
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Fall 2019

Feature Space Modeling for Accurate and Efficient Learning From Feature Space Modeling for Accurate and Efficient Learning From

Non-Stationary Data Non-Stationary Data

Ayesha Akter
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

 Part of the Artificial Intelligence and Robotics Commons, and the Computer Engineering Commons

Recommended Citation Recommended Citation
Akter, Ayesha, "" (2019). Dissertation. 823.
https://digitalcommons.latech.edu/dissertations/823

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital
Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana
Tech Digital Commons. For more information, please contact digitalcommons@latech.edu.

https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.latech.edu%2Fdissertations%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.latech.edu%2Fdissertations%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/823?utm_source=digitalcommons.latech.edu%2Fdissertations%2F823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

FEATURE SPACE MODELING FOR ACCURATE AND EFFICIENT

LEARNING FROM NON-STATIONARY DATA

by

 Ayesha Akter, M. S.

A Dissertation Presented in Partial Fulfillment

of the Requirements of the Degree

Doctor of Philosophy

November 2019

COLLEGE OF ENGINEERING AND SCIENCE

LOUISIANA TECH UNIVERSITY

 GS Form 13

 (8/10)

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

SEPTEMBER 16, 2019
Date

be accepted in partial fulfillment of the requirements for the Degree of

 Supervisor of Dissertation Research

Head of Department

Computational Analysis and Modeling

Department

Recommendation concurred in:

 Advisory Committee

Approved: Approved:

__________________________________ ______________________________
Director of Graduate Studies Dean of the Graduate School

Dean of the College

 We hereby recommend that the dissertation prepared under our supervision by

xxxxxxxxxxxxxxx
 Ayesha Akter, M. S.

Entitled FEATURE SPACE MODELING FOR ACCURATE AND EFFICIENT

LEARNING FROM NON-STATIONARY DATA

Doctor of Philosophy in Computational Analysis and Modeling

iii

ABSTRACT

A non-stationary dataset is one whose statistical properties such as the mean,

variance, correlation, probability distribution, etc. change over a specific interval of time.

On the contrary, a stationary dataset is one whose statistical properties remain constant

over time. Apart from the volatile statistical properties, non-stationary data poses other

challenges such as time and memory management due to the limitation of computational

resources mostly caused by the recent advancements in data collection technologies which

generate a variety of data at an alarming pace and volume. Additionally, when the collected

data is complex, managing data complexity, emerging from its dimensionality and

heterogeneity, can pose another challenge for effective computational learning. The

problem is to enable accurate and efficient learning from non-stationary data in a

continuous fashion over time while facing and managing the critical challenges of time,

memory, concept change, and complexity simultaneously.

Feature space modeling is one of the most effective solutions to address this

problem. For non-stationary data, selecting relevant features is even more critical than

stationary data due to the reduction of feature dimension which can ensure the best use a

computational resource to produce higher accuracy and efficiency by data mining

algorithms. In this dissertation, we investigated a variety of feature space modeling

techniques to improve the overall performance of data mining algorithms. In particular, we

built Relief based feature sub selection method in combination with data complexity

iv

analysis to improve the classification performance using ovarian cancer image data

collected in a non-stationary batch mode. We also collected time series health sensor data

in a streaming environment and deployed feature space transformation using Singular

Value Decomposition (SVD). This led to reduced dimensionality of feature space resulting

in better accuracy and efficiency produced by Density Ration Estimation Method in

identifying potential change points in data over time. We have also built an unsupervised

feature space modeling using matrix factorization and Lasso Regression which was

successfully deployed in conjugate with Relative Density Ratio Estimation to address the

botnet attacks in a non-stationary environment.

Relief based feature model improved 16% accuracy of Fuzzy Forest classifier. For

change detection framework, we observed 9% improvement in accuracy for PCA feature

transformation. Due to the unsupervised feature selection model, for 2% and 5% malicious

traffic ratio, the proposed botnet detection framework exhibited average 20% better

accuracy than One Class Support Vector Machine (OSVM) and average 25% better

accuracy than Autoencoder. All these results successfully demonstrate the effectives of

these feature space models.

The fundamental theme that repeats itself in this dissertation is about modeling

efficient feature space to improve both accuracy and efficiency of selected data mining

models. Every contribution in this dissertation has been subsequently and successfully

employed to capitalize on those advantages to solve real-world problems. Our work bridges

the concepts from multiple disciplines ineffective and surprising ways, leading to new

insights, new frameworks, and ultimately to a cross-production of diverse fields like

mathematics, statistics, and data mining.

 GS Form 14

 (8/10)

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University

the right to reproduce, by appropriate methods, upon request, any or all portions of this

Dissertation. It is understood that “proper request” consists of the agreement, on the part

of the requesting party, that said reproduction is for his personal use and that subsequent

reproduction will not occur without written approval of the author of this Dissertation.

Further, any portions of the Dissertation used in books, papers, and other works must be

appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the

literature, at any time, any or all portions of this Dissertation.

Author ________________ .

Date SEPTEMBER 16, 2019 .

vi

DEDICATION

To my parents and family

_ _

You all gave me the support, courage, spirit and inspiration to dream, to hope, to love,

and above all, to live with vision.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

APPROVAL FOR SCHOLARLY DISSEMINATION ... v

DEDICATION ... vi

LIST OF FIGURES ... xi

LIST OF TABLES ... xiii

ACKNOWLEDGMENTS ... xvi

 INTRODUCTION .. 1

1.1 Overview of Dissertation .. 1

1.2 Data Mining Definitions and Primitives ... 1

1.2.1 Overview of KDD Process.. 1

1.2.2 Details of Data Mining Step ... 3

1.2.3 Supervised Vs. Unsupervised Learning .. 4

1.2.4 Stationary vs. Non- Stationary Data Mining... 5

1.2.5 Feature Space Modeling and Dimensionality Reduction................................ 6

1.3 Problem Statement, Objective and Solution Methods .. 8

1.4 Related Mathematical and statistical methods .. 9

1.4.1 Matrix Decomposition .. 9

1.4.2 Pairwise t-Test .. 10

1.4.3 Lasso Regularized Regression .. 11

1.4.4 Density Ratio Estimation .. 12

1.5 Associated Validation and Metrics of Performance ... 12

viii

1.5.1 k-Fold Cross Validation .. 12

1.5.2 Metrics of Performance for Balanced Dataset .. 12

1.5.3 Metrics of Performance for Unbalanced Dataset .. 14

1.6 Organization of Dissertation ... 14

 DISTANCE BASED FEATURE SPACE MODELING TO IMPROVE

CLASSIFICATION PERFORMANCE ... 16

2.1 Chapter Overview ... 16

2.2 Related Works ... 17

2.3 Dataset Information .. 19

2.4 Algorithm and Methodology .. 20

2.4.1 Normalization ... 20

2.4.2 Filtering of Useless Features ... 20

2.4.3 Relief Based Feature Space Model (Feature Ranking and Selection) 20

2.4.4 Data Complexity Analysis .. 21

2.4.5 Measures of Overlap of Individual Feature Values (F1, F3) 22

2.4.6 Measures of Inseparability of Classes ((L1, L2), (N1, N2)) 23

2.4.7 Non-linearity (L3, N4) .. 23

2.4.8 Single Classifier Vs. Ensemble Classifier .. 24

2.4.9 Non-Fuzzy vs. Fuzzy Classifier .. 25

2.4.10 Fuzzy Forests .. 25

2.5 Results ... 30

2.5.1 Feature Selection ... 30

2.5.2 Linear Inseparability of Data .. 31

2.5.3 Data Complexity Analysis .. 33

2.5.4 Validation using Crisp and Fuzzy Classifiers ... 35

2.5.5 Results of Runtime Complexity Analysis ... 38

ix

2.6 Findings and Discussion ... 41

 FEATURE SPACE TRANSFORMATION FOR CHANGE POINTS

DETECTION FRAEWORK ... 42

3.1 Chapter Overview ... 42

3.2 Related Works ... 43

3.3 Dataset Information .. 46

3.3.1 Artificial Dataset: Type # 01... 46

3.3.2 Artificial Dataset: Type # 02... 47

3.3.3 Artificial Dataset: Type # 03... 47

3.3.4 Public Dataset ... 48

3.4 Algorithm and Methodology .. 49

3.4.1 Framework MCD-PuLSIF .. 49

3.4.2 Defining Temporal Intervals ... 51

3.4.3 PCA (Principle Component Analysis) .. 52

3.4.4 Dissimilarity Measurement Based on Divergence .. 53

3.4.5 Mathematical Formulation of KLIEP Method .. 55

3.4.6 Mathematical Formulation of uLSIF Method ... 57

3.4.7 Dynamic Cutoff Point ... 58

3.4.8 Validation Criteria .. 59

3.5 Results ... 60

3.5.1 Results: Type # 01 Dataset ... 61

3.5.2 Results: Type # 02 Dataset ... 63

3.5.3 Results: Type # 03 Dataset ... 64

3.5.4 Results: Public Datasets .. 69

3.5.5 Computation Complexity Analysis ... 72

3.6 Findings and Discussion ... 74

x

 UNSUPERVISED FEATURE SPACE MODELING FOR BOTNETS

DETECTION FRAMEWORK ... 76

4.1 Chapter Overview ... 76

4.2 Related Works ... 77

4.3 Data Set Information ... 84

4.4 Algorithm and Methodology .. 84

4.4.1 Unsupervised Feature Selection Using Matrix Factorization 85

4.4.2 Relative Density Ratio Estimation and Defining Safety Score 89

4.4.3 k-Fold Dynamic Threshold ... 92

4.4.4 Algorithm of Proposed Framework .. 93

4.5 Results ... 96

4.6 Findings and Discussions .. 108

 CONCLUSION AND FUTURE WORK ... 109

5.1 Conclusion .. 109

5.1.1 Relief based feature space modeling to reduce data complexity to improve

classification performance .. 109

5.1.2 SVD based feature space transformation to build a novel change detection

system with better accuracy and efficiency .. 110

5.1.3 Unsupervised feature space modeling to build a novel IoT botnet detection

system with better accuracy and efficiency .. 110

5.2 Future Work .. 111

REFERENCES ... 112

xi

LIST OF FIGURES

Figure 1-1: The step diagram of the KDD process. ... 2

Figure 1-2: (left) classification plot, (right) regression plot .. 4

Figure 1-3: Clustering process ... 5

Figure 1-4: AUC-ROC curve ... 13

Figure 2-1: A typical illustration of a normal ovary and ovary with cancer. 18

Figure 2-2: Single vs. ensemble classifier ... 24

Figure 2-3: Flow diagram for fuzzy forest classifier. (a) screening step (b) selection

step (c) final step. .. 26

Figure 2-4: Performance of relief ranked features ... 31

Figure 2-5: PC1 Vs. PC2 of 796 features prior to relief feature selection 32

Figure 2-6: PC1 Vs. PC2 of 39 features post relief feature selection 32

Figure 2-7: (a-h) Comparison of measures of eight data complexity descriptors pre

and post feature selection process. .. 34

Figure 2-8: Results of module/partition membership distribution 37

Figure 2-9: Comparison of performance of non-fuzzy and fuzzy classifiers 37

Figure 2-10: ROC curve (sensitivity vs specificity) for fuzzy forest 38

Figure 2-11: Comparison between actual versus theoretical runtime with respect to

number of instances. ... 39

Figure 3-1: Potential change points detection for type 01 datasets where KL-

divergence and PE-divergence undergoes noticeable changes. (a) & (b) time vs. KL-

divergence between PCA transformed data segments (original feature dimension

equals to 25, and 75, respectively). (c) & (d) time vs. PE-divergence between PCA

transformed data segments with original feature dimension equals to 75, and 100,

respectively. .. 62

xii

Figure 3-2: Potential change points detection for type 02 datasets where KL-

divergence or PE-divergence undergoes noticeable changes. (a) & (b) Time vs. KL-

divergence between PCA transformed data segments with original feature dimension

equals to 50 and 100 respectively. (c) & (d) Time vs. PE-divergence between PCA

transformed data segments with original feature dimension equals to 25 and 75

respectively. .. 63

Figure 3-3: Potential change points detection for type 03 datasets where KL-

divergence or PE-divergence undergoes noticeable changes. (a) & (b) Time vs. KL-

divergence between PCA transformed data segments with original feature dimension

equals to 25 and 100 respectively. (c) & (d) Time vs. PE-divergence between PCA

transformed data segments with original feature dimension equals to 50 and 75

respectively. .. 65

Figure 3-4: The results of performance improvement of KLIEP method in terms of

TP, FP, FN, and execution time for PCA ... 67

Figure 3-5: The results of performance improvement of uLSIF method in terms of

TP, FP, FN, and execution time for PCA. .. 68

Figure 3-6: Comparison of performance improvement between KLIEP and uLSIF

method in terms of TP, FP, FN, and execution time after dimensionality reduction by

PCA. .. 69

Figure 3-7: Comparison of experimental results of MCD-PuLSIF method with CD-

LLH, CD-MKL, and CD-Area using cover type and activity datasets separately. 72

Figure 3-8: Comparison of runtime against window size and feature dimension for

MCD-PuLSIF. ... 73

Figure 4-1: Comparison of performance in terms of F1-score of proposed IBDS

framework with OSVM, LOF, and ISF for device 9 IoT devices. 106

Figure 4-2: Comparison of run time ration of proposed IBDS framework with

OSVM, LOF, and ISF for device 9 IoT devices. .. 106

Figure 4-3: (a) Comparison of runtime ratio of proposed IBDS with OSVM, LOF,

ISF, and Deep Autoencoder concerning window size (b) Comparison of average

runtime in seconds of proposed IBDS with OSVM, and deep autoencoder concerning

window size. ... 107

xiii

LIST OF TABLES

Table 2-1: Data complexity analysis pre-relief feature selection 33

Table 2-2: Data complexity analysis post-relief feature selection. 33

Table 2-3: Accuracy, sensitivity, and specificity obtained using 10-fold cross-

validation... 36

Table 2-4: Actual runtime with respect to the number of instances................................. 39

Table 2-5: Summary of the state-of-the-art CAD techniques for ovarian classification . 40

Table 3-1: Brief information about real datasets available in UCI machine repository. . 48

Table 3-2: Change detection in multi-dimensional feature space with PCA and uLSIF . 49

Table 3-3: Comparison of performance of KLIEP on full features and PCA reduced

features for four type #01 synthetic datasets... 62

Table 3-4: Comparison of performance of uLSIF on full features and PCA reduced

features for four type #01 synthetic datasets... 63

Table 3-5: Comparison of performance of KLIEP on full features and PCA reduced

features on four type #02 datasets ... 64

Table 3-6: Comparison of performance of uLSIF on full features and PCA reduced

features on four type #02 datasets ... 64

Table 3-7: Comparison of performance of KLIEP on full features and PCA reduced

features on four type #03 datasets. .. 65

Table 3-8: Comparison of performance of uLSIF on full features and PCA reduced

features on four type #03 datasets. .. 66

Table 3-9: Performance improvement of KLIEP and uLSIF methods in terms of TP,

FP, FN and execution time due to PCA. ... 66

Table 3-10: Overall comparison of performance improvement between KLIEP and

uLSIF on PCA transformed data... 68

Table 3-11: Comparison of experimental results of MCD-PuLSIF method with CD-

LLH, CD-MKL, and CD-Area using real world datasets. .. 70

xiv

Table 3-12: Comparison of runtime against window size and feature dimension for

MCD-PuLSIF. ... 73

Table 4-1: ALGORITHM 1: framework IBDS.. 93

Table 4-2: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D1. .. 99

Table 4-3: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D2. .. 100

Table 4-4: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D3. .. 100

Table 4-5: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D4. .. 101

Table 4-6: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D5. .. 101

Table 4-7: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D6. .. 102

Table 4-8: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D7. .. 102

Table 4-9: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D8. .. 103

Table 4-10: Comparison of performance in terms of F1-score and runtime of

proposed framework IBDS with OSVM, LOF, and ISF for device D9. 103

Table 4-11: Hyperparameter used for deep autoencoder for 9 IoT devices. 104

Table 4-12: Performance of deep autoencoder in terms of F1-score for D1, D3, D4,

and D5 IoT devices. ... 104

Table 4-13: Performance of Deep Autoencoder in terms of F1-score for D6, D7, and

D8 IoT devices. .. 104

Table 4-14: Performance of Deep Autoencoder of F1-score for D2, and D9 IoT

devices... 105

Table 4-15: Pairwise t-test results at 95% confidence level using average F1-score of

proposed IBDS with OSVM, LOF, ISF, and Autoencoder for 9 IoT devices. 105

Table 4-16: Pairwise t-test results 95% confidence level using average run time (in

sec) of proposed IBDS with OSVM, LOF, ISF, and Autoencoder for 9 IoT devices. ... 106

xv

xvi

ACKNOWLEDGMENTS

First of all, I would like to thank my Creator for every blessing, for the strength I

got during this period when the tide was high, and the hope was low. Special thanks to the

three most important persons in my life, my mother Sakila Banu, my father Mirza Golam

Ambia, and my husband A Z M Nowzesh Hasan. All of them fought their life so that I can

be successful. I could never have achieved this dream without Dr. Sumeet Dua believing

in me. I also would like to thank Dr. Pradeep Chowriappa, Dr. Weizhong Dai, Dr. Jean

Gourd, Dr. Jinko Kanno, Dr. Collin Wick, and all the faculty at Louisiana Tech University

for their wonderful courses that helped me in my studies. I especially appreciated all of the

professors' ability to explain difficult concepts so well. I'd also like to thank all the staff

and students that have helped me in ways that differed but were so helpful, especially

Norman John Mapes Jr. and Hatwib Mugasa.

1

INTRODUCTION

1.1 Overview of Dissertation

The common thread in three of the major sections CHAPTER 2, CHAPTER 3,

and CHAPTER 4 are original contributions in building a variety of feature space models

to improve the accuracy and efficiency of data mining algorithms and explore their

applicability to solve real life problems as well as overcoming computational challenges.

In the following sections of this chapter, we described necessary concepts, mathematical,

statistical, and data mining tools and techniques to justify the selection of methodologies

used in CHAPTER 2, CHAPTER 3 , and CHAPTER 4.

1.2 Data Mining Definitions and Primitives

1.2.1 Overview of KDD Process

Knowledge discovery from data (KDD) is the automated or convenient extraction

of interesting patterns implicitly stored or captured in large databases, data warehouses, the

Web, other massive information repositories, and data streams [1]. Interesting patterns

represent non-trivial, implicit, previously unknown and potentially useful knowledge from

a huge amount of data. Data selection, data preprocessing, data transformation, data

mining, patterns evaluation, and knowledge discovery are key stages involved in the KDD

process as shown in Figure 1-1.

2

Figure 1-1: The step diagram of the KDD process.

In the Data Selection stage, we collected records from existing data sources to

prepare target datasets to be considered for further processing in the KDD life cycle. The

records of target dataset can be either unlabeled or labeled which plays the most significant

role in defining the goal of a data mining task. Unlabeled data, for example, photos, audio

recordings, videos, news articles, tweets, x-rays etc., consists of samples of natural or

human-created artifacts that can be obtained relatively easily from the world without any

"meaningful tags". Labeled data is a group of samples that have been tagged with one or

more labels. Labeling typically takes a set of unlabeled data and augments each piece of

that unlabeled data with meaningful tags that are informative.

For example, labels might indicate whether a photo contains a car or a bus, which

words were uttered in an audio recording, what the topic of a news article is, what the

overall sentiment of a tweet is, whether the dot in an x-ray is a tumor, etc. Another

3

important task of the Data Selection stage is the selection of relevant features or records

for applicable and effective knowledge discovery.

In the Data Preprocessing stage, a selected dataset is cleaned by removing noise

and outliers, missing data fields are imputed, time sequence information and known

changes are also incorporated. Data integration is also a part of the Data Preprocessing

stage where data from multiple heterogenous sources may be required to combine to form

a single improved dataset to improve the efficiency of data mining. Data Transformation

is the next stage which involves transforming data into appropriate format suitable for

specific data mining tasks. Normalization, discretization, or smoothing of data, and feature

construction are some of the key methods involved in the Data Transformation stage. In

the Data Mining stage, we applied intelligent data modeling techniques to extract hidden

data patterns from the target dataset. We elaborated Data Mining Stage in Section 1.2.2.

Evaluation is the final stage of the KDD process where extracted patterns are analyzed to

discover unknown and interesting patterns from the underlying dataset which is followed

by knowledge representation using visualization tools to present mined knowledge to the

end users of the system.

1.2.2 Details of Data Mining Step

The KDD process mainly focuses on the development of methods and techniques

for making the best sense and use of data. Data Mining is the core of this KDD process for

pattern discovery and knowledge extraction [2]. In the data mining stage of the KDD

process, three major type of activities are involved as follows:

4

Selection of the data mining task: Based on selected dataset, Data Mining task starts

with deciding whether the goal of the KDD process is clustering, anomaly detection,

classification, or regression, and so forth.

Selection of the data mining algorithm(s): The next task is the selection of

appropriate models and parameters to be used for searching unknown and useful patterns

such that the selected data mining method is matched with the overall criteria of the KDD

process.

Perform actual data mining: Finally, we applied selected algorithm on a target

dataset to search for patterns of interest in a representational form or a set of such

representations as classification rules or trees, regression, clustering, and so forth.

1.2.3 Supervised Vs. Unsupervised Learning

The objective of supervised learning is to identify specific relationships or structure

in the input data that can effectively produce correct output data. Classification and

regression are two major areas of supervised learning where input variables or features are

mapped to the output labels or continuous values, respectively. Common supervised

learning algorithms include decision tree, k-NN, linear regression, logistic regression,

support vector machines, naive Bayes, artificial neural networks, random forests, fuzzy

forest, and so on as shown in Figure 1-2.

Figure 1-2: (left) classification plot, (right) regression plot

5

On the contrary, the goal of unsupervised learning is to identify the previously

unknown patterns of chosen dataset without pre-existing target variables. Description

analysis, association rule mining, clustering, anomaly detection, etc. are some major areas

in unsupervised learning as shown in Figure 1-3.

Figure 1-3: Clustering process

Among unsupervised algorithms, k-means clustering, principal component

analysis, and autoencoders are widely used. There is no specific way to compare model

performance for most of the unsupervised learning methods due to the absence of response

variables.

1.2.4 Stationary vs. Non- Stationary Data Mining

Data Mining Tasks can be significantly different based on whether the dataset is

being collected in stationary or non-stationary environment. A stationary dataset is one

whose statistical properties such as the mean, variance and autocorrelation are all constant

over time, whereas a non-stationary data is one whose statistical properties change over

time.

Traditionally, non-stationary data, for example, a data stream, arrive at a rate that

does not permit to store them permanently in memory which imposes three major

challenges: 1) memory management, 2) time management, and 3) detection of concept

6

change. Efficient memory management deals with storing and computing a small portion

of useful data and discarding the rest of the information since it is impossible to store all

the data at a time, whereas time Management limits the time in which an instance or batch

of instances can be processed.

Concept change occurs when the distribution of data shifts from time to time after

a minimum stability period. When the training and test data follow different distributions,

it is difficult to learn about the test distribution from the training samples. This problem of

concept change needs to be addressed to maintain the model performance within acceptable

level. Due to these three challenges, data mining objective and tasks may change

significantly for stationary and non-stationary data. While higher model performance is the

most important goal for stationary data, computational time and memory optimization are

equally important as model performance in the case of non-stationary data. However,

stationary data can also be considered as a form of non-stationary data when it is collected

in batch mode, stored, processed, and analyzed offline with regular interval.

1.2.5 Feature Space Modeling and Dimensionality Reduction

In the modern era, datasets collected from both stationary and non-stationary

environment may be exploded with hundreds and thousands of features. Examples of such

datasets are text documents, gene expression array, data from image or social, and so on.

Among these numerous amounts of features, some are redundant, whereas some are

irrelevant which may lead to not only poor model performance but also huge computational

expense both in terms of runtime and memory. The selection of most relevant features

which are capable to make maximum contributions to generate a desired output is called

Feature Selection. The approach and techniques for Feature Selection are completely

7

different for unsupervised and supervised learning. Most of the traditional Feature

Selection methods are designed for supervised learning where a dataset has certain target

or response variables. Supervised Feature Selection methods are categorized into wrappers,

filters, and embedded methods. Wrappers search through the feature space to identify

possible important features by using search algorithms and run a model on the subset to

provide scores, and evaluate each subset based on computed scores. The wrapper methods

have two major drawbacks, 1) they are computationally expensive and 2) model can be

overfitted. Simulated annealing, Genetic algorithm, Greedy forward selection, Greedy

backward elimination, Particle swarm optimization are some popular wrapper feature

selection methods.

Filter methods follow a similar search approach like wrapper methods, but instead

of evaluating against a model, a single statistical measure is chosen suitable for chosen data

to identify insignificant features to be filtered out. Correlation and mutual information-

based methods are widely used as the filter-based feature selection methods. Embedded

algorithms perform own their feature selection process, for example, Lasso Logistic

Regression or Neural Network algorithm performs feature selection and classification

simultaneously. Feature Subset Selection is one approach which reduces the dimension of

original feature space to a significant degree. Another approach is transforming higher

dimensional space into lower dimensional feature space and projecting original data onto

lower dimension such that a maximum amount of information is retained while removing

the redundancy. Principle Component Analysis (PCA) is one of the most widely used

dimensionality reduction technique that makes linear transformation of higher dimensional

8

feature space into lower dimensional feature space retaining maximum original variance

while removing co-variance as much as possible.

1.3 Problem Statement, Objective and Solution Methods

A non-stationary dataset is characterized by its volatile statistical properties such

as non-constant mean, variance, correlation, probability distribution. etc. over time.

Moreover, non-stationary data undergoes the critical challenges of time and memory

management due to the limitation of computational resources mostly caused by the recent

advancements in data collection technologies which generate a variety of data at an

alarming pace and volume. When collected data is complex, managing data complexity,

emerging from its dimensionality and heterogeneity, can pose additional challenges for

effective computational learning. Under such scenarios, the overarching problem is to

enable accurate and efficient learning from non-stationary data in a continuous fashion over

time while facing and managing the critical challenges of time, memory, concept change,

and complexity simultaneously.

The unified objective of this dissertation is to build three different feature space

models to address the major problems of non-stationary data. First, we collected stationary

labeled data from ovarian cancer image exhibiting very high data complexity in terms of

class overlapping, feature non-linearity, class inseparability which led to considerable

performance degradation of classification algorithms in differentiating between benign and

malignant target classes. We solved this data complexity problem by building a Relief

based feature space model to reduce the complexity of data which ultimately improved the

accuracy of classifiers. Next, we collected unlabeled multi-dimensional time series data in

a streaming environment with periodic change of statistical properties. We built a change

9

detection framework using density ratio estimation method to compute the Pearson

divergence for detecting possible occurrence of change points between two data segments,

but high dimensionality of data affected the ability of change detection framework both in

terms of detection rate and run time. We solved this problem by using feature space

transformation using PCA, and thus improved both the change detection rate and reduced

run time significantly. Finally, we collected unlabeled multi-dimensional network traffic

data in a non-stationary environment infused with malicious traffic launched from botnets.

We built a botnet detection framework in conjugation with an unsupervised feature space

model built by matrix factorization and Lasso regression to improve the accuracy and

efficiency of the proposed botnet detection framework.

