

PARALLEL COMPUTING FRAMEWORK

AND GPU PERFORMANCE MODELING

by

 Wenjing Xu, B.S., M.S.

A Dissertation Presented in Partial Fulfillment

of the Requirements of the Degree

Doctor of Philosophy

February 2022

COLLEGE OF ENGINEERING AND SCIENCE

LOUISIANA TECH UNIVERSITY

GS Form 13a

(01/20)

LOUISIANA TECH UNIVERSITY

GRADUATE SCHOOL

April 7, 2020

Date of dissertation defense

We hereby recommend that the dissertation prepared by

Wenjing Xu, B.S., M.S.

entitled Parallel Computing Framework and GPU Performance Modeling

be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Analysis & Modeling

Chokchai (Box) Leangsuksun

Supervisor of Dissertation Research

Weizhong Dai

Head of Computational Analysis & Modeling

Approved: Approved:

Hisham Hegab Ramu Ramachandran

Dean of Engineering & Science Dean of the Graduate School

Doctoral Committee Members:

Weizhong Dai

Pradeep Chowriappa

Songming Hou

Manki Min

iii

ABSTRACT

During the past decades, High-Performance Computing (HPC) has been widely

used in various industries. In particular, the exponential growth of GPU (graphics

processing unit) is a key technology that has helped promoting the development of

artificial intelligence in real-world use cases. When we use GPU to accelerate parallel

applications, its programmability, resource management, and scheduling are non-trivial

jobs to obtain optimized performance. Therefore, how to effectively exploit GPU

resources and improve program performance has been a hot research topic recently.

Benchmark does not always provide a good picture of the performance and details

of the parallel applications. The various kinds of hardware devices and the constantly

updated parallel programs make the performance analysis and modeling even more

difficult.

In this dissertation, there are four main contributions. First, we conduct a study on

the GPU analytical performance model, which aims to estimate the suitable number of

threads per block for performance improvement.

Second, a novel method to elevate the limitation of GPU is proposed. This

method offers a new way for optimization on GPU performance at the block schedule

level.

Third, we propose two parallel computing abstract models, namely, the

computational and programming models that represent various computing paradigms

iv

based on Flynn’s taxonomy and simplify the workload distribution characteristics. This

framework provides a general way to create an analytical performance model.

Finally, we validate our proposed abstract models and demonstrate their

usefulness with real-world applications in AI (Artificial Intelligence) on a distributed

GPU system. The analytical performance model for CNN (Convolutional Neural

Network) application analyzes performance characteristics on multiple GPUs, enabling

users to evaluate their techniques before running applications on targeted machines.

 GS Form 14

 (8/10)

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University

the right to reproduce, by appropriate methods, upon request, any or all portions of this

Dissertation. It is understood that “proper request” consists of the agreement, on the part

of the requesting party, that said reproduction is for his personal use and that subsequent

reproduction will not occur without written approval of the author of this Dissertation.

Further, any portions of the Dissertation used in books, papers, and other works must be

appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the

literature, at any time, any or all portions of this Dissertation.

Author _____________________________

Date _____________________________

vi

DEDICATION

I dedicate this work to my wife and my parents for loving me and supporting me

all the time.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

APPROVAL FOR SCHOLARLY DISSEMINATION ... v

DEDICATION ... vi

LIST OF FIGURES .. xii

LIST OF TABLES ... xiv

ACKNOWLEDGMENTS .. xv

CHAPTER 1 INTRODUCTION .. 1

1.1 Overview of GPU ... 1

1.2 GPU Performance Model .. 2

1.3 GPU Optimization .. 3

1.4 Analytical Model for Parallel Applications on a Distributed System 3

1.5 Dissertation Contributions .. 4

1.5.1 Block Size Estimation ... 4

1.5.2 GPU Dynamic Partitioning ... 4

1.5.3 General Parallel Computing Framework for Performance Analytical Model 4

1.5.4 Performance Model for CNN on a Distributed System 5

1.6 Outline of Dissertation .. 5

CHAPTER 2 BACKGROUND .. 6

2.1 GPU Architecture ... 6

2.1.1 Machine Model ... 6

viii

2.1.2 Execution Model ... 7

Single-Instruction-Multiple-Threads (SIMT) ... 7

Thread Hierarchy Mapping ... 8

2.1.3 Programming Model ... 8

2.2 Parallel Computing and Distributed System for Deep Learning 9

2.2.1 Deep Learning ... 9

2.2.2 Parallel Computing and Distributed System ... 9

2.2.3 Convolutional Neural Networks ... 10

CHAPTER 3 ANALYTICAL GPU PERFORMANCE MODELS WITH BLOCK SIZE

ESTIMATION .. 12

3.1 Introduction ... 12

3.2 Related Work .. 16

3.3 Background ... 18

3.3.1 CUDA Programming Model ... 18

3.3.2 Threads and Blocks Scheduling .. 19

3.4 Analytical GPU Performance Modeling ... 20

3.4.1 Modeling GPU Hardware Specification ... 21

Threads Hierarchy ... 21

Relevant Characteristics and Limitation of Threads Hierarchy 23

Memory Hierarchy .. 25

Relevant Characteristics and Limitation of Memory Hierarchy 26

3.4.2 Modeling GPU Memory and Instructions Requirement 27

Memory Requirement & Number of Instructions ... 27

3.4.3 Modeling Execution Performance .. 28

Enough Warps to Cover Memory Latency ... 28

Not Enough Warps to Cover Memory Latency .. 30

ix

Compute-Intensive & Memory-Intensive Applications .. 31

Memory Accessing Analysis .. 32

3.5 Experimental and Result ... 33

3.5.1 Experimental Setup ... 33

3.5.2 Benchmarks... 34

3.5.3 Results ... 36

3.6 Conclusion .. 38

CHAPTER 4 DYNAMIC PARTITION GPU MECHANISM FOR CUDA PROGRAM

PERFORMANCE ACCELERATION ... 40

4.1 Introduction ... 40

4.2 Background ... 42

4.2.1 GPU Tasks Scheduling ... 42

4.2.2 Dynamic Partition Mechanism Workflow .. 43

4.3 Related Works ... 44

4.4 Partition Streaming Multiprocessors on NVidia GPU 46

4.4.1 Subset SMs on GPU.. 46

4.4.2 Mapping Control ... 47

4.5 Dynamic Partition SM Subset ... 49

4.5.1 Information Collection .. 49

4.5.2 Executing Time Estimation... 50

4.5.3 Dynamic Partition ... 52

4.6 Evaluation ... 54

4.6.1 Methodology ... 54

4.6.2 Machine Environment ... 55

4.6.3 Experiment Result ... 55

4.6.4 Experiment Conclusion ... 60

x

4.7 Conclusion .. 60

CHAPTER 5 A PARALLEL COMPUTING FRAMEWORK FOR PERFORMANCE

ANALYTICAL MODELS ... 62

5.1 Introduction ... 62

5.2 Background and Related Work ... 64

5.3 Framework for Parallel Application Analytical Modeling 67

5.3.1 Parallel Application Abstract Model .. 68

5.3.2 Parallel System Abstract Model.. 73

𝑇𝐿𝐷 Loading Data .. 74

𝑇𝐼 Instructions Passing ... 75

𝑇𝐶 Execution Time ... 76

5.3.3 Extended Flynn’s Taxonomy .. 77

Single Instruction Stream, Single Data Stream (SISD) .. 78

Single Instruction Stream, Multiple Data Streams (SIMD) 78

Multiple Instruction Streams, Single Data Stream (MISD) 79

Multiple Instruction Streams, Multiple Data Streams (MIMD) 80

Heterogeneous Computing.. 81

5.4 Conclusion .. 82

CHAPTER 6 PERFORMANCE MODEL FOR CNN ON DISTRIBUTED GPU

SYSTEM ... 83

6.1 Introduction ... 83

6.2 Background ... 86

6.2.1 Convolutional Neural Network (CNN) ... 86

6.2.2 Graphic Processing Unit (GPU) Architectures ... 87

6.2.3 CNN Training Process .. 88

6.2.4 Programming CNN to GPU .. 90

xi

6.3 Parallel Computing Performance Model .. 91

6.3.1 Time of One Training Iteration ... 92

6.3.2 GPU Instruction Queue Model ... 94

6.4 Experiments and Evaluation ... 97

6.4.1 Layer Time Evaluation ... 98

6.4.2 Transmission Time Evaluation ... 100

6.5 Conclusion .. 101

CHAPTER 7 CONCLUSIONS AND FUTURE WORK ... 102

7.1 Conclusions ... 102

7.2 Future Work .. 104

BIBLIOGRAPHY ... 105

xii

LIST OF FIGURES

Figure 2-1: GPU thread hierarchy mapping to hardware architecture. 8

Figure 2-2: Simple GPU kernel. .. 9

Figure 2-3: LeNet-5 architectures. ... 11

Figure 3-1: Overview of our analytical GPU performance model workflow. 14

Figure 3-2: CUDA sample code. ... 19

Figure 3-3: Streaming multiprocessor working rule. ... 20

Figure 3-4: Enough warps to cover memory latency. .. 29

Figure 3-5: Not Enough warps to cover memory latency. ... 31

Figure 3-6: The execution of each benchmark on Tesla M2050. 37

Figure 3-7: The execution of each benchmark on NVidia GTX650. 37

Figure 3-8: The execution of each benchmark on NVidia GTX970. 38

Figure 4-1: workflow of performance model analysis... 44

Figure 4-2: Subset SMs in NVidia Tesla C2050. .. 49

Figure 4-3: Speedup of two same kind kernels using a dynamic partition on GTX970.. 57

Figure 4-4: Speedup of two same kind kernels using a dynamic partition on Tesla

M2050. .. 57

Figure 4-5: Speedup of two same kind kernels using a dynamic partition on GTX650.. 58

Figure 4-6: Speedup of two different kernels with the same computational

throughput using a dynamic partition on GTX 970. ... 58

Figure 4-7: Speedup of two different kernels with the same computational

throughput using a dynamic partition on Tesla M2050. ... 59

xiii

Figure 4-8: Speedup of two different kernels with different computational throughput

before using dynamic partition and after on GTX970. ... 59

Figure 4-9: Speedup of two different kernels with different computational throughput

before using dynamic partition and after on Tesla M2050. .. 60

Figure 5-1: Overview of the parallel computing performance modeling framework...... 68

Figure 5-2: Examples of the four types of tasks. ... 69

Figure 5-3: Application logic example. ... 70

Figure 5-4: Overview of the extended Flynn’s Taxonomy.. 76

Figure 5-5: Single instruction multiple data streams. .. 78

Figure 5-6: Multiple instruction single data stream. .. 79

Figure 5-7: Multiple instruction single data streams. .. 80

Figure 5-8: Multiple instructions multiple data streams. ... 81

Figure 5-9: Heterogeneous system. ... 82

Figure 6-1: The architecture of LeNet-5. ... 87

Figure 6-2: Parameter server (PS). .. 89

Figure 6-3: The NVIDIA Collective Communication Library (NCCL).......................... 90

Figure 6-4: Memory intensive queue model. There are I Global Load instructions, M

Shared Load instructions, L CP instructions, and K Global Store instructions in each

block iteration. .. 95

Figure 6-5: Computation intensive queue model. There are I Global Load

instructions, M Shared Load instructions, L CP instructions, and K Global Store

instructions in each block iteration. .. 96

Figure 6-6: Comparison of runtime prediction for each layer in Alexnet (batch size

256). .. 99

Figure 6-7: Comparison of runtime prediction for each layer in Resnet-50 (batch size

256). .. 99

xiv

LIST OF TABLES

Table 3-1: Parameters of GPU thread hierarchy (obtained by

cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device) function in

CUDA SDK). .. 23

Table 3-2: Parameters of GPU memory hierarchy (we can get parameters by

cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device) function in

CUDA SDK). .. 25

Table 3-3: Specification of target GPU.. 34

Table 4-1: GPU hardware characteristic information. ... 48

Table 4-2: Description of the benchmark. ... 55

Table 5-1: Parameters for the Parallel application and system abstract model. 71

Table 6-1: Computation notations.. 92

Table 6-2: Inputs parameters.. 98

Table 6-3: Resnet-50 data parallel comparison between actual runtime and model

prediction in the PS mode. .. 100

Table 6-4: Resnet-50 data parallel comparison between actual runtime and model

prediction in the NCCL mode. .. 100

xv

ACKNOWLEDGMENTS

I truly would like to thank my advisor, Dr. Chokchai (Box) Leangsuksun, who

inspired me to start this extraordinary journey. He has always given me strong support.

He has given me guidance on the experiment, research, and career planning. He has

guided me to explore new topics and given me critical feedbacks in time. He has

provided me opportunities to participate in both research and teaching. When I was

confused on this journey, he always gave me confidence. Without him, I would not be

able to complete this dissertation.

I would like to acknowledge Dr. Pradeep Chowriappa for his guidance in data

science. I am grateful to Dr. Songming Hou and Dr. Manki Min for discussing ideas. Dr.

Weizhong Dai for advising me through the CAM program.

In Ruston, my fellow students have made my life more rewarding. I would like to

thank all my colleagues and friends: Dr. Supada Laosooksathit, Ajay Pasagada, Andrew

Dale Touchet. Dr. Shi He.

Finally, I would like to greatly thank my wife and my parents for their

unconditional support in my life. I also would like to thank my son Ayden, he is another

reason for me to finish this dissertation.

1

CHAPTER 1

INTRODUCTION

High Performance Computing (HPC) has become increasingly indispensable and

a main driving force for technology advancements. HPC has played significant roles in

many scientific discoveries and engineering product design and development. Recently,

the HPC gives a significant boost to Artificial Intelligence (AI) with the explosion of

parallel computing performance such as GPU. Most of the supercomputers in the

top500.org (TOP500, 2020) are equipped with GPUs as a co-processors. Thus, to obtain

maximum efficiency from the computing systems equipped with GPU, a parallel

application such as AI, performance analysis in the heterogeneous system is explored in

this work.

1.1 Overview of GPU

GPUs have been employed for parallel computing for a decade, known as

General-Purpose computation on GPU (GPGPU). For some applications, GPU can

process hundreds of times faster than CPU counterpart. Researchers have attempted to

harness the massive data parallelism with GPGPU to accelerate grand challenges in both

scientific discovery and product advancements.

Typically, GPU is considered as a co-processor of the CPU in heterogeneous

computing. The data which must be prepared on the host (CPU) is transferred and

2

executed on the computing device such as GPU and the results are sent back to the host

side. A round trip of data between CPU-GPU is the main concern to obtain an overall

good performance. In the larger scale HPC, applications are scaled out to multiple nodes

in a distributed fashion. Not only the data round trip is a major concern but also the

communication overhead among the nodes is important. Thus, the communication among

nodes in the distributed system is influential as data transfer between host and device. As

we know, the GPU execution model is Single Instruction Multi-Threading or SIMT. How

programmers assign parallel tasks to GPU hardware is another crucial factor worth

studying.

1.2 GPU Performance Model

In recent years, many researchers and developers have exploited the advancement

of GPU for their applications and computational tasks. However, parallel computing is

not a non-trivial job to obtain well-tuned performance in a short period for those who

have little experience and a deep understanding of GPU and its optimization techniques.

CUDA is NVIDIA runtime and tool for their GPU product. It provides a relatively user-

friendly and flexible environment for programmers to develop their GPU applications. It

is important to understand the GPU architecture, the CUDA programming paradigm,

thread hierarchy, memory architecture, and various optimization mechanisms to obtain

good performance. That is a challenge for most programmers and scientists who do not

have too much GPU background and understanding.

A GPU performance model can help programmers and developers gain a deeper

understanding of their applications on the targeted machine. Therefore, performance

modeling becomes a vital foundation for further optimization.

3

1.3 GPU Optimization

In the previous section, we discussed performance factors in the CPU-GPU

environment. Well-matching task assignment, communication, and memory access

patterns with underlying architecture need to be optimized and fully utilized. A GPU

scheduler usually controls tasks and groups of threads scheduling. On the CPU side,

system APIs control the thread scheduling. Thousands of GPU threads need to be

scheduled for their execution. However, the current GPU runtime does not allow

programmers to have direct control for the thread block scheduling. This limitation

hampers the way to optimize GPU programs, especially on the block level.

1.4 Analytical Model for Parallel Applications on a Distributed System

With performance enhancement on recent hardware, especially the GPUs,

machine learning and deep learning applications have made revolutionary progress.

Performance prediction becomes a burning desire of the parallel computing users to fine-

tune their applications and to achieve more efficiency. Fortunately, analytical models are

widely studied and employed to describe application performance characteristics. More

and more analytical performance models have been recently developed for complex

parallel applications such as a deep neural network (DNN). with multi-layers processed

on a heterogeneous system, the parallel computing analytical performance model can be

quite complex. Moreover, with the complex parallel systems, various hardware, and

software components, it is challenging to develop an accurate analytical performance

model for general hardware architecture and software logic. Furthermore, parallel

computing architecture and programming paradigms continue to evolve. A minor change

4

in the architecture, interconnection network, or parallel algorithm may require extensive

work to adapt to the change.

The successful analytical performance model must endure and adapt to these

conditions. Therefore, a robust framework is a vital requirement as an enabling parallel

computing tool and must be flexible to model users’ logic on ever-changing targeted

hardware while predicting accurate performance.

A framework for building the parallel computing abstraction models and

analytical performance models are good guidance amid myriad variations.

1.5 Dissertation Contributions

The follows are the main contributions of this dissertation:

1.5.1 Block Size Estimation

We propose the GPU analytical performance model, which firstly considers the

number of threads per block and estimates the suitable number of threads per block for

performance improvement. The technique can be extended for other multithreaded

parallel computing systems.

1.5.2 GPU Dynamic Partitioning

We present a novel method to elevate the limitation of GPU, which only allows

one kernel to be executed in the device simultaneously. Our work offers a new way for

optimization on GPU performance at the block schedule level.

