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ABSTRACT 

During the past decades, High-Performance Computing (HPC) has been widely 

used in various industries. In particular, the exponential growth of GPU (graphics 

processing unit) is a key technology that has helped promoting the development of 

artificial intelligence in real-world use cases. When we use GPU to accelerate parallel 

applications, its programmability, resource management, and scheduling are non-trivial 

jobs to obtain optimized performance. Therefore, how to effectively exploit GPU 

resources and improve program performance has been a hot research topic recently. 

Benchmark does not always provide a good picture of the performance and details 

of the parallel applications. The various kinds of hardware devices and the constantly 

updated parallel programs make the performance analysis and modeling even more 

difficult.   

In this dissertation, there are four main contributions. First, we conduct a study on 

the GPU analytical performance model, which aims to estimate the suitable number of 

threads per block for performance improvement. 

Second, a novel method to elevate the limitation of GPU is proposed. This 

method offers a new way for optimization on GPU performance at the block schedule 

level. 

Third, we propose two parallel computing abstract models, namely, the 

computational and programming models that represent various computing paradigms 
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based on Flynn’s taxonomy and simplify the workload distribution characteristics. This 

framework provides a general way to create an analytical performance model. 

Finally, we validate our proposed abstract models and demonstrate their 

usefulness with real-world applications in AI (Artificial Intelligence) on a distributed 

GPU system. The analytical performance model for CNN (Convolutional Neural 

Network) application analyzes performance characteristics on multiple GPUs, enabling 

users to evaluate their techniques before running applications on targeted machines. 
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CHAPTER 1 

 

INTRODUCTION 
 

High Performance Computing (HPC) has become increasingly indispensable and 

a main driving force for technology advancements. HPC has played significant roles in 

many scientific discoveries and engineering product design and development. Recently, 

the HPC gives a significant boost to Artificial Intelligence (AI) with the explosion of 

parallel computing performance such as GPU. Most of the supercomputers in the 

top500.org (TOP500, 2020) are equipped with GPUs as a co-processors. Thus, to obtain 

maximum efficiency from the computing systems equipped with GPU, a parallel 

application such as AI, performance analysis in the heterogeneous system is explored in 

this work. 

1.1 Overview of GPU 

GPUs have been employed for parallel computing for a decade, known as 

General-Purpose computation on GPU (GPGPU). For some applications, GPU can 

process hundreds of times faster than CPU counterpart. Researchers have attempted to 

harness the massive data parallelism with GPGPU to accelerate grand challenges in both 

scientific discovery and product advancements.  

Typically, GPU is considered as a co-processor of the CPU in heterogeneous 

computing. The data which must be prepared on the host (CPU) is transferred and 
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executed on the computing device such as GPU and the results are sent back to the host 

side. A round trip of data between CPU-GPU is the main concern to obtain an overall 

good performance. In the larger scale HPC, applications are scaled out to multiple nodes 

in a distributed fashion. Not only the data round trip is a major concern but also the 

communication overhead among the nodes is important. Thus, the communication among 

nodes in the distributed system is influential as data transfer between host and device. As 

we know, the GPU execution model is Single Instruction Multi-Threading or SIMT. How 

programmers assign parallel tasks to GPU hardware is another crucial factor worth 

studying. 

1.2 GPU Performance Model 

In recent years, many researchers and developers have exploited the advancement 

of GPU for their applications and computational tasks. However, parallel computing is 

not a non-trivial job to obtain well-tuned performance in a short period for those who 

have little experience and a deep understanding of GPU and its optimization techniques. 

CUDA is NVIDIA runtime and tool for their GPU product. It provides a relatively user-

friendly and flexible environment for programmers to develop their GPU applications. It 

is important to understand the GPU architecture, the CUDA programming paradigm, 

thread hierarchy, memory architecture, and various optimization mechanisms to obtain 

good performance. That is a challenge for most programmers and scientists who do not 

have too much GPU background and understanding.  

A GPU performance model can help programmers and developers gain a deeper 

understanding of their applications on the targeted machine. Therefore, performance 

modeling becomes a vital foundation for further optimization. 
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1.3 GPU Optimization 

In the previous section, we discussed performance factors in the CPU-GPU 

environment. Well-matching task assignment, communication, and memory access 

patterns with underlying architecture need to be optimized and fully utilized. A GPU 

scheduler usually controls tasks and groups of threads scheduling. On the CPU side, 

system APIs control the thread scheduling. Thousands of GPU threads need to be 

scheduled for their execution. However, the current GPU runtime does not allow 

programmers to have direct control for the thread block scheduling. This limitation 

hampers the way to optimize GPU programs, especially on the block level.  

1.4 Analytical Model for Parallel Applications on a Distributed System 

With performance enhancement on recent hardware, especially the GPUs, 

machine learning and deep learning applications have made revolutionary progress. 

Performance prediction becomes a burning desire of the parallel computing users to fine-

tune their applications and to achieve more efficiency. Fortunately, analytical models are 

widely studied and employed to describe application performance characteristics. More 

and more analytical performance models have been recently developed for complex 

parallel applications such as a deep neural network (DNN). with multi-layers processed 

on a heterogeneous system, the parallel computing analytical performance model can be 

quite complex. Moreover, with the complex parallel systems, various hardware, and 

software components, it is challenging to develop an accurate analytical performance 

model for general hardware architecture and software logic. Furthermore, parallel 

computing architecture and programming paradigms continue to evolve. A minor change 
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in the architecture, interconnection network, or parallel algorithm may require extensive 

work to adapt to the change.  

The successful analytical performance model must endure and adapt to these 

conditions. Therefore, a robust framework is a vital requirement as an enabling parallel 

computing tool and must be flexible to model users’ logic on ever-changing targeted 

hardware while predicting accurate performance.  

A framework for building the parallel computing abstraction models and 

analytical performance models are good guidance amid myriad variations. 

1.5 Dissertation Contributions 

The follows are the main contributions of this dissertation: 

1.5.1 Block Size Estimation 

We propose the GPU analytical performance model, which firstly considers the 

number of threads per block and estimates the suitable number of threads per block for 

performance improvement. The technique can be extended for other multithreaded 

parallel computing systems. 

1.5.2 GPU Dynamic Partitioning  

We present a novel method to elevate the limitation of GPU, which only allows 

one kernel to be executed in the device simultaneously. Our work offers a new way for 

optimization on GPU performance at the block schedule level. 

1.5.3 General Parallel Computing Framework for Performance Analytical Model 

we present two parallel computing abstract models. The models represent various 

computing paradigms based on Flynn’s taxonomy and simplify the workload distribution 
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characteristics. An extension to Flynn’s taxonomy is proposed to support heterogeneous 

systems and consider communication overhead. 

1.5.4 Performance Model for CNN on a Distributed System 

We present a comprehensive performance analysis model and demonstrate real-

world applications that can predict performance and understand bottlenecks for CNN on 

GPU. Meanwhile, we analyze performance aspects for CNN on multiple GPUs, which 

will help users evaluate their techniques before running on targeted 

machines/architecture. 

1.6 Outline of Dissertation 

Chapter 1 gives an overview, motivation and current issues of this research work. 

Chapter 2 provides an overall background of the GPU and related topics. Chapter 3 

presents our study on the performance model for GPU. Chapter 4 discusses our dynamic 

partition GPU optimization method. Chapter 5 presents a framework for building parallel 

computing abstraction models and an analytical model. Chapter 6 illustrates a 

demonstration of our proposed modeling techniques on a distributed GPU system. 

Chapter 7 concludes our research and recommends some future works.
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CHAPTER 2 

 

BACKGROUND 
 

In this chapter, background narratives will provide some ideas. We present some 

background knowledge on modern GPU architecture and parallel computing concepts, as 

well as deep learning and related performance issues. We describe the GPU in three 

aspects: the GPU machine model (hardware architecture), the GPU execution model 

(thread hierarchy and mapping tasks to hardware), and the GPU programming model 

(kernel configuration and threads scheduling). We also introduce the parallel computing 

and distributed system for Deep Learning Convolutional Neural Network. 

2.1 GPU Architecture 

2.1.1 Machine Model 

Typical GPU hardware consists of multiple Streaming Multiprocessors (SMs) 

(Nvidia, 2019) that share the L2 cache and DRAM controller through a cross the network 

on chip (NoC). The SMs are the core part of the GPU architecture, and they execute all 

vertex/geometry/pixel fragment shader programs and GPU programs. 

The SM has multiple scalar processor cores (SPs) and two other functional units - 

the double precision unit (DPU) for double precision (DP) floating-point computation and 

the special function-function unit (SFU) for handling a priori functions and texture 

acquisition interpolation. Other components such as register files (RF), load storage units 
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(LSU), scratchpad memory (i.e., shared memory), and various caches (e.g., instruction 

cache, constant cache, and texture/read-only cache, L1 cache) on-chip data. 

2.1.2 Execution Model  

The GPU execution model is in data parallelism. We introduce the Single-

Instruction-Multiple-Threads (SIMT) execution model and the thread hierarchy mapping 

of GPUs in this subsection.  

Single-Instruction-Multiple-Threads (SIMT) 

The GPU execution model is Single Instruction Multi-Threading or SIMT that is 

evolved from Single Instruction Multiple Data (SIMD) and is from the classical Flynn’s 

taxonomy (Flynn, 1972). A kernel is a function that runs on the GPU side of 

heterogeneous computing (CPU+GPU) and contains thousands of concurrent lightweight 

GPU threads that are mainly divided into multiple thread blocks or collaborative thread 

arrays (CTAs). When the kernel is started, its CTAs are assigned to the SM. Depending 

on the available SM on-chip resources (e.g., registers and shared memory), it is possible 

to schedule multiple CTAs to the same SM. These resources are equally distributed 

among the concurrent CTAs of the SM. 

 



8 

 

Figure 2-1: GPU thread hierarchy mapping to hardware architecture. 

 

Thread Hierarchy Mapping 

Figure 2-1 shows the mapping from the CUDA thread hierarchy to the GPU 

hardware architecture. It shows that (1) thread instructions are mapped to SP or SFU or 

DPU (in warp), (2) thread blocks or CTAs are mapped to SM, and (3) thread grids are 

mapped to GPU devices. Global memory, constant memory, and texture memory are 

shared among all threads in the grid while accessing shared memory is only available for 

threads in the same CTA. Register files and local memory are only available for the 

thread. 

2.1.3 Programming Model 

CUDA (Nvidia, 2019) is a language extension to C/C++ that allows programmers 

to define GPU subroutine or kernel functions. As discussed previously, the kernel is the 

function that runs on the GPU with massive parallel GPU threads. The way to specify the 

number of threads to execute the kernel is via the <<<...>>> configuration notation. As 

shown in Figure 2-2, which is a simple multiplication for 2D matrices, <<<Grid_Dim, 

CTA_Dim >>> implies that a kernel has a grid configuration defined by Grid_Dim and 

a CTA_Dim. 
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Figure 2-2: Simple GPU kernel. 

2.2 Parallel Computing and Distributed System for Deep Learning 

2.2.1 Deep Learning 

Deep neural networks (LeCun, et al., 2015) are machine learning techniques that 

are good at discovering relevant structures in data in an unsupervised manner. Therefore, 

it is widely used in computer vision, speech analysis, and natural language processing. 

The data structure information is stored in a distributed fashion. The model's information 

is distributed in different layers of the neural network, and the model information 

(weights) is distributed in different neurons. There are many ways to combine 

information into a layer distributed over different neurons and there are many ways to 

combine information across layers to minimize the loss function. 

2.2.2 Parallel Computing and Distributed System 

In classical neural networks, there are millions of parameters involved in defining 

the model and a large amount of data is required to train these parameters. These are 

computational-intensive processing that requires fast computing and networking 

capability. In the past, it typically takes a long time to train a deep neural network. 

Sometimes the dataset is too large to be stored on a single machine. Therefore, parallel 

computing and the distributed system are suitable solutions to improve training efficiency 

in recent years. 
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Parallel computing has made a tremendous impact on many areas during the past 

decades. With the recent development and advancement of GPU hardware, parallel 

computing becomes the most important tool for accelerating computational performance 

from simulations for scientific and engineering to artificial intelligence. Deep learning 

algorithms like CNN (LeCun, et al., 1989) get an enormous benefit from GPU parallel 

computing. Because the distributed system has a deeper neural network and bigger data 

set it has proved to be beneficial to processing grand, challenging tasks. 

2.2.3 Convolutional Neural Networks 

The training process of Convolutional Neural Networks (CNN) (LeCun, et al., 

1989) is a typical feed-forward neural network. The basic structure of CNN consists of an 

input layer, a convolution layer, a pooling layer, a fully connected layer, and an output 

layer. Generally speaking, the convolutional layer and the pooling layer will be set 

alternately. The convolutional layer is the central part of CNN. In the convolutional layer, 

each neuron of the same feature map applies the same weight to the input data. The result 

of convolution is organized into a set of two-dimensional feature maps. All neurons in the 

feature map also use the same weight, which is called shared weight. The neurons in each 

layer are connected to the previous layer portion of the area. The purpose of using the 

pooling layer after the convolutional layer is to reduce the spatial size of the feature map 

while controlling the overfitting problem. 

Let us take Lenet-5 (LeCun, et al., 1998) as a typical example to illustrate the 

architecture of CNNs. As shown in Figure 2-3, Lenet-5 is stacked by convolutional layer, 

pooling layer, and two fully connected layers. The input images are sent to the input layer 
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and then go through all convolutional and pooling layers. Finally, get to the full 

connection layer. 

 

Figure 2-3: LeNet-5 architectures. 
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CHAPTER 3 

 

ANALYTICAL GPU PERFORMANCE MODELS WITH BLOCK 

SIZE ESTIMATION 
 

3.1 Introduction 

During the past decades, HPC has played significant roles in many scientific 

discoveries and engineering product design and development. Its applicability ranges 

from mathematics, high-energy physics, biology, financial oil exploration, and recently, 

by the advantage of GPU computing in Deep Learning and AI applications. All these 

fields have one thing in common: massive parallel computation requirements. In recent 

years, GPUs have become one of the most successful parallel computing devices. 

Meanwhile, many programmers and developers are chasing the advancement of GPU for 

their applications and computational tasks. Especially, parallel computing powered by 

Nvidia GPU (Nvidia, 2019) is not a trivia job to obtain well-tuned performance in a short 

period for those who do not have too much experience and a deep understanding of 

CUDA GPU and its optimization techniques. CUDA relatively gives a more user-friendly 

and flexible environment for programmers than other parallel computing models. To 

squeeze the last drop of GPU performance, programmers and researchers have left no 

stone unturned to obtain improved GPU program performance. However, their 

expectation is always too optimistic. To understand the architecture and the behavior of 

the GPU, they need to get into the GPU genuinely, such as the CUDA programming 

paradigm, thread hierarchy, memory architecture, and various optimization mechanisms. 



13 

That is a big challenge for most programmers and scientists who do not have too much 

GPU background. 

Before sending kernel functions to GPU, programmers need to figure out the 

number of threads per block and how many blocks to join the execution. The different 

number of threads per block can vary application performance. The main reason is related 

to GPU hardware resource management and the number of physical GPU cores. How to 

pick the right number of threads per block in a given application is a common issue for 

GPU users. To solve this problem and estimate the GPU execution time, we propose an 

analytical GPU performance model. It considers the GPU hardware specification, 

memory & instruction requirement, and the number of threads per block. The model can 

identify the application bottleneck and provide suggestions for optimization options like 

the number of threads per block for programmers to improve their applications without 

changing the code.  

Our GPU performance model consists of three stages. First is a GPU hardware 

model showing all hardware specifications and limitations. Second is a memory and 

instruction requirements model, which analyzes the program code to get memory and 

instruction requirements. Third is a kernel execution time model to show the total 

execution time of GPU computing. 

Our performance model has considered the most important factors in GPU 

computing. Figure 3-1 shows an overview of our performance model workflow. First, we 

apply the parameters collector to get the parameters we need in the performance model. 