1.4 Related Mathematical and statistical methods

1.4.1 Matrix Decomposition

Matrix decomposition is a technique of factorization of a matrix into a product of

constituent matrices. By decomposing a matrix, we can simplify more complex matrix

operations on the decomposed matrix, for example lower triangular matrix or upper

triangular matrix, rather than on the original matrix itself.

In linear algebra, a QR decomposition is a factorization of a matrix A into a product

X = QR. Given 𝐴 is a data matrix with dimension 𝑛 × 𝑚 and rank 𝑟, then the QR

decomposition of 𝑋 is defined as

 𝐴 = 𝑄𝑅. Eq. 1-1

where R is an 𝑟 × 𝑚 upper triangular matrix and Q is an 𝑛 × 𝑟 column wise orthonormal

matrix. Eigen Value Decomposition (EVD) of a matrix 𝐴 be a square 𝑛 × 𝑛 matrix

10

with 𝑛 linearly independent eigenvectors be factorized as (where 𝑖 = 1,2, . . . , 𝑛) so the

matrix A can be obtained as

 𝐴 = 𝑄Λ𝑄−1. Eq. 1-2

where 𝐴 is the square 𝑛 × 𝑛 matrix whose 𝑖𝑡ℎ column is the eigenvector 𝑞𝑖 of A, and Λ is

the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ𝑖𝑖 =

 𝜆𝑖𝑖.

Singular Value Decomposition (SVD) of any 𝑛 × 𝑑 matrix A can be uniquely

expressed as

 𝐴 = 𝑈𝐷𝑠𝑉𝑇 . Eq. 1-3

𝑤ℎere U is a column-orthonormal n × 𝑟 matrix. 𝐷𝑠 is a diagonal 𝑟 × 𝑟 matrix where the

singular values 𝑠𝑖 are sorted in descending order, and V is a column-orthonormal 𝑟 × d

matrix.

QR decomposition, EVD, and SVD are very effective mathematical methods which

are widely used to reduce the dimensionality of feature space. For example, both EVD and

SVD are used for PCA technique which linearly transforms higher dimensional feature

space into lower dimensional feature space without losing information as much as possible.

Matrix decomposition has been extensively explored for both feature space transformation

and feature subset selection in Section 3.4.3 and 4.4.1 respectively.

1.4.2 Pairwise t-Test

At first, we establish a null hypothesis and alternative hypothesis H0 and H1 as

follows:

 𝐻0: 𝜇𝑑 = 0 Eq. 1-4

 𝐻1: 𝜇𝑑 ≠ 0 Eq. 1-5

https://en.wikipedia.org/wiki/Matrix_decomposition

11

where 𝜇𝑑 refers to the means of the difference from two selected samples with size n from

a dataset at a time.

𝑡

0=
�̅�

𝑆𝑑/√𝑛

Eq. 1-6

 �̅� =
1

𝑛
∑ 𝑑𝑗

𝑛

𝑗=1

 Eq. 1-7

 𝑑𝑗 = 𝑦1𝑗 − 𝑦2𝑗 Eq. 1-8

 𝑆𝑑 = [
∑ (𝑑𝑗 − �̅�)2𝑛

𝑗=1

𝑛 − 1
]

1/2

 Eq. 1-9

𝑦𝑖𝑗(𝑖 = 1,2) is the mean in group one or two at the jth observation. Using pairwise

t-test, we can decide if a method is significantly different than another method on a

collection of datasets based on predefined significance level.

1.4.3 Lasso Regularized Regression

In statistics, linear regression is a linear approach to modeling the relationship

between a response or dependent variable and one or more predictor or independent

variables. The response variable is mostly scalar, but the predictor variables can be both

scalar and categorical. Simple linear regression has only one predictor variable, whereas

multiple linear regression has more than one predictor variable.

In statistics and machine learning, Least Absolute Shrinkage and Selection

Operator (Lasso) is a regression analysis method that performs both feature selection,

regularization, and prediction which can increase the prediction accuracy and

interpretability of the statistical model.

12

1.4.4 Density Ratio Estimation

The density ratio of two data distribution from reference window 𝑃𝑟𝑒𝑓(𝑥) and

current window 𝑃𝑐𝑢𝑟(𝑥) is defined as follows, where 𝑥 is a traffic instance:

 𝑟(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑐𝑢𝑟(𝑥)
. Eq. 1-10

where 𝑥 refers to a single data instance. The mathematical formulation of the density-ratio

estimator is given as

 �̂�(𝑥) = 𝑔(𝑥; 𝜃) = ∑ 𝜃𝑙𝐾(𝑥, 𝑥𝑙𝑟𝑒𝑓

𝑛𝑟𝑒𝑓

𝑙=1

). Eq. 1-11

1.5 Associated Validation and Metrics of Performance

1.5.1 k-Fold Cross Validation

At first, we partition the input dataset into k subsets. The size of each subset is

equal. In each iteration, a single subset is selected among these k subsets as the test data

set. The remaining k - 1 subsets are combined and used as the training dataset. The process

is then repeated k times with selected algorithm which produces k results. The k results

from the k iterations are averaged to produce the result. The 10-fold cross validation is a

widely used technique for model validation with k equal to 10. Overfitting a common

problem which can be solved with k-fold cross validation.

1.5.2 Metrics of Performance for Balanced Dataset

Given that True Positive, True Negative, False Positive, False Negative, True

Positive Rate, True Negative Rate, and False Positive Rate are denoted by TP, TN, FP, FN,

TPR, TNR, and, FPR respectively, some widely used statistical performance measurement

criteria are defined as shown in Eq. 1-12 to Eq. 1-16:

13

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. Eq. 1-12

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. Eq. 1-13

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. Eq. 1-14

 𝐹𝑃𝑅 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
. Eq. 1-15

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Eq. 1-16

AUC - ROC curve is a performance measurement for classification problem at

various threshold settings. ROC is a probability curve where TPR is plotted on y-axis and

FPR is plotted on the x-axis as shown in Figure 1-4.

Figure 1-4: AUC-ROC curve

ROC curve represents the tradeoff between TPR (or sensitivity) and FPR (or

specificity) if any increase in sensitivity is producing any decrease in specificity. The closer

the curve to the left-hand border and then the top border of the ROC space, the more

accurate the test. The closer the curve comes to the 45-degree diagonal of the ROC space,

the less accurate the test. AUC, the measure of separability, explains how much the model

14

can separate between classes. The higher the value of AUC, the better the model is at

predicting both negative and positive classes.

1.5.3 Metrics of Performance for Unbalanced Dataset

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
. Eq. 1-17

Selection of the appropriate performance measure for system validation is crucial

for an imbalanced dataset to identify anomaly or minority classes. For imbalanced or

skewed datasets, performance measures such as accuracy, TNR, FPR, ROC-AUC might

go high just because of high TN, value which may show a misleading performance. On the

contrary, both precision and recall do not include TN, and thus F1-score and PR-AUC are

appropriate performance measures for imbalanced datasets due to not considering TN in

their formulations.

1.6 Organization of Dissertation

The remainder of the dissertation is divided into four chapters. In CHAPTER 1,

we have introduced important background information, definitions and explanations from

the areas of mathematics, statistics, and datamining to explain different components

proposed frameworks presented in CHAPTER 2, CHAPTER 3 , and CHAPTER 4.

CHAPTER 2 demonstrated how analysis of Data Complexity Matrix was applied to select

Fuzzy Forest as an appropriate classifier for inherently complex dataset collected from

ovarian cancer images. Singular Value Decomposition (SVD) and Direct Density Ratio

Estimation has been explored in CHAPTER 3 to detect change points in multi-

dimensional health sensor data in a non-stationary environment. CHAPTER 4 explored

matrix decomposition and Lasso Regression to design an unsupervised feature selection

approach in combination with Relative Density Ration Estimation method to detect

15

BASHLITE and Mirai botnets launched from nine commercial IoT devices. CHAPTER 5

discusses the novel contributions and directions for future research.

In the next chapter, we explored feature space modeling using Relief based feature

selection as a technique of feature space modeling to reduce the complexity of ovarian

cancer dataset collected in a batch mode and the less complex dataset is subsequently used

by Fuzzy Classification to classify malignant and benign records with better accuracy and

efficiency.

16

DISTANCE BASED FEATURE SPACE MODELING TO IMPROVE

CLASSIFICATION PERFORMANCE

2.1 Chapter Overview

In this chapter, we have explored Relief, a distance-based feature sub-selection

method, to reduce the inherent complexity of data from 469 ovarian cancer images

collected in batch mode from non-stationary environment. We subsequently employed

Fuzzy Classifier on this reduced and less complex dataset to build a classification model

with better accuracy. Diagnosis of ovarian cancer using ultrasonography is tedious as

ovarian tumors exhibit minute clinical and structural differences between the suspicious

and non-suspicious classes. Early prediction of ovarian cancer will reduce its growth rate

and may save many lives. Computer aided diagnosis (CAD) is a non-invasive method for

finding ovarian cancer in its early stage which can avoid patient anxiety and unnecessary

biopsy.

In this chapter, we proposed a novel CAD tool for the characterization of suspicious

ovarian cancer using Relief-F based feature space modeling and Fuzzy Ensemble classifier.

Data complexity analysis, both pre and post future selection, indicates that instances of the

two classes significantly overlap each other, thereby affecting a classifier’s ability to

differentiate between instances of the normal versus the target class. We reduced the

complexity of the data by applying distanced based Relief feature selection method. In this

17

work, we have also investigated the use of Fuzzy Forest based ensemble classifier in

contrast to known crisp rule-based classifiers. The proposed frameworks is evaluated using

469 (non-suspicious: 238, suspicious: 231) subjects and achieved a maximum accuracy of

80.60 ± 0.5% accuracy, 81.40% sensitivity, 76.30% specificity with Fuzzy Forest, an

ensemble fuzzy classifier using thirty-nine features. The proposed method is robust and

reproducible as it used a maximum number of subjects (469) as compared to state-of-the-

art techniques. Hence, it can be used as an assisting tool by gynecologists during their

routine screening.

2.2 Related Works

Ovarian tumor refers to any malignant development that happens in the ovary [3].

In most cases, ovarian cancer arises from the epithelium (outer lining) of the ovary. It

brings about unusual cells that can attack or spread to different parts of the body. When

this starts, there might be no or just obscure side effects. Side effects turn out to be more

perceptible as the growth progresses. These indications may bring about bloating, pelvic

agony, stomach swelling, and loss of hunger [3]. Figure 2-1 depicts a typical representation

of a normal ovary and an ovary with cancer. It can be noted that the ovary with cancer is

bloated due to the cancerous cell growth in the ovary [3].

Being the eighth most regular malignancy among ladies, ovarian disease is the fifth

driving reason for death among ladies and is the deadliest of gynecologic tumors [3]. A

woman’s lifetime risk of developing invasive ovarian cancer is 1 in 75, whereas a woman’s

lifetime risk of dying from invasive ovarian cancer is 1 in 100. Ovarian cancer rates are

highest in women aged 55-64 years and the survival rates are much lower than different

malignancies that influence ladies. Five-year survival rates are commonly used to compare

18

different cancers and the relative five-year survival rate for ovarian malignancy is 46.25%.

Survival rates change incredibly relying upon the phase of the finding. Ladies analyzed at

an early stage before the tumor has spread have a substantially higher five-year survival

rate than those analyzed at a later stage. Around 14.80% of ovarian growth patients are

determined right on time to have early stage illness [4]. Figure 2-1 depicts a typical

representation of a normal ovary and an ovary with cancer.

Figure 2-1: A typical illustration of a normal ovary and ovary with cancer.

Ultrasound based Computer Aided Diagnostic (CAD) techniques can prove to be

excellent adjunct techniques, especially for mass screening, because of their speed, non-

invasiveness, easy usability, cost-effectiveness, and reliability [5, 6]. Reference [7]

summarizes the state-of-the-art CAD systems developed for ovarian cancer diagnosis. It

can be observed that mass spectrometry (MS) based systems outperform all other

techniques in terms of different performance parameters [7]. These methods are restricted

due to its cost and data analysis equipments. Biagoilti et al. [8] and Tailor et al. [9] have

19

observed that subjective features such as operator suggested parameters can achieve

comparable performance. Lucidarme et al. [10] and Zimmer et al. [11] developed a model

and have achieved maximum performance of 91.73% and 70% accuracy, respectively.

Acharya et al. [12] have used texture features to discriminate benign and malignant US

images and achieved 99.9% accuracy.

In another study [13], the same group has used Gabor wavelets features, Hu’s

moments, entropies, and achieved 99.80% accuracy for Probabilistic Neural Network

(PNN) classifier. The same group extended their study using higher order spectra (HOS)

and achieved 97% accuracy for decision tree classifier [14]. Recently, Acharya et al. [6]

have achieved about 100% accuracy using first order statistical features, gray level co-

occurrence matrix (GLCM) and run length matrix. They have used PNN and k-nearest

neighbor classifiers during classification. In [15], it is concluded that 3D ultrasonography

can capture the minute morphological structures as compared to 2D ultrasonography.

2.3 Dataset Information

We collected preprocessed and cleaned data from ultrasonography image of 469

non-consecutive women (238: Benign, 231: Malignant) with an age limit of 23 to 90 years.

The dataset has 811 features and 469 records with a binary class label (0/1) as the target

variable. Excluding the target variable, the other 810 features are numeric. Class label 0

represents non-suspicious cancer, whereas class label 1 refers to suspicious Cancer. The

collected dataset is clean with no missing values, but it is not normalized. The dataset is

balanced with where 238 records have class label 0 and 231 records have class label 1.

20

2.4 Algorithm and Methodology

2.4.1 Normalization

The filtering of useless features resulted in the reduction of features to 796 features.

The reduced set of features was subject to the min-max normalization. Here, all the features

were subject to fit to a predefined range of [0, 1]. The normalized values 𝑧 of a feature 𝑥

was computed using

)min()max(

)min(

xx

xx
z

−

−
= . Eq. 2-1

where min () and max () represent functions that compute the minimum and maximum

values of feature x respectively.

2.4.2 Filtering of Useless Features

The nonlinear feature extraction generated 810 features per instance of the dataset.

We applied a filter to remove from further analysis those features that exhibit a minimum

and those features that exceed the maximum threshold of variance (𝜎2). Variance (𝜎2) of

each feature 𝑥 where 1 ≤ 𝑥 ≤ 810 was calculated using

 𝑚𝑒𝑎𝑛 (𝜇) =
∑ 𝑥

𝑁
. Eq. 2-2

 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎2) =
∑(𝑥 − 𝜇)2

𝑁
. Eq. 2-3

where the maximum variance threshold is set at 0.99 and the minimum threshold at 0.

2.4.3 Relief Based Feature Space Model (Feature Ranking and Selection)

The Relief-F is one of the most widely used wrapper-based feature selection

algorithm [16]. To evaluate the significance of a feature, the Relief-F algorithm repeatedly

samples instances and assigns a weight based on Euclidean distance to the feature relative

to the class distribution of instances in the nearest neighborhood. The algorithm then sorted

21

the features from higher worth value to lower worth. Relief-F computes two weights

namely the near-hit score and the near-miss score based on nearest instances in the

neighborhood. If an instance in the nearest neighborhood belongs to the same class, Relief-

F considers the feature to be relevant and assigns a higher near hit score. The weights of

each feature vector are calculated and updated in iterative fashion using Euclidean distance

as follows:

 𝑊𝑖 = 𝑊𝑖 – (𝑥 − 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖)2 + (𝑥 − 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖)
2. Eq. 2-4

where nearHit and nearMiss are defined as the closest same-class instance and the closest

different-class instance, respectively. The feature vectors are normalized after a fixed

number of iterations. Features are then ranked using the updated weights and selected using

a threshold 𝜏.

2.4.4 Data Complexity Analysis

We believe that the performance of classifiers is strongly sensitive to the

complexity of the dataset. Hence, we performed data complexity analysis before and after

feature selection. Considering the inherent overlap of target classes, the objective of this is

twofold, namely (a) to estimate the importance of the features selected, and (b) to guide us

in the choice of classifiers. To measure the complexity of our dataset, we focused on three

types of measures of problem complexity.

a) Measures of overlap of individual feature values: We applied two complexity

descriptors to measure class boundary overlap which are maximum Fisher's

Discriminant Ratio (F1), maximum (individual) feature efficiency (F3).

22

b) Measures of inseparability of classes: We performed linear separability measure (L1,

L2), fraction of points on boundary (MST method) (N1), ratio of average intra / inter

class NN distance (N2) to measure separability of classes, and

c) Measures of non-linearity: we measured L3 and N4 to measure non-linearity of classes.

2.4.5 Measures of Overlap of Individual Feature Values (F1, F3)

As per T.K. Ho [17], and considering n dimensional feature space, we compute the

Fisher’s discriminant ratio for each feature with respect to the target class as follows:

 2

2

2

1

2

21)(

+

−
=if . Eq. 2-5

 𝐹1 = 𝑚𝑎𝑥(𝑓𝑖). Eq. 2-6

where 𝑓𝑖 refers to an individual feature with 1 ≤ 𝑖 ≤ 𝑛 and µ1, µ2, σ1
2, σ2

2 are the

respective means and variances feature 𝑓𝑖 with respect to the two classes. The derived F1

measure is defined as the maximum 𝑓𝑖 over all the features.

Furthermore, Tin Ko [17] defines the measure F3 to measure the overlap of class

boundaries with respect to feature efficiency as follows:

N

NN
f

N

N
f

overlap

efficiency

Seperate

efficiency

−
=

=

 Eq. 2-7

)max(3 efficiencyfF = . Eq. 2-8

where N is the total number of data instances, overlapN is the number of data instances in

the overlap region. So,)(overlapNN − are those data instances that contribute to feature

23

efficiency for a single feature. The maximum value of feature efficiency across all

dimensions is defined as feature efficiency (F3).

2.4.6 Measures of Inseparability of Classes ((L1, L2), (N1, N2))

Friedman and Rafsky [18] proposed a test to check if two data instances are from

the same distribution or different distributions. This test relies on the construction of a

minimum spanning tree that connects all the points to their nearest neighbors. We can

define N1 and N2 as follows:

N

N
N

boundary
=1 . Eq. 2-9

where N is the total number of data points, boundaryN is the number of points connected to

the points lying next to the class boundary.

InterClassavg

IntraClassavg

D

D
N

)(

)(
2 = . Eq. 2-10

To compute, IntraClassavgD)(is the average of all the distances from each point to

intra-class nearest neighbors and InterClassavgD)(is the average of all the distances from each

point to the inter class nearest neighbors.

2.4.7 Non-linearity (L3, N4)

Hoekstra and Duin [19] proposed a measure for the nonlinearity of a classifier for a given

dataset. For a training set, at first, we trained any linear classifier and then we create a test

set by linear interpolation with random coefficients between randomly drawn pairs of

points from the same class. We then define L3 as the error rate of the linear classifier on

the test set and N4 as the error rate of the nearest neighbor classifier on the test set.

24

2.4.8 Single Classifier Vs. Ensemble Classifier

Classification or predictive modeling is the task of approximating a mapping

function (f) from input variables (X) to discrete output variables (y). To design a single

classifier, different approaches can be pursued to achieve different goals. Tree-based

methods recursively partition a data based on predefined parameters and stopping criteria

to produce a set of rules. Statistical methods, for example, logistic regression estimates

(y|X) directly, whereas discriminant analysis estimates class-conditional probabilities (X|y)

which is converted into posterior probabilities using Bayes rule. Bagging, Random Forest,

Fuzzy Forest are widely used ensemble classifier. The basic structure of an ensemble

classifier is shown in Figure 2-2.

Figure 2-2: Single vs. ensemble classifier

On the contrary, ensemble classifiers use multiple base models to make final

predictions. Traditionally ensemble classifiers are homogeneous, which means base

models are developed using the same classification algorithm. Both theoretical and

25

empirical evidence demonstrated strong evidence that the combination of models increases

predictive accuracy.

2.4.9 Non-Fuzzy vs. Fuzzy Classifier

Traditional classification models are crisp or hard classification where class

membership is binary, which means a data instance can belong to only a class with class

membership value equal to 1 or 0 for all other classes. In contrast, in fuzzy classification,

a data instance can have membership in many different classes to different degrees such

that the sum of membership values for that instance is equal to 1. Fuzzy classes are suitable

for continuous data where class boundaries are unclear and overlapped than crisp or hard

classification.

Fuzzy classification is very effective to deal with two types of problems present in

data, 1) feature or attribute ambiguity, and 2) spatial vagueness, for example, remotely

sensed data from aerial photography imposes attribute ambiguity problem, whereas spatial

vagueness emerges due to inadequate sampling resolution to define clear boundary

locations. In both cases, Fuzzy classifiers demonstrated their effectiveness in classifying

data with the spatial and attribute uncertainty more accurately than crisp or hard

classification.

2.4.10 Fuzzy Forests

In contrast to the random forest ensemble classifier, in this work we investigated

the role of fuzzy forests ensemble classifier [20]. The fuzzy forest classifier used in this

work is inspired based on the random forest classifier with the intent of reducing biases

caused by the presence of correlated features. Figure 2-3(a) shows the flow diagram for

Fuzzy Forest classifier we used for our experiment.

26

Proposed by Conn [20], fuzzy forest algorithm which reduces the feature space

using a two-step iterative process, the screening step as shown in Figure 2-3(a), and the

selection step as shown in Figure 2-3(b).

In screening step, unimportant features which are already assigned into partitions

are removed in piecewise recursive manner. Inputs of the screening step are partitions of

correlated features where the correlation within each partition is maximum but the

correlation across the partitions is minimum. We consider the partitioning of the features

by the set, },.....,,{ 21 mPPPP = such that PPi = using the Weighted Correlation

Network Analysis (WGCNA) algorithm [21] as shown in Figure 2-3(c).

Figure 2-3: Flow diagram for fuzzy forest classifier. (a) screening step (b) selection step

(c) final step.

WGCNA is widely used to construct the correlation module or network using

correlation as follows:

27

−−

−
=

])(][)([

)()(

2222 yynxxn

yxxyn
r . Eq. 2-11

where x is a feature, and y is the associated class labels. After partitioning the feature space,

the Recursive Feature Elimination - Random Forest (RFE-RF) algorithm [20] is used on

each partition to remove less important features (as shown in Figure 2-3(a)). RFE-RF

applies the Variable Importance Measure (VIM) to evaluate the importance of each feature

within each partition. RFE-RF calculates VIM for nth feature from kth tree using the

following relation:

k

Bi

ikiiki

k
B

XfYXfY

nVIM k

−−−

=

22))(())((

)(

.
 Eq. 2-12

RFE-RF then combines VIM values for nth feature from all trees in an entire

random forest to calculate the final VIM value of nth feature

ntree

nVIM

nVIM

ntree

k

k
== 1

)(

)(.
 Eq. 2-13

where iY is the target class for the ith instance iX , iX

 is the ith instances in out of bag

samples of the kth tree. Similarly,)(ik Xf

 is the conditional mean, and)(Xf k

 is the

conditional mean]/[ii XYE

, and kB is the indices for the out of bag samples from the kth

tree.

Starting with all features in each partition iP , RFE-RF is applied, and least

important features produced by VIM function are then removed. We name the new partition

with reduced features as
)1(

iP . A second random forest is then applied on partition
)1(

iP . The

process of removing the features is continued until the predefined stopping criteria is

28

obtained. The selection step as shown in Figure 2-3(b) uses RFE-RF to allow for

interaction among partitions. This RFE-RF is then applied to all the features from all the

partitions that have been selected at screening steps to achieve the final set of reduced

features and to build the final model using random forest classifier as shown in Figure

2-3(c).

The fuzzy forest algorithm uses parameters such as the Drop_fraction,

keep_fraction, min_ntree, final_ntree, and module_number. Module_number refers to the

number of modules or partitions created by WGCNA algorithm. For each partition, RFE-

RF drops features according to drop_fraction in each step, whereas keep_fraction acts as

stopping criteria. Both drop_fraction and keep_fraction lie between 0 and 1. Parameter

min_ntree refers to the number of trees grown in each random forest by RFE-RF algorithm

in screening step and final_ntree denotes to the number of trees grown in the final random

forest after selection step.

The Fuzzy Forest algorithm aims at reducing dependency among features as much

as possible while preserving maximum feature strength. Features are strongly dependent

on each other when they are highly correlated. High feature correlation may produce bias

to the modelling process. Since the WGCNA [22] algorithm creates partitions among

features using the principle of minimizing correlation among partitions thereby alleviating

biases between trees of the forest. Moreover, RFE-RF acts independently on each partition

to eliminate unimportant features using VIM. During this elimination process, unimportant

but highly correlated features within partitions are removed. Hence, features of the final

partition produced by Fuzzy Forest turns out to be less dependent as well as more relevant.

29

We believe that this is the advantage of the Fuzzy Forest algorithm while dealing with

dependent features.

The average runtime complexity of WGCNA algorithm is)(2nl [22] for a single

partition. The runtime complexity to build one unpruned decision tree is))log((nmnO

[21]. Since algorithm RFE-RF uses random forest for features elimination in recursive

fashion, the average complexity of RFE-RF algorithm for p number of partitions is

Θ(𝑝𝑠𝑡𝑚𝑛𝑙𝑜𝑔(𝑛)). Complexity of final random forest algorithm is))log((ntfmn .

Hence, the average run time complexity of fuzzy forest algorithm is as follows:

))log()log((2 ntfmnnpstmnnpl ++ . Eq. 2-14

)))(log((

2

fpsntmnn
p

m
p ++

 . Eq. 2-15

)))(log(
1

(2 fpsntmnnm
p

++ . Eq. 2-16

))log((2 ntmnnm + . Eq. 2-17

))log(((2 nmtmn + . Eq. 2-18

To analyze the relationship between runtime and the number of instances e, we

consider m and t constant. Hence, the average run complexity of Fuzzy Forest algorithm

with respect to the number of instances is as follows:

))log((nn . Eq. 2-19

where n is the total number of instances, m is the total number of features, p is the number

of partitions created by WGCNA algorithm, l is the average length of partition, t is the

number of trees in random forest created by the RFE-RF algorithm, s is number of times

RFE-RF runs for each partition, and f is the fraction of features in the fuzzy forest classifier.

30

We compared the performance of our framework against k-Nearest Neighbor (k-NN) [23,

24], Fuzzy-Rough Nearest Neighbor (FRNN) [25], and Random Forest [26]. This section

provides description of the non-linear classification approaches used.

2.5 Results

The following section provides an overview of the results obtained in establishing

the relevance of the features extracted. We describe our results obtained using feature

selection, and tests carried out to estimate the relevance of selected feature using data

complexity analysis. Our objective is to utilize the insights obtained from data complexity

analysis to dictate the choice of classification models and interpret the results obtained.

2.5.1 Feature Selection

Prior to applying feature selection, we filtered out 14 features that exhibited a

minimum of zero variance and a maximum variance that exceeded a threshold of 0.99. To

the remaining 796 features, we performed feature ranking using Relief-F followed by

incremental feature selection using k-NN classifier. A subset of 39 features among 796

features was chosen for further analysis based on the reported highest accuracy, sensitivity,

and specificity, respectively. It should be noted that the estimates of accuracy, sensitivity,

and specificity was obtained using the instance-based k-NN classifier (refer to refer to

Figure 2-4). Furthermore, we report an accuracy of 69.50%, sensitivity of 69.69%, and

specificity or 69.33% using 39 features.