1.5.3 General Parallel Computing Framework for Performance Analytical Model

we present two parallel computing abstract models. The models represent various

computing paradigms based on Flynn’s taxonomy and simplify the workload distribution

5

characteristics. An extension to Flynn’s taxonomy is proposed to support heterogeneous

systems and consider communication overhead.

1.5.4 Performance Model for CNN on a Distributed System

We present a comprehensive performance analysis model and demonstrate real-

world applications that can predict performance and understand bottlenecks for CNN on

GPU. Meanwhile, we analyze performance aspects for CNN on multiple GPUs, which

will help users evaluate their techniques before running on targeted

machines/architecture.

1.6 Outline of Dissertation

Chapter 1 gives an overview, motivation and current issues of this research work.

Chapter 2 provides an overall background of the GPU and related topics. Chapter 3

presents our study on the performance model for GPU. Chapter 4 discusses our dynamic

partition GPU optimization method. Chapter 5 presents a framework for building parallel

computing abstraction models and an analytical model. Chapter 6 illustrates a

demonstration of our proposed modeling techniques on a distributed GPU system.

Chapter 7 concludes our research and recommends some future works.

6

CHAPTER 2

BACKGROUND

In this chapter, background narratives will provide some ideas. We present some

background knowledge on modern GPU architecture and parallel computing concepts, as

well as deep learning and related performance issues. We describe the GPU in three

aspects: the GPU machine model (hardware architecture), the GPU execution model

(thread hierarchy and mapping tasks to hardware), and the GPU programming model

(kernel configuration and threads scheduling). We also introduce the parallel computing

and distributed system for Deep Learning Convolutional Neural Network.

2.1 GPU Architecture

2.1.1 Machine Model

Typical GPU hardware consists of multiple Streaming Multiprocessors (SMs)

(Nvidia, 2019) that share the L2 cache and DRAM controller through a cross the network

on chip (NoC). The SMs are the core part of the GPU architecture, and they execute all

vertex/geometry/pixel fragment shader programs and GPU programs.

The SM has multiple scalar processor cores (SPs) and two other functional units -

the double precision unit (DPU) for double precision (DP) floating-point computation and

the special function-function unit (SFU) for handling a priori functions and texture

acquisition interpolation. Other components such as register files (RF), load storage units

7

(LSU), scratchpad memory (i.e., shared memory), and various caches (e.g., instruction

cache, constant cache, and texture/read-only cache, L1 cache) on-chip data.

2.1.2 Execution Model

The GPU execution model is in data parallelism. We introduce the Single-

Instruction-Multiple-Threads (SIMT) execution model and the thread hierarchy mapping

of GPUs in this subsection.

Single-Instruction-Multiple-Threads (SIMT)

The GPU execution model is Single Instruction Multi-Threading or SIMT that is

evolved from Single Instruction Multiple Data (SIMD) and is from the classical Flynn’s

taxonomy (Flynn, 1972). A kernel is a function that runs on the GPU side of

heterogeneous computing (CPU+GPU) and contains thousands of concurrent lightweight

GPU threads that are mainly divided into multiple thread blocks or collaborative thread

arrays (CTAs). When the kernel is started, its CTAs are assigned to the SM. Depending

on the available SM on-chip resources (e.g., registers and shared memory), it is possible

to schedule multiple CTAs to the same SM. These resources are equally distributed

among the concurrent CTAs of the SM.

8

Figure 2-1: GPU thread hierarchy mapping to hardware architecture.

Thread Hierarchy Mapping

Figure 2-1 shows the mapping from the CUDA thread hierarchy to the GPU

hardware architecture. It shows that (1) thread instructions are mapped to SP or SFU or

DPU (in warp), (2) thread blocks or CTAs are mapped to SM, and (3) thread grids are

mapped to GPU devices. Global memory, constant memory, and texture memory are

shared among all threads in the grid while accessing shared memory is only available for

threads in the same CTA. Register files and local memory are only available for the

thread.

2.1.3 Programming Model

CUDA (Nvidia, 2019) is a language extension to C/C++ that allows programmers

to define GPU subroutine or kernel functions. As discussed previously, the kernel is the

function that runs on the GPU with massive parallel GPU threads. The way to specify the

number of threads to execute the kernel is via the <<<...>>> configuration notation. As

shown in Figure 2-2, which is a simple multiplication for 2D matrices, <<<Grid_Dim,

CTA_Dim >>> implies that a kernel has a grid configuration defined by Grid_Dim and

a CTA_Dim.

9

Figure 2-2: Simple GPU kernel.

2.2 Parallel Computing and Distributed System for Deep Learning

2.2.1 Deep Learning

Deep neural networks (LeCun, et al., 2015) are machine learning techniques that

are good at discovering relevant structures in data in an unsupervised manner. Therefore,

it is widely used in computer vision, speech analysis, and natural language processing.

The data structure information is stored in a distributed fashion. The model's information

is distributed in different layers of the neural network, and the model information

(weights) is distributed in different neurons. There are many ways to combine

information into a layer distributed over different neurons and there are many ways to

combine information across layers to minimize the loss function.

2.2.2 Parallel Computing and Distributed System

In classical neural networks, there are millions of parameters involved in defining

the model and a large amount of data is required to train these parameters. These are

computational-intensive processing that requires fast computing and networking

capability. In the past, it typically takes a long time to train a deep neural network.

Sometimes the dataset is too large to be stored on a single machine. Therefore, parallel

computing and the distributed system are suitable solutions to improve training efficiency

in recent years.

10

Parallel computing has made a tremendous impact on many areas during the past

decades. With the recent development and advancement of GPU hardware, parallel

computing becomes the most important tool for accelerating computational performance

from simulations for scientific and engineering to artificial intelligence. Deep learning

algorithms like CNN (LeCun, et al., 1989) get an enormous benefit from GPU parallel

computing. Because the distributed system has a deeper neural network and bigger data

set it has proved to be beneficial to processing grand, challenging tasks.

2.2.3 Convolutional Neural Networks

The training process of Convolutional Neural Networks (CNN) (LeCun, et al.,

1989) is a typical feed-forward neural network. The basic structure of CNN consists of an

input layer, a convolution layer, a pooling layer, a fully connected layer, and an output

layer. Generally speaking, the convolutional layer and the pooling layer will be set

alternately. The convolutional layer is the central part of CNN. In the convolutional layer,

each neuron of the same feature map applies the same weight to the input data. The result

of convolution is organized into a set of two-dimensional feature maps. All neurons in the

feature map also use the same weight, which is called shared weight. The neurons in each

layer are connected to the previous layer portion of the area. The purpose of using the

pooling layer after the convolutional layer is to reduce the spatial size of the feature map

while controlling the overfitting problem.

Let us take Lenet-5 (LeCun, et al., 1998) as a typical example to illustrate the

architecture of CNNs. As shown in Figure 2-3, Lenet-5 is stacked by convolutional layer,

pooling layer, and two fully connected layers. The input images are sent to the input layer

11

and then go through all convolutional and pooling layers. Finally, get to the full

connection layer.

Figure 2-3: LeNet-5 architectures.

12

CHAPTER 3

ANALYTICAL GPU PERFORMANCE MODELS WITH BLOCK

SIZE ESTIMATION

3.1 Introduction

During the past decades, HPC has played significant roles in many scientific

discoveries and engineering product design and development. Its applicability ranges

from mathematics, high-energy physics, biology, financial oil exploration, and recently,

by the advantage of GPU computing in Deep Learning and AI applications. All these

fields have one thing in common: massive parallel computation requirements. In recent

years, GPUs have become one of the most successful parallel computing devices.

Meanwhile, many programmers and developers are chasing the advancement of GPU for

their applications and computational tasks. Especially, parallel computing powered by

Nvidia GPU (Nvidia, 2019) is not a trivia job to obtain well-tuned performance in a short

period for those who do not have too much experience and a deep understanding of

CUDA GPU and its optimization techniques. CUDA relatively gives a more user-friendly

and flexible environment for programmers than other parallel computing models. To

squeeze the last drop of GPU performance, programmers and researchers have left no

stone unturned to obtain improved GPU program performance. However, their

expectation is always too optimistic. To understand the architecture and the behavior of

the GPU, they need to get into the GPU genuinely, such as the CUDA programming

paradigm, thread hierarchy, memory architecture, and various optimization mechanisms.

13

That is a big challenge for most programmers and scientists who do not have too much

GPU background.

Before sending kernel functions to GPU, programmers need to figure out the

number of threads per block and how many blocks to join the execution. The different

number of threads per block can vary application performance. The main reason is related

to GPU hardware resource management and the number of physical GPU cores. How to

pick the right number of threads per block in a given application is a common issue for

GPU users. To solve this problem and estimate the GPU execution time, we propose an

analytical GPU performance model. It considers the GPU hardware specification,

memory & instruction requirement, and the number of threads per block. The model can

identify the application bottleneck and provide suggestions for optimization options like

the number of threads per block for programmers to improve their applications without

changing the code.

Our GPU performance model consists of three stages. First is a GPU hardware

model showing all hardware specifications and limitations. Second is a memory and

instruction requirements model, which analyzes the program code to get memory and

instruction requirements. Third is a kernel execution time model to show the total

execution time of GPU computing.

Our performance model has considered the most important factors in GPU

computing. Figure 3-1 shows an overview of our performance model workflow. First, we

apply the parameters collector to get the parameters we need in the performance model.

In the program code it includes thread and grid dimension, memory usage in the program,

loops and branches, shared memory references, a data structure, memory requirement,

14

and algorithm branch divergence. In the targeted hardware, it includes device

characteristics, such as the number of shared memory registers and global memory,

memory bandwidth, and the number of bank; this information can be obtained from the

device specification sheet or system function in CUDA. Our performance model can

estimate the quantified performance and the right number of block sizes. These factors

have represented most behavior of GPU computing. With the quantified result,

programmers and developers can determine which factor affects performance most and

figure out which parts of the program have potential improvement. With the right number

of threads per block, programmers can improve their program performance without other

changes.

Figure 3-1: Overview of our analytical GPU performance model workflow.

In this chapter, we demonstrate the process of GPU performance quantitative

analysis which helps programmers and developers understand the behavior of GPU

15

computing. By analyzing most essential factors of GPU computing, our models enable

programmers and developers to figure out the bottleneck of their program and possibly

improve the program with miminal code change.

The following are our contributions.

1. We propose the analytical GPU performance model, which firstly considers the

number of threads per block. This can be easily extended to other parallel computing

systems.

2. The analytical GPU performance model estimates the right number of threads

per block for best performance. Programmers and developers can use such information to

improve their application performance without any other changes.

3. Our model reveals the GPU computational behavior by analyzing hardware

device characteristics, memory allocating, thread block organization, memory latency

hiding, memory characteristic of memory hierarchies, coalesced memory, data reuse rate,

and memory accessing pattern.

4. The analytical GPU performance model can potentially identify the program

performance bottleneck without running the actual program on GPU.

This chapter is organized as follows. In Section 3-2, we discuss the related work.

Section 3-3 introduces the GPU architecture and CUDA programming background. In 3-

4, we describe the analytical GPU performance model. Section 3-5 verifies our model

with the most representative experiments in the real world. Finally, we conclude in

section 3-6.

16

3.2 Related Work

In recent years, there are some research and development in an analytical

performance model for GPU kernel execution time estimation. For instance, Hong and

Kim (Hong & Kim, 2009, June) introduced Memory Warp Parallelism (MWP) and

Computation Warp Parallelism (CWP), and also showed the memory latency hiding

mechanism. By finding the maximum number of memory warps to estimate the kernel

execution time, Zhang and Owens (Zhang & Owens, 2011, February) have created a

microbenchmark based performance model that considers performance from instruction

pipeline, shared memory access, and global memory access. Baghsorkhi (Baghsorkhi, et

al., 2010, January) analyzed each GPU kernel and discovered the bottlenecks by multiple

benchmarks. These models help programmers estimate the execution time of the

applications by analyzing the GPU kernel. Though those models can potentially point out

the bottlenecks, programmers still need suitable optimization methods to improve the

application performance. Moreover, the model requires many parameter inputs, and some

of the parameters can only be obtained during the runtime. That imposes a big challenge

for the programmers to evaluate their program without implementing it.

In an early GPU optimization work, researchers used numerous threads and set

many threads to be executed at the same time to make GPU core busy by hiding the

memory latency. Activating many threads at the same time is the most recommended way

to improve the CUDA application performance. Many researchers presented threads

scheduling, warp scheduling, even block scheduler techniques toward performance

improvement. Kayıran (Kayıran, et al., 2013, September) employed the increased number

of GPU cores which are on busy by allocating an optimal number of cooperative thread

17

arrays, the number of core cycles during which the pipeline is not stalled, and the number

of core cycles during which all the warps are waiting for their data. All the optimization

methods for the thread are making GPU core busy. All these methods must collect the

application runtime information, like the number of idle GPU cores, on-chip memory

usage, etc. This requires a plugin application or monitoring tool to get such information.

The collector itself needs computing resources and it is not easy to be operated by users.

In GPU computing, there can be many data transfers between GPU and CPU by

the limitation of the memory bandwidth and the data does not always fit into GPU

memory (Bauer, et al., 2011, November), the data transfer time contributes significantly

when compared to the entire execution time (Hong & Kim, 2009, June). Many

researchers presented methods about using the on-chip memory to reduce bandwidth

usage and increase data reuse rate. For example, Baghsorkhi (Baghsorkhi, et al., 2010,

January) by the tightly coupled specialized DMA warps to improve the bandwidth usage

and reduce the data transfer time. Some designed several data mapping/memory

management algorithms to improve memory access efficiency (Jang, et al., 2010). These

memory optimization techniques focused on using the on-chip memory to increase the

data transfer speed. They just provided a way to optimize GPU applications, and it is still

too difficult for programmers without much GPU background to improve their

applications.

 Most early works did not consider the size of the block and the size of the grid.

They only used some factors which had huge effects on performance. Our research has

studied how the block size affects application performance, also exposes the relationship

between block size and other relevant factors.

18

We introduce a GPU performance model with block size estimation, which has

considered the most important GPU behaviors, especially the number of threads per

block. It discloses that the number of threads per block plays a critical role in resource

distribution. Our model suggests programmers and developers the right number of

threads per block to improve their application based on the given device configuration

and application information.

3.3 Background

GPU architecture and CUDA programming model have been released in a few

generations in the past decade. In this work, we focus on the three different generations

of GPU devices and conduct experiments with CUDA 7.5. Studying benchmarks on

various devices on the same platform can help us gain insight and also prove that our

performance model can be effective and applied to other NVidia GPU devices.

3.3.1 CUDA Programming Model

NVIDIA introduced the CUDA, which is a general-purpose parallel computing

platform for GPU in 2006 (Nvidia, 2019). CUDA programming model extends ANSI-C

with a few keywords and constructs. It allows programmers and researchers to use high-

level languages to build parallel programs, such as C or C++. It provides a user-friendly

platform to take advantage of GPU with familiar programming languages. To construct a

GPU kernel, a developer decomposes a parallel for loop into a grid of coordinated thread

blocks. A block consists of coordinated scalar threads, and the threads with adjacent

coordinates are implicitly grouped into a warp. During GPU execution, a thread block is

mapped to an SM, and one SM can execute multiple thread blocks. A scheduler can

synchronize threads in the same thread block with low overhead.

19

In heterogeneous computing, we call the CPU the host side. It generates the data

and instructions. We call the GPU a coprocessor side where GPU takes the instructions

and data from the CPU. We call kernel as a group of GPU instructions. During claiming

kernel, programmers have to program functions and the block size. That means they

should set how many threads are in a block and how many blocks be executed

simultaneously. In this study, we have considered several factors that affect GPU

performance. Figure 3-2 shows a CUDA sample code that includes two values being set

by programmers, i.e., the number of blocks per grid and the number of threads per block.

Figure 3-2: CUDA sample code.

3.3.2 Threads and Blocks Scheduling

In the CUDA environment, threads in the same block can communicate and share

data. A kernel consists of a grid executed by SMs and a streaming multiprocessor (SM)

executes the block.

A GPU is comprised of groups of processors called SMs. Each SM can execute

multiple blocks concurrently (Xiao & Feng, 2010, April). As illustrated in Figure 3-3,

the scheduler assigns the blocks to the streaming multiprocessor. Still, there is a restricted

number of resident blocks per streaming multiprocessor, which means some of the blocks

need to wait until there are enough resources for new blocks. Programmers should ensure

20

that the kernel uses an appropriate number of threads per block to get better performance.

Using CUDA cores and GPU on-chip resources effectively is one method to improve

application performance. Hiding memory access latency is another way to reduce

computing resource overhead. More details will be introduced in section 3.4. SM can

execute multiple blocks at the same time. The standby blocks will get into the SM when

there are enough resources available for them. As shown in Figure 3-3, there is no

specific order for standby blocks.

Figure 3-3: Streaming multiprocessor working rule.

 When the block is assigned to SM, SM starts to execute a group of threads in the

same block. A warp is the basic unit of the NVIDIA GPU scheduling. It is also the

smallest executable unit in the CUDA code. Each warp is executed in single instruction

multiple data (SIMD) or data parallelism, which means all threads in the same warp must

be implemented with the same instruction simultaneously.

3.4 Analytical GPU Performance Modeling

This section presents three analytical models: GPU hardware model, GPU

memory and instruction requirement model, and performance prediction model. These

21

three models are a pillar of our GPU analytical performance model. In the next section,

we describe the model notations, limitations and show how to derive them.

3.4.1 Modeling GPU Hardware Specification

The CUDA general-purpose parallel computing platform provides three crucial

abstractions: threads hierarchy, memory hierarchy, and barrier synchronization

mechanism. These enable developers to understand performance factors and to improve

hardware resource usage. Those abstractions may affect GPU computing performance.