In the program code it includes thread and grid dimension, memory usage in the program, 

loops and branches, shared memory references, a data structure, memory requirement, 
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and algorithm branch divergence. In the targeted hardware, it includes device 

characteristics, such as the number of shared memory registers and global memory, 

memory bandwidth, and the number of bank; this information can be obtained from the 

device specification sheet or system function in CUDA. Our performance model can 

estimate the quantified performance and the right number of block sizes. These factors 

have represented most behavior of GPU computing. With the quantified result, 

programmers and developers can determine which factor affects performance most and 

figure out which parts of the program have potential improvement. With the right number 

of threads per block, programmers can improve their program performance without other 

changes. 

 

Figure 3-1: Overview of our analytical GPU performance model workflow. 

In this chapter, we demonstrate the process of GPU performance quantitative 

analysis which helps programmers and developers understand the behavior of GPU 
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computing. By analyzing most essential factors of GPU computing, our models enable 

programmers and developers to figure out the bottleneck of their program and possibly 

improve the program with miminal code change.  

The following are our contributions. 

1. We propose the analytical GPU performance model, which firstly considers the 

number of threads per block. This can be easily extended to other parallel computing 

systems. 

2. The analytical GPU performance model estimates the right number of threads 

per block for best performance. Programmers and developers can use such information to 

improve their application performance without any other changes. 

3. Our model reveals the GPU computational behavior by analyzing hardware 

device characteristics, memory allocating, thread block organization, memory latency 

hiding, memory characteristic of memory hierarchies, coalesced memory, data reuse rate, 

and memory accessing pattern.  

4. The analytical GPU performance model can potentially identify the program 

performance bottleneck without running the actual program on GPU.  

This chapter is organized as follows. In Section 3-2, we discuss the related work. 

Section 3-3 introduces the GPU architecture and CUDA programming background. In 3-

4, we describe the analytical GPU performance model. Section 3-5 verifies our model 

with the most representative experiments in the real world. Finally, we conclude in 

section 3-6. 
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3.2 Related Work 

In recent years, there are some research and development in an analytical 

performance model for GPU kernel execution time estimation. For instance, Hong and 

Kim (Hong & Kim, 2009, June) introduced Memory Warp Parallelism (MWP) and 

Computation Warp Parallelism (CWP), and also showed the memory latency hiding 

mechanism. By finding the maximum number of memory warps to estimate the kernel 

execution time, Zhang and Owens (Zhang & Owens, 2011, February) have created a 

microbenchmark based performance model that considers performance from instruction 

pipeline, shared memory access, and global memory access. Baghsorkhi (Baghsorkhi, et 

al., 2010, January)  analyzed each GPU kernel and discovered the bottlenecks by multiple 

benchmarks. These models help programmers estimate the execution time of the 

applications by analyzing the GPU kernel. Though those models can potentially point out 

the bottlenecks, programmers still need suitable optimization methods to improve the 

application performance. Moreover, the model requires many parameter inputs, and some 

of the parameters can only be obtained during the runtime. That imposes a big challenge 

for the programmers to evaluate their program without implementing it. 

In an early GPU optimization work, researchers used numerous threads and set 

many threads to be executed at the same time to make GPU core busy by hiding the 

memory latency. Activating many threads at the same time is the most recommended way 

to improve the CUDA application performance. Many researchers presented threads 

scheduling, warp scheduling, even block scheduler techniques toward performance 

improvement. Kayıran (Kayıran, et al., 2013, September) employed the increased number 

of GPU cores which are on busy by allocating an optimal number of cooperative thread 
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arrays, the number of core cycles during which the pipeline is not stalled, and the number 

of core cycles during which all the warps are waiting for their data. All the optimization 

methods for the thread are making GPU core busy. All these methods must collect the 

application runtime information, like the number of idle GPU cores, on-chip memory 

usage, etc. This requires a plugin application or monitoring tool to get such information. 

The collector itself needs computing resources and it is not easy to be operated by users. 

In GPU computing, there can be many data transfers between GPU and CPU by 

the limitation of the memory bandwidth and the data does not always fit into GPU 

memory (Bauer, et al., 2011, November), the data transfer time contributes significantly 

when compared to the entire execution time (Hong & Kim, 2009, June). Many 

researchers presented methods about using the on-chip memory to reduce bandwidth 

usage and increase data reuse rate. For example, Baghsorkhi (Baghsorkhi, et al., 2010, 

January) by the tightly coupled specialized DMA warps to improve the bandwidth usage 

and reduce the data transfer time. Some designed several data mapping/memory 

management algorithms to improve memory access efficiency (Jang, et al., 2010). These 

memory optimization techniques focused on using the on-chip memory to increase the 

data transfer speed. They just provided a way to optimize GPU applications, and it is still 

too difficult for programmers without much GPU background to improve their 

applications. 

 Most early works did not consider the size of the block and the size of the grid. 

They only used some factors which had huge effects on performance. Our research has 

studied how the block size affects application performance, also exposes the relationship 

between block size and other relevant factors. 
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We introduce a GPU performance model with block size estimation, which has 

considered the most important GPU behaviors, especially the number of threads per 

block. It discloses that the number of threads per block plays a critical role in resource 

distribution. Our model suggests programmers and developers the right number of 

threads per block to improve their application based on the given device configuration 

and application information. 

3.3 Background 

GPU architecture and CUDA programming model have been released in a few 

generations in the past decade. In this work, we focus on the three different generations 

of GPU devices and conduct experiments with CUDA 7.5. Studying benchmarks on 

various devices on the same platform can help us gain insight and also prove that our 

performance model can be effective and applied to other NVidia GPU devices. 

3.3.1 CUDA Programming Model 

NVIDIA introduced the CUDA, which is a general-purpose parallel computing 

platform for GPU in 2006 (Nvidia, 2019). CUDA programming model extends ANSI-C 

with a few keywords and constructs. It allows programmers and researchers to use high-

level languages to build parallel programs, such as C or C++. It provides a user-friendly 

platform to take advantage of GPU with familiar programming languages. To construct a 

GPU kernel, a developer decomposes a parallel for loop into a grid of coordinated thread 

blocks. A block consists of coordinated scalar threads, and the threads with adjacent 

coordinates are implicitly grouped into a warp. During GPU execution, a thread block is 

mapped to an SM, and one SM can execute multiple thread blocks. A scheduler can 

synchronize threads in the same thread block with low overhead. 
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In heterogeneous computing, we call the CPU the host side. It generates the data 

and instructions. We call the GPU a coprocessor side where GPU takes the instructions 

and data from the CPU. We call kernel as a group of GPU instructions. During claiming 

kernel, programmers have to program functions and the block size. That means they 

should set how many threads are in a block and how many blocks be executed 

simultaneously. In this study, we have considered several factors that affect GPU 

performance. Figure 3-2 shows a CUDA sample code that includes two values being set 

by programmers, i.e., the number of blocks per grid and the number of threads per block.  

 

Figure 3-2: CUDA sample code. 

3.3.2 Threads and Blocks Scheduling 

In the CUDA environment, threads in the same block can communicate and share 

data. A kernel consists of a grid executed by SMs and a streaming multiprocessor (SM) 

executes the block. 

A GPU is comprised of groups of processors called SMs. Each SM can execute 

multiple blocks concurrently (Xiao & Feng, 2010, April). As illustrated in Figure 3-3, 

the scheduler assigns the blocks to the streaming multiprocessor. Still, there is a restricted 

number of resident blocks per streaming multiprocessor, which means some of the blocks 

need to wait until there are enough resources for new blocks. Programmers should ensure 
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that the kernel uses an appropriate number of threads per block to get better performance. 

Using CUDA cores and GPU on-chip resources effectively is one method to improve 

application performance. Hiding memory access latency is another way to reduce 

computing resource overhead. More details will be introduced in section 3.4. SM can 

execute multiple blocks at the same time. The standby blocks will get into the SM when 

there are enough resources available for them. As shown in Figure 3-3, there is no 

specific order for standby blocks. 

 

Figure 3-3: Streaming multiprocessor working rule. 

 When the block is assigned to SM, SM starts to execute a group of threads in the 

same block. A warp is the basic unit of the NVIDIA GPU scheduling. It is also the 

smallest executable unit in the CUDA code. Each warp is executed in single instruction 

multiple data (SIMD) or data parallelism, which means all threads in the same warp must 

be implemented with the same instruction simultaneously. 

3.4 Analytical GPU Performance Modeling 

This section presents three analytical models: GPU hardware model, GPU 

memory and instruction requirement model, and performance prediction model. These 
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three models are a pillar of our GPU analytical performance model. In the next section, 

we describe the model notations, limitations and show how to derive them.  

3.4.1 Modeling GPU Hardware Specification 

The CUDA general-purpose parallel computing platform provides three crucial 

abstractions: threads hierarchy, memory hierarchy, and barrier synchronization 

mechanism. These enable developers to understand performance factors and to improve 

hardware resource usage. Those abstractions may affect GPU computing performance. 

This section introduces the hardware model, which includes GPU hardware architecture 

such as threads hierarchy and memory hierarchy. Furthermore, we will put all the 

parameters from the aforementioned areas together to analyze the relationship between 

the number of threads per block and the program's performance. 

There is a special structure composed of multiple groups of threads and multiple 

types of memory in the GPU. Each task is executed by a thread, and the task data stored 

in GPU memory, which is passed from CPU memory. The performance depends on the 

utilization of the hardware, like the number of parallel execution and the memory 

throughput. As such, thread hierarchy and memory hierarchy will be introduced and 

analyzed to obtain hardware performance characteristics. 

Threads Hierarchy 

GPU stream processor executes the kernel with multi-threads which are grouped 

by warp (Nvidia, 2019). In GPU computing, the warp is the basic unit in GPU 

scheduling. To maximize parallelism and increase the number of threads executed in the 

GPU processor, the programmers need to understand the thread hierarchy of each target 

GPU device with respect to their application. There are three layers for the threads. A 
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group of threads constitutes a block. The threads can be identified by three-dimensional 

within a block. For convenience, The CUDA programming uses threadIdx (Nvidia, 2019) 

to locate each thread position. Groups of blocks assemble into a grid. The thread 

hierarchy of GPU exhibits the three layers of the GPU threads. CUDA programs are then 

compiled and run on the GPU. GPU tasks are mapped to threads, and the scheduler will 

decide how to execute those threads in SM. That is how the warp threads and blocks are 

assigned to the stream processor and scheduled for execution in the processing cores. To 

get the best possible performance in a given CUDA program, the programmers need to 

understand GPU hardware features to configure the right size of a thread block.  

In GPU computing, the execution configuration allows programmers to set the 

thread numbers and hierarchy for the kernel launch. This means how many threads are in 

each block and how many blocks are in the grid. There are three layers of threads in the 

GPU. The threads and blocks can be one, two, or three-dimensional. A user program can 

access thread position by the four built-in parameters: threadIdx, blockIdx, blockDim, and 

gridDim. The programmers need to understand the limitations of the target hardware to 

configure threads and their hierarchy for their applications. Next, we will discuss the 

limitations of a number of threads in a block and grid. 

Table 3-1 shows parameters in the thread hierarchy. In the GPU thread 

architecture, each level has a limitation of the thread size, block size, and warp size. It 

depends on the capability of the GPU device for thread management, warps, blocks, and 

grids. However, each generation of NIVIDA GPU has different technical specifications. 

Before we compile the program on the targeted GPU, we need to figure out the feature of 

the GPU and understand the technical specifications. 
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Table 3-1: Parameters of GPU thread hierarchy (obtained by cudaGetDeviceProperties 

(struct cudaDeviceProp * prop, int device) function in CUDA SDK). 

parameter Description Obtained 

𝑁𝑇𝐵 Number of threads per block Program 

𝑁𝐵𝑆 Number of blocks per streaming multiprocessor Hardware 

𝑁𝐴𝑊 Number of Warps active in the SM Hardware 

𝑁𝑊 Warp size Hardware 

𝑁𝑊𝐵 Number of warps per block Hardware 

𝑁𝑀𝑇𝑆 Maximum number of resident threads per streaming multiprocessor Hardware 

𝑁𝑀𝑇𝐵 Maximum number of threads per block Hardware 

𝑁𝑀𝐵𝑆 Maximum number of resident blocks per streaming multiprocessor Hardware 

𝑁𝑀𝑊𝑆 Maximum number of resident warps per streaming multiprocessor Hardware 

𝑁𝑆𝑀 Number of SM in GPU device Hardware 
 

Relevant Characteristics and Limitation of Threads Hierarchy 

In the GPU thread hierarchy model, each level has several constraints concerning 

the number of threads. 𝑁𝑇𝐵 is the number of threads per block. 𝑁𝑇𝐵 will be specified in 

the CUDA function by the programmer, as shown in figure 3-1. After CUDA 2.0 version, 

the maximum number of threads per block is 1024. However, it was only 512 before 

CUDA 2.0. If a programmer specifies the number of threads per block larger than the 

maximum number of threads per block, the GPU runtime will report a warning and 

reduce the number of threads per block to satisfy the aforementioned limitation. 𝑁𝑀𝑇𝐵 is 

the maximum number of threads per block. The number of threads per block that we set 

for the program must be equal to or less than the maximum number of threads per block 

as shown in Eq. 3-1. 

 𝑁𝑇𝐵 ≤ 𝑁𝑀𝑇𝐵 Eq. 3-1 

In the block level, 𝑁𝑀𝐵𝑆 is the maximum number of resident blocks per streaming 

multiprocessor and 𝑁𝑀𝑇𝑆 is the maximum number of resident threads per streaming 

multiprocessor. By the same token, the total number of resident threads in streaming 

multiprocessor must also be equal to or less than the maximum number of threads per 
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streaming multiprocessor, as shown in Eq 3-2. In addition, the number of blocks per 

streaming multiprocessor 𝑁𝐵𝑆 must be equal to or smaller than the maximum number of 

resident blocks per streaming multiprocessor as shown in Eq 3-3. 

 𝑁𝑀𝑇𝑆 ≥ 𝑁𝑇𝐵 × 𝑁𝐵𝑆 Eq. 3-2 

and 

 𝑁𝑀𝐵𝑆 ≥ 𝑁𝐵𝑆 Eq. 3-3 

A block of threads is executed in a streaming multiprocessor and organized into 

groups of parallel threads. Each group has 32 threads, and the group is called a “warp” 

(Nvidia, 2019). For example, in one block, there are 128 threads. The threads are grouped 

in 4 warps. With the CUDA rules, only a limited number of warps can be assigned for the 

streaming multiprocessor simultaneously, and we call them active warps. 𝑁𝑀𝑊𝑆 is the 

maximum number of resident warps per streaming multiprocessor, and 𝑁𝑊is the size of 

the warp, means how many threads are in each warp. To get full utilization of the 

hardware, programmers typically specify multiples of 32 to be the number of threads per 

block. The maximum number of threads per streaming multiprocessor is equal to the 

maximum number of resident warps per streaming multiprocessor multiplied by warp 

size, as shown in Eq. 3-4. 

 𝑁𝑀𝑇𝑆 = 𝑁𝑊 × 𝑁𝑀𝑊𝑆 Eq. 3-4 

According to the memory latency hiding mechanism, when one or more warps are 

waiting for the memory request, the warp scheduler will assign the other warps to a 

streaming multiprocessor processor. Once the waiting warps are ready, the warp 

scheduler will put those warps in the queue. Here, 𝑁𝑊𝐵 is the number of warps per block. 

The number of active threads in the block 𝑁𝐴𝑇 can be derived by Eq. 3-5. 
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 𝑁𝐴𝑇 = 𝑁𝑊 × 𝑁𝑊𝐵 Eq. 3-5 

Memory Hierarchy 

There are multiple memory types in the GPU memory model, such as shared 

memory, register, global memory, constant memory, and texture memory. These memory 

properties are described in CUDA documentation (Nvidia, 2019). Table 3-2 lists the 

parameters of the memory hierarchy. GPU performance depends on how threads in the 

block access memory. Different GPU devices and releases have different memory sizes, 

and perhaps each memory type may also have different memory latency. Programmers 

must understand the GPU memory model for further optimization. 

