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ABSTRACT

Myoglobin facilitated oxygen diffusion and Michaelis-Menten kinetics are added to 

an experimentally-validated cardiac tissue model to determine the steady-state function of 

myoglobin in working heart tissue. Previous modeling of tissue oxygen partial pressure 

(pC>2) data suggests that the oxygen diffusion coefficient in working heart tissue is greater 

than expected. To fit the p02 data, the tissue oxygen diffusion coefficient in the model 

must be elevated to 8 to 12 times reported values. These elevated values of the tissue 

oxygen diffusion coefficient are not acceptable based upon the current understanding of 

cardiac muscle physiology. In this dissertation the effect of including myoglobin facilitated 

diffusion in the model is evaluated to determine if this phenomenon can explain the need 

for an elevated oxygen diffusion coefficient.

The Radially-Averaged, Axially-Distributed (RAAD) model considers axial 

diffusion of oxygen in tissue, myoglobin facilitation of oxygen transport, and p02- 

dependent oxygen consumption. Models are solved numerically using a variable-mesh 

finite-difference scheme. Parameters are optimized with Nelder-Mead simplexing and are 

chosen to minimize the sum-of-squares error between model p02 predictions and p02 

data.

iii
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The addition of myoglobin to the RAAD model does not provide a better data fit. 

Simulations led to the conclusion that myoglobin facilitation is not responsible for the 

elevated oxygen diffusion found through modeling p02 data. Also, simulations indicate that 

myoglobin facilitated diffusive transport of oxygen can be disregarded in future steady-state 

oxygen transport models of the isolated perfused cat heart. Possible explanations for the 

elevated oxygen diffusion coefficient include tissue stirring by contractile elements, inter­

capillary oxygen exchange, and preparation-specific transport conditions of the isolated heart.

iv
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CHAPTER 1

INTRODUCTION

1.1 Clinical Relevance

The heart is dependent on an uninterrupted supply of oxygen. Removal of oxygen 

supply quickly leads to cardiac cell death. Ischemic heart disease is the result of reduced 

oxygen supply to the cardiac tissue primarily from blockage of the coronary arteries. 

Blockage of the coronary arteries leads to loss of contractile function of heart muscle, 

cardiac arrhythmia, and cardiac cell death [Katz, 1992]. For the patient, this sequence of 

events usually results in heart failure. The human cost o f ischemic heart disease is 

immense. Since 1918, cardiovascular disease has been the leading cause of death in the 

United States. In 1993, 954,138 lives were lost because of cardiovascular diseases; 

nearly 500,000 of these deaths were caused by coronary heart disease [American Heart 

Association, 1996]. The financial cost of cardiovascular disease is also substantial, 

burdening the health care system, with approximately $151.3 billion spent treating 

cardiovascular diseases in 1996 [American Heart Association, 1996], Based upon these 

statistics the need for further understanding of cardiovascular disease and improved 

treatment is clear.

1
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The further development of a mathematically accurate model describing oxygen 

transport can provide insight into physical phenomena which govern oxygen utilization 

and cardiac functions. An accurate model would be useful for predicting oxygen levels in 

tissues where direct measurement is unavailable. The results of this project will aid in 

determining if there exists another chemical transport pathway in contracting heart muscle 

that may elevate diffusion. The implications of discovering another transport pathway are 

quite relevant to the study of cardiovascular disease. The discovery of elevated diffusion 

in the working heart could lead to improved treatment methods for myocardial ischemia. 

The ischemic heart is in a state of oxygen supply and demand imbalance; sustained oxygen 

levels less than those required by the tissue lead to a buildup of harmful metabolites (e.g., 

IT and lactate) and eventually cell death. Treatments of artherosclerotic ischemia 

(blockage of the coronary arteries) attempt to restore oxygen balance by restoring oxygen 

levels to the afflicted area and by reducing adenosine triphosphate (ATP) utilization. 

Metabolite delivery to tissue involves both convective and diffusive processes. Enhanced 

diffusion in working heart tissue would represent another means of delivery. To treat the 

ischemic heart, increasing heart rate is felt to be detrimental because of the increased 

metabolic requirements of the tissue, while a reduced heart rate is clinically felt to be best. 

But, if diffusion is enhanced by stirring, then increased heart rate must be reevaluated as a 

treatment condition. Theoretically, the heart rate could be paced so that increased 

delivery by stirring exceeds increased metabolic demand. This increase could provide a 

new treatment strategy that has not been considered. The simulations described in this 

dissertation will not provide definite proof of another transport pathway in working heart
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tissue, but determining the role o f myoglobin in elevated oxygen diffusion is the next step 

towards such a goal.

1.2 Overview of Research

Oxygen partial pressure (PO2) data obtained from an isolated perfused cat heart 

[Schubert, Whalen, Nair, 1978] has been modeled using the Krogh Cylinder model to 

simulate oxygen transport to tissue [Schubert, 1976], The p02 histogram, an estimate of 

the probability distribution, predicted by the Krogh model did not match the experimental 

PO2 histogram (Figure 1). Whereas the Krogh model [1919] predicts a flat, featureless 

PO2 profile, the experimental data reflect a higher percentage of tissue at low p0 2 . 

Attempting to provide better agreement between model prediction and experimental data, 

Schubert et al. proposed an alternative to the Krogh model [Schubert, 1976; Schubert, 

Whalen, 1976; Schubert, Fletcher, Reneau, 1985], Instead of including only radial oxygen 

transport in tissue (Krogh model), the new model also included axial oxygen transport. 

Radial difiusion was replaced with a mass transfer coefficient through space averaging. 

The new model fit the p(> 2  data better than the Krogh model. The p02 distribution 

predicted by the new model, Figure 1, showed the same leftward shift as the p02 data 

[Schubert, Fletcher, Reneau, 1985]. One major problem with the axial model is that the 

tissue oxygen difiusion coefficient (Dzjts) had to be elevated to about ten times normal 

(1.65 x 10"* cm2/s) to predict the tissue data accurately.
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Figure 1: Comparison of model p02 histograms. Contrasting p02 histograms are shown: 
featureless Krogh model prediction, axial model (RAAD) prediction with 10 x 
Dzjis showing leftward shift towards low p02 bins, and experimental data from 
isolated heart microelectrode measurements (average of low and high perfusion 
pressure data from Schubert, Whalen, and Nair [1978]).
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Several of the model assumptions were questioned. With the addition of 

Michaelis-Menten oxygen consumption kinetics, the need for an elevated difiusion 

coefficient is reduced by 20% to 1.32 x 10“* cm2/s [Napper, Schubert, 1988], The 

assumption of radial averaging was also questioned by comparing the axial model to a 

fully distributed model (axial and radial oxygen difiusion). The comparison justified the 

use of radial averaging by showing that the model p02 distributions were highly insensitive 

to changes in radial parameters [Schubert, Zhang, 1992], However, the need for an 

elevated axial difiusion coefficient was not explained. The current study will determine 

what effect the addition of myoglobin facilitated oxygen difiusion will have on the axial 

model. The axial model is now called the Radially-Averaged, Axially-Distributed (RAAD) 

model [Gardner, Schubert, 1995],

1.3 Research Need

Through comparison between physiological data and models predicting 

experimental p02 data, difiusion appears to be elevated in contracting cardiac tissue. 

Napper determined that some of this enhancement was apparent (as opposed to actual) and 

could be explained by adding Michaelis-Menten kinetics of oxygen consumption to the RAAD 

model [Napper, 1985], Estimates of the tissue oxygen difiusion coefficient decreased from 

twelve to eight times normal with Michaelis-Menten in the model. However, his results show 

that the Michaelis-Menten “constant,” Km, varied from 4 to 5 mmHg. These values are 

considered somewhat high relative to experimental determinations [Whalen, 1971; Buerk,
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Saidel, 1978; Duling, 1978] and very high compared to data from isolated mitochondria 

[Chance et al., 1974], Although values in the range of Napper’s numbers have been measured 

in intact tissues, the possibility exists that the elevated Km values may mask the effects of 

another oxygen transport phenomenon in tissue such as myoglobin facilitated difiusion [Araki, 

Tamura, Yamazaki, 1983], Therefore, both the independent and combined contributions of 

myoglobin facilitation and Michaelis-Menten kinetics should be assessed using the RAAD 

tissue model. The combined effect of adding myoglobin and Michaelis-Menten to the model 

can be compared to the individual effects of adding either myoglobin or Michaelis-Menten. 

Individual effects must be assessed to eliminate the possibility of Michaelis-Menten masking the 

effect of myoglobin facilitation.

At this time, the elevated oxygen difiusion has not been explained. A possible 

explanation is the stirring or sloshing of contracting tissue [Kreuzer, 1982; Jacquez, 1984; 

Schubert, Fletcher, 1993], It is hypothesized that the shortening and expanding of muscle 

fibers during contraction causes movement of cytosol (intracellular fluid) back and forth 

between the myofibrils of the muscle [Jacquez, 1984], Furthermore, Schubert and Fletcher 

[1993] suggest that the actual contractile elements may provide additional stirring during 

contraction; stirring may occur as the myosin filament ratchets along the actin filament. If this 

is true, the transport of many chemical species, including myoglobin, should be enhanced by the 

convective effects of the contractile stirring. Verification of these proposed mechanisms will 

require complicated experimental measurements and the development of instrumentation to 

measure the chemical species involved. Before justification can be given to these costly
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experimental techniques, the exclusion of myoglobin facilitation of oxygen transport from the 

RAAD tissue model must be addressed.