This section introduces the hardware model, which includes GPU hardware architecture

such as threads hierarchy and memory hierarchy. Furthermore, we will put all the

parameters from the aforementioned areas together to analyze the relationship between

the number of threads per block and the program's performance.

There is a special structure composed of multiple groups of threads and multiple

types of memory in the GPU. Each task is executed by a thread, and the task data stored

in GPU memory, which is passed from CPU memory. The performance depends on the

utilization of the hardware, like the number of parallel execution and the memory

throughput. As such, thread hierarchy and memory hierarchy will be introduced and

analyzed to obtain hardware performance characteristics.

Threads Hierarchy

GPU stream processor executes the kernel with multi-threads which are grouped

by warp (Nvidia, 2019). In GPU computing, the warp is the basic unit in GPU

scheduling. To maximize parallelism and increase the number of threads executed in the

GPU processor, the programmers need to understand the thread hierarchy of each target

GPU device with respect to their application. There are three layers for the threads. A

22

group of threads constitutes a block. The threads can be identified by three-dimensional

within a block. For convenience, The CUDA programming uses threadIdx (Nvidia, 2019)

to locate each thread position. Groups of blocks assemble into a grid. The thread

hierarchy of GPU exhibits the three layers of the GPU threads. CUDA programs are then

compiled and run on the GPU. GPU tasks are mapped to threads, and the scheduler will

decide how to execute those threads in SM. That is how the warp threads and blocks are

assigned to the stream processor and scheduled for execution in the processing cores. To

get the best possible performance in a given CUDA program, the programmers need to

understand GPU hardware features to configure the right size of a thread block.

In GPU computing, the execution configuration allows programmers to set the

thread numbers and hierarchy for the kernel launch. This means how many threads are in

each block and how many blocks are in the grid. There are three layers of threads in the

GPU. The threads and blocks can be one, two, or three-dimensional. A user program can

access thread position by the four built-in parameters: threadIdx, blockIdx, blockDim, and

gridDim. The programmers need to understand the limitations of the target hardware to

configure threads and their hierarchy for their applications. Next, we will discuss the

limitations of a number of threads in a block and grid.

Table 3-1 shows parameters in the thread hierarchy. In the GPU thread

architecture, each level has a limitation of the thread size, block size, and warp size. It

depends on the capability of the GPU device for thread management, warps, blocks, and

grids. However, each generation of NIVIDA GPU has different technical specifications.

Before we compile the program on the targeted GPU, we need to figure out the feature of

the GPU and understand the technical specifications.

23

Table 3-1: Parameters of GPU thread hierarchy (obtained by cudaGetDeviceProperties

(struct cudaDeviceProp * prop, int device) function in CUDA SDK).

parameter Description Obtained

𝑁𝑇𝐵 Number of threads per block Program

𝑁𝐵𝑆 Number of blocks per streaming multiprocessor Hardware

𝑁𝐴𝑊 Number of Warps active in the SM Hardware

𝑁𝑊 Warp size Hardware

𝑁𝑊𝐵 Number of warps per block Hardware

𝑁𝑀𝑇𝑆 Maximum number of resident threads per streaming multiprocessor Hardware

𝑁𝑀𝑇𝐵 Maximum number of threads per block Hardware

𝑁𝑀𝐵𝑆 Maximum number of resident blocks per streaming multiprocessor Hardware

𝑁𝑀𝑊𝑆 Maximum number of resident warps per streaming multiprocessor Hardware

𝑁𝑆𝑀 Number of SM in GPU device Hardware

Relevant Characteristics and Limitation of Threads Hierarchy

In the GPU thread hierarchy model, each level has several constraints concerning

the number of threads. 𝑁𝑇𝐵 is the number of threads per block. 𝑁𝑇𝐵 will be specified in

the CUDA function by the programmer, as shown in figure 3-1. After CUDA 2.0 version,

the maximum number of threads per block is 1024. However, it was only 512 before

CUDA 2.0. If a programmer specifies the number of threads per block larger than the

maximum number of threads per block, the GPU runtime will report a warning and

reduce the number of threads per block to satisfy the aforementioned limitation. 𝑁𝑀𝑇𝐵 is

the maximum number of threads per block. The number of threads per block that we set

for the program must be equal to or less than the maximum number of threads per block

as shown in Eq. 3-1.

 𝑁𝑇𝐵 ≤ 𝑁𝑀𝑇𝐵 Eq. 3-1

In the block level, 𝑁𝑀𝐵𝑆 is the maximum number of resident blocks per streaming

multiprocessor and 𝑁𝑀𝑇𝑆 is the maximum number of resident threads per streaming

multiprocessor. By the same token, the total number of resident threads in streaming

multiprocessor must also be equal to or less than the maximum number of threads per

24

streaming multiprocessor, as shown in Eq 3-2. In addition, the number of blocks per

streaming multiprocessor 𝑁𝐵𝑆 must be equal to or smaller than the maximum number of

resident blocks per streaming multiprocessor as shown in Eq 3-3.

 𝑁𝑀𝑇𝑆 ≥ 𝑁𝑇𝐵 × 𝑁𝐵𝑆 Eq. 3-2

and

 𝑁𝑀𝐵𝑆 ≥ 𝑁𝐵𝑆 Eq. 3-3

A block of threads is executed in a streaming multiprocessor and organized into

groups of parallel threads. Each group has 32 threads, and the group is called a “warp”

(Nvidia, 2019). For example, in one block, there are 128 threads. The threads are grouped

in 4 warps. With the CUDA rules, only a limited number of warps can be assigned for the

streaming multiprocessor simultaneously, and we call them active warps. 𝑁𝑀𝑊𝑆 is the

maximum number of resident warps per streaming multiprocessor, and 𝑁𝑊is the size of

the warp, means how many threads are in each warp. To get full utilization of the

hardware, programmers typically specify multiples of 32 to be the number of threads per

block. The maximum number of threads per streaming multiprocessor is equal to the

maximum number of resident warps per streaming multiprocessor multiplied by warp

size, as shown in Eq. 3-4.

 𝑁𝑀𝑇𝑆 = 𝑁𝑊 × 𝑁𝑀𝑊𝑆 Eq. 3-4

According to the memory latency hiding mechanism, when one or more warps are

waiting for the memory request, the warp scheduler will assign the other warps to a

streaming multiprocessor processor. Once the waiting warps are ready, the warp

scheduler will put those warps in the queue. Here, 𝑁𝑊𝐵 is the number of warps per block.

The number of active threads in the block 𝑁𝐴𝑇 can be derived by Eq. 3-5.

25

 𝑁𝐴𝑇 = 𝑁𝑊 × 𝑁𝑊𝐵 Eq. 3-5

Memory Hierarchy

There are multiple memory types in the GPU memory model, such as shared

memory, register, global memory, constant memory, and texture memory. These memory

properties are described in CUDA documentation (Nvidia, 2019). Table 3-2 lists the

parameters of the memory hierarchy. GPU performance depends on how threads in the

block access memory. Different GPU devices and releases have different memory sizes,

and perhaps each memory type may also have different memory latency. Programmers

must understand the GPU memory model for further optimization.

Table 3-2: Parameters of GPU memory hierarchy (we can get parameters by

cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device) function in CUDA

SDK).

Symbol Parameter Obtained

MMSM The maximum amount of shared memory per streaming multiprocessor Hardware

MMSB The maximum amount of shared memory per thread block Hardware

MTS Amount of shared memory required by each thread Program

MBS Amount of shared memory required by each block Program

RMRM Maximum number of 32-bit registers per streaming multiprocessor Hardware

RMRB Maximum number of 32-bit registers per thread block Hardware

RMRT Maximum number of 32-bit registers per thread Hardware

RRT Number of 32-bit registers required by each thread Hardware

RRB Number of 32-bit registers required by each block Hardware

Global memory is a kind of memory that threads on different blocks can exchange

data. It involves the DRAM and L1 L2, which impose high latency on accessing. Global

memory is only used to store automatic variables and the compiler will use the global

memory when there is no more on-chip space to store the variable. Usually, the large

structures or arrays are placed in global memory. GPU devices typically have a large

global memory size.

26

When all threads in the same block share data, the shared memory is available to

all threads in the same block. The global memory access operation will reduce GPU

efficiency. To alleviate this potential issue, setting the right number of threads per block

according to the memory size will help improve memory access efficiency.

Relevant Characteristics and Limitation of Memory Hierarchy

𝑀𝑀𝑆𝑀 is the maximum amount of shared memory per streaming multiprocessor,

and 𝑀𝑀𝑆𝐵 is the maximum amount of shared memory per thread block. From code

analysis, we can find out the amount of shared memory required by each thread. Here, we

define 𝑀𝑇𝑆 be the amount of shared memory required by each thread. When each thread

resource requirement exceeds the GPU device's limitation, the CUDA compiler will

automatically reduce the number of active blocks in the streaming multiprocessor. In the

following equations, we can find that the number of threads per block depends on the

amount of shared memory required by each thread and the limitation of shared memory

usage.

 𝑀𝐵𝑆 ≥ 𝑀𝑇𝑆 Eq. 3-6

 𝑀𝑀𝑆𝐵 ≥ 𝑀𝐵𝑆 Eq. 3-7

 𝑀𝑀𝑆𝑀 ≥ 𝑀𝐵𝑆 Eq. 3-8

 𝑀𝑀𝑆𝑀 ≥ 𝑁𝐵𝑆 × 𝑀𝐵𝑆 Eq. 3-9

 𝑁𝑇𝐵 ≤
𝑀𝑀𝑆𝐵

𝑀𝑇𝑆
 Eq. 3-10

Typically, the GPU register has the same latency as shared memory and

occasionally is lower than the shared memory. In the GPU memory hierarchy, we can

also get the register information from CUDA GetDeviceProperties found in the CUDA

SDK (Nvidia, 2019). Here 𝑅𝑀𝑅𝑀 is the number of 32-bit registers per streaming

27

multiprocessor, 𝑅𝑀𝑅𝑇 and 𝑅𝑀𝑅𝐵 are the maximum number of 32-bit registers per thread

and the maximum number of 32-bit registers thread blocks, respectively. 𝑅𝑅𝑇 is the

number of 32-bit registers required by each thread. The number of threads per block can

also be estimated by the register information, as shown in the following equations.

 𝑅𝑅𝑇 ≤ 𝑅𝑅𝐵 Eq. 3-11

 𝑅𝑅𝐵 ≤ 𝑅𝑀𝑅𝐵 Eq. 3-12

 𝑅𝑅𝐵 = 𝑁𝑇𝐵 × 𝑅𝑅𝑇 Eq. 3-13

 𝑅𝑀𝑅𝑀 ≥ 𝑁𝐵𝑆 × 𝑅𝑅𝐵 Eq. 3-14

 𝑁𝑇𝐵 ≤
𝑅𝑀𝑅𝐵

𝑅𝑅𝑇
 Eq. 3-15

3.4.2 Modeling GPU Memory and Instructions Requirement

In each CUDA program, the memory and the number of instructions requirements

depend on the algorithm. The hardware resources involve the memory space and

processor units. For compute-intensive applications, the programs require much more

computing resources. In a compute-intensive program, maximizing the utility of

streaming multiprocessor processors will help increase GPU performance. On the other

hand, in memory-intensive applications, there are a lot of memory transfer operations.

Reducing memory latency is the most effective optimization method to increase program

performance. In this part, we focus on the program algorithm and memory latency hiding

method.

Memory Requirement & Number of Instructions

During the CUDA compiler compiles the CUDA code, the compiler generates

intermediate assembler level instruction, the NVidia PTX (Nvidia, 2019) translates the

28

instruction one by one with the binary microinstructions later on. In this part, we use the

number of PTX instructions to count the number of instructions in the CUDA program.

The memory requirement includes the memory transfer operations such as read,

write, also the size of needed space. For each thread, the instruction shows the memory

size and operation requirement. We collect those parameters information from code

analysis.

The programmers specify the number of threads per block in the CUDA kernel, so

the size memory requirement is proportional to the number of instructions. With the right

size of thread per block for each program, GPU hardware resources are efficiently used

by programmers. Because the number of instructions per thread is related to how much

data are transferred among memories.

3.4.3 Modeling Execution Performance

In GPU computing, the execution time includes two parts. One is the kernel

execution time, and another is memory accessing time. In most conditions, memory

access takes up half of the whole execution time (Gregg & Hazelwood, 2011, April). The

memory accessing model is also as crucial as the kernel execution model, which could

not be ignored. In this part, we present the analytical model for GPU performance time,

including hardware resources and different memory access patterns.

Enough Warps to Cover Memory Latency

When there are enough active warps to be executed, the latency of accessing

memory can be overlapped, as shown in Figure 3-4. We assume that all the warps have

the same computing time 𝑇𝑀 and memory accessing time 𝑇𝐶. When the product of the

number of warps times and the warp execution time is larger than warp memory

29

accessing time as shown by Eq. 3-16, the GPU streaming processing core could keep

running all the time. The active number of warps can be obtained by Eq. 3-17. The

number of wraps is equal to the quotient of the total active threads and warp size.

 𝑁𝑊 × 𝑇𝐶 ≥ 𝑇𝑀 Eq. 3-16

and

 𝑁𝑤 =
𝑁𝑇𝐵 × 𝑁𝐵𝑆

𝑤
 Eq. 3-17

Figure 3-4: Enough warps to cover memory latency.

The total kernel execution time 𝑇𝐸𝑥𝑒 consisted of total memory accessing time

𝑇𝑀𝑒𝑚 and total kernel computation time 𝑇𝐶𝑜𝑚, 𝑇𝐸𝑥𝑒 can be represented by Eq. 3-18

 𝑇𝐸𝑥𝑒 = 𝑇𝑀𝑒𝑚 + 𝑇𝐶𝑜𝑚 Eq. 3-18

The total memory accessing time is the sum of all memory accessing time. Here,

we assume that all memory accessing times are the same. The whole computational time

also depends on the GPU device feature and the computational clock cycles. Therefore,

the 𝑇𝑀𝑒𝑚and 𝑇𝐶𝑜𝑚 are shown as Eq. 3-19 and Eq. 3-20.

 𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑒𝑚𝑖

𝑛

𝑖=1

 Eq. 3-19

and

30

 𝑇𝐶𝑜𝑚 = ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛

𝑖=1

 Eq. 3-20

With enough warps in the SM, the latency time can be covered, as shown in

Figure 3-4. The total kernel execution time is the last uncovered memory accessing time

and the kernel execution time. Therefore, the total execution time is the product of the

number of groups of the block assigned to GPU and the total computational time and last

memory access time. The number of groups of blocks assigned to GPU is related the 𝑁𝐶𝐵,

the total number of blocks that need to be executed in the kernel. 𝑁𝑆𝑀 is the number of

SM in the GPU, we can get 𝑁𝑆𝑀 from GPU hardware feature. And the 𝑁𝐴𝐵 is active

blocks in each SM. 𝑁𝐺𝑂𝐵 is the number of block groups assigned to GPU, it can be

obtained by the following Eq. 3-21.

 𝑁𝐺𝑂𝐵 =
𝑁𝐶𝐵

𝑁𝐴𝐵𝑁𝑆𝑀
 Eq. 3-21

Therefore, when the memory accessing time is covered by enough warps, the total

execution time 𝑇𝐸𝑥𝑒 can be obtained by the following Eq. 3-22.

 𝑇𝐸𝑥𝑒 = (𝑇𝑀𝑒𝑚𝑛
+ ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛

𝑖=1

) ×
𝑁𝐶𝐵

𝑁𝐴𝐵𝑁𝑆𝑀
 Eq. 3-22

Not Enough Warps to Cover Memory Latency

When there are not enough warps to be executed by the SM in GPU computing,

the memory accessing latency cannot be covered. We assume that all the warps have the

same computing time 𝑇𝐶 and memory accessing time 𝑇𝑀. When the number of warps is

smaller than the quotient of the memory accessing time and the warp execution time, the

memory accessing time cannot be covered, as shown in Figure 3-5.

31

Figure 3-5: Not Enough warps to cover memory latency.

In this condition, the total kernel execution time includes the memory accessing

time between two instructions, warp execution time, and the last memory accessing time.

The total execution time can be obtained as the following Eq. 3-23.

 𝑇𝐸𝑥𝑒 = [(𝑇𝐶1 + ((∑ 𝑇𝑀𝑒𝑚𝑖
𝑛
𝑖=1 + ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛
𝑖=1)

𝑁𝑇𝐵×𝑁𝐴𝐵

𝑁𝑆𝑤×𝑁𝑊
⁄)] ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀

Eq. 3-23

Compute-Intensive & Memory-Intensive Applications

In the CUDA program, programmers like using more threads to cover the

memory latency. Although programmers gain performance on some applications, the

results are always not as good as expected. We propose compute-intensive & memory-

intensive applications for performance model building. Using numerous threads to

increase parallelization, the SM processor gets busy, and the CUDA application’s

performance gets better. We call this kind of application compute intensive. Oppositely,

in memory-intensive applications, Using numerous threads to increase parallelization

may reduce the GPU performance because multiple threads access the memory at the

same time. To identify the type of applications: compute-intensive, memory-intensive or

other, we present the processor active time rate. It represents the utilization of an SM

processor. In our model, when the processor active time rate is higher than 60%, the

32

application will be categorized as a compute-intensive application. When the processor's

active time rate is less than 20%, the application will be categorized as a memory-

intensive application. For the compute-intensive application, the number of parallel

threads should be increased. For the memory-intensive application, the data reuse rate

should be increased, and the number of parallel threads should be reduced.

Memory Accessing Analysis

The access latency of the GPU global memory is very high compared to shared

memory latency. The global memory latency can be as high as 400-800 clock cycles (Mei

& Chu, 2016) per access. The CUDA program's memory usage will help dissect the

memory requirement. Other factors also affect memory access efficiency. For example, in

global memory accessing, memory coalescing is a significant influencing factor. For

global memory accessing of a half-warp, if certain conditions are satisfied, the memory

transactions can coalesce into one or two transactions (Jia, et al., 2012, June). The

required conditions depend on the GPU hardware and computing capabilities of CUDA.