Table 3-2: Parameters of GPU memory hierarchy (we can get parameters by 

cudaGetDeviceProperties (struct cudaDeviceProp * prop, int device) function in CUDA 

SDK). 

Symbol Parameter Obtained 

MMSM The maximum amount of shared memory per streaming multiprocessor Hardware 

MMSB The maximum amount of shared memory per thread block Hardware 

MTS Amount of shared memory required by each thread Program 

MBS Amount of shared memory required by each block Program 

RMRM Maximum number of 32-bit registers per streaming multiprocessor Hardware 

RMRB Maximum number of 32-bit registers per thread block Hardware 

RMRT Maximum number of 32-bit registers per thread Hardware 

RRT Number of 32-bit registers required by each thread Hardware 

RRB Number of 32-bit registers required by each block Hardware 
 

Global memory is a kind of memory that threads on different blocks can exchange 

data. It involves the DRAM and L1 L2, which impose high latency on accessing. Global 

memory is only used to store automatic variables and the compiler will use the global 

memory when there is no more on-chip space to store the variable. Usually, the large 

structures or arrays are placed in global memory. GPU devices typically have a large 

global memory size. 
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When all threads in the same block share data, the shared memory is available to 

all threads in the same block. The global memory access operation will reduce GPU 

efficiency. To alleviate this potential issue, setting the right number of threads per block 

according to the memory size will help improve memory access efficiency. 

Relevant Characteristics and Limitation of Memory Hierarchy 

𝑀𝑀𝑆𝑀 is the maximum amount of shared memory per streaming multiprocessor, 

and 𝑀𝑀𝑆𝐵 is the maximum amount of shared memory per thread block. From code 

analysis, we can find out the amount of shared memory required by each thread. Here, we 

define 𝑀𝑇𝑆 be the amount of shared memory required by each thread. When each thread 

resource requirement exceeds the GPU device's limitation, the CUDA compiler will 

automatically reduce the number of active blocks in the streaming multiprocessor. In the 

following equations, we can find that the number of threads per block depends on the 

amount of shared memory required by each thread and the limitation of shared memory 

usage. 

 𝑀𝐵𝑆 ≥ 𝑀𝑇𝑆 Eq. 3-6 

 𝑀𝑀𝑆𝐵 ≥ 𝑀𝐵𝑆 Eq. 3-7 

 𝑀𝑀𝑆𝑀 ≥ 𝑀𝐵𝑆 Eq. 3-8 

 𝑀𝑀𝑆𝑀 ≥ 𝑁𝐵𝑆 × 𝑀𝐵𝑆 Eq. 3-9 

 𝑁𝑇𝐵 ≤
𝑀𝑀𝑆𝐵

𝑀𝑇𝑆
 Eq. 3-10 

Typically, the GPU register has the same latency as shared memory and 

occasionally is lower than the shared memory. In the GPU memory hierarchy, we can 

also get the register information from CUDA GetDeviceProperties found in the CUDA 

SDK (Nvidia, 2019). Here 𝑅𝑀𝑅𝑀 is the number of 32-bit registers per streaming 
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multiprocessor, 𝑅𝑀𝑅𝑇 and 𝑅𝑀𝑅𝐵 are the maximum number of 32-bit registers per thread 

and the maximum number of 32-bit registers thread blocks, respectively. 𝑅𝑅𝑇 is the 

number of 32-bit registers required by each thread. The number of threads per block can 

also be estimated by the register information, as shown in the following equations. 

 𝑅𝑅𝑇 ≤ 𝑅𝑅𝐵 Eq. 3-11 

 𝑅𝑅𝐵 ≤ 𝑅𝑀𝑅𝐵 Eq. 3-12 

 𝑅𝑅𝐵 = 𝑁𝑇𝐵 × 𝑅𝑅𝑇 Eq. 3-13 

 𝑅𝑀𝑅𝑀 ≥ 𝑁𝐵𝑆 × 𝑅𝑅𝐵 Eq. 3-14 

 𝑁𝑇𝐵 ≤
𝑅𝑀𝑅𝐵

𝑅𝑅𝑇
 Eq. 3-15 

3.4.2 Modeling GPU Memory and Instructions Requirement 

In each CUDA program, the memory and the number of instructions requirements 

depend on the algorithm. The hardware resources involve the memory space and 

processor units. For compute-intensive applications, the programs require much more 

computing resources. In a compute-intensive program, maximizing the utility of 

streaming multiprocessor processors will help increase GPU performance. On the other 

hand, in memory-intensive applications, there are a lot of memory transfer operations. 

Reducing memory latency is the most effective optimization method to increase program 

performance. In this part, we focus on the program algorithm and memory latency hiding 

method. 

Memory Requirement & Number of Instructions 

During the CUDA compiler compiles the CUDA code, the compiler generates 

intermediate assembler level instruction, the NVidia PTX (Nvidia, 2019) translates the 
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instruction one by one with the binary microinstructions later on. In this part, we use the 

number of PTX instructions to count the number of instructions in the CUDA program. 

The memory requirement includes the memory transfer operations such as read, 

write, also the size of needed space. For each thread, the instruction shows the memory 

size and operation requirement. We collect those parameters information from code 

analysis.  

The programmers specify the number of threads per block in the CUDA kernel, so 

the size memory requirement is proportional to the number of instructions. With the right 

size of thread per block for each program, GPU hardware resources are efficiently used 

by programmers. Because the number of instructions per thread is related to how much 

data are transferred among memories. 

3.4.3 Modeling Execution Performance  

In GPU computing, the execution time includes two parts. One is the kernel 

execution time, and another is memory accessing time. In most conditions, memory 

access takes up half of the whole execution time (Gregg & Hazelwood, 2011, April). The 

memory accessing model is also as crucial as the kernel execution model, which could 

not be ignored. In this part, we present the analytical model for GPU performance time, 

including hardware resources and different memory access patterns. 

Enough Warps to Cover Memory Latency 

When there are enough active warps to be executed, the latency of accessing 

memory can be overlapped, as shown in Figure 3-4. We assume that all the warps have 

the same computing time 𝑇𝑀 and memory accessing time 𝑇𝐶. When the product of the 

number of warps times and the warp execution time is larger than warp memory 
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accessing time as shown by Eq. 3-16, the GPU streaming processing core could keep 

running all the time. The active number of warps can be obtained by Eq. 3-17. The 

number of wraps is equal to the quotient of the total active threads and warp size. 

 𝑁𝑊 × 𝑇𝐶 ≥ 𝑇𝑀 Eq. 3-16 

and 

 𝑁𝑤 =
𝑁𝑇𝐵 × 𝑁𝐵𝑆

𝑤
 Eq. 3-17 

 

Figure 3-4: Enough warps to cover memory latency. 

The total kernel execution time 𝑇𝐸𝑥𝑒 consisted of total memory accessing time 

𝑇𝑀𝑒𝑚 and total kernel computation time 𝑇𝐶𝑜𝑚, 𝑇𝐸𝑥𝑒 can be represented by Eq. 3-18 

 𝑇𝐸𝑥𝑒  =  𝑇𝑀𝑒𝑚 + 𝑇𝐶𝑜𝑚 Eq. 3-18 

The total memory accessing time is the sum of all memory accessing time. Here, 

we assume that all memory accessing times are the same. The whole computational time 

also depends on the GPU device feature and the computational clock cycles. Therefore, 

the 𝑇𝑀𝑒𝑚and 𝑇𝐶𝑜𝑚 are shown as Eq. 3-19 and Eq. 3-20. 

 𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑒𝑚𝑖

𝑛

𝑖=1

 Eq. 3-19 

and 
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 𝑇𝐶𝑜𝑚  =  ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛

𝑖=1

 Eq. 3-20 

With enough warps in the SM, the latency time can be covered, as shown in 

Figure 3-4. The total kernel execution time is the last uncovered memory accessing time 

and the kernel execution time. Therefore, the total execution time is the product of the 

number of groups of the block assigned to GPU and the total computational time and last 

memory access time. The number of groups of blocks assigned to GPU is related the 𝑁𝐶𝐵, 

the total number of blocks that need to be executed in the kernel. 𝑁𝑆𝑀 is the number of 

SM in the GPU, we can get 𝑁𝑆𝑀 from GPU hardware feature. And the 𝑁𝐴𝐵 is active 

blocks in each SM. 𝑁𝐺𝑂𝐵 is the number of block groups assigned to GPU, it can be 

obtained by the following Eq. 3-21. 

 𝑁𝐺𝑂𝐵 =
𝑁𝐶𝐵

𝑁𝐴𝐵𝑁𝑆𝑀
 Eq. 3-21 

Therefore, when the memory accessing time is covered by enough warps, the total 

execution time 𝑇𝐸𝑥𝑒 can be obtained by the following Eq. 3-22. 

 𝑇𝐸𝑥𝑒 = (𝑇𝑀𝑒𝑚𝑛
+ ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛

𝑖=1

) ×
𝑁𝐶𝐵

𝑁𝐴𝐵𝑁𝑆𝑀
 Eq. 3-22 

Not Enough Warps to Cover Memory Latency 

When there are not enough warps to be executed by the SM in GPU computing, 

the memory accessing latency cannot be covered. We assume that all the warps have the 

same computing time 𝑇𝐶 and memory accessing time 𝑇𝑀. When the number of warps is 

smaller than the quotient of the memory accessing time and the warp execution time, the 

memory accessing time cannot be covered, as shown in Figure 3-5. 
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Figure 3-5: Not Enough warps to cover memory latency. 

In this condition, the total kernel execution time includes the memory accessing 

time between two instructions, warp execution time, and the last memory accessing time. 

The total execution time can be obtained as the following Eq. 3-23. 

     𝑇𝐸𝑥𝑒 = [(𝑇𝐶1 + ((∑ 𝑇𝑀𝑒𝑚𝑖
𝑛
𝑖=1 + ∑ 𝑇𝐶𝑜𝑚𝑖

𝑛
𝑖=1 )

𝑁𝑇𝐵×𝑁𝐴𝐵

𝑁𝑆𝑤×𝑁𝑊
⁄  )] ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀
   

Eq. 3-23 

Compute-Intensive & Memory-Intensive Applications 

In the CUDA program, programmers like using more threads to cover the 

memory latency. Although programmers gain performance on some applications, the 

results are always not as good as expected. We propose compute-intensive & memory-

intensive applications for performance model building. Using numerous threads to 

increase parallelization, the SM processor gets busy, and the CUDA application’s 

performance gets better. We call this kind of application compute intensive. Oppositely, 

in memory-intensive applications, Using numerous threads to increase parallelization 

may reduce the GPU performance because multiple threads access the memory at the 

same time. To identify the type of applications: compute-intensive, memory-intensive or 

other, we present the processor active time rate. It represents the utilization of an SM 

processor. In our model, when the processor active time rate is higher than 60%, the 
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application will be categorized as a compute-intensive application. When the processor's 

active time rate is less than 20%, the application will be categorized as a memory-

intensive application. For the compute-intensive application, the number of parallel 

threads should be increased. For the memory-intensive application, the data reuse rate 

should be increased, and the number of parallel threads should be reduced. 

Memory Accessing Analysis 

The access latency of the GPU global memory is very high compared to shared 

memory latency. The global memory latency can be as high as 400-800 clock cycles (Mei 

& Chu, 2016) per access. The CUDA program's memory usage will help dissect the 

memory requirement. Other factors also affect memory access efficiency. For example, in 

global memory accessing, memory coalescing is a significant influencing factor. For 

global memory accessing of a half-warp, if certain conditions are satisfied, the memory 

transactions can coalesce into one or two transactions (Jia, et al., 2012, June). The 

required conditions depend on the GPU hardware and computing capabilities of CUDA. 

If threads of one half-warp access adjacent memory elements, that is the memory 

coalescing. However, If the coalesced conditions cannot be satisfied, more memory 

transactions are needed, and performance will be reduced due to more memory accessing 

time. 

By the code analysis, we can figure out the memory coalescing rate. We count the 

number of warp requests and recognize each request by hand. We set N𝑈𝑛𝑐𝑜 to be the 

number of un-coalescing memory requests and set N𝐶𝑜 to be the number of coalescing 

memory requests. Each request rate is shown as following equations. 



33 

 𝑅𝑈𝑛𝑐𝑜 =
 𝑁𝑈𝑛𝑐𝑜

𝑁𝐶𝑜 +  𝑁𝑈𝑛𝑐𝑜
 Eq. 3-24 

and 

 𝑅𝑐𝑜 =
 𝑁𝐶𝑜

 𝑁𝐶𝑜 + 𝑁𝑈𝑛𝑐𝑜
 Eq. 3-25 

With the memory accessing rate, we can get the memory accessing time more 

accurately. Therefore, the memory accessing time with the memory type is shown as Eq. 

3-26. 

 

𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑢𝑛𝑐𝑛

𝑛

1

×
 𝑆𝑆ℎ𝑎

𝑆𝐵𝑢𝑓
×

 𝑁𝑈𝑛𝑐𝑜

𝑁𝐶𝑜 +  𝑁𝑈𝑛𝑐𝑜
∑ 𝑇𝑀𝑢𝑛𝑐𝑚

𝑚

1

×
 𝑆𝑆ℎ𝑎

𝑆𝐵𝑢𝑓
×

 𝑁𝐶𝑜

 𝑁𝐶𝑜 +  𝑁𝑈𝑛𝑐𝑜
 

Eq. 3-26 

3.5 Experimental and Result 

In this section, we introduce the hardware for the experiment and the benchmark 

used in this experiment. 

3.5.1 Experimental Setup 

We evaluate our performance model on three generations of GPU with five 

representative real-world GPU micro-benchmarks. The three GPUs are Tesla C2050, 

GTX650, and GTX970. Each specification of the GPUs is shown in table 3-3. 
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Table 3-3: Specification of target GPU. 

Model C2050 GTX650 GTX970 

Streaming Multiprocessors 14 2 13 

Processor Cores 448 384 1664 

Processor Clock 1147MHz 1110.5MHz 1050MHz 

Memory size 2G 2GB 4GB 

Computing version 2.0 3.0 5.2 
 

With a suitable number of threads per block, the program will get better 

performance compared with the real kernel execution time which is measured by using 

cudaEvenRecord to record the data transfer start and kernel end. The total execution time 

is the sum of the kernel execution time and the data transfer time which are gained from 

cudaEvenRecord. We run our five benchmarks on a three-generation GPU, respectively. 

We run all benchmarks twenty times for the different number of threads per block on 

each GPU. The final real-time of GPU processing represents the arithmetic means of 

twenty times execution. 

3.5.2 Benchmarks 

To verify our performance model can predict a suitable number of threads per 

block in GPU computing. We use six representative benchmarks in the real world to 

verify that our performance model can predict a suitable number of threads per block in 

GPU computing. The shared memory and register requirement by each thread is obtained 

manually. The program algorithm gets the number of instructions in each thread. The 

memory accessing pattern has coalesced and un-coalesced. We estimate the rate of each 

accessing type by code analysis. The rest of the hardware and program features can be 

gained from the information collector. 
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1. Matrix multiplication is a known benchmark for parallel computing. Here we 

use naïve Matrix multiplication and optimization with tiled Matrix multiplication as a test 

program to verify our model. The naïve matrix multiplication is taken from the NVidia 

CUDA sample without any optimization. Another matrix multiplication uses tile to 

increase the utilization of the shared memory. This algorithm will reduce the time to 

access global memory because of the data loaded from global memory. The change in 

shared memory requirement will affect the number of threads. Our experiment will run 

the benchmarks with a various number of threads per block. 

2. Tridiagonal solver is tridiagonal linear systems (Zhang, et al., 2010) which are 

crucial systems to solve many problems in numerical analysis and computational fluid 

dynamics. The cyclic reduction is a popular parallel algorithm that can take advantage of 

GPU to solve the tridiagonal linear system. Tridiagonal Solver for Linear equations is 

critical for many scientific and engineering problems and real-time or interactive 

applications in graphics processing, video games, and 3D films. The applications of 

tridiagonal solvers include alternating direction implicit (ADI) methods, spectral Poisson 

solvers, cubic spline approximations, numerical ocean models, semi-coarsening for multi-

grid solvers, and preconditioners for iterative linear solvers.  