This dissertation addresses the steady-state role of myoglobin facilitated difiusion 

in delivering oxygen to cardiac tissue. Facilitation of oxygen transport by myoglobin has 

been assessed by other modeling attempts, but there is no agreement on the magnitude of 

myoglobin’s effect. Many researchers suggest that myoglobin does not diffuse 

significantly in tissue and therefore cannot provide oxygen transport [Fletcher, 1980; 

Gonzalez-Femandez, Atta, 1982,1986; Hoofd, 1995; Loiselle, 1987; Papadopoulas, Jurgens, 

Gros, 1995]. Yet, others conclude that myoglobin is a direct and significant source of 

extra oxygen transport for the tissue, especially during periods of low tissue pC>2 [Jacquez, 

1984; Federspiel, 1986; Covell, Jacquez, 1987; Groebe, 1995]. As a group, they have all 

failed to verify modeling results with experimental data. Model-to-model comparisons are 

often made, conclusions from which may not hold true in living, working, or contracting 

tissue. In cases where experimental data are used, the data have been obtained at the 

whole organ level. The problem with many evaluations of myoglobin facilitation in tissue 

is that the basic model used does not mimic data measurements at the tissue level. Major 

exclusions in these models include 1. neglecting axial difiusion of oxygen in tissue, and 2. 

neglecting the possibility of stirring in working tissue. What makes this dissertation 

unique is that the tissue model that forms the basis of the analysis mimics experimental 

data at the tissue level [Schubert, Fletcher, 1993],

It must be determined if the effect of adding myoglobin facilitated difiusion to the 

RAAD tissue model is large enough to explain the elevated difiusion found through
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modeling pC>2 data, or to what extent myoglobin can account for the elevated difiusion. 

This dissertation is basically the next step in determining why difiusion levels appear 

higher in living, working cardiac tissue than in dead tissue. Once the effects of myoglobin 

have been determined, then justification can be given to more complicated modeling and 

experimentation. The RAAD model results supplied by this dissertation should provide an 

answer to the question, ‘Is  myoglobin facilitated difiusion of oxygen significant in the 

working heart?”

1.4 Objectives of Research

The goal of this dissertation is to determine the steady-state role of myoglobin in 

enhancing the difiusion of oxygen in tissue, and whether myoglobin facilitated oxygen 

difiusion can account for elevated oxygen difiusion observed in pCh data modeling.

Specific objectives are as follows:

1. add myoglobin facilitated oxygen difiusion and Michaelis-Menten kinetics to the existing 

validated cardiac tissue model (RAAD model);

2. solve the resulting cardiac tissue model equations using numerical techniques, and compare 

the modeling results to the experimental data;

3. optimize the solution to provide a best fit to the experimental data by searching for the 

difiusion coefficients of oxygen and myoglobin, Michaelis-Menten coefficient (Km), and 

maximum oxygen consumption (Vmax);
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4. determine the extent that myoglobin facilitation accounts for the apparent enhancement of 

oxygen diffusion in cardiac tissue; and

5. investigate the independent and combined contributions of myoglobin facilitation and 

Michaelis-Menten kinetics to the RAAD model by comparison of model results.
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CHAPTER 2

RELATED RESEARCH

2.1 Models of Oxygen Transport in Tissue

Oxygen plays a vital role in cellular metabolism. In mammals, the transport of 

oxygen from blood to tissue occurs by the following pathway. Oxygen is taken up by red 

blood cell hemoglobin in intimate exchange with gases in the lungs. The oxygen-rich red 

blood cells are transported by convection through blood vessels to capillary beds within 

the tissue. Oxygen is released from the red blood cell hemoglobin and is transported by 

diffusion through the capillary wall and into the tissue where it is utilized for cellular 

function. Each step of this delivery system of oxygen to tissue has been studied and 

modeled by investigators. Popel provides an excellent review of methods for modeling 

oxygen transport to tissue [Popel, 1989], Tissue models are useful for predicting oxygen 

levels in tissue where direct measurement is impossible or not feasible. Tissue models also 

provide the researcher with a means of investigating a broad range of oxygen delivery 

conditions that would be difficult to explore experimentally.

Krogh’s original theories [1919] on oxygen transport to tissue laid the 

groundwork for future modeling efforts. Krogh observed that capillaries were somewhat 

uniformly distributed in a cross-section of striated muscle. Based upon this observation,

10
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Krogh introduced a model (Figure 2) describing oxygen transport in tissue. Krogh’s 

model consisted of non-interacting tissue cylinders perfused fcy a central capillary. Oxygen 

is introduced in the capillary and passively diffuses into tic  surrounding tissue cylinder. 

Difiusion is driven in the radial direction by radial concentration gradients. Axial tissue 

difiusion is neglected in Krogh's concept. Theoretically, a section of tissue could be 

represented by repeating the basic cylinder model several times [Krogh, 1919]. Given 

capillary p02, the Krogh model allows calculation of the radial p02 distribution in tissue. 

The capillary is not modeled as a separate region in Krogh’s original model. Further 

research by Bloch led to the addition of a radially well-mixed capillary region represented 

as a central cylinder [Bloch, 1943]. This change allowed for additional modeling involving 

variable perfusate flow rates. This tissue-capillary cylindrical unit is known as the Krogh 

cylinder (Figure 2). The Krogh cylinder model predicts axial gradients in the tissue, but 

does not allow transport by these gradients.

The basic Krogh cylinder model of Krogh and Bloch has been extended by many 

researchers and is often used as a comparison tool when a new model is developed 

[Groebe, Thews, 1990a; Secomb et al., 1993]. Blum extended the Krogh cylinder model 

by adding axial difiusion in the tissue region [Blum, 1960], bust his solution showed lack of 

continuity at the capillary-tissue interface. This error was finally resolved in later 

modeling [Fletcher, Schubert, 1982], The details of the non-linear properties of blood 

have been added to the capillary region and applied to brain tissue [Reneau, Bruley, 

Knisely, 1969], More recently, Fletcher and Schubert and others [Kreuzer, 1982] have 

questioned the ability of the Krogh model to predict accurately oxygen distributions in
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Venous
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Arteriole
End

Venous
Blood

Arteriole
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Figure 2: Sketch of the Krogh cylinder model. Top: The Krogh cylinder is repeated to 
represent a section of tissue. The individual tissue cylinders do not interact. 
Bottom: The model is comprised of a capillary surrounded by a cylindrical 
tissue region. There is radial diffusion of oxygen in the tissue region. Axially 
diffusion is neglected [Fletcher, Schubert, 1987],
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tissue (Section 2.3) [Fletcher, Schubert, 1987]. Fletcher and Schubert suggest an 

alternative representation of tissue transport based on comparison to measurements of 

tissue p02 [Fletcher, Schubert, 1987; Schubert, Fletcher, 1993],

The Krogh model’s repeating cylinder does not account for heterogeneity of tissue 

perfusion and assumes that capillaries are uniformly spaced in tissue. Pittman offers a 

review of research involving the influence of microvascular architecture on oxygen 

transport to tissue [Pittman, 1995], For example, Levitt created a model which allows 

interaction between capillary-tissue units and found that tissue appears “well-stirred” 

[Levitt, 1971], Secomb, and Hsu et al. have simulated oxygen delivery in complex 

geometrical capillary arrangements [Hsu, Secomb, 1989; Secomb, Hsu, Dewhirst, 1992; 

Secomb et al., 1993], These highly ordered models of blood vessel networks are very 

situation specific and cannot generally predict tissue oxygen profiles other than for the 

specific arrangement that is modeled. The arrangement of vessels in tissue cannot be 

determined without disturbing the tissue.

When modeling oxygen transport, it is important to determine if the model is 

physiologically sound. That is, does the model reflect actual oxygen distributions in 

tissue? There are several techniques utilized in the measurement of tissue p02. The 

measurement technique should minimize damage to tissue and disturbance of the tissue 

p02 field. Available p02 measurement methods have been reviewed by Vanderkooi et al. 

[Vanderkooi, Ericinska, Silver, 1991], Optical methods are limited by the depth of light 

penetration and can only be used on tissue surfaces or optically clear regions. This 

limitation requires that the sampled region be exposed such that tissue p02 may be
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increased by oxygen diffusion into the exposed surface. Also, the axial sensitivity of 

optical probes is difficult to determine. Larger electrodes may cause tissue distortion 

through vascular compression. Also, large probes can span several capillaries for most of 

their length and do not provide the spatial resolution required for comparison to tissue 

models. Bare noble-metal electrode measurements are sensitive to the rate of oxygen 

consumption at the metal surface and are dependent on the transport properties of the 

tissue around the tip of the electrode. These electrodes measure an average convective- 

difiusive oxygen “availability”. An electrode measuring average oxygen would predict 

high median pC>2 because the pC>2 sampled is not normally distributed (see Schubert, et al. 

[1978] for a complete discussion). The recessed tip microelectrodes of Whalen and Nair 

provide absolute tissue p02 and are the only technique to measure local pC>2 reliably 

[Whalen, Riley, Nair, 1967; Schneiderman, Goldstick, 1975], The Whalen-Nair electrode 

exhibits minimal to no stir sensitivity; convection at the tip does not affect measurement. 

With a tip diameter of less than 1 pm, the electrode measures pCh from a tissue volume of 

approximately 1 pm3 and does not significantly disturb the tissue [Whalen, Nair, Buerk, 

1973]. Other techniques do not provide the spatial resolution necessary for model-to-data 

comparison; for example, the spectrophotometric measurement technique used by Gayeski 

and Honig [1991] has an estimated spatial resolution of 5x5x3 pm3.

The problem with the prior evaluations of tissue models is that there is typically no 

comparison to tissue level data. As noted by Popel [1989] in his review of oxygen 

transport models,
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“At present none of the models of oxygen transport (including Krogh’s model) has 

been carefully tested against experimental data. The main reason appears to be the 

lack of accurate measurements of oxygen tension...in vivo with the spatial 

resolution necessary for validation of distributed transport models.”

While there may be comparisons to whole-organ data, a model that mimics whole-organ 

data may not and most likely will not predict tissue-level data accurately. In the worst 

case of attempted model validation, model-to-model comparisons are made [Groebe, 

Thews, 1990a; Secomb et al., 1993], One model is evaluated on how well it compares to 

another model, neither of which has been validated with experimental data. The error 

committed is that the basic model used is faulty in that it does not mimic experimental data at 

the tissue level. The uniqueness of this dissertation is in using a mathematical model that has 

been validated through comparison with tissue level p0 2  data.

