284,807 online credit card transactions recorded for two days by 

European cardholders in September 2013 [56]. The provided data is a PCA (principal 

component analysis) transformed in this dataset due to confidentiality and privacy issues. 

(See Appendix A.1 for more details).  

4.1.2 Artificially Generated Datasets 

 

We have produced several artificial datasets that meet our new features 

representing different users’ behavior based on the users’ spending behavior and how 

they deal with the online payments with various stores or websites. 
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These datasets have been generated to imitate different hypothetical situations, so 

we generated six datasets classified into six categories. The six categories and each 

category specification are listed as follows: 

1. Regular spending behavior, i.e., “regular person” (3 different users with 1000 

transactions each). Each user 

A- Has few IMEI/IP addresses and locations (latitudes, longitudes)  

B- Shops from few online stores 

C- Consumes on average $150 

D- Transacts purchases between 8 am and 11:59 pm 

2. Multiple locations, i.e., “person who makes online transactions on several 

websites” (three different users with 1000 transactions each). Each user 

A- Has several IMEI/IP addresses with various locations 

B- Shops from few online stores 

C- Consumes on average $500 

D- Shops at various times of day with no time pattern 

3. High spending behavior, i.e., “person who spends a lot of money on online stores” 

(three different users with 1000 transactions each). Each user 

A- Has few numbers of IMEI/IP addresses with few locations 

B- Uses several online stores 

C- Consumes on average $3000 

D- Shops at various times of day with time pattern 
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4. Vast locations usage. i.e., “a person who makes online transactions at more than 

20 different locations” (three different users with 1000 Transaction each). Each 

user 

A- Has many various locations and IMEI/IP addresses 

B- Has a moderate number of different stores 

C- Consumes on average $500 

D- Transacts purchases between 8 am and 11:59 pm 

5. Different stores buyer “a person who buys on many online websites” (3 different 

users with 1000 Transaction each). Each user 

A- Has moderate number IMEI/IP addresses and locations 

B- Shops from many online stores 

C- Consumes on average $1000 

D- Transacts purchases between 8 am and 11:59 pm 

6. A mix of all the five categories (three different users with 1000 Transaction each). 

Each user 

A- Shops from various locations with many IMEI/IP addresses 

B- Shops from many online stores 

C- Consumes on average $3000 

D- Transacts purchases at various times of day with no time pattern 

The six categories were based on various variables with different online credit 

card payment behaviors. These datasets have different variables that imitate the real 

human spending behavior, so we still maintain the most probable situations for each user 

included in the synthetic datasets.  
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These six datasets are created to represent various difficulties in guessing the 

user’s pattern, where Cases 1 and 2 represent the simplest user’s behavior, while Cases 3 

and 4 are set to express more complex situations by extending the variables’ data range. 

These kinds of cases would be more challenging for ML algorithms to find a clear 

pattern. Hence, we expect a decreasing accuracy and precision in more complex cases. 

The last two Cases, 5 and 6, represent the most complex situations, so the ML algorithms 

would face a significant challenge to find an apparent spending behavior for each user in 

these cases. Therefore, we expect the weakest performance in the last two cases. 

Tugba Sabanoglu published a study on online credit card transactions in 2020 

[60]. The study shows that the majority of customers make at least one online transaction 

a month with 31% of the respondents, and 24% of customers make online transactions 

twice every two weeks, and 20% of people use their credit cards to make online 

purchases once every week. We observe that the percentages are relatively close to each 

other. Hence, we considered two transactions per week to represent the real data in the 

real world.  

The initial artificial dataset has nine variables (columns), UserAccountNumber; 

UserName (email address); IP address; TransactionTime; TransactionAmount; 

TransactionStore; Latitude; Longitude; and Status (fraudulent determination variable: 

zero-value indicates a non-fraudulent transaction, and one value indicates a fraudulent 

transaction). This data is not balanced, but it does not have any inappropriate values or 

missing values. The generated datasets need to be modified and normalized to get a 

balanced dataset to fit the ML algorithms. These synthetic datasets went through the 

following operations before integrating the ML algorithms. 
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1. Transform the transaction’s daytime into a number representing the hour of the 

day of the transaction 

2. Transform the date of the transaction into a day’s difference between every 

consecutive transaction 

3. Splitting the Transaction IP address into four groups in order to be numerical and 

readable by the ML algorithms 

4. Deleting the Username column because it is nominal, and the ML cannot deal 

with nominal variables 

5. Normalizing all columns to fit our ML models 

After implementing the steps, the synthetic datasets now have 11 columns, and all 

of them are ready for analysis. 

Also, these datasets have no fraudulent transactions with the initialization. Still, 

we added some fraudulent transactions into these datasets. The fraudulent transactions 

represent 1% of the total transactions. Furthermore, we look for a spending pattern 

difference between legitimate and fraudulent transactions. We also consider the online 

shoppers’ behavior in terms of the websites they used to spend their money on. IP 

addresses and locations might be spoofed. Hence, all fraudulent transactions were made 

with 10% of a fraudulent transaction with the genuine user’s exact location and IP 

address. 

Furthermore, all fraudulent transactions are generated similar to legitimate 

transactions since fraudsters use genuine accounts to commit fraud but with different 

consumption patterns considering different situations regarding the amount, time, and 
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location. We will apply the most effective machine learning algorithms to our datasets to 

check if they can catch fraudulent transactions. 

We have generated the artificial data to imitate the real dataset data distribution to 

avoid any biased datasets. The synthetic datasets represent different user’s consumption 

behaviors; hence these datasets have been generated accordingly. The synthetic datasets 

comprise nine variables: 

1. User Account Number: this number is a unique number assigned to every user in 

the dataset that identifies each user in number. Thus, the distribution of this 

variable’s values doesn’t represent any bias because it’s a unique identification 

number. Furthermore, each dataset has three different users; each user has 1000 

transactions in the dataset. 

2. Username: we used an email address as a username for each user in the dataset. 

This variable is not used in the ML algorithm integration because it has a string 

value.  

3. Time gap: The system calculates the difference between every consecutive 

transaction in days. Hence, we generated the values carefully to be normally 

distributed to avoid any bias in this feature. Figure 4-1 shows that each user has 

an average time gap of five days, and all users in the Case 6 dataset (user #0, user 

#1, user #2) have approximately the same data distribution, where Figure 4-1 

shows a normal distribution. The statistical analysis for the rest of the cases can 

be found in the Appendix (A.2). 
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Figure 4-1: Time gap  

 

 

4. Transaction amount: the amount of money of each transaction; this variable’s 

distribution is strongly skewed to the left because most of the transactions have a 

small amount while a few transactions have larger amounts. According to the case 

six dataset specifications, as it shows a high consumption behavior, the average 

transaction amount in Case 6 is $3000, and the maximum value is $11,900; the 

minimum is $13.5 with a $2,390 standard deviation. This variable imitates the 

data distribution of the transaction amount variable in the real dataset. All users 

(user #0, user #1, user #2) in Case 6 have the same mean and are fairly 

distributed. Figure 4-2 shows that the transaction amount variable’s distribution is 

skewed to the left since most recorded values were below $2000. This distribution 

imitates the skewness of the amount variable in the real dataset. Hence, the data 

distribution in this dataset shows very similar statistical characteristics to the real 

dataset. 
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Figure 4-2: Transaction amount histogram 

 

 

5. Transaction Store: this variable is a number that represents the merchant’s website 

of each transaction. This variable has been normalized to avoid any bias in the 

data generation (see Figure 4-3). These figures show that each user in this dataset 

has the same data distribution with the same mean =10. The histogram graph 

shows a normal distribution. Thus, there is no bias in generating this feature. 
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Figure 4-3: Transaction store histogram 

 

 

6. Transaction IP: this variable shows the IP address of each transaction. Since this 

is just an address, the data distribution is not important because it is considered a 

string variable. 

7. Location (two variables “latitude, longitude”): This variable is to determine the 

exact location of each transaction. We used real values to fill out these variables. 

These variables were generated by assigning different locations to different users 

in the same dataset (see Figure 4-4). 
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Figure 4-4: Transaction store boxplot 

 

 

8. Time/h: this variable represents the time of the day in hours of each transaction. 

This variable’s value was generated according to each artificial dataset’s 

specifications since we suggested different time ranges in different situations (see 

Figure 4-5). 