3. List ranking is one of the fundamental operations with applications to several 

problems. List ranking does not work well in sequential computing. The difficulty of 

using list ranking in parallel computing is recognized early by Ranade (Ranade, 1998). 

Using various techniques, several algorithms to solve this difficulty are proposed later on 

(Anderson & Miller, 1990). In this case, we focus on the local ranking aspect by 

Hellman- JáJá algorithm (Helman & JáJá, 1999, January). 
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4. LU decomposition, here we use LUD briefly. In numerical analysis and linear 

algebra, the lower upper factorization is used to solve a square system of linear problems. 

In the LUD, there is a loop in the kernel and the loop will access shared memory 

frequently. The shared memory utilization and the limitation will affect the execution 

result. Because most memory accessing is from shared memory, the memory latency will 

be covered. 

5. Hotspot (Che, et al., 2009, October), it is a widely used differential equations 

algorithm for simulating processor temperature. The average temperature values of the 

microarchitecture’s mapping area are represented by the output cell in the grid. In a 3×3 

neighbor grid element, one can find the center element’s temperature value. 

3.5.3 Results 

Figure 3-6, 7, 8 show the estimated execution time of our performance model and 

the measured execution time on the three different NVidia GPU cards. For each 

benchmark, we use 64 to 1024 threads per block to execute some programs. From the 

results, we have found that compared to others，the performance is better in some 

special block sizes such as 256, 512, and 128. 

From the results in the following figures, we prove that using the default setting to 

run a CUDA program on the NVidia GPU does not always get the best performance, 

even though naïve matrix multiplication using default block size 256 can get the best 

performance on both generations GPU. After we run the matrix multiplication with 

optimization, the results from GTX 650 and GTX 970 show that the performance with 

block size 512 is better than the performance with block size 256. This situation also 

happens in List ranking. When we use GTX 970 with block size 320, block 512 can get 
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the same performance as block 256. In the GTX 650 when block size 128, the 

performance is better than others. 

 Even though when we run benchmarks on different NVidia GPU cards, the 

results have some disparity. Our performance model still works well for estimating the 

best block size for each program. 

 

Figure 3-6: The execution of each benchmark on Tesla M2050. 

 

Figure 3-7: The execution of each benchmark on NVidia GTX650. 
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Figure 3-8: The execution of each benchmark on NVidia GTX970. 

3.6 Conclusion 

This chapter proposed a GPU performance model with the block size estimation, 

which analyzed the most important factors in GPU computing and considered the most 

critical cases. Our model revealed GPU computational behavior by analyzing hardware 

device characteristics, memory allocation, thread block organization, memory latency 

hiding, memory characteristics, memory hierarchy, coalesced memory, data reuse rate. 

Our model clarified the relationship between the number of threads per block and other 

factors. We validated our GPU performance model with six representative real-world 

GPU programs. The results showed that our model yielded good accuracy in performance 

estimation and verified that the right block size setting can help improve the execution 

efficiency of the application. Moreover, choosing the right block size was a new way to 

reduce the execution time of an application without editing any code. When we used our 

model to analyze GPU programs, our model can predict time-consuming parts and 

bottlenecks of the program and potentially optimize parts of the program. Last, using our 
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model to analyze applications and estimate the correct number of threads per block will 

help programmers and developers quickly enhance their programs. 
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CHAPTER 4 

 

DYNAMIC PARTITION GPU MECHANISM FOR CUDA 

PROGRAM PERFORMANCE ACCELERATION 
 

4.1 Introduction 

In recent years, we have witnessed the increasing popularity of Graphics 

Processing Units (GPUs) for general-purpose computing, thanks to the large number of 

parallelisms provided by GPUs and their cost-effectiveness. With hundreds of processing 

cores equipped, the GPU can render thousands of threads for parallel applications. 

Numerous parallelisms produce not only huge potential throughput but also imposes 

grand challenges for thread management or scheduling. 

It is essential for well-matching communication and memory access patterns with 

underlying architecture to use the parallelism fully. Task scheduling is usually controlled 

by a scheduler in the GPU. On the CPU, the thread scheduling is controlled by system 

APIs. However, on the GPU side, there is no such API; the scheduling on GPU has been 

implemented through hardware and some proprietary mechanism. a large amount of 

threads need to be scheduled in a short time. However, the current GPU does not allow 

programmers to schedule the thread blocks. This limitation hampers the way to optimize 

GPU programs, especially on the block level. 

Applications on GPUs and GPU/CPU heterogeneous systems are typically written 

in a combination of data & task-parallelism manners that allow the runtime system to 
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handle the device and task scheduling. Traditionally, the programmer provides the largest 

possible task to load to the GPU, and generally speaking, the larger the tasks are, the 

better it will perform on the GPU. While large tasks usually provide a better performance, 

there are two situations where this may not be the case. First, the tasks could not fully use 

the GPU computing resources, which means some of the cores or on-chip memory are 

idle. Such tasks have limited scalability on the GPU. In this case, if a task could be 

scheduled on a smaller set of GPU SMs rather than the whole GPU, and let another task 

be executed on the rest of GPU SMs at the same time, the GPU utilization and efficiency 

would be higher. Second, applications can only issue or process a large task, which 

means some precedence rules limit the task-level parallelism, like processing multiple 

small tasks at the same time. 

In our work, we overcome both thread scheduling and task scheduling by 

enabling more than one task executed on the GPU simultaneously. We achieve this by 

partitioning the GPU processing unit, called SMs into multiple segments and forcing each 

task to be performed on the specific SMs subset. With this approach, we can control the 

tasks on the block level and task level to allow multiple tasks to run on the GPU at the 

same time. By using the GPU performance model, we can estimate and dynamically set 

the GPU SMs subset depending on the application kernel execution time and the 

scalability of each task. 

We evaluate our approach with real-world benchmarks. For comparison, we have 

implemented three scenarios in our experiment. All three cases are run on three different 

GPU cards. As a result, the demonstration shows that a potential performance in the GPU 



42 

application benefits from performing the high parallelism tasks and increasing GPU 

efficiency. 

The following are the main contributions of our works. 

1. We present a novel method to eliminate the limitation of GPU, which only 

allows one kernel to be executed in the device simultaneously. Our work offers a new 

way for optimization of GPU performance at the block schedule level. 

2. We employ GPU performance modeling to estimate kernel computational 

throughput. 

3. We dynamically partition the SMs for each kernel based on the kernel 

computational throughput. 

4. A demonstration shows GPU's application performance by our technique up 

improved to 10% without any change in the algorithm.  

The rest of this chapter is organized as follows. Section 4-2 introduces the 

background of GPU characteristics and block scheduling. Section 4-3 reviews some 

related works. Sections 4-4 and 4-5 present the dynamic partition method for GPU. 

Section 4-6 details a demonstrative experiment to verify our model with multiple 

benchmarks on three different GPU devices. Section 4-7 is the conclusion of this work. 

4.2 Background 

4.2.1 GPU Tasks Scheduling  

In the current situation, CUDA API does not provide a mechanism to interrupt a 

kernel that has already started execution. Lacking the manual scheduling mechanism 

limits the traditional resource scheduling model to access GPUs, because GPU resources 
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cannot be accessed in the same way as the CPU. GPU runtime keeps kernels ready in a 

release queue and processes them on a first-come, first-served basis. 

When CPU processes try to start a kernel, if a kernel is already running on the 

GPU, other kernels in the queue will be blocked until the first kernel finishes. The wait 

time for a kernel call is also affected by how many kernels are in the queue. The longer 

the queue, the greater the wait time for the CPU thread waiting for the result. 

Concurrent execution of kernels on single GPUs was first supported by NVIDIA 

Fermi GPUs. The left-over policy is used on Fermi GPUs, which allows scheduling 

concurrent kernels only if the required number of computing units is available. NVIDIA's 

Kepler GPUs achieve concurrent execution of kernels using Hyper-Q technology 

(Nvidia, 2019), which employs multiple hardware queues to avoid false dependencies 

between computations. In this work, we partition the GPU processing units as multiple 

tasks to be executed simultaneously. 

4.2.2 Dynamic Partition Mechanism Workflow 

Our dynamic partition mechanism separates SMs in GPU into multiple parts by 

choosing the SMs to execute a kernel. For the rest of SMs, it allows another kernel to run 

on them. Our workflow is shown in Figure 4-1. First, we will collect most of the 

parameters that consist of hardware and application characteristics. It includes the 

limitation of the thread, block, memory, register in GPU device, the data structure, loop 

function, data transformation, number, and kernel algorithm. We apply these parameters 

to our GPU performance model to estimate kernel computational complexity. With each 

kernel's complexity, we calculate the current GPU's execution time that aims to reduce 

the possibility of SMs on idle. We set the number of SM in each part of the SM group. 
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Then we insert the partition mapping information in front of each kernel and allow more 

than one kernel to be launched on the GPU at the same time. 

 

Figure 4-1: workflow of performance model analysis. 

4.3 Related Works 

In recent years, there is numerous research dedicated to GPU utilization and its 

performance. Previous works presented many solutions based on two areas, namely, 

hardware and software aspects. On the hardware level, it uses benchmark or simulation to 

estimate kernel execution time and then makes the GPU kernel scheduler smarter based 

on the processing performance information. On the other hand, the software level uses 

kernel transforming algorithm to improve low parallelism rate kernel to high parallelism 

kernel. In addition, it uses merging technology to combine multiple lightweight kernels 

with being a big one. These works for either grouping two or more kernels before 

launching them to the GPU or adjusting the kernel structure to fit the targeted GPU 

device. 

Awatramani (Awatramani, et al., 2013, October) found out the impact on the 

throughput of mixed and partitioned execution pairs of kernels through simulation. Their 
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results showed that mixing bandwidth and compute-bound blocks was often beneficial. 

To predict performance, they must know the exact kernel pairing. Our work differs from 

this in that we partition the execution of two or more kernels and evaluate a complete 

complexity of application executing on a heterogeneous commodity platform, rather than 

just a single kernel in the simulation. 

Gurevara (Guevara, et al., 2009, September) proposed a software solution to 

achieve concurrent kernel execution by merging pairs of kernels. They found that small 

kernels do not occupy the entire GPU. Therefore, GPU applications can get benefit from 

the merging. However, the number of resources used by the merged kernels may reduce 

the SM occupancy and limit the gains. In addition, merging cores with unequal execution 

times can cause cores with shorter runtimes to be bogged down and take up more of their 

resources. Our work leverages existing hardware to achieve true independent kernel co-

execution and is not limited to pairs of kernels. 

Pai (Pai, et al., 2013) proposed extended iterative packing to reduce the kernels' 

parallelism to allow pairs of kernels to execute together on the same SM. They statically 

reserved resources for a second kernel in the SM, but they cannot control the degree of 

concurrency due to the differences in resource utilization of the kernels, and the use of an 

even allocation strategy. Their evaluation used the CUDA API rather than a full 

heterogeneous application. Our work is similar, but we do the partitioning from the 

hardware level even before we launch the kernel. By doing so, we largely avoid sharing 

computational resources and thus unpredictable co-execution performance while giving 

us full control over the degree of co-execution and the ability to support more pairs of 

applications. 
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Wu (Wu, et al., 2015, June) proposed a similar software solution using 

partitioning. Their approach was to fetch each SM fetch block from a centralized queue at 

runtime rather than partition the hardware before launching the kernels to GPU as we do. 

While centralized block fetching provides more flexible scheduling, the global load 

required to do so hinders compiler optimization due to the introduction of new 

dependencies. Our technique is to evaluate the common execution of the kernel on a 

complete application and provide accurate results. 

4.4 Partition Streaming Multiprocessors on NVidia GPU  

With the requirement of executing multiple kernels on the GPU simultaneously, 

there must have been multiple independent stream multiprocessors and independent 

memory resources for each kernel. The GPU device only allows one kernel to be 

executed by streaming multiprocessors at a time. By this limitation, we need to find a 

method to enable us to run more than one kernel on the GPU simultaneously. This section 

will introduce our approach that separates the SMs into multiple parts for the individual 

kernel. 

4.4.1 Subset SMs on GPU 

To allow multiple kernels to run on the GPU concurrently, we present a subset 

SM mechanism to isolate kernels to particular groups of SM, which can effectively 

partition the GPU. With this mechanism, kernels are executed on different groups of SM, 

which can avoid sharing compute resources between each other. In this mechanism, each 

group of SM only executes the blocks from the same kernel. This feature helps us avoid 

much of the un-foreseeability in the parallel kernel execution. With this mechanism, we 

can specify the number of SMs in each group for executing the kernel's blocks. This 
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allows us to apply the GPU performance model to identify possible bottlenecks and to 

improve performance by using dynamic partitioning SMs. 

The key to our co-execution approach is that if we restrict a kernel to execute on 

only a subset of SMs, then there will always be remaining SMs available. Therefore, the 

NVIDIA scheduler will execute the subsequently launched kernels on these remaining 

SMs simultaneously. In this way, we can force the GPU to co-execute multiple kernels 

and control the resources of GPU SMs for each kernel. 

Commonly, by executing the kernel in the GPU, it can create many threads, which 

are often organized into three hierarchies. The execution of the GPU kernel can be 

understood as many tasks that are handled by multiple workers in the GPU SMs. For 

example, the workers mean a group of GPU threads, also called blocks, and the tasks 

mean the operation conducted by the blocks. Since the job enters the GPU, a unique ID 

will be created for each job to identify itself. 

The key to our subset SM mechanism is that when we force the kernel to be 

executed in the subset SM in the GPU, there will be some idle SMs in the GPU, which 

means this resource is being used to perform the new kernel without sharing the resource 

concurrently executing kernel in the GPU. When the scheduler detects some idle isolated 

SMs in the GPU, it will arrange a new kernel into the device to be executed. At this 

moment, we are truly running more than two kernels concurrently on the GPU and 

controlling which group of SM to execute them. 

4.4.2 Mapping Control 

Before launching the kernel, on the host side, we insert a control code at the start 

of each kernel that reads the ID number of the SM, it will help the blocks in the kernel go 
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to the right SM. GPU characteristic information can be obtained by devicequery.cu, 

which is in the CUDA sample code. In the characteristic information report, we get the 

number of SMs in the device and other related info. For example, if we want to separate 

the SMs in NVidia Tesla C2050 GPU into two parts, by the information from the 

devicequery.cu report shown in Table 4-1, it contains 14 SMs in the GPU; if we want to 

set 6 SMs to one part, the other has 8 SMs, while we want the first kernel to run on the 

group with 6 SMs.  

After this short setup, the GPU can execute more than one kernel concurrently. 

With the different settings in the front of the kernel, we group more kernels in the GPU 

and execute them simultaneously. For example, subset SMs in NVidia Tesla C2050 is 

shown in Figure 4-2. 

Table 4-1: GPU hardware characteristic information. 

Model C2050 GTX650 GTX970 

Streaming Multiprocessors 14 2 13 

Processor Cores 448 384 1664 

Processor Clock 1147MHz 1110.5MHz 1050MHz 

Memory size 2G 2GB 4GB 

Computing version 2.0 3.0 5.2 
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Figure 4-2: Subset SMs in NVidia Tesla C2050. 

4.5 Dynamic Partition SM Subset 

Subset SM mechanism aims to eliminate the limitation of GPU schedule, which 

allows only one kernel on the GPU when the application consists of multiple kernels. The 

idea is how to distribute kernels into an independent group of SMs effectively. In this 

work, we will introduce GPU performance modeling to dynamically partition the SMs 

into multiple groups. 

4.5.1 Information Collection 

To eliminate the sequential kernel execution on a GPU, we need to collect the 

kernel information, including a data structure, memory requirement, and the block size 

setting from the application. On the other hand, we also need to figure out the number of 
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kernels and computational throughput of the kernel for dynamically assigning kernels to 

the specific group of SMs. 