31

Figure 2-4: Performance of relief ranked features

2.5.2 Linear Inseparability of Data

To establish and understand the characteristics of the data, we applied principle

component analysis (PCA) to our data both pre and post feature selection process. Our

data set prior to feature selection consisted of 796 original features. Similarly, our data set

post feature selection consisted of 39 of the most significant features. We plotted our

dataset using the two most prominent principal components for both pre and post

processed datasets (refer Figure 2-5, Figure 2-6).

32

Figure 2-5: PC1 Vs. PC2 of 796 features prior to relief feature selection

Figure 2-6: PC1 Vs. PC2 of 39 features post relief feature selection

33

From Figure 2-5 and Figure 2-6, we observed that the feature selection using

Relief-F indicate no reduction of overlap of the target classes of ovarian cancer dataset.

2.5.3 Data Complexity Analysis

To support the notion of class inseparability observed as shown in Figure 2-5 and

Figure 2-6, we further quantified the complexity of the data by performing the data

complexity analysis on both datasets pre and post feature selection using Relief-F. Our

observations are tabulated in Table 2-2 and Table 2-2.

Table 2-1: Data complexity analysis pre-relief feature selection

 Measures of overlap Measures of Class inseparability Measures of nonlinearity

No of Fold F1 F3 N1 N2 L1 L2 L3 N4

1 0.0762 0.0403 0.5261 0.8885 0.8657 0.4028 0.3570 0.2360

2 0.0710 0.0427 0.5142 0.8845 0.8419 0.3768 0.3340 0.2330

3 0.0732 0.0427 0.5427 0.8945 0.8645 0.4052 0.3445 0.2185
4 0.0841 0.0403 0.5427 0.8897 0.8518 0.3957 0.3665 0.2180

5 0.0695 0.0403 0.5261 0.8860 0.8533 0.4076 0.3540 0.2350

6 0.0686 0.0427 0.5190 0.8816 0.8581 0.3815 0.3440 0.2350

7 0.0604 0.0450 0.5261 0.8859 0.8693 0.3957 0.3525 0.2150

8 0.0682 0.0332 0.5237 0.8756 0.8556 0.3957 0.3640 0.2060

9 0.0647 0.0403 0.5474 0.8876 0.8669 0.4028 0.3735 0.2420

10 0.0814 0.0426 0.5508 0.8923 0.8423 0.4043 0.3450 0.2425

Average 0.0717 0.0410 0.5319 0.8866 0.8569 0.3968 0.3535 0.2281

 Measures of overlap Measures of Class inseparability Measures of non-linearity

No of fold F1 F3 N1 N2 L1 L2 L3 N4

1 0.0814 0.0332 0.5569 0.9151 0.7649 0.3246 0.2720 0.1945

2 0.0946 0.0000 0.5664 0.9123 0.7454 0.2749 0.2395 0.1265

3 0.1095 0.0355 0.5190 0.9370 0.7684 0.3175 0.2540 0.1810

4 0.1173 0.0332 0.4834 0.9037 0.7348 0.2867 0.2440 0.1990

5 0.0945 0.0332 0.5450 0.9322 0.7254 0.2725 0.2585 0.1540

6 0.0814 0.0355 0.5592 0.9257 0.7631 0.3152 0.2500 0.1605

7 0.1046 0.0355 0.5237 0.9020 0.7439 0.2891 0.2525 0.1360

8 0.0797 0.0190 0.4929 0.9144 0.7393 0.2891 0.2240 0.1385

9 0.0747 0.0355 0.5308 0.9205 0.7262 0.2678 0.2535 0.1385

10 0.0916 0.0355 0.4634 0.9065 0.7387 0.2766 0.2175 0.1060

Average 0.0942 0.0292 0.5204 0.9171 0.7428 0.2877 0.2437 0.1489

Table 2-2: Data complexity analysis post-relief feature selection.

34

The comparison in measure of eight data complexity descriptors are shown in

Figure 2-7.

Figure 2-7: (a-h) Comparison of measures of eight data complexity descriptors pre and

post feature selection process.

35

From the comparative analysis, we find that the Fisher discrimination ratio and

individual feature efficiency remain unaltered in both the datasets (pre and post feature

selection). Similarly, both (L1, L2) and (L3, N4) decrease and N2 increase after feature

selection. Hence, through feature selection our dataset exhibits a higher linear separability

between target classes. However, the non-linearity of classes has decreased.

While evaluating the goodness of features using complexity measurement criteria,

it is desired that the measures of F1, F3, and N2 exhibit high values, implying a high

discriminatory potential. Similarly, measures of L1, L2, L3, and N4 exhibit lower values

implying lower degrees of class overlap. In our analysis, we observed that Fisher's

Discriminant Ratio (F1) is considerably low for both datasets. Similarly, the linear

inseparability analysis ((L1, L2), (N1, N2)) were relatively high. These observations

indicate that the dataset post feature selection suffers from significant overlap and the target

classes are inseparable despite the application of Relief-F feature selection.

Furthermore, we believe that classification using crisp rules or stringent hyper

planes would not help in boosting accuracy. Therefore, we believe that a fuzzy based

classifier would perform better. This is reinforced considering the degree of linear

inseparability, our model choice would best suit an ensemble-based approach to enhance

our sensitivity and specificity rates of classification.

2.5.4 Validation using Crisp and Fuzzy Classifiers

In this section, we adopted the 10-fold cross validation strategy to estimate model

performance. We compared our performance using two broad classification approaches,

namely, non-fuzzy classifiers and fuzzy classifier. Our non-fuzzy classifiers include the

non-linear k-NN and non-linear ensemble Random Forest. Similarly, we compared the

36

results obtained with fuzzy classifiers FRNN and ensemble Fuzzy Forest. Among these

chosen four classifiers, k-NN and FRNN are deterministic classifiers, whereas Random

Forest and Fuzzy Forest are non-deterministic classifiers.

To benchmark our performance estimation, we generated models using all 796

features (refer Table 2-3) prior to using the Relief-F feature selection. It was observed that

the fuzzy classifiers (FRNN and Fuzzy Forest) performed better than non-fuzzy classifiers

(k-NN and Random Forest) with the Fuzzy Forest recording a maximum accuracy of 66%.

Type Model

Benchmark

Accuracy

Using 796 Features

(%)

Accuracy

Using 39 Features

(%)

Sensitivity

Using 39

Features

(%)

Specificity

Using 39

Features

(%)

Non-Fuzzy
k-NN (k = 5) 63.35 67.16 68.39 65.97

Random Forest 63.10 63.75 68.39 67.65

Fuzzy
FRNN 65.25 71.86 66.23 77.31

Fuzzy Forest 65.52 80.60 81.40 76.30

We then tested the performance of the classifiers using the selected 39 features. The

observed accuracy, sensitivity, and specificity are reported in Table 2-3. In comparison

with the benchmark results, it was observed that there is a negligible boost in overall

accuracies using non-fuzzy classifiers. For example, the k-NN classifier observed a boost

of 3.81% and Random Forest classifier observed a boost of 0.65%. On the contrary, the

Fuzzy classifier experienced a significant boost – FRNN observed a boost of 6.61% and

Fuzzy Forest observed a boost of 14.98%, respectively.

For Fuzzy Forest classifier, we set drop_fraction equal to 0.2, keep_fraction equal

to 0.5, min_ntree equal to 500, final_ntree equal to 2000, module_number equal to 5.

Figure 2-8 shows the results of screening steps of Fuzzy Forest algorithm. Each bar refers

to one partition created by WGCNA algorithm. Each bar is divided into two parts. The part

Table 2-3: Accuracy, sensitivity, and specificity obtained using 10-fold cross-validation.

37

of each bar colored in gray refers to unimportant features, whereas the part of each bar

colored in red refers to important features in each partition, which had been selected by

VIM measures in RFE-RF algorithm.

Figure 2-8: Results of module/partition membership distribution

Figure 2-9 depicts that the Fuzzy Forest ensemble classification model obtained

the highest reported sensitivity of 81.40% and specificity of 76.30% when compared to the

other classifiers, respectively.

Figure 2-9: Comparison of performance of non-fuzzy and fuzzy classifiers

38

Furthermore, as shown in Figure 2-10, the ROC curve is used to illustrate the

overall ability of our model to classify the tumor into a target class. The ROC curve in

Figure 2-10 displays the True Positive Rate represented as the Sensitivity and False

Positive Rate as the Specificity for the predicted suspicious and non-suspicious tumor class.

An optimal threshold value of 0.5 results in a Sensitivity value of 81.40% and Specificity

value of 76.30%. The Area Under the Curve (AUC) is estimated at 80.60% given a 95%

confidence interval and a p-value of 2.33 × 10-11.

Figure 2-10: ROC curve (sensitivity vs specificity) for fuzzy forest

2.5.5 Results of Runtime Complexity Analysis

 To investigate the relationship between the number of instances and runtime, we

created separate datasets using 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, and

469 instances using balanced sampling. Balanced sampling is used to retain the ratio of

suspicious and non-suspicious instances to be consistent across every dataset. In these

datasets, we maintain a constant feature set (39 features) and constant number of trees in

RFE-RF across all datasets. Since the number of features and number of trees in each

39

random forest of RFE-RF are the same for all datasets, we observed that the runtime with

respect to the number of records of Fuzzy Forest algorithm is logarithmic. Fuzzy Forest

algorithm was then applied to each dataset and the runtime was computed and reported as

shown in Table 2-4.

Table 2-4: Actual runtime with respect to the number of instances

 Experimental Runtime Analysis Theoretical Runtime Analysis

No of records

(N)

Actual Run time t

(in sec)
t(normalized) s = N*log(N) s(normalized)

200 3.15 0.41 460.21 0.58

225 4.27 0.55 529.24 0.67

250 4.96 0.64 599.49 0.76

275 5.8 0.75 670.82 0.85

300 6.38 0.82 743.14 0.94

325 6.62 0.85 816.36 1.00

350 7.15 0.92 890.42 1.12

375 7.75 1.00 965.26 1.22

400 8.12 1.05 1040.82 1.31

425 9.14 1.18 1117.07 1.41

450 10.04 1.30 1193.95 1.51

469 10.9 1.41 1252.78 1.58

As the number of instances of the above datasets varied from 200 to 469 and we

increased the size of each dataset by adding 25 instances each time, the logarithmic run

time is very close to the linear runtime as shown in Figure 2-11

Figure 2-11: Comparison between actual versus theoretical runtime with respect to number

of instances.

40

Table 2-5 provides a comparative analysis of the proposed approach with known

state of the art CAD techniques for ovarian cancer classification.

Table 2-5: Summary of the state-of-the-art CAD techniques for ovarian classification

Authors No. of Subjects Method Classifier Performance

Tang [27]
Normal: 95

Malignant: 121

Four statistical

moments

Kernel partial least

square classifier

Acc: 99.35%

Sen: 99.5%

Spe: 99.16%

Petricoin [28]
Benign: 66

Malignant:50
Proteomic spectra

Genetic algorithm +

self-organizing

cluster analysis

Sen: 100%

Spe: 95%

Biagiottiet [8]
Benign:175

Malignant:51

Age and parameters

from TVUS images

Three-layer back

propagation network
Sen: 96%

Tailor [9]
Benign:52

Malignant:15

Clinical and

ultrasound based

variables from TVUS

images

Back propagation

neural network

Sen: 100%

Spe: 98.1%

Lucidarme [10]
Benign:234

Malignant:141

Backscattered

ultrasound (3D

TVUS)

Ovarian

HistoScanning

(OHS) system

Sen: 98%

Spe: 88%

Acc: 91.73%

Zimmer [11] –
B-scan ultrasound

images

Morphological

Analysis
Acc: 70%

Acharya [12]
Benign:10

Malignant:10

Local Binary

Pattern+ Law’s

Texture Energy

SVM

Sen: 100%

Spe: 99.8%

Acc: 99.9%

Acharya [13]
Benign:10

Malignant:10

Hu’s invariant

moments + Gabor

wavelet features +

Entropies

PNN + Tuned with

Genetic algorithm

Sen: 99.2%

Spe: 99.6%

Acc: 99.8%

Acharya [14]
Benign:10

Malignant:10

Texture + higher

order spectral

features

Decision Tree

Sen: 94.3%

Spe: 99.7%

Acc: 97.0%

Acharya [6]
Benign:10

Malignant:10

First order statistics+

GLCM + run length

matrix

k-NN/PNN

Sen: 100%

Spe: 100%

Acc: 100%

Our Method

Non-

suspicious:238

Suspicious:231

Radon

Transform + Non-

linear Feature

extraction

Fuzzy Forest

Sen: 81.40%

Spe: 76.30%

Acc: 80.60%

41

In our experiment, we have used a dataset of 469 instances (non-suspicious: 238,

suspicious: 231) which is much larger compared to the datasets mentioned in Table 2-5.

Moreover, the complexity of these dataset is unknown. Both principal component analysis

and data complexity analysis support the notion that the dataset we used to conduct our

experiment was complex. Furthermore, the target classes in the dataset were overlapped.

Under this scenario, boosting of model performance was a computational challenge.

The proposed approach and observations justify the use of the Fuzzy Forest

classifier as an effective technique in handling inherent class overlap that is common in

most real-world dataset.

2.6 Findings and Discussion

In this chapter, we focused on reducing the inherent complexities posed by features

by using Relief-based feature space modeling and building an appropriate Fuzzy

classification to classify ovarian cancer data effectively. We report a highest classification

accuracy of 80.6 ± 0.5% accuracy, 81.40% sensitivity, 76.30% specificity, respectively.

In the next chapter, we explored feature space transformation using PCA as a

technique of feature space modeling to reduce the dimensionality of health sensor data

collected in a streaming environment which subsequently used by Direct Density Ratio

Estimation method to detect change points with better accuracy and efficiency.

42

FEATURE SPACE TRANSFORMATION FOR CHANGE POINTS

DETECTION FRAEWORK

3.1 Chapter Overview

In this chapter, we explored feature space transformation using PCA as a technique

of feature space modeling to reduce the dimension of health sensor data collected in a

streaming environment. Next, we modeled the direct ratio of probability distributions of

two data segments and explored this statistical measure to identify the change points with

better accuracy and efficiency. We propose an unsupervised framework combining

Principle Component Analysis (PCA) with Pearson divergence measured by a density ratio

estimation method known as unconstrained least squares importance fitting to measure the

divergence between data distributions of two retrospective multidimensional data segments

embracing the concept that significant changes in data distribution lead to higher

divergence, which may eventually indicate the occurrence of potential change points. To

address the issue of higher dimensionality, we reduced the original feature space into lower

dimensional subspace by affine transformation using PCA based on the hypothesis that

Pearson divergence between PCA transformed data segments can detect change points with

equal performance and less computational time compared to the performance from original

data segments with full features. For PCA transformation, we used the matrix factorization

method known as Singular Value Decomposition (SVD) instead of the traditional Eigen

43

Value Decomposition (EVD) approach since SVD is more stable and computationally less

expensive compared to EVD due to performing low rank matrix approximation on data

matrix. At first, we compared proposed framework with another density ratio estimation

method known as Kullback–Leibler importance estimation procedure using artificial

datasets and later, we validated our proposed framework with three baseline methods using

real world datasets. In both setups, we observed better and more consistent performance

by proposed framework in terms of higher change detection rate and reduced

computational time which demonstrate its applicability and effectiveness.

3.2 Related Works

In this modern era, a wide range of applications, for example, fraud detection in

financial systems [29], defect analysis in product line [30-32], intrusion or outlier detection

in cyber systems [33-38], evolution of heterogeneous information in social media [38, 39],

cloud-based health monitoring service [40, 41], and many more, depend on streaming data

collection and analysis which can be subjected to frequent change of underlying data

distribution. The problem of time points discovery when the data distributions over time

span undergo significant changes is defined as change point detection, drift detection, and

data evolution [42-44]. However, both streaming data collection and analysis in real time

can be very challenging; hence detection of change points may experience unwanted delay.

Based on this delay, there exists two categories of change-point detection methods known

as real-time detection [45] and retrospective detection [46], respectively.

The major focus of real-time change-point detection is to respond immediately

whenever a change occurs, whereas retrospective change-point detection emphasizes on

accurate detection within predefined time delay. Applications like climate change or

44

intrusion detection may permit delays to a certain level, hence, fall in retrospective

detection category. On the contrary, applications like control mechanism of robotics

require instant detection and immediate response, hence opt for real time detection. Apart

from delay criteria, change detection methods can be divided into two categories based on

change measurement criteria. The first approach is the model-driven approach which is

particularly suitable for supervised learning in streaming environment [47].

In the model-driven approach, the performance, as example accuracy, class

precision, recall, F1-Score etc. are continuously monitored. Potential change points are

predicted when model performance fall below a certain level [43, 47]. The second approach

is the data-driven approach which focuses on change of certain data properties with an aim

to identify potential change points. The most widely used data-driven approach for change

point detection is to measure the dissimilarity or divergence between reference time

segment and current time segment by comparing their probability distribution. Change

points are reported when dissimilarity measures are observed above a predefined threshold

[44, 48, 49]. Subspace identification is another major data-driven approach to analyze

changes in time series data [50]. Among data-driven approaches, density ration estimation

has caught much attention in recent years to detect change points in time series data. The

basic notion of this approach is to estimate the ratio of probability densities instead of

estimating the probability densities separately. In [49], Sugiyama has successfully explored

density ratio estimation to detect change points in single dimensional time series data.

In this chapter, change point analysis focuses on the data-driven retrospective

approach for multi-dimensional time-series data based on applying PCA on data segments

from reference and test time interval for dimensionality reduction followed by a density

45

ratio estimation algorithms known as unconstrained least squares importance fitting

(uLSIF) [49, 51] to approximate Pearson divergence (PE-divergence) with an aim to

investigate the following problem:

“Is PE-divergence between two PCA transformed data segments with reduced

feature space capable to detect the change point between two original data segments with

full feature space? What are the consequences of PCA transformation on change detection

rate and runtime?”

For PCA transformation, we applied SVD [52] instead of EVD [53] to reduce the

original feature space into a new affine subspace. SVD uses low rank matrix approximation

to find the optimal number of orthogonal principle vectors which makes the approach

finite, hence SVD is very stable and less computationally expensive. On other hand, EVD

involves covariance matrix calculation of data matrix followed by solving the characteristic

polynomial equation of that covariance matrix to find eigenvalues and associated

eigenvectors. However, solving the characteristic polynomial equation of a covariance

matrix is an iterative approach. When the size of the data samples and the dimension of

feature space are relatively high, which is a common scenario in streaming data

environment, covariance matrix calculation may incur high computing errors and

convergence of solving characteristic polynomial equation may become very slow. This is

the reason EVD may produce unstable results compared to SVD when the problem high

feature dimensionality is involved with datasets.

To conduct our experiments, we used both artificial and real datasets. At first, we

compared our proposed framework with another density ratio estimation method known as

Kullback–Leibler Importance Estimation Procedure (KLIEP) [51] using artificial datasets

46

and observed overall better performance by uLSIF over KLIEP. Finally, we validated our

proposed framework with three baseline methods known as Change Detection by Log

Likelihood (CD-LLH), Change Detection by Maximum KL Divergence (CD-MKL),

Change Detection by Intersection Area between two data distribution (CD-Area) presented

in [54] using the same real-world public datasets, and the experimental results show that

the proposed technique performs better and in a more consistent manner which assures the

usefulness of our proposed framework.

The remainder of this chapter is arranged as follows. In Section 3.4, we described

algorithm and detail methodologies for our proposed technique. In Section 3.5, we reported

experimental results on artificial and real datasets using necessary tables and graphs along

with analysis of computational complexity. Finally, we drew conclusions by summarizing

our contribution in Section 3.6.

3.3 Dataset Information

3.3.1 Artificial Dataset: Type # 01

We created four datasets with sample size of 5000 each and dimensions 25, 50, 75

and 100 respectively with mean and covariance matrix as follows:

Mean: 𝜇1 = 𝜇2 = 𝜇3 = ⋯ … … = 𝜇𝑛 = 1 (𝑛 = 25, 50, 75, 100)

Covariance matrix: [
1/2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1/2

]

In a covariance matrix, a diagonal element 𝑚𝑖,𝑖 refers to the variances of the

𝑖𝑡ℎ variable and an off-diagonal element, 𝑚𝑖,𝑗 (𝑖 ≠ 𝑗) refers to the covariance between

𝑖𝑡ℎ and 𝑗𝑡ℎ variables. Since we used 𝑛 × 𝑛 diagonal matrix as covariance matrix, for any

𝑖 ≠ 𝑗, 𝑚𝑖,𝑗 = 0 𝑎𝑛𝑑 𝑖 = 𝑗, 𝑚𝑖,𝑖 = 1/2, which means all the variables generated by multi

47

variate random generator have a variance equal to 0.5 but not correlated to each other. We

introduced a change point every 100 samples by adding gaussian noise with mean 𝜇𝑁 and

variance 𝜎𝑁 at time t as follows:

Mean: 𝜇𝑁 = {

𝜇𝑁−1+
𝑁

 16
 , 𝑁=2,3,…,49

0, 𝑁=1 .

 Variance: 𝜎𝑁 = {
𝑙𝑛(𝑒+

𝑁

4
) , 𝑁=2,4,…,48

1, 𝑁=1,3…….,49 .

We added Gaussian noise to the variables of the original datasets in sequential

order, which means we kept the first 100 samples unchanged, then applied noise to the first

feature of subsequent 100 samples while keeping other features unchanged. Next, we added

noise to the second feature of the next 100 samples keeping other features unchanged, and

so on. In this way, we inserted one change point every 100 samples and we can view

original datasets as a combination of fifty data segments where a change point exists

between every two data segments.

3.3.2 Artificial Dataset: Type # 02

We created four datasets with sample size of 5000 each and dimensions 25, 50, 75

and, 100, respectively with the same mean and different covariance matrix for every 100

samples. By magnifying and shrinking variance in a periodic fashion as follows:

Initialize Variances: 𝑉𝑐𝑢𝑟, 𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥, 𝑉𝑖𝑛𝑐, 𝑉𝑑𝑒𝑐

Magnify Variances: 𝑉𝑐𝑢𝑟 = 𝑉𝑐𝑢𝑟 + 𝑉𝑖𝑛𝑐 𝑢𝑛𝑡𝑖𝑙 𝑉𝑐𝑢𝑟 < 𝑉𝑚𝑎𝑥

 𝑉𝑖𝑛𝑐 = 𝑉𝑖𝑛𝑐 + 0.5 𝑤ℎ𝑒𝑛 𝑉𝑐𝑢𝑟 = 𝑉𝑚𝑎𝑥

Shrink Variances: 𝑉𝑐𝑢𝑟 = 𝑉𝑐𝑢𝑟 − 𝑉𝑑𝑒𝑐 𝑢𝑛𝑡𝑖𝑙 𝑉𝑐𝑢𝑟 > 𝑉𝑚𝑖𝑛

 𝑉𝑑𝑒𝑐 = 𝑉𝑑𝑒𝑐 + 1 𝑤ℎ𝑒𝑛 𝑉𝑐𝑢𝑟 = 𝑉𝑚𝑖𝑛

3.3.3 Artificial Dataset: Type # 03

We created four datasets with a sample size of 5000 each and dimensions 25, 50,

75, and 100, respectively with changing mean and the same covariance matrix for every

100 samples. We magnify and shrink mean in a periodic fashion as follows:

48

Initialize mean: 𝑚𝑐𝑢𝑟, 𝑚𝑚𝑖𝑛, 𝑚𝑚𝑎𝑥 , 𝑚𝑖𝑛𝑐, 𝑚𝑑𝑒𝑐

Magnify mean: 𝑚𝑐𝑢𝑟 = 𝑚𝑐𝑢𝑟 + 𝑚𝑖𝑛𝑐 𝑢𝑛𝑡𝑖𝑙 𝑚𝑐𝑢𝑟 < 𝑚𝑚𝑎𝑥

 𝑚𝑖𝑛𝑐 = 𝑚𝑖𝑛𝑐 + 2.5 𝑤ℎ𝑒𝑛 𝑚𝑐𝑢𝑟 = 𝑚𝑚𝑎𝑥

Shrink mean: 𝑚𝑐𝑢𝑟 = 𝑚𝑐𝑢𝑟 − 𝑚𝑑𝑒𝑐 𝑢𝑛𝑡𝑖𝑙 𝑚𝑐𝑢𝑟 > 𝑚𝑚𝑖𝑛

 𝑚𝑑𝑒𝑐 = 𝑚𝑑𝑒𝑐 + 1 𝑤ℎ𝑒𝑛 𝑚𝑐𝑢𝑟 = 𝑚𝑚𝑖𝑛

3.3.4 Public Dataset

Forest Cover Type and PAMAP2 are two composite datasets, publicly available in

UCI machine learning repository, which offer a collection of quality datasets. Forest Cover

Type datasets contain information about cover type of 581,012 cells (each 30 x 30 meter)

from RIS (Resource Information System) data and USGS (US Geological Survey)

collected by USFS (US Forest Service). PAMAP2 Physical Activity Monitoring dataset

[55] contains 3,850,505 data samples of 18 different physical activities collected from three

body sensors and one heart rate monitor performed by 9 subjects. PAMAP2 dataset

collection was donated by the department of Augmented Visions, a common research

group of DFKI and the University of Kaiserslautern, Germany. For our experiments, we

picked seven datasets from these two composite datasets. Reference [54] shows brief

information about these chosen seven datasets as follows:

Table 3-1: Brief information about real datasets available in UCI machine repository.

Dataset Source # of Records # of Dimensions Chosen

Spruce Forest Cover Type 211840 10

Lodgepole Pine Forest Cover Type 283301 10

Ascending Stairs PAMAP2 117216 30

Cycling PAMAP2 164600 30

Descending stairs PAMAP2 104944 30

Ironing PAMAP2 238690 30

Vacuum cleaning PAMAP2 175353 30

49

3.4 Algorithm and Methodology

In this section, we described our proposed framework Change Detection in multi-

dimensional Feature Space with PCA and uLSIF (MCD-PuLSIF) (Algorithm 1), several

methods and techniques in detail. Our major contribution is to combine all these separate

methods into a unifying framework so that we can detect change points in a multi-

dimensional time series stream with an improved change point detection rate and reduced

computational time.

3.4.1 Framework MCD-PuLSIF

Change Detection in multi-dimensional Feature Space with PCA and uLSIF are

presented in Table 3-2.