If threads of one half-warp access adjacent memory elements, that is the memory

coalescing. However, If the coalesced conditions cannot be satisfied, more memory

transactions are needed, and performance will be reduced due to more memory accessing

time.

By the code analysis, we can figure out the memory coalescing rate. We count the

number of warp requests and recognize each request by hand. We set N𝑈𝑛𝑐𝑜 to be the

number of un-coalescing memory requests and set N𝐶𝑜 to be the number of coalescing

memory requests. Each request rate is shown as following equations.

33

 𝑅𝑈𝑛𝑐𝑜 =
 𝑁𝑈𝑛𝑐𝑜

𝑁𝐶𝑜 + 𝑁𝑈𝑛𝑐𝑜
 Eq. 3-24

and

 𝑅𝑐𝑜 =
 𝑁𝐶𝑜

 𝑁𝐶𝑜 + 𝑁𝑈𝑛𝑐𝑜
 Eq. 3-25

With the memory accessing rate, we can get the memory accessing time more

accurately. Therefore, the memory accessing time with the memory type is shown as Eq.

3-26.

𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑢𝑛𝑐𝑛

𝑛

1

×
 𝑆𝑆ℎ𝑎

𝑆𝐵𝑢𝑓
×

 𝑁𝑈𝑛𝑐𝑜

𝑁𝐶𝑜 + 𝑁𝑈𝑛𝑐𝑜
∑ 𝑇𝑀𝑢𝑛𝑐𝑚

𝑚

1

×
 𝑆𝑆ℎ𝑎

𝑆𝐵𝑢𝑓
×

 𝑁𝐶𝑜

 𝑁𝐶𝑜 + 𝑁𝑈𝑛𝑐𝑜

Eq. 3-26

3.5 Experimental and Result

In this section, we introduce the hardware for the experiment and the benchmark

used in this experiment.

3.5.1 Experimental Setup

We evaluate our performance model on three generations of GPU with five

representative real-world GPU micro-benchmarks. The three GPUs are Tesla C2050,

GTX650, and GTX970. Each specification of the GPUs is shown in table 3-3.

34

Table 3-3: Specification of target GPU.

Model C2050 GTX650 GTX970

Streaming Multiprocessors 14 2 13

Processor Cores 448 384 1664

Processor Clock 1147MHz 1110.5MHz 1050MHz

Memory size 2G 2GB 4GB

Computing version 2.0 3.0 5.2

With a suitable number of threads per block, the program will get better

performance compared with the real kernel execution time which is measured by using

cudaEvenRecord to record the data transfer start and kernel end. The total execution time

is the sum of the kernel execution time and the data transfer time which are gained from

cudaEvenRecord. We run our five benchmarks on a three-generation GPU, respectively.

We run all benchmarks twenty times for the different number of threads per block on

each GPU. The final real-time of GPU processing represents the arithmetic means of

twenty times execution.

3.5.2 Benchmarks

To verify our performance model can predict a suitable number of threads per

block in GPU computing. We use six representative benchmarks in the real world to

verify that our performance model can predict a suitable number of threads per block in

GPU computing. The shared memory and register requirement by each thread is obtained

manually. The program algorithm gets the number of instructions in each thread. The

memory accessing pattern has coalesced and un-coalesced. We estimate the rate of each

accessing type by code analysis. The rest of the hardware and program features can be

gained from the information collector.

35

1. Matrix multiplication is a known benchmark for parallel computing. Here we

use naïve Matrix multiplication and optimization with tiled Matrix multiplication as a test

program to verify our model. The naïve matrix multiplication is taken from the NVidia

CUDA sample without any optimization. Another matrix multiplication uses tile to

increase the utilization of the shared memory. This algorithm will reduce the time to

access global memory because of the data loaded from global memory. The change in

shared memory requirement will affect the number of threads. Our experiment will run

the benchmarks with a various number of threads per block.

2. Tridiagonal solver is tridiagonal linear systems (Zhang, et al., 2010) which are

crucial systems to solve many problems in numerical analysis and computational fluid

dynamics. The cyclic reduction is a popular parallel algorithm that can take advantage of

GPU to solve the tridiagonal linear system. Tridiagonal Solver for Linear equations is

critical for many scientific and engineering problems and real-time or interactive

applications in graphics processing, video games, and 3D films. The applications of

tridiagonal solvers include alternating direction implicit (ADI) methods, spectral Poisson

solvers, cubic spline approximations, numerical ocean models, semi-coarsening for multi-

grid solvers, and preconditioners for iterative linear solvers.

3. List ranking is one of the fundamental operations with applications to several

problems. List ranking does not work well in sequential computing. The difficulty of

using list ranking in parallel computing is recognized early by Ranade (Ranade, 1998).

Using various techniques, several algorithms to solve this difficulty are proposed later on

(Anderson & Miller, 1990). In this case, we focus on the local ranking aspect by

Hellman- JáJá algorithm (Helman & JáJá, 1999, January).

36

4. LU decomposition, here we use LUD briefly. In numerical analysis and linear

algebra, the lower upper factorization is used to solve a square system of linear problems.

In the LUD, there is a loop in the kernel and the loop will access shared memory

frequently. The shared memory utilization and the limitation will affect the execution

result. Because most memory accessing is from shared memory, the memory latency will

be covered.

5. Hotspot (Che, et al., 2009, October), it is a widely used differential equations

algorithm for simulating processor temperature. The average temperature values of the

microarchitecture’s mapping area are represented by the output cell in the grid. In a 3×3

neighbor grid element, one can find the center element’s temperature value.

3.5.3 Results

Figure 3-6, 7, 8 show the estimated execution time of our performance model and

the measured execution time on the three different NVidia GPU cards. For each

benchmark, we use 64 to 1024 threads per block to execute some programs. From the

results, we have found that compared to others，the performance is better in some

special block sizes such as 256, 512, and 128.

From the results in the following figures, we prove that using the default setting to

run a CUDA program on the NVidia GPU does not always get the best performance,

even though naïve matrix multiplication using default block size 256 can get the best

performance on both generations GPU. After we run the matrix multiplication with

optimization, the results from GTX 650 and GTX 970 show that the performance with

block size 512 is better than the performance with block size 256. This situation also

happens in List ranking. When we use GTX 970 with block size 320, block 512 can get

37

the same performance as block 256. In the GTX 650 when block size 128, the

performance is better than others.

 Even though when we run benchmarks on different NVidia GPU cards, the

results have some disparity. Our performance model still works well for estimating the

best block size for each program.

Figure 3-6: The execution of each benchmark on Tesla M2050.

Figure 3-7: The execution of each benchmark on NVidia GTX650.

38

Figure 3-8: The execution of each benchmark on NVidia GTX970.

3.6 Conclusion

This chapter proposed a GPU performance model with the block size estimation,

which analyzed the most important factors in GPU computing and considered the most

critical cases. Our model revealed GPU computational behavior by analyzing hardware

device characteristics, memory allocation, thread block organization, memory latency

hiding, memory characteristics, memory hierarchy, coalesced memory, data reuse rate.

Our model clarified the relationship between the number of threads per block and other

factors. We validated our GPU performance model with six representative real-world

GPU programs. The results showed that our model yielded good accuracy in performance

estimation and verified that the right block size setting can help improve the execution

efficiency of the application. Moreover, choosing the right block size was a new way to

reduce the execution time of an application without editing any code. When we used our

model to analyze GPU programs, our model can predict time-consuming parts and

bottlenecks of the program and potentially optimize parts of the program. Last, using our

39

model to analyze applications and estimate the correct number of threads per block will

help programmers and developers quickly enhance their programs.

40

CHAPTER 4

DYNAMIC PARTITION GPU MECHANISM FOR CUDA

PROGRAM PERFORMANCE ACCELERATION

4.1 Introduction

In recent years, we have witnessed the increasing popularity of Graphics

Processing Units (GPUs) for general-purpose computing, thanks to the large number of

parallelisms provided by GPUs and their cost-effectiveness. With hundreds of processing

cores equipped, the GPU can render thousands of threads for parallel applications.

Numerous parallelisms produce not only huge potential throughput but also imposes

grand challenges for thread management or scheduling.

It is essential for well-matching communication and memory access patterns with

underlying architecture to use the parallelism fully. Task scheduling is usually controlled

by a scheduler in the GPU. On the CPU, the thread scheduling is controlled by system

APIs. However, on the GPU side, there is no such API; the scheduling on GPU has been

implemented through hardware and some proprietary mechanism. a large amount of

threads need to be scheduled in a short time. However, the current GPU does not allow

programmers to schedule the thread blocks. This limitation hampers the way to optimize

GPU programs, especially on the block level.

Applications on GPUs and GPU/CPU heterogeneous systems are typically written

in a combination of data & task-parallelism manners that allow the runtime system to

41

handle the device and task scheduling. Traditionally, the programmer provides the largest

possible task to load to the GPU, and generally speaking, the larger the tasks are, the

better it will perform on the GPU. While large tasks usually provide a better performance,

there are two situations where this may not be the case. First, the tasks could not fully use

the GPU computing resources, which means some of the cores or on-chip memory are

idle. Such tasks have limited scalability on the GPU. In this case, if a task could be

scheduled on a smaller set of GPU SMs rather than the whole GPU, and let another task

be executed on the rest of GPU SMs at the same time, the GPU utilization and efficiency

would be higher. Second, applications can only issue or process a large task, which

means some precedence rules limit the task-level parallelism, like processing multiple

small tasks at the same time.

In our work, we overcome both thread scheduling and task scheduling by

enabling more than one task executed on the GPU simultaneously. We achieve this by

partitioning the GPU processing unit, called SMs into multiple segments and forcing each

task to be performed on the specific SMs subset. With this approach, we can control the

tasks on the block level and task level to allow multiple tasks to run on the GPU at the

same time. By using the GPU performance model, we can estimate and dynamically set

the GPU SMs subset depending on the application kernel execution time and the

scalability of each task.

We evaluate our approach with real-world benchmarks. For comparison, we have

implemented three scenarios in our experiment. All three cases are run on three different

GPU cards. As a result, the demonstration shows that a potential performance in the GPU

42

application benefits from performing the high parallelism tasks and increasing GPU

efficiency.

The following are the main contributions of our works.

1. We present a novel method to eliminate the limitation of GPU, which only

allows one kernel to be executed in the device simultaneously. Our work offers a new

way for optimization of GPU performance at the block schedule level.

2. We employ GPU performance modeling to estimate kernel computational

throughput.

3. We dynamically partition the SMs for each kernel based on the kernel

computational throughput.

4. A demonstration shows GPU's application performance by our technique up

improved to 10% without any change in the algorithm.

The rest of this chapter is organized as follows. Section 4-2 introduces the

background of GPU characteristics and block scheduling. Section 4-3 reviews some

related works. Sections 4-4 and 4-5 present the dynamic partition method for GPU.

Section 4-6 details a demonstrative experiment to verify our model with multiple

benchmarks on three different GPU devices. Section 4-7 is the conclusion of this work.

4.2 Background

4.2.1 GPU Tasks Scheduling

In the current situation, CUDA API does not provide a mechanism to interrupt a

kernel that has already started execution. Lacking the manual scheduling mechanism

limits the traditional resource scheduling model to access GPUs, because GPU resources

43

cannot be accessed in the same way as the CPU. GPU runtime keeps kernels ready in a

release queue and processes them on a first-come, first-served basis.

When CPU processes try to start a kernel, if a kernel is already running on the

GPU, other kernels in the queue will be blocked until the first kernel finishes. The wait

time for a kernel call is also affected by how many kernels are in the queue. The longer

the queue, the greater the wait time for the CPU thread waiting for the result.

Concurrent execution of kernels on single GPUs was first supported by NVIDIA

Fermi GPUs. The left-over policy is used on Fermi GPUs, which allows scheduling

concurrent kernels only if the required number of computing units is available. NVIDIA's

Kepler GPUs achieve concurrent execution of kernels using Hyper-Q technology

(Nvidia, 2019), which employs multiple hardware queues to avoid false dependencies

between computations. In this work, we partition the GPU processing units as multiple

tasks to be executed simultaneously.

4.2.2 Dynamic Partition Mechanism Workflow

Our dynamic partition mechanism separates SMs in GPU into multiple parts by

choosing the SMs to execute a kernel. For the rest of SMs, it allows another kernel to run

on them. Our workflow is shown in Figure 4-1. First, we will collect most of the

parameters that consist of hardware and application characteristics. It includes the

limitation of the thread, block, memory, register in GPU device, the data structure, loop

function, data transformation, number, and kernel algorithm. We apply these parameters

to our GPU performance model to estimate kernel computational complexity. With each

kernel's complexity, we calculate the current GPU's execution time that aims to reduce

the possibility of SMs on idle. We set the number of SM in each part of the SM group.

44

Then we insert the partition mapping information in front of each kernel and allow more

than one kernel to be launched on the GPU at the same time.

Figure 4-1: workflow of performance model analysis.

4.3 Related Works

In recent years, there is numerous research dedicated to GPU utilization and its

performance. Previous works presented many solutions based on two areas, namely,

hardware and software aspects. On the hardware level, it uses benchmark or simulation to

estimate kernel execution time and then makes the GPU kernel scheduler smarter based

on the processing performance information. On the other hand, the software level uses

kernel transforming algorithm to improve low parallelism rate kernel to high parallelism

kernel. In addition, it uses merging technology to combine multiple lightweight kernels

with being a big one. These works for either grouping two or more kernels before

launching them to the GPU or adjusting the kernel structure to fit the targeted GPU

device.

Awatramani (Awatramani, et al., 2013, October) found out the impact on the

throughput of mixed and partitioned execution pairs of kernels through simulation. Their

45

results showed that mixing bandwidth and compute-bound blocks was often beneficial.

To predict performance, they must know the exact kernel pairing. Our work differs from

this in that we partition the execution of two or more kernels and evaluate a complete

complexity of application executing on a heterogeneous commodity platform, rather than

just a single kernel in the simulation.

Gurevara (Guevara, et al., 2009, September) proposed a software solution to

achieve concurrent kernel execution by merging pairs of kernels. They found that small

kernels do not occupy the entire GPU. Therefore, GPU applications can get benefit from

the merging. However, the number of resources used by the merged kernels may reduce

the SM occupancy and limit the gains. In addition, merging cores with unequal execution

times can cause cores with shorter runtimes to be bogged down and take up more of their

resources. Our work leverages existing hardware to achieve true independent kernel co-

execution and is not limited to pairs of kernels.

Pai (Pai, et al., 2013) proposed extended iterative packing to reduce the kernels'

parallelism to allow pairs of kernels to execute together on the same SM. They statically

reserved resources for a second kernel in the SM, but they cannot control the degree of

concurrency due to the differences in resource utilization of the kernels, and the use of an

even allocation strategy. Their evaluation used the CUDA API rather than a full

heterogeneous application. Our work is similar, but we do the partitioning from the

hardware level even before we launch the kernel. By doing so, we largely avoid sharing

computational resources and thus unpredictable co-execution performance while giving

us full control over the degree of co-execution and the ability to support more pairs of

applications.

46

Wu (Wu, et al., 2015, June) proposed a similar software solution using

partitioning. Their approach was to fetch each SM fetch block from a centralized queue at

runtime rather than partition the hardware before launching the kernels to GPU as we do.

While centralized block fetching provides more flexible scheduling, the global load

required to do so hinders compiler optimization due to the introduction of new

dependencies. Our technique is to evaluate the common execution of the kernel on a

complete application and provide accurate results.

4.4 Partition Streaming Multiprocessors on NVidia GPU

With the requirement of executing multiple kernels on the GPU simultaneously,

there must have been multiple independent stream multiprocessors and independent

memory resources for each kernel. The GPU device only allows one kernel to be

executed by streaming multiprocessors at a time. By this limitation, we need to find a

method to enable us to run more than one kernel on the GPU simultaneously. This section

will introduce our approach that separates the SMs into multiple parts for the individual

kernel.

4.4.1 Subset SMs on GPU

To allow multiple kernels to run on the GPU concurrently, we present a subset

SM mechanism to isolate kernels to particular groups of SM, which can effectively

partition the GPU. With this mechanism, kernels are executed on different groups of SM,

which can avoid sharing compute resources between each other. In this mechanism, each

group of SM only executes the blocks from the same kernel. This feature helps us avoid

much of the un-foreseeability in the parallel kernel execution. With this mechanism, we

can specify the number of SMs in each group for executing the kernel's blocks. This

47

allows us to apply the GPU performance model to identify possible bottlenecks and to

improve performance by using dynamic partitioning SMs.

The key to our co-execution approach is that if we restrict a kernel to execute on

only a subset of SMs, then there will always be remaining SMs available. Therefore, the

NVIDIA scheduler will execute the subsequently launched kernels on these remaining

SMs simultaneously. In this way, we can force the GPU to co-execute multiple kernels

and control the resources of GPU SMs for each kernel.

Commonly, by executing the kernel in the GPU, it can create many threads, which

are often organized into three hierarchies. The execution of the GPU kernel can be

understood as many tasks that are handled by multiple workers in the GPU SMs. For

example, the workers mean a group of GPU threads, also called blocks, and the tasks

mean the operation conducted by the blocks. Since the job enters the GPU, a unique ID

will be created for each job to identify itself.

The key to our subset SM mechanism is that when we force the kernel to be

executed in the subset SM in the GPU, there will be some idle SMs in the GPU, which

means this resource is being used to perform the new kernel without sharing the resource

concurrently executing kernel in the GPU. When the scheduler detects some idle isolated

SMs in the GPU, it will arrange a new kernel into the device to be executed. At this

moment, we are truly running more than two kernels concurrently on the GPU and

controlling which group of SM to execute them.