Based on the current GPU toolset, we can find the related memory and other 

resource information that can be applied to the kernel execution estimation. Each GPU 

device has different hardware information. Whenever the new device is deployed, we 

need to figure out the GPU information with devicequery.cu, then use a counter to get the 

total number of kernels 𝑁𝑘 in each program, and the kinds of kernels. 

4.5.2 Executing Time Estimation 

In this process, we assume that all the kernels are independently executed with 

full resources. With the executing time, we can figure out the probable computational 

throughput rate for each kernel.  

In GPU computing processing, in addition to the execution time, memory access 

time is also very important. Total kernel execution time 𝑇𝐸𝑥𝑒 consists of total memory 

access time 𝑇𝑀𝑒𝑚 and total kernel execution time 𝑇𝐶𝑜𝑚. This can be represented by Eq. 

4-1. 

 𝑇𝐸𝑥𝑒  =  𝑇𝑀𝑒𝑚 + 𝑇𝐶𝑜𝑚 Eq. 4-1 

The total memory access time depends on the total number of memory clock 

cycles needed and the memory frequency. We suppose that all memory accessing 

frequencies are the same. We analyze the memory access time based on the memory 

types. The total computational time depends on the GPU device's feature and the clock 

cycles. So, the 𝑇𝑀𝑒𝑚 and 𝑇𝐶𝑜𝑚 can be obtained by Eq. 4-2 and Eq. 4-3. 

 𝑇𝑀𝑒𝑚 = ∑ 𝑇𝑀𝑖

𝑛

𝑖=1

 Eq. 4-2 
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and 

 𝑇𝐶𝑜𝑚 = ∑ 𝑇𝑀𝑖

𝑛

𝑖=1

 Eq. 4-3 

There is a wait time for the memory to be read, during that time the SP units 

cannot process because it needs to wait for the returned data, we call the time of SP 

without working as idle time. Two common situations may occur during GPU execution. 

One is that idle time can be covered in GPU computing, and another is that idle time 

cannot be covered in GPU computing. 

First, the idle time is covered in GPU computing. This means the SP in GPU 

keeps running from the beginning to the end. There is no idle time during kernel 

executing due to there being enough warps for SP units to execute. The total execution 

time 𝑇𝐸𝑥𝑒_𝑐𝑜𝑣 is the sum of the total computational time and the last memory access time 

as shown in Eq. 4-4. In section 3.4.3, there are more details about the execution time 

estimation. 

 𝑇𝐸𝑥𝑒_𝑐𝑜𝑣 = (𝑇𝑀𝑛
+ 𝑇𝐶𝑜𝑚 ×

𝑁𝑇𝐵 × 𝑁𝑀𝐵𝑆

𝑤
 ) ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀
 Eq. 4-4 

The 𝑁𝐶𝐵 is the total number of blocks that are executed in the kernel. We can get 

𝑁𝐶𝐵 from code analysis.  

In the second case, if there are not enough warps to cover the idle time. We have 

to consider the idle time for each warp. Therefore, the total execution time can be 

represented by Eq. 4-5. 

 

𝑇𝐸𝑥𝑒_𝑢𝑛𝑐𝑜𝑣 = [(𝑇𝑀 + 𝑇𝐶𝑜𝑚

+ 𝑇𝐶𝑛
× (

𝑁𝑇𝐵 × 𝑁𝑀𝐵𝑆

𝑤
− 1 )] ×

𝑁𝐶𝐵

𝑁𝑀𝐵𝑆𝑁𝑆𝑀
 

Eq. 4-5 
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4.5.3 Dynamic Partition 

In the previous section, we proposed how to estimate each kernel's throughput 

with the GPU performance model. Next, we will introduce a method that can 

dynamically partition SMs on the GPU. 

Since the launch kernel with SM-ID number is at the head of each kernel. The 

execution location depends on the SM-ID number. The original idea of forcing part of 

SMs to process each kernel roughly separates the SMs into two equal parts. Under the 

same condition, this kind of partition can help GPU get higher performance without any 

other changes. However, when the two kernels have huge differences in the 

computational requirement, the defect of using two equal parts of SMs comes out.  

For the previous issue, the original method cannot handle the kernels with 

different capacity requirements. The solution to this issue will be introduced in this 

section. As we know, the program execution time depends on the computational 

throughput. If a kernel has a large computational requirement, more computing resources 

should be signed to the kernel to reduce processing time. 

In our experiment, we find that when there are more than two SM subdivisions, 

the performance drops sharply. Thus, we assume that all programs only have up to two 

kernels and up to two kinds of kernels in this method. We have used GPU performance 

model to estimate the kernel's execution time running. With the information collection, 

we make the partition plan smarter. 

We define 𝐾1 and 𝐾2 as two kernel's computational throughput, and 𝑆𝑀1 and 𝑆𝑀2 

as the number of each group of SMs. From the devicequery.cu GPU information, we can 
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get the total number of SMs in the current GPU environment. We also define 𝑆𝑀𝑇𝑜𝑡𝑎𝑙 to 

be the total number of the SMs in the device. The sum of 𝑆𝑀1 and 𝑆𝑀2 is equal to the 

SM, as shown the Eq. 4-6. 

 𝑆𝑀𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑀1 + 𝑆𝑀2 Eq. 4-6 

To estimate two kernels' completion time close to each other, the number of SMs 

for each kernel is based on computational throughput. The relationship between the 

number of SMs and kernel computational throughput is shown in Eq. 4-7. 

 𝐾1: 𝐾2 = 𝑆𝑀1: 𝑆𝑀2 Eq. 4-7 

From Eq. 4-6 and Eq. 4-7, we can derive 𝐾1 and 𝑆𝑀1  a relationship that can be 

represented in Eq. 4-8. 

 
𝐾1

𝐾1 + 𝐾2
=

𝑆𝑀1

𝑆𝑀𝑇𝑜𝑡𝑎𝑙
 Eq. 4-8 

With the two kernel's computational throughput and the number of SM in the 

current GPU, our algorithm can dynamically choose the number of SM for two SMs 

groups. The number of SM groups for kernel 1 and kernel 2 are shown in Eq. 4-9 and 

Eq. 4-10. 

 𝑆𝑀1 =
𝐾1 × 𝑆𝑀

𝐾1 + 𝐾2
 Eq. 4-9 

and 

 𝑆𝑀2 =
𝐾2 × 𝑆𝑀

𝐾1 + 𝐾2
 Eq. 4-10 

Last, we can estimate the number of SM in the SM group before the kernel is 

executed in GPU. The dynamic partition mechanism decides the number of SM by the 

kernel's computational throughput. 
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4.6 Evaluation 

For comparison, we have implemented three GPU computing cases in our 

experiment. First, two same benchmark kernels are executed with the partition 

mechanism. Second, two different benchmark kernels have the same computational 

throughput with dynamic partition. Third, two different benchmark kernels have different 

computational throughput running with dynamic partition. All three cases are run on 

three different GPU cards. 

4.6.1 Methodology 

Our use cases focus on enhancing memory performance and processing 

performance. We need a set of memory-intensive and computational-intensive programs 

for the experiment. Meanwhile, for a comprehensive assessment of our technique 

applicability, the benchmark set should consist of programs of a broad range of domains 

and have good coverage of both regular and irregular programs. For these reasons, we 

select nine benchmarks to form our test set. As Table 4-2 shows, these programs come 

from four benchmark suites, cover a broad set of domains, and include a similar number 

of regular and irregular programs.  

In the flowing, we give a simple description of these benchmarks for our 

experiments. IRREG and NBF are rewritten in CUDA for benchmarks by Han and Tseng 

(Han & Tseng, 2006). MD and SPMV are both developed by Oak Ridge National 

Laboratory (Danalis, et al., 2010, March). CFD from Rodinia benchmark suite (Che, et 

al., 2009, October) simulates fluid dynamics; matrix multiplication and REDUCE are 

from the CUDA SDK samples (Nvidia, 2019). These applications represent compute-

intensive applications that are used widely in parallel applications. 
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Table 4-2: Description of the benchmark. 

Benchmark Description Source 

irreg partial diff. solver Maryland 

nbf force field Maryland 

md Molecular dynamics SHOC 

spmv Sparse matrix vector multi SHOC 

cfd Finite volume solver Rodinia 

nn Nearest neighbor Rodinia 

pf Dynamic programming Rodinia 

mm Dense matrix multiplication CUDA SDK 

reduce reduction CUDA SDK 
 

As current GPUs cannot support the two different contexts at the same time yet, 

we force the two kernels running in the GPU simultaneously in our work. For the 

evaluation, we designed three experiments each run on three different GPUs. 

4.6.2 Machine Environment 

We run all the benchmarks on the NVIDIA GTX 650, GTX 970, TESLA M2050 

with CUDA 7.5. The host machine is an Intel Xeon E3-1230 CPU and 16GB of memory. 

The benchmark is run on 64-bit windows 7 ultimate, and each record time is an average 

of 20 repeated measurements; it includes the overhead time. 

4.6.3 Experiment Result 

Figure 4-3, 4-4, 4-5 is the speedup of two same kind kernels using a dynamic 

partition on three GPU. In the benchmark program, there are two kernels in the same 

function. They have different computational requirements. In Figure 4-5, the benchmark 

is run on the GTX 650. All kinds of the benchmark get a very bad performance. There are 

two reasons. First, the GTX 650, only has two SMs. There is only one partition plan for 

executing two kernels at the same time. Each kernel has only one SM for processing. In 

this case, the two kernels have different computational requirements. The SM for the 



56 

kernel with less work must be idle at the end. Many computing resources are wasted 

when SM is idle. Second, in the GTX 650, there is not enough shared memory for 

computing. In the co-run condition, there is more than one kernel in the GPU at the same 

time. When the kernel is memory sensitive, the processing performance will be worse. 

The GTX 970 and Tesla M2050 have 14 and 13 SMs, respectively. The computational 

sensitive kernel has a potential speedup shown in Figures 4-3 and Figures 4-5 like 

partial diff and force field, due to this two GPUs having powerful processing capability. 

For those memory-sensitive benchmarks like matrix multiplication, the nearest neighbor 

also has a few speedups faster than the two kernels running on serial. Both the GTX 970 

and Tesla M2050 do not perform better on the molecular dynamics than on serial. The 

reason that Tesla M2050 does not get better performance on matrix multiplication is 

M2050 does not have many processing cores in each SMs. when the kernel is executed in 

the SM, the computing capability touches the limit of the GPU. 

The reason we only run benchmarks on the GTX 970 and Tesla M2050 is that we 

find GTX 650 only has two SMs, which means it only has one option of partition. So, it 

is not a suitable device for partition SMs. The results show in Figures 4-6, 4-7, 4-8, and 

4-9. In these two cases, we show the speedup of benchmarks before dynamic partition 

applying and after. The results show our dynamic partition mechanism improves the 

processing performance. Also, we found that those computational sensitive kernels mixed 

together can get better performance. Those memory-sensitive benchmarks mix or mixed 

with computational-sensitive do not get better performance than execution in serial. 
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Figure 4-3: Speedup of two same kind kernels using a dynamic partition on GTX970. 

 

Figure 4-4: Speedup of two same kind kernels using a dynamic partition on Tesla 

M2050. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

irreg nbf md spmv cfd nn pf mm reduce

D_partition

0

0.2

0.4

0.6

0.8

1

1.2

1.4

irreg nbf md spmv cfd nn pf mm reduce

D_partition



58 

 

Figure 4-5: Speedup of two same kind kernels using a dynamic partition on GTX650. 

 

Figure 4-6: Speedup of two different kernels with the same computational throughput 

using a dynamic partition on GTX 970. 
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Figure 4-7: Speedup of two different kernels with the same computational throughput 

using a dynamic partition on Tesla M2050. 

 

Figure 4-8: Speedup of two different kernels with different computational throughput 

before using dynamic partition and after on GTX970. 
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Figure 4-9: Speedup of two different kernels with different computational throughput 

before using dynamic partition and after on Tesla M2050. 

4.6.4 Experiment Conclusion 

From the result of all three cases, we find that our dynamic partition mechanism 

improves co-execution kernels' performance, which is computational-sensitive. However, 

for those memory-sensitive kernels, although we use our mechanism to enhance the 

performance of multi-kernel execution, the idea of co-running does not show any 

improvement on memory-sensitive kernels due to the limitation of memory resources on 

the hardware. 

4.7 Conclusion 

This chapter proposed a dynamic partition mechanism for GPU computing, it has 

broken the limitation of only allowing more than one kernel to be executed in the GPU at 

the same time. The simple mechanism first time offered the GPU a chance to smartly 

dynamically partition the SMs into multiple parts. Dynamic partition revealed the 
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potential of the enabled scheduling control for executions of multi-kernel co-runs. 

Dynamic partition opened a new way to optimize the GPU programs without any change 

on the program. It improves the processing performed on the computational-sensitive 

program. Our mechanism did not show a significant improvement on those programs 

requiring large memory space, wide memory bandwidth, and GPU devices with a few 

SMs. 
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CHAPTER 5 

 

A PARALLEL COMPUTING FRAMEWORK FOR PERFORMANCE 

ANALYTICAL MODELS 
 

5.1 Introduction 

Parallel processing has long been employed on many large-scale scientific and 

complex technical computing applications. They are typically resource-intensive 

applications, such as nuclear simulations, financial stock market analysis, oil exploration, 

weather forecasts, and simulated reality. During past decades, the emergence of the 

multi-core and many-core has transformed the parallel computing systems from the 

national supercomputing center, which only serves selected scientists and engineers, to 

the modern personal supercomputers for general usage. With dramatic processing power 

on the recent processor unit, especially the graphics processing unit (GPU), machine 

learning and deep learning applications have made revolutionary progress. To achieve 

more efficiency for these parallel programs, performance prediction becomes a burning 

desire of the parallel computing users to fine-tune their applications. Fortunately, 

analytical models are widely used to describe performance characteristics. Moreover, 

many analytical performance models have been recently developed for complex parallel 

applications such as deep neural networks (DNN), with many layers processed on a 

heterogeneous system. However, a successful parallel computing analytical performance 

model is not a silver bullet for general performance prediction. The reason is that the 



63 

parallel computing analytical performance model can be quite complex, essentially 

including several aspects. Unfortunately, with the complex parallel systems, various 

hardware and software components, it is challenging to develop an accurate analytical 

performance model for general hardware architecture and software logics. Furthermore, 

the parallel computing architecture and program continue to evolve drastically. A minor 

change in the processing unit architecture, interconnection network, or parallel algorithm 

may require extensive work to adapt to the change. The successful parallel computing 

analytical performance model must endure and adapt to these conditions. Therefore, a 

robust framework is a vital requirement as an enabling parallel computing tool and must 

be flexible to model users’ logic on targeted hardware while predicting accurate 

performance. 

  In this chapter, we propose a framework for building the parallel computing 

abstraction models and an analytical performance model. Our framework is aimed to 

guide users to derive useful information from the hardware architecture and application, 

then feed those parameters into our two abstract models, which describe the logic of the 

parallel application and system architecture. Then the users can use the performance 

metric to evaluate the parallel system and algorithm. Our framework can describe various 

parallel computing behaviors, such as task executions, data passing, and communication. 

The contributions of this work include: 

⚫ Two parallel computing abstract models are introduced to represent the 

processing steps and simplify the workload distribution behaviors. 

⚫ An extension to Flynn’s taxonomy is proposed to support heterogeneous 

systems and consider the communication time. 
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This chapter is organized as follows: In 5.2, we discuss related work and list some 

general issues in building the analytical performance model and the overview of our 

framework. In 5.3, we introduce the parallel application abstract model to represent the 

parallel program by dividing the whole task into essential pieces. Also, we propose the 

computing system abstract model and an extension to Flynn’s taxonomy. Finally, section 

5.4 is the conclusion.  