Table 3-2: Change detection in multi-dimensional feature space with PCA and uLSIF

ALGORITHM 1: Framework MCD-PuLSIF

1: Procedure MCD-PuLSIF

 Parameters: Sliding window size l, sliding step size s, method name mn, cumulative

variance cv

 Input: streaming data S1 ← {x1 , x2, … , xt, … }

 Output: time tcp when detecting a change

 %set current time equal to window size

2: Initialize current time tcur ← l
3: while a new sample xt arrives in the stream do

4: Set sliding window Wcur ← {x t
; t ∈ [tcur − l + 1: tcur]}

5: Divide Wcur into two data segments, reference data segment DSref and test data

segment DStest

6: Set DSref ← {x t
; t ∈ [tcur − l + 1:

tcur

2
]}

7: Set DStest ← {x t
; t ∈ [

tcur

2
+ 1: tcur]}

 %apply PCA on both data segments

8: PCref ← CalculatePCA(DSref)

9: PCtest ← CalculatePCA(DStest)

10: Set n = number of first n principle component which capture cumulative variance

equal to cv

11: PCref
′ ← first n componemts from PCref

12: PCtest
′ ← first n componemts from PCtest

% define forward divergence fr and backward divergence fb

50

Table 3-2: Change detection in multi-dimensional feature space with PCA and uLSIF

ALGORITHM 1: Framework MCD-PuLSIF

13: fr ← D(PCref
′ || PCtest

′) ← Calculatef(PCref
′ , PCtest

′ , mn)

14: fb ← D(PCtest
′ || PCref

′) ← Calculatef(PCtest
′ , PCref

′ , mn)

15: fsym ← fr + fb

 % fτ is the cutoff range to detect change point

16: fτ ← CalculateCutOffF(fsym, listfcp)

17: if fsym ϵ fτ

 Report a change point at time
tcur

2
 detected at tcur

 Update listfcp with fsym

 End if

18: end while

19: set current time tcur ← tcur + s

20: end procedure

21 Procedure 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐟(Xref, Xtest, mn)

 % mn ← KLIEP or uLSIF

22: find density ration estimator g(X)̂ using density ration estimation method

23: Estimate divergence f(Xref||Xtest) using g(X)̂

24: return f
25: end procedure

26: Procedure 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐂𝐮𝐭𝐎𝐟𝐟𝐅(fcur, listfcp)

 % listfcp contains f values which detected change point at time

tcp, tcp+1, tcp+2, … … , tcp+n, …

 % tcp+n < tcur

27: Calculate cumulative mean fmean from listfcp

28: Calculate standard deviation fstd from listfcp

29: Calculate cutoff range fcutoff such that fcutoff ϵ [fmean − fstd ∶ fmean + fstd]
30: return fcutoff

31: end procedure

32: Procedure 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐏𝐂𝐀(X)

 % Right Singular Vectors from SVD factorization of centralized X represents the

principle components

33: Centralize X

34: Apply SVD on X

35: u ← Right Singular Vectors of SVD factorization of X that captures 96% variance

36: return u

37: end procedure

The detail of SVD mentioned in Lines 34 - 36 are described in [52], and the pseudo-code

of in density ratio estimation in line 21 for both KLIEP and uLSIF are available in [51].

51

3.4.2 Defining Temporal Intervals

According to [56], three types of temporal spans are defined to analyze the time

series data collected from the streaming environment. Landmark window is the first type

of temporal span where analysis is performed on the data segment between a specific time

point called landmark and the current time point. Suppose 𝑡𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 and 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

(𝑡𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 > 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡) to be the landmark time point and the current time point

respectively. For Landmark Window, records only from the time interval defined by

[𝑡𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘 :𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡] are considered. For the Sliding Window, the second kind of temporal

span, primarily focuses on the length of the window size. Suppose l to be the size of the

sliding window, for the sliding window only records from time interval defined by

[𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑙 + 1 ∶ 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡] will be considered for analysis. The third approach to define

temporal span is the damped window which considers recent data samples more important

than the older samples.

In the damped window, the recent samples are given more weight than the older

samples such that the older samples fade away from the damped window after a certain

period when the weight falls below a certain level. Sliding window is known to be the most

suitable windowing technique where streaming data analysis is concerned. In our research,

we applied the sliding window technique on the time series data and divided each window

into two data segments. We considered the first segment as the reference segment and the

next segment as the test segment for further analysis. To conduct our experiments, we set

the window size equal to 1.5 × 102 and 104 for the synthetic and public datasets,

respectively.

52

3.4.3 PCA (Principle Component Analysis)

We consider a dataset 𝑋 in matrix form with 𝑛 number of features where each row

is referred to as 𝒙𝒊. Features in dataset 𝑋 may or may not be correlated. PCA [57]

transforms these 𝑛 number of features into 𝑝 dimensional orthogonal space (1 ≤ 𝑝 ≤ 𝑛)

such that the transformed features are linearly uncorrelated. After transformation into the

new feature space, the first principle component captures maximum variance, the second

principle component, orthogonal to the first principle component, captures the second

maximum variance. The third principle component which is orthogonal to the second one

captures the third maximum variance. The subsequent principle components follow the

same pattern as the preceding components. PCA is known to be sensitive to the

normalization or scaling of the original features. In our experiment, we selected only those

PCA components that captured 96% of cumulative variance of original data segments.

Principle components turn out to be the new basis vectors or axis of reduced

subspace and original data is projected along these new orthogonal vectors. EVD is the

traditional approach to find these principle axes of transformed subspace. In EVD, the the

covariance matrix 𝐶 = 𝑋𝑇𝑋 is calculated after centralizing dataset 𝑋. By solving the

characteristic polynomial equation of 𝐶, we find the eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑛 and

corresponding eigenvectors 𝑣1, 𝑣2, … , 𝑣𝑛. The eigenvector (𝑣𝑚𝑎𝑥)1 associated with the

highest eigenvalue is the first principle component. Similarly, the eigenvector (𝑣𝑚𝑎𝑥)2

associated with the second highest eigenvalue is the second principle component, and so

on. Solving characteristic polynomial equation of 𝐶 is an iterative approach. When the

number of data sample 𝑛 and the number of features 𝑝 are very high, covariance matrix

calculation may experience computational error and the convergence of characteristic

53

polynomial solution becomes very slow which makes EVD less stable, and from the

computation point of view, it is more expensive.

SVD factors the dataset 𝑋 as 𝑋 = 𝑈𝐷𝑉𝑇 where 𝑈 is a 𝑛 × 𝑟 column-orthonormal

matrix, 𝐷 is a diagonal 𝑟 × 𝑟 matrix with singular values 𝑠𝑖 in descending order, and 𝑉 is

a 𝑟 × 𝑝 column-orthonormal matrix. Here, r represents the rank of data matrix 𝑋. The

singular values 𝑠𝑖 is the square root of eigenvalue of 𝜆𝑖 , and the right orthogonal vector 𝑉

of SVD is the same as eigenvector 𝑉 of EVD. Detail mathematical proof is available in

[39]. Therefore, SVD is used as an alternative approach for PCA transformation. SVD uses

row lank matrix approximation which makes, SVD finite. This is the reason SVD is more

stable than EVD for larger 𝑛 and 𝑝.

Moreover, the time complexity of EVD is Ο(𝑛2𝑝 + 𝑝2𝑛), whereas time complexity

of SVD is Ο(min(𝑛2𝑝, 𝑝2𝑛)) for PCA. When 𝑛 and 𝑝 are very large, which is a common

scenario in streaming environment, this small improvement in computational time may

create significant impact on the overall performance. Since dealing change points in multi-

dimensional data stream is our primary objective, we chose SVD for principle component

over EVD.

3.4.4 Dissimilarity Measurement Based on Divergence

In general term, the dissimilarity measure between two data distribution is

defined as f-divergence. In [49, 51], the statistical measure of f-divergence is formulated

as follows:

 𝑓 − 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 𝐷(𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) . Eq. 3-1

 𝐷𝐷(𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) = ∫ 𝑃𝑟𝑒𝑓(𝑥)𝑓(
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
) 𝑑𝑥. Eq. 3-2

54

Here, 𝑃𝑟𝑒𝑓 and 𝑃𝑡𝑒𝑠𝑡 are the probability distribution of data segments from reference

time interval and test time interval, respectively, and 𝑓 in Eq. 3-1 is a generalized form

of a convex function. Hence, 𝑓(1) = 0. Using f-divergence, we can formalize Kullback–

Leibler divergence (KL-divergence) [58] between two data distribution as follows:

𝑓 = 𝑥𝑙𝑜𝑔(𝑥).

 Eq. 3-3

 𝐾𝐿(𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) = ∫ 𝑃𝑟𝑒𝑓(𝑥) log (
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
) 𝑑𝑥. Eq. 3-4

Another widely used divergence measure called Pearson divergence (PE-

divergence) [59] between two data distribution can be formulated as follows:

𝑓 =

1

2
(𝑥 − 1)2.

 Eq. 3-5

 𝑃𝐸(𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) = ∫ 𝑃𝑟𝑒𝑓(𝑥)(
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
− 1)2 𝑑𝑥. Eq. 3-6

Since
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
≠

𝑃𝑡𝑒𝑠𝑡

𝑃𝑟𝑒𝑓
, 𝐷(𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) ≠ D(𝑃𝑡𝑒𝑠𝑡||𝑃𝑟𝑒𝑓), is the reason f-divergence

measure is asymmetric. According to [49], the performance of symmetric divergence is

significantly better than asymmetric divergence; hence, we symmetrized both KL-

divergence and PE-divergence as follows:

𝐾𝐿(𝑠𝑦𝑚) = KL (𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) + KL (𝑃𝑡𝑒𝑠𝑡||𝑃𝑟𝑒𝑓).

 Eq. 3-7

 𝑃𝐸(𝑠𝑦𝑚) = PE (𝑃𝑟𝑒𝑓||𝑃𝑡𝑒𝑠𝑡) + PE (𝑃𝑡𝑒𝑠𝑡||𝑃𝑟𝑒𝑓). Eq. 3-8

In reality, actual probability distributions, both 𝑃𝑟𝑒𝑓(𝑥) and 𝑃𝑡𝑒𝑠𝑡(𝑥) from

reference data segment and test data segment, respectively, are not known, and even

estimation of probability distributions is known to be a hard problem [60]. Hence, in actual

scenario, to compute KL-divergence directly from Eq. 3-7 or PE-divergence from Eq. 3-8

is very challenging. This problem is approached by approximating both KL-divergence and

55

PE-divergence instead of computing the actual divergences using a method called direct

density-ratio estimation. Instead of estimating 𝑃𝑟𝑒𝑓(𝑥) and 𝑃𝑡𝑒𝑠𝑡(𝑥) separately, the

density-ratio estimation method focuses in learning the density-ratio function
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
 which

is significantly easier. In the following sections, we described two density ratio estimation

methods, KLIEP and uLSIF from [49, 51].

3.4.5 Mathematical Formulation of KLIEP Method

KLIEP, one of the algorithms to estimate density-ratio described in [51] is well-

suited to estimate KL-divergence between two data distributions. From Eq. 3-9, the

formulation of actual KL-divergence with respect to actual density ratio 𝑟(𝑥) is as follows:

 𝐾𝐿(𝑟(𝑥)) = ∫ 𝑃𝑟𝑒𝑓(𝑥)𝑙𝑜𝑔(
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
)𝑑𝑥. Eq. 3-9

 𝑟(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
. Eq. 3-10

Suppose 𝑟(𝑥)̂ is the estimated density ratio modelled from actual density ratio 𝑟(𝑥),

then the 𝑃𝑟𝑒𝑓(𝑥) can be estimated using 𝑟(𝑥)̂ as follows:

 𝑃𝑟𝑒�̂�(𝑥) = 𝑟(𝑥)̂ ∗ 𝑃𝑡𝑒𝑠𝑡(𝑥). Eq. 3-11

If we integrate any probability function, the result should be one as follows:

 ∫ 𝑃𝑟𝑒�̂�(𝑥)𝑑𝑥 = ∫ 𝑟(𝑥)̂ ∗ 𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 = 1. Eq. 3-12

We consider another divergence, 𝐾𝐿𝑑 between actual probability distribution 𝑃𝑟𝑒𝑓

and estimated probability distribution 𝑃𝑟𝑒�̂�(𝑥) as follows:

 𝐾𝐿𝑑 = 𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑟𝑒�̂�) = ∫ 𝑃𝑟𝑒𝑓(𝑥)log (
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑟𝑒𝑓(𝑥)̂
)𝑑𝑥. Eq. 3-13

Now the approximation of KL-divergence between 𝑃𝑟𝑒𝑓 and 𝑃𝑡𝑒𝑠𝑡 will be closer to

the actual KL-divergence between 𝑃𝑟𝑒𝑓 and 𝑃𝑡𝑒𝑠𝑡 when 𝐾𝐿𝑑 , the divergence between the

56

actual probability distribution 𝑃𝑟𝑒𝑓 and estimated probability distribution 𝑃𝑟𝑒�̂�(𝑥) will be

minimum. Combining Eq. 3-10 and Eq. 3-13, we have the following mathematical

formulation:

𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑟𝑒�̂�) = ∫ 𝑃𝑟𝑒𝑓(𝑥)log (
𝑃𝑟𝑒𝑓(𝑥)

𝑟(𝑥)̂ ∗ 𝑃𝑡𝑒𝑠𝑡(𝑥)
)𝑑𝑥. Eq. 3-14

𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑟𝑒�̂�) = ∫ 𝑃𝑟𝑒𝑓(𝑥) 𝑙𝑜𝑔 (
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑡𝑒𝑠𝑡(𝑥)
)𝑑𝑥 − ∫ 𝑃𝑟𝑒𝑓(𝑥)𝑙𝑜𝑔(𝑟(𝑥)̂)𝑑𝑥. Eq. 3-15

The second term of Eq. 3-13 does not depend on 𝑟(𝑥)̂; therefore, it is a constant

defined as 𝐶𝑜𝑛𝑠𝑡.

𝐾𝐿(𝑃𝑟𝑒𝑓 ∥ 𝑃𝑟𝑒�̂�) = 𝐶𝑜𝑛𝑠𝑡 − ∫ 𝑃𝑟𝑒𝑓(𝑥)log (𝑟(𝑥)̂)𝑑𝑥.

 Eq. 3-16

𝐾𝐿𝑑(𝑟(𝑥)̂) = 𝐶𝑜𝑛𝑠𝑡 − ∫ 𝑃𝑟𝑒𝑓(𝑥)log (𝑟(𝑥)̂)𝑑𝑥.

 Eq. 3-17

We define the 2nd part of equation (8) as follows:

 𝐾𝐿2𝑛𝑑(𝑟(𝑥)̂) = ∫ 𝑃𝑟𝑒𝑓(𝑥)𝑙𝑜𝑔(𝑟(𝑥)̂)𝑑𝑥. Eq. 3-18

In [51], Sugiyama used two empirical approximations. The first approximation

𝐾𝐿𝑒(𝑟(𝑥)̂) of 𝐾𝐿𝑑(𝑟(𝑥)̂) from Eq. 3-13 is given as follows:

 𝐾𝐿𝑒(𝑟(𝑥)̂) =
1

𝑛𝑟𝑒�̂�

∑ log (𝑥
𝑖

𝑛𝑟𝑒�̂�)

𝑛𝑟𝑒�̂�

𝑖=1

. Eq. 3-19

The second approximation from Eq. 3-12 is given as follows:

1

𝑛𝑡𝑒𝑠�̂�
∑ �̂� (𝑥𝑖

𝑛𝑡𝑒𝑠�̂�)

𝑛𝑡𝑒𝑠�̂�

𝑖=1

= 1. Eq. 3-20

The optimization problem was formulated using Eq. 3-15 - Eq. 3-20 as follows:

57

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒
1

𝑛𝑟𝑒�̂�

∑ log �̂�(𝑥
𝑖

𝑛𝑟𝑒�̂�)

𝑛𝑟𝑒�̂�

𝑖=1

 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
1

𝑛𝑡𝑒𝑠�̂�
∑ �̂� (𝑥𝑖

𝑛𝑡𝑒𝑠�̂�)

𝑛𝑡𝑒𝑠�̂�

𝑖=1

∶= 1. Eq. 3-21

Here, 𝑟(𝑥) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥. This formulation is well known as KLIEP (KL importance

estimation procedure). Given a density-ratio estimator �̂�(x), an approximator of actual KL

divergence is given as follows:

 𝐾�̂�(𝑥) =
1

𝑛
∑ 𝑙𝑜𝑔 (�̂�(𝑥𝑖))

𝑛

𝑖=1

. Eq. 3-22

3.4.6 Mathematical Formulation of uLSIF Method

uLSIF, another well-known algorithm to estimate density-ratio described in [51] is

used to estimate PE-divergence between two data distributions. The basic idea to compute

Pearson Divergence is model 𝑟(𝑥)̂ from actual density ratio 𝑟(𝑥) (see Eq. 3-13) such that

squared error 𝑆�̂� in the following equations is minimized:

𝑆𝑄𝑅′ =
1

2
∫(𝑟(𝑥)̂ − 𝑟(𝑥))2𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥. Eq. 3-23

𝑆𝑄𝑅′ =
1

2
∫(𝑟(𝑥)̂)2𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 − ∫ 𝑟(𝑥)̂ 𝑟(𝑥)𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 +

1

2
∫(𝑟(𝑥))

2
𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥. Eq. 3-24

Replacing 𝑃𝑡𝑒𝑠𝑡(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝑟(𝑥)
 (see Eq. 3-13) in the following equation:

𝑆𝑄𝑅′ =
1

2
∫(𝑟(𝑥)̂)2𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 − ∫ 𝑟(𝑥)̂ 𝑃𝑟𝑒𝑓(𝑥) 𝑑𝑥 +

1

2
∫ 𝑟(𝑥)𝑃𝑟𝑒𝑓(𝑥) 𝑑𝑥. Eq. 3-25

The third term in Eq. 3-23 is not dependent on 𝑟(𝑥)̂; therefore, it is a constant. We define

another term 𝑆𝑄𝑅 using first two terms in Eq. 3-24 as follows:

𝑆𝑄𝑅(𝑟(𝑥)̂) =
1

2
∫(𝑟(𝑥)̂)2𝑃𝑡𝑒𝑠𝑡(𝑥) 𝑑𝑥 − ∫ 𝑟(𝑥)̂ 𝑃𝑟𝑒𝑓(𝑥) 𝑑𝑥. Eq. 3-26

58

Applying empirical averages, the approximation 𝑆𝑄𝑅(𝑟(𝑥)̂) 𝑓𝑟𝑜𝑚 𝑆𝑄𝑅(𝑟(𝑥)̂) is

achieved as follows:

𝑆𝑄�̂�(𝑟(𝑥)̂) =
1

2 ∗ 𝑛𝑡𝑒𝑠�̂�
∑ (�̂� (𝑥𝑖

𝑛𝑡𝑒𝑠�̂�))2

𝑛𝑡𝑒𝑠�̂�

𝑖=1

−
1

𝑛𝑟𝑒�̂�

∑ �̂� (𝑥
𝑖

𝑛𝑟𝑒�̂�)

𝑛𝑟𝑒�̂�

𝑖=1

.
 Eq. 3-27

Hence, we can define the optimization problem to estimate density ratio using

Pearson-divergence as follows: minimize 𝑟(𝑥)̂ such that
1

2∗𝑛𝑡𝑒𝑠�̂�

∑ (�̂� (𝑥𝑖

𝑛𝑡𝑒𝑠�̂�))2𝑛𝑡𝑒𝑠�̂�

𝑖=1 −

1

𝑛𝑟𝑒�̂�

∑ �̂�(𝑥
𝑖

𝑛𝑟𝑒�̂�)
𝑛𝑟𝑒�̂�

𝑖=1
 is minimum. This formulation is well known as uLSIF (least-squares

importance fitting). Given a density-ratio estimator �̂�(x), an approximator of actual PE

divergence is given as follows:

 𝑃�̂�(𝑥) = −
1

2 ∗ 𝑛
∑ (�̂�(𝑥𝑖))2

𝑛

𝑖=1

+
1

𝑛
∑ �̂�(𝑥𝑖)

𝑛

𝑖=1

+
1

2
. Eq. 3-28

3.4.7 Dynamic Cutoff Point

Static values have been widely used as cutoff points to decide the potential change

points, as seen in [44, 49]. However, prior knowledge about the existing environment is

required to set a cutoff value to be static or constant. To conduct our experiments, we

adapted a dynamic approach to define the cutoff point at time 𝑡𝑐𝑢𝑟 by using previously

known divergence values which have already been used to detect changes at time 𝑡𝑖 where

𝑡𝑖 < 𝑡𝑐𝑢𝑟. Suppose the change points have been detected at time 𝑡𝑐𝑝+1, 𝑡𝑐𝑝+2,

𝑡𝑐𝑝+3, … … , 𝑡𝑐𝑝+𝑛 with divergence 𝑓𝑐𝑝, 𝑓𝑐𝑝+1, 𝑓𝑐𝑝+2, … … , 𝑓𝑐𝑝+𝑛 respectively within recent

time interval [𝑡𝑖: 𝑡𝑖+𝑘] where 𝑡𝑖+𝑘 < 𝑡𝑐𝑢𝑟. We chose to use a recent time interval instead

of a fulltime interval to lower the impact of older divergence values compared to recent

divergence values. Next, we define range 𝑓𝑚𝑒𝑎𝑛 and 𝑓𝑠𝑡𝑑 as follows:

59

𝑓𝑚𝑒𝑎𝑛 = 𝑚𝑒𝑎𝑛(𝑓𝑐𝑝, 𝑓𝑐𝑝+1, 𝑓𝑐𝑝+2, … … , 𝑓𝑐𝑝+𝑛).

 Eq. 3-29

 𝑓𝑠𝑡𝑑 = 𝑠𝑡𝑑(𝑓𝑐𝑝, 𝑓𝑐𝑝+1, 𝑓𝑐𝑝+2, … … , 𝑓𝑐𝑝+𝑛).
.

 Eq. 3-30

Here, 𝑓𝑐𝑝+𝑛 is the divergence value measured at 𝑡𝑐𝑝+𝑛 where 𝑡𝑐𝑝+𝑛 < 𝑡𝑐𝑢𝑟 and

𝑛 = 1,2,3 …. Using 𝑓𝑚𝑒𝑎𝑛 and 𝑓𝑠𝑡𝑑 , we define the cutoff values with 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 and change

detection criteria as follows:

 𝑓𝑐𝑢𝑡𝑜𝑓𝑓 = 𝑓𝑚𝑒𝑎𝑛 − 𝑓𝑠𝑡𝑑 .

 Eq. 3-31

 𝑐𝑝 = {
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1, 𝑓𝑐𝑢𝑟≥𝑓𝑐𝑢𝑡𝑜𝑓𝑓 .

 Eq. 3-32

3.4.8 Validation Criteria

We adapted the validation criteria described in [49]. Since our change point analysis

follows a retrospective approach, certain delay to identify change point is allowed. Suppose

the proposed method detects a change point at time 𝑡𝑑𝑒𝑡𝑒𝑐𝑡, and the closest actual change

point exists at time 𝑡𝑎𝑐𝑡𝑢𝑎𝑙. The detected change point is considered to be correct

if (𝑡𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑡𝑎𝑑𝑗𝑢𝑠𝑡) ≤ 𝑡𝑑𝑒𝑡𝑒𝑐𝑡 ≤ (𝑡𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑡𝑎𝑑𝑗𝑢𝑠𝑡) where 𝑡𝑎𝑑𝑗𝑢𝑠𝑡 refers to time delay

within an acceptable range. Since it is very difficult to distinguish the clear boundary where

actual change of data distribution starts, duplicate alarms can be generated for several

consecutive time points to detect the same change point. To avoid such duplication, we

discarded the 𝑘𝑡ℎ alarm at step 𝑡𝑘 if 𝑡𝑘 − 𝑡𝑘−1 ≤ 2 ∗ 𝑡𝑎𝑑𝑗𝑢𝑠𝑡 .

For artificial datasets with a sample size 5000, we set 𝑡𝑎𝑑𝑗𝑢𝑠𝑡 equal to be 12.5,

whereas for real datasets with a record size of 5 × 105, we choose 𝑡𝑎𝑑𝑗𝑢𝑠𝑡 equal to be 250.

To set our validation criteria, we define 𝑛𝑐𝑟 as the number of times the change points are

correctly detected, 𝑛𝑐𝑝 as the number of actual change points, and 𝑛𝑎𝑙 as the number of

detected change points, and 𝑛𝑛𝑐𝑟 as the number of times change points are not correctly

60

detected. We can count 𝑛𝑛𝑐𝑟 by observing if there exists a change point at step 𝑡𝑎𝑐𝑡𝑢𝑎𝑙 but

no alarm in (𝑡𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑡𝑎𝑑𝑗𝑢𝑠𝑡) ≤ 𝑡 ≤ (𝑡𝑎𝑐𝑡𝑢𝑎𝑙 + 𝑡𝑎𝑑𝑗𝑢𝑠𝑡). We define 𝑇𝑃 (True positive),

𝐹𝑃 (False positive), 𝐹𝑁 (False negative), 𝑃 (precision), 𝑅 (Recall), 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 as follows:

 𝑇𝑃 =
𝑛𝑐𝑟

𝑛𝑐𝑝
. Eq. 3-33

 𝐹𝑃 =
𝑛𝑎𝑙 − 𝑛𝑐𝑟

𝑛𝑎𝑙
. Eq. 3-34

 𝐹𝑁 =
𝑛𝑛𝑐𝑟

𝑛𝑐𝑝
. Eq. 3-35

 𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. Eq. 3-36

 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. Eq. 3-37

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
. Eq. 3-38

3.5 Results

In this section, we investigated the performance of the proposed change point

detection technique using both artificial (Section 3.3.1 – 3.3.3) and real datasets (Section

3.3.4). At first, we synthesized three types of datasets using multi variate random

generators (‘mvtnorm’ packag e in R [57]). For each type, we created four datasets with a

sample size of 5000 each and dimensions of 25, 50, 75 and 100, respectively. Hence, we

created a total of twelve artificial datasets to conduct our experiments. We introduced a

change point every 100 samples by adding Gaussian random variable or by varying the

combination of the mean and covariance matrix. We added timestamp to each sample to

make the datasets compatible for the sliding window technique. For simplicity, we

considered only one sample collected at each time point. We divided the current window

61

into two data segments, reference data segment and test data segment. For comparison, we

applied two different density ratio estimation technique, KLIEP and uLSIF using densratio

package in R [61], on original and PCA transformed dataset separately.

At first, we applied the KLIEP method on multidimensional data segments with

and without PCA transformation to measure respective KL-divergence and compared their

performance in terms of TPR (true positive rate), FPR (false positive rate), and FNR (false

negative rate) and computational time to analyze the contribution of PCA on KLIEP

performance. Next, we applied a similar approach by using the uLSIF method on the same

data segments with and without PCA transformation to measure respective PE-divergence

and compared their performances to analyze the contribution of PCA on uLSIF

performance. After analyzing the contribution of PCA transformation on individual

methods, we shifted our focus to compare the performance between KLIEP and uLSIF on

PCA transformed data segments. Using twelve artificial datasets, we ran a total of 48

experiments and used the results of these experiments to demonstrate the superiority of the

proposed framework. In a later section, we further reinforced our claim by comparing the

proposed framework with three base line methods using seven public datasets to

demonstrate its effectiveness.

3.5.1 Results: Type # 01 Dataset

Figure 3-1 depicts the scenario of detecting potential change points for type #01

datasets where KL-divergence or PE-divergence undergoes noticeable changes. Table 3-3

 shows the results of the KLIEP method on PCA reduced features on these four-time series

datasets, whereas Table 3-4 presents the results of the uLSIF method on PCA reduced

features.

62

Figure 3-1: Potential change points detection for type 01 datasets where KL-divergence

and PE-divergence undergoes noticeable changes. (a) & (b) time vs. KL-divergence

between PCA transformed data segments (original feature dimension equals to 25, and 75,

respectively). (c) & (d) time vs. PE-divergence between PCA transformed data segments

with original feature dimension equals to 75, and 100, respectively.