4.4.2 Mapping Control

Before launching the kernel, on the host side, we insert a control code at the start

of each kernel that reads the ID number of the SM, it will help the blocks in the kernel go

48

to the right SM. GPU characteristic information can be obtained by devicequery.cu,

which is in the CUDA sample code. In the characteristic information report, we get the

number of SMs in the device and other related info. For example, if we want to separate

the SMs in NVidia Tesla C2050 GPU into two parts, by the information from the

devicequery.cu report shown in Table 4-1, it contains 14 SMs in the GPU; if we want to

set 6 SMs to one part, the other has 8 SMs, while we want the first kernel to run on the

group with 6 SMs.

After this short setup, the GPU can execute more than one kernel concurrently.

With the different settings in the front of the kernel, we group more kernels in the GPU

and execute them simultaneously. For example, subset SMs in NVidia Tesla C2050 is

shown in Figure 4-2.

Table 4-1: GPU hardware characteristic information.

Model C2050 GTX650 GTX970

Streaming Multiprocessors 14 2 13

Processor Cores 448 384 1664

Processor Clock 1147MHz 1110.5MHz 1050MHz

Memory size 2G 2GB 4GB

Computing version 2.0 3.0 5.2

49

Figure 4-2: Subset SMs in NVidia Tesla C2050.

4.5 Dynamic Partition SM Subset

Subset SM mechanism aims to eliminate the limitation of GPU schedule, which

allows only one kernel on the GPU when the application consists of multiple kernels. The

idea is how to distribute kernels into an independent group of SMs effectively. In this

work, we will introduce GPU performance modeling to dynamically partition the SMs

into multiple groups.

4.5.1 Information Collection

To eliminate the sequential kernel execution on a GPU, we need to collect the

kernel information, including a data structure, memory requirement, and the block size

setting from the application. On the other hand, we also need to figure out the number of

50

kernels and computational throughput of the kernel for dynamically assigning kernels to

the specific group of SMs.

Based on the current GPU toolset, we can find the related memory and other

resource information that can be applied to the kernel execution estimation. Each GPU

device has different hardware information. Whenever the new device is deployed, we

need to figure out the GPU information with devicequery.cu, then use a counter to get the

total number of kernels 𝑁𝑘 in each program, and the kinds of kernels.

4.5.2 Executing Time Estimation

In this process, we assume that all the kernels are independently executed with

full resources. With the executing time, we can figure out the probable computational

throughput rate for each kernel.

In GPU computing processing, in addition to the execution time, memory access

time is also very important. Total kernel execution time 𝑇𝐸𝑥𝑒 consists of total memory

access time 𝑇𝑀𝑒𝑚 and total kernel execution time 𝑇𝐶𝑜𝑚. This can be represented by Eq.

4-1.

 𝑇𝐸𝑥𝑒 = 𝑇𝑀𝑒𝑚 + 𝑇𝐶𝑜𝑚 Eq. 4-1

The total memory access time depends on the total number of memory clock

cycles needed and the memory frequency. We suppose that all memory accessing

frequencies are the same. We analyze the memory access time based on the memory

types. The total computational time depends on the GPU device's feature and the clock

cycles. So, the 𝑇𝑀𝑒𝑚 and 𝑇𝐶𝑜𝑚 can be obtained by Eq. 4-2 and Eq. 4-3.

 𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑖

𝑛

𝑖=1

 Eq. 4-2

51

and

 𝑇𝐶𝑜𝑚 = ∑ 𝑇𝑀𝑖

𝑛

𝑖=1

 Eq. 4-3

There is a wait time for the memory to be read, during that time the SP units

cannot process because it needs to wait for the returned data, we call the time of SP

without working as idle time. Two common situations may occur during GPU execution.

One is that idle time can be covered in GPU computing, and another is that idle time

cannot be covered in GPU computing.

First, the idle time is covered in GPU computing. This means the SP in GPU

keeps running from the beginning to the end. There is no idle time during kernel

executing due to there being enough warps for SP units to execute. The total execution

time 𝑇𝐸𝑥𝑒_𝑐𝑜𝑣 is the sum of the total computational time and the last memory access time

as shown in Eq. 4-4. In section 3.4.3, there are more details about the execution time

estimation.

 𝑇𝐸𝑥𝑒_𝑐𝑜𝑣 = (𝑇𝑀𝑛
+ 𝑇𝐶𝑜𝑚 ×

𝑁𝑇𝐵 × 𝑁𝑀𝐵𝑆

𝑤
) ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀
 Eq. 4-4

The 𝑁𝐶𝐵 is the total number of blocks that are executed in the kernel. We can get

𝑁𝐶𝐵 from code analysis.

In the second case, if there are not enough warps to cover the idle time. We have

to consider the idle time for each warp. Therefore, the total execution time can be

represented by Eq. 4-5.

𝑇𝐸𝑥𝑒_𝑢𝑛𝑐𝑜𝑣 = [(𝑇𝑀 + 𝑇𝐶𝑜𝑚

+ 𝑇𝐶𝑛
× (

𝑁𝑇𝐵 × 𝑁𝑀𝐵𝑆

𝑤
− 1)] ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀

Eq. 4-5

52

4.5.3 Dynamic Partition

In the previous section, we proposed how to estimate each kernel's throughput

with the GPU performance model. Next, we will introduce a method that can

dynamically partition SMs on the GPU.

Since the launch kernel with SM-ID number is at the head of each kernel. The

execution location depends on the SM-ID number. The original idea of forcing part of

SMs to process each kernel roughly separates the SMs into two equal parts. Under the

same condition, this kind of partition can help GPU get higher performance without any

other changes. However, when the two kernels have huge differences in the

computational requirement, the defect of using two equal parts of SMs comes out.

For the previous issue, the original method cannot handle the kernels with

different capacity requirements. The solution to this issue will be introduced in this

section. As we know, the program execution time depends on the computational

throughput. If a kernel has a large computational requirement, more computing resources

should be signed to the kernel to reduce processing time.

In our experiment, we find that when there are more than two SM subdivisions,

the performance drops sharply. Thus, we assume that all programs only have up to two

kernels and up to two kinds of kernels in this method. We have used GPU performance

model to estimate the kernel's execution time running. With the information collection,

we make the partition plan smarter.

We define 𝐾1 and 𝐾2 as two kernel's computational throughput, and 𝑆𝑀1 and 𝑆𝑀2

as the number of each group of SMs. From the devicequery.cu GPU information, we can

53

get the total number of SMs in the current GPU environment. We also define 𝑆𝑀𝑇𝑜𝑡𝑎𝑙 to

be the total number of the SMs in the device. The sum of 𝑆𝑀1 and 𝑆𝑀2 is equal to the

SM, as shown the Eq. 4-6.

 𝑆𝑀𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑀1 + 𝑆𝑀2 Eq. 4-6

To estimate two kernels' completion time close to each other, the number of SMs

for each kernel is based on computational throughput. The relationship between the

number of SMs and kernel computational throughput is shown in Eq. 4-7.

 𝐾1: 𝐾2 = 𝑆𝑀1: 𝑆𝑀2 Eq. 4-7

From Eq. 4-6 and Eq. 4-7, we can derive 𝐾1 and 𝑆𝑀1 a relationship that can be

represented in Eq. 4-8.

𝐾1

𝐾1 + 𝐾2
=

𝑆𝑀1

𝑆𝑀𝑇𝑜𝑡𝑎𝑙
 Eq. 4-8

With the two kernel's computational throughput and the number of SM in the

current GPU, our algorithm can dynamically choose the number of SM for two SMs

groups. The number of SM groups for kernel 1 and kernel 2 are shown in Eq. 4-9 and

Eq. 4-10.

 𝑆𝑀1 =
𝐾1 × 𝑆𝑀

𝐾1 + 𝐾2
 Eq. 4-9

and

 𝑆𝑀2 =
𝐾2 × 𝑆𝑀

𝐾1 + 𝐾2
 Eq. 4-10

Last, we can estimate the number of SM in the SM group before the kernel is

executed in GPU. The dynamic partition mechanism decides the number of SM by the

kernel's computational throughput.

54

4.6 Evaluation

For comparison, we have implemented three GPU computing cases in our

experiment. First, two same benchmark kernels are executed with the partition

mechanism. Second, two different benchmark kernels have the same computational

throughput with dynamic partition. Third, two different benchmark kernels have different

computational throughput running with dynamic partition. All three cases are run on

three different GPU cards.

4.6.1 Methodology

Our use cases focus on enhancing memory performance and processing

performance. We need a set of memory-intensive and computational-intensive programs

for the experiment. Meanwhile, for a comprehensive assessment of our technique

applicability, the benchmark set should consist of programs of a broad range of domains

and have good coverage of both regular and irregular programs. For these reasons, we

select nine benchmarks to form our test set. As Table 4-2 shows, these programs come

from four benchmark suites, cover a broad set of domains, and include a similar number

of regular and irregular programs.

In the flowing, we give a simple description of these benchmarks for our

experiments. IRREG and NBF are rewritten in CUDA for benchmarks by Han and Tseng

(Han & Tseng, 2006). MD and SPMV are both developed by Oak Ridge National

Laboratory (Danalis, et al., 2010, March). CFD from Rodinia benchmark suite (Che, et

al., 2009, October) simulates fluid dynamics; matrix multiplication and REDUCE are

from the CUDA SDK samples (Nvidia, 2019). These applications represent compute-

intensive applications that are used widely in parallel applications.

55

Table 4-2: Description of the benchmark.

Benchmark Description Source

irreg partial diff. solver Maryland

nbf force field Maryland

md Molecular dynamics SHOC

spmv Sparse matrix vector multi SHOC

cfd Finite volume solver Rodinia

nn Nearest neighbor Rodinia

pf Dynamic programming Rodinia

mm Dense matrix multiplication CUDA SDK

reduce reduction CUDA SDK

As current GPUs cannot support the two different contexts at the same time yet,

we force the two kernels running in the GPU simultaneously in our work. For the

evaluation, we designed three experiments each run on three different GPUs.

4.6.2 Machine Environment

We run all the benchmarks on the NVIDIA GTX 650, GTX 970, TESLA M2050

with CUDA 7.5. The host machine is an Intel Xeon E3-1230 CPU and 16GB of memory.

The benchmark is run on 64-bit windows 7 ultimate, and each record time is an average

of 20 repeated measurements; it includes the overhead time.

4.6.3 Experiment Result

Figure 4-3, 4-4, 4-5 is the speedup of two same kind kernels using a dynamic

partition on three GPU. In the benchmark program, there are two kernels in the same

function. They have different computational requirements. In Figure 4-5, the benchmark

is run on the GTX 650. All kinds of the benchmark get a very bad performance. There are

two reasons. First, the GTX 650, only has two SMs. There is only one partition plan for

executing two kernels at the same time. Each kernel has only one SM for processing. In

this case, the two kernels have different computational requirements. The SM for the

56

kernel with less work must be idle at the end. Many computing resources are wasted

when SM is idle. Second, in the GTX 650, there is not enough shared memory for

computing. In the co-run condition, there is more than one kernel in the GPU at the same

time. When the kernel is memory sensitive, the processing performance will be worse.

The GTX 970 and Tesla M2050 have 14 and 13 SMs, respectively. The computational

sensitive kernel has a potential speedup shown in Figures 4-3 and Figures 4-5 like

partial diff and force field, due to this two GPUs having powerful processing capability.

For those memory-sensitive benchmarks like matrix multiplication, the nearest neighbor

also has a few speedups faster than the two kernels running on serial. Both the GTX 970

and Tesla M2050 do not perform better on the molecular dynamics than on serial. The

reason that Tesla M2050 does not get better performance on matrix multiplication is

M2050 does not have many processing cores in each SMs. when the kernel is executed in

the SM, the computing capability touches the limit of the GPU.

The reason we only run benchmarks on the GTX 970 and Tesla M2050 is that we

find GTX 650 only has two SMs, which means it only has one option of partition. So, it

is not a suitable device for partition SMs. The results show in Figures 4-6, 4-7, 4-8, and

4-9. In these two cases, we show the speedup of benchmarks before dynamic partition

applying and after. The results show our dynamic partition mechanism improves the

processing performance. Also, we found that those computational sensitive kernels mixed

together can get better performance. Those memory-sensitive benchmarks mix or mixed

with computational-sensitive do not get better performance than execution in serial.

57

Figure 4-3: Speedup of two same kind kernels using a dynamic partition on GTX970.

Figure 4-4: Speedup of two same kind kernels using a dynamic partition on Tesla

M2050.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

irreg nbf md spmv cfd nn pf mm reduce

D_partition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

irreg nbf md spmv cfd nn pf mm reduce

D_partition

58

Figure 4-5: Speedup of two same kind kernels using a dynamic partition on GTX650.

Figure 4-6: Speedup of two different kernels with the same computational throughput

using a dynamic partition on GTX 970.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

irreg nbf md spmv cfd nn pf mm reduce

D_partition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D_partition

59

Figure 4-7: Speedup of two different kernels with the same computational throughput

using a dynamic partition on Tesla M2050.

Figure 4-8: Speedup of two different kernels with different computational throughput

before using dynamic partition and after on GTX970.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D_partition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
D_partition

Half Partition

60

Figure 4-9: Speedup of two different kernels with different computational throughput

before using dynamic partition and after on Tesla M2050.

4.6.4 Experiment Conclusion

From the result of all three cases, we find that our dynamic partition mechanism

improves co-execution kernels' performance, which is computational-sensitive. However,

for those memory-sensitive kernels, although we use our mechanism to enhance the

performance of multi-kernel execution, the idea of co-running does not show any

improvement on memory-sensitive kernels due to the limitation of memory resources on

the hardware.

4.7 Conclusion

This chapter proposed a dynamic partition mechanism for GPU computing, it has

broken the limitation of only allowing more than one kernel to be executed in the GPU at

the same time. The simple mechanism first time offered the GPU a chance to smartly

dynamically partition the SMs into multiple parts. Dynamic partition revealed the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

D_partition

61

potential of the enabled scheduling control for executions of multi-kernel co-runs.

Dynamic partition opened a new way to optimize the GPU programs without any change

on the program. It improves the processing performed on the computational-sensitive

program. Our mechanism did not show a significant improvement on those programs

requiring large memory space, wide memory bandwidth, and GPU devices with a few

SMs.

62

CHAPTER 5

A PARALLEL COMPUTING FRAMEWORK FOR PERFORMANCE

ANALYTICAL MODELS

5.1 Introduction

Parallel processing has long been employed on many large-scale scientific and

complex technical computing applications. They are typically resource-intensive

applications, such as nuclear simulations, financial stock market analysis, oil exploration,

weather forecasts, and simulated reality. During past decades, the emergence of the

multi-core and many-core has transformed the parallel computing systems from the

national supercomputing center, which only serves selected scientists and engineers, to

the modern personal supercomputers for general usage. With dramatic processing power

on the recent processor unit, especially the graphics processing unit (GPU), machine

learning and deep learning applications have made revolutionary progress. To achieve

more efficiency for these parallel programs, performance prediction becomes a burning

desire of the parallel computing users to fine-tune their applications. Fortunately,

analytical models are widely used to describe performance characteristics. Moreover,

many analytical performance models have been recently developed for complex parallel

applications such as deep neural networks (DNN), with many layers processed on a

heterogeneous system. However, a successful parallel computing analytical performance

model is not a silver bullet for general performance prediction. The reason is that the

63

parallel computing analytical performance model can be quite complex, essentially

including several aspects. Unfortunately, with the complex parallel systems, various

hardware and software components, it is challenging to develop an accurate analytical

performance model for general hardware architecture and software logics. Furthermore,

the parallel computing architecture and program continue to evolve drastically. A minor

change in the processing unit architecture, interconnection network, or parallel algorithm

may require extensive work to adapt to the change. The successful parallel computing

analytical performance model must endure and adapt to these conditions. Therefore, a

robust framework is a vital requirement as an enabling parallel computing tool and must

be flexible to model users’ logic on targeted hardware while predicting accurate

performance.

 In this chapter, we propose a framework for building the parallel computing

abstraction models and an analytical performance model. Our framework is aimed to

guide users to derive useful information from the hardware architecture and application,

then feed those parameters into our two abstract models, which describe the logic of the

parallel application and system architecture. Then the users can use the performance

metric to evaluate the parallel system and algorithm. Our framework can describe various

parallel computing behaviors, such as task executions, data passing, and communication.

The contributions of this work include:

⚫ Two parallel computing abstract models are introduced to represent the

processing steps and simplify the workload distribution behaviors.

⚫ An extension to Flynn’s taxonomy is proposed to support heterogeneous

systems and consider the communication time.

64

This chapter is organized as follows: In 5.2, we discuss related work and list some

general issues in building the analytical performance model and the overview of our

framework. In 5.3, we introduce the parallel application abstract model to represent the

parallel program by dividing the whole task into essential pieces. Also, we propose the

computing system abstract model and an extension to Flynn’s taxonomy. Finally, section

5.4 is the conclusion.

5.2 Background and Related Work

Parallel computing refers to a process of breaking down larger problems into

smaller, independent, and similar parts that can be processed simultaneously by multiple

processors, the results of which are combined upon completion as part of an overall

algorithm. The main goal of using parallel computing is to increase the efficiency of

current computing capacity for faster task processing and thus to speed up the

performance. The parallel computing paradigm typically presents as distributing the tasks

to multiple partitions on many processing units and collecting the results from each

processor unit.