5.2 Background and Related Work  

Parallel computing refers to a process of breaking down larger problems into 

smaller, independent, and similar parts that can be processed simultaneously by multiple 

processors, the results of which are combined upon completion as part of an overall 

algorithm. The main goal of using parallel computing is to increase the efficiency of 

current computing capacity for faster task processing and thus to speed up the 

performance. The parallel computing paradigm typically presents as distributing the tasks 

to multiple partitions on many processing units and collecting the results from each 

processor unit. 

In recent years, parallel computing has become increasingly popular to solve 

problems such as machine learning. AI researchers have proposed new algorithms and 

solutions such as Convolution Neural Network (LeCun, et al., 1989), unique resource 

management, modern communication methods such as NCCL (Luehr, 2016), Ring 

Allreduce (Sergeev & Del Balso, 2018), PS (Cui, et al., 2016, April), and new hardware 

to speed up the computation. However, despite these significant advances, it is not easy 

to analyze and optimize performance for these applications. Thus, it is vital to find an 

appropriate tool or method such as appropriate analytical modeling to disclose the 
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abstract views of hardware and software components. Building the analytical 

performance model is a common method in the performance evaluation for parallel 

computing. During the past years, researchers have developed analytical performance 

models based on specific hardware, such as a cluster of CPUs, and recently GPU, for 

various parallel applications. These models can be outdated quickly, especially when 

there are rapid changes in hardware and parallel system.  

There are three kinds of performance evaluation techniques: analytical modeling, 

simulation modeling, and measurement. Analytical approaches are less accurate than 

simulation approaches; they are also simpler and quicker to provide insights since the 

parallel computing behaviors are described through mathematical equations. Moreover, 

analytical modeling provides an abstract view of hardware and software. Parallel 

performance analytical models based on system parameters, like LogP (Culler, et al., 

1993, July), LogGP (Alexandrov, et al., 1995, July), are widely used to evaluate parallel 

applications. The performance model enables users to understand the behavior of the 

applications, supports users to make decisions during the execution. The model can also 

represent the composition of the program logic, which means the ratio of parallelism 

among subtasks to the total tasks. Thus, we can estimate the execution time of the 

applications, potentially identify the performance bottleneck and scalability of the system 

before we run the program on the target machine. 

Constructing an appropriate analytical model is quite useful and helps us break 

down a complex problem into more manageable pieces. The typical model consists of 

two parts. First, it must well describe system characteristics and should be as accurate as 

possible. Second, it must be as simple as possible to represent the problems. The first 
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feature requires that the model includes all the necessary details that define the system 

characteristics and the second implies that the model should be in a simple expression. 

These two features contradict each other. It is a dilemma facing the modeling 

practitioners. Including too many parameters may help increase the accuracy of the 

model, the following issue is model getting too complex to be solved. An overly 

complicated model takes too much time to be solved or is even too complex to do so. 

Thus, an unsolvable model is completely useless. Hence, care must be taken in selecting 

parameters, and a reasonable trade-off should be made for an appropriate performance 

model. 

Traditionally, the analytical performance model is created and based on either 

deterministic analysis, probabilistic analysis, or benchmark. The deterministic analysis 

involves only the summation of all tasks in the sequential work, and also has considered 

synchronization cost. The overhead of the deterministic analysis is manageable, and 

therefore the model could be built in a short time. On the other hand, a probabilistic 

analysis starts from an assumption about a probabilistic distribution of the set of all 

possible inputs. This assumption has a lot of uncertain information. Although benchmark 

suits most of the conditions no matter how complicated they are, and micro-benchmark 

helps to reduce the evaluation time. It is still needed to implement on the target machine 

and collect the processing results. Consequently, for a particular application and machine 

type, users need to find or build a suitable performance model for them. 

There has been numerous parallel architectures and their implementations. 

Flynn’s taxonomy (Flynn, 1972) is a general classification that describes computing 
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architectures and paradigms by considering various instruction and data streams that can 

be processed simultaneously.  

One of the most critical evaluations in parallel computing is to measure how 

much faster a parallel task can run with respect to the best possible sequential one. This 

measure is known as speedup. To evaluate the performance of the parallel application, 

Amdahl’s law and Gustafson’s law are widely used for measuring speedup.  

Our modeling and evaluation framework is an extension of Flynn’s taxonomy and 

a combined Amdahl's law (Amdahl, 1967, April) and Gustafson’s law (Gustafson, 1988) 

to create a novel model with familiar taxonomy and performance metrics. Our proposed 

framework offers a simple way to build an analytical performance model which adapts to 

modern hardware and applications. The framework allows an easy way to parametrize 

both computational logic and various hardware architecture that are well-suited for 

general parallel applications in practice. 

5.3 Framework for Parallel Application Analytical Modeling 

Our framework provides a workflow for users who wish to build their analytical 

performance model based on parallel computing. We consider a general parallel 

computing system of which it is partitioned into a collection of nodes, and the node may 

consist of multiple CPUs and perhaps coprocessing units such as GPGPUs. Our 

framework describes the parallel application and targeted hardware architecture in the 

two abstract models. These two models enable users to build their analytical performance 

model for specific hardware and application logic. The framework and workflow are 

shown in Figure5-1. 
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The analytical performance model will help users to identify possible bottlenecks 

and improve their parallel program performance. In our framework, the parallel 

application abstract model describes the logic of the parallel application. The model 

represents breakdowns of the whole program into many simple pieces that can be 

evaluated and summed up for the estimated completion time. The parallel system abstract 

model helps to guide users to estimate each part's computing time and communication 

time. The performance metric assists users in evaluating and comparing the application 

performance before and after optimization.  

 

Figure 5-1: Overview of the parallel computing performance modeling framework. 

5.3.1 Parallel Application Abstract Model 

The parallel application abstract model is a representation of internal application 

structures that allow individuals to describe the application logic. This model simplifies 

parallel computing representation into a collection of computational subtasks. The model 
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defines how many subsets or the computing tasks are in the whole application. 

Computing tasks could be parallel or serial. The application abstraction model is 

guidance for building the analytical model for parallel computing. There can be various 

kinds of computing in parallel applications: parallel, serial, consecutive serials in parallel, 

and numerous parallels in serial, as shown in the example of four task types in Figure 5-

2. The dark blue box represents the tasks that could be executed in sequential, and the 

green box represents the parallel tasks. Each type has a time estimation method. With the 

parallel application abstract model, users break down the parallel application into 

subtasks and can describe their parallel algorithms in more generic ways. 

 

Figure 5-2: Examples of the four types of tasks. 

In the parallel program, there may be many sub-tasks including parallel tasks or 

sequential tasks, sometimes even the mixture between parallel and sequential ones. The 

total execution time is the summation of the parallel tasks and the sequential tasks. In this 

abstract model, we introduce two parameters. First, the execution time of sequential 
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tasks. Second is the execution time of parallel tasks. Figure 5-3 depicts an example of the 

application abstractions. From left to right, in layer 1, there are a sequence of tasks, and 

each box represents an independent task. The individual task may consist of parallel or 

sequential subtasks. The dark blue box means the tasks could be executed in sequential. 

The green box represents the parallel tasks. The next layer represents subtasks of the 

previous layer task. This representation provides recursiveness on how tasks can have 

several subtasks and generality of real-world applications. 

 

Figure 5-3: Application logic example. 

Several parameters will be introduced in our framework before diving into the 

abstract model. Those parameters are shown in the following Table 5-1. 
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Table 5-1: Parameters for the Parallel application and system abstract model. 

Notation Description 

Application abstract model 

TS The execution time of a subset sequential task 

TP The execution time of a subset parallel task 

𝑽𝑫 The volume of transfer data 

𝑽𝑰 Volume of Instruction transportation 

𝑽𝑹 Volume of result transportation 

𝑵𝑰 Number of instructions 

𝑵𝑫𝒎𝒔𝒈 Number of times data transfer 

𝑵𝑰𝒎𝒔𝒈 Number of times instruction transfer 

CPI Cycles per instruction 

System abstract model 

𝑳𝑫 The latency of data transfer 

𝑳𝑰 The latency of instruction transfer 

𝑵𝑷 Number of the processor unit 

B The total bandwidth of the system 

 

The total execution time depends on the number of individual tasks as shown in 

Figure 5-3 layer1. The total execution time is the sum of the independent tasks as shown 

in Eq. 5-1. 

 𝑇𝑡𝑜𝑡𝑎𝑙 = 𝑇𝑆1 + 𝑇𝑆2 + ⋯ 𝑇𝑆𝑛 Eq. 5-1 

Some tasks may consist of a collection of parallelized tasks or sequential tasks. 

For example, in Figure 5.3, 𝑆𝑇𝑎𝑠𝑘1 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑠 𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑠𝑢𝑏𝑡𝑎𝑠𝑘𝑠, 𝑃𝑇𝑎𝑠𝑘1−1, 

𝑃𝑇𝑎𝑠𝑘1−2 to 𝑃𝑇𝑎𝑠𝑘1−𝑛 and the time of the 𝑆𝑇𝑎𝑠𝑘1 is represented by 𝑇𝑃1. All these 
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parallel tasks could be executed at the same time. The execution time of the sub-tasks 𝑇𝑆1 

is equal to 𝑇𝑃1. 𝑇𝑃1 is derived from the longest execution time in parallelable subtask of 

𝑆𝑇𝑎𝑠𝑘1 as shown in Eq. 5-2b 

 𝑇𝑆1 = 𝑇𝑃1 Eq. 5-2a 

and 

 𝑇𝑃1 = max
1≤𝑛

{𝑇𝑃1−𝑛} Eq. 5-2b 

In another situation, for example. some tasks like 𝑆𝑇𝑎𝑠𝑘3 may consist of multiple 

sequential tasks: 𝑆𝑇𝑎𝑠𝑘3−1, 𝑆𝑇𝑎𝑠𝑘3−2 to 𝑆𝑇𝑎𝑠𝑘3−𝑛. 𝑇𝑆3−1, 𝑇𝑆3−2…. 𝑇𝑆3−𝑛 represent 

the execution time of each sub-task in the 𝑆𝑇𝑎𝑠𝑘3, and the 𝑇𝑆3 is equal to the summation 

of all sub-tasks’ execution times in the 𝑆𝑇𝑎𝑠𝑘3 as shown in Eq. 5-3. 

 𝑇𝑆3 = 𝑇𝑆3−1 + 𝑇𝑆3−2 + ⋯ 𝑇𝑆3−𝑛 Eq. 5-3 

𝑇𝑆3−1 is the subset of  𝑆𝑇𝑎𝑠𝑘3 which consist of multiple parallel 

tasks: 𝑃𝑇𝑎𝑠𝑘3−1−1, 𝑃𝑇𝑎𝑠𝑘3−1−2 to 𝑃𝑇𝑎𝑠𝑘3−1−𝑛. 𝑃𝑆3−1, 𝑃𝑆3−2…. 𝑃𝑆3−𝑛 represent each 

sub-task in the 𝑆𝑇𝑎𝑠𝑘3−1 and the 𝑇𝑆3 is equal to the time of processing all parallel sub-

tasks in the 𝑆𝑇𝑎𝑠𝑘3 as shown in Eq. 5-4. 

 𝑇𝑆3−1 = 𝑇𝑃3−1 Eq. 5-4 

In sub-task like 𝑃𝑇𝑎𝑠𝑘𝑛−1, it has multiple sub-tasks, which could be either 

parallel tasks or sequential tasks. The parallel task execution time depends on the longest 

job. The sequential task execution time is the summation of all sequential task execution 

time. The whole application execution time is the longest processing time of parallel 

tasks by adding the total execution time of the sequential tasks. The maximum processing 

time of the parallel task is shown in Eq. 5-5. 
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 𝑃𝑇𝑎𝑠𝑘𝑛−1 = max
1≤𝑗≤𝑛

{𝑇𝑃𝑛−𝑗} Eq. 5-5 

In the sub-task 𝑃𝑇𝑎𝑠𝑘𝑛−𝑛, it consists of multiple sequential tasks 

𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−1, 𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−2,…. 𝑆𝑇𝑎𝑠𝑘𝑛−𝑛−𝑛, the time of 𝑃𝑇𝑎𝑠𝑘𝑛−𝑛is the summation of 

all sequential tasks.  

 𝑇𝑝𝑛−𝑛 = 𝑇𝑆𝑛−𝑛−1 + 𝑇𝑆𝑛−𝑛−2 + ⋯ 𝑇𝑆𝑛−𝑛−𝑛 Eq. 5-6 

and 

 𝑇𝑝𝑛−𝑛 = ∑ 𝑇𝑆𝑛−𝑛−𝑖

𝑛

𝑖=1

 Eq. 5-7 

The total execution time of the whole application 𝑇𝑡𝑜𝑡𝑎𝑙 is the summation time of all sub-

tasks.  

 𝑇𝑡𝑜𝑡𝑎𝑙 = ∑ [𝑇𝑆𝑖 + max
1≤𝑗≤𝑛

{𝑇𝑃𝑛−𝑗}]

𝐼

𝑖=1

 Eq. 5-8 

5.3.2 Parallel System Abstract Model 

The parallel computing system abstract model is a representation of the system 

hardware architecture. The model represents important hardware aspects, such as 

processing capability and their connectivity, and capturing the computing and 

communication times. In the parallel system, there can be more than one processing unit 

to execute parallel tasks. Normally, several processing units are grouped into a node. The 

switch or network fabric connects nodes to form a larger computational capability. In this 

model, we denote the symbol B to represent the total bandwidth of the node connectivity. 

In the beginning, data will be loaded to the processing units, which could be from local 

storage, system memory, or network storage. At the abstraction level, we signify 𝑉𝐷 to 

represent the volume of the total data transfer to the processing unit. All-important 
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parameters in this model are shown in Table 5-1. Our abstract model defines the total 

execution time into two parts. The first is computing time. The second is communication 

time. Each part could be defined as a building block based on various computing 

paradigms and architecture which are defined by our proposed extended Flynn’s 

taxonomy. We have enhanced Flynn’s taxonomy that includes the heterogeneous 

computing paradigm. 

We consider the total time of the application with both the computing and 

communication time. The communication time consists of data loading, instructions 

passing, and result collection. The execution time represents the time from the processing 

unit received the data, computation, and instructions to send out the results.  

 𝑇𝑃 =  𝑇𝐿𝐷 + 𝑇𝐼 + 𝑇𝐶 + 𝑇𝐶𝑜𝑙𝑙 Eq. 5-9 

Eq. 5-9 defines the 𝑇𝑃 as the total time of parallel computing. It is a sum of the data 

loading time (𝑇𝐿𝐷), time for instructions passing (𝑇𝐼), execution time (𝑇𝐶) and time of 

results collection (𝑇𝐶𝑜𝑙𝑙). 

𝑇𝐿𝐷 Loading Data  

Parallel computing loading data time 𝑇𝐿𝐷 is the time representing how long it 

takes to perform the data transfer. Data transfer overhead depends on the size of the data 

and the bandwidth of the system. However, before each message is sent or received, there 

is a latency that needs to be considered. The latency depends on the interconnection 

fabric, computation protocol, and the times of message sending/receiving. Through the 

data loading analysis, we can calculate the overhead based on both communication time 

and latency. The total time of data loading is represented by the following function f𝑇𝐿𝐷. 

𝑓𝑇𝐿𝐷 = 𝐹(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ) 
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 𝑇𝐿𝐷 =  
𝑉𝐷

𝐵
+ 𝐿𝐷 × 𝑁𝐷𝑚𝑠𝑔 Eq. 5-10 

In Eq. 5-10, 𝐵 is the Bandwidth of the system, 𝐿𝐷is the latency of each data 

transfer, and 𝑁𝐷𝑚𝑠𝑔 is the number of times data transfers. The data loading time 𝑇𝐿𝐷 

equals to the sums of the data transfer time with the latency of each data transfer. 

In reality, 𝑉𝐷  also depends on the communication method, such as data from one 

point to multiple points or multiple points to various points. Some of the massages will be 

passed multiple times when they need to be distributed to multiple nodes. The hardware's 

characteristics dictate the bandwidth of the system and capacity. Once the system sends 

too many messages at the same time, it may reach the bandwidth limitation. The system 

will hold some messages for a while. As such, the latency needs to be considered for 

estimating the data transfer time. 