Table 3-3: Comparison of performance of KLIEP on full features and PCA reduced

features for four type #01 synthetic datasets.

 Only KLIEP PCA + KLIEP

of

features

TP

(%)

FP

(%)
FN (%)

Avg runtime

per window

(in sec)

TP

(%)

FP

(%)

FN

(%)

Avg runtime

per window

(in sec)

25 73.469 19.027 26.531 11.13 85.714 16.372 14.286 9.47

50 77.551 18.502 22.449 14.41 83.673 16.814 16.327 10.79

75 75.510 18.943 24.490 17.33 81.633 17.257 18.367 11.28

100 69.388 20.264 30.612 25.84 75.510 18.584 24.490 13.67

Average 73.980 19.184 26.020 17.18 81.633 17.257 18.367 11.30

63

Table 3-4: Comparison of performance of uLSIF on full features and PCA reduced features

for four type #01 synthetic datasets

 Only uLSIF PCA + uLSIF

of

features
TP (%) FP (%) FN (%)

Avg runtime per

window (in sec)
TP (%) FP (%) FN (%)

Avg runtime

per window (in

sec)

25 85.714 16.740 14.286 6.83 91.837 15.419 8.163 4.69

50 81.633 17.621 18.367 7.23 89.796 15.859 10.204 4.80

75 79.592 18.062 20.408 8.96 83.673 17.181 16.327 5.59

100 71.429 19.824 28.571 10.16 79.592 17.333 20.408 6.32

Average 79.592 18.062 20.408 8.30 86.224 16.448 13.776 5.35

3.5.2 Results: Type # 02 Dataset

Figure 3-2 illustrates the scenario of detecting potential change points for type #02

datasets where KL-divergence or PE-divergence undergoes noticeable changes.

Figure 3-2: Potential change points detection for type 02 datasets where KL-divergence or

PE-divergence undergoes noticeable changes. (a) & (b) Time vs. KL-divergence between

PCA transformed data segments with original feature dimension equals to 50 and 100

respectively. (c) & (d) Time vs. PE-divergence between PCA transformed data segments

with original feature dimension equals to 25 and 75 respectively.

64

Table 3-5 shows the results of the KLIEP method on full features and PCA

reduced features on these four-time series datasets, whereas Table 3-6 presents the

results of the uLSIF method on full features and PCA reduced features.

Table 3-5: Comparison of performance of KLIEP on full features and PCA reduced

features on four type #02 datasets

 Only KLIEP PCA + KLIEP

of

features

TP

(%)
FP (%) FN (%)

Avg runtime

per window

(in sec)

TP

(%)

FP

(%)

FN

(%)

Avg runtime

per window

(in sec)

25 85.714 15.247 14.286 14.71 91.837 15.419 8.163 9.04

50 83.673 15.315 16.327 13.74 89.796 15.111 10.204 9.99

75 81.633 16.889 18.367 18.90 83.673 16.444 16.327 11.83

100 77.551 17.040 22.449 39.66 79.592 16.964 20.408 13.36

Average 82.143 16.123 17.857 21.75 86.224 15.985 13.776 11.06

Table 3-6: Comparison of performance of uLSIF on full features and PCA reduced

features on four type #02 datasets

 Only uLSIF PCA + uLSIF

of

features
TP (%) FP (%) FN (%)

Avg runtime

per window

(in sec)

TP (%)
FP

(%)

FN

(%)

Avg runtime

per window

(in sec)

25 87.755 16.300 12.245 7.31 97.959 13.717 2.041 4.01

50 83.673 16.444 16.327 7.62 91.837 15.044 8.163 4.33

75 77.551 18.142 22.449 9.71 87.755 15.929 12.245 4.92

100 73.469 19.027 26.531 11.65 83.673 16.444 16.327 5.55

Average 80.612 17.478 19.388 9.07 90.306 15.284 9.694 4.70

3.5.3 Results: Type # 03 Dataset

Figure 3-3 exemplifies the situation of detecting potential change points for type

#03 datasets where KL-divergence or PE-divergence experience visible changes after PCA

transformation. Table 3-7 shows the results of the KLIEP method on full features and PCA

reduced features on these four-time series datasets whereas Table 3-8 presents the results

of the uLSIF method on full features and PCA reduced features.

65

 Figure 3-3: Potential change points detection for type 03 datasets where KL-divergence

or PE-divergence undergoes noticeable changes. (a) & (b) Time vs. KL-divergence

between PCA transformed data segments with original feature dimension equals to 25 and

100 respectively. (c) & (d) Time vs. PE-divergence between PCA transformed data

segments with original feature dimension equals to 50 and 75 respectively.

Table 3-7: Comparison of performance of KLIEP on full features and PCA reduced

features on four type #03 datasets.

 Only KLIEP PCA + KLIEP

of

features

TP

(%)
FP (%) FN (%)

Avg runtime

per window

(in sec)

TP

(%)
FP (%) FN (%)

Avg runtime

per window

(in sec)

25 73.469 19.383 26.531 11.651 81.633 17.257 18.367 9.73

50 83.673 16.071 16.327 27.411 83.673 16.071 16.327 10.94

75 75.510 18.943 24.490 31.817 79.592 22.034 20.408 11.51

100 69.388 19.912 30.612 33.311 77.551 18.502 22.449 13.16

Average 75.510 18.577 24.490 26.05 80.612 18.466 19.388 11.33

66

 Only uLSIF PCA + uLSIF

of

features
TP (%) FP (%) FN (%)

Avg runtime

per window (in

sec)

TP (%) FP (%) FN (%)
Avg runtime per

window (in sec)

25 83.673 16.814 16.327 7.31 89.796 15.111 10.204 4.05

50 79.592 16.964 20.408 7.62 85.714 16.740 14.286 4.69

75 77.551 18.142 22.449 9.71 81.633 17.257 18.367 5.05

100 75.510 17.117 24.490 11.65 79.592 18.062 20.408 5.70

Average 79.082 17.259 20.918 9.07 84.184 16.792 15.816 4.87

We measured the improvement of performance of both KLIEP and uLSIF due to

dimensionality reduction by the PCA as follows:

 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑋 =
𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝐹𝑢𝑙𝑙+𝑚𝑒𝑡ℎ𝑜𝑑 − 𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑃𝐶𝐴+𝑚𝑒𝑡ℎ𝑜𝑑

𝑋𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝐹𝑢𝑙𝑙+𝑚𝑒𝑡ℎ𝑜𝑑 ∗ 100. Eq. 3-39

Here, 𝑋 = 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 and 𝑚𝑒𝑡ℎ𝑜𝑑 = 𝐾𝐿𝐼𝐸𝑃, 𝑢𝐿𝑆𝐼𝐹 for

average values. Using equation (24), Table 3-9 shows all the results of performance

improvement for TP, FP, FN, and execution time due to PCA transformation.

 (Original Features + KLIEP) Vs. (PCA + KLIEP) (Original Features + uLSIF) Vs. (PCA + uLSIF)

Dataset
Type

Change

in

TP (%)

Change

in

FP (%)

Change in
FN (%)

Change in

Avg runtime per

window (%)

Change

in

TP (%)

Change

in

FP (%)

Change

in

FN (%)

Change in

Avg runtime per

window (%)

Type 01 (+)10.34 (-)10.05 (-) 29.41 (-) 34.21 (+) 8.33 (-) 8.93 (-) 32.50 (-) 35.50

Type 02 (+) 4.97 (-) 0.86 (-) 22.86 (-) 49.18 (+) 12.03 (-) 12.55 (-) 24.39 (-) 48.18

Type 03 (+) 6.76 (-) 0.60 (-) 20.83 (-) 56.49 (+) 4.50 (-) 6.46 (-) 22.22 (-) 46.32

Average (+) 7.36 (-) 3.83 (-) 24.37 (-) 46.62 (+) 8.29 (-) 9.32 (-) 26.37 (-) 43.33

Table 3-8: Comparison of performance of uLSIF on full features and PCA reduced features

on four type #03 datasets.

Table 3-9: Performance improvement of KLIEP and uLSIF methods in terms of TP, FP,

FN and execution time due to PCA.

67

We observed that for both KLIEP and uLSIF, the values of 𝑇𝑃 increased whereas

values of 𝐹𝑃, 𝐹𝑁 and execution time decreased when PCA was used. We also observed

significant reduction in runtime due to dimensionality reduction. All results justified that

KLIEP and uLSIF, both density ratio estimation methods, perform better when PCA is

used to reduce the dimensionality of the feature space in the streaming environment. We

illustrated this observation visually in Figure 3-4.

Figure 3-4: The results of performance improvement of KLIEP method in terms of TP,

FP, FN, and execution time for PCA

All results justified that KLIEP and uLSIF, both density ratio estimation methods,

perform better when PCA is used to reduce the dimensionality of the feature space in the

streaming environment. We illustrated this observation visually in Figure 3-5.

68

Figure 3-5: The results of performance improvement of uLSIF method in terms of TP,

FP, FN, and execution time for PCA.

The results demonstrated that KLIEP and uLSIF, both density ration estimation

methods, performed better when dimensionality of the features space was reduced by PCA

which also justified our hypothesis. However, when dimensionality has already been

reduced by the PCA, the overall performance of the uLSIF method is better than the KLIEP

in terms of 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, and execution time which is shown in Table 3-10 and Figure 3-6.

 PCA + KLIEP PCA + uLSIF

dataset

Type
TP (%) FP (%) FN (%)

Avg runtime

per window

(in sec)

TP (%) FP (%) FN (%)

Avg runtime

per window

(in sec)

Type 01 81.633 17.257 18.367 11.30 86.224 16.448 13.776 5.35

Type 02 86.224 15.985 13.776 11.06 90.306 15.284 9.694 4.70

Type 03 80.612 18.466 19.388 11.33 84.184 16.792 15.816 4.87

Average 82.823 17.236 17.177 11.230 86.905 16.175 13.095 4.97

Table 3-10: Overall comparison of performance improvement between KLIEP and uLSIF on

PCA transformed data.

69

Figure 3-6: Comparison of performance improvement between KLIEP and uLSIF

method in terms of TP, FP, FN, and execution time after dimensionality reduction by

PCA.

3.5.4 Results: Public Datasets

We also compared our proposed framework MCD-PuLSIF with three baseline

methods known as CD-LLH (Change Detection by Log Likelihood), CD-MKL (Change

Detection by Maximum KL Divergence), CD-Area (Change Detection by Intersection

Area between two data distribution) presented in [54] so that the final datasets turn out to

be similar and comparison of the experimental results between the proposed framework

and the three base line methods, CD-LLH, CD-MKL, and CD-Area, are justified. At first,

we resized each dataset up to 5 × 105. Suppose 𝑥 is a randomly chosen data sample for

dataset 𝐷𝑖 with record size 𝑛𝐷𝑖
. Finally, we applied the proposed MCD-PuLSIF framework

on these fourteen datasets and the experimental results using F1-score shown in the

rightmost column of Table 3-11.

70

Results from

published work [27]

Results from

proposed

framework

Datasets
kdt-

tree

PCA-

SPLL

CD-

LLH

CD-

MKL
CD-Area MCD-PuLSIF

Spruce(G1D) 0.676 0.493 0.913 0.846 0.925 0.917

Spruce(S1D) 0.676 0.346 0.778 0.772 0.884 0.895

Lodgepole Pine(G1D) 0.492 0.446 0.872 0.856 0.904 0.920

Lodgepole Pine(S1D) 0.346 0.735 0.794 0.741 0.839 0.914

Ascending Stairs(G1D) 0.585 0.504 0.838 0.785 0.848 0.891

Ascending Stairs(S1D) 0.592 0.772 0.995 0.761 0.821 0.843

Cycling(G1D) 0.614 0.352 0.814 0.832 0.849 0.870

Cycling(S1D) 0.658 0.387 1.000 0.805 0.833 0.895

Descending Stairs(G1D) 0.563 0.535 0.809 0.828 0.811 0.901

Descending Stairs(S1D) 0.746 0.406 0.989 0.878 0.872 0.866

Ironing(G1D) 0.599 0.559 0.862 0.753 0.772 0.894

Ironing(S1D) 0.649 0.615 0.995 0.794 0.828 0.869

Vacuum cleaning(G1D) 0.473 0.628 0.809 0.831 0.822 0.892

Vacuum cleaning(S1D) 0.691 0.691 0.985 0.782 0.814 0.920

Average (F1-Score) 0.597 0.534 0.890 0.805 0.844 0.892

At first, we searched five nearest neighbors 𝑥1, 𝑥2, … , 𝑥5 of 𝑥 (FNN R package

[62]) followed by drawing ⌈
5×105−𝑛𝐷𝑖

𝑛𝐷𝑖

⌉ number of random samples from these five nearest

neighbor samples with a replacement and creating a new sample by taking their average.

This technique was first used in [63] to boost the dataset up to a certain size while retaining

the same distributional properties. After resizing each dataset up to 5 × 105, we infused

two types of changes every 2 × 104 data samples. The first type of change was

incorporated by adding one dimensional Gaussian random variable (G1D) to a randomly

selected feature every 2 × 104 data samples and the second type of change was fused by

Table 3-11: Comparison of experimental results of MCD-PuLSIF method with CD-LLH, CD-

MKL, and CD-Area using real world datasets.

71

scaling a randomly selected feature by two (S1D) every 2 × 104 data samples. We used

these two types of changes because they affect only a single dimension of the dataset and

they are harder to detect.

The results of three baseline method known as CD-LLH, CD-MKL, and CD-Area

along with kdt-tree and PCA-SPILL are taken directly from [54] where CD-LLH, CD-

MKL and CD-Area methods were compared with two other methods, kdt-tree [64] and

PCA-SPILL [65]. We used bold font with red color where baseline methods performed

better than the proposed method.

From the experimental results, we observed the overall performance of the

proposed MCD-PuLSIF framework is significantly better than CD-MKL (F1-Score 0.892

compared to 0.805) and CD-Area (F1-Score 0.892 compared to 0.844). However, the

average performance of MCD-PuLSIF and CD-LLH are almost the same (F1-score 0.892

compared to 0.0.890), but when we observed carefully, we found that the performance of

CD-LLH method outperformed MCD-PuLSIF only for activity datasets with S1D.

Through further investigation, we observed that not only the performance of CD-

LLH method experienced larger variations in F1-score ranging from 0.778 to 1.00, but also

CD-LLH underperformed more than MCD-PuLSIF for other datasets. CD-LLH showed

lower performance than CD-MKL and CD-Area except for activity datasets with S1D.

Therefore, the overall performance of MCD-PuLSIF is more consistent than CD-LLH

when all datasets are considered. Figure 3-7 depicts the compared performance of MCD-

PuLSIF with CD-LLH, CD-MKL, CD-Area using different types of datasets separately.

72

Figure 3-7: Comparison of experimental results of MCD-PuLSIF method with CD-

LLH, CD-MKL, and CD-Area using cover type and activity datasets separately.

3.5.5 Computation Complexity Analysis

For our experiment, we applied SVD for PCA transformation. Time complexity of

SVD is Ο(min(𝑛2𝑝, 𝑝2𝑛)) [52], where 𝑛 and 𝑝 refer to the sample size per window and

feature dimension, respectively. For the worst-case scenario, when 𝑛 and 𝑝 are equal, the

worst cast time complexity of PCA using SVD is Ο(𝑛3). Table 3-12 shows runtime

considering several combinations of window size and feature dimension.

73

Window Size No of PCAs
Run

time(sec)
Window Size

No of

PCAs
Run time(sec)

10000 10 46.12 15000 30 110.49

10000 20 44.99 20000 10 185.89

10000 30 45.42 20000 20 186.20

15000 10 111.17 20000 30 185.67

15000 20 111.00 ---- --- ---

Figure 3-8(a-c) depicts that given a fixed window size, runtime remains almost

constant even when the number of PCAs are varied from 10 to 30. On the other hand,

Figure 3-8(e-g) shows that runtime increases with an increase of window size from 1000

to 20000. Data from Table 3-12 and graphs from Figure 3-8 depict that the window size

plays a major role for runtime, since the impact of feature dimension on runtime is very

little.

Figure 3-8: Comparison of runtime against window size and feature dimension for

MCD-PuLSIF.

Table 3-12: Comparison of runtime against window size and feature dimension for MCD-

PuLSIF.

74

On the other hand, uLSIF is a convex quadratic problem [51], which can be

computed by solving a set of linear equations. For a data matrix 𝑛 × 𝑝, 𝑛 number of linear

equations with 𝑝 number of coefficients are required to be solved. Time complexity of

uLSIF is Ο(𝑛2𝑝). when 𝑛 and 𝑝 are equal, so the worst cast time complexity of uLSIF is

Ο(𝑛3). Hence, for worst case scenario, the total time complexity of proposed framework

is Ο(𝑛3). The runtime complexity of CD-LLH, CD-MKL and CD-Area is Ο(𝑛3)

mentioned in [54], which is theoretically the same as the worst case runtime complexity of

MCD-PuLSIF, but we could not make practical comparison on runtime since detailed data

on runtime is unavailable. However, some figures in [54] show that runtime of CD-LLH,

CD-MKL and CD-Area vary from 100 sec to 700 sec based on several combinations of

window size and feature dimension. However, the maximum run time of MCD-PuLSIF is

186 sec for window size varying from 10000 to 20000 and feature dimensions varying

from 10 to 30. Therefore, we can draw the conclusion that proposed framework is a better

technique compared to these three-baseline methods in terms of reducing the run time along

with improving the change detection rate.

3.6 Findings and Discussion

In this chapter, we proposed a useful unsupervised framework combining feature

space model using PCA computed by SVD and density ratio method known as uLSIF to

detect change point in time series data streams with multidimensional feature space with

better accuracy and efficiency. We applied a sliding window technique to limit the amount

of streaming data processing to manage memory and time. To make decisions about

plausible occurrence of change points, we used dynamic thresholding instead of static

thresholding. We compared our framework with another density ratio estimation method

75

known as KLIEP and three other baseline methods using artificial and real datasets which

demonstrated the effectiveness of our technique using the experimental results. Some

potential application areas are also identified where the proposed technique can be

explored. For our experiments, the proposed framework focused only on unlabeled

numerical data for both artificial and real datasets. We can further investigate how the

proposed technique performs in the presence of mixed or labeled variables in datasets.

However, we left all these issues open as potential future works.

In the next chapter, we applied unsupervised feature space modeling using matrix

factorization and Lasso Regression to reduce the dimensionality of botnet affected network

traffic data collected in a non-stationary environment which subsequently used by Relative

Density Ratio Estimation method to detect malicious attacks launched from botnets with

better accuracy and efficiency.

76

UNSUPERVISED FEATURE SPACE MODELING FOR BOTNETS

DETECTION FRAMEWORK

4.1 Chapter Overview

In this chapter, we built an unsupervised feature space model using matrix

factorization, Lasso Regression to select the most relevant features as well as to reduce the

dimension of network traffic data infused with malignant data generated from botnets in a

non-stationary environment. Next, we modeled the relative ratio of probability

distributions of two data segments and explore this statistical measure to identify attacks

launched from compromised IoT devices, collectively known as botnets with better

accuracy and efficiency. We proposed a semi-supervised network based IoT botnet

detection framework consisting of two major components using network traffic statistics.

 The first component, an unsupervised feature selection method, selected useful

features from several network traffic statistics using QR factorization, Singular Value

Decomposition, and Lasso Regularized Regression. The second component comprised of

relative density ratio estimation method, known as Relative Unconstrained Least Square

Importance Fitting, estimated the ratio of probability density of traffic instances in the

current window with respect to the reference window. It was subsequently employed to

prove the hypothesis that the data distributions of benign and malicious network traffic are

different, and thus the traffic instances with low probability densities can be regarded as

77

anomalies or malicious generated from the plausible botnets. To conduct our experiments,

we used real datasets on IoT devices infected by BASHLITE and Mirai botnets. We

validated the proposed framework by comparing its performance with four baseline

methods. We observed better and more consistent performance by the proposed framework

in terms of higher botnet detection rate and lower computational time which demonstrated

its applicability and effectiveness.

4.2 Related Works

Botnet is a robot or zombie network consisting of infected or compromised

network devices known as bots which are capable of running malicious software scripts

under the command and control (C&C) server with a wide range of purposes, for example,

scanning and infecting other vulnerable devices, launching distributed denial-of-service

(DDoS) attacks, cracking default or weak passwords, sending spam email, logging public

and private keys, and mining cryptocurrency, etc. [66, 67]. Compared to conventional

computing systems, IoT infrastructure is much more robust and convenient for creating

large-scale botnets with significant network bandwidth and computational power since

attacks from malicious agents performed from distributed infrastructures are more effective

since they can exploit more resources to destabilize the target network devices which may

demand more advanced tracking, detecting and mitigating mechanisms [68]. Among the

widely used malicious software to launch DDoS attacks, BASHLITE and Mirai are very

popular among attackers. BASHLITE is one of the most widely used malware programs.

It launched over 1 million DDoS attacks to infect primarily Linux based IoT devices. It

targeted mostly cameras and DVRs connected with the network [69].

78

Most BASHLITE attacks are simple UDP, TCP floods and HTTP requests which

are capable of launching attacks of up to 400 Gbps [68, 69]. Mirai, another prevalent

malware, targets mostly internet enabled CCTV cameras, DVRs, and home routers [69-

71]. Mirai generates floods of GRE IP, GRE ETH, SYN and ACK, STOMP, DNS, UDP,

or HTTP traffic against a target network device during a DDoS attack with strengths

ranging from 200 Gbps to 1.2 Tbps [70, 71]. Since the release of the Mirai source code,

the number of IoT infected devices has increased from 213,000 to 483,000 in just two

weeks [69]. IoT devices cover a wide range of services, for example, smart home,

healthcare, and transport automation, smart energy solutions, and extremely complicated

industrial control systems, and thus the number of IoT devices is enormous. Therefore, data

produced from these massive number of devices can range up to Tbps levels, and their

value is worth billions of dollars. According to [66], in September 2016, French web host

OVH was attacked by a Mirai botnet which has been recorded as the most massive DDoS

attack hacking as large as 1.5 Tbps of data; another Mirai based DDoS attack was launched

in the same month against Brian Krebs’s security blog with 600 Gbps. DDoS attacks led

to financial losses on the order of 2 billion dollars per year [68].

Botnet attacks such as BASLITE or Mirai impose huge threat both in terms of

network safety and financial loss. For many countries, this is an emergency issue

concerning national security. Early detection of botnet attacks can accelerate the process

of alert mechanisms and disconnection of compromised IoT devices from the network

which may further help in stopping the botnets from propagating and infecting new devices

[66, 67], and thus IoT based botnet related research has garnered immense attention for

researchers in recent time. Among other network traffic characteristics, network statistics

79

and behavioral features have been used for years by researchers in investigating, designing,

and implementing botnets detection mechanism [72, 73].

DDoS attacks such as BASHLITE and Mirai, particularly in the IoT domain, result

in a significant impact to both entrepreneurs and end users in terms of security risk and

financial loss [66-68, 73]. A substantial amount of research has been done in analyzing the

evolution of DDoS attacks, categorizing and creating taxonomies, illustrating the effect of

botnet attacks, characterizing the frequently used BASHLITE and Mirai botnets, and

exploring the DDoS attack underground market [66-75]. For years, researchers have relied

on several network traffic characteristics in investigating, designing, and implementing

botnets detection techniques, for example, use of suspicious traffic behavior [74, 76],

actions in honeypots [77-79], communication protocols [76], networks statistics and

behavioral features [67], graphical illustrations of network behaviors [73, 80],

collaborative feedback collected from large networks [81], etc.

Among botnet detection mechanisms, honeypots are widely studied and explored.

A honeynet is a trap network-attached system for luring hackers to engage and deceive

hackers, tracking unconventional or new hacking attempts and identifying malicious

activities performed over IoT devices [79]. Reference [73] presents a detailed taxonomy to

classify the detection mechanisms by separating the detection sources into honeynets and

intrusion detection system (IDS). Anomaly-based systems and signature-based systems are

two major sub-categories of IDS, whereas the anomaly-based system is further grouped

into network-based systems and host-based systems. Two more sub-categories are found

under network-based systems which are known as active monitoring and passive

monitoring. Botnet detection mechanisms, for example, host-based [82, 83] and network-

80

based [74, 76, 77, 84] techniques search discriminatory or anomalous pattern based on

several network traffic characteristics, for example, malicious DNS traffic launched from

C&C servers, signatures recognized by honeypots [78, 79], anomalous network traffic [67,

74], data mining and machine learning techniques [85], and multilayer hybrid detection

approaches [75, 86, 87]. A different software-based edge-oriented mitigation solution

using Software Defined Network (SDN) and Fog computing to detect Mirai botnet are

presented in [88, 89].

Recently, Neural Network (NN) particularly Deep Neural Network (DNN) are

explored in this area of botnet detection. For example, Recurrent Neural Network (RNN)

has been explored in [90], whereas Auto Encoder has been used in [67] as a threat detection

mechanism although a deep learning algorithm is computationally very expensive due to

multiple hidden layers, and thus the deployment of these mechanisms are particularly

convenient for the high-performance cloud computing environment. Moreover, DNN

methods are highly parametric which require a lot of parameter tuning and manual

inspection.

With the continuous change of heterogeneous IoT devices, the botnet attack or

hacking networks are also evolving with more sophistication, and thus it is recommended

to rely on multilayer security mechanism using a hybrid approach rather than a single layer

security mechanism [72, 86, 87]. Hybrid approaches may combine both host-based and

network-based mechanisms to prevent attacks before a launch as well as to detect attacks

after the launch. For example, antivirus software, farewells, content filtering, or inspection

technologies can be installed as preventative measures, whereas network traffic can be

continuously monitored from network gateway using network-based detection methods to

81

find anomalous events or trend indicating potential risk after attacks have been launched.

With this context of hybrid security approach to ensure an end to end security, our proposed

data-driven framework deployed in a network router or gateway can add an extra level of

network security to detect anomalous network traffic.

According to [72], IoT botnet detection mechanisms encounter four common

problems: 1) lack of real datasets to conduct research, 2) lack of benign or standard traffic

models, and 3) identifying essential and non-redundant features to mitigate overfitting

problem and 4) reliability problems in the validation criteria. We addressed the first two

issues by using real datasets publicly available in UCI machine repository [67] instead of

using simulated datasets. The training window of the proposed framework consists of

benign or normal traffic instances since the donated botnet attack related dataset is

segmented into benign traffic data as well as malicious data from BASHLITE and Mirai

botnets.

To address the third issue, we built an unsupervised feature selection method using

QRcp, SVD and Lasso regularized regression. We applied Lasso regularization to avoid

the problem of overfitting. To address the fourth and final issue, we have used F1-score as

the performance validation criteria while comparing the performance with other anomaly

detection systems. Other validation criteria such as accuracy, ROC-AUC, sensitivity,

specificity, and TPR-FPR may give misleading performance measures.

The first component is an unsupervised feature selection method based on matrix

factorization to select useful features (i.e., network statistics) as well as to reduce the

dimensionality of the feature space. We adopted the concept of unsupervised feature

selection method described in [91, 92] which used one-step matrix sketching by SVD

82

without considering the actual rank of the matrix. We modified the approach by using

QRcp and SVD in two consecutive steps of matrix sketching.