2.2 Microelectrode Measurement of Oxvoen in Tissue

Schubert et al. obtained p02 measurements from an isolated perfused cat heart, 

Figure 3, using the Whalen-Nair oxygen microelectrode [Schubert, 1976; Schubert, 

Whalen, Nair, 1978], The isolated cat heart preparation was used to reduce the number of 

independent variables that afreet the oxygen consumption of the heart. Most obvious is 

the lack of nervous intervention caused by isolation of the organ. A small latex balloon 

was inserted into the left ventricle to keep contractions isovolumic. This procedure was 

supposed to eliminate length-dependent changes in left ventricular function. The balloon
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also stabilizes the left ventricular wall allowing easier penetration of the wall with the 

Whalen-Nair microelectrode. A suction device utilized previously to stabilize the tissue 

surface [Whalen, Nair, Buerk, 1973] was not used in Schubert’s measurements [Schubert, 

1976; Schubert, Whalen, Nair, 1978], The heart was paced to avoid time dependencies. 

A cell-free perfusate, Krebs-Henseleit solution, was used to perfuse the heart. All of 

these experimental considerations simplify the modeling of oxygen transport. Details 

about the data collection and microelectrode are reported in Schubert et al. [Schubert, 

1976; Schubert, Whalen, Nair, 1978], It is important to note that the isolated hearts 

exhibited flow autoregulation and were stable for several hours.

The p02 data were randomly sampled. Observations in hamster cheek-pouch 

tissue show that the electrode does not penetrate capillaries; rather, it deflects away from 

them [Whalen, Nair, Buerk, 1973], Therefore, it was assumed that the electrode samples 

only tissue p02. There was no knowledge of microelectrode tip position relative to blood 

vessels. Tissue p02 was sampled at perfusion pressures o f 78.2 mmHg (low) and 113.4 

mmHg (high). Perfusion pressure is proportional to perfusate flow into the coronary 

arteries times the vascular resistance. Vascular resistance is intrinsically adjusted by the 

autoregulating heart. Increasing perfusion pressure increases the potential for flow, yet 

this pressure increase does not necessarily increase flow because of the dependence on 

resistance. In fact, Schubert showed that a 40% increase in perfusion pressure led to only 

a 9% increase in perfusate flow [Schubert, Whalen, Nair, 1978], This result suggests that 

Schubert’s isolated heart preparation is autoregulating, that is, the heart is intrinsically 

adjusting the resistance to flow (for further discussion see Schubert, 1976). There were
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40 tissue penetrations with 894 samples at low and 898 samples at high perfusion pressure 

both with a coronary perfusate p02 of 722 mmHg. Statistical analysis performed on the 

data removed deviant heart preparations to ensure that the data set included measurements 

from viable heart preparations only [Schubert, Whalen, Nair, 1978],

2.3 Modeling of Microelectrode Tissue Data

2.3.1 Histogram Comparison of 
Model and Data

The randomly sampled raw p02 data cannot be compared directly to modeled p02. 

Typically, models have some set geometric arrangement. Knowledge of the exact 

positioning of the electrode tip would be needed to make a direct comparison. A 

statistical comparison can be made through the formation of a p02 histogram. Basically, 

this formation involves determining the volume of tissue that falls within a p02 range or 

bin. The resulting histogram is percent volume of tissue versus bins of p02 (see Schubert, 

Fletcher, 1993, for details). Figures 4 and 5 show the experimental p02 histograms for 

low and high perfusion pressure, respectively. Differences between the two data sets are 

small; the only significant difference occurs in the 0 to 5 mmHg bin (95% confidence level) 

[Schubert, Whalen, Nair, 1978]. One consequence of using this statistical means of data 

comparison is that any number of models may successfully predict the randomly sampled 

p02 distribution. There is no uniqueness associated with a model that matches a data set 

of this sort [Schubert, Fletcher, 1993],
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Figure 4: Low perfusion pressure pCh histogram. Experimental data taken from the 
isolated perfused cat heart preparation [Schubert, Whalen, Nair, 1978], Note 
the change in bin size at higher p02. For data compression bins start at 5 
mmHg wide and double at SO, 100, and 200 mmHg. Data compression was not 
used in Figure 1. In Schubert’s original work, data compression was used to 
maintain equal variance in bin values (for details see Schubert, et al., [1978]).
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2.3.2 Inadequacy of Kroah 
Model

Schubert used pC^ distributions predicted by the Krogh cylinder model to compare 

with his data [Schubert, 1976]. He discovered that the p02 predictions of the Krogh 

model did not match the pCfe tissue data (Figure 1). While the experimental data showed a 

distinct leftward shift, the Krogh model predicted a featureless histogram. Trying to 

explain this, Schubert proposed an alternative to the Krogh model which included axial 

oxygen diffusion in tissue [Schubert, Whalen, 1976; Schubert, Fletcher, Reneau, 1985; 

Schubert, Fletcher, 1993]. This model will be referred to as the Radially-Averaged, 

Axially-Distributed (RAAD) model [Gardner, Schubert, 1995],

2.3.3 Radiallv-Averaaed. Axiallv- 
Distributed (RAAD) Model

The RAAD model suggested by Schubert retained the same geometry as the 

original Krogh model (Figure 2), but replaced the radial gradients with a mass transfer 

coefficient (radially space-averaged) and added axial transport by diffusion in the tissue 

region [Schubert, 1976; Schubert, Fletcher, Reneau, 1985], The cylinder model is not 

meant to represent an actual capillary. Rather, the model is used to represent some 

“equivalent” capillary that describes the average transport characteristics o f the heart. The 

model is thought to be equivalent in the sense that randomly sampling the tissue region of 

the model will result in a p02 distribution that is similar to an experimentally determined 

distribution. The RAAD model is therefore called the “equivalent” Krogh cylinder model 

[Schubert, Fletcher, 1993], The RAAD model p02 histogram distribution exhibits the
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leftward shift similar to the p02 data (Figure 1). Schubert found that, to have the RAAD 

model adequately predict the experimental p0 2  distributions, the tissue axial diffusion 

coefficient for oxygen (Dz,ns) had to be increased to ten times what was presently 

accepted as normal. This value was by most standards unacceptably large. The most 

probable explanation for this increased diffusion in the tissue region was a model 

oversimplification. The model assumptions have been inspected and evaluated as 

summarized in the following review.

2.4 Evaluation of RAAD Model Assumptions

2.4.1 Exclusion of Hemoglobin 
in the Capillary

The RAAD model does not consider hemoglobin in the capillary. Since the model 

is compared to experimental data, the model assumptions should match the experimental 

conditions. The isolated cat heart was perfused with a cell-free, hemoglobin-free 

perfusate. Therefore, the RAAD model excludes hemoglobin in the capillary, using 

instead a perfusate whose oxygen content is related linearly to the solubility o f oxygen in 

Krebs-Henseleit solution. Some models of oxygen transport to tissue do account for 

Hemoglobin and red blood cell distribution in the capillary. These models are compared 

to whole organ data that are obtained from blood perfused tissues. For example, Groebe 

presents a Krogh cylinder type model that accounts for red cell spacing and Hemoglobin 

unloading of oxygen in the capillary [Groebe, 1995], He is not able to validate his model
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with experimental data because no tissue level data are available for the blood-perfused 

tissue that his model describes.

2.4.2 Exclusion of Michaelis- 
Menten Kinetics

The original RAAD model, like the Krogh model, included the assumption that 

tissue consumption o f oxygen is homogeneous and zero order which does not allow the 

consumption to vary with the pC>2 as occurs in living tissue [Guyton, Hall, 1994]. Oxygen 

consumption in tissue decreases with decreasing p0 2  in a non-linear manner; the effects 

are significant at low p02. Through modeling of p02 data from brain and liver slices, 

Buerk and Saidel [1978] determined that a better model o f oxygen consumption in tissue 

is the Michaelis-Menten kinetic model. Based upon this finding, Napper replaced the 

homogeneous consumption in the RAAD model tissue region with Michaelis-Menten 

kinetics, and found that including Michaelis-Menten kinetics in the RAAD model reduced 

the need for a high value of axial oxygen diffusion coefficient, D zjts, by 20% [Napper, 

Schubert, 1988]. Clearly the inclusion of Michaelis-Menten kinetics did not entirely 

explain the elevated diffusion coefficient needed to match Schubert's experimental data.

Through his simulations, Napper determined Michaelis-Menten coefficients (Km) 

ranging from 4 to 5 mmHg. These values are higher than experimentally determined values in 

brain and liver tissues which range from 1.5 to 3.5 mmHg [Buerk, Saidel, 1978; Duling, 1978; 

Whalen, 1971], and much higher than Kreutzer and Jue [1995] determined for heart tissue (Km 

= 2.1 mmHg). Higher values for Kn, (3 to 4 mmHg) have been measured in intact rat heart
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tissue [Araki, Tamura, Yamazaki, 1983], Since Napper’s predicted Km values are higher than 

experimental values, it seems reasonable to ask if elevated Km is masking the effect of 

myoglobin facilitated diffusion or other pOrdependent phenomena in tissue.

2.4.3 Radial Averaging

The original Krogh model described transport of oxygen in tissue as radial 

diffusion only and entirely neglected axial diffusion. The RAAD model considers both 

axial and radial transport o f oxygen. Axial, or lengthwise, transport o f oxygen is modeled 

as simple diffusion. Radially, the RAAD model is space averaged, meaning that there is 

no variation in the radial direction in either the capillary or the tissue; but, an oxygen 

gradient is present because a finite permeability “barrier” is placed at the capillary-tissue 

interface. Oxygen in the capillary moves radially through the capillary wall into the tissue. 

Instead of describing the radial transport as distributed diffusion, transport radially is 

represented by a lumped mass transfer coefficient, such that the radial flux from the 

capillary is equal to the product o f the mass transfer coefficient times the concentration 

gradient between the capillary and tissue.

Once it was recognized that the Krogh model was inadequate and that the capillary 

and tissue region had large axial gradients, neglect of axial transport was suspect. Blum 

added axial diffusion to the Krogh cylinder model [Blum, 1960], but continuity at the 

capillary-tissue interface was not maintained [Schubert, personal communication]. Blum 

revealed that he was aware of the problem and that the correct solution had not been 

found [Schubert, personal communication], Schubert was unable to find the solution, so
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he proposed lumping the radial diffusion into a permeability between two radially space- 

averaged regions and maintaining distributed axial diffusion [Schubert, 1976; Schubert, 

Whalen, 1976; Schubert, Fletcher, Reneau, 1985], This solution produced histograms that 

show a leftward shift similar to experimental pCh. data [Schubert, Whalen, Nair, 1978], 

However, in order to produce histograms resembling the experimental measurements, 

Schubert had to use an artificially high value of axial diffusion coefficient o f oxygen in 

tissue. The reasons for this elevated coefficient were unknown, but modeling assumptions 

were questioned.