𝑇𝐼 Instructions Passing 

Same as the data loading, Instructions can also be transferred as messages. The 

instruction passing time 𝑇𝐼 is the time that represents how long it takes for dispatching 

instructions to processing units. The time of message sending depends on the volume of 

the instructions and the bandwidth of the system. However, before each message is sent, 

there is a latency that must be considered the same as data loading. This latency can be 

derived from the system hardware specification and the times of message passing. The 

total time of instructions passing is represented by the following function 𝑓𝑇𝐼. 

𝑓𝑇𝐼 = 𝐹(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒𝑠 𝑜𝑓 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒) 

 𝑇𝐼 =  
𝑉𝐼

𝐵
+ 𝐿𝐼 × 𝑁𝐼𝑚𝑠𝑔 Eq. 5-11 
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In Eq. 5-11, 𝑇𝐼 is the volume of Instruction transportation, 𝐵 is the bandwidth of 

the system, 𝐿𝐼is the latency of each data transfer, and 𝑁𝐼𝑚𝑠𝑔 is the number of times 

instruction transfer. The time of instructions passing 𝑇𝐼 equals to sums of the data transfer 

times with the latency of each data transfer. 

𝑇𝐶 Execution Time 

Parallel computing execution time is the time that elaspes from the moment that 

data and instructions are received to the moment the task is completed (including, 

perhaps, sending the results). Execution time depends on the computing characteristic 

and the type of parallel computing algorithm, the number of processing units, and the 

processing unit's architecture. In the next section, we will introduce extended Flynn’s 

Taxonomy. We propose a new classification which is based on the heterogeneous show 

in Figure 5-4e. The overview of extended Flynn’s Taxonomy is shown in Figure 5-4.  

 

Figure 5-4: Overview of the extended Flynn’s Taxonomy. 

𝑇𝐶𝑜𝑙𝑙 Result Collection Time 

The result collection time is the time that system transfers the results from each 

processing unit to the host. We assume that all processor units will pass the results 
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simultaneously and share the system bandwidth. The following function 𝑓𝑇𝐶𝑜𝑙𝑙 represents 

the total time of result collection. 

𝑓𝑇𝐶𝑜𝑙𝑙 = 𝐹(𝑆𝑖𝑧𝑒 𝑜𝑓 𝐷𝑎𝑡𝑎, 𝑇𝑦𝑝𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎, 𝑐𝑜𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 

 𝑇𝐶𝑜𝑙𝑙 =  
𝑉𝑅

𝐵
 Eq. 5-12 

In Eq. 5-12, 𝑉𝑅 is the volume of results, and 𝐵 is the bandwidth of the system. 

The time of result collection is equal to the volume of results divided by the bandwidth of 

the system. 

In reality, coalesced memory accesses (Che, et al., 2011, November) are much 

faster than uncoalesced memory accesses; when some data is stored in uncoalesced 

memory, the access time will be longer than the data stored in the coalesced memory. A 

memory access speed estimation model needed to be introduced for a different type of 

data. 

5.3.3 Extended Flynn’s Taxonomy 

Computer architectures and computing paradigms can be classified by Flynn’s 

taxonomy which represents computing into four categories. This classification depends 

on two aspects; first, the number of instruction streams, second, the number of data 

streams that can be handled in parallel. In this work, we propose one more category 

which represents heterogeneous computing (Khokhar, et al., 1993) (Mittal & Vetter, 

2015). In the modern parallel computing system, there are systems with multiple-core 

CPUs coupled with a GPU that support SIMD instructions. When the SIMD processor 

cooperates with a traditional processor, the system is considered a heterogeneous parallel 

system. The following sections detail four classifications and the extended Flynn’s 

taxonomy. 
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Single Instruction Stream, Single Data Stream (SISD) 

A sequential computer exploits no parallelism in either the instruction or data 

streams. A single control unit loads a single instruction from memory. The control unit 

then generates appropriate control signals to direct a single processing element to operate 

on a single data stream. The following diagram shows the SISD is a single instruction 

with a single data stream. The SISD is the traditional computational model with a single 

core. 

 
Figure 5-5: Single instruction multiple data streams. 

Single Instruction Stream, Multiple Data Streams (SIMD) 

A single instruction operates on multiple different data streams. We assume that 

multiple SISD operations only use a single instruction to process multiple data. All these 

same instructions can be executed in parallel with a different set of data, such as in 

parallel by multiple functional units like in the GPU computing system. 

Single instruction multiple threads (SIMT) are an execution model used in 

parallel computing where single instruction and multiple data (SIMD) are combined with 

multithreading. 

 𝑇𝐶𝑠𝑖𝑚𝑑 =  𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-13 



79 

 
Figure 5-6: Multiple instruction single data stream. 

Multiple Instruction Streams, Single Data Stream (MISD) 

Multiple instructions operate on one data stream. This is an uncommon 

architecture that is normally used for fault tolerance, and heterogeneous systems operate 

on the same data stream. For example, the Space Shuttle flight control computer is using 

MISD for data processing. 

 𝑇𝐶𝑚𝑖𝑠𝑑 =  𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-14 
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Figure 5-7: Multiple instruction single data streams. 

Multiple Instruction Streams, Multiple Data Streams (MIMD) 

Multiple autonomous processors execute different instructions on different data 

simultaneously. The MIMD architecture includes individual multicore processors and 

distributed systems with shared memory space or distributed memory space. The 

processors in the MIMD system operate independently and asynchronously: 

 𝑇𝐶𝑚𝑖𝑚𝑑 =  𝑚𝑎𝑥
1≤𝑖≤𝑛

{𝑇𝑃𝑖} Eq. 5-15 
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Figure 5-8: Multiple instructions multiple data streams. 

Heterogeneous Computing 

Heterogeneous computing is a computational paradigm with more than one kind 

of processing unit or cores. These systems gain performance or energy efficiency not just 

by adding the same type of processors but by adding different co-processors, usually 

incorporating specialized processing capabilities to handle particular tasks. In modern 

parallel computing, host processing units work with cooperation processing units. The 

host is usually a CPU, and the cooperation processing units are many-core processing 

units like GPU and a field-programmable gate array (FPGA). In this system, there are 

many types of computing, like SISD, MIMD, and SIMD, as shown in Figure 5-4. 

Traditional four class taxonomy has difficulty describing modern systems which 

including multiple types of computing. 

In a heterogeneous system, the communication between the host and coprocessors 

is the most critical factor for the system's performance. In reality, users have to consider 

the thread synchronization, round-trip data transfer overhead between CPU and GPU, and 
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carefully design the communication algorithm. A performance model that includes the 

communication between different heterogeneous cores is necessary for heterogeneous 

system performance estimation. 

 
Figure 5-9: Heterogeneous system. 

5.4 Conclusion  

This chapter has systematically introduced the framework for building the parallel 

analytical performance model. We proposed the parallel application abstract model and 

parallel computing system abstract model. In addition, we introduced the extended 

Flynn’s Taxonomy, which included heterogeneous computing. Today’s parallel 

computing requires programmers to manually optimize the application performance when 

it is deployed on the new hardware. We anticipate that the proposed framework will 

enable users who want to create an analytical performance model to further enhance their 

parallel application performance. 
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CHAPTER 6 

 

PERFORMANCE MODEL FOR CNN ON DISTRIBUTED GPU 

SYSTEM 
 

6.1 Introduction 

Deep neural networks (DNNs) have been very successful in various machine 

learning tasks, such as visual recognition (Krizhevsky, et al., 2012), speech recognition 

(Han, et al., 2017, February), and machine translation (Wu, et al., 2016). Among those 

applications, the convolutional neural network (CNN) proposed by LeCun (LeCun, et al., 

1989) was one of the earliest successful DNN models that were used to classify images. 

CNN models equipped with deep learning techniques outperform previous machine 

learning techniques in various visual recognition challenges, such as ILSVRC (ILSVRC, 

2020) and PASCAL (PASCAL, 2020). These neural networks use the larger data set and 

deeper neural network layers to train high accuracy models. These challenges require 

large-scale training and advanced computation. Fortunately, GPUs have increasingly 

become widely used in accelerating parallel computing applications due to their cost-

effectiveness and recent advancements. Thus, GPU and GPU clusters have been 

employed in the training of the neural network and resulted in the aforementioned 

successful applications. 

The crucial factors which affect the performance or training time of neural 

networks mainly include three parts. First, the structure of neural networks determines the 
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amount of computation, which directly affects time consumption. Second, the 

performance and efficiency of targeted hardware are key for training neural networks. 

Third, the selection of training algorithms determines the training processes of neural 

networks and their completion time. In the training algorithms, the communication 

algorithm is also one of the most influential factors. 

With these crucial factors which affect the performance of training neural 

networks, researchers have studied and proposed many methods to reduce the training 

time. One approach to speed up CNNs is to reduce the time complexity of convolution 

algorithms. Fast Fourier Transform (FFT) algorithms (Nussbaumer, 1981), and 

Winograd’s minimal filtering algorithm (Winograd, 1980) are popular methods and 

successfully reduce the algorithm complexity of the convolution computation in a CNN. 

GPU and GPU clusters are also introduced to accelerate the training speed. In multi-GPU 

training scenarios, data parallel and model parallel are used as the method to divide the 

whole task into multiple parts for parallel computations. 

To evaluate the training performance of neural networks, users mainly rely on 

public benchmarks or numerous experiments to obtain the run-time, which brings a 

significant wastage of time and resources. To eliminate this problem, many performance 

models have emerged. However, an existing analytical performance model is not a silver 

bullet for neural network training performance prediction. The reason is that the neural 

network can be quite complex, essentially including several aspects and running on 

various kinds of hardware. Unfortunately, with the complex network, various hardware, 

and software components, it is challenging to develop an accurate analytical performance 

model for neural networks. A minor change in the neural layer, interconnection network, 
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or software environment may require extensive reworks to adapt to the change. In 

addition, the general performance model must be modified by highly skilled individuals 

when algorithm and hardware architecture are changed. To achieve more efficiency in 

training a neural network, performance prediction becomes a burning desire of 

performance-tuning. 

The previous chapter proposed the parallel computing performance analytical 

model framework to aid practitioners who wish to predict performance and fine-tune their 

parallel computing applications. Our goal is to simplify ways to create the models and yet 

to represent the problems in wider domains. We extended the classic computational 

modeling of Flynn’s taxonomy and combined ideas of two popular performance 

measurement methods, namely Amdahl’s and Gustafson’s laws.  

Therefore, this chapter aims to validate our framework by demonstrating it with 

popular parallel computing applications such as CNN on a distributed GPU system. First, 

for the Parallel application abstract model, we separate CNN model network layers into 

multiple independent tasks. Second, by Parallel system abstract model, we use the 

hardware characteristic of targeted GPUs, the framework library chosen by programmers, 

and the communication method between multiple GPUs to determine the running time for 

each part. Also, with the Extended Flynn’s Taxonomy, GPU cluster and heterogeneous 

system performance become countable. We validate our performance analysis framework 

with four popular CNN models AlexNet (Krizhevsky, et al., 2012), VGG (Simonyan & 

Zisserman, 2014), GoogLeNet (Szegedy, et al., 2015), and ResNet (He, et al., 2016) 

executed on two NVIDIA Pascal GPUs GTX 1080 and GTX 1080Ti, and show that our 

performance analysis framework is both accurate and robust across the diverse layers 
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memory accessing and library framework. We also demonstrate how our performance 

analysis framework can be used for the design-space exploration of future GPUs and 

identify interesting tradeoffs for efficient CNN execution by independently scaling 

different GPU resources.  

In summary, our main contributions are: 

⚫ We present a comprehensive performance analysis model that can predict 

performance and understand bottlenecks for CNN on GPU.  

⚫ We analyze the optimizable method for CNN on multiple GPUs, which will 

help users evaluate their techniques before running on targeted 

machines/architecture. 

⚫ We validate the performance analysis model's accuracy and robustness across 

four popular CNNs on GPUs. 

⚫ We demonstrate how a performance analysis framework can efficiently 

explore the potential optimizable part of the CNN algorithm and the 

bottlenecks of current CNN. 

6.2 Background 

6.2.1 Convolutional Neural Network (CNN)  

CNN is a type of deep learning technique that is commonly used for image 

analysis. The training process of CNNs is a feed-forward neural network, which means 

using the Backpropagation algorithm to adjust learnable kernels, thereby minimizing the 

cost function. The convolutional neural network uses a local receptive field, shared 

weight, and pooling to automatically provides some degree of shift and distortion 

invariance. The convolutional layer is the central part of CNNs. In the convolutional 
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layer, the neuron which in the same feature map using the same weight for input data to 

get the corresponding features. The shared weights mean that neurons share the same 

weights in the feature map. In the current layer, each neuron is connected to the previous 

layer. This kind of connectivity is called the local receptive field. 

We are using Lenet, which was proposed by LeCun in 1989 to show the 

architecture of CNNs. The architecture as shown in Figure 6-1. Lenet-5 (LeCun, et al., 

1998) includes a convolutional layer, a pooling layer, and two fully connected layers. The 

input images are first to get into the input layer and then the data from the previous layer 

pass to the next layer, like the convolutional and pooling layer. 

 

Figure 6-1: The architecture of LeNet-5. 

6.2.2 Graphic Processing Unit (GPU) Architectures 

Modern GPUs are designed for compute-intensive applications. With the 

development of GPU performance, deep neural network CNN gets a huge advantage of 

GPU performance. During the network training, it is essential to understand their general 

data structures and computation algorithm. Let us consider NVIDIA GPUs as an 

example. The GPU consists of many types of memory and many streaming 

multiprocessors (SMs). Each SM contains a variety of functional units. There is also a 

small size of low latency shared memory for SM, which the programmer can allocate the 
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memory. In the GPU, the smallest processing unit is warp, which contains 32 threads and 

is scheduled by the task scheduler in the current generation GPU. Multiple warps in the 

same block were executed by the same SM. The number of threads in each block and the 

number of active blocks in each SM are determined by the hardware specification and 

programmer setting. More details could be found in chapter 3. 

6.2.3 CNN Training Process 

The training process of neural networks depends on the error backpropagation 

algorithm. The training process involves a huge size of calculation and data transmission. 

CNN’s main computing operations, convolution on GPU can be executed by the libraries 

such as CUBLAS (Nvidia, 2020), which is a matrix operation library of NVIDIA. The 

CUBLAS supports various operations based on GEneral Matrix-to-matrix Multiply 

(GEMM). The most common parallelization strategy is data parallelism, which places the 

entire neural network copies on each device so that each processor group processes a 

subset of the training data with the whole neural network and synchronizes network 

parameters at the end of each iteration.  

Another common parallelization strategy is model parallelism. Programmers 

assign subsets of a neural network to many devices; each device has a part of the neural 

network, and the training processing is like pipeline processing at the first iteration. After 

the first iteration, all parts can be trained parallelly. This approach does not need 

parameter synchronization between devices but requires data transfers between each 

device. 

Parallelized CNN training can be executed on multiple GPUs. However, we only 

consider data parallel, which is most widely used, we use data parallel to demonstrate our 
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framework in this paper. Data parallel means that the training data set are divided and 

distributed on different computing devices, in each device, there is the same copy of the 

model or neural network. There are two common implementations of data transfer 

strategies in this process. One is parameter server (PS) mode as shown in Figure 6-2. In 

the parameter server mode, the CPU is usually used as a server node. Another mode is 

NCCL. The model also supported by NVIDIA collective multi-GPU communication 

library (NCCL) as shown in Figure 6-3, realizes parameter transfer and computing 

through the All Reduce Kernel function, which does not need CPU and the transmission 

bottleneck depends on the slowest network link. 

 

Figure 6-2: Parameter server (PS). 



90 

 

Figure 6-3: The NVIDIA Collective Communication Library (NCCL). 

6.2.4 Programming CNN to GPU 

As we know, the convolution operation is the most time-consuming part of the 

convolutional neural network training. The convolution can be easily mapped to the GPU 

in multiple ways and take advantage of GPU parallel computing performance.  