In recent years, parallel computing has become increasingly popular to solve

problems such as machine learning. AI researchers have proposed new algorithms and

solutions such as Convolution Neural Network (LeCun, et al., 1989), unique resource

management, modern communication methods such as NCCL (Luehr, 2016), Ring

Allreduce (Sergeev & Del Balso, 2018), PS (Cui, et al., 2016, April), and new hardware

to speed up the computation. However, despite these significant advances, it is not easy

to analyze and optimize performance for these applications. Thus, it is vital to find an

appropriate tool or method such as appropriate analytical modeling to disclose the

65

abstract views of hardware and software components. Building the analytical

performance model is a common method in the performance evaluation for parallel

computing. During the past years, researchers have developed analytical performance

models based on specific hardware, such as a cluster of CPUs, and recently GPU, for

various parallel applications. These models can be outdated quickly, especially when

there are rapid changes in hardware and parallel system.

There are three kinds of performance evaluation techniques: analytical modeling,

simulation modeling, and measurement. Analytical approaches are less accurate than

simulation approaches; they are also simpler and quicker to provide insights since the

parallel computing behaviors are described through mathematical equations. Moreover,

analytical modeling provides an abstract view of hardware and software. Parallel

performance analytical models based on system parameters, like LogP (Culler, et al.,

1993, July), LogGP (Alexandrov, et al., 1995, July), are widely used to evaluate parallel

applications. The performance model enables users to understand the behavior of the

applications, supports users to make decisions during the execution. The model can also

represent the composition of the program logic, which means the ratio of parallelism

among subtasks to the total tasks. Thus, we can estimate the execution time of the

applications, potentially identify the performance bottleneck and scalability of the system

before we run the program on the target machine.

Constructing an appropriate analytical model is quite useful and helps us break

down a complex problem into more manageable pieces. The typical model consists of

two parts. First, it must well describe system characteristics and should be as accurate as

possible. Second, it must be as simple as possible to represent the problems. The first

66

feature requires that the model includes all the necessary details that define the system

characteristics and the second implies that the model should be in a simple expression.

These two features contradict each other. It is a dilemma facing the modeling

practitioners. Including too many parameters may help increase the accuracy of the

model, the following issue is model getting too complex to be solved. An overly

complicated model takes too much time to be solved or is even too complex to do so.

Thus, an unsolvable model is completely useless. Hence, care must be taken in selecting

parameters, and a reasonable trade-off should be made for an appropriate performance

model.

Traditionally, the analytical performance model is created and based on either

deterministic analysis, probabilistic analysis, or benchmark. The deterministic analysis

involves only the summation of all tasks in the sequential work, and also has considered

synchronization cost. The overhead of the deterministic analysis is manageable, and

therefore the model could be built in a short time. On the other hand, a probabilistic

analysis starts from an assumption about a probabilistic distribution of the set of all

possible inputs. This assumption has a lot of uncertain information. Although benchmark

suits most of the conditions no matter how complicated they are, and micro-benchmark

helps to reduce the evaluation time. It is still needed to implement on the target machine

and collect the processing results. Consequently, for a particular application and machine

type, users need to find or build a suitable performance model for them.

There has been numerous parallel architectures and their implementations.

Flynn’s taxonomy (Flynn, 1972) is a general classification that describes computing

67

architectures and paradigms by considering various instruction and data streams that can

be processed simultaneously.

One of the most critical evaluations in parallel computing is to measure how

much faster a parallel task can run with respect to the best possible sequential one. This

measure is known as speedup. To evaluate the performance of the parallel application,

Amdahl’s law and Gustafson’s law are widely used for measuring speedup.

Our modeling and evaluation framework is an extension of Flynn’s taxonomy and

a combined Amdahl's law (Amdahl, 1967, April) and Gustafson’s law (Gustafson, 1988)

to create a novel model with familiar taxonomy and performance metrics. Our proposed

framework offers a simple way to build an analytical performance model which adapts to

modern hardware and applications. The framework allows an easy way to parametrize

both computational logic and various hardware architecture that are well-suited for

general parallel applications in practice.

5.3 Framework for Parallel Application Analytical Modeling

Our framework provides a workflow for users who wish to build their analytical

performance model based on parallel computing. We consider a general parallel

computing system of which it is partitioned into a collection of nodes, and the node may

consist of multiple CPUs and perhaps coprocessing units such as GPGPUs. Our

framework describes the parallel application and targeted hardware architecture in the

two abstract models. These two models enable users to build their analytical performance

model for specific hardware and application logic. The framework and workflow are

shown in Figure5-1.

68

The analytical performance model will help users to identify possible bottlenecks

and improve their parallel program performance. In our framework, the parallel

application abstract model describes the logic of the parallel application. The model

represents breakdowns of the whole program into many simple pieces that can be

evaluated and summed up for the estimated completion time. The parallel system abstract

model helps to guide users to estimate each part's computing time and communication

time. The performance metric assists users in evaluating and comparing the application

performance before and after optimization.

Figure 5-1: Overview of the parallel computing performance modeling framework.

5.3.1 Parallel Application Abstract Model

The parallel application abstract model is a representation of internal application

structures that allow individuals to describe the application logic. This model simplifies

parallel computing representation into a collection of computational subtasks. The model

69

defines how many subsets or the computing tasks are in the whole application.

Computing tasks could be parallel or serial. The application abstraction model is

guidance for building the analytical model for parallel computing. There can be various

kinds of computing in parallel applications: parallel, serial, consecutive serials in parallel,

and numerous parallels in serial, as shown in the example of four task types in Figure 5-

2. The dark blue box represents the tasks that could be executed in sequential, and the

green box represents the parallel tasks. Each type has a time estimation method. With the

parallel application abstract model, users break down the parallel application into

subtasks and can describe their parallel algorithms in more generic ways.

Figure 5-2: Examples of the four types of tasks.

In the parallel program, there may be many sub-tasks including parallel tasks or

sequential tasks, sometimes even the mixture between parallel and sequential ones. The

total execution time is the summation of the parallel tasks and the sequential tasks. In this

abstract model, we introduce two parameters. First, the execution time of sequential

70

tasks. Second is the execution time of parallel tasks. Figure 5-3 depicts an example of the

application abstractions. From left to right, in layer 1, there are a sequence of tasks, and

each box represents an independent task. The individual task may consist of parallel or

sequential subtasks. The dark blue box means the tasks could be executed in sequential.

The green box represents the parallel tasks. The next layer represents subtasks of the

previous layer task. This representation provides recursiveness on how tasks can have

several subtasks and generality of real-world applications.

Figure 5-3: Application logic example.

Several parameters will be introduced in our framework before diving into the

abstract model. Those parameters are shown in the following Table 5-1.

71

Table 5-1: Parameters for the Parallel application and system abstract model.

Notation Description

Application abstract model

TS The execution time of a subset sequential task

TP The execution time of a subset parallel task

𝑽𝑫 The volume of transfer data

𝑽𝑰 Volume of Instruction transportation

𝑽𝑹 Volume of result transportation

𝑵𝑰 Number of instructions

𝑵𝑫𝒎𝒔𝒈 Number of times data transfer

𝑵𝑰𝒎𝒔𝒈 Number of times instruction transfer

CPI Cycles per instruction

System abstract model

𝑳𝑫 The latency of data transfer

𝑳𝑰 The latency of instruction transfer

𝑵𝑷 Number of the processor unit

B The total bandwidth of the system

The total execution time depends on the number of individual tasks as shown in

Figure 5-3 layer1. The total execution time is the sum of the independent tasks as shown

in Eq. 5-1.

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑆1 + 𝑇𝑆2 + ⋯ 𝑇𝑆𝑛 Eq. 5-1

Some tasks may consist of a collection of parallelized tasks or sequential tasks.

For example, in Figure 5.3, 𝑆𝑇𝑎𝑠𝑘1 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠, 𝑃𝑇𝑎𝑠𝑘1−1,

𝑃𝑇𝑎𝑠𝑘1−2 to 𝑃𝑇𝑎𝑠𝑘1−𝑛 and the time of the 𝑆𝑇𝑎𝑠𝑘1 is represented by 𝑇𝑃1. All these

72

parallel tasks could be executed at the same time. The execution time of the sub-tasks 𝑇𝑆1

is equal to 𝑇𝑃1. 𝑇𝑃1 is derived from the longest execution time in parallelable subtask of

𝑆𝑇𝑎𝑠𝑘1 as shown in Eq. 5-2b

 𝑇𝑆1 = 𝑇𝑃1 Eq. 5-2a

and

 𝑇𝑃1 = max
1≤𝑛

{𝑇𝑃1−𝑛} Eq. 5-2b

In another situation, for example. some tasks like 𝑆𝑇𝑎𝑠𝑘3 may consist of multiple

sequential tasks: 𝑆𝑇𝑎𝑠𝑘3−1, 𝑆𝑇𝑎𝑠𝑘3−2 to 𝑆𝑇𝑎𝑠𝑘3−𝑛. 𝑇𝑆3−1, 𝑇𝑆3−2…. 𝑇𝑆3−𝑛 represent

the execution time of each sub-task in the 𝑆𝑇𝑎𝑠𝑘3, and the 𝑇𝑆3 is equal to the summation

of all sub-tasks’ execution times in the 𝑆𝑇𝑎𝑠𝑘3 as shown in Eq. 5-3.

 𝑇𝑆3 = 𝑇𝑆3−1 + 𝑇𝑆3−2 + ⋯ 𝑇𝑆3−𝑛 Eq. 5-3

𝑇𝑆3−1 is the subset of 𝑆𝑇𝑎𝑠𝑘3 which consist of multiple parallel

tasks: 𝑃𝑇𝑎𝑠𝑘3−1−1, 𝑃𝑇𝑎𝑠𝑘3−1−2 to 𝑃𝑇𝑎𝑠𝑘3−1−𝑛. 𝑃𝑆3−1, 𝑃𝑆3−2…. 𝑃𝑆3−𝑛 represent each

sub-task in the 𝑆𝑇𝑎𝑠𝑘3−1 and the 𝑇𝑆3 is equal to the time of processing all parallel sub-

tasks in the 𝑆𝑇𝑎𝑠𝑘3 as shown in Eq. 5-4.

 𝑇𝑆3−1 = 𝑇𝑃3−1 Eq. 5-4

In sub-task like 𝑃𝑇𝑎𝑠𝑘𝑛−1, it has multiple sub-tasks, which could be either

parallel tasks or sequential tasks. The parallel task execution time depends on the longest

job. The sequential task execution time is the summation of all sequential task execution

time. The whole application execution time is the longest processing time of parallel

tasks by adding the total execution time of the sequential tasks. The maximum processing

time of the parallel task is shown in Eq. 5-5.

73

 𝑃𝑇𝑎𝑠𝑘𝑛−1 = max
1≤𝑗≤𝑛

{𝑇𝑃𝑛−𝑗} Eq. 5-5

In the sub-task 𝑃𝑇𝑎𝑠𝑘𝑛−𝑛, it consists of multiple sequential tasks

𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−1, 𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−2,…. 𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−𝑛, the time of 𝑃𝑇𝑎𝑠𝑘𝑛−𝑛is the summation of

all sequential tasks.

 𝑇𝑝𝑛−𝑛 = 𝑇𝑆𝑛−𝑛−1 + 𝑇𝑆𝑛−𝑛−2 + ⋯ 𝑇𝑆𝑛−𝑛−𝑛 Eq. 5-6

and

 𝑇𝑝𝑛−𝑛 = ∑ 𝑇𝑆𝑛−𝑛−𝑖

𝑛

𝑖=1

 Eq. 5-7

The total execution time of the whole application 𝑇𝑡𝑜𝑡𝑎𝑙 is the summation time of all sub-

tasks.

 𝑇𝑡𝑜𝑡𝑎𝑙 = ∑ [𝑇𝑆𝑖 + max
1≤𝑗≤𝑛

{𝑇𝑃𝑛−𝑗}]

𝐼

𝑖=1

 Eq. 5-8

5.3.2 Parallel System Abstract Model

The parallel computing system abstract model is a representation of the system

hardware architecture. The model represents important hardware aspects, such as

processing capability and their connectivity, and capturing the computing and

communication times. In the parallel system, there can be more than one processing unit

to execute parallel tasks. Normally, several processing units are grouped into a node. The

switch or network fabric connects nodes to form a larger computational capability. In this

model, we denote the symbol B to represent the total bandwidth of the node connectivity.

In the beginning, data will be loaded to the processing units, which could be from local

storage, system memory, or network storage. At the abstraction level, we signify 𝑉𝐷 to

represent the volume of the total data transfer to the processing unit. All-important

74

parameters in this model are shown in Table 5-1. Our abstract model defines the total

execution time into two parts. The first is computing time. The second is communication

time. Each part could be defined as a building block based on various computing

paradigms and architecture which are defined by our proposed extended Flynn’s

taxonomy. We have enhanced Flynn’s taxonomy that includes the heterogeneous

computing paradigm.

We consider the total time of the application with both the computing and

communication time. The communication time consists of data loading, instructions

passing, and result collection. The execution time represents the time from the processing

unit received the data, computation, and instructions to send out the results.

 𝑇𝑃 = 𝑇𝐿𝐷 + 𝑇𝐼 + 𝑇𝐶 + 𝑇𝐶𝑜𝑙𝑙 Eq. 5-9

Eq. 5-9 defines the 𝑇𝑃 as the total time of parallel computing. It is a sum of the data

loading time (𝑇𝐿𝐷), time for instructions passing (𝑇𝐼), execution time (𝑇𝐶) and time of

results collection (𝑇𝐶𝑜𝑙𝑙).

𝑇𝐿𝐷 Loading Data

Parallel computing loading data time 𝑇𝐿𝐷 is the time representing how long it

takes to perform the data transfer. Data transfer overhead depends on the size of the data

and the bandwidth of the system. However, before each message is sent or received, there

is a latency that needs to be considered. The latency depends on the interconnection

fabric, computation protocol, and the times of message sending/receiving. Through the

data loading analysis, we can calculate the overhead based on both communication time

and latency. The total time of data loading is represented by the following function f𝑇𝐿𝐷.

𝑓𝑇𝐿𝐷 = 𝐹(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

75

 𝑇𝐿𝐷 =
𝑉𝐷

𝐵
+ 𝐿𝐷 × 𝑁𝐷𝑚𝑠𝑔 Eq. 5-10

In Eq. 5-10, 𝐵 is the Bandwidth of the system, 𝐿𝐷is the latency of each data

transfer, and 𝑁𝐷𝑚𝑠𝑔 is the number of times data transfers. The data loading time 𝑇𝐿𝐷

equals to the sums of the data transfer time with the latency of each data transfer.

In reality, 𝑉𝐷 also depends on the communication method, such as data from one

point to multiple points or multiple points to various points. Some of the massages will be

passed multiple times when they need to be distributed to multiple nodes. The hardware's

characteristics dictate the bandwidth of the system and capacity. Once the system sends

too many messages at the same time, it may reach the bandwidth limitation. The system

will hold some messages for a while. As such, the latency needs to be considered for

estimating the data transfer time.

𝑇𝐼 Instructions Passing

Same as the data loading, Instructions can also be transferred as messages. The

instruction passing time 𝑇𝐼 is the time that represents how long it takes for dispatching

instructions to processing units. The time of message sending depends on the volume of

the instructions and the bandwidth of the system. However, before each message is sent,

there is a latency that must be considered the same as data loading. This latency can be

derived from the system hardware specification and the times of message passing. The

total time of instructions passing is represented by the following function 𝑓𝑇𝐼.

𝑓𝑇𝐼 = 𝐹(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒)

 𝑇𝐼 =
𝑉𝐼

𝐵
+ 𝐿𝐼 × 𝑁𝐼𝑚𝑠𝑔 Eq. 5-11

76

In Eq. 5-11, 𝑇𝐼 is the volume of Instruction transportation, 𝐵 is the bandwidth of

the system, 𝐿𝐼is the latency of each data transfer, and 𝑁𝐼𝑚𝑠𝑔 is the number of times

instruction transfer. The time of instructions passing 𝑇𝐼 equals to sums of the data transfer

times with the latency of each data transfer.

𝑇𝐶 Execution Time

Parallel computing execution time is the time that elaspes from the moment that

data and instructions are received to the moment the task is completed (including,

perhaps, sending the results). Execution time depends on the computing characteristic

and the type of parallel computing algorithm, the number of processing units, and the

processing unit's architecture. In the next section, we will introduce extended Flynn’s

Taxonomy. We propose a new classification which is based on the heterogeneous show

in Figure 5-4e. The overview of extended Flynn’s Taxonomy is shown in Figure 5-4.

Figure 5-4: Overview of the extended Flynn’s Taxonomy.

𝑇𝐶𝑜𝑙𝑙 Result Collection Time

The result collection time is the time that system transfers the results from each

processing unit to the host. We assume that all processor units will pass the results

77

simultaneously and share the system bandwidth. The following function 𝑓𝑇𝐶𝑜𝑙𝑙 represents

the total time of result collection.

𝑓𝑇𝐶𝑜𝑙𝑙 = 𝐹(𝑆𝑖𝑧𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎, 𝑇𝑦𝑝𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎, 𝑐𝑜𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚)

 𝑇𝐶𝑜𝑙𝑙 =
𝑉𝑅

𝐵
 Eq. 5-12

In Eq. 5-12, 𝑉𝑅 is the volume of results, and 𝐵 is the bandwidth of the system.

The time of result collection is equal to the volume of results divided by the bandwidth of

the system.

In reality, coalesced memory accesses (Che, et al., 2011, November) are much

faster than uncoalesced memory accesses; when some data is stored in uncoalesced

memory, the access time will be longer than the data stored in the coalesced memory. A

memory access speed estimation model needed to be introduced for a different type of

data.

5.3.3 Extended Flynn’s Taxonomy

Computer architectures and computing paradigms can be classified by Flynn’s

taxonomy which represents computing into four categories. This classification depends

on two aspects; first, the number of instruction streams, second, the number of data

streams that can be handled in parallel. In this work, we propose one more category

which represents heterogeneous computing (Khokhar, et al., 1993) (Mittal & Vetter,

2015). In the modern parallel computing system, there are systems with multiple-core

CPUs coupled with a GPU that support SIMD instructions. When the SIMD processor

cooperates with a traditional processor, the system is considered a heterogeneous parallel

system. The following sections detail four classifications and the extended Flynn’s

taxonomy.