LenhofF and Lightfoot [1982] used a space-averaging concept, similar to Schubert 

and Whalen [1976], and constructed a time-dependent Krogh cylinder model. Fletcher 

and Schubert [1982] derived and solved a steady-state two-dimensional tissue model 

(axial and radial oxygen diffusion in the tissue region). Oscillations (ringing) in the 

solution at the inlet o f the model forced them to utilize a Fejer summation technique to 

smooth the solution. This technique required extensive computation time, but, for the first 

time, a useful solution to combined radial and axial diffusion in tissue was obtained. They 

later added axial diffusion in the capillary and a permeability barrier at the capillary wall 

[Fletcher, Schubert, 1987], Maintaining diffusion in the capillary region added little to 

oxygen transport, but led to smoothing of the model solution and eliminated the need for a 

smoothing technique. Zhang performed a mathematical comparison between the original 

Krogh model, the RAAD model, and the mathematically difficult two-dimensional model 

of Fletcher and Schubert, 1987 [Zhang, 1992], He concluded that the Krogh model was 

inadequate for predicting pC>2 distributions in the Krebs-Henseleit perfused heart, but that
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the RAAD model could be used instead of the two-dimensional model to predict 

accurately p02 distributions for 95% of the model domain. The inlet p02 fields were not 

predicted well by the RAAD model, but make up a small percentage of the total p02 

distribution. Recall that, for accurate predictions, the Dzjb must still be elevated to eight 

to ten times normal. Zhang found that the RAAD model was relatively insensitive to large 

changes of the radial oxygen diffusion coefficient (D r jis ), suggesting that oxygen diffusion 

was not anisotropic as earlier results suggested [Fletcher, Schubert, 1982, 1987], but was 

probably elevated isotropic diffusion [Schubert, Fletcher, 1993], Through his model 

comparisons, Zhang showed that use of the RAAD (radially averaged) model instead of 

the mathematically difficult two-dimensional model was justified unless entrance 

conditions were of interest. The explanation for the elevated diffusion suggested by 

Schubert’s data clearly did not reside within the replacement of radial diffusion by a mass 

transfer coefficient.

2.4.4 Exclusion of Mvoalobin

Another RAAD model simplification was the exclusion of myoglobin kinetics in the 

tissue region In addition to acting as a buffer for oxygen in tissue, myoglobin facilitates 

oxygen transport, but the extent of this facilitation is limited by myoglobin’s ability to diffuse in 

tissue.
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2.5 Mvoalobin Facilitation of Oxygen Diffusion

Myoglobin (Mb) binds reversibly with oxygen in a 1:1 reaction to form 

oxymyoglobin (Mb02)- No information is available on alteration of myoglobin’s affinity 

for oxygen due to pH or carbon dioxide level changes; however, variation o f hemoglobin’s 

affinity for oxygen are well documented [Guyton, Hall, 1994]. Myoglobin is believed to 

facilitate oxygen diffusion in tissue by binding to oxygen in areas of high oxygen 

concentration, diffusing as Mb02 to areas of lower M b02 concentration (which 

correspond to low p02), and then releasing the bound oxygen. Key to myoglobin 

facilitation of oxygen transport is the ability of Mb02 to diffuse in tissue. Myoglobin was 

initially excluded from the RAAD model because the then current literature suggested that 

myoglobin did not diffuse in tissue and therefore could not facilitate oxygen transport 

[Kreuzer, 1970; Leninger-Follert, Lubbers, 1973], However, recent measurements in 

skeletal muscle determined that myoglobin does diffuse in tissue. Therefore, facilitated 

diffusion may significantly contribute to oxygen transport [Baylor, Pape, 1988; Jurgens, 

Peters, Gros, 1994; Papadopoulos, Jurgens, Gros, 1995]. In this study, myoglobin’s role 

in contracting heart tissue is evaluated using the RAAD model. A comparison to tissue 

level p02 measurements is used to validate the model.
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2.5.1 Experimental Determination 
of Factors Affecting 
Mvoalobin Diffusion

The primary factors that determine the extent of myoglobin diffusion are the 

concentration (Cmb) and diffusion coefficient (Dm,) of myoglobin in tissue. The 

concentration of myoglobin varies by species and by tissue type. Concentration of 

myoglobin is greater in red muscles such as heart and skeletal muscle. The highly 

oxidative muscle cells of the heart contain the greatest concentration of myoglobin. 

Schuder et al. have determined the myoglobin content of skeletal and cardiac muscle 

through subunit-exchange chromatography [Schuder et al., 1979]. They found that the 

myoglobin concentration in cat ventricle tissue was 177 pmol/kg. This value was not used 

in modeling of the isolated cat heart because the sample size was too small to rule out 

variation among animals [Wittenberg, personal communication]. Wittenberg and 

Wittenberg have compiled values for CMb in various tissues [Wittenberg, Wittenberg, 

1990], Mammalian skeletal and heart muscle was found to contain an average 225 and 

250 pmol/kg of myoglobin, respectively.

There is no consensus on the value for diffusion coefficient of myoglobin in tissue. 

The absolute maximum value can be determined using the Stokes-Einstein formula, Dm, = 

2.97 x lO'6 cm2/s [Fletcher, 1980]. Experimentally measured values are an order of 

magnitude lower. Measurements in dilute myoglobin solutions (18% solution by weight 

thought to represent tissue) result in E>Mb = 0.7 x 10^ cm2/s [Fletcher, 1980], Baylor and 

Pape introduced a met-myoglobin pulse into frog skeletal muscle and optically measured 

its distribution over time. They assumed that the diffusive properties of met-myoglobin
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were identical to those of myoglobin and found, EW = 0.16 x 10-6 cm2/s at 20 °C [Baylor, 

Pape, 1988], Jurgens et al. determined through photooxidation of myoglobin to met- 

myoglobin a difiusivity of 0.12 x lO-6 cm2/s in rat skeletal muscle [Jurgens, Peters, Gros,

1994]. Using a technique similar to Baylor and Pape, Papadopoulos et al. determined the 

difiusivity of met-myoglobin in rat skeletal muscles of varying muscle types. The 

difiusivity in red soleus and white extensor digitonun longus muscles was determined to 

be 0.13 x 10-6 and 0.19 x 10"6 cm2/s, respectively at 22 °C [Papadopoulos, Jurgens, Gros,

1995]. The highest value of difiusivity, 0.22 x 10"* cm2/s, was found in red soleus muscle 

at 37 °C. Each of these experiments determined values of difiusivity utilizing a 

spectrophotometric technique that measures the absorbance of met-myoglobin. The met- 

myoglobin is either injected [Baylor, Pape, 1988] or produced from native myoglobin with 

a high-energy pulse of UV-irradiation [Jurgens, Peters, Gros, 1994; Papadopoulos, 

Jurgens, Gros, 1995], These methods are under scrutiny for various reasons. One 

problem is that these techniques measure the diffusion of met-myoglobin and not native 

myoglobin; it is not known if the diffusive properties of these molecules are identical. 

Furthermore, met-myoglobin has a net positive charge versus the close to zero or slightly 

negative charge of myoglobin [Baylor, Pape, 1988], Met-myoglobin may interact with the 

negatively charged muscle fiber proteins giving a lower difiusivity versus myoglobin; although, 

Baylor suggests that this effect is negligible [Baylor, Pape, 1988], The techniques involving 

UV-irradiation of a region of tissue experience difficulty in quantifying a baseline value for 

met-myoglobin produced after the UV pulse. This problem is due to enzymes that act to
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reduce the newly formed met-myoglobin and oxidants created by the UV pulse that act to 

produce more met-myoglobin. The tissue damage caused by UV exposure and the 

subsequent effects on the apparent diffusion coefficient are difficult to quantify. A change 

in absorbance occurs after the UV pulse that is not saturation dependent; this change is 

related to tissue damage caused by the pulse. The damage may affect transport proteins in 

membranes and causes water uptake by the tissue [Jurgens, Peters, Gros, 1994; 

Papadopoulos, Jurgens, Gros, 1995], In this study, a DMb = 0.22 x 10"6 cm2/s is 

considered “normal.” This value corresponds to that measured by Papadopoulos et al. 

[1995], in the rat soleus muscle at 37 °C.

2.5.2 Experimental Evaluations 
of Mvoalobin Facilitated 
Diffusion

Myoglobin has been shown to facilitate oxygen diffusion in 18% (by weight) protein 

solutions [Kreuzer, Hoofd, 1987]. Myoglobin facilitation has been evaluated experimentally 

through oxygen uptake measurements in fish hearts and in cardiac myocytes (muscle cells). 

Wittenberg and Wittenberg concluded that, in isolated rat cardiac myocytes, approximately 1/3 

of the oxygen uptake is due to myoglobin. This finding suggests that the function of 

myoglobin in cardiac myocytes is direct myoglobin-mediated oxygen delivery even under 

conditions of high extracellular oxygen [Wittenberg, Wittenberg, 1987], Unlike myoglobin 

facilitated diffusion, myoglobin-mediated oxygen delivery does not require that myoglobin 

diffuse in tissue. A comparable measurement by Jones and Kennedy using similar myocytes 

(isolated rat cardiac muscle) led to the conclusion that myoglobin was not a significant
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facilitator o f oxygen transport [Jones, Kennedy, 1986], This preparation is questionable since 

the myocytes changed shape during the measurements and therefore were considered 

structurally abnormal and not representative of natural heart cells. Gayeski and Honig 

measured intracellular p02 in cardiac myocytes by cryospectroscopy [Gayeski, Honig, 1991], 

Observed intracellular oxygen gradients were shallow, and median p02 was 2.5 mmHg. 