Direct Convolution is the traditional way of processing convolution. A small 

window slides within an input feature map and a dot production between the filter bank 

and local patch during direct convolution. The result of dot production is passed onto a 

non-linear activation function after each execution. Outcome results from this activation 

function are organized into a new feature map as output. Repeating the above process for 

each filter, we can get a set of two-dimensional feature maps as the output of the 

convolutional layer. Presentative implementations of direct convolution include cuda-

convnet2 (Krizhevsky, et al., 2012), and Theano-legacy. 
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Convolution can be easily converted into a multiplication of two matrices by 

unrolling all the involved convolution operations. Highly optimized GEMM kernels 

cuBLAS (Nvidia, 2020) can be invoked to compute matrix multiplications. This is a more 

suitable job for GPU; also, matrix multiplication is the default method in Caffe (Jia, et al., 

2014). Recently, cuDNN (Nvidia, 2020) adopted a GEMM-like method that users could 

easily use. 

6.3 Parallel Computing Performance Model 

In this section, we demonstrate our performance model by representing the CNN 

problem on a distributed GPU system. There are three types of features for the input set 

in our model. They are hardware characteristics include both training side GPUs and host 

side CPUs; the CNN architecture includes each type of layer and communication network 

such as GPU cluster architecture. The algorithm for performance estimate is based on the 

training time of CNN on multiple GPU, the model analyzes the CNN architecture layer 

by layer and gets the number of forward and backward propagations through statistic 

counters. Then the algorithm collects the characteristic parameters of GPUs in the cluster 

and the instruction model of the GPU execution. With that information, the execution 

time of each layer can be predicted. After collecting each layer execution time, the total 

execution time is the sum of each layer execution time. in the transmission model, we 

have considered both the parameter server model and the NCCL model. The calculation 

of transfer time depends on the transmission model. Finally, the iteration time of a CNN 

is obtained according to the computation time and transmission time. 
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Table 6-1: Computation notations. 

Name Description 

𝑡𝑡𝑜𝑡𝑎𝑙 One iteration time of CNNs training 

𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑  Time of forward propagation 

𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 Time of backward propagation 

𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Time of parameter update 

𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙  Forward execution time of layer l 

𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙  Backward execution time of layer l 

𝑡𝑘𝑒𝑟𝑛𝑒𝑙
𝑖  Execution time of CUDA kernel function 

𝐶𝑘𝑒𝑟𝑛𝑒𝑙
𝑖  Number of GPU clock cycles required by kernel function 

I Number of global memory load instructions in one block iteration 

M Number of shared memory instructions in one block iteration 

L Number of CP instructions in one block iteration 

K Number of global memory store instructions in one block iteration 
 

6.3.1 Time of One Training Iteration 

According to the CNN training processing algorithm, we define 𝑡𝑡𝑜𝑡𝑎𝑙 as one 

iteration time of training from the first layer to the last layer, and the formula can be 

described as Eq.6-1 which is derived from Eq.5-9 in the abstract model for building a 

parallel performance model.  

 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑟 + 𝑡𝑒𝑥𝑒 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Eq. 6-1 

In this case, we combine the time of loading data and the time of loading 

instructions to loading time. 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔. 

 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 + 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 𝑖𝑛𝑠𝑡𝑟 Eq. 6-2 

The execution time could be divided to forward passing time and backward 

passing time. 

 𝑡𝑒𝑥𝑒 = 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 Eq. 6-3 

So, the new iteration time is shown as the following equation. 
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 𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔 + 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 + 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 + 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 Eq. 6-4 

Before computing, the training data must be sent to GPU from memory or storage, and 

the data transfer time equals to 𝑡𝑙𝑜𝑎𝑑𝑖𝑛𝑔. The update time 𝑡𝑢𝑝𝑑𝑎𝑡𝑒 include computation 

time of parameters update and transformation time of data passing between each device. 

The detailed calculation process will be explained in 6.3.3. We split the CNN network 

into multiple layers and count each layer's processing time one by one. After getting the 

last layer processing time, we add all processing time together to get the forward time or 

backward time. We can get the calculation formulas of forward and backward time by 

adding the time of each layer as shown in Eq. 6-5 and Eq. 6-6. 

 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = ∑ 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙

𝑁

𝑙=1

 Eq. 6-5 

and 

 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = ∑ 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙

𝑁

𝑙=1

 Eq. 6-6 

In the CNN training processing, most of the computation of training is the matrix 

operation between vectors which could be parallelly executed on GPU, and that 

operations are well-optimized by the CUDA library like cuDNN. In each layer, the 

operations are executed by the CUDA kernel. For each CUDA kernel, the processing 

time can be estimated by the performance model. Therefore, according to the basic 

operation process and calculation order of matrix multiplication in CUDA, we regard the 

computation task as a serial execution process of multiple CUDA kernel functions, which 

can be expressed as follows, where M is the numbers of kernels.  
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 𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑
𝑙 = ∑ 𝑡𝐾𝑓𝑜𝑟𝑤𝑎𝑟𝑑

𝑖

𝑀

𝑖=1

 Eq. 6-7 

and 

 𝑡𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑
𝑙 = ∑ 𝑡𝐾𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑

𝑖

𝑀

𝑖=1

 Eq. 6-8 

6.3.2 GPU Instruction Queue Model 

 In the abstract parallel model, we simplify the execution of kernel function into 

four steps: namely, loading data from the global memory, loading instructions from the 

shared memory, instruction execution, and collecting the results data and storing it to the 

global memory. Correspondingly, we define four types of abstract instructions to 

represent the four steps as we mentioned in 5.3.2; they are Global Load, Shared Load, 

instruction execution, and Global Store. The number of these instructions is dependent on 

warps and limited by the specification of hardware, such as the block size and shared 

memory size. In this performance model, we assume that the hardware resources of GPU 

have maximum utilization, there are no data conflicts in the transfer process, also all the 

instruction passing touch the top bandwidth of the memory (Nvidia, 2019). Therefore, we 

convert the execution time of a kernel to the count of operations. The time of each 

instruction required depends on the performance of the target GPU. The Execution time 

of the CUDA kernel function can be obtained as Eq. 6-9. 

 𝑡𝑘𝑒𝑟𝑛𝑒𝑙
𝑖 = 𝐶𝑘𝑒𝑟𝑛𝑒𝑙

𝑖 × 𝑡𝐺𝑐𝑙𝑜𝑐𝑘 Eq. 6-9 

In the actual work, there are different instructions, such as memory instruction 

and computation instruction. Memory instruction need to access the local memory or 

shared memory while computation instruction needs the computing core to execute the 
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instructions. Our GPU instruction queue model considers two conditions: memory-

intensive and computation-intensive. The memory-intensive means that the number of 

memory load instructions is much larger than the number of computing operations, and 

Figure 6-4 shows the general execution pipeline of the streaming multiprocessors.  

 

Figure 6-4: Memory intensive queue model. There are I Global Load instructions, M 

Shared Load instructions, L CP instructions, and K Global Store instructions in each 

block iteration. 

In the kernel, all the instructions are executed by the warps, and multiple warps 

are executed in the blocks, the blocks executed in the same SM at the same time. The 

iteration end until all warps be executed in the block. The number of clock cycles and the 

GPU performance can be found in the GPU document. In this scenario, computing 

instructions are completely overlapped by Shared Load instructions as shown in Figure 

6-5. The number of clock cycles used in the execution of a block is equal to the sum of 

the other instructions. Eq. 6-10 shows the computation process of the queue execution 

time. 

 𝐶𝑘𝑒𝑟𝑛𝑒𝑙 = 𝐶𝑏 × 𝑁𝑏𝑙𝑜𝑐𝑘 + 𝐿𝐺𝐿 Eq. 6-10 
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Furthermore, the computation-intensive model means that the number of 

computing instructions is much larger than memory load instructions. Multiple 

computation instructions can be executed in parallel to take advantage of multiple SM 

units in the GPU. As shown in Figure 6-5, computing instructions can overlap the Shared 

Load instructions. 

 

Figure 6-5: Computation intensive queue model. There are I Global Load 

instructions, M Shared Load instructions, L CP instructions, and K Global Store 

instructions in each block iteration. 

In this situation, the number of computing instructions decides the block 

execution time. The computing instructions are executed by the SP unit. The transmission 

instructions time is decided by the speed of load store units. The coverage ability of 

computing instructions is limited by hardware conditions. 

 𝐶𝑘 = 𝐶𝑏 × 𝑁𝑏𝑙𝑜𝑐𝑘 + 𝐿𝐺𝑆 Eq. 6-11 
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6.4 Experiments and Evaluation 

In this section, we evaluate our performance modeling concerning the scalability 

of the CNN on a distributed GPUs system. We focus on the image classification task 

where CNN is most successfully applied and very computationally intensive. The input 

of the model is a set of characteristic parameters including CNN layer information, GPU 

hardware characteristics, and network structure performance, as shown in Table 6-2. To 

verify the accuracy of our model, we compare the estimated results with the actual 

runtime of the target CNNs model. We first use CIFAR-10 (Karpathy, 2011) to train the 

Alexnet and Resnet-50 network and ensure the accuracy of two CNNs close to the results 

in the original paper, and then we generate random numbers of the same size as the 

dataset in the same environment to get the real CNN runtime. After 10 rounds of hot start, 

the average time of 20 iterations is used as the result. The experimental platform is Intel 

I9 CPU model 9900K 3.60 GHz, Ubuntu 16.04.1, python 3.5.2, tensorflow-gpu 1.8.0, 

CUDA 9.0, cuDNN 7.1.4, NVIDIA GTX 1080 Ti, and GTX 1080. 
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Table 6-2: Inputs parameters. 

Description Source 

Layer type CNN architecture 

Input feature map (height, width) CNN architecture 

Output feature map CNN architecture 

Filter (height, width) CNN architecture 

Batch size CNN architecture 

GPU version Hardware feature 

Calculate ability Hardware feature 

Number of CUDA core Hardware feature 

Memory bandwidth Hardware feature 

CPU frequency Hardware feature 

Transmission model (PS/NCCL) Network feature 

Number of GPU Network feature 

Network bandwidth Network feature 
 

6.4.1 Layer Time Evaluation  

We choose Alexnet and Resnet-50 to be the examples to evaluate the training 

time. Figure 6-6 and Figure 6-7 reflect the estimated time and runtime of each layer. In 

Alexnet, our model found that conv1 is the main bottleneck of the whole network. The 

reason for the issue is the filter size of conv1 is 11*11, the big size filter needs a large 

amount of calculation in the input layer. In the real world, to improve the performance of 

training processing. Researchers try to use a smaller filter that reduces the computing 

requirements and increases the performance efficiency. We find out that the estimated 

results of the model do not always follow the actual results. The reason for that is that in 

the actual execution when the matrix dimensions increase, the execution performance 

does not increase linearly. In the model, we only consider convolution, pooling, and full 

connected, which are the critical and most time-consuming parts of CNN.  
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Figure 6-6: Comparison of runtime prediction for each layer in Alexnet (batch size 

256). 

 

Figure 6-7: Comparison of runtime prediction for each layer in Resnet-50 (batch size 

256). 
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6.4.2 Transmission Time Evaluation 

Multi-GPU execution mode in TensorFlow is one of the most important cases and 

our performance model supports such a model. To fully use the performance of the GPU 

cluster and eliminate other interference, we use data parallelism to train Resnet-50 on 

NVIDIA GTX 1080 Ti and GTX 1080. According to the differences in transmission 

methods, we compare iteration times in the PS mode and the NCCL mode, respectively, 

as shown in Table 6-3 and Table 6-4.  

Table 6-3: Resnet-50 data parallel comparison between actual runtime and model 

prediction in the PS mode. 

PS mode Runtime(s) prediction(s) 

GPU Total   Total 

GTX 1080 1.72458 1.68548 

GTX 1080 Ti 1.64589 1.62549 

GTX 1080 GTX 1080 Ti 0.92458 0.90158 
 

Table 6-4: Resnet-50 data parallel comparison between actual runtime and model 

prediction in the NCCL mode. 

NCCL mode Runtime(s) prediction(s) 

GPU Total   Total 

GTX 1080 1.73458 1.65489 

GTX 1080 Ti 1.65489 1.63258 

GTX 1080 GTX 1080 Ti 0.94589 0.92158 
 

Compared with PS mode, NCCL has better performance on the transmission 

bandwidth. It needs more GPUs’ computing resources, which could impact 

computational efficiency. Comparing the predicted result of our performance model will 

help users make decisions to pick a suitable transmission mode, especially when using 

TensorFlow. Our experiment employs two different GPU cards, and the results did not 
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show too much improvement due to the system bottleneck is the GTX 1080. In this 

experiment, we choose data parallelism, which runs the same model on both cards. From 

our observation, GTX 1080 processing performance is slower than GTX 1080 Ti, perhaps 

because GTX 1080 has less memory size than GTX 1080 Ti.  

6.5 Conclusion 

In this chapter, we demonstrated our analytical performance model to predict the 

CNN's training time on a distributed GPU system. We constructed a GPU instruction 

queue model and transmission model, which ultimately will help AI researchers make the 

right decision to run their application effectively, such as the CNN training process from 

multiple perspectives. We verified our model on two different NVIDIA GPU cards and 

two CNN architectures. The training time includes both layer processing and network 

communication. Our results suggested that the accuracy of our model is up to 95.37%.  

In addition, our model also had a decent performance prediction in multi-GPU. 

Finally, we showed that our abstract models and framework can fit more types of CNN 

architectures without too many changes. In the future, we will explore different classes of 

Deep learning architectures and parallel computing problems. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 
 

The past decade has witnessed significant advancement in the performance of 

multicore and manycore processors, especially the general-purpose GPUs. With the rapid 

growth of computing cores in these highly parallel platforms and increasingly complex 

system architectures, comprehensive understanding of performance and efficient 

utilization of performance in heterogeneous systems becomes a serious challenge, 

especially in how to program, schedule, and allocate resources, e.g., registers, caches, and 

thousands of computing cores and threads. These ever-changing application requirements 

and various kinds of hardware co-processors and connectivity become normal. Effective 

analytical performance modeling even becomes a paramount important skill set for 

programmers. A framework for building the parallel computing abstraction models and 

analytical performance model guides users who want to represent their application logic 

and analyze performance outcomes for various systems quickly. 

7.1 Conclusions 

This dissertation started with motivation and current issues. In chapter 2, we gave 

an overall background of the GPU and related topics. Chapter 3 proposed our novel 

analytic performance model with the GPU block size estimation, in which the first model 

considered the effective block size on performance. Our model revealed the GPU 
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performance characteristics by analyzing hardware device characteristics, memory 

allocating, thread block organization, memory latency hiding, memory characteristic of 

memory hierarchies, coalesced memory, data reuse rate, and memory accessing pattern. 

The analytical GPU performance model can potentially identify bottlenecks without 

running the actual program. Using a suitable block size for GPU applications, users can 

improve the application performance with ease. Chapter 4 presented a novel method 

aiming to alleviate some limitations of GPU applications. We proposed the dynamic 

partition of the SMs for each kernel based on the computational throughput estimated by 

GPU performance modeling. Our result showed an increase in performance without any 

changes. 

In the second part of this dissertation, we focused on a general parallel computing 

and distributed system analytical model. In chapter 5, we presented two parallel 

computing abstract models. These models represented program logic and algorithmic 

steps and simplify the workload distribution behaviors. An extension to Flynn’s 

taxonomy was proposed to support heterogeneous systems with communication time 

consideration. Chapter 6 illustrated a demonstration of our proposed modeling techniques 

with real-world application on a distributed GPU system. The analytical performance 

model for the CNN application analyzed performance characteristics on multiple GPUs, 

enabling users to evaluate their techniques before running applications on targeted 

machines/architecture. 
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7.2 Future Work 

We hope that the GPU performance model can be applied to future GPU 

hardware. The performance model can also be extended to support other multiple and 

many-core processors in the future, like the artificial intelligence accelerator processor.  
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