9. Status: fraudulent determination variable, “Zero” value indicates non-fraudulent 

transaction, and “One” value indicates a fraudulent transaction.  Note that the 

statistical analysis includes the fraudulent transactions data as well. 
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Figure 4-5: Time/h boxplot 

 

 

4.2. Research Methodology 

 

This section explains our research methodology and how we will choose the best-

fitted ML algorithm for our system based on the proposed features. This research 

methodology is divided into three steps: 

1. Running the chosen machine learning algorithms on the first dataset (the real 

dataset) and finding the results of each algorithm 

2. Running the most efficient machine learning algorithms on the artificially 

generated datasets and finding the results of each algorithm in each category 

3. Finding the results of all experiments and choosing the best-fitted ML algorithm 

accordingly 
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4.2.1 Machine Learning Algorithms 

 

This section will discuss the machine learning algorithms used in this research 

and why we have chosen these algorithms rather than other machine learning algorithms. 

We use five ML algorithms that help us to detect fraudulent transactions in the real 

dataset: 

1. Decision Tree 

2. Support vector machine (SVM) 

3. Random Forest 

4. Logistic Regression 

5. Naïve Bayes 

We have chosen the machine learning algorithms because all of them use a binary 

classifier. Our study looks for two possible cases as an outcome, either a fraudulent 

transaction or a non-fraudulent transaction. Hence, we have two classes, so we need to 

distinguish one from another. 

4.2.2 Machine Learning Criteria 

We have used several evaluation criteria in this study that represent the 

effectiveness and the efficiency of each ML algorithm. Evaluation criteria help us 

understand each model’s performance and allow us to compare each ML algorithm with 

others. The most important criteria used in this study are the confusion matrix with many 

measurements that evaluate the model performance. Confusion Matrix produces a matrix 

as output and describes the complete performance of the model. 

As shown in Figure 4-1, we have four essential measurements used in evaluating 

each model’s analysis in the confusion matrix. These four measurements are True 
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Positive Ratio (TPR), True Negative Ratio (TNR), False Positive Ratio (FPR), and False 

Negative Ratio (FNR). 

 

Table 4-1: Confusion Matrix (Sample) 

 

 
Predicted No Predicted Yes 

Actual No True Negative False Positive 

Actual Yes False Negative True Positive 

 

 

We have also used the performance table with several criteria: accuracy, 

precision, recall, specificity, sensitivity, classification error, AUC (area under the curve), 

and others. Accuracy is the ratio of the sum of true positive and true negative to the sum 

of all the predicted examples as seen in Eq. 4-1. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                               Eq. 4-1 

Sensitivity, also called recall, is the measure of true positive predictions to the 

sum of true positive cases and false-negative cases. The recall evaluates the completeness 

of the program, considering how many true positives were detected as positive. See Eq. 

4-2. 

Sensitivity (recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                            Eq. 4-2 

Specificity is the measure of a true negative ratio to the sum of a true negative and 

false positive. See Eq. 4-3. 

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                  Eq. 4-3 
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Precision defines the ratio of the number of true positives to the sum of a true 

positive and false positive, in other words, the measure of the quality of the positive 

feedback data. The equation of precision is shown below. 

Precision= 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                               Eq. 4-4 

AUC (Area Under Curve) represents the probability that a random positive 

example is positioned to the right of an unexpected negative example. 

AUC ranges from 0 to 1. A model whose predictions are 0% incorrect has an 

AUC of 0, and a model whose predictions are 100% correct has an AUC of 1.0. 

AUC is useful for the following two reasons: 

A) AUC is scale-invariant. That means it measures how well predictions are 

 ranked instead of their absolute values. 

B) AUC is classification-threshold-invariant. AUC measures the quality of the  

 model’s predictions irrespective of what classification threshold is chosen. 

F-Measure provides a combination of both precision and recall as a single 

measure that captures both properties. Neither precision nor recall tells the whole story. 

We can have a good precision ratio with a terrible recall ratio or a terrible precision ratio 

with a good recall ratio. Herein, F-measure provides a way to express both measures with 

a single score. F-measure is calculated through the following formula. 

F-Measure = (2 * Precision * Recall) / (Precision + Recall)               Eq. 4-5 

 

4.3 ML Experiment on the Real Dataset (1st Experiment) 

 

This section compares each machine learning algorithm’s outcomes executed on 

the real dataset (1st experiment). We have integrated five ML algorithms that use a binary 
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classifier to distinguish fraudulent transactions from non-fraudulent credit card 

transactions. See Appendix (A.3) for more details. 

We show a comparison model that allows us to understand how each machine 

learning model has interacted with the real dataset. A good visual comparison among 

used machine learning models is ROC comparison (Receiver Operating Characteristic 

curve), representing a performance measurement for the classification problems. ROC 

gives us a better sense of each model’s results in predicting true positive cases (TPR) and 

false-positive cases (FPR). See Figure 4-6. 

 

 
 

Figure 4-6: ROC comparison 

 

 

The ROC curve graph summarizes all models’ confusion matrices. The Y-axis 

represents the true positive ratio (TPR). The X-axis represents the false positive ratio 

(FPR), which means the closer to the graph’s top-left side, the better the prediction ratio 

than others. The ROC graph in Figure 4-6 shows that the Logistic Regression has 

performed the best among all tested models. The light blue line representing the logistic 

regression in the chart is the closest to the top-left side, making fewer false-positive cases 
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more true positives. In other words, we can say that the sensitivity is the Y-axis, and (1-

specificity) is the X-axis. 

We observed that all models were close to each other in terms of the sensitivity 

ratio except Naïve Bayes with 91%. Logistic Regression and Naïve Bayes models have 

shown the best specificity ratio among all other models since they show the highest 

specificity rate with 79% and 80%. Table 4-2 shows a review of all measures for all 

machine learning models. 

 

Table 4-2: Performance Comparison 

 

Model/Measure Accuracy AUC Precision Recall F-Measure 

Naïve Bayes 89.6% 0.908 96.7% 91.9% 93.8% 

LR 96.4% 0.935 96.8% 99.1% 97.9% 

Decision Tree 93.9% 0.867 93.9% 99.4% 96.5% 

Random Forest 94.6% 0.895 99.5% 99.5% 96.9% 

SVM 86.2% 0.582 99.9% 100% 92.6% 

 

 

According to Table 4-2, the Logistic Regression has shown the best performance 

overall. However, some models have had a comparable performance in some measures, 

such as the Random Forest and the Decision Tree model. The Logistic Regression has 

reached the highest accuracy with 96.4%, and F-Measure with 97.9%. Also, the AUC 

ratio was the best among all ML models with 0.935. In comparison, the Naïve Bayes and 

the SVM have shown the worst performance among all tested ML models. Therefore, we 

will not consider those ML models in the next experiments. 
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Still, we have another essential criterion that hasn’t been mentioned in the table, 

like time efficiency. Table 4-3 compares the time efficiency among all ML models. 

 

Table 4-3: Time Efficiency 

 

Model/Time 

measure 

Training Time  

(1000 Rows) 

Scoring Time  

(1000 Rows) 

Total Time 

Naïve Bayes 10 ms 198 ms 17 s 

Logistic regression 23 ms 219 ms 17 s 

Decision Tree 50 ms 172 ms 18 s 

Random Forest 282 ms 1 s 2 min 25 s 

SVM 4 s 12 s 27 min 1 s 

 

 

The Logistic Regression and Naïve Bayes models have the best performance in 

terms of time efficiency. Hence, the Logistic Regression is considered the best model in 

terms of both performance and time efficiency. Table 4-3 shows that SVM and Random 

Forest have shown good performance, but it took a long time to run them. Thus, we 

should balance the time and the performance results to come up with the best-fitted 

model.  We have executed these machine learning algorithms through RapidMiner Studio 

on a regular machine with standard specifications (Core i5 1.6 GHz processor, 8 GB 

RAM, Windows 10). Therefore, we might get different time outcomes by using other 

machines with better specifications. 

 

4.4 Machine Learning Algorithms Experiment on the Artificial Datasets  

(2nd Experiment) 

 

This section shows the performance of the most effective machine learning 

algorithms applied to the real dataset in the first experiment: Decision Tree, Logistic 

Regression, and Random Forest. See Appendix (A.4) for more details. The performance 

of the chosen ML algorithms in the second experiment is shown in Table 4-4. 
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Table 4-4: Average Performance of the 2nd Experiment 

 

The average performance of 2nd experiment 

Model/Measure Accuracy AUC Precision Recall F-Measure 

Decision Tree 87.2% 0.5605 93.6% 88.70% 87.00% 

Random Forest 90.3% 0.82 95.35% 51.80% 85.20% 

LR 94.5% 0.875 94.10% 97% 95.50% 

 

 

Table 4-5 summarizes all ML algorithms’ time efficiency on each case of the 

artificial dataset. In the table, we observe that the machine learning algorithms behave 

differently with different inputs and variables.  