Gayeski and Honig’s results suggest that myoglobin exists near its 50% saturation level in 

cardiac tissue. They concluded that myoglobin acts to minimize spatial and temporal 

heterogeneities of pO  ̂and that myoglobin facilitation is significant in cardiac tissue. Caution is 

advised because p0 2  measurements and determination of myoglobin facilitation in isolated cells 

may not be representative of intact tissue. Because of the lack of pC>2 gradients in their tissue 

measurements, Gayeski and Honig [1991] argue that myoglobin facilitation of oxygen diffusion 

is significant. Their conclusion is based on a comparison to pC>2 gradients predicted by the 

Krogh cylinder model, i.e., radial transport only. An alternate explanation of shallow pC>2 

gradients in tissue is axial diffusion. Fletcher and Schubert [1987] show that axial diffusion in 

tissue effectively reduces radial p0 2  gradients in tissue.

Gayeski et. al. also applied their cryospectroscopy technique to dog gracilis 

muscle to measure intracellular p(>2 . This technique uses fast freezing of tissue to ‘lock” 

the myoglobin in muscle at its saturation level prior to freezing. The myoglobin saturation 

of the frozen tissue is then measured with a spectrophotometer and pC>2 is determined. 

Based upon this measurement, Gayeski suggests that myoglobin plays a critical role in 

preventing tissue from becoming too hypoxic, and therefore avoiding cellular damage 

[Gayeski, Connett, Honig, 1987], Furthermore, during myocardial ischemia, myoglobin
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may provide the low pC>2 areas of heart tissue with more oxygen than would be available 

in a myoglobin-transport absent tissue. A problem with the fast-freezing technique is that 

the post-freezing values of myoglobin saturation may not be entirely representative of pre­

freezing saturation values. Also, the technique has a large tissue sampling volume, 45 

pm3, relative to the Whalen-Nair electrode, 1 pm3 [Gayeski, Connett, Honig, 1987 ].

Bailey et al. determined oxygen uptake of isolated perfused fish hearts for species with 

varying myoglobin concentrations [Bailey, Sephton, Driedzic, 1990], They found that 

myoglobin-rich hearts were able to attain half-maximal oxygen consumption at lower oxygen 

concentrations than myoglobin-poor hearts. Myoglobin-poor hearts could not utilize oxygen at 

input pCVs of less than 40 mmHg. This result suggests that myoglobin plays a role even at 

higher pCh- Also, myoglobin-poor hearts were unable to recover from periods of hypoxia 

whereas myoglobin-rich hearts recover fully, implying that myoglobin-rich hearts can maintain 

oxidative metabolism over a wider range of hypoxic conditions than myoglobin-poor hearts. 

Bailey et al. suggest that the fundamental role of myoglobin in heart is maintenance of adequate 

oxygen flow to the mitochondria [1990], To evaluate myoglobin function, Bailey et al. used 

nitrite to block myoglobin function. Nitrate oxidizes myoglobin to a non-functional state. 

Bailey et al. acknowledged that nitrate may affect the metabolism of the tissue, although their 

isolated heart preparations showed no statistical evidence of reduced metabolism after 

treatment with nitrate.
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2.5.3 Theoretical Evaluations of 
Mvoalobin Facilitated 
Diffusion

Myoglobin facilitated oxygen transport has been assessed by many researchers through 

modeling, but conclusions vary. Arguments against the effectiveness of myoglobin as a 

facilitator of oxygen transport typically suggest that the Dm, or Cm, of myoglobin is too low for 

substantial facilitation. The measurements of Jurgens et al. and Papadopoulos et al. found that 

Dm, was very low, and subsequent modeling showed that myoglobin did little to increase 

intracellular oxygen [Jurgens, Peters, Gros, 1994; Papadopoulos, Jurgens, Gros, 1995]. 

Both of these studies used the Krogh model (no axial difiusion) to evaluate myoglobin 

facilitation. Baylor and Pape, although determining Dm, to be essentially the same as Jurgens et 

al. and Papadopoulos et al., concluded that myoglobin could still double the transport of 

oxygen even at this low value of difiusivity [Baylor, Pape, 1988]. Baylor’s evaluation of 

myoglobin facilitation is suspect since it does not consider consumption in the tissue. Each of 

these studies utilized a spectrophotometric technique to measure the difiusivity of met- 

myoglobin; problems associated with this technique are discussed in Section 2.5.1.

Fletcher utilizes a Krogh cylinder model (radial only) to evaluate myoglobin 

effectiveness as a facilitator of oxygen transport. Fletcher concludes that myoglobin facilitation 

does not add significantly to total oxygen pressure, but that facilitation does become significant 

near the venous end of the tissue cylinder. Fletcher states that this result suggests a possible 

safety mechanism against local hypoxia in muscle tissue [Fletcher, 1980], Fletcher’s 

conclusions were based on relatively high values of Dm, (0.3 to 2.7 x Iff6 cm2/s), although he 

does acknowledge that Dm, in living tissue may be much smaller.
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A model describing the difiusion of myoglobin in the presence of membranes 

representing diffusive barriers was developed by Gonzalez-Femandez and Atta. Their findings 

suggest that membranes in the diffusive path reduce myoglobin’s facilitative effects by 

decreasing Dm, [Gonzalez-Femandez, Atta, 1982]. Loiselle concluded that myoglobin 

facilitated oxygen difiusion was insignificant in the in vitro papillary muscle preparation model 

[Loiselle, 1987]. Loiselle’s results cannot be extended to in vivo situations because the in vitro 

papillary muscle preparation is bathed in high p0 2  possibly causing myoglobin in the muscle to 

remain fully saturated with oxygen.

Myoglobin facilitation was determined to be significant when evaluated with slab 

models of skeletal muscle [Jacquez, 1984; Covell, Jacquez, 1987], The models by Jaquez and 

Covell considered myoglobin kinetics and Michaelis-Menten kinetics but were not compared to 

experimental data. A two-dimensional model of skeletal muscle (r and 6, no axial difiusion) 

was developed by Federspiel. The model consists of a cylindrical tissue fiber with capillaries on 

the outer surface of the cylinder. Federspiel found that myoglobin acts to reduce pC>2 gradients 

in tissue [Federspiel, 1986]. Salathe and Chen utilize a space-averaged (multi-capillary), time- 

dependent slab model to evaluate myoglobin facilitation. They conclude that myoglobin is only 

effective at very low pC>2 [Salathe, Chen, 1993],

Groebe has presented extensive modeling of oxygen transport to tissue [Groebe, 1990, 

1995; Groebe, Thews, 1990a, b]. His models include Krogh-type models and non-Kroghian 

models. Groebe’s most recent paper utilizes a radial-diffusion-only, Krogh-like arrangement 

which considers hemoglobin and red blood cells in the capillary and myoglobin facilitation in 

the tissue region. Groebe linearizes the oxygen-myoglobin dissociation curve and estimates
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Michaelis-Menten kinetics of oxygen consumption with a tissue region that switches 

consumption on or off depending on the local pC>2. Groebe attempts to include axial difiusion 

of oxygen, but admittedly cannot obtain the precise Bessel’s function solution. Groebe 

concludes that myoglobin facilitation of oxygen transport is significant. He does suggest that 

changes in myoglobin parameters, such as Dm, and Cm* do not affect the pC>2 distributions but 

may drastically change the extent of tissue anoxia (no oxygen) [Groebe, 1995],

Both from an experimental and a theoretical viewpoint, there is no universal agreement 

on the role of myoglobin in muscle. Those who believe that myoglobin is a significant 

facilitator of oxygen transport tend to see the muscle, especially cardiac muscle, as operating 

on the edge of hypoxia. Near hypoxia low tissue pO? leads to oxymyoglobin unloading of 

oxygen. Because the isolated heart preparation of Schubert appears to operate near hypoxia 

(10-14% of the tissue volume is below pC>2 = 5mmHg), myoglobin facilitation may be 

significant in the working heart and should be evaluated. Those who do not believe that 

myoglobin facilitates oxygen transport significantly tend to view the tissue as being well 

oxygenated and far from hypoxic. Higher levels of tissue pC>2 do not allow oxymyoglobin to 

unload bound oxygen. Although researchers cannot agree on a role for myoglobin, they 

cannot deny the possibility that myoglobin may act as a facilitator of oxygen transport. This 

possibility exists because oxymyoglobin concentrations in cardiac cells have been estimated to 

be approximately 30 times that of free oxygen, providing a ready source of oxygen if pC>2 levels 

drop [Wittenberg, Wittenberg, 1989],
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CHAPTER 3

METHODOLOGY

3.1 Derivation of RAAD Model with Mvoalobin

To include myoglobin facilitation in the Radially-Averaged, Axially-Distributed 

(RAAD) model, a reaction term is added which will represent the myoglobin-oxygen 

reaction. Recall that myoglobin (Mb) binds reversibly to oxygen (0 2) in a 1:1 fashion to 

form oxymyoglobin (Mb02) as shown in Equation (1).

Mb+02— <̂-+Mb02 (1)
< k2

Following Fletcher’s development, the myoglobin reaction term as rate/volume is

P ~ -̂'02,tjss 0  — ^0 — ^2^] (2)

where Y is the fraction of myoglobin saturated with oxygen [Fletcher, 1980], For a full 

parameter list see Appendix A  The RAAD model is shown in Figure 6. Although the 

model appears very similar to the Krogh cylinder model, the assumptions are quite 

different, notably the inclusion of myoglobin difiusion, axial difiusion of oxygen, and radial 

averaging.

36
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r  tissue
radially averaged

axial diffusion

cap.
inlet cap.

convection outlet
reap.

[Mb]

L

Figure 6: The RAAD model. The model consists of a central capillary which perfuses a 
surrounding tissue cylinder. Oxygen is transported in tissue via axial diffusion. 
Flux of oxygen from the capillary to the tissue is represented by a mass transfer 
coefficient times a concentration difference (equal solubilities). The tissue and 
capillary are radially space averaged. No oxygen leaves the outer surfaces 
except through the inlet and outlet of the capillary.
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3.1.1 Equations Describing 
T issue Region

In the tissue region, there is axial diffusion of oxygen (Dz,tb), zero-order

Modifications to the model for including Michaelis-Menten kinetics o f oxygen 

consumption are shown in Section 3.1.4. Radial oxygen flux entering the tissue from the 

capillary is represented by a concentration difference times a mass transport coefficient

perfusate is assumed (see Schubert and Zhang, 1995, for RAAD model with unequal 

solubilities). With the appropriate mass balances on oxygen, the following equations 

result, describing the Radially-Averaged, Axially-Distributed (RAAD) model tissue region 

(an overbar on variables indicates normalization; see Appendix B for a complete derivation 

of the model, and Appendix A for a list o f parameters, assumptions, and nominal values): 

Transport of oxygen,

consumption (k’” ), and myoglobin facilitation of oxygen diffusion (Mb02 diffusion).