First, we applied QR factorization [93] to sketch or shrink the data matrix in terms

of feature space by measuring the actual rank of data matrix using a column-wise pivotal

element calculation. Next, we applied Singular Value Decomposition (SVD) [92, 94] on

the shrunken data matrix to efficiently maintain a low-rank approximation of the observed

features retaining 95% of total variances of the original dataset. Moreover, finally, we used

Lasso regularized regression on this approximation to measure feature score to identify the

critical features regarding the right singular vectors found from SVD decomposition as the

regression target [91, 92]. The second component of the proposed framework comprises of

relative density ratio estimation method known as Relative Unconstrained Least Square

Importance Fitting (RuLSIF) [95]. RuLSIF estimates the ratio of the probability density of

each data instance in the current window with respect to the training window based on the

hypothesis that the data distribution of benign network traffic is different from the data

distribution of malicious network traffic. Thus, traffic data instances with low probability

densities can be regarded as an anomaly generated from plausible botnets imposing

potential security threats.

The proposed system can exhibit multiple advantages. First, the use of a training

window filling with benign traffic instances as baseline actions to discriminate between

benign and malicious traffic makes the proposed framework reasonably independent of

using a dedicated class label for malicious traffic provided by the experts to make necessary

decisions. Therefore, the proposed framework can detect potential future unseen and

unknown abnormal patterns from botnets apart from BASHLITE and Mirai. Second, the

83

proposed system is highly tolerant of diversity and heterogeneity exhibited by IoT devices.

As our approach to detect botnet attacks is solely data-driven using only network traffic

statistics, other network related issues such as communication medium and protocols,

platforms, and other third-party devices, C&C encryption impose a little impact on it.

Finally, the proposed network-based mechanism does not consume dedicated

resources such as computational memory, network bandwidth, or energy from IoT devices

to endanger their normal operation, and thus this data-driven network-based system can

easily be installed in a network gateway to ensure final stage security while monitoring

network traffic. The significant contribution of our chapter is to explore RuLSIF method

by combining it with unsupervised feature selection in IoT security domain. RuLSIF, a

relative density ratio estimation method between two data distributions, has previously

been used in detecting change points in single dimensional data stream [49], land cover

change detection in non-Gaussian time-series data [96], estimating feature importance [97],

categorizing glucose level for type 2 diabetic patients [98], etc. RuLSIF is known for its

numerical stability and faster computation even when the feature dimension is very high

[49, 95]. To the best of our knowledge, we are the first to use the RuLSIF method in

building a data-driven network based IoT security mechanism using network traffic

statistics to detect malicious attacks launched from compromised IoT devices with better

performance in terms of improving the botnet detection rate and reducing computational

time.

The remainder of this chapter is arranged as follows. In Section 4.4, we described

the algorithm and detail methodologies for our proposed technique. In Section 4.5, we

84

reported experimental results using real-world datasets with necessary tables and graphs.

Finally, we conclude by summarizing our contribution in Section 4.6.

4.3 Data Set Information

The dataset IoT_botnet_attacks_N_BaIoT, publicly available on UCI machine

repository [67, 99], addresses the lack of public botnet datasets, especially for the IoT

devices. The dataset provides 7,062,6069 (7M approx.) network traffic data instances with

115 variables or features in the form of network traffic statistics from 9 IoT devices which

are Danmini Doorbell (D1), Ecobee Thermostat (D2), Ennio Doorbell (D3), Philips

B120N10 Baby Monitor (D4), Provision PT 737E Security Camera (D5), Provision PT 838

Security Camera (D6), Samsung SNH 1011 N Webcam (D7), SimpleHome XCS7 1002

WHT Security Camera (D8), and SimpleHome XCS7 1003 WHT Security Camera (D9).

Summary statistics of the recent traffic from the packet's host IP and MAC addresses, the

weight of the network traffic stream, the root squared sum of the two streams' mean,

variances, approximated covariance, approximated correlation coefficient, etc. are some

examples of 115 features. This dataset enables empirical evaluation with real traffic data

collected from nine commercial IoT devices compromised by two of the most common and

harmful botnets, Mirai and BASHLITE in an isolated network. The dataset was donated

by the Department of Software and Information Systems Engineering, at the Ben-Gurion

University of the Negev in Israel.

4.4 Algorithm and Methodology

In this section, we described our proposed IBDS framework using several methods,

techniques, mathematical formulation, and validation criteria in detail. At the end of this

section, we have also presented the algorithm (Algorithm 1) of the proposed framework.

85

4.4.1 Unsupervised Feature Selection Using Matrix Factorization

Frobenius norm: The Frobenius norm of a matrix 𝑋 with dimension 𝑛 × 𝑚 is

defined as follows:

 ∥ X ∥𝐹= √∑ ∑ |𝑎𝑖,𝑗|2

𝑚

𝑗=1

𝑛

𝑖=1

. Eq. 4-1

Here, 𝑛 refers to the number of records and 𝑚 refers to the number of features or

columns. The Frobenius norm is also known as the 𝐿2-norm or Euclidean norm.

QR decomposition with Column Pivoting (QRcp): Given 𝑋 is a data matrix with

dimension 𝑛 × 𝑚 and rank 𝑟, then the QR decomposition of 𝑋 is defined as

 𝑋 = 𝑄𝑅. Eq. 4-2

Here, R is an 𝑟 × 𝑚 upper triangular matrix and Q is an 𝑛 × 𝑟 column wise

orthonormal matrix. The purpose of QRcp decomposition is to pivot the feature vectors in

successive orthogonal directions based on the decreasing order of the maximum Euclidean

norm. The feature vector 𝑓1 of 𝑋 is repositioned with feature 𝑓𝑖 which has maximum 𝑓𝑖
𝑇𝑓𝑖.

The unit vector 𝑢1 in the direction of 𝑓1 is defined as follows:

 𝑢1 =
𝑓𝑖

∥ 𝑓𝑖 ∥𝐹
. Eq. 4-3

Next, 𝑓2 is swapped with another 𝑓𝑗 which maximizes (𝑓2 − 𝑢1
𝑇𝑓2𝑢1)𝑇 (𝑓2 −

𝑢1
𝑇𝑓2𝑢1). The unit vector 𝑢2 in the direction of 𝑓2 is computed as follows:

 𝑢2 =
𝑓2 − (𝑢1

𝑇𝑓1)𝑢1

∥ 𝑓2 − (𝑢1
𝑇𝑓1)𝑢1 ∥𝐹

. Eq. 4-4

On the 𝑖𝑡ℎ successive selection, the rotated feature vector 𝑓𝑗
∗ can be defined as

 𝑓𝑗
∗ = 𝑓𝑗 − (𝑢1

𝑇𝑓1𝑢1 + ⋯ + 𝑢𝑖−1
𝑇 𝑓𝑗𝑢𝑖−1). Eq. 4-5

86

where 𝑖 = 2, … , 𝑛 𝑎𝑛𝑑 𝑗 = 𝑖, … , 𝑛 and the 𝑖𝑡ℎ selected vector is the one maximizing

(𝑓𝑗
∗)𝑇𝑓𝑗

∗. The successive selection is continued until the factorization reached following

stopping criteria:

 cond(𝑅11
𝑖) ≤

1

𝜖
≤ 𝑐𝑜𝑛𝑑(𝑅11

𝑖+1). Eq. 4-6

Here, cond(𝑅11
𝑖) refers to the condition number of the upper-triangular matrix with

positive diagonal entries. We computed the condition number of the data matrix of the

network using Incremental Condition Estimator (ICE) [100]. The resultant permutation

matrix P registering the order of successive selections is given by

 𝑄𝑇𝑋𝑃 = 𝑅. Eq. 4-7

where R is an upper triangular matrix and the value of 𝑖 at which the factorization stops

reveals the rank 𝑟 of matrix 𝑋. We performed first level matrix sketching using QR

decomposition where we found the actual rank 𝑟 of matrix 𝑋 and list of features which are

independent with each other as

 QR(𝑋𝑚) → 𝑋𝑟. Eq. 4-8

Singular Value Decomposition (SVD): Any 𝑛 × 𝑚 matrix 𝑋 can be uniquely

expressed as:

 𝑋𝑇 = 𝑈𝛴𝑉𝑇 . Eq. 4-9

where 𝑈 is a column-orthonormal 𝑟 × 𝑟 matrix, 𝛴 is a diagonal r × n matrix with the

singular values 𝜎𝑖 are sorted in descending order, 𝑟 is the actual rank of the matrix 𝑋, which

refers to the number of linearly independent columns or features and 𝑉 is a column-

orthonormal n × n matrix. For our experiment, we calculated the value of the actual rank,

𝑟, from QR decomposition rather than set it as an input parameter.

87

Regularized Regression to Select Important Features: The objective of the proposed

unsupervised feature selection is to capture the essential characteristics of the dataset

without losing too much information. We assume that the network traffic, denoted by {𝑋𝑡 ∈

ℝ𝑛×𝑚, 𝑡 = 1,2, … } with sliding window size, 𝑛, and feature dimension, 𝑚, arrive at the

timestamp, 𝑡, in streams. We performed first level matrix sketching by applying QRcp on

𝑋𝑡 to find the rank, 𝑟. Therefore, the shrunken data matrix in the current network window

is defined by {𝑋𝑡(𝑟)
 𝜖 ℝ𝑛×𝑟 , 𝑡 = 1,2, … }. We normalize each column or feature vector of

{𝑋𝑡(𝑟)
 using Frobenius norm. Next, we applied SVD on normalized 𝑋𝑡 according to “(9)”

as follows:

 X𝑡
𝑇

(𝑟)
= 𝑈𝑡(𝑟)

∑𝑡(𝑟)
𝑉𝑡

𝑇
(𝑟)

. Eq. 4-10

where 𝑋𝑡(𝑟)
𝑋𝑡

𝑇
(𝑟)

= 𝑉𝑡(𝑟)
∑𝑡

2
(𝑟)

𝑉𝑡
𝑇

(𝑟)
 forms the cosine affinity matrix of 𝑋𝑡(𝑟)

 due to

column-wise Frobenius-normalization. We adapted the concept mentioned in [92] by using

𝑉𝑡
𝑇

(𝑟)
 as the target variable in the regression. We formulate the resulting regression

problem as

 ∥ X𝑡(𝑟)
𝐴 − 𝑉𝑡(𝑟)

∥𝐹
2

𝑚𝑖𝑛 𝐴
 . Eq. 4-11

where each column in A refers to the combination coefficient for different features in

approximating the right singular vectors 𝑉𝑡(𝑟)
 of 𝑈𝑡(𝑟)

∑𝑡(𝑟)
𝑉𝑡

𝑇
(𝑟)

. Next, we defined

another parameter, 𝑘, which can be used to set the number of target right singular vectors

of reduced feature space such that maximum information will be retained keeping the

information loss as minimal as possible. To calculate 𝑘, we adopted the criterion called

the percentage of energy explained by singular values defined as:

88

 𝑃𝑒𝑥 =
∑ 𝜎𝑖

2𝑘
𝑖=1

∑ 𝜎𝑖
2𝑟

𝑖=1

. Eq. 4-12

We set 𝑃𝑒𝑥 = 95% to calculate the value of 𝑘 dynamically instead of using a static

value of 𝑘, as seen in [91, 92]. By considering a rank-k approximation of 𝑋𝑡:

 𝑋𝑡(𝑘)
= 𝑈𝑡(𝑘)

∑𝑡(𝑘)
𝑉𝑡

𝑇
(𝑘)

. Eq. 4-13

Here, 𝑘 refers to the low rank of matrix 𝑋𝑡, considering the low-rank approximation

of 𝑋𝑡, the least square regression problem can be redefined using 𝑉𝑡(𝑘)
 as the regression

target as follows:

 ∥ X𝑡𝐴 − 𝑉𝑡(𝑘)
∥𝐹

2
𝑚𝑖𝑛 𝐴

 . Eq. 4-14

However, the problem of applying a plain Eq. 4-14, particularly for the case of an

ill-conditioned matrix, may result in an unstable solution or an overfit solution. To

overcome this problem, a regularization term has been added. We formed feature

importance coefficient matrix 𝐴𝑡 = (𝑎𝑡𝑖,𝑗
), where 1 ≤ 𝑖 ≤ 𝑟 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 𝑛; however,

only the first r columns in A are of importance:

 min ∥ 𝑋𝑡𝐴𝑡 − 𝑉𝑡(𝑘)
∥𝐹

2
𝐴𝑡

 + 𝛽| |a𝑡𝑖,𝑗
| |𝑝

𝑝. Eq. 4-15

where 𝛽 is the regularization parameter. The purpose of using 𝛽 is to control the magnitude

and sparsity of the coefficients with larger values of 𝛽 being both smaller and sparser. 𝛽

also determines how much regularization or loss is proportioned.

Generally, a regression formulation with 𝐿1-norm (𝑝 = 1) and 𝐿2-norm (𝑝 = 2)

regularization is referred to as Lasso and ridge regression, respectively. For our

experiments, we used Lasso regularization because it produces sparse coefficients which

can minimize the effect of overfitting problem, as well as non-zero coefficients, can be

89

useful to select important features. The feature importance vector 𝑤𝑡 =

{𝑤1(𝑡), 𝑤2(𝑡), … , 𝑤𝑟(𝑡)} ∈ ℝ𝑟 is defined by

 i ∈ ℤ, 0 < i ≤ r , 𝑤𝑖(𝑡) = | 𝑎𝑡i,j
 |𝑗

𝑚𝑎𝑥 . Eq. 4-16

Next, we sorted 𝑤𝑡 in decreasing order, interpreting that the feature with higher

score carried more importance. Finally, we chose the top ℎ ranked features which captured

the cumulative feature importance as follows:

 𝑊𝑒𝑥 =
∑ 𝑤𝑡𝑖

2ℎ
𝑖=1

∑ 𝑤𝑡𝑖
2𝑚

𝑖=1

. Eq. 4-17

We set 𝑊𝑒𝑥 = 95% to calculate the value of ℎ dynamically instead of using a static

value, as seen in [91, 92]. We applied this feature selection process both on reference

window and current window, but the presence of malicious traffic instances in the current

window might lead to a different subset of features than the reference window, and thus

we took the superset of selected features from both windows for the final feature selection.

4.4.2 Relative Density Ratio Estimation and Defining Safety Score

In [51], the direct density ratio of two data distribution from reference window

𝑃𝑟𝑒𝑓(𝑥) and current window 𝑃𝑐𝑢𝑟(𝑥) is defined as follows, where 𝑥 is a traffic instance:

 𝑟(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝑃𝑐𝑢𝑟(𝑥)
. Eq. 4-18

where, 𝑥 refers to a single data instance. The fundamental problem of Eq. 4-18 occurs

when the denominator density, 𝑃𝑐𝑢𝑟 , takes small values concerning numerator density, 𝑃𝑟𝑒𝑓 ,

the density-ratio 𝑟(𝑥) tends to take large values and therefore the overall convergence

speed becomes slow. To mitigate this problem, an alternative approach, known as 𝛼-

90

relative density-ratio of 𝑃𝑡𝑒𝑠𝑡 and 𝑃𝒕𝒓𝒂𝒊𝒏 has been proposed in [95] to compare the

probability density of two data distribution as follows:

 𝑟𝛼(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝛼𝑃𝑟𝑒𝑓(𝑥) + (1 − 𝛼)𝑃𝑐𝑢𝑟(𝑥)
, 0 ≤ 𝛼 ≤ 1. Eq. 4-19

Here, 𝛼 is a tuning parameter for controlling the adaptiveness to the current

distribution. To simplify the denominator term in Eq. 4-19, another term 𝑞𝛼(𝑥), 𝛼-mixture

density is given by

qα(x) = αPref(x) + (1 − α)Pcur(x), 0 ≤ α ≤ 1. Eq. 4-20

Hence, we can rewrite Eq. 4-19 as follows:

 𝑟𝛼(𝑥) =
𝑃𝑟𝑒𝑓(𝑥)

𝑞𝛼(𝑥)
, 0 ≤ 𝛼 ≤ 1. Eq. 4-21

We used 𝑟𝛼(𝑥) as the safety score, to detect the botnet attack as:

 {
𝑟𝛼(𝑥) ≥ 𝜏, 𝑥 𝑖𝑠 𝑏𝑒𝑛𝑖𝑔𝑛 𝑜𝑟 𝑛𝑜𝑟𝑚𝑎𝑙

𝑟𝛼(𝑥) < 𝜏, 𝑥 𝑖𝑠 𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠
. Eq. 4-22

where 𝜏 denotes the safety threshold for each network traffic instance. In [95], a Gaussian

kernel model, using 𝐾(𝑥, 𝑥l) as a kernel basis function, for the true 𝛼-relative density-ratio,

𝑟𝛼(𝑥), has been given by

 𝑔(𝑥; 𝜃) = ∑ 𝜃𝑙

𝑛𝑟𝑒𝑓

𝑙=1

𝐾(𝑥, 𝑥𝑟𝑒𝑓). Eq. 4-23

The parameter 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛)𝑇 in Eq. 4-21 in the model, 𝑔(𝑥; 𝜃), can be

learned from network traffic samples by minimizing the following expected squared loss

between true relative density ratio and estimated relative density ratio, 𝐽(𝜃):

𝐽(𝜃) =
1

2
 𝐸[(𝑞𝛼(𝑥))] [(𝑔(𝑥; 𝜃) − 𝑟𝛼(𝑥))

2
].

 Eq. 4-24

91

𝐽(𝜃) =
1

2
 𝐸[(𝑞𝛼(𝑥))][(𝑔(𝑥; 𝜃))2 − 2𝑔(𝑥; 𝜃)𝑟𝛼(𝑥) + (𝑟𝛼(𝑥))2].

Eq. 4-25

𝐽(𝜃) =
1

2
 𝐸[(𝑞𝛼(𝑥))][(𝑔(𝑥; 𝜃))2 − 2𝑔(𝑥; 𝜃)𝑟𝛼(𝑥)] + 𝑐𝑜𝑛𝑠𝑡.

Eq. 4-26

𝐽(𝜃) =
1

2
 𝐸[(𝛼𝑃𝑟𝑒𝑓(𝑥) + (1 − 𝛼)𝑃𝑐𝑢𝑟)](𝑔(𝑥; 𝜃))2 − 𝐸[(𝑞𝛼(𝑥))]𝑔(𝑥; 𝜃)𝑟𝛼(𝑥) + 𝑐𝑜𝑛𝑠𝑡. Eq. 4-27

𝐽(𝜃) =
𝛼

2
 𝐸[𝑃𝑟𝑒𝑓(𝑥)](𝑔(𝑥; 𝜃))

2
+ −𝐸[(𝑞𝛼(𝑥))]𝑔(𝑥; 𝜃)

𝑃𝑟𝑒𝑓(𝑥)

𝑞𝛼(𝑥)
+ 𝑐𝑜𝑛𝑠𝑡. Eq. 4-28

𝐽(𝜃) =
𝛼

2
 𝐸[𝑃𝑟𝑒𝑓(𝑥)](𝑔(𝑥; 𝜃))

2
− 𝐸 [(𝑞𝛼(𝑥)

𝑃𝑟𝑒𝑓(𝑥)

𝑞𝛼(𝑥)
)] 𝑔(𝑥; 𝜃) + 𝑐𝑜𝑛𝑠𝑡. Eq. 4-29

J(θ) =
α

2
 E[Pref(x)](g(x; θ))

2
+ −E[(Pref(x))]g(x; θ) + const. Eq. 4-30

The optimization problem by using the empirical averages to approximate the

expectations in Eq. 4-22 is given by

 𝜃 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈𝑅𝑛 [
1

2
𝜃𝑇�̂�𝜃 − ℎ̂𝑇𝜃 +

𝜆

2
𝜃𝑇𝜃]. Eq. 4-31

where 𝜆(𝜆 ≥ 0) is the regularization parameter and
𝜆

2
𝜃𝑇𝜃 is a penalty term for

regularization purposes. �̂� a 𝑛 𝑥 𝑛 matrix and ℎ̂ an n column vector (where n is the number

of data points in the reference window) are defined as

�̂�𝑙𝑟𝑒𝑓,𝑙𝑟𝑒𝑓
′ =

𝛼

𝑛𝑟𝑒𝑓
∑ 𝐾 (𝑥𝑖𝑟𝑒𝑓

, 𝑥𝑙𝑟𝑒𝑓
)

n𝑟𝑒𝑓

𝑖=1

𝐾 (𝑥𝑖𝑟𝑒𝑓
, 𝑥𝑙𝑟𝑒𝑓

′) +
1 − 𝛼

𝑛𝑐𝑢𝑟
∑ 𝐾 (𝑥𝑗𝑐𝑢𝑟

, 𝑥l𝑟𝑒𝑓
)

𝑛𝑐𝑢𝑟

𝑗=1

𝐾 (𝑥𝑗𝑐𝑢𝑟
, 𝑥𝑙𝑟𝑒𝑓

′). Eq. 4-32

ℎ̂𝑙𝑟𝑒𝑓
=

1

𝑛𝑟𝑒𝑓
∑ 𝐾 (𝑥𝑖𝑟𝑒𝑓

, 𝑥l𝑟𝑒𝑓)

𝑛𝑟𝑒𝑓

𝑖=1

. Eq. 4-33

In [95], the following analytical solution for “(23)” was proposed and proved:

 𝜃 = (�̂� + 𝜆𝐼𝑛)−1ℎ̂. Eq. 4-34

where 𝐼𝑛 denotes the 𝑛-dimensional identity matrix. For our experiment, we used the

following two sets of candidate parameters to determine the best values for 𝜎 and 𝜆 as

proposed in [49]:

92

 𝜃 = (�̂� + 𝜆𝐼𝑛)−1ℎ̂. Eq. 4-35

where 𝜎 = 0.6𝑑𝑚𝑒𝑑, 0.8𝑑𝑚𝑒𝑑, 𝑑𝑚𝑒𝑑, 1.2𝑑𝑚𝑒𝑑, and 1.4𝑑𝑚𝑒𝑑. Here, 𝑑𝑚𝑒𝑑 presents the

median distance between samples of 𝑊𝑟𝑒𝑓 and 𝑊𝑐𝑢𝑟. In kernel methods, one of the popular

heuristics is to use the median value of the distances between samples for kernel width 𝜎.

The best combination of 𝜎 and 𝜆 is chosen by grid search through 5-fold cross-validation.

Finally, a density-ratio estimator is given as

 �̂�𝛼(𝑥) = 𝑔(𝑥; 𝜃) = ∑ 𝜃𝑙𝐾(𝑥, 𝑥𝑙𝑟𝑒𝑓

𝑛𝑟𝑒𝑓

𝑙=1

). Eq. 4-36

This mathematical formulation is known as Relative Unconstrained Least Square

Importance Fitting (RuLSIF). True 𝛼-relative density-ratio 𝑟𝛼(𝑥) described in Eq. 4-36 is

modeled by �̂�𝛼(𝑥) in Eq. 4-35 which has been used to compute the safety score to decide

if a network traffic instance in the current window is meant to be categorized into a benign

or malignant group.

4.4.3 k-Fold Dynamic Threshold

We computed the value of the threshold, 𝜏, using the instances of training or

reference window (𝑊𝑟𝑒𝑓) dynamically instead of using any static value. Given 𝑛 number

of benign instances belong to 𝑊𝑟𝑒𝑓, we created 𝑘 number of subsets 𝑠1, 𝑠2, … , 𝑠𝑘 with a

sample size
2

3
𝑛 for each subset. At first, we measure the safety score (SSC) of all benign

instances of each subset 𝑠𝑘 using the RuLSIF method according to Eq. 4-21 by considering

one single subset as the current window and the rest (𝑘 − 1) subsets as a reference window.

For subset 𝑠𝑘, the median safety score (MDSC), mean safety score (MNSC), 𝜏𝑚𝑖𝑛 are

defined as follows:

93

 SSC(sk(xi)) = (rα̂(xi))
𝐬𝐤

, i = 1,2, … ,
2

3
n. Eq. 4-37

 MDSC(sk) = median((rα̂(xi))
𝐬𝐤

, i = 1,2, … ,
2

3
n. Eq. 4-38

 MNSC(sk) = mean((rα̂(xi))
𝐬𝐤

, i = 1,2, … ,
2

3
n. Eq. 4-39

 τ𝐦𝐢𝐧(sk) = min(MDSC(sk), MNSC(sk)) . Eq. 4-40

Next, we created a sequence of 2k evenly spaced numbers τ1, τ2, … , τ2k, 0 < τ ≤

τmin(sk)). We categorized each instance of subset sk as a benign or malignant category

using τi and then measured the performance of categorizing traffic instances as benign or

malignant in terms of True Positive Rate (TPR). We sorted τ1, τ2, … , τ2k in decreasing

order and selected the first quartile value from the ordered τ-list as threshold τsk
 for

subset sk. We followed the same steps for the remaining subsets. For our experiments, we

set 𝑘 equal to 5. Finally, we calculated τ for Wref with size 𝑛 as follows:

 𝜏𝑊𝑟𝑒𝑓
=

1

𝑘
∑ 𝜏𝑠𝑘

𝑘

𝑖=1

. Eq. 4-41

4.4.4 Algorithm of Proposed Framework

The prototype algorithm for the proposed framework is in Algorithm 1.

ALGORITHM 1: framework IBDS

1: Procedure IBDS

Parameters: Value of 𝛼 and fold 𝑘

Input: Reference or training window 𝑊𝑟𝑒𝑓, current window 𝑊𝑐𝑢𝑟, and 𝛼

Table 4-1: ALGORITHM 1: framework IBDS.

94

ALGORITHM 1: framework IBDS

Output: Safety score and response category (benign or malignant) of all traffic instances

in the current window

2: 𝜏 ← CalculateThreshold(𝑊𝑟𝑒𝑓 , 𝑘)

3: 𝑓𝑟𝑒𝑓 ← CalculateImportantFeature(𝑊𝑟𝑒𝑓, 1)

4: 𝑓𝑐𝑢𝑟 ← CalculateImportantFeature(𝑊𝑐𝑢𝑟, 1)

5: 𝑓 ← superset of 𝑓𝑟𝑒𝑓 and 𝑓𝑐𝑢𝑟 %𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 𝑆𝑆𝐶 𝑜𝑓 𝑥 = 𝑟𝑎(𝑥)

6: 𝑆𝑆𝐶(𝑊𝑐𝑢𝑟(𝑥)) ← RuLSIF(𝑊𝑟𝑒𝑓(𝑓)
, 𝑊𝑐𝑢𝑟(𝑓)

)

7: If 𝑆𝑆𝐶(𝑊𝑐𝑢𝑟(𝑥)) is greater than or equal to 𝜏 then

8: traffic instance x is benign or normal

9: Else

10: traffic instance x is malignant and is launched from a botnet

11: End If

12: end procedure

13: Procedure 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭𝐅𝐞𝐚𝐭𝐮𝐫𝐞(𝑊, 𝑝)

Input: Reference or training window 𝑊 and 𝑝 = 1 for Lasso regularization or 𝑝 = 2 for

ridge regularization

Output: feature list 𝑓 with higher feature importance coefficient

14: Apply Frobenius normalization on 𝑊

15: 𝑊′ ← Apply QRcp on 𝑊 to find actual rank 𝑟 and list of independent features of 𝑊

16: 𝑈𝑡(𝑟)
∑𝑡(𝑟)

𝑉𝑡
𝑇

(𝑟)
← SVD (𝑊′)

Table 4-1: ALGORITHM 1: framework IBDS.