 

Table 4-5: Average Time Efficiency of the 2nd Experiment 

 

2nd experiment average time efficiency of the six cases 

Model/Time 

measure 

Training Time  

(1000 Rows) 

Scoring Time  

(1000 Rows) 

Total 

Time 

Logistic 

regression 

177.5 ms 112.5 ms 2 s 

Decision Tree 170.6 ms 160 ms 2 s 

Random Forest 129.5 ms 601 ms 14 s 

 

 

All three ML algorithms used in the second experiment use a binary classifier to 

distinguish fraudulent from non-fraudulent credit card transactions. While different 

performances of each ML algorithm between the first and the second experiment were 

expected and observed due to the difference of the dataset sizes, Logistic Regression still 

reached a 94.5% accuracy and 96% precision ratio as an average of all cases compared 

with 96.4% in the 1st experiment. 
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In conclusion, the Logistic Regression algorithm still shows the best performance 

among all ML algorithms. It shows the best accuracy, precision, F-measure and achieved 

the best time efficiency of all models. Hence, we decided to use the LR algorithm in our 

system. 

Due to the variation of inputs in each case in the second experiment, machine 

learning spends more time processing data in the more complex cases because of the 

difficulty of guessing each user’s pattern in each dataset. Hence, the more complex the 

case is, the more time-consuming the model becomes. The Random Forest model’s 

complexity justifies a long time in the processing since it needs to construct many 

decision trees according to the input variables. Therefore, it has the worst time efficiency 

among other models. 

 

4.5 First Experiment Vs. the Second Experiment 

 

This section discusses the results of each experiment and compares all results in 

terms of performance, efficiency. 

4.5.1 Performance Comparison (1st Experience Vs. 2nd Experience) 

This section compares the first and the second experiment’s results with each 

other. This study uses different metrics to evaluate each machine learning algorithm and 

how they behave with different variables, dataset size. The best performance ML 

algorithm is the one that achieves the highest accuracy, precision, F-measure, and AUC 

percentages in the shortest time. 

As shown in Table 4-6, we see that the five ML algorithms have scored an 

average of 89.23% F-measure 94.35% precision in the first experiment. The Naïve Bayes 

and the SVM have shown the worst performance compared with other models; therefore, 
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we haven’t used these models in the 2nd experiment. Also, we excluded the SVM 

algorithm in the 2nd experiment because it consumes a lot of time detecting fraudulent 

transactions. According to all performance measures, the best performance shown in the 

1st experiment was the Logistic Regression model by running 96.4% accuracy and 96.8% 

for precision with 97.9% F-measure. 

 

Table 4-6: Performance Comparison (1st Experience Vs. 2nd Experience) 

 

Model/Measure Accuracy AUC Precision Recall F-Measure 

Naïve Bayes 89.6% 0.908 96.7% 91.9% 93.8% 

LR 96.4% 0.935 96.8% 99.1% 97.9% 

Decision Tree 93.9% 0.867 93.9% 99.4% 96.5% 

Random Forest 94.6% 0.895 99.5% 99.5% 96.9% 

SVM 86.2% 0.582 99.9% 100% 92.6% 

The average performance of 2nd experiment 

Model/Measure Accuracy AUC Precision Recall F-Measure 

Decision Tree 87.2% 0.5605 93.6% 88.70% 87.00% 

Random Forest 90.3% 0.82 95.35% 51.80% 85.20% 

LR 94.5% 0.875 94.10% 97% 95.50% 

 

 

The 2nd experiment examines six different synthetic datasets with different 

variables. Each dataset comprises 3000 rows designated for three users. Our model is 

based on unsupervised machine learning, so the system learns from the past transactions 

and trains itself accordingly. 

In comparison, the dataset in the 1st experiment has 284,804 rows. On the other 

side, the 2nd experiment has six datasets of 3000 rows each. Thus, obtaining 94.5% 
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accuracy and 96% precision in the second experiment utilizing the Logistic Regression 

algorithm is a meaningful achievement because it has shallow data that it can rely on.  

 

4.5.2 Time Efficiency Comparison (1st Experience Vs. 2nd Experience) 

 

In our study, we have a different number of variables in the two experiments. The 

1st experiment has 21 different variables included after the data cleaning in the 

experiment, while the 2nd experiment has only 11 variables. Hence, in the first 

experiment, the ML algorithms are expected to detect fraudulent transactions better than 

the 2nd experiment. 

Table 4-7 summarizes the ML algorithms’ time efficiency in both first and second 

experiments. As shown in the table, the SVM showed the worst time efficiency in the 

first experiment. The Logistic Regression model showed good time efficiency in both 

experiments, and the decision tree model has a comparative time efficiency to the 

Logistic Regression. 

 

Table 4-7: Time Efficiency (1st Experience Vs. 2nd Experience) 

 

1st experiment time efficiency 

Model/Time measure Training Time (1000 Rows) Scoring Time (1000 Rows) Total Time 

Naïve Bayes 10 ms 198 ms 17 s 

Logistic regression 23 ms 219 ms 17 s 

Decision Tree 50 ms 172 ms 18 s 

Random Forest 282 ms 1 s 2 min 25 s 

SVM 4 s 12 s 27 min 1 s 

2nd experiment average time efficiency of the six cases 

Model/Time measure Training Time (1000 Rows) Scoring Time (1000 Rows) Total Time 

Logistic regression 177.5 ms 112.5 ms 2 s 

Decision Tree 170.6 ms 160 ms 2 s 

Random Forest 129.5 ms 601 ms 14 s 
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The Logistic Regression still proves the best performance and time efficiency in 

both experiments. According to the time efficiency in both experiments, we can see that 

the scoring time in the second experiment is 50% less compared with the first 

experiment, which is faster in predicting fraudulent transactions. We conclude that using 

fewer critical features leads us to better time efficiency with roughly the same 

performance. 

 

4.6 Excluding Features (3rd Experiment) 

 

In this section, we excluded the location feature (longitude, latitude) from the 

synthetic datasets to observe the importance of the integration of features together. We 

have tested all six cases in this experiment. Logistic Regression ML algorithm will be 

applied since it showed the best performance among all tested ML algorithms in the 

previous experiments. We have excluded the location feature in this experiment to 

observe the influence of excluding one feature from the dataset. After excluding the 

location feature and applying the LR algorithm, predicting fraudulent transactions was 

dropped down, as Table 4-8 shows. The table shows a tangible impact by excluding the 

location feature. Thus, we conclude that location is a critical variable for fraud detection. 

Furthermore, the integration of all features together leads to better performance. 
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Table 4-8: Excluding Location (3rd Experiment) 

 

LR performance with excluding the location 

Case/ criteria Accuracy Precision Recall F-Measure 

Case 1 96.8% 97.3% 98.9% 98.9% 

Case 2 86.4% 86.4% 100% 92.6% 

Case 3 85.5% 85.4% 100% 92.1% 

Case 4 86.8 % 86.8% 100% 91.4% 

Case 5 84.3% 84.3% 100% 91.4% 

Case 6 76.2% 97.2% 95.3% 86.4% 

LR Performance without excluding the location 

Case 1 98.9% 98.8% 100% 99.4% 

Case 2 97.5% 97.2% 100% 98.6% 

Case 3 93.8% 93.4% 100% 96.5% 

Case 4 97.2% 98.8% 97.7% 98.2% 

Case 5 88.1% 97.1% 88.7% 92.4% 

Case 6 85.5% 89.4% 94.4% 91.6% 

 

 

As a further experiment, we will depend on the location feature as the only feature 

in the dataset that we can use to detect fraudulent transactions using only one feature 

rather than using more than one predictor variable. Table 4-9 shows the result of 

excluding all variables and keeping the location as the only feature. 
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Table 4-9: One Feature ML Integration 

 

Case/ criteria Accuracy AUC Precision Recall F-Measure 

Case 1 81.9% 0.454 96.0% 82.9% 88.7% 

Case 2 87.5% 0.674 87.2% 100% 93.1% 

Case 3 86.2% 0.26 86.2% 100% 92.6 

Case 4 82.0% 0.798 87.2% 93.8% 90.0% 

Case 5 88.1% 0.277 88.1% 100% 93.5% 

Case 6 77.5% 0.842 79.5% 96.9% 87.2% 

 

 

According to Table 4-9, the performance of the LR model based on the location 

feature is poor compared to using many features to detect fraudulent transactions. In 

conclusion, the performance of the LR model with our six critical features has achieved 

better performance than depending on few features. 

 

.
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CHAPTER 5  

 

DISCUSSION 

 

 

In the previous chapter, the design details of the proposed system were covered 

and discussed. In this chapter, the proposed system’s different aspects are evaluated 

based on the two experiments’ performance as well as the one-time credit card payment 

security analysis. Moreover, the various factors and parameters that play a role in both 

experiments’ performance are analyzed. 