(P); the tissue is space-averaged radially. Equal solubility of oxygen in the tissue and

(3)

Transport of oxymyoglobin,

d 2CM b02,TIS
M b02,TIS d Z 2 +  p  =  0 (4)
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where,

amlr2ns — r2 ca p  y  Dzm (5)

K =

l i t  A

k Z0-1 
Dz,ns c o

(6)

p Z o 1
DzjIS Co

(7)

Equation (4) is normalized to

d Z

where,

Q 2 = T ~ ^ c --------- (9)MbOTJIS ^  Mb JO T

3.1.2 Equations Describing 
Capillary Region

Diffusion is omitted from the capillary region o f the RAAD model because 

consistency between the model and experiment was impossible to achieve with axial 

diffusion in the capillary region; an explanation follows. In addition to choosing 

appropriate modeling assumptions describing the conditions of the isolated heart
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preparation, the overall tissue oxygen consumption predicted by the model must match the 

experimentally-determined whole-organ consumption. For homogeneous consumption, 

the model consumption (k ) is set to the experimentally determined values; but, in the 

case of Michaelis-Menten kinetics, the overall consumption cannot be set in the model. 

For comparison, the predicted arterio-venous (A-V) difference from the model is used to 

calculate an overall consumption, which is then used to adjust the boundary condition 

describing capillary inlet p®2 (see Appendix D). Adjustments are made until the model 

converges to an acceptable A-Y difference (95% confidence, as described by Schubert, 

Whalen, Nair, 1978). This consumption-matching strategy becomes difficult to apply 

when there is difiiision in the capillary region of the model. Specifically, capillary diffusion 

requires another region in ttw model, a region that would represent a well-mixed segment 

of capillary at the entrance to the RAAD model capillary. This region would be needed to 

calculate the diffusive and convective portions of the flux into the RAAD capillary 

resulting from a set inlet convective capillary p02. A formula for the RAAD model inlet 

capillary p02 could be determined through an oxygen mass balance across the well-mixed 

segment of capillary. This formula for inlet p02 could then be used as a boundary 

condition. Numerically, this boundary condition is more difficult to use because a mixed 

boundary condition results. A  mixed boundary condition specifies a dependent variable or 

combination of dependent variables at more than one of the system boundaries 

simultaneously. This method did not provide acceptable results because the concentration 

gradient in the capillary regjoci was difficult to estimate numerically. With diffusion in the 

capillary, the RAAD model was not able to match the experimental A-V difference
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[Schubert, Whalen, Nair, 1978] to within one standard deviation (see Appendix D). To 

avoid these complications, diffusion is omitted from the capillary.

In previous modeling, the transport of oxygen by difiiision was shown to 

contribute little to overall oxygen transport in the presence of convection within the 

capillary, yet the difiusive term was maintained because it reduced oscillations (ringing) in 

the analytical solution [Fletcher, Schubert, 1987], As stated before, difiiision in the 

capillary region has been omitted because the experimental A-V difference could not be 

matched by the model. Prior studies did not discover this problem because Napper did not 

include difiiision in the capillary [Napper, Schubert, 1988] and Zhang dealt only with the 

homogeneous oxygen consumption model (no Michaelis-Menten) [Schubert, Zhang, 

1992]. In this study, without capillary difiiision, oscillations of the capillary pC>2 solution 

at the capillary inlet were eliminated by increasing the number of nodal points.

In the capillary region, there is axial convection of oxygen caused by perfusate flow and 

radial flux into the tissue region. As stated before, oxygen flux leaving the capillary is 

represented by a concentration difference times a mass transport coefficient. With the 

appropriate oxygen mass balances, the following equations result, describing the RAAD 

model capillary region (see Appendix B for full derivation):

d~ d ir  + i -[g ° ^ - g ° ^ ] = 0  c ° )
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where,

/» -  2 Z ° PP ~ v  r  00CAP CAP

3.1.3 Boundary Conditions for 
RAAD with Mvoalobin Model

dC,0 2 J IS

d Z
=  0

2 = 0.0

(12)

dY__
d Z

= 0
Z - 0.0

(13)

d Q02.T1S

d Z
= 0

Z=L0

(14)

d Y
d Z

= 0
Z = 1.0

(15)

OXCAP Z=0.0
= set to match 

A - V d i f f
(16)

Equations (12), (13), (14), and (15) describe no oxygen or oxymyoglobin flux out of the 

ends of the tissue. These boundary conditions describe the Krogh cylinder repeating unit,
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i.e., no interaction between adjacent cylinders. Equation (16) sets the inlet capillary 

concentration. This concentration is determined by matching the model’s overall oxygen 

consumption to the experimentally determined consumption (see Appendix D).

3.1.4 Michaelis-Menten 
Kinetics

Michaelis-Menten kinetics is added to the RAAD+Mb model (RAAD model with 

myoglobin facilitation) to determine the synergistic effect that these kinetics have on 

myoglobin facilitation. Also, the combined effect of Michaelis-Menten kinetics and 

myoglobin facilitation on the elevated value of Dzjis is determined. Napper has shown 

that the oversimplification of tissue metabolism by using zero-order consumption in the 

RAAD model does account for some of the elevated difiiision needed in Schubert’s 

modeling. Researchers have included both Michaelis-Menten kinetics and myoglobin 

facilitation in the same model, but the independent effects of these phenomena were not 

analyzed. Also, the possibility of elevated difiiision of either oxygen or myoglobin was 

not considered [Covell, Jacquez, 1987],

Inclusion of Michaelis-Menten kinetics requires that k in Equation (6 ) describing 

zero-order consumption be replaced with Equation (17) which describes Michaelis- 

Menten kinetics.

V Cv MAX Q2.TIS

\ C o 2. m  +  (17)
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resulting in the normalized expression:

K =
V C  Z

cCT2J1S T f .

(18)
D CẐJTS'-'O

As stated before, the high values of K® predicted by Napper’s modeling [Napper,

Schubert, 1988] may mask the effects of myoglobin facilitated difiiision. With the

assumption of oxygen-myoglobin reaction equilibrium, the equation describing myoglobin 

reaction, Equation (2), can be solved for Y, myoglobin saturation, providing Equation

(19). The non-linear expressions for Michaelis-Menten kinetics, Equation (17), and 

myoglobin saturation, Equation (19), are very similar.

C M b,TOT Co2,TIS , s

T c  + p  1 (19)[ (-'02,TIS + *50 J

Figure 7 shows the saturation vs. pC>2 curves of myoglobin and Michaelis-Menten 

oxygen consumption reactions. The 50% saturation level for each reaction is the substrate 

level (oxygen) required to cause 50% saturation of myoglobin (P50) and 50% maximal 

oxygen consumption (Km). Napper determined through numerical simulations a maximum 

Kn, = 5.0 mmHg [Napper, Schubert, 1988], Wittenberg [1970] determined a PJ0 = 2.1 

mmHg for horse myoglobin at 37 °C. This value corresponds to ki = 2.4 x 1010 cone' 1 s*1 

and k2 = 65 s'1. From these values, it should be clear that the “active region” for
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Figure 7 : Saturation curves. Shown are the saturation curves for the myoglobin and 
Michaelis-Menten consumption reactions. The substrate level (in this case 
oxygen) corresponding to 50% saturation is Km. Shown are Km = 5 mmHg for 
Michaelis-Menten [Napper, Schubert, 1988] and Km = 2.1 mmHg (P50) for 
myoglobin [Wittenberg, 1970],
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Michaelis-Menten and myoglobin overlap. Because of this overlap, the relative effects of 

these phenomena may mask each other when included simultaneously in a tissue model.

3.2 Solution Technique and Optimization

Formulation of the mathematical problem describing the RAAD model yields a 

stiff, fourth-order, non-linear, ordinary differential equation, boundary-value problem. 

The non-linear reaction term from myoglobin transport or Michaelis-Menten kinetics 

makes an analytic solution impossible.

3.2.1 Numerical Methods for 
Stiff Boundarv-value Problems

Standard techniques for solving initial-value problems, such as Runge-Kutta, can 

often be applied to boundary-value problems by using a “shooting” technique. The 

boundary-value problem is treated as an initial-value problem by guessing one or more 

values at one of the boundaries (i.e., the “initial” boundary), and is then solved stepwise 

from initial condition to final condition. The solution at the “final” boundary is then 

compared to the actual “final” boundary condition, and the difference is used to adjust the 

trial boundary variable [Hoffman, 1992]. Unfortunately, the Runge-Kutta algorithm 

applied with shooting technique is inadequate for stiff non-linear boundary-value 

problems. Stiff problems are difficult to solve using propagation (initial-value) techniques, 

such as Runge-Kutta, because the step-size necessary for stability is much smaller than the
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step-size required for the desired solution accuracy [Press et al., 1992], Typically for stiff 

problems, the eigenvalues (coefficients that characterize a solution) of the problem differ 

by an order of magnitude or more [Hoffinan, 1992; Press et al., 1992]. Normalization is a 

must when dealing with stiff problems (see Appendix B). Most of the numerical analysis 

literature concerned with stiff equation sets is dedicated to solving initial-value problems.

Finite differencing, or relaxation, is more applicable to solving stiff non-linear 

boundary-value problems than shooting methods [Press et al., 1992]. Relaxation methods 

involve replacing the differential equations with approximating finite-difference equations 

on a mesh of points that spans the domain of interest. A set of differential equations is 

reduced to a set of coupled finite-difference, algebraic equations, which can then be solved 

using a matrix solution technique. One difficulty is the large number of equations that 

result when a high degree of spatial resolution is needed. For larger systems, mainframe 

performance and storage is required. Several public domain finite-difference packages are 

available. A package called PASVA was used to solve the RAAD model in this 

dissertation.