78

Single Instruction Stream, Single Data Stream (SISD)

A sequential computer exploits no parallelism in either the instruction or data

streams. A single control unit loads a single instruction from memory. The control unit

then generates appropriate control signals to direct a single processing element to operate

on a single data stream. The following diagram shows the SISD is a single instruction

with a single data stream. The SISD is the traditional computational model with a single

core.

Figure 5-5: Single instruction multiple data streams.

Single Instruction Stream, Multiple Data Streams (SIMD)

A single instruction operates on multiple different data streams. We assume that

multiple SISD operations only use a single instruction to process multiple data. All these

same instructions can be executed in parallel with a different set of data, such as in

parallel by multiple functional units like in the GPU computing system.

Single instruction multiple threads (SIMT) are an execution model used in

parallel computing where single instruction and multiple data (SIMD) are combined with

multithreading.

 𝑇𝐶𝑠𝑖𝑚𝑑 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-13

79

Figure 5-6: Multiple instruction single data stream.

Multiple Instruction Streams, Single Data Stream (MISD)

Multiple instructions operate on one data stream. This is an uncommon

architecture that is normally used for fault tolerance, and heterogeneous systems operate

on the same data stream. For example, the Space Shuttle flight control computer is using

MISD for data processing.

 𝑇𝐶𝑚𝑖𝑠𝑑 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-14

80

Figure 5-7: Multiple instruction single data streams.

Multiple Instruction Streams, Multiple Data Streams (MIMD)

Multiple autonomous processors execute different instructions on different data

simultaneously. The MIMD architecture includes individual multicore processors and

distributed systems with shared memory space or distributed memory space. The

processors in the MIMD system operate independently and asynchronously:

 𝑇𝐶𝑚𝑖𝑚𝑑 = 𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-15

81

Figure 5-8: Multiple instructions multiple data streams.

Heterogeneous Computing

Heterogeneous computing is a computational paradigm with more than one kind

of processing unit or cores. These systems gain performance or energy efficiency not just

by adding the same type of processors but by adding different co-processors, usually

incorporating specialized processing capabilities to handle particular tasks. In modern

parallel computing, host processing units work with cooperation processing units. The

host is usually a CPU, and the cooperation processing units are many-core processing

units like GPU and a field-programmable gate array (FPGA). In this system, there are

many types of computing, like SISD, MIMD, and SIMD, as shown in Figure 5-4.

Traditional four class taxonomy has difficulty describing modern systems which

including multiple types of computing.

In a heterogeneous system, the communication between the host and coprocessors

is the most critical factor for the system's performance. In reality, users have to consider

the thread synchronization, round-trip data transfer overhead between CPU and GPU, and

82

carefully design the communication algorithm. A performance model that includes the

communication between different heterogeneous cores is necessary for heterogeneous

system performance estimation.

Figure 5-9: Heterogeneous system.

5.4 Conclusion

This chapter has systematically introduced the framework for building the parallel

analytical performance model. We proposed the parallel application abstract model and

parallel computing system abstract model. In addition, we introduced the extended

Flynn’s Taxonomy, which included heterogeneous computing. Today’s parallel

computing requires programmers to manually optimize the application performance when

it is deployed on the new hardware. We anticipate that the proposed framework will

enable users who want to create an analytical performance model to further enhance their

parallel application performance.

83

CHAPTER 6

PERFORMANCE MODEL FOR CNN ON DISTRIBUTED GPU

SYSTEM

6.1 Introduction

Deep neural networks (DNNs) have been very successful in various machine

learning tasks, such as visual recognition (Krizhevsky, et al., 2012), speech recognition

(Han, et al., 2017, February), and machine translation (Wu, et al., 2016). Among those

applications, the convolutional neural network (CNN) proposed by LeCun (LeCun, et al.,

1989) was one of the earliest successful DNN models that were used to classify images.

CNN models equipped with deep learning techniques outperform previous machine

learning techniques in various visual recognition challenges, such as ILSVRC (ILSVRC,

2020) and PASCAL (PASCAL, 2020). These neural networks use the larger data set and

deeper neural network layers to train high accuracy models. These challenges require

large-scale training and advanced computation. Fortunately, GPUs have increasingly

become widely used in accelerating parallel computing applications due to their cost-

effectiveness and recent advancements. Thus, GPU and GPU clusters have been

employed in the training of the neural network and resulted in the aforementioned

successful applications.

The crucial factors which affect the performance or training time of neural

networks mainly include three parts. First, the structure of neural networks determines the

84

amount of computation, which directly affects time consumption. Second, the

performance and efficiency of targeted hardware are key for training neural networks.

Third, the selection of training algorithms determines the training processes of neural

networks and their completion time. In the training algorithms, the communication

algorithm is also one of the most influential factors.

With these crucial factors which affect the performance of training neural

networks, researchers have studied and proposed many methods to reduce the training

time. One approach to speed up CNNs is to reduce the time complexity of convolution

algorithms. Fast Fourier Transform (FFT) algorithms (Nussbaumer, 1981), and

Winograd’s minimal filtering algorithm (Winograd, 1980) are popular methods and

successfully reduce the algorithm complexity of the convolution computation in a CNN.

GPU and GPU clusters are also introduced to accelerate the training speed. In multi-GPU

training scenarios, data parallel and model parallel are used as the method to divide the

whole task into multiple parts for parallel computations.

To evaluate the training performance of neural networks, users mainly rely on

public benchmarks or numerous experiments to obtain the run-time, which brings a

significant wastage of time and resources. To eliminate this problem, many performance

models have emerged. However, an existing analytical performance model is not a silver

bullet for neural network training performance prediction. The reason is that the neural

network can be quite complex, essentially including several aspects and running on

various kinds of hardware. Unfortunately, with the complex network, various hardware,

and software components, it is challenging to develop an accurate analytical performance

model for neural networks. A minor change in the neural layer, interconnection network,

85

or software environment may require extensive reworks to adapt to the change. In

addition, the general performance model must be modified by highly skilled individuals

when algorithm and hardware architecture are changed. To achieve more efficiency in

training a neural network, performance prediction becomes a burning desire of

performance-tuning.

The previous chapter proposed the parallel computing performance analytical

model framework to aid practitioners who wish to predict performance and fine-tune their

parallel computing applications. Our goal is to simplify ways to create the models and yet

to represent the problems in wider domains. We extended the classic computational

modeling of Flynn’s taxonomy and combined ideas of two popular performance

measurement methods, namely Amdahl’s and Gustafson’s laws.

Therefore, this chapter aims to validate our framework by demonstrating it with

popular parallel computing applications such as CNN on a distributed GPU system. First,

for the Parallel application abstract model, we separate CNN model network layers into

multiple independent tasks. Second, by Parallel system abstract model, we use the

hardware characteristic of targeted GPUs, the framework library chosen by programmers,

and the communication method between multiple GPUs to determine the running time for

each part. Also, with the Extended Flynn’s Taxonomy, GPU cluster and heterogeneous

system performance become countable. We validate our performance analysis framework

with four popular CNN models AlexNet (Krizhevsky, et al., 2012), VGG (Simonyan &

Zisserman, 2014), GoogLeNet (Szegedy, et al., 2015), and ResNet (He, et al., 2016)

executed on two NVIDIA Pascal GPUs GTX 1080 and GTX 1080Ti, and show that our

performance analysis framework is both accurate and robust across the diverse layers

86

memory accessing and library framework. We also demonstrate how our performance

analysis framework can be used for the design-space exploration of future GPUs and

identify interesting tradeoffs for efficient CNN execution by independently scaling

different GPU resources.

In summary, our main contributions are:

⚫ We present a comprehensive performance analysis model that can predict

performance and understand bottlenecks for CNN on GPU.

⚫ We analyze the optimizable method for CNN on multiple GPUs, which will

help users evaluate their techniques before running on targeted

machines/architecture.

⚫ We validate the performance analysis model's accuracy and robustness across

four popular CNNs on GPUs.

⚫ We demonstrate how a performance analysis framework can efficiently

explore the potential optimizable part of the CNN algorithm and the

bottlenecks of current CNN.

6.2 Background

6.2.1 Convolutional Neural Network (CNN)

CNN is a type of deep learning technique that is commonly used for image

analysis. The training process of CNNs is a feed-forward neural network, which means

using the Backpropagation algorithm to adjust learnable kernels, thereby minimizing the

cost function. The convolutional neural network uses a local receptive field, shared

weight, and pooling to automatically provides some degree of shift and distortion

invariance. The convolutional layer is the central part of CNNs. In the convolutional

87

layer, the neuron which in the same feature map using the same weight for input data to

get the corresponding features. The shared weights mean that neurons share the same

weights in the feature map. In the current layer, each neuron is connected to the previous

layer. This kind of connectivity is called the local receptive field.

We are using Lenet, which was proposed by LeCun in 1989 to show the

architecture of CNNs. The architecture as shown in Figure 6-1. Lenet-5 (LeCun, et al.,

1998) includes a convolutional layer, a pooling layer, and two fully connected layers. The

input images are first to get into the input layer and then the data from the previous layer

pass to the next layer, like the convolutional and pooling layer.

Figure 6-1: The architecture of LeNet-5.

6.2.2 Graphic Processing Unit (GPU) Architectures

Modern GPUs are designed for compute-intensive applications. With the

development of GPU performance, deep neural network CNN gets a huge advantage of

GPU performance. During the network training, it is essential to understand their general

data structures and computation algorithm. Let us consider NVIDIA GPUs as an

example. The GPU consists of many types of memory and many streaming

multiprocessors (SMs). Each SM contains a variety of functional units. There is also a

small size of low latency shared memory for SM, which the programmer can allocate the

88

memory. In the GPU, the smallest processing unit is warp, which contains 32 threads and

is scheduled by the task scheduler in the current generation GPU. Multiple warps in the

same block were executed by the same SM. The number of threads in each block and the

number of active blocks in each SM are determined by the hardware specification and

programmer setting. More details could be found in chapter 3.

6.2.3 CNN Training Process

The training process of neural networks depends on the error backpropagation

algorithm. The training process involves a huge size of calculation and data transmission.

CNN’s main computing operations, convolution on GPU can be executed by the libraries

such as CUBLAS (Nvidia, 2020), which is a matrix operation library of NVIDIA. The

CUBLAS supports various operations based on GEneral Matrix-to-matrix Multiply

(GEMM). The most common parallelization strategy is data parallelism, which places the

entire neural network copies on each device so that each processor group processes a

subset of the training data with the whole neural network and synchronizes network

parameters at the end of each iteration.

Another common parallelization strategy is model parallelism. Programmers

assign subsets of a neural network to many devices; each device has a part of the neural

network, and the training processing is like pipeline processing at the first iteration. After

the first iteration, all parts can be trained parallelly. This approach does not need

parameter synchronization between devices but requires data transfers between each

device.

Parallelized CNN training can be executed on multiple GPUs. However, we only

consider data parallel, which is most widely used, we use data parallel to demonstrate our

89

framework in this paper. Data parallel means that the training data set are divided and

distributed on different computing devices, in each device, there is the same copy of the

model or neural network. There are two common implementations of data transfer

strategies in this process. One is parameter server (PS) mode as shown in Figure 6-2. In

the parameter server mode, the CPU is usually used as a server node. Another mode is

NCCL. The model also supported by NVIDIA collective multi-GPU communication

library (NCCL) as shown in Figure 6-3, realizes parameter transfer and computing

through the All Reduce Kernel function, which does not need CPU and the transmission

bottleneck depends on the slowest network link.

Figure 6-2: Parameter server (PS).

90

Figure 6-3: The NVIDIA Collective Communication Library (NCCL).

6.2.4 Programming CNN to GPU

As we know, the convolution operation is the most time-consuming part of the

convolutional neural network training. The convolution can be easily mapped to the GPU

in multiple ways and take advantage of GPU parallel computing performance.

Direct Convolution is the traditional way of processing convolution. A small

window slides within an input feature map and a dot production between the filter bank

and local patch during direct convolution. The result of dot production is passed onto a

non-linear activation function after each execution. Outcome results from this activation

function are organized into a new feature map as output. Repeating the above process for

each filter, we can get a set of two-dimensional feature maps as the output of the

convolutional layer. Presentative implementations of direct convolution include cuda-

convnet2 (Krizhevsky, et al., 2012), and Theano-legacy.

91

Convolution can be easily converted into a multiplication of two matrices by

unrolling all the involved convolution operations. Highly optimized GEMM kernels

cuBLAS (Nvidia, 2020) can be invoked to compute matrix multiplications. This is a more

suitable job for GPU; also, matrix multiplication is the default method in Caffe (Jia, et al.,

2014). Recently, cuDNN (Nvidia, 2020) adopted a GEMM-like method that users could

easily use.

6.3 Parallel Computing Performance Model

In this section, we demonstrate our performance model by representing the CNN

problem on a distributed GPU system. There are three types of features for the input set

in our model. They are hardware characteristics include both training side GPUs and host

side CPUs; the CNN architecture includes each type of layer and communication network

such as GPU cluster architecture. The algorithm for performance estimate is based on the

training time of CNN on multiple GPU, the model analyzes the CNN architecture layer

by layer and gets the number of forward and backward propagations through statistic

counters. Then the algorithm collects the characteristic parameters of GPUs in the cluster

and the instruction model of the GPU execution. With that information, the execution

time of each layer can be predicted. After collecting each layer execution time, the total

execution time is the sum of each layer execution time. in the transmission model, we

have considered both the parameter server model and the NCCL model. The calculation

of transfer time depends on the transmission model. Finally, the iteration time of a CNN

is obtained according to the computation time and transmission time.

92

Table 6-1: Computation notations.

Name Description

𝑡𝑡𝑜𝑡𝑎𝑙 One iteration time of CNNs training

𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 Time of forward propagation

𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 Time of backward propagation

𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Time of parameter update

𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙 Forward execution time of layer l

𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙 Backward execution time of layer l

𝑡𝑘𝑒𝑟𝑛𝑒𝑙
𝑖 Execution time of CUDA kernel function

𝐶𝑘𝑒𝑟𝑛𝑒𝑙
𝑖 Number of GPU clock cycles required by kernel function

I Number of global memory load instructions in one block iteration

M Number of shared memory instructions in one block iteration

L Number of CP instructions in one block iteration

K Number of global memory store instructions in one block iteration

6.3.1 Time of One Training Iteration

According to the CNN training processing algorithm, we define 𝑡𝑡𝑜𝑡𝑎𝑙 as one

iteration time of training from the first layer to the last layer, and the formula can be

described as Eq.6-1 which is derived from Eq.5-9 in the abstract model for building a

parallel performance model.

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑟 + 𝑡𝑒𝑥𝑒 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Eq. 6-1

In this case, we combine the time of loading data and the time of loading

instructions to loading time. 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔.

 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑟 Eq. 6-2

The execution time could be divided to forward passing time and backward

passing time.

 𝑡𝑒𝑥𝑒 = 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 Eq. 6-3

So, the new iteration time is shown as the following equation.

93

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Eq. 6-4

Before computing, the training data must be sent to GPU from memory or storage, and

the data transfer time equals to 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔. The update time 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 include computation

time of parameters update and transformation time of data passing between each device.

The detailed calculation process will be explained in 6.3.3. We split the CNN network

into multiple layers and count each layer's processing time one by one. After getting the

last layer processing time, we add all processing time together to get the forward time or

backward time. We can get the calculation formulas of forward and backward time by

adding the time of each layer as shown in Eq. 6-5 and Eq. 6-6.

 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = ∑ 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙

𝑁

𝑙=1

 Eq. 6-5

and

 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = ∑ 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙

𝑁

𝑙=1

 Eq. 6-6

In the CNN training processing, most of the computation of training is the matrix

operation between vectors which could be parallelly executed on GPU, and that

operations are well-optimized by the CUDA library like cuDNN. In each layer, the

operations are executed by the CUDA kernel. For each CUDA kernel, the processing

time can be estimated by the performance model. Therefore, according to the basic

operation process and calculation order of matrix multiplication in CUDA, we regard the

computation task as a serial execution process of multiple CUDA kernel functions, which

can be expressed as follows, where M is the numbers of kernels.

94

 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙 = ∑ 𝑡𝐾𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑖

𝑀

𝑖=1

 Eq. 6-7

and

 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙 = ∑ 𝑡𝐾𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑖

𝑀

𝑖=1

 Eq. 6-8

6.3.2 GPU Instruction Queue Model

 In the abstract parallel model, we simplify the execution of kernel function into

four steps: namely, loading data from the global memory, loading instructions from the

shared memory, instruction execution, and collecting the results data and storing it to the

global memory. Correspondingly, we define four types of abstract instructions to

represent the four steps as we mentioned in 5.3.2; they are Global Load, Shared Load,

instruction execution, and Global Store. The number of these instructions is dependent on

warps and limited by the specification of hardware, such as the block size and shared

memory size. In this performance model, we assume that the hardware resources of GPU

have maximum utilization, there are no data conflicts in the transfer process, also all the

instruction passing touch the top bandwidth of the memory (Nvidia, 2019). Therefore, we

convert the execution time of a kernel to the count of operations. The time of each

instruction required depends on the performance of the target GPU. The Execution time

of the CUDA kernel function can be obtained as Eq. 6-9.

 𝑡𝑘𝑒𝑟𝑛𝑒𝑙
𝑖 = 𝐶𝑘𝑒𝑟𝑛𝑒𝑙

𝑖 × 𝑡𝐺𝑐𝑙𝑜𝑐𝑘 Eq. 6-9

In the actual work, there are different instructions, such as memory instruction

and computation instruction. Memory instruction need to access the local memory or

shared memory while computation instruction needs the computing core to execute the

95

instructions. Our GPU instruction queue model considers two conditions: memory-

intensive and computation-intensive. The memory-intensive means that the number of

memory load instructions is much larger than the number of computing operations, and

Figure 6-4 shows the general execution pipeline of the streaming multiprocessors.