 

5.1 Security Analysis 
 

As discussed in Chapter 3, the proposed technique improves the currently used 

systems by adding a new phase that includes several steps before authentication to the 

user’s account. These steps help our system enhance online credit card transactions’ 

security since the user needs to obtain a new one-time credit card number for every 

online transaction with a predetermined amount of money. Our system is designed to 

defend against several kinds of attacks, such as man-in-the-middle attacks, database 

breaches, guessing and cyber-attacks, and unauthorized users. Our system offers secure 

communication between the cardholder and the server since both sides will be able to 

generate the same one-time credit card number without sharing it during the user’s 

request.  
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5.1.1 Defend Against Potential Breaches 

 

As explained earlier, this system is designed to defend against several types of 

attacks. We will assume several attack scenarios and how our system will be able to 

avoid them. 

1. Man-in-the-middle attack: is a kind of cyberattack where an unauthorized outsider 

intrudes into an online correspondence between two users, escaping captured by 

the two parties. Man-in-the-middle-attack can monitor and change individuals’ 

information until the two users realize it. The proposed system will protect the 

one-time credit card numbers since both sides of communication don’t share the 

one-time credit card number. Instead, both users and the server will generate the 

same credit card number locally at their sides using the hashed public key. The 

only information that any Man-in-the-middle can eavesdrop on is the hashed 

public key, which is nonreadable without having the secret key that only both 

sides of communication have. Hence, even if a hacker has obtained the public 

key, he/she cannot get the one-time credit card number. Thus, our system can 

overcome Man-in-the-middle attacks by maintaining a secure communication 

channel. 

2. Database breach: our approach uses a temporary credit card number for every 

online transaction, and this number is only valid for one transaction with a 

predetermined amount of money at a specific online store. Since the credit card 

numbers stored in an online merchant’s database can be used only once, so even if 

the attacker has access to the entire history of transactions of a user, he/she can’t 
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reuse any of them nor fabricate another credit card number that will pass the 

server’s verification unless he/she knows the shared secret. 

For example, potential cybercrimes involving stealing credit card numbers and 

database breaches will be difficult because of the new phase since all users have 

to obtain a unique credit card number for each transaction. Hence, the credit card 

numbers stored in the merchant’s databases will not be valid for future uses. 

Moreover, the system does not let any credit card numbers be shared between the 

cardholder and server. 

3.  Guessing of the random number (N) attack: this threat is impossible in our system 

because the generated one-time credit card number is generated based on several 

parameters, and mainly on the secret key that no one knows except both 

communication ends.  

The secret key is a series of hashing functions applied to a random base number 

concatenated with time and amount variables. Hence, it is impossible to guess the 

generated random number at the user’s side since there is no explicit number being 

transmitted in the user-server communication. Further, the generated random number will 

not be used explicitly in the one-time credit card number. The number that is used as a 

part of the one-time credit card number is a result of another hashing function of different 

parameters. Thus, the hacker will face another obstacle in finding the actual credit card 

number. 

Furthermore, the actual one-time credit card number will be shared only with the 

merchant to pay for a service or a product. This operation is done in a matter of seconds, 

and then the one-time credit card number will not be valid for future transactions. Hence, 
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the hacker cannot obtain the one-time credit card number and use it for illegal purposes 

within 1-3 seconds. 

5.1.2 Authentication  

 

As discussed earlier, every user must have an account that facilitates the online 

transaction operations by signing into the system and filling out a form that includes all 

required information.  

Our system uses the provided account information by the user to authenticate 

him/her to log in to his/her account safely. Furthermore, the system uses the phone 

number to send a verification message that indicates the requested transaction details to 

verify risky transactions as an additional security layer. 

For example, suppose the server receives a fraudulent request to activate a one-

time credit card number from an unauthorized user with an unknown location, IP/IMEI 

address. In that case, the server will not be able to obtain the generated one-time credit 

card number on the user’s device. Hence, the server sends a verification message to the 

user’s device, informing him/her of the suspicious transaction and stopping it. As another 

use case scenario, if the server received a fraudulent request with the same user’s 

information, the server should still detect an abnormal behavior by applying the ML fraud 

detection algorithm. The server sends a verification message to the user’s phone number 

to authenticate the transaction or stop it if the user didn’t verify the transaction. 

 

5.2 Overview on ML Algorithms’ Results 

In this section, we discuss what happens behind the scenes. In fact, the primary 

operations are implemented at the server’s side without the user’s acknowledgment. The 

server applies the fraud detection operations through the machine learning algorithm. In 
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this study, we proposed several added features to develop the current online credit card 

system. The proposed features are: 

1. User’s location (longitude, latitude) 

2. IP address or the IMEI number 

3. Transaction’s store 

4. Transaction time period (time difference between every two consecutive 

transactions) 

5. Time (the time in hours of the day) 

6. Transaction’s amount 

Our system uses the above features combined to make fraud detection much more 

efficient. In order to support our assumption, we have chosen the most appropriate 

machine learning algorithms in our case of detecting fraudulent transactions. We have 

used several datasets to evaluate our model. The first dataset is a real dataset, and the 

other datasets are artificially generated datasets that imitate the real dataset. We have 

tested all datasets by integrating several ML algorithms on all datasets to observe the 

differences among them and determine how ML algorithms interact with different 

situations or users’ behaviors separately. Therefore, we have chosen the Logistic 

Regression ML algorithm to be integrated into our approach due to both experiments’ 

great performance. 

A comparative study by Trivedi, Naresh Kumar, et al. [30] investigated the same 

real dataset we used in this research. Their results show that the Random Forest obtained 

the best performance with 95% precision, but they ignored how time-consuming this 
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model is. On the other hand, our system shows better performance utilizing the Logistic 

Regression algorithm by achieving 96% precision with a very time-efficient model. 

In another study by Lakshmi et al. [67], they have implemented three ML 

algorithms, Decision Tree, Logistic Regression, and Random Forest, on different 

variables. The first dataset has only five variables, and the obtained accuracy of each 

model was as follows: LR 87.2%, DT 89%, and RF 90.1%. The second dataset has 10 

variables, and the result was as follows: LR 88.6%, DT 92.1%, and RF 93.6%. In 

comparison, our system utilizes only six features, and the achieved accuracy shows better 

results compared with their approach by obtaining 94.5% accuracy for the Logistic 

Regression model.  

 

5.3 One-Time Credit Card Number Analysis 

 

One promising future direction of this work is designing a new credit card system 

that does not use permanent credit card numbers. The proposed system is expected to 

ensure a secure online payment system with a high capability of catching fraudulent 

transactions. The one-time credit card approach is used by several companies/banks.  

For example, Capital One’s bank provides this service for all its customers. In 

comparison, our system generates a unique one-time credit card number for every 

transaction, and the generated number will not be usable again at any merchant’s 

websites. The user needs to obtain a new number every time. Hence, our system will 

provide higher security to the cardholder. 

On the other hand, our system takes further steps before generating the one-time 

credit card number. We can verify the user’s location by retrieving the longitude and the 

latitude and the users’ spending behavior by storing every transaction’s detail, including 
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the IP/IMEI number, in a database. Thus, we know all users’ activities that help us detect 

any suspicious activity and stop it. Furthermore, our system generates the one-time credit 

card number at both sides (user and server’s side) to ensure higher security. 

Another example of a credit card issuer that offers virtual credit card numbers is 

City Bank. But this service is limited to a specific customer’s category who uses “Only 

Select Citi cards.” In comparison, our system is willing to work at any internet browser 

and smartphone application since the customer has to log in to his/her account and obtain 

a one-time credit card number with a predetermined amount at the user’s side. The 

customer needs to specify the merchant’s website and the transaction amount to set up a 

limitation to the credit card number for a specific online store with a certain amount of 

money. The one-time credit card number will be discarded automatically by the system 

right after the transaction completion, and this credit card number will not be valid for 

future uses, but the one-time credit card number will be stored in the server’s database for 

a limited time in case there is a product returned. The generated number will be attached 

to the genuine user’s account.  

Many one-time credit card approaches have been adopted for a long time. One of 

the systems developed by Saxena and Ponnapalli [16] uses a one-time credit card system 

that generates the credit card number at the user’s side offline without contacting the 

server or being online. On the other hand, our approach also generates the one-time credit 

card number at the user’s side. The user sends the transaction information, including a 

public key. The generated one-time number is made of multiple variables; it doesn’t 

depend only on the secret key. 
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Furthermore, the server receives information implicitly to use for the second 

security layer (ML fraud detection algorithm). The server activates the one-time number 

if the transaction is considered legitimate. Also, it should be able to generate the same 

one-time credit card number based on the provided information. First, the user checks for 

duplication, while Ponapalli’s approach doesn’t pay attention to this issue because the 

number will not be stored in a database. This is a weakness in their system because their 

approach cannot handle product return issues. 