3.2.2 PASVA Routine

The PASVA finite-difference routine is based upon a numerical technique 

described by Lentini [Lentini, Pereyra, 1979], A FORTRAN version of the routine was 

provided by Dr. John Fletcher (Applied Mathematics, NIH). PASVA is a variable-order, 

variable-mesh, finite-difference routine, designed specifically for solving stiff, non-linear, 

ordinary differential, two-point boundary-value problems. The routine uses the Jacobian
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matrix of the differential equation set to automatically adjust step-size. Mesh points are 

allocated based upon local gradients. If there is little change from point-to-point, the 

routine will use fewer mesh points (larger step-size). If there are large gradients from 

point-to-point, the routine will use more mesh points (smaller step-size). A user-input 

tolerance determines the relative error for the solution. PASVA will attempt to meet this 

tolerance over the solution grid. The routine has built in checks to determine if the grid is 

converging to a solution that meets the user-input tolerance or diverging. PASVA will 

retract a diverging integration step and attempt to use a finer step-size. If this fails the 

user is alerted that the solution did not converge and/or tolerance was not met.

The PASVA routine allows the input of an initial guess matrix to aid solution. For 

the RAAD model simulations, the analytic solution to the basic RAAD model without 

myoglobin or Michaelis-Menten was used as an initial guess. The PASVA routine also 

has the capability of “continuation.” The continuation method can be used to “ease” into 

a difficult (non-linear) portion of a solution. This process involves scaling a portion of the 

differential equation that is believed to be difficult by a factor, EPSNU. A solution to the 

ordinary differential equation set is obtained for EPSNU = 0. The value of EPSNU is 

advanced by one step, DELEPS, which can be input by the user, but the PASVA routine 

will make adjustments as needed. The solution for a previous step can be input as the 

initial guess for the next step of EPSNU. EPSNU is advanced by the PASVA routine 

from 0 to 1. EPSNU factors were included in the myoglobin and Michaelis-Menten terms 

of the equation set describing the RAAD model.
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PASVA was successfully applied to the RAAD model excluding myoglobin, but 

including Michaelis-Menten kinetics [Napper, Schubert, 1988]. The reaction terms 

describing myoglobin facilitation and Michaelis-Menten kinetics, Equations (19) and (17), 

introduce non-linearity and stiffness to the RAAD model.

3.2.3 Optimization of Param eters

In addition to solving the RAAD model, it is desirable to fit the solution to a real 

tissue p0 2 data set. Parameters within the model are varied in an effort to match the tissue 

data as closely as possible. The parameter optimization technique used is the downhill 

simplex strategy of Nelder and Mead [Nicol, Smith, Raggatt, 1985; Press et al., 1992], 

This technique requires function evaluations only; no derivatives are needed. The simplex 

routine used in this study should not be confused with the simplex method of linear 

programming. Although both methods make use of the geometrical concept of the 

simplex, Nelder and Mead’s simplex technique is not restricted to linear equation sets. In 

fact, the simplex routine requires no a priori knowledge of the function being minimized.

Optimization techniques for single parameters can utilize bracketing strategies. In 

bracketing, the minimum of the function is known to be between two points. Optimization 

of more than one parameter cannot make use of bracketing. The simplex method involves 

the creation of a geometrical figure, a simplex. A problem involving N number of 

parameters requires N+l trial points to begin. The function to be minimized, also called 

the cost function, is evaluated at the trial points. From this, a simplex is created; in the 

case of a two-parameter optimization the simplex is a triangle. Based upon the value
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of the cost function for each trial point, the simplex is adjusted. The simplex can be 

reflected away from high error points, expanded, or contracted. Figure 8  shows the 

possible outcomes for a step of a three-parameter simplex optimization.

3.2.4 Optimization of RAAD 
Model

Optimized parameters. Parameter optimization is performed on the RAAD model 

solution to determine the value of the axial difiiision coefficient of oxygen (D z ,ra ) and the 

axial diffusion coefficient of myoglobin (Dmi>) which will attain the best match to pC>2 

measurements. The diffusion coefficients of oxygen and myoglobin are allowed to vary 

because of the possibility of elevated values for these coefficients in working cardiac 

tissue. The simplex optimization for the RAAD model with myoglobin (RAAD+Mb) 

requires that two parameters be optimized, D zjis and D\n>. The addition of Michaelis- 

Menten kinetics requires the optimization of six parameters: D z jis , Dmi,, V ,n«LO,

Km™, and KmLO, where HI and LO denote high and low perfusion pressure experimental 

measurement conditions. Although Napper has shown that Km varies depending on 

perfusion pressure whereas V,™* does not, Vma is still simplexed because of the unknown 

effects of adding myoglobin facilitation [Napper, Schubert, 1988]. The data set that is 

modeled includes data at high and low perfusion pressures. Therefore, to assist the 

minimization, instead of solving for a global Km, Kmra and KmLO are determined, fitting the 

high and low perfusion data sets individually, thereby assigning a Km to each set. Table 1 

contains parameters for the low and high perfusion pressure measurements. These values
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simplex at beginning 
of step
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(a) A > reflection

(b)
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reflection and expansion
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multiple
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Figure 8 : Geometric simplex. Simplex shown is for a three-parameter optimization. The 
initial simplex is shown, Top. The simplex at the end of a step can be (al 
reflected away from high error, (b) reflected and expanded away from high 
error, £c) contracted away from high error, or £d) contracted along all 
dimensions towards low error [Press et al., 1992],
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Table 1: Model parameter values. Parameter values for low and high perfusion pressures 
(PP) used in RAAD model simulations (see Appendix D for further description). 
Only those parameters dependent on perfusion pressure are listed. For a 
comprehensive list of parameters, see Appendix A.

Parameter LOW HIGH units

PP 79.2 1 1 1 . 1 mmHg

A-V difference 620 + 4 602 ±5 mmHg

Consumption,
k’”

5.4618 x lO*® 5.7712 x 10"8 mol O2 / s • cm3

Capillary density, 
P c a p

300 000 2 0 0  0 0 0 capillaries / cm3

Flow rate 4.03033 4.38595 ml/min

Capillary 
velocity, vCAp

0.0570 0.0931 cm /s

Capillary 
permeability, P 7.8546 x 10' 2 6.6037 x 1 O' 2 cm /s

Krogh tissue 
radius, rns 1.0600 x 1 0 * 3 1.2861 x 1 0 ’3 cm
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were used in the simulation in conjunction with the low and high perfusion pressure p0 2  

data. The listed perfusion pressures (PP) and arterio-venous (A-V) differences are 

measurements from Schubert [Schubert, Whalen, Nair, 1978],

The optimized values for D z/ns and E>Mb along with the histogram error (see 

below) are used to determine if myoglobin facilitated diffusion accounts for the apparent 

elevated oxygen difiiision needed to match the experimental p0 2 distribution. If  the 

RAAD+Mb solution provides a better fit to data than the RAAD model, myoglobin 

facilitation explains some of the requirement of elevated difiiision in the RAAD model. 

The possibility exists that phenomena elevating oxygen difiiision may also elevate 

myoglobin difiiision. If this is the case, then Dmb and D^tis would be simultaneously 

elevated, providing a better fit to the data. The RAAD solution with Michaelis-Menten 

and myoglobin (RAAD+M-M+Mb) will be compared to the RAAD+M-M model to 

determine if the combined addition of myoglobin and Michaelis-Menten provides a better 

data fit than myoglobin or Michaelis-Menten considered individually. Optimized values 

for difiiision coefficients in the normal range (Dms = 2 . 2  x 1 0 '7 and D z,ns = 1.65 x 1 0 '5 

cm2/s), as accepted by current literature, reflect that passive difiiision, not enhanced 

difiiision, occurs in the tissue [Homer, et al., 1984; Baylor, Pape, 1988; Meng, Bentley, 

Pittman, 1993; Jurgens, Peters, Gros, 1994; Papadopoulos, Jurgens, Gros, 1995], 

Elevated values reflect that enhanced difiiision may exist in working heart tissue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

Cost function. Equation (20) depicts the cost function, or error function, for the 

simplex routine. The simplex routine uses this as an error criterion, changing parameters 

in the model in an attempt to minimize the value of the cost function.

Cost  =  & j • HISERR + a>2 • HISDIF  +  © 3 CONSERR  (20)

The function is assembled as a combination of factors that describe how well the model 

fits the experimental data. HISERR and HISDIF provide a measure of how well the 

model predicts the sampled p0 2 data, whereas CONSERR constrains the simplex to match 

the isolated heart whole-organ consumption, oil, ©2, and © 3  are the relative error weights. 

HISERR represents the error associated with the independent fits of the low and high 

perfusion histogram data. The first bin (0 to 5 mmHg) was not used in the data fit because 

it was determined by Schubert that the histogram distribution is insensitive to this value 

[Schubert, Zhang, 1992], Only the 5 to 240 mmHg range is considered when fitting the 

experimental data because of the small sample size associated for tissue p0 2 above these 

values [Schubert, 1976], Determining the HISERR for the RAAD model solution 

involves solving the model with both low and high perfusion pressure parameters (Table 

1), and then calculating a sum-of-squares error (SSE) for the model prediction versus the 

p0 2  data set for that perfusion pressure. SSE represents a goodness-of-fit for the model 

prediction of the experimental data. The SSE is standardized by an estimate of the 

variance for each bin, as shown by Equations (21) and (22) for low perfusion [Snedecor, 

Cochran, 1989],
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SSElo =
bins
I[h istDATALo  -  msrmDELIJ(̂  

var ô (21)

where,

HISTryAJALO  ' ( 1 — H IST  DATA, L o)

VAR“> =    <22>

HISTdataj-o and HISTmodhuxi represent the low perfusion experimental data and model 

prediction, respectively. NData is the number of experimental pC>2 observations, 894 for 

low and 898 for high perfusion pressure. The resulting SSElo and SSEhi are then summed 

to obtain HISERR [Schubert, 1976],

To ensure that the model predicts both low and high perfusion pressure data 

equally well, the p0 2 experimental data sets for low and high perfusion are given equal 

significance with the cost function term HISDIFF, which is the square of the difference 

between the SSElo and SSEhi, (SSElo - SSEhi)2. The term CONSERR is used to match 

the RAAD model’s A-V difference (extraction) to the experimentally determined A-V 

difference (see Appendix D). This term provides consistency between the tissue oxygen 

consumption in the heart preparation and the predicted consumption of the model. The 

procedure for simplex optimization follows that of Napper and Schubert [1988]. The 

relative error weights, ©i, ©2, and ©3, were 1.0 for the RAAD model simulations. This 

weighting led to satisfactory values for A-V difference and maintained equal weighting of 

the high and low perfusion histogram errors.
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Simplex procedure. The simplex routine used to optimize the model parameters 

required good initial values to converge to the absolute minimum of the cost function. Many 

trial points consisting of various combinations of model parameters were necessary to rule out 

local minima. If the simplex was started considerably far from the minimum, convergence was 

not guaranteed. Good initial guesses were determined by trying a broad range of parameter 

values, particularly for the difiiision coefficients of myoglobin and oxygen. The process of 

finding a global minimum became a combination of trial-and-error and simplex optimization. 