95

Table 4-1: ALGORITHM 1: framework IBDS.

ALGORITHM 1: framework IBDS

17: Find the value of 𝑘 using 95% cumulative variance % Solve for 𝐴𝑡 the feature

importance coefficient matrix

18: min ∥ X𝑡𝐴𝑡 − 𝑉𝑡(𝑘)
∥𝐹

2
𝐴𝑡

 + 𝛽||a𝑡𝑖,𝑗
||𝑝

𝑝

19: j ∈ 1, 2, 3, … , 𝑟 − 1, 𝑟; 𝑤𝑖(𝑡) = | 𝑎𝑡𝑖,𝑗
 | 𝑗

𝑚𝑎𝑥

20: Find feature list 𝑓 with top ℎ features using 95% cumulative feature importance or

feature weight

21: return 𝑓

22: end procedure

23: Procedure 𝐂𝐚𝐥𝐜𝐮𝐥𝐚𝐭𝐞𝐓𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝(𝑊𝑟𝑒𝑓 , 𝑘)

Input: Reference or training window 𝑊𝑟𝑒𝑓 with size 𝑛, the number of folds or subsets 𝑘

Output: threshold 𝜏 for window 𝑊

24: Create 𝑘 number of subsets 𝑠1, 𝑠2, … , 𝑠𝑘 with sample size
2

3
𝑛 from 𝑊𝑟𝑒𝑓,

25: For each 𝑠𝑘 do

26: 𝑆𝑆𝐶(𝑠𝑘(𝑥)) ← RuLSIF(𝑊𝑟𝑒𝑓 − 𝑠𝑘, 𝑠𝑘)

27: 𝑀𝐷𝑆𝐶(𝑠𝑘) ← 𝑚𝑒𝑑𝑖𝑎𝑛((𝑟�̂�(𝑥𝑖))
𝒔𝒌

,

28: 𝑀𝑁𝑆𝐶(𝑠𝑘) ← 𝑚𝑒𝑎𝑛((𝑟�̂�(𝑥𝑖))
𝒔𝒌

29: 𝜏𝑚𝑖𝑛(𝑠𝑘) = min(𝑀𝐷𝑆𝐶(𝑠𝑘), 𝑀𝑁𝑆𝐶(𝑠𝑘))

30: Create a sequence of 2k number τ1, τ2, … , τ2k, 0 < τ ≤ τmin(sk))

96

Table 4-1: ALGORITHM 1: framework IBDS.

ALGORITHM 1: framework IBDS

31: For each 𝜏𝑖 do

32: Calculate TPR 𝑠𝑘 using 𝜏𝑖

33: Sort τ1, τ2, … , τ2k, based on TPR

34: Select first quartile value of sorted 𝜏 list as threshold τsk

35: End For

36: 𝜏𝑊𝑟𝑒𝑓
← 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(τsk

), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘

37: return 𝜏𝑊𝑟𝑒𝑓

38: end procedure

The pseudo-code of RuLSIF are available in [95].

4.5 Results

In this section, we experimentally evaluated our proposed IBDS framework by

using benchmark datasets. The dataset IoT_botnet_attacks_N_BaIoT, publicly available

on UCI machine repository [67, 99], addresses the lack of public botnet datasets, especially

for the IoT devices. The dataset provides 7,062,6069 (7M approx.) network traffic data

instances with 115 variables or features in the form of network traffic statistics from 9 IoT

devices which are Danmini Doorbell (D1), Ecobee Thermostat (D2), Ennio Doorbell (D3),

Philips B120N10 Baby Monitor (D4), Provision PT 737E Security Camera (D5), Provision

PT 838 Security Camera (D6), Samsung SNH 1011 N Webcam (D7), SimpleHome XCS7

1002 WHT Security Camera (D8), and SimpleHome XCS7 1003 WHT Security Camera

(D9). Summary statistics of the recent traffic from the packet's host IP and MAC addresses,

the weight of the network traffic stream, the root squared sum of the two streams' mean,

97

variances, approximated covariance, approximated correlation coefficient, etc. are some

examples of the 115 features. This dataset enables empirical evaluation with real traffic

data, collected from nine commercial IoT devices compromised by two of the most

common and harmful botnets, Mirai and BASHLITE in an isolated network. The dataset

was donated by the Department of Software and Information Systems Engineering, at the

Ben-Gurion University of the Negev in Israel.

For our experiments, we considered the task of finding malicious network traffic

generated from compromised IoT in a sliding network data window based on a reference

or training window which only included benign or normal traffic instances. In real life, a

relatively small number of malicious network traffic activities are scattered with a huge

number of normal traffic activities which makes the network data in the current window

highly imbalanced. To test the correctness, consistency and scalability of proposed system,

we used three different window size which are 5,000, 15,000 and 25,000 for all devices

except D2 and D9 and infused different fraction rate, an example, 2%, 5%, 10% of

randomly chosen malignant data with benign data in current window such that the

malignant data instances acted like minority classes in imbalanced or skewed datasets.

Since the number of records is much smaller for D2 and D9, we set the window size equal

to 2,000, 5,000, 10,000 for D2 and 5,000, 10,000, 15,000 for D9.

To test each scenario (for example, device D1, window size 5000, anomaly rate

2%), we ran 10 trials with different datasets. Therefore, for nine IoT devices, we prepared

a total of 810 datasets to conduct 5,670 number of experiments. We compared our proposed

method with four other baseline methods, OSVM, LOF, ISF, and Deep Autoencoder which

are widely used for the anomaly detection system.

98

Table 4-2 to Table 4-10 presented the comparison of performance in terms of F1-

score and runtime (in the sec) of proposed IBDS framework with OSVM, LOF, ISF for

nine IoT, whereas Table 4-12 to Table 4-14 demonstrated the performance of Deep

Autoencoder. Hyperparameters used for Deep Autoencoder are presented in Table 4-11.

We highlighted the cases with red font where baseline methods performed better than

IBDS. For our experiments, Keras has been used to implement Autoencoder with same

hyperparameters and thresholds (see Table 4-11) used in [67] to compare our results, but

fixed thresholds (𝑡𝑟) showed lower performance; hence, we applied grid search on

reconstruction error to find optimal threshold 𝑘 to improve the performance of Deep

Autoencoder. We used F1-score using both 𝑡𝑟 [67] and 𝑘 in Table 4-12 to Table 4-14.

We also conducted pairwise t-test on proposed IBDS framework with OSVM, LOF,

ISF, and Deep Autoencoder using average F1 score and average runtime based on anomaly

ratio at 95% confidence level to compare the overall performance. The pairwise t-test

results shown in Table 4-15 to Table 4-16 also demonstrated that IBDS framework

performed much better than baseline methods for most of IoT devices.

Figure 4-1 illustrated the comparison of performance in terms of average F1-

score of proposed IBDS framework with OSVM, LOF, ISF, and Deep Autoencoder for

device 9 IoT devices. In

Figure 4-2, we compared the runtime performance in terms of runtime ratio of

proposed IBDS framework with OSVM, LOF, ISF, and Deep Autoencoder for device 9

IoT devices. Run time ratio is defined as

𝑅𝑢𝑛 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜, 𝑅𝑇𝑅(𝑥) =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑚𝑒𝑡ℎ𝑜𝑑 𝑥

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐼𝐵𝐷𝑆
. Eq. 4-42

99

where 𝑥 = 𝐷𝑒𝑒𝑝 𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟, 𝑂𝑆𝑉𝑀, 𝐿𝑂𝐹, 𝐼𝑆𝐹, 𝐼𝐵𝐷𝑆. Using Eq. 4-42, we obtained the

RTR of proposed IBDS framework equal to be 1. Therefore, we could compare the relative

runtime of baseline methods concerning the runtime of the proposed method.

Figure 4-3(a), we illustrated the run time ratio of proposed IBDS with OSVM,

LOF, ISF, Deep Autoencoder with respect to window size. In Figure 4-3(b), we compared

the average runtime (in a sec) of proposed IBDS with OSVM, and Deep Autoencoder

concerning window size (2000,5000,10000,150000, 25000).

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 87.9 8.4 88.2 8.6 90.4 8.6 62.5 6.6 50.4 142.3 54.8 59.5

5000 5 83.9 8.4 85.3 8.7 82.9 8.6 63.3 6.2 50.5 146.5 60.3 56.1

5000 10 84.1 8.4 84.4 8.4 83.3 8.7 77.8 6.0 49.2 133.9 70.1 58.8

15000 2 91.3 26.2 92.7 26.1 89.2 26.9 62.6 71.0 50.1 1278.7 54.8 239.6

15000 5 86.8 26.3 81.5 26.2 79.9 27.1 73.0 69.5 50.1 1007.8 60.3 259.3

15000 10 81.2 26.4 76.4 26.3 84.0 26.9 82.0 65.6 48.6 1076.6 70.1 305.3

25000 2 89.2 45.6 87.2 46.4 89.2 45.4 62.6 204.2 50.8 3424.2 54.8 557.7

25000 5 87.6 44.2 83.1 44.5 84.1 45.4 72.8 197.8 50.3 3376.5 60.3 639.3

25000 10 78.1 44.4 80.3 44.4 79.4 45.1 81.9 189.6 49.5 3492.8 70.1 763.1

Average 85.6 26.5 84.3 26.6 84.7 27.0 70.9 90.7 50.0 1564.4 61.8 326.5

Table 4-2: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D1.

100

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

2000 2 59.2 3.2 62.0 3.3 59.7 3.3 62.1 1.0 53.0 9.3 54.8 15.5

2000 5 54.1 3.3 54.3 3.3 57.3 3.4 72.4 1.0 49.6 9.9 60.3 15.1

2000 10 54.8 3.3 49.6 3.2 48.8 3.4 81.6 0.9 46.3 9.7 65.5 14.9

5000 2 67.8 10.0 71.1 10.0 67.4 10.1 62.3 5.9 50.5 69.7 54.8 76.0

5000 5 58.5 9.8 61.5 9.8 56.2 10.0 72.8 5.7 49.6 70.5 60.3 75.7

5000 10 52.5 10.1 55.0 10.4 53.8 10.1 79.7 5.5 46.5 70.0 65.1 79.5

10000 2 76.9 26.0 78.3 25.6 79.9 26.1 62.7 29.0 49.7 348.1 54.8 219.7

10000 5 76.3 24.0 75.9 23.3 76.1 25.0 73.1 28.1 48.4 360.3 60.3 229.8

10000 10 68.8 25.1 66.3 24.6 69.7 25.2 80.4 26.6 45.8 359.8 65.6 243.5

Average 63.2 12.7 63.8 12.6 63.2 13.0 71.9 11.5 48.8 145.3 60.2 107.7

Table 4-4: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D3.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 84.1 8.7 83.0 8.4 86.4 8.8 62.4 5.9 49.5 63.1 54.8 64.9

5000 5 80.1 8.2 78.8 8.7 81.8 8.8 72.8 5.7 48.4 61.8 60.3 63.4

5000 10 76.1 8.2 79.8 8.2 79.5 8.2 81.7 5.5 45.4 60.8 62.1 66.6

15000 2 88.2 25.5 82.7 25.4 85.3 26.3 62.7 69.9 49.2 1113.6 54.8 341.0

15000 5 82.1 25.5 82.4 25.7 85.8 26.2 72.7 68.0 47.1 1123.8 60.3 361.5

15000 10 80.0 25.4 80.1 26.1 81.3 27.2 81.8 64.8 44.4 1078.9 63.0 380.0

25000 2 87.5 45.4 86.2 45.2 91.2 46.4 62.6 200.3 49.3 3747.4 54.8 850.7

25000 5 85.1 46.2 84.5 45.9 83.6 47.2 73.0 195.6 47.3 3506.9 60.3 904.3

25000 10 80.0 45.4 81.8 45.1 80.9 46.5 82.0 186.3 44.4 3520.3 66.5 950.1

Average 82.6 26.5 82.1 26.5 84.0 27.3 72.4 89.1 47.2 1586.3 59.7 442.5

Table 4-3: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D2.

101

Table 4-5: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D4.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 86.3 8.3 87.8 8.3 85.7 8.9 62.5 6.0 49.9 59.8 54.8 48.4

5000 5 84.2 8.7 84.8 8.5 84.2 9.6 73.3 6.0 49.8 59.1 60.3 47.9

5000 10 83.5 8.5 83.6 8.5 83.4 9.0 82.0 5.7 48.9 59.4 70.1 52.5

15000 2 85.5 27.1 88.3 26.9 81.9 28.3 62.7 72.9 50.0 1315.3 54.8 224.1

15000 5 85.6 27.0 83.7 27.0 85.5 29.3 73.2 70.8 50.1 1255.5 60.3 250.2

15000 10 82.9 27.5 83.0 27.7 84.0 29.1 81.8 67.8 48.0 1201.5 70.1 284.8

25000 2 87.1 47.2 86.4 47.4 86.5 48.4 62.6 206.6 50.4 3585.2 54.8 576.6

25000 5 83.8 48.1 87.4 47.7 85.9 48.6 72.9 201.7 48.8 3643.9 60.3 646.7

25000 10 83.2 47.4 83.6 47.3 75.8 47.9 81.9 192.5 47.5 3503.2 70.1 724.1

Average 84.7 27.7 85.4 27.7 83.7 28.8 72.5 92.2 49.3 1631.4 61.8 317.2

Table 4-6: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D5.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 79.3 8.6 79.6 8.4 80.0 8.9 62.4 5.9 50.3 59.6 53.4 81.0

5000 5 78.3 8.9 75.1 8.7 76.9 9.1 72.7 5.8 49.5 59.3 55.3 77.6

5000 10 71.5 8.9 72.8 8.8 72.1 9.2 81.4 5.5 50.7 62.9 57.9 76.9

15000 2 83.3 27.4 83.3 27.3 83.0 29.0 62.4 70.5 50.0 1050.9 53.1 424.6

15000 5 80.0 27.4 80.8 27.5 80.6 28.5 72.8 68.6 50.3 1083.9 56.4 429.5

15000 10 72.9 27.1 74.0 27.6 73.3 28.7 81.6 65.4 48.4 1076.1 58.3 460.2

25000 2 84.5 50.9 80.5 52.3 84.2 54.3 62.5 201.1 50.3 3187.0 53.6 1069.1

25000 5 79.8 49.9 82.5 50.6 83.3 52.7 73.1 196.1 49.8 3476.0 56.0 1111.0

25000 10 76.7 54.5 77.4 54.7 77.9 54.9 81.7 186.6 48.1 3561.1 59.0 1178.7

Average 78.5 29.3 78.4 29.6 79.0 30.6 72.3 89.5 49.7 1513.0 55.9 545.4

102

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 66.2 8.6 72.2 9.0 69.4 9.1 62.2 5.9 49.7 59.2 53.0 85.6

5000 5 68.3 8.5 65.7 8.5 65.0 9.1 72.7 5.7 50.0 66.7 55.4 82.4

5000 10 59.8 8.5 59.8 8.6 61.3 8.7 81.5 5.5 49.9 67.0 58.2 83.9

15000 2 79.1 28.0 80.7 28.0 76.0 29.1 62.6 70.4 49.7 800.2 53.1 480.9

15000 5 71.0 28.0 68.6 27.7 73.8 29.0 73.2 68.5 49.5 803.8 55.5 484.6

15000 10 63.9 27.6 67.5 27.8 68.7 28.9 81.8 65.2 47.1 916.3 57.8 510.3

25000 2 81.5 53.4 76.9 52.5 77.6 52.2 62.6 199.7 50.2 3242.8 53.0 1216.3

25000 5 73.5 52.5 69.7 50.0 75.3 53.4 73.1 195.0 49.1 3498.9 55.8 1251.7

25000 10 67.0 50.5 67.7 52.2 70.7 52.6 81.9 185.5 47.9 3328.7 58.0 1317.3

Average 70.0 29.5 69.9 29.4 70.9 30.2 72.4 89.0 49.2 1420.4 55.5 612.6

Table 4-8: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D7.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=25

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2
84.7

9.4 85.6 9.5 84.7 9.5 62.4 5.9 51.1 59.3 54.8 83.7

5000 5
75.5

9.4 73.1 9.6 74.4 9.8 72.9 5.7 50.3 59.8 60.3 84.9

5000 10
75.6

8.9 73.8 8.9 76.7 9.2 81.8 5.5 48.9 59.7 70.2 89.2

15000 2
86.4

26.4 89.0 26.6 86.5 27.3 62.6 70.3 50.5 1052.9 54.8 377.5

15000 5
80.5

26.4 82.1 26.3 80.2 27.9 73.3 68.7 49.2 1007.9 60.3 397.6

15000 10
79.4

26.4 79.9 26.3 78.4 27.3 81.6 65.7 48.6 935.7 70.1 426.7

25000 2
84.3

45.8 85.1 45.9 85.4 47.0 62.7 201.3 50.1 3706.2 54.8 884.9

25000 5
75.9

46.1 80.2 45.8 78.8 46.9 73.1 196.3 49.3 3453.4 60.3 947.1

25000 10
75.6

46.2 74.7 46.0 75.5 47.8 81.7 187.1 48.9 3482.5 70.1 1018.7

Average 79.8 27.2 80.4 27.2 80.1 28.1 72.4 89.6 49.7 1535.3 61.8 478.9

Table 4-7: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D6.

103

Table 4-9: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D8.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 88.1 8.6 88.5 8.7 88.3 8.8 62.8 5.8 50.2 59.4 55.2 52.7

5000 5 85.9 8.6 85.1 8.5 82.2 8.9 72.8 5.7 49.6 59.8 60.7 53.8

5000 10 83.5 8.6 84.5 8.5 83.9 8.8 81.8 5.5 46.7 60.2 70.5 58.3

15000 2 87.7 30.2 87.5 29.4 88.9 30.3 62.9 69.7 50.0 1147.1 55.2 276.3

15000 5 85.6 29.6 85.6 29.7 80.2 31.5 73.1 68.0 48.7 1107.8 60.7 304.4

15000 10 83.6 29.5 84.7 30.9 83.6 31.6 81.6 64.7 47.0 860.8 70.5 332.4

25000 2 88.6 51.0 90.6 52.1 89.8 52.7 62.5 198.9 50.1 3587.5 55.2 698.5

25000 5 86.4 52.3 85.4 50.9 84.9 51.4 73.1 193.7 49.3 3509.9 60.7 769.0

25000 10 84.5 51.4 84.9 52.1 83.9 53.0 81.9 184.5 48.0 3183.1 70.5 856.0

Average 86.0 30.0 86.3 30.1 85.1 30.8 72.5 88.5 48.8 1508.4 62.1 377.9

Table 4-10: Comparison of performance in terms of F1-score and runtime of proposed

framework IBDS with OSVM, LOF, and ISF for device D9.

Proposed Framework

(Unsupervised Feature Selection + RuLSIF)
OSVM LOF ISF

 alpha=0 alpha=0.5 alpha=0.95
Kernel

Width=0.1
k=5

of tree

= window

size/10

Win

 Size

Frac

(%)
F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

F1

Run

 time

(sec)

5000 2 92.6 8.3 91.9 8.2 87.9 8.4 62.7 6.0 50.6 65.8 54.1 44.7

5000 5 84.9 8.4 83.8 8.2 86.8 8.6 73.3 5.8 48.9 66.1 59.7 46.2

5000 10 81.1 8.2 81.1 8.2 82.2 8.7 82.0 5.6 46.8 66.2 69.5 51.6

10000 2 81.5 17.4 90.5 17.4 91.0 18.5 62.6 29.7 49.8 359.6 54.1 125.1

10000 5 85.3 17.7 85.3 17.3 86.8 17.8 73.2 28.8 49.5 359.1 59.7 137.0

10000 10 82.0 17.7 81.5 18.0 80.4 17.9 82.1 27.3 46.8 347.8 69.5 159.2

15000 2 89.0 27.8 86.9 27.9 90.9 29.4 62.6 36.0 50.1 1004.5 54.1 219.0

15000 5 77.9 27.2 81.3 27.7 80.6 29.0 73.0 34.7 48.9 957.1 59.7 249.6

15000 10 79.4 27.8 82.0 27.3 83.1 28.0 81.9 33.1 47.1 964.7 69.5 288.3

Average 83.7 17.8 84.9 17.8 85.5 18.5 72.6 23.0 48.7 465.7 61.1 146.7

104

Table 4-11: Hyperparameter used for deep autoencoder for 9 IoT devices.

 D1 D2 D3 D4 D5 D6 D7 D8 D9

Learning Rate 0.012 0.003 0.028 0.016 0.026 0.008 0.017 0.006 0.013

Number of Epochs (epochs) 800 350 250 100 300 450 230 500 150

Anomaly Threshold (tr) 0.042 0.011 0.011 0.030 0.035 0.038 0.056 0.004 0.074

Table 4-12: Performance of deep autoencoder in terms of F1-score for D1, D3, D4, and

D5 IoT devices.

 D1 D3 D4 D5

Win

 Size

Frac

(%)

F1

(Fixed

tr)

F1

(k)

Run

Time

(sec)

F1

(tr)

F1

(k)

Run

Time

(sec)

F1

(Fixed

tr)

F1

(k)

Run

Time

(sec)

F1

(tr)

F1

(k)

Run

Time

(sec)

5000 2 42.4 83.1 33.5 2.1 39.8 44.6 9.8 47.3 53.3 4.0 47.8 37.7

5000 5 65.0 89.8 35.8 4.2 57.8 47.4 18.5 64.3 46.8 9.3 72.6 42.0

5000 10 72.3 95.2 29.6 9.8 79.7 47.7 35.2 80.9 41.3 18.2 83.2 40.1

15000 2 47.1 80.6 59.2 2.0 30.5 80.7 9.9 45.5 71.4 4.0 50.5 51.6

15000 5 72.3 93.0 59.9 5.1 45.9 78.1 25.9 70.0 86.4 10.4 70.8 48.4

15000 10 83.4 95.6 58.1 9.9 55.1 73.4 34.5 82.0 91.0 15.6 79.7 49.0

25000 2 49.6 83.3 109.0 2.1 18.1 115.2 11.0 47.1 139.3 3.3 42.0 68.2

25000 5 76.8 83.4 110.2 5.0 36.9 109.1 23.0 70.4 125.5 8.4 65.6 76.0

25000 10 88.9 96.7 106.0 9.6 51.3 97.2 36.2 82.5 122.3 16.9 78.1 87.8

Average 66.4 89.0 66.8 5.5 46.1 77.0 22.7 65.6 86.4 10.0 65.6 55.6

Table 4-13: Performance of Deep Autoencoder in terms of F1-score for D6, D7, and D8

IoT devices.

 D6 D7 D8

Win

 Size

Frac

(%)

F1

(tr)

F1

(k)

Run

Time

(sec)

F1

(Fixed tr)

F1

(k)

Run

Time

(sec)

F1

(tr)

F1

(k)

Run

Time

(sec)

5000 2 4.3 70.3 22.4 16.0 62.7 23.2 2.2 47.8 31.9

5000 5 8.6 84.5 22.0 30.9 78.1 25.2 4.3 68.1 29.3

5000 10 18.4 92.3 19.0 48.5 88.9 27.4 9.6 82.3 24.0

15000 2 4.6 78.3 53.1 14.8 63.7 46.7 2.2 55.3 43.0

15000 5 12.1 90.4 45.0 39.8 83.1 48.6 5.7 73.4 60.2

15000 10 22.1 95.3 50.6 60.6 91.8 43.6 10.5 82.3 58.5

25000 2 4.6 76.9 70.4 13.4 65.5 67.6 2.2 57.1 81.5

25000 5 12.9 91.2 74.6 30.8 75.0 90.8 5.9 74.3 94.0

25000 10 22.3 95.8 69.4 58.7 92.2 61.0 10.8 81.1 81.6

Average 12.2 86.1 47.4 34.8 77.9 48.2 5.9 69.1 56.0

105

Table 4-14: Performance of Deep Autoencoder of F1-score for D2, and D9 IoT devices.

Win

 Size

Frac

(%)

F1

(Fixed

tr)

F1

(k)

Run

Time

(sec)

Win

 Size

Frac

(%)

F1

(Fixed tr)

F1

(k)

Run

Time

(sec)

2000 2 2.0 45.5 13.9 5000 2 24.9 49.3 44.6

2000 5 6.3 75.5 18.2 5000 5 41.9 64.8 47.4

2000 10 11.6 85.2 16.3 5000 10 62.3 82.0 47.7

5000 2 3.2 58.1 27.8 10000 2 25.2 46.3 80.7

5000 5 6.5 73.9 24.6 10000 5 48.8 73.2 78.1

5000 10 12.9 84.6 25.2 10000 10 64.1 85.6 73.4

10000 2 2.9 59.5 44.4 15000 2 27.3 53.1 115.2

10000 5 9.1 74.6 52.2 15000 5 48.5 68.1 109.1

10000 10 16.4 83.2 64.0 15000 10 66.0 84.1 97.2

Average 7.9 71.1 31.9 Average 45.4 67.4 77.0

Table 4-15: Pairwise t-test results at 95% confidence level using average F1-score of

proposed IBDS with OSVM, LOF, ISF, and Autoencoder for 9 IoT devices.

Frac
Method 1

(Proposed)

Method 2

(Baseline)

t-

value
p-value

Difference

 of

 means

Is

Significant?

Conclusion

(At 95% confidence interval, mean detection rate

of IBDS is greater/less than the mean detection

rate of method 2)

2 IBDS OSVM 9.082 1.73E-05 20.988 yes 20.988% greater

2 IBDS LOF 14.391 4.84E-07 33.331 yes 33.331% greater

2 IBDS ISF 12.527 1.26E-06 29.113 yes 29.113% greater

2 IBDS Autoencoder 4.779 0.0005876 27.793 yes 27.793% greater

5 IBDS OSVM 2.509 0.03529 6.359 yes 6.359% greater

5 IBDS LOF 11.763 2.11E-06 29.648 yes 29.648% greater

5 IBDS ISF 7.588 3.06E-05 19.707 yes 19.707% greater

5 IBDS Autoencoder 3.110 0.01016 20.047 yes 20.047% greater

10 IBDS OSVM -1.888 0.09546 -5.626 no
There is not enough evidence that the mean

detection rates of IBDS and OSVM are different

10 IBDS LOF 9.378 9.57E-06 28.268 yes 28.27% greater

10 IBDS ISF 2.816 0.01481 9.654 yes 9.65% greater

10 IBDS Autoencoder -1.175 0.2587 -5.856 no
There is not enough evidence that the mean
detection rates of IBDS and Autoencoder are

different

106

Table 4-16: Pairwise t-test results 95% confidence level using average run time (in sec) of

proposed IBDS with OSVM, LOF, ISF, and Autoencoder for 9 IoT devices.

Figure 4-1: Comparison of performance in terms of F1-score of proposed IBDS

framework with OSVM, LOF, and ISF for device 9 IoT devices.

Figure 4-2: Comparison of run time ration of proposed IBDS framework with OSVM,

LOF, and ISF for device 9 IoT devices.

Frac
Method 1

(Proposed)

Method 2

(Baseline)

t-

value
p-value

Difference

 of

 means

Is

Significant?