Another comparative study by Rajasekaran and Varadarajan [18] developed a new 

model to reduce the potential credit card fraud by a one-time credit card number 

generator and single round-trip authentication. In comparison, our system generates the 

one-time credit card number at the user’s side, without the need for further operations as 

described in this literature. The server should be able to verify the generated one-time 

number immediately if both numbers generated at both sides are matched and pass the 

ML fraud detection algorithm. Moreover, the generated number is designed to meet a 

particular online transaction characteristic in terms of the transaction amount and specific 

online store. 

Our system has extended the current systems by combining several features such 

as location, IMEI/IP address, the time difference between transactions, and the online 

store. This study enhances credit card security systems by integrating two levels of 

protection, one-time credit card number, and integrating machine learning algorithms 

using the new critical features. 
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5.3.1 One-Time Credit Card Number Generation 

 

This section analyzes how our system generates a unique one-time credit card 

number. We designed our system using different programming languages such as HTML, 

JavaScript, PHP, and CSS. The one-time credit card number has been designed to meet 

the current credit card numbering structure. The first 6-digits are reserved to identify the 

card issuer. Our system focuses on generating the following 9-digits using PHP 

programming language. The last digit is a check number generated using the Luhn 

algorithm. 

The generated number is then stored in the server’s database to reference each 

online transaction and to afford any product return. The server assures non-duplicate 

credit card numbers by matching every generated one-time credit card number with the 

stored ones in the database to avoid any transactions collision. This step comes to ensure 

that the generated number is unique, although this case is almost impossible since the 

system uses several variables to generate the one-time credit card number, including the 

transaction time in microseconds. The transaction time is always an increasing variable, 

which ensures a unique number every time. 

The PHP and MySQL code to generate the one-time credit card number and the 

CVV security code is provided in Appendix A.6. 

 

5.4 Conclusions 

 

This section concludes the work in this dissertation. Our approach combines the 

machine learning (ML) algorithm with unique temporary credit card numbers in one 

integrated system, which is the first approach in the online credit card protection system. 

Our system proposes secure communication between the cardholder and server. Both 
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sides of the communication collaborate to generate the same one-time credit card number 

in a secure channel. The one-time credit card number is generated at the user’s side and 

verified by the server using a secret key and a verification token (public key). Our 

approach integrates the ML fraud detection algorithm as a second security layer. 

We have investigated several ML algorithms to find the best-fitted algorithm for 

our system based on six hypothetical cases. Five ML algorithms were used in the 1st 

experiment, Decision Tree, Logistic Regression, Random Forest, Naïve Bayes, and SVM, 

which were applied to a real dataset. In contrast, we picked the best three models to be 

used in the 2nd experiment.  In conclusion, we found that the Logistic Regression model 

has the best performance. The Logistic Regression shows 96.4% accuracy with the best 

time efficiency in the 1st experiment. On the other side, it shows 94.5% accuracy in the 

second experiment with great time efficiency. The second experiment showed an 

outstanding time efficiency in reducing the scoring time in the first experiment by more 

than 50% utilizing only six critical features compared with the first experiment. The third 

experiment shows that the six features combined lead to better performance compared to 

using some of them. 

The one-time credit card system is designed to be compatible with the current 

online payment infrastructure since it meets the existing credit card numbering structure. 

The one-time credit card number will be stored in the server’s database for a month. 

Hence, we can deal with any refunds to a particular online transaction. In comparison, 

other one-time credit card systems cannot deal with refunds to the used one-time credit 

card number, such as the Capital One virtual credit card system and Citi bank’s 

temporary credit card system.  
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This dissertation intends to minimize cyber threats such as database breaches and 

Man-in-the-middle attacks in electronic commerce by combining both the one-time credit 

card number approach and the ML fraud detection algorithm. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE WORK 
 

 

Credit card security is essential for both consumers and credit card issuers due to 

increased financial fraud and database breach issues. Therefore, this study addresses this 

issue in order to improve the security of current credit card systems. 

We have achieved a working strategy to overcome the security issues in 

permanent credit card numbers by proposing a secure method utilizing one-time credit 

card numbers. This study combines the one-time credit card approach with machine 

learning algorithms to ensure a robust online payment system. Although our approach 

causes a little overhead on the customer by requesting a one-time credit card number 

every time before proceeding to the regular process of making an online transaction, this 

approach protects customers’ money from being stolen by fraudsters. 

Moreover, every generated number is unique and will be used for only one online 

payment transaction with a predetermined amount of money assigned to every 

transaction. Several factors have been used to integrate the Logistic Regression ML 

algorithm, such as IMEI/IP address, location (longitude, latitude), average consumption, 

transaction store, and time to obtain a consumption behavior for every cardholder. These 

factors enhance the system’s performance to detect fraudulent transactions. Furthermore, 

our approach uses the current online payment infrastructure; hence, there is no need for 

extra equipment to implement our approach in any credit card company immediately.
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This research proposed a secure online credit card payment system that can be 

immediately deployed utilizing existing infrastructure. Hence, one future project can be a 

practical deployment of the proposed system. Below are some potential future projects: 

1. Exploring significant factors that might improve the credit card payment system 

2. Trying to enhance the in-store payment systems using new approaches 

3. Considering improving the online payment systems with different approaches 

4. Presenting our proposed system to various credit card companies for adoption 

5. Diving deeper into the machine learning algorithms as an effort of improving 

these models or developing a new approach to detect fraudulent transactions 

6. Enhancing the one-time credit card system by obtaining the credit card number 

without involving the user in this process 
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APPENDIX A 

 

REAL DATASET ANALYSIS AND RESULTS 
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A. 1 Real Dataset 

 

The real dataset is highly imbalanced; 0.172% of all the transactions were 

fraudulent in nature. This dataset has 30 features. In the dataset, we are not provided with 

original features and background. We are provided with a PCA transformed version of 

the features due to confidentiality and privacy issues. This dataset has the following 

features: V1, V2, V3, …, V28 are PCA transformed for customer’s privacy issues. We 

have some other features that are not subjected to PCA transformation, such as ‘time’ and 

‘amount’ [56]. 

Due to this dataset’s nature, we have applied several operations on this dataset to 

be able to use it properly. The following operations have been applied to the dataset: 

1. Cleaning the Dataset: 

First, we need to clean the dataset since it has many inappropriate and missing 

values in order to be able to use it to train our model. In general, this step involves 

deleting the rows that have missing or inappropriate values using RapidMiner studio [64]. 

2. Balancing the dataset: 

Imbalance in a dataset is usually reflected by the asymmetrical distribution of 

classes within the dataset. For ease, we can call the class that makes up a massive 

proportion of the dataset as majority classes and the class that makes up a smaller 

proportion as minority classes [57]. We need to apply a sampling technique before 

performing a classification task on the imbalanced dataset. It is not easy to train a model 

with an imbalanced dataset. 

We solved the problem of dealing with an imbalanced dataset by oversample the 

minority class. We have used RapidMiner Studio software [58] to balance our dataset. 
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In the feature space, RapidMiner studio selects close samples by drawing a 

boundary between the samples in the feature space and picking a new sample at any point 

along that line. Also, RapidMiner studio helped us to generate the data visualization [59]. 

3. Data analysis: 

Our approach focuses on understanding the credit card transactions dataset and 

developing an effective model to detect fraudulent transactions. To better understand the 

dataset, we have performed exploratory data analysis (EDA) using widely used open-

source libraries such as NumPy, Pandas, Matplotlib, and Seaborn using PyCharm 

community edition 2020.2 [65]. 

Matplotlib and Seaborn are excellent libraries for visualization in Python. We 

have obtained several visualizations such as histograms, bar graphs, density plots, and 

box plots using RapidMiner studio to get a better sense of the dataset.  

For a better understanding of this dataset, see the following visualizations. 

 

 

Figure A- 1: Transactions amount frequency 



86 

 

 

 

From Figure A-1, we can tell that most of all credit card transactions’ amounts are 

below $2,500 with an average of $88.35. Hence, we can rely on this feature combined 

with other features to detect fraud if the upcoming transaction is not in the rage. 

4. Features’ correlation: 

This dataset has 28 PCA transformed variables and two natural variables, time 

and the Transaction amount. The following figure shows the correlation heatmap of all 

variables in this dataset: 

 
 

Figure A-2: Correlation heatmap (Exp1) 

 

 

Based on the correlation result, we conclude that some variables have no 

influence on the result of detecting fraudulent transactions because they have a low 

correlation ratio. We found that V4, V8, V13, V15, V22, V23, V24, V25, and V26 have 

no tangible correlation, and they have no influence on the results. Therefore, we have 
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excluded these variables in the analysis of detecting fraudulent transactions. The 

following figure shows the weights by correlation that we need to consider in our study. 