This process involved providing the simplex with a trial point, letting the simplex routine 

converge, and then using the solution as a starting point for the next simplex trial. The set of 

parameters resulting in the lowest cost function was considered to be the global minimum.
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CHAPTER 4

RESULTS

The RAAD model was successfully solved numerically using the PASVA finite- 

difference routine. Double precision was used for all calculations. To ensure convergence, 

the error tolerance of the routine was decreased until there was no significant change in 

solution. A tolerance of 10' 5 was used for all simulations. This tolerance has been shown 

to produce p0 2 values within 10‘5 relative error of the analytical solution for the RAAD 

model with no myoglobin or Michaelis-Menten kinetics [Napper, 1985], Computation 

time for the simulations varied from 10 to 60 minutes on an IBM VM mainframe, 

depending primarily on the goodness of simplex trial points and the number of parameters 

optimized. The various RAAD solutions required 115 to 458 nodes to solve. A program 

listing is available from the Biomedical Engineering Department at Louisiana Tech University.

4.1 Axial Profiles

Figure 9 shows the p0 2 axial profiles and myoglobin saturation predicted by the 

RAAD+Mb model at low perfusion pressure. Only the low perfusion pressure plot is 

shown because the plots for high and low perfusion are indistinguishable when plotted on 

the same axis. The axial profiles of oxygen consumption for the RAAD model tissue

57
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Figure 9: Axial p(> 2  profiles. Top: axial profile of capillary pC>2, data point marks 
entrance p0 2  = 620.3 mmHg, and Bottom: axial profile of tissue p0 2  for the 
RAAD+Mb model at low perfusion pressure.
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region with and without Michaelis-Menten (M-M) kinetics are plotted (Figure 10). 

Saturation profiles predicted by the RAAD+Mb+M-M model for myoglobin and 

Michaelis-Menten consumption are displayed in Figure 11. Michaelis-Menten saturation 

was calculated as a fraction of Vmn, that is M-M** = consumption / V^x.

4.2 Optimized Solution and Parameters

Simplex parameter optimizations were performed on the RAAD, RAAD+Mb, 

RAAD+M-M, and RAAD+Mb+M-M models. Starting points for the simplex were 

calculated by the simplex routine which modified, by ± 30%, a user-supplied trial set of 

parameters to be optimized. Once the simplex reached a minimum, the solution was then 

introduced as a starting point and simplex was restarted to ensure that the solution was 

not merely a local minimum [Zitko, 1986],

The optimized histogram fit for the RAAD+M-M model and experimental p0 2  

data are plotted for low and high perfusion pressures in Figure 12. Histogram error, 

HISERR + HISDIF, is reported rather than the value of the cost function because the cost 

function is determined by the histogram error and another term, CONSERR, that is not 

representative of histogram fit (see Section 3.2.4). Cost function relative error weights 

(g>i, 0 2 , and 0 3 ,) of 1.0 were used in all simulations. Table 2 contains the simplex 

parameter optimization results for the RAAD+M-M model along with the modeling 

results of Napper’s Michaelis-Menten model [Napper, Schubert, 1988], Table 3 

summarizes the simplex parameter optimization results for each of the RAAD model
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Figure 10: Axial profile of oxygen consumption. Profile of oxygen consumption for the 
RAAD and RAAD+M-M models at low perfusion pressure showing the p 0 2 
dependence of consumption for the RAAD model with Michaelis-Menten. The 
zero-order consumption of the RAAD model without M-M does not vary with 
p0 2.
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Figure 11: Saturation profiles of reactions. Saturation profiles of myoglobin and 
Michaelis-Menten consumption reactions in the RAAD+M-M+Mb model at 
high and low perfusion pressure. Mb remains above its P50 until the last 5% of 
the capillary, whereas M-M consumption is below 50% saturation the last 15% 
of the capillary length. Myoglobin saturation never drops below 44% for low 
and 46% for high perfusion pressures.
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Figure 12: Model predicted histograms. Optimized p0 2  histogram fits for the RAAD + 
M-M solution, low and high perfusion pressures. The model successfully 
predicts the experimental p0 2 distributions, at both low (SSElo = 0.8468 x 
1 0 4) and high perfusion pressure (SSEm = 0.8469 x 1 0 4), with SSETOt  = 1694 
x 1 0 4. Results agree with prior simulations by Napper [Napper, Schubert, 
1988].
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Table 2: Comparison to prior modeling. RAAD + M-M simplex results are compared to 
Napper’s simulations [Napper, 1985; Napper, Schubert, 1988], Both models 
have similar histogram errors and optimized parameter values.

NAPPER M-M MODEL RAAD + M-M MODEL

Perfusion pressure LOW HIGH LOW HIGH

model A-V difference (mmHg) 617.0 602.7 618.6 602.2

experimental A-V difference 620 ±4 602 ±5 620 ±4 602 ±5

Kn (mmHg) 4.99 3.97 4.98 3.97

D z .tis *  (times normal) 8.03 8.17

Vnax x 1 0 * (mol / cm3 s) 6.75 6.72 6.72 6.72

Histogram error x 104 1.71 1.69

*  D z .tis  (normal) = 1.65 x 10' 3 cm2 / s
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Table 3: Simplex results. RAAD model simplex parameter optimization results are shown 
for each of the models simulated. The best fit to experimental data was given by 
the RAAD + M-M model, SSE = 1.694 x IO4

MODEL

RAAD RAAD 
+ Mb

RAAD 
+ M-M

RAAD 
+ M-M + Mb

Perfusion
pressure

LOW HIGH LOW HIGH LOW HIGH LOW HIGH

A-V difference 
(mmHg)

620.0 602.0 620.1 603.2 618.6 602.2 622.4 605.2

Dz,tis 
(times normal)

12.63 12.80 8.17 8.29

_  ••

(times normal)
- IxlO*7 - IxlO-6

Km (mmHg) - - - - 4.98 3.97 5.00 3.99

V^XIO* 
(mol / s • cm3)

- - - - 6.72 6.72 6.72 6.71

Histogram 
error x 1 0 4

2.3938 2.4107 1.6938 1.7569

* Dz.ns (normal) = 1.65 x 1 0 '3 cm2 / s ** E>Mb (normal) = 2 . 2  x 10*7 cm2/s
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simulations. These parameter values represent the simplex that gave rise to the global 

minimum cost function and conformed to the mathematically imposed experimental 

constraints [Napper, 1985],

Relative differences between the various models are most visible in a plot of bin- 

by-bin comparison. Deviations between models are determined by calculating the 

difference bin-by-bin between the model predicted histograms for both low and high 

perfusion pressure. Deviations of the optimized RAAD+M-M model from the RAAD 

model are shown in Figure 13. Bin values represent deviations from the basic RAAD 

model because of inclusion of Michaelis-Menten kinetics. Changes to the RAAD+M-M 

solution after the addition of myoglobin are shown in Figure 14. Figure 15 shows a plot 

of the deviations of the optimized RAAD+Mb model relative to the RAAD model without 

myoglobin or Michaelis-Menten kinetics.

Additional simulations were performed holding the diffusion coefficient of 

myoglobin fixed, yet allowing the remaining parameters, including the diffusion coefficient 

of oxygen, to optimize. In this manner, D\ib can be set to any desired value, and the 

effects on the p0 2 distribution can be observed without interference from the simplex 

routine attempting to determine an optimal Dmi,. Figures 16, 17, and 18 show how 

increasing the magnitude of I>Mb affects the p02 distribution predicted by the RAAD+Mb 

model for 1, 5, and 10 times Dmb, respectively. The histograms plotted for the fixed 

myoglobin diffusivity simulations do not represent fully optimized solutions because the 

diffusion coefficient of myoglobin was not optimized to fit the experimental p0 2 data.
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2.0 - • relative to RAAD model 
(SSE = 2.39) ■  low RAAD+M-M 

□ high RAAD+M-M1.5« >
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-1.5- • optimal solution 8.1 X D 02 
SSE = 1.69
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Figure 13: Relative histogram differences (RAAD+M-M vs. RAAD). Optimized solution 
of RAAD+M-M model as compared to the RAAD model for low and high 
perfusion pressures. Results plotted as the deviation bin-by-bin from the 
RAAD model with no M-M or Mb. Deviations represent changes to the 
RAAD model caused by the addition of M-M kinetics. The RAAD model has 
an SSE = 2.39 x 104. The RAAD + M-M model has an optimal solution of 8 .1 
times D0 2  with an SSE = 1.69 x 104, providing a better fit to the experimental 
data than the RAAD model.
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Figure 14: Relative histogram differences (RAAD+M-M+Mb vs. RAAD+M-M).
Optimized solution of RAAD+M-M+Mb model as compared to the 
RAAD+M-M model for low and high perfusion pressures. Results plotted as 
the deviation bin-by-bin from the RAAD+M-M model with no Mb. Deviations 
represent changes to the RAAD+M-M model caused by the addition of Mb. 
The RAAD+M-M+Mb model has an optimal solution of 8.3 times D0 2 with an 
SSE = 1.76 x 104. This data fit is no improvement over the RAAD+M-M 
model, SSE = 1.69 x 104. Simplex optimized D\n> is near zero.
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Figure 15: Relative histogram differences (RAAD+Mb vs. RAAD). Optimized solution
of RAAD+Mb model as compared to the RAAD model for low and high 
perfusion pressures. Results plotted as the deviation bin-by-bin from the 
RAAD model with no Mb. Deviations represent changes to the RAAD 
model caused by the addition of Mb. The RAAD+Mb model has an optimal 
solution of 12.8 times D0 2  with an SSE