Figure 6-4: Memory intensive queue model. There are I Global Load instructions, M

Shared Load instructions, L CP instructions, and K Global Store instructions in each

block iteration.

In the kernel, all the instructions are executed by the warps, and multiple warps

are executed in the blocks, the blocks executed in the same SM at the same time. The

iteration end until all warps be executed in the block. The number of clock cycles and the

GPU performance can be found in the GPU document. In this scenario, computing

instructions are completely overlapped by Shared Load instructions as shown in Figure

6-5. The number of clock cycles used in the execution of a block is equal to the sum of

the other instructions. Eq. 6-10 shows the computation process of the queue execution

time.

 𝐶𝑘𝑒𝑟𝑛𝑒𝑙 = 𝐶𝑏 × 𝑁𝑏𝑙𝑜𝑐𝑘 + 𝐿𝐺𝐿 Eq. 6-10

96

Furthermore, the computation-intensive model means that the number of

computing instructions is much larger than memory load instructions. Multiple

computation instructions can be executed in parallel to take advantage of multiple SM

units in the GPU. As shown in Figure 6-5, computing instructions can overlap the Shared

Load instructions.

Figure 6-5: Computation intensive queue model. There are I Global Load

instructions, M Shared Load instructions, L CP instructions, and K Global Store

instructions in each block iteration.

In this situation, the number of computing instructions decides the block

execution time. The computing instructions are executed by the SP unit. The transmission

instructions time is decided by the speed of load store units. The coverage ability of

computing instructions is limited by hardware conditions.

 𝐶𝑘 = 𝐶𝑏 × 𝑁𝑏𝑙𝑜𝑐𝑘 + 𝐿𝐺𝑆 Eq. 6-11

97

6.4 Experiments and Evaluation

In this section, we evaluate our performance modeling concerning the scalability

of the CNN on a distributed GPUs system. We focus on the image classification task

where CNN is most successfully applied and very computationally intensive. The input

of the model is a set of characteristic parameters including CNN layer information, GPU

hardware characteristics, and network structure performance, as shown in Table 6-2. To

verify the accuracy of our model, we compare the estimated results with the actual

runtime of the target CNNs model. We first use CIFAR-10 (Karpathy, 2011) to train the

Alexnet and Resnet-50 network and ensure the accuracy of two CNNs close to the results

in the original paper, and then we generate random numbers of the same size as the

dataset in the same environment to get the real CNN runtime. After 10 rounds of hot start,

the average time of 20 iterations is used as the result. The experimental platform is Intel

I9 CPU model 9900K 3.60 GHz, Ubuntu 16.04.1, python 3.5.2, tensorflow-gpu 1.8.0,

CUDA 9.0, cuDNN 7.1.4, NVIDIA GTX 1080 Ti, and GTX 1080.

98

Table 6-2: Inputs parameters.

Description Source

Layer type CNN architecture

Input feature map (height, width) CNN architecture

Output feature map CNN architecture

Filter (height, width) CNN architecture

Batch size CNN architecture

GPU version Hardware feature

Calculate ability Hardware feature

Number of CUDA core Hardware feature

Memory bandwidth Hardware feature

CPU frequency Hardware feature

Transmission model (PS/NCCL) Network feature

Number of GPU Network feature

Network bandwidth Network feature

6.4.1 Layer Time Evaluation

We choose Alexnet and Resnet-50 to be the examples to evaluate the training

time. Figure 6-6 and Figure 6-7 reflect the estimated time and runtime of each layer. In

Alexnet, our model found that conv1 is the main bottleneck of the whole network. The

reason for the issue is the filter size of conv1 is 11*11, the big size filter needs a large

amount of calculation in the input layer. In the real world, to improve the performance of

training processing. Researchers try to use a smaller filter that reduces the computing

requirements and increases the performance efficiency. We find out that the estimated

results of the model do not always follow the actual results. The reason for that is that in

the actual execution when the matrix dimensions increase, the execution performance

does not increase linearly. In the model, we only consider convolution, pooling, and full

connected, which are the critical and most time-consuming parts of CNN.

99

Figure 6-6: Comparison of runtime prediction for each layer in Alexnet (batch size

256).

Figure 6-7: Comparison of runtime prediction for each layer in Resnet-50 (batch size

256).

100

6.4.2 Transmission Time Evaluation

Multi-GPU execution mode in TensorFlow is one of the most important cases and

our performance model supports such a model. To fully use the performance of the GPU

cluster and eliminate other interference, we use data parallelism to train Resnet-50 on

NVIDIA GTX 1080 Ti and GTX 1080. According to the differences in transmission

methods, we compare iteration times in the PS mode and the NCCL mode, respectively,

as shown in Table 6-3 and Table 6-4.

Table 6-3: Resnet-50 data parallel comparison between actual runtime and model

prediction in the PS mode.

PS mode Runtime(s) prediction(s)

GPU Total Total

GTX 1080 1.72458 1.68548

GTX 1080 Ti 1.64589 1.62549

GTX 1080 GTX 1080 Ti 0.92458 0.90158

Table 6-4: Resnet-50 data parallel comparison between actual runtime and model

prediction in the NCCL mode.

NCCL mode Runtime(s) prediction(s)

GPU Total Total

GTX 1080 1.73458 1.65489

GTX 1080 Ti 1.65489 1.63258

GTX 1080 GTX 1080 Ti 0.94589 0.92158

Compared with PS mode, NCCL has better performance on the transmission

bandwidth. It needs more GPUs’ computing resources, which could impact

computational efficiency. Comparing the predicted result of our performance model will

help users make decisions to pick a suitable transmission mode, especially when using

TensorFlow. Our experiment employs two different GPU cards, and the results did not

101

show too much improvement due to the system bottleneck is the GTX 1080. In this

experiment, we choose data parallelism, which runs the same model on both cards. From

our observation, GTX 1080 processing performance is slower than GTX 1080 Ti, perhaps

because GTX 1080 has less memory size than GTX 1080 Ti.

6.5 Conclusion

In this chapter, we demonstrated our analytical performance model to predict the

CNN's training time on a distributed GPU system. We constructed a GPU instruction

queue model and transmission model, which ultimately will help AI researchers make the

right decision to run their application effectively, such as the CNN training process from

multiple perspectives. We verified our model on two different NVIDIA GPU cards and

two CNN architectures. The training time includes both layer processing and network

communication. Our results suggested that the accuracy of our model is up to 95.37%.

In addition, our model also had a decent performance prediction in multi-GPU.

Finally, we showed that our abstract models and framework can fit more types of CNN

architectures without too many changes. In the future, we will explore different classes of

Deep learning architectures and parallel computing problems.

102

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The past decade has witnessed significant advancement in the performance of

multicore and manycore processors, especially the general-purpose GPUs. With the rapid

growth of computing cores in these highly parallel platforms and increasingly complex

system architectures, comprehensive understanding of performance and efficient

utilization of performance in heterogeneous systems becomes a serious challenge,

especially in how to program, schedule, and allocate resources, e.g., registers, caches, and

thousands of computing cores and threads. These ever-changing application requirements

and various kinds of hardware co-processors and connectivity become normal. Effective

analytical performance modeling even becomes a paramount important skill set for

programmers. A framework for building the parallel computing abstraction models and

analytical performance model guides users who want to represent their application logic

and analyze performance outcomes for various systems quickly.

7.1 Conclusions

This dissertation started with motivation and current issues. In chapter 2, we gave

an overall background of the GPU and related topics. Chapter 3 proposed our novel

analytic performance model with the GPU block size estimation, in which the first model

considered the effective block size on performance. Our model revealed the GPU

103

performance characteristics by analyzing hardware device characteristics, memory

allocating, thread block organization, memory latency hiding, memory characteristic of

memory hierarchies, coalesced memory, data reuse rate, and memory accessing pattern.

The analytical GPU performance model can potentially identify bottlenecks without

running the actual program. Using a suitable block size for GPU applications, users can

improve the application performance with ease. Chapter 4 presented a novel method

aiming to alleviate some limitations of GPU applications. We proposed the dynamic

partition of the SMs for each kernel based on the computational throughput estimated by

GPU performance modeling. Our result showed an increase in performance without any

changes.

In the second part of this dissertation, we focused on a general parallel computing

and distributed system analytical model. In chapter 5, we presented two parallel

computing abstract models. These models represented program logic and algorithmic

steps and simplify the workload distribution behaviors. An extension to Flynn’s

taxonomy was proposed to support heterogeneous systems with communication time

consideration. Chapter 6 illustrated a demonstration of our proposed modeling techniques

with real-world application on a distributed GPU system. The analytical performance

model for the CNN application analyzed performance characteristics on multiple GPUs,

enabling users to evaluate their techniques before running applications on targeted

machines/architecture.

104

7.2 Future Work

We hope that the GPU performance model can be applied to future GPU

hardware. The performance model can also be extended to support other multiple and

many-core processors in the future, like the artificial intelligence accelerator processor.

105

BIBLIOGRAPHY

Alexandrov, A., Ionescu, M. F., Schauser, K. E. & Scheiman, C., 1995, July. LogGP:

incorporating long messages into the LogP model—one step closer towards a realistic

model for parallel computation. In Proceedings of the seventh annual ACM symposium

on Parallel algorithms and architectures, pp. 95-105.

Amdahl, G. M., 1967, April. Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint

computer conference, pp. 483-485.

Anderson, R. J. & Miller, G. L., 1990. A simple randomized parallel algorithm for list-

ranking. Information Processing Letters, 33(5), pp. 269-273.

Awatramani, M., Zambreno, J. & Rover, D., 2013, October. Increasing gpu throughput

using kernel interleaved thread block scheduling. In 2013 IEEE 31st International

Conference on Computer Design (ICCD), pp. 503-506.

Baghsorkhi, S. S. et al., 2010, January. An adaptive performance modeling tool for GPU

architectures. In Proceedings of the 15th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pp. 105-114.

Bauer, M., Cook, H. & Khailany, B., 2011, November. CudaDMA: Optimizing GPU

Memory Bandwidth via Warp Specialization. In Proceedings of 2011 international

conference for high performance computing, networking, storage and analysis, pp. 1-11.

Che, S. et al., 2009, October. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In 2009 IEEE international symposium on workload characterization

(IISWC), pp. 44-54.

Che, S., Sheaffer, J. W. & Skadron, K., 2011, November. Dymaxion: Optimizing

Memory Access Patterns for Heterogeneous Systems. In Proceedings of 2011

international conference for high performance computing, networking, storage and

analysis, pp. 1-11.

Cui, H. et al., 2016, April. GeePS: Scalable deep learning on distributed GPUs with a

GPU-specialized parameter server. In Proceedings of the Eleventh European Conference

on Computer Systems, pp. 1-16.

106

Culler, D. et al., 1993, July. LogP: Towards a Realistic Model of Parallel Computation.

In Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of

parallel programming, pp. 1-12.

Danalis, A. et al., 2010, March. The Scalable HeterOgeneous Computing (SHOC)

Benchmark Suite. In Proceedings of the 3rd Workshop on General-Purpose Computation

on Graphics Processing Units, pp. 63-74.

Flynn, M. J., 1972. Some computer organizations and their effectiveness. IEEE

transactions on computers, 100(9), pp. 948-960.

Gregg, C. & Hazelwood, K., 2011, April. Where is the data? Why you cannot debate

CPU vs. GPU performance without the answer. In (IEEE ISPASS) IEEE International

Symposium on Performance Analysis of Systems and Software, pp. 134-144.

Guevara, M., Gregg, C., Hazelwood, K. & Skadron, K., 2009, September. Enabling Task

Parallelism in the CUDA Scheduler. In Workshop on Programming Models for Emerging

Architectures, Volume 9.

Gustafson, J. L., 1988. Reevaluating Amdahl's law. Communications of the ACM, 31(5),

pp. 532-533.

Han, H. & Tseng, C. W., 2006. Exploiting Locality for Irregular Scientific Codes. IEEE

Transactions on Parallel and Distributed Systems, 17(7), pp. 606-618.

Han, S. et al., 2017, February. ESE: Efficient Speech Recognition Engine with Sparse

LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 75-84.

He, K., Zhang, X., Ren, S. & Sun, J., 2016. Deep Residual Learning for Image

Recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pp. 770-778.

Helman, D. R. & JáJá, J., 1999, January. Designing Practical Efficient Algorithms for

Symmetric Multiprocessors. In Workshop on Algorithm Engineering and

Experimentation, pp. 37-56.

Hong, S. & Kim, H., 2009, June. An Analytical Model for a GPU Architecture with

Memory-level and Thread-level Parallelism Awareness. In Proceedings of the 36th

annual international symposium on Computer architecture, pp. 152-163.

ILSVRC, 2020. ImageNet Large Scale Visual Recognition Challenge (ILSVRC). [Online]

Available at: http://www.image-net.org/challenges/LSVRC/

Jang, B., Schaa, D., Mistry, P. & Kaeli, D., 2010. Exploiting Memory Access Patterns to

Improve Memory Performance in Data Parallel Architectures. IEEE Transactions on

Parallel and Distributed Systems, 22(1), pp. 105-118.

107

Jia, W., Shaw, K. A. & Martonosi, M., 2012, June. Characterizing and improving the use

of demand-fetched caches in GPUs. In Proceedings of the 26th ACM international

conference on Supercomputing, pp. 15-24.

Jia, Y. et al., 2014. Caffe: Convolutional architecture for fast feature embedding. In

Proceedings of the 22nd ACM international conference on Multimedia, pp. 675--678.

Karpathy, A., 2011. Lessons learned from manually classifying CIFAR-10. [Online]

Available at: http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/

Kayıran, O., Jog, A., Kandemir, M. T. & Das, C. R., 2013, September. Neither more nor

less: Optimizing thread-level parallelism for GPGPUs. In Proceedings of the 22nd

international conference on Parallel architectures and compilation techniques, pp. 157-

166.

Khokhar, A. A., Prasanna, V. K., Shaaban, M. E. & Wang, C. L., 1993. Heterogeneous

Computing: challenges and opprtunities. Computer, 26(6), pp. 18-27.

Krizhevsky, A., Sutskever, I. & Hinton, G. E., 2012. ImageNet Classification with Deep

Convolutional Neural Networks. Advances in neural information processing systems,

Volume 25, pp. 1097-1105.

Kumar, V. & Rao, V. N., 1987. Parallel depth first search. part II. analysis. International

Journal of Parallel Programming, 16(6), pp. 501-519.

LeCun, Y., Bengio, Y. & Hinton, G., 2015. Deep learning. Nature, 521(7553), pp. 436-

444.

LeCun, Y. et al., 1989. Backpropagation applied to handwritten zip code recognition.

Neural computation, 1(4), pp. 541-551.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P., 1998. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), pp. 2278-2324.

Luehr, N., 2016. Fast Multi-GPU collectives with NCCL. [Online]

Available at: https://developer.nvidia.com/blog/author/nluehr/

Mei, X. & Chu, X., 2016. Dissecting GPU memory hierarchy through

microbenchmarking. IEEE Transactions on Parallel and Distributed Systems, 28(1), pp.

72-86.

Mittal, S. & Vetter, J. S., 2015. A Survey of CPU-GPU Heterogeneous Computing

Techniques. ACM Computing Surveys (CSUR), 47(4), pp. 1-35.

Nussbaumer, H. J., 1981. The Fast Fourier Transform. In Fast Fourier Transform and

Convolution Algorithms, pp. 80-111.

108

Nvidia, 2019. CUDA Toolkit Documentation. [Online]

Available at: https://docs.nvidia.com/cuda/

Nvidia, 2020. CUBLAS. [Online]

Available at: https://developer.nvidia.com/cublas

Nvidia, 2020. NVIDIA CUDNN Documentation. [Online]

Available at: https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

Pai, S., Thazhuthaveetil, M. J. & Ramaswamy, G., 2013. Improving GPGPU concurrency

with elastic kernels. ACM SIGARCH Computer Architecture News, 41(1), pp. 407-418.

PASCAL, 2020. The PASCAL Visual Object Classes Homepage. [Online]

Available at: http://host.robots.ox.ac.uk/pascal/VOC/

Ranade, A., 1998. An introduction to parallel computation. Resonance, 3(1), pp. 47-60.

Sergeev, A. & Del Balso, M., 2018. Horovod: fast and easy distributed deep learning in

TensorFlow. arXiv preprint arXiv:1802.05799.

Simonyan, K. & Zisserman, A., 2014. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W. & Jia, Y., 2015. Going Deeper with Convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 1-9.

TOP500, 2020. Top 500 Supercomputing Sites. [Online]

Available at: https://www.top500.org/lists/top500/2020/11/

Winograd, S., 1980. Arithmetic complexity of computations. Siam, Volume 33.

Wu, B. et al., 2015, June. Enabling and Exploiting Flexible Task Assignment on GPU

through SM-Centric Program Transformations. In Proceedings of the 29th ACM on

International Conference on Supercomputing, pp. 119-130.

Wu, Y. et al., 2016. ‘Google’s neural machine translation system: Bridging the gap

between human and machine translation. arXiv preprint arXiv:1609.08144.

Xiao, S. & Feng, W. C., 2010, April. Inter-block GPU communication via fast barrier

synchronization. In 2010 IEEE International Symposium on Parallel & Distributed

Processing (IPDPS), pp. 1-12.

Zhang, Y., Cohen, J. & Owens, J. D., 2010. Fast tridiagonal solvers on the GPU. ACM

Sigplan Notices, 45(5), pp. 127-136.

Zhang, Y. & Owens, J. D., 2011, February. A quantitative performance analysis model

for GPU architectures. In 2011 IEEE 17th international symposium on high performance

computer architecture, pp. 382-393.