 

A. 2 Artificial Datasets 

 

A.2.1 Statistical Analysis of Datasets 

 

This section shows the data distribution in the first five synthetic datasets and the 

last dataset (Case 6 is shown in the dissertation). 

1. Case 1 statistical analysis 

 
 

Figure A-3: Transaction amount 
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Figure A-4: Time in hours 

 

 

 
 

Figure A-5: Time gap 
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2. Case 2 

 

 
 

Figure A-6: Transaction amount 

 

 

 
 

Figure A-7: Time in hours 
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Figure A-8: Time gap 

 

 

3.  Case 3 

 

 
 

Figure A-9: Transaction amount 

 



91 

 

 

 

 
 

Figure A-10: Time in hours 

 

 

 
 

Figure A-11: Time gap 
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4. Case 4 

 

 
 

Figure A-12: Transaction Amount 

 

 

 
 

Figure A-13: Time in hours 
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Figure A-14: Time gap 

 

5. Case 5 

 

 

 

Figure A-15: Transaction amount 
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Figure A-16: Time in hours 

 

 

 
 

Figure A-17: Time gap 
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A.3 Machine Learning Algorithms Experiment on the  

Real Dataset (1st Experiment) 
 

A.3.1 Decision Tree (1st experiment) 

 

The Decision Tree traces the path from the root node to the leaf node. A 

classification rule is obtained to be used for further analysis.  

The following figure shows the constructed decision tree after applying the steps 

to the preprocessed real dataset. 

 

 
 

Figure A-18: The constructed decision tree model 

 

 

By applying the Decision Tree fraud detection algorithm on the real dataset, we 

found that some variables have supported the fraudulent transaction’s prediction. Some 

variables contradict the prediction. Figure A-19 explains the effect of each variable. 
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Figure A-19: Decision tree correlation factors 

 

 

This model has excellent performance compared with other used machine 

learning algorithms such as the SVM. The Decision Tree can obtain results faster than 

SVM. We used the model performance that consists of the model’s prediction accuracy 

and other performance criteria based on the type of classification problem. The 

performance is computed on a 40% holdout set based on the default setup for SVM as 

Rapidminer studio recommended, which has not been used for any performed model 

optimizations (optimizing the tree depth and minimal leaf size). The most comprehensive 

and the highest performance are removed, and the remaining performances are reported 

in Figure A-20. Although this validation is not as precise as full cross-validation, this 

approach strikes a good balance between runtime and model validation quality, such as 

automated data slicing for model validation [61]. 
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 True Fraudulent True Legitimate Class precision 

Pred. Fraudulent 80 5 94.12% 

Pred. Legitimate  56 865 93.85% 

Class recall 58.82% 99.42%  

 

Figure A-20: Decision Tree performance and confusion matrix 

 

 

Figure A-20 shows both the performance and the confusion matrix of the 

Decision Tree on the real dataset. 

This model has shown good performance in credit card fraud detection by 

obtaining 93.9% accuracy.  

A.3.2 Support Vector Machine (SVM) (1st experiment) 

 
We have used the Support Vector Machine model for fraud detection because our 

approach is based on supervised learning.  

By applying the SVM model, 1880 vectors have been produced. Range1 support 

vectors (legitimate transactions) were 1619, while 261 vectors were produced for Range2 

(fraudulent transactions). The following figures show the SVM model (Kernel Model) 

structure. 
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Figure A-21: Kernel model 

 

 

Figure A-22 shows each variable’s influence in the real dataset on the fraudulent 

transaction prediction. 

 
 

Figure A-22:  SVM factors of prediction 

 

 

The Support Vector Machine model has not shown a good performance compared 

to other ML models in predicting fraudulent transactions. There are some more 

measurements to evaluate this model, such as accuracy, precision, and recall percentages. 
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As in Figure A-23, SVM performs very poorly compared to the decision tree by showing 

86.2% accuracy, precision ratios. Although the F-Measure metric shows 92.6%, still the 

other models have performed better than SVM. 

 

 

 True Fraudulent  True Legitimate Class 

precision 

Pred. Fraudulent 0 0 0.00% 

Pred. Legitimate  138 861 85.16% 

Class recall 0.00% 100.00%  

 

Figure A-23: SVM performance and confusion matrix 

 

 

As in Figure A-24, the SVM model has shown bad results in detecting fraudulent 

credit card transactions with an approximately 13.8% error. 

 

 
 

Figure A-24: SVM error rates for parameters 
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The SVM model helps us differentiate fraudulent transactions from legitimate 

transactions by setting up a threshold line. For SVM, a high value of the parameter 

Gamma leads to more accuracy but biased results and vice-versa. Similarly, a significant 

value of Cost parameter (C) indicates poor accuracy but low bias and vice-versa. A large 

C gives you low bias and high variance. Low bias because you penalize the cost of 

misclassification. As a result of applying SVM on the real dataset, we found that the 

optimal parameters are kernel gamma= 0.005 and C= 10. The following table shows 

different C and kernel gamma values and the error percentage corresponding to each 

value. 

 

Table A-1:  SVM Error Rate 

 

Gamma (RBF) C error 

0.005 10 13.7% 

0.050 10 14.2% 

0.500 10 13.7% 

5 10 13.8% 

0.005 100 13.7% 

0.050 100 14.2% 

0.500 100 13.7% 

5 100 13.8% 

0.005 1000 13.7% 

0.050 1000 14.2% 

0.500 1000 13.7% 

5 1000 13.8% 

 

Also, we need to figure out the values for true positive, true negative, false 

positive, and false negative. These values represent the model efficiency in detecting 

fraudulent transactions, and we can evaluate this model upon the result of the SVM 

model’s confusion matrix. See Figure A-25. Note that range1 represents legitimate 

transactions, and range2 represents fraudulent transactions. 
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A.3.3  Random Forest (1st experiment) 

 

Figure A-25 shows the correlation of the features to the prediction result.  

 

Figure A-25: Random forest factors for prediction 

 

 

 

 True Fraudulent True Legitimate  Class 

precision 

Pred. Fraudulent  84 4 95.45% 

Pred. Legitimate 50 860 94.51% 

Class recall 62.69% 99.54%  

 

Figure A-26: Random forest performance and confusion matrix 
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As in Figure A-26, this model has performed the best in accuracy and precision 

ratios.  

The RF model has built 100 trees with a maximal depth of seven. The model 

forecasting shows 5.4% error rates for parameters, as the following figure indicates. 

 

 
 

Figure A-27: RF error rate 

 

A.3.4 Logistic Regression (1st experiment) 

 

The Logistic Regression algorithm uses both the LR function and the sigmoid 

function to present a binary classification based on the dataset’s various factors. The 

sigmoid function is shown below [62]: 

𝑌(𝑧) =
1

1+𝑒−𝑧                                                 Eq. A-1 

The Sigmoid function is used to find a binary classification probability. In this 

equation, y represents the probability of the output, and z represents the input to the 

function. 

𝑧 = 𝑏 + 𝑚1𝑥1 + 𝑚2𝑥2 + ⋯ 𝑚𝑛𝑥𝑛,                          Eq. A-2 

Where b is the linear regression intercept and m is the weighted values and bias, 

and x is the values featured. We have used the LR model because it presents a binary 

classification of either 1 or 0, fraudulent transactions and non-fraudulent transactions. 

This model uses a threshold of 0.5, and any value higher than this threshold is considered 
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1, and any value lesser than a threshold of 0.5 is automatically considered 0 [70]. Figure 

A-28 shows the correlation analysis of features with the prediction results. 

 

 

Figure A-28: Important factors for LR model 

 

 

 

 True Fraudulent True Legitimate  Class precision 

Pred. Fraudulent 106 8 92.98% 

Pred. Legitimate  28 856 96.83% 

Class recall 79.10% 99.07%  

 

Figure A-29: LR performance and confusion matrix 
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As shown in Figure A-29, so far, this model has performed the best in terms of 

accuracy, precision, and F-measure percentages. 

A.3.5  Naïve Bayes (1st experiment) 

 

The Naïve Bayes classifier is also a way to distinguish fraudulent credit card 

transactions. Figure A-30 shows the correlation analysis of features with the prediction 

results. 

 

 

Figure A-30: Naïve Bayes important factors 

 

 
Table A-31 shows the performance and confusion matrix of Naïve Bayes on the 

real dataset. As shown in the table, this model is one of the weakest performances among 

all tested ML despite a good precision ratio. 
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 True Fraudulent True Legitimate  Class 

precision 

Pred. Fraudulent  109 77 58.60% 

Pred. Legitimate 27 784 96.67% 

Class recall 80.15% 91.06%  

 

Figure A- 31:  Naïve Bayes performance and confusion matrix 

 

 

A.4 Machine Learning Algorithms Experiment on the Artificial Datasets (2nd 

Experiment) 

 

This section will integrate the most effective machine learning algorithms applied 

to the real dataset in the first experiment: Decision Tree, Logistic Regression, and 

Random Forest. 