Conclusion

(At 95% confidence interval, mean run time of

IBDS is greater/less than the mean run time of

method 2)

2 IBDS OSVM 4.504 0.001705 50.601 yes 50.601 seconds less

2 IBDS LOF 6.660 0.0001591 1255.878 yes 1255.878 seconds less

2 IBDS ISF 5.794 5.7936 322.351 yes 322.351 seconds

2 IBDS Autoencoder 6.326 7.21E-05 34.268 yes 34.268 seconds less

5 IBDS OSVM 4.442 0.00183 48.762 yes 48.762 seconds less

5 IBDS LOF 6.721 0.0001493 1240.941 yes 1240.941 seconds less

5 IBDS ISF 6.121 0.0002799 344.039 yes 344.039 seconds less

5 IBDS Autoencoder 6.142 0.0001033 35.927 yes 35.927 seconds less

10 IBDS OSVM 4.304 0.002187 45.162 yes 45.162 seconds less

10 IBDS LOF 6.724 0.0001489 1216.653 yes 1216.653 seconds less

10 IBDS ISF 6.466 0.000193 375.586 yes 375.586 seconds

10 IBDS Autoencoder 5.662 0.000217 35.024 yes 35.024 seconds less

107

We particularity focused on these two methods to compare its performance with

our proposed IBDS framework which has been illustrated in Figure 4-3(a) and Figure

4-3(b). From experimental results, we observed that the overall performance of the

proposed IBDS framework is significantly better than ISF and LOF for all IoT devices

concerning both F1-score and runtime.

Figure 4-3: (a) Comparison of runtime ratio of proposed IBDS with OSVM, LOF, ISF,

and Deep Autoencoder concerning window size (b) Comparison of average runtime in

seconds of proposed IBDS with OSVM, and deep autoencoder concerning window size.

We observed that Deep Autoencoder outperformed IBDS for D1, D2 and D6

whereas OSVM showed better performance for device D2 and slightly better performance

for device D6 in terms of F1-score; however, the t-test results in Table 4-16 demonstrated

that the performance differences in those cases are insignificant at 95% confidence level.

For the other six devices, the proposed IBDS framework performed much better than

OSVM and Deep Autoencoder. From Figure 4-3(a), we observed almost same F1-score

for 2%, 5% or 10% malignant network traffic by proposed IBDS whereas OSVM and Deep

Autoencoder needed a higher ratio to show better performance. Therefore, the proposed

framework is better for early detection of botnets when botnets start launching an attack by

propagating malicious traffic. Figure 4-3(b) exhibited that runtime of OSVM, Deep

108

Autoencoder and proposed IBDS are almost the same for a smaller window size (window

size equal to 2000, 5000), but with the increase of window size, IBDS performed much

faster than OSVM and Autoencoder. Overall, we observed better performance for most of

the IoT devices by our proposed technique than OSVM, ISF, LOF, and Deep Autoencoder

both in terms of botnet detection rate and computational time.

4.6 Findings and Discussions

In this chapter, we investigated the problem of detecting IoT based botnets using

an unsupervised feature model by two-steps matrix sketching followed by a relative

density-ratio function with 𝛼-mixture density to measure the plausibility of a data instance

with better performance and efficiency. For performance validation, we compared the

proposed IBDS framework with four other baseline methods, OSVM, ISF, LOF, and Deep

Autoencoder using F1-score as the performance measure. Overall, we observed better and

more consistent performance by the proposed framework compared to OSVM, ISF, LOF,

and Deep Autoencoder in terms of improving botnet detection rate and reducing

computational time concerning malignant traffic rate, window size and, type of IoT devices

which demonstrated its usability and effectiveness. For our experiments, we explored

network traffic data from nine IoT devices infected with BASHLITE and Mirai botnets.

Our future work includes more improvement of the proposed framework and to apply it on

additional IoT devices with new and unknown botnets to explore if we can achieve similar

or better results.

In the next chapter, we conclude by summarizing our novel contributions and

directions for future research.

109

CONCLUSION AND FUTURE WORK

5.1 Conclusion

Our goal in this work is to develop novel solutions by exploring a variety of feature

space modeling in non-stationary data to improve model accuracy and efficiency. We have

tested each approach on multiple datasets using appropriate measures of performance and

validated them against several base line methods to prove their applicability and

effectiveness, and therefore we believe each solution has the potential to be extended to

new promising areas in solving problems. Some of the specific contributions and results

are as follows:

5.1.1 Relief based feature space modeling to reduce data complexity to improve

classification performance

Early prediction of ovarian cancer will reduce its growth rate and may save many

lives. Computer aided diagnosis (CAD) is a non-invasive method for finding ovarian

cancer in its early stage which can avoid patient anxiety and unnecessary biopsy, but due

to the quality of ultrasound image or unexpected error in data preprocessing step, converted

data from the images can be very complex, which may lead to the problem of higher class

inseparability or overlap resulting into poor classification performance. To our best

knowledge, we are the first one to explore Data Complexity Analysis in the area of ovarian

110

image classification to investigate the inherent complexity of the data, and used Relief

based feature selection method to reduce its complexity, and finally applied Fuzzy

Ensemble classifiers to differentiate between instances of the normal versus the target

classes successfully to improve accuracy and efficiency.

5.1.2 SVD based feature space transformation to build a novel change detection

system with better accuracy and efficiency

In a non-stationary environment, identification of distributional change points over

time, known as concept drift, is very crucial for some applications when input data is

expected to follow the same distribution. Continuous monitoring of different health

activities, for example, patient’s heart rate monitoring, is one of the major application areas.

To the best of our knowledge, we are the first to use the Direct Density Ratio Estimation

in combination with SVD in building an unsupervised data-driven Active Health

Monitoring system to detect significant changes in data distribution of human health

activity data collected from body sensors with higher change detection rate and reduced

computational time.

5.1.3 Unsupervised feature space modeling to build a novel IoT botnet detection

system with better accuracy and efficiency

Botnets have become one of the overarching problems in the domain of IoT security

due to their unparallel popularity among cybercriminals comes from their ability to

infiltrate almost any internet-connected device. To the best of our knowledge, we are the

first to use the Relative Density Ratio Estimation in combination with unsupervised feature

space model in building a data-driven network-based IoT security mechanism using

network traffic statistics to detect malicious attacks launched from compromised IoT

111

devices with better performance in terms of improving the botnet detection rate and

reducing computational time.

5.2 Future Work

We can further explore our proposed Fuzzy Framework on new datasets collected

from ovarian cancer images or extend our studies in classifying cancer images of another

category like thyroid or breast cancer. The novel solution we proposed to identify change

points in health activity sensor data that can be further investigated with other health data,

for example, heart rate monitoring data. For our botnet detection experiments, we explored

network traffic data from nine IoT devices infected with BASHLITE and Mirai botnets.

One possible future avenue is to apply it on additional IoT devices with new and unknown

botnets if we can achieve similar or better results.

112

REFERENCES

[1] J. Han and M. Kamber, "Data Mining: Concepts and Techniques," 2012.

[2] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge

discovery in databases," AI magazine, vol. 17, no. 3, pp. 37-37, 1996.

[3] U. R. Acharya et al., "Use of Nonlinear Features for Automated Characterization

of Suspicious Ovarian Tumors Using Ultrasound Images in Fuzzy Forest

Framework," International Journal of Fuzzy Systems, vol. 20, no. 4, pp. 1385-1402,

2018.

[4] T. Z. Tan, C. Quek, G. S. Ng, and K. Razvi, "Ovarian cancer diagnosis with

complementary learning fuzzy neural network," Artificial intelligence in medicine,

vol. 43, no. 3, pp. 207-222, 2008.

[5] U. R. Acharya et al., "Ovarian tissue characterization in ultrasound: a review,"

Technology in cancer research & treatment, vol. 14, no. 3, pp. 251-261, 2015.

[6] U. R. Acharya et al., "GyneScan: an improved online paradigm for screening of

ovarian cancer via tissue characterization," Technology in cancer research &

treatment, vol. 13, no. 6, pp. 529-539, 2014.

[7] K.-L. Tang, T.-H. Li, W.-W. Xiong, and K. Chen, "Ovarian cancer classification

based on dimensionality reduction for SELDI-TOF data," BMC bioinformatics, vol.

11, no. 1, p. 109, 2010.

[8] R. Biagiotti, C. Desii, E. Vanzi, and G. Gacci, "Predicting ovarian malignancy:

application of artificial neural networks to transvaginal and color Doppler flow

US," Radiology, vol. 210, no. 2, pp. 399-403, 1999.

[9] A. Tailor, D. Jurkovic, T. Bourne, W. Collins, and S. Campbell, "Sonographic

prediction of malignancy in adnexal masses using multivariate logistic regression

analysis," Ultrasound in Obstetrics & Gynecology, vol. 10, no. 1, pp. 41-47, 1997.

[10] O. Lucidarme et al., "A new computer-aided diagnostic tool for non-invasive

characterisation of malignant ovarian masses: results of a multicentre validation

study," European radiology, vol. 20, no. 8, pp. 1822-1830, 2010.

113

[11] Y. Zimmer, R. Tepper, and S. Akselrod, "An automatic approach for morphological

analysis and malignancy evaluation of ovarian masses using B-scans," Ultrasound

in medicine & biology, vol. 29, no. 11, pp. 1561-1570, 2003.

[12] U. R. Acharya, M. M. R. Krishnan, L. Saba, F. Molinari, S. Guerriero, and J. S.

Suri, "Ovarian tumor characterization using 3D ultrasound," in Ovarian Neoplasm

Imaging: Springer, 2013, pp. 399-412.

[13] U. R. Acharya et al., "Evolutionary algorithm-based classifier parameter tuning for

automatic ovarian cancer tissue characterization and classification," Ultraschall in

der Medizin-European Journal of Ultrasound, vol. 35, no. 03, pp. 237-245, 2014.

[14] U. R. Acharya, S. V. Sree, L. Saba, F. Molinari, S. Guerriero, and J. S. Suri,

"Ovarian tumor characterization and classification using ultrasound—a new online

paradigm," Journal of digital imaging, vol. 26, no. 3, pp. 544-553, 2013.

[15] T. Hata et al., "Three-dimensional ultrasonographic evaluation of ovarian tumours:

a preliminary study," Human Reproduction, vol. 14, no. 3, pp. 858-862, 1999.

[16] K. Kira and L. A. Rendell, "A practical approach to feature selection," in Machine

Learning Proceedings 1992: Elsevier, 1992, pp. 249-256.

[17] T. K. Ho and M. Basu, "Complexity measures of supervised classification

problems," IEEE transactions on pattern analysis and machine intelligence, vol.

24, no. 3, pp. 289-300, 2002.

[18] J. H. Friedman and L. C. Rafsky, "Multivariate generalizations of the Wald-

Wolfowitz and Smirnov two-sample tests," The Annals of Statistics, pp. 697-717,

1979.

[19] A. Hoekstra and R. P. Duin, "On the nonlinearity of pattern classifiers," in Pattern

Recognition, 1996., Proceedings of the 13th International Conference on, 1996,

vol. 4: IEEE, pp. 271-275.

[20] D. Conn, T. Ngun, G. Li, and C. Ramirez, "Fuzzy forests: extending random forests

for correlated, high-dimensional data," 2015.

[21] G. Louppe, "Understanding random forests: From theory to practice," arXiv

preprint arXiv:1407.7502, 2014.

[22] S. Horvath, Weighted network analysis: applications in genomics and systems

biology. Springer Science & Business Media, 2011.

[23] D. T. Larose, Discovering knowledge in data: an introduction to data mining. John

Wiley & Sons, 2014.

114

[24] N. Siddique and H. Adeli, "Neural Systems and Applications," Computational

Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary

Computing, pp. 159-181.

[25] M. Sarkar, "Fuzzy-rough nearest neighbor algorithms in classification," Fuzzy Sets

and Systems, vol. 158, no. 19, pp. 2134-2152, 2007.

[26] L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001.

[27] K.-L. Tang, T.-H. Li, W.-W. Xiong, and K. Chen, "Ovarian cancer classification

based on dimensionality reduction for SELDI-TOF data," BMC bioinformatics, vol.

11, no. 1, p. 109, 2010.

[28] E. F. Petricoin et al., "Use of proteomic patterns in serum to identify ovarian

cancer," The lancet, vol. 359, no. 9306, pp. 572-577, 2002.

[29] F. Carcillo, Y.-A. Le Borgne, O. Caelen, and G. Bontempi, "Streaming active

learning strategies for real-life credit card fraud detection: assessment and

visualization," International Journal of Data Science and Analytics, vol. 5, no. 4,

pp. 285-300, 2018.

[30] W. Cheng et al., "Ranking causal anomalies for system fault diagnosis via temporal

and dynamical analysis on vanishing correlations," ACM Transactions on

Knowledge Discovery from Data (TKDD), vol. 11, no. 4, p. 40, 2017.

[31] E. Trunzer et al., "Failure mode classification for control valves for supporting

data-driven fault detection," in 2017 IEEE International Conference on Industrial

Engineering and Engineering Management (IEEM), 2017: IEEE, pp. 2346-2350.

[32] K. Yamanishi, J.-I. Takeuchi, G. Williams, and P. Milne, "On-line unsupervised

outlier detection using finite mixtures with discounting learning algorithms," Data

Mining and Knowledge Discovery, vol. 8, no. 3, pp. 275-300, 2004.

[33] A. F. Costa, Y. Yamaguchi, A. J. M. Traina, and C. Faloutsos, "Modeling temporal

activity to detect anomalous behavior in social media," ACM Transactions on

Knowledge Discovery from Data (TKDD), vol. 11, no. 4, p. 49, 2017.

[34] Y. Gao, Y. Ma, and D. Li, "Anomaly detection of malicious users' behaviors for

web applications based on web logs," in 2017 IEEE 17th International Conference

on Communication Technology (ICCT), 2017: IEEE, pp. 1352-1355.

[35] S. Li, M. Shao, and Y. Fu, "Multi-view low-rank analysis with applications to

outlier detection," ACM Transactions on Knowledge Discovery from Data (TKDD),

vol. 12, no. 3, p. 32, 2018.

115

[36] U. Murad and G. Pinkas, "Unsupervised profiling for identifying superimposed

fraud," in European Conference on Principles of Data Mining and Knowledge

Discovery, 1999: Springer, pp. 251-261.

[37] M. Rowe, "Mining user development signals for online community churner

detection," ACM Transactions on Knowledge Discovery from Data (TKDD), vol.

10, no. 3, p. 21, 2016.

[38] W. Xie, F. Zhu, J. Xiao, and J. Wang, "Social Network Monitoring for Bursty

Cascade Detection," ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 12, no. 4, p. 40, 2018.

[39] J. Liang, D. Ajwani, P. K. Nicholson, A. Sala, and S. Parthasarathy, "Prioritized

relationship analysis in heterogeneous information networks," ACM Transactions

on Knowledge Discovery from Data (TKDD), vol. 12, no. 3, p. 29, 2018.

[40] T. Wang, M. Z. A. Bhuiyan, G. Wang, M. A. Rahman, J. Wu, and J. Cao, "Big data

reduction for a smart city’s critical infrastructural health monitoring," IEEE

Communications Magazine, vol. 56, no. 3, pp. 128-133, 2018.

[41] L. Zadvinskiy, C. Wheeler, G. Gardner, and A. Flower, "Using abrupt change

detection to categorize glucose variability of Type 1 diabetes patients," in 2017

Systems and Information Engineering Design Symposium (SIEDS), 2017: IEEE,

pp. 243-247.

[42] C. C. Aggarwal, "A framework for diagnosing changes in evolving data streams,"

in Proceedings of the 2003 ACM SIGMOD international conference on

Management of data, 2003: ACM, pp. 575-586.

[43] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, "Learning with drift detection,"

in Brazilian symposium on artificial intelligence, 2004: Springer, pp. 286-295.

[44] Y. Kawahara and M. Sugiyama, "Sequential change‐point detection based on direct

density‐ratio estimation," Statistical Analysis and Data Mining: The ASA Data

Science Journal, vol. 5, no. 2, pp. 114-127, 2012.

[45] R. P. Adams and D. J. MacKay, "Bayesian online changepoint detection," arXiv

preprint arXiv:0710.3742, 2007.

[46] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and

application. Prentice Hall Englewood Cliffs, 1993.

[47] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, "A survey on

concept drift adaptation," ACM computing surveys (CSUR), vol. 46, no. 4, p. 44,

2014.

116

[48] Y. Kawahara and M. Sugiyama, "Change-point detection in time-series data by

direct density-ratio estimation," in Proceedings of the 2009 SIAM International

Conference on Data Mining, 2009: SIAM, pp. 389-400.

[49] S. Liu, M. Yamada, N. Collier, and M. Sugiyama, "Change-point detection in time-

series data by relative density-ratio estimation," Neural Networks, vol. 43, pp. 72-

83, 2013.

[50] Y. Kawahara, T. Yairi, and K. Machida, "Change-point detection in time-series

data based on subspace identification," in Seventh IEEE International Conference

on Data Mining (ICDM 2007), 2007: IEEE, pp. 559-564.

[51] M. Sugiyama, T. Suzuki, and T. Kanamori, Density ratio estimation in machine

learning. Cambridge University Press, 2012.

[52] H. Yanai, K. Takeuchi, and Y. Takane, "Singular Value Decomposition (SVD)," in

Projection Matrices, Generalized Inverse Matrices, and Singular Value

Decomposition: Springer, 2011, pp. 125-149.

[53] S. Puntanen, G. P. Styan, and J. Isotalo, "Eigenvalue Decomposition," in Matrix

Tricks for Linear Statistical Models: Springer, 2011, pp. 357-390.

[54] A. A. Qahtan, B. Alharbi, S. Wang, and X. Zhang, "A pca-based change detection

framework for multidimensional data streams: Change detection in

multidimensional data streams," in Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2015: ACM,

pp. 935-944.

[55] A. Reiss and D. Stricker, "Introducing a new benchmarked dataset for activity

monitoring," in 2012 16th International Symposium on Wearable Computers, 2012:

IEEE, pp. 108-109.

[56] V. Ganti, J. Gehrke, and R. Ramakrishnan, "Demon: Mining and monitoring

evolving data," IEEE Transactions on Knowledge and Data Engineering, vol. 13,

no. 1, pp. 50-63, 2001.

[57] H. Abdi and L. J. Williams, "Principal component analysis," Wiley interdisciplinary

reviews: computational statistics, vol. 2, no. 4, pp. 433-459, 2010.

[58] S. Kullback and R. A. Leibler, "On information and sufficiency," The annals of

mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951.

[59] K. Pearson, "X. On the criterion that a given system of deviations from the probable

in the case of a correlated system of variables is such that it can be reasonably

supposed to have arisen from random sampling," The London, Edinburgh, and

117

Dublin Philosophical Magazine and Journal of Science, vol. 50, no. 302, pp. 157-

175, 1900.

[60] V. Vapnik and V. Vapnik, "Statistical learning theory Wiley," New York, pp. 156-

160, 1998.

[61] M. Yoshida et al., "Luminosity Functions of Lyman Break Galaxies at z~ 4 and z~

5 in the Subaru Deep Field," The Astrophysical Journal, vol. 653, no. 2, p. 988,

2006.

[62] A. Beygelzimer, S. Kakade, and J. Langford, "Cover trees for nearest neighbor,"

in Proceedings of the 23rd international conference on Machine learning, 2006:

ACM, pp. 97-104.

[63] X. Song, M. Wu, C. Jermaine, and S. Ranka, "Statistical change detection for

multi-dimensional data," in Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2007: ACM, pp. 667-676.

[64] T. Dasu, S. Krishnan, S. Venkatasubramanian, and K. Yi, "An information-

theoretic approach to detecting changes in multi-dimensional data streams," in In

Proc. Symp. on the Interface of Statistics, Computing Science, and Applications,

2006: Citeseer.

[65] D. Omoifo, "Obstacle detection in autonomous vehicles using deep learning," 2018.

[66] E. Bertino and N. Islam, "Botnets and internet of things security," Computer, no. 2,

pp. 76-79, 2017.

[67] Y. Meidan et al., "N-BaIoT—Network-Based Detection of IoT Botnet Attacks

Using Deep Autoencoders," IEEE Pervasive Computing, vol. 17, no. 3, pp. 12-22,

2018.

[68] A. Marzano et al., "The Evolution of Bashlite and Mirai IoT Botnets," in 2018

IEEE Symposium on Computers and Communications (ISCC), 2018: IEEE, pp.

00813-00818.

[69] K. Angrishi, "Turning internet of things (iot) into internet of vulnerabilities (iov):

Iot botnets," arXiv preprint arXiv:1702.03681, 2017.

[70] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, "DDoS in the IoT: Mirai and

other botnets," Computer, vol. 50, no. 7, pp. 80-84, 2017.

[71] M. Antonakakis et al., "Understanding the mirai botnet," in USENIX Security

Symposium, 2017, pp. 1092-1110.

118

[72] S. García, A. Zunino, and M. Campo, "Survey on network‐based botnet detection

methods," Security and Communication Networks, vol. 7, no. 5, pp. 878-903, 2014.

[73] H. R. Zeidanloo, M. J. Z. Shooshtari, P. V. Amoli, M. Safari, and M. Zamani, "A

taxonomy of botnet detection techniques," in Computer Science and Information

Technology (ICCSIT), 2010 3rd IEEE International Conference on, 2010, vol. 2:

IEEE, pp. 158-162.

[74] S. García, A. Zunino, and M. Campo, "Botnet behavior detection using network

synchronism," in Privacy, Intrusion Detection and Response: Technologies for

Protecting Networks: IGI Global, 2012, pp. 122-144.

[75] R. Hallman, J. Bryan, G. Palavicini, J. Divita, and J. Romero-Mariona, "IoDDoS

the internet of distributed denial of sevice attacks," in 2nd International Conference

on Internet of Things, Big Data and Security. SCITEPRESS, 2017, pp. 47-58.

[76] H. Dong and D. Peng, "Research on abnormal detection of ModbusTCP/IP

protocol based on one-class SVM," in 2018 33rd Youth Academic Annual

Conference of Chinese Association of Automation (YAC), 2018: IEEE, pp. 398-403.

[77] J. Medková, M. Husák, M. Vizváry, and P. Čeleda, "Honeypot testbed for network

defence strategy evaluation," in Integrated Network and Service Management (IM),

2017 IFIP/IEEE Symposium on, 2017: IEEE, pp. 887-888.

[78] H. Wafi, A. Fiade, N. Hakiem, and R. B. Bahaweres, "Implementation of a modern

security systems honeypot Honey Network on wireless networks," in Young

Engineers Forum (YEF-ECE), 2017 International, 2017: IEEE, pp. 91-96.

[79] D. Fraunholz, M. Zimmermann, and H. D. Schotten, "An adaptive honeypot

configuration, deployment and maintenance strategy," in Advanced

Communication Technology (ICACT), 2017 19th International Conference on,

2017: IEEE, pp. 53-57.

[80] P. Jaikumar and A. C. Kak, "A graph‐theoretic framework for isolating botnets in

a network," Security and communication networks, vol. 8, no. 16, pp. 2605-2623,

2015.

[81] A. Shabtai, D. Potashnik, Y. Fledel, R. Moskovitch, and Y. Elovici, "Monitoring,

analysis, and filtering system for purifying network traffic of known and unknown

malicious content," Security and Communication Networks, vol. 4, no. 8, pp. 947-

965, 2011.

[82] L. E. Menten, A. Chen, and D. Stiliadis, "NoBot: embedded malware detection for

endpoint devices," Bell Labs Technical Journal, vol. 16, no. 1, pp. 155-170, 2011.

119

[83] H. Sedjelmaci, S. M. Senouci, and M. Al-Bahri, "A lightweight anomaly detection

technique for low-resource IoT devices: A game-theoretic methodology," in

Communications (ICC), 2016 IEEE International Conference on, 2016: IEEE, pp.

1-6.

[84] S. Ali, G. Wang, R. L. Cottrell, and T. Anwar, "Detecting Anomalies from End-

to-End Internet Performance Measurements (PingER) Using Cluster Based Local

Outlier Factor," in Ubiquitous Computing and Communications (ISPA/IUCC),

2017 IEEE International Symposium on Parallel and Distributed Processing with

Applications and 2017 IEEE International Conference on, 2017: IEEE, pp. 982-

989.

[85] S. Su et al., "N2DLOF: A New Local Density-Based Outlier Detection Approach

for Scattered Data," in High Performance Computing and Communications; IEEE

15th International Conference on Smart City; IEEE 3rd International Conference

on Data Science and Systems (HPCC/SmartCity/DSS), 2017 IEEE 19th

International Conference on, 2017: IEEE, pp. 458-465.

[86] A. D. Landress, "A hybrid approach to reducing the false positive rate in

unsupervised machine learning intrusion detection," in SoutheastCon, 2016, 2016:

IEEE, pp. 1-6.

[87] H. Bostani and M. Sheikhan, "Hybrid of anomaly-based and specification-based

IDS for Internet of Things using unsupervised OPF based on MapReduce

approach," Computer Communications, vol. 98, pp. 52-71, 2017.

[88] M. Ozcelik, N. Chalabianloo, and G. Gur, "Software-Defined Edge Defense

Against IoT-Based DDoS," in 2017 IEEE International Conference on Computer

and Information Technology (CIT), 2017: IEEE, pp. 308-313.

[89] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, "Kalis—A System for

Knowledge-Driven Adaptable Intrusion Detection for the Internet of Things," in

Distributed Computing Systems (ICDCS), 2017 IEEE 37th International

Conference on, 2017: IEEE, pp. 656-666.

[90] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, "Deep learning

for unsupervised insider threat detection in structured cybersecurity data streams,"

arXiv preprint arXiv:1710.00811, 2017.

[91] D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multi-cluster

data," in Proceedings of the 16th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2010: ACM, pp. 333-342.

[92] H. Huang, S. Yoo, and S. P. Kasiviswanathan, "Unsupervised feature selection on

data streams," in Proceedings of the 24th ACM International on Conference on

Information and Knowledge Management, 2015: ACM, pp. 1031-1040.

120

[93] E. Anderson, Z. Bai, and J. Dongarra, "Generalized QR factorization and its

applications," Linear Algebra and Its Applications, vol. 162, pp. 243-271, 1992.

[94] L. N. Trefethen and D. Bau III, Numerical linear algebra. Siam, 1997.

[95] M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama, "Relative

density-ratio estimation for robust distribution comparison," Neural computation,

vol. 25, no. 5, pp. 1324-1370, 2013.

[96] A. Anees, J. Aryal, M. M. O’Reilly, and T. J. Gale, "A relative density ratio-based

framework for detection of land cover changes in MODIS NDVI time series," IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.

9, no. 8, pp. 3359-3371, 2016.

[97] M. Sugiyama and M. Kawanabe, Machine learning in non-stationary

environments: Introduction to covariate shift adaptation. MIT press, 2012.

[98] L. Zadvinskiy, C. Wheeler, G. Gardner, and A. Flower, "Using abrupt change

detection to categorize glucose variability of Type 1 diabetes patients," in Systems

and Information Engineering Design Symposium (SIEDS), 2017, 2017: IEEE, pp.

243-247.

[99] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, "Kitsune: an ensemble of

autoencoders for online network intrusion detection," arXiv preprint

arXiv:1802.09089, 2018.

[100] C. H. Bischof and P. T. P. Tang, Robust incremental condition estimation.

University of Tennessee. Computer Science Department, 1991.

	Feature Space Modeling for Accurate and Efficient Learning From Non-Stationary Data
	Recommended Citation

	Louisiana Tech Dissertation Template - Word 2007-2010 Format