 

A.4.1 Decision tree (2nd experiment) 

 

By applying the DT fraud detection algorithm on the first case dataset, we found 

the following results: accuracy, precision, recall percentages, as shown in Table A-2. 
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Table A-2: Decision Tree Performance (2nd experiment) 

 

Case/ 

criteria 

Accuracy AUC Precision Recall F-Measure 

Case 1 85.1% 0.825% 85.1% 100% 91.8% 

Case 2 87.6% 0.581 87.6% 79.7% 83.1% 

Case 3 88.8% 0.668 88.6% 100% 93.9% 

Case 4 86.8% 0.893 86.8% 100% 92.8% 

Case 5 90.8% 0.342 90.2% 100% 94.8% 

Case 6 83.5% 0.54 85.2% 97.7% 90.9% 

 

The performance table shows that the obtained average accuracy of all cases was 

85.6%, and approximately the same percentage for the precision. The Decision Tree 

model shows consistency in performance with all cases in this experiment, no matter the 

users’ consumption behavior participating in this experiment. 

We can notice that all metrics ratios decrease in Cases 5 and 6 according to the 

nonexistence of clear patterns. Note that the F-measure shows an average of 90.3%. Due 

to the shallow data in these synthetic datasets, the F-measure represents the performance 

much better than the accuracy because it reflects the false-positive, false-negative in these 

cases, which is more necessary in this experiment. 

A.4.2 Random Forest (2nd experiment) 

 

 Table A-3 summarizes the performance of Random Forest on the artificial dataset. 

The Random Forest has behaved differently with each case, as shown in the table. 

Overall, this model has achieved a 93.7% F-measure and 90.3% accuracy with 92.8% 

precision as an average of all case performances. The precision metric and F-Measure 
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represent the model’s performance more accurately than the accuracy metric due to the 

small size of the synthetic datasets compared with the real dataset that comprises 284,804 

dataset size. Thus, this model has performed well but not as well as the Logistic 

Regression’s performance. 

 

Table A-3: Random Forest Performance (2nd Experiment) 

 

Case/ criteria Accuracy AUC Precision Recall F-Measure 

Case 1 91.5% 0.951 97.1% 91.9% 94.4% 

Case 2 92.7% 0.744 92.7% 90.9% 91.4% 

Case 3 90.0% 0.703 89.9% 100% 94.6% 

Case 4 92.4% 0.962 97.5% 93.4% 95.3% 

Case 5 90.8% 0.672 93.3% 100% 96.4% 

Case 6 84.5% 0.765 86.5% 96.7% 91.2% 

 

The worst obtained performance was in Case 6 with 91.2% F-measure and 84.5% 

accuracy because this case doesn’t show a clear pattern for each user due to all users 

having a more scattered spending behavior in Case 6 than the normal spending behavior’s 

users. RF provides features importance, but it does not provide complete visibility into 

the coefficients as linear regression. Still, there are more metrics to judge the model’s 

performance. Even when the ML algorithm predicts a high accuracy, our model is also 

susceptible to other error types. 

Our study classifies an online credit card transaction, whether it is fraudulent (the 

positive class) or a non-fraudulent transaction (the negative class). While 99% of the 

time, the credit card transaction is non-fraudulent, possibly 1% of the time, it is 

fraudulent. If we train a machine learning model and always predict a transaction as non-
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fraudulent (negative class), it would be accurate 99% despite never catching the 

fraudulent transactions (positive class). 

F-measure, precision, and recall metrics are helpful to evaluate the performance 

of the ML model in our scenario because they provide a percentage of the ML model 

prediction of catching the fraudulent transactions (positive class). Herein, precision is a 

measure of how often the ML predicts the positive class as true. The recall is the measure 

of how often the actual positive class is predicted as such. Therefore, a low precision 

situation appears when very few of our positive predictions are actually true. A low recall 

percentage occurs when most of your positive values are never predicted. 

The Random Forest model has obtained an 86.5% precision ratio in Case 6, which 

better represents the model’s performance. Furthermore, the F-measure shows an average 

of 91.2%, which means that this model has produced a few false positives and negatives.  

A.4.3  Logistic Regression (2nd experiment) 

The Logistic Regression model is one of the best models used in our study 

because it presents a binary classification of the cases. As discussed before in chapter 2, 

Logistic Regression sets up a threshold of 0.5 between all cases, and then it starts to 

change this threshold based on the distribution of both classes (0, 1).  

Table A-4 summarizes the performance of Logistic Regression on the artificial 

dataset. The Logistic Regression model has performed the best among all ML models. 

The Logistic Regression shows great performance in predicting the regular user’s 

behavior. On the other hand, this model shows a better performance in predicting both 

Cases 5 and 6 than other ML models, but not as good as the simple cases. LR model 
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shows a good performance with other cases due to the consistency of the user’s behavior 

in the other cases.  

Logistic Regression has obtained 94.5% average accuracy, with a slightly higher 

percentage for precision with 96% precision. We can conclude that this model showed 

the best performance among other used ML models. 

 

Table A-4: Logistic Regression Performance (2nd Exp) 

 

Case/ criteria Accuracy AUC Precision Recall F-Measure 

Case 1 98.9% 0.6% 98.8% 100% 99.4% 

Case 2 97.5% 0.973 97.2% 100% 98.6% 

Case 3 93.8% 0.89 93.4% 100% 96.5% 

Case 4 97.2% 0.972 98.8% 97.7% 98.2% 

Case 5 94.0% 0.747 98.2% 95.0% 96.4% 

Case 6 85.5% 0.866 89.4% 94.4% 91.6% 

 

 
A.4.4 Time Efficiency of the 2nd Experiment 

 

Table A-5 summarizes each ML algorithms’ time efficiency on each case of the 

artificial dataset. In the table, we observe that the machine learning algorithms behave 

differently with different inputs and variables. Due to the variation of inputs in each case 

in the second experiment, machine learning spends more time processing data in the more 

complex cases because of the difficulty of guessing each user’s pattern in each dataset. 

Hence, the more complex the case is, the more time-consuming the model becomes. The 

Random Forest model’s complexity justifies a long time in the processing since it needs 

to construct many decision trees according to the input variables. Therefore, it has the 

worst time efficiency among other models. 
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Table A-3: Time Comparison (2nd Exp) 

Case 1 

Model/Time Training scoring total 

Decision tree 67 ms 295 ms 1 s 

Logistic regression 216 ms 106 ms 1 s 

Random forest 82 ms 303 ms 4 s 

Case 2 

Model/Time Training scoring total 

Decision tree 104 ms 116 ms 2 s 

Logistic regression 239 ms 161 ms 1s 

Random forest 96 ms 366 ms 4 s 

Case 3 

Model/Time Training scoring total 

Decision tree 104 ms 125 ms 1 s 

Logistic regression 179 ms 71 ms 898 ms 

Random forest 136 ms 304 ms 4 s 

Case 4 

Model/Time Training scoring total 

Decision tree 142 ms 141 ms 3 s 

Logistic regression 118 ms 174 ms 3 s 

Random forest 196 ms 2 s 22 s 

Case 5 

Model/Time Training scoring total 

Decision tree 121 ms 123 ms 1 s 

Logistic regression 186 ms 66 ms 959 ms 

Random forest 178 ms 377 ms 4 s 

Case 6 

Model/Time Training scoring total 

Decision tree 96 ms 160 ms 2 s 

Logistic regression 127 ms 97 ms 3 s 

Random forest 89 ms 257 ms 4 s 

 

 

A.5 Artificial Datasets Generation Code 

 

We have used Python to generate artificial datasets with different constraints to 

differentiate the six cases. The following is the Python code. 
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import csv 

import random 

import string 

import pandas as pd 

from random import randrange 

from datetime import timedelta 

from datetime import datetime 

data = pd.read_csv(“uscities.csv”)  

print(data[‘city’][0]) 

print(data[‘lat’][0], data[‘lng’][0]) 

# Number of instances 

instances = 150000 

# Function for ..... 

def random_date(start, end): 

    delta = end - start 

    int_delta = (delta.days * 24 * 60 * 60) + delta.seconds 

    random_second = randrange(int_delta) 

    return start + timedelta(seconds=random_second) 

#Function for ....... 

def random_char(y): 

    return ‘‘.join(random.choice(string.ascii_letters) for x in 

range(y)) 

#print (random_char(7)+”@gmail.com”) 

#================================= 

# generate 100 IDs 

IDs = [] 

for i in range(instances): 

    IDs.append(i) 

#print(IDs) 

#================================= 

# generate 100 IDs 

userNames = [] 

for i in range(instances): 

    userNames.append(random_char(7)+”@gmail.com”) 

#print(userNames) 

#================================= 

# Create Accounts numbers 

accountNums = [] 

for i in range(instances): 

    accountNums.append(i) 

#print(accountNums) 

stores = [“Walmart”, “Target”, “Amazon”, “eBay”] 

#Ips 

Ips = [] 

for i in range(instances): 

    Ips.append(‘.’.join(‘%s’%random.randint(0, 255) for i in 

range(4))) 

#================================= 

d1 = datetime.strptime(‘1/1/2020 12:00 AM’, ‘%m/%d/%Y %I:%M %p’) 

from datetime import datetime, timedelta 

nine_hours_from_now = datetime.now() + timedelta(hours=9) 

print (nine_hours_from_now) 

nine_hours_from_now = datetime.now() + timedelta(days=9) 

print (nine_hours_from_now) 

d2 = datetime.strptime(‘1/3/2020 12:00 AM’, ‘%m/%d/%Y %I:%M %p’) 

testRandom_times = random_date(d1, d2) 

import decimal 

def float_range(start, stop, step): 
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A.6 One-Time Credit Card Generation Full Code 

 

This is the full code that generates the one-time credit card numbers using PHP. 

 

 

 

 

 

 

 

    while start < stop: 

        yield float(start) 

        start += decimal.Decimal(step) 

#============================================================= 

import random 

from functools import reduce 

#1,804 total 

def gen_avg(expected_avg=89, n=3, min=1, max=3000): 

    while True: 

        l = [random.randint(min, max) for i in range(n)] 

        avg = reduce(lambda x, y: x + y, l) / len(l) 

 

        if avg == expected_avg: 

            return l 

with open(‘ccFraudDataSet.csv’, ‘w’, newline=‘‘) as csvfile: 

    writer = csv.writer(csvfile, delimiter=‘,’, quotechar=‘|’, 

quoting=csv.QUOTE_MINIMAL) 

    writer.writerow([“UserID”, “UserAccountNumber”, “UserName”, 

“TransactionTime”, “TransactionAmount”, “TransactionStore”, 

“TransactionIP”, “latitude”, “longitude”, “Status”]) 

    total = 0 

    for i in range(instances): 

        # Constants 

        print(“users: “ + str(i)) 

        uID = random.choice(IDs) 

        index = IDs.index(uID) 

        maxNoTransactions = 3  

        for j in range(random.randint(1, maxNoTransactions)): 

            # Variables 

            uName = userNames[index] 

            latitude = data[‘lat’][index] 

            longitude = data[‘lng’][index] 

            tTime = random_date(d1, d2) 

            uAccNum = accountNums[index] 

            tStore  = random.choice(stores) 

            tAmount = random.choice(gen_avg()) 

            total = total + 1 

            print(“# of transactions “ + str(total)) 

            tIp     = Ips[index] 

            writer.writerow([uID, uAccNum, uName, tTime, tAmount, 

tStore, tIp, latitude, longitude,’0’]) 
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<?php 

require “connection.php”; 

session_start(); 

function getRandomNumber($len = “5”)// 4 random credit card number (user identifier) 

function 

{ 

  $better_token= str_pad(rand(0, 99999), $len, ‘0’, STR_PAD_LEFT); 

    return $better_token; 

} 

function getRandomCVV($len = “3”)// generate random CVV number function 

{ 

  $better_token= str_pad(rand(0, pow(10, $len)-1), $len, ‘0’, STR_PAD_LEFT); 

    return $better_token; 

} 

// Luhn algorithm to generate the check number which is the last digit of the CC number 

function Luhn($gen_num) { 

$stack = 0; 

$gen_num = str_split(strrev($gen_num)); 

foreach ($gen_num as $key => $value) 

{ 

   if ($key % 2 == 0) 

   { 

       $value = array_sum(str_split($value * 2)); 

   } 

   $stack += $value; 

} 

$stack %= 10; 

 

if ($stack != 0) 

{ 

   $stack -= 10;     $stack = abs($stack); 

} 

$gen_num = implode(‘‘, array_reverse($gen_num)); 

$gen_num = $gen_num . strval($stack); 

 

return $gen_num; 

} 

function microseconds() { 

    $mt = explode(‘ ‘, microtime()); 

    return ((int)$mt[1]) * 1000000 + ((int)round($mt[0] * 1000000)); 

} 
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function getUserIpAddr(){ 

    if(!empty($_SERVER[‘HTTP_CLIENT_IP’])){ 

        //ip from share internet 

        $ip = $_SERVER[‘HTTP_CLIENT_IP’]; 

    }elseif(!empty($_SERVER[‘HTTP_X_FORWARDED_FOR’])){ 

        //ip pass from proxy 

        $ip = $_SERVER[‘HTTP_X_FORWARDED_FOR’]; 

    }else{ 

        $ip = $_SERVER[‘REMOTE_ADDR’];} 

    return $ip;} 

function getMAC (){ 

    $d = explode(‘Physical Address. . . . . . . . .’,shell_exec (“ipconfig/all”)); 

    $d1 = explode(‘:’,$d[1]); 

    $d2 = explode(‘ ‘,$d1[1]); 

    return $d2[1];} 

function chain($x){ 

      return hash(‘sha256’,$x);} 

    $iss_identifier = 123456;// credit card issuer identifier 

    $amount_1= rand (1,1000);// transaction amount 

    $currtime=microseconds();// time in microseconds 

    $rand_5=getRandomNumber();// random 5-digit 

    $zz= $amount_1*$currtime; 

    $yy= intval(($amount_1 * $currtime)/($rand_5)); 

    $com_num= substr($yy,-4); 

    $cc_hash= hash(‘sha256’,$rand_5*$amount_1+$currtime); 

    $int = filter_var($cc_hash, FILTER_SANITIZE_NUMBER_INT); 

    $num_salt= substr($int,-5); 

    $format= ‘%d%d%d’; 

    $gen_num= sprintf($format, $iss_identifier, $num_salt,$com_num); 

    $luhn= Luhn($gen_num); 

    $luhn_num= substr($luhn,-1);// Luhn digit 

    echo “This is the random number generated at the user’s side = $rand_5”; 

    $x= hash(‘sha256’,”password.$zz”); 

    $g= $rand_5; 

      while ($g!= 0){ 

        $x= chain($x); 

        $g--;} 

    echo “<br>“; 

    echo “This is the hashed code to the power of the random number = $x”; 

    echo “<br>“; 

    echo “<br>“; 

    $secret=hash(‘sha256’,”password.$zz”); 

for($j=0; $j<99999;$j++ ){ 

      if ($x == $secret){echo “This is the power value that found by the server which matched 

the generated random value at the user’s side =$j”.”<br>“; 

      $rr= hash(‘sha256’,$j*$amount_1+$currtime); 

      $int2 = filter_var($rr, FILTER_SANITIZE_NUMBER_INT); 

      $xyz= $iss_identifier.substr($int2,-5).$com_num.$luhn_num; 

  echo “the obtained number in server is: $xyz” .”<br>“;} 

      $secret= chain($secret);} 
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$user_MAC = getMAC(); 

$user_ip = getUserIpAddr(); 

$time_curr= date(“Y-m-d H:i:s”); 

$cvv= substr((getRandomCVV()*$currtime),-3); 

$ccnum= $iss_identifier. $num_salt.$com_num. $luhn_num; 

$mysqli = new mysqli(“localhost”, “root”, ““, “register”); 

$result = $mysqli->query(“SELECT id FROM exp1 WHERE ccNumber = ‘$ccnum’”); 

if($result->num_rows == 0) { 

     echo “row not found”; 

     echo “<br>“; 

     echo “Verified”; 

     echo “<br>“; 

     echo “credit card number: $ccnum”; 

     echo “<br>“; 

     echo “CVV number: $cvv”; 

} else { 

    echo “row found”; 

    echo “<br>“;} 

$sql_new= “INSERT INTO exp1 (id, ccNumber, CVV, time_curr, time_milli, time_mod, 

amount,time_amount, comb_num, IP, MAC, hashed_key) 

 VALUES 

(‘‘,’$ccnum’,’$cvv’,’$time_curr’,’$currtime’,’$rand_5’,’$amount_1’,’$yy’,’$com_num’,’$us

er_ip’,’$user_MAC’,’$x’)”; 

$query=mysqli_query($link,$sql_new); 

     $mysqli = new mysqli(“localhost”, “root”, ““, “register”); 

     $id= mysqli_insert_id($link); 

     echo “<br>“; 

     echo $id; 

     mysqli_close($link); 

echo “<br>“; 

echo “<br>“; 

?> 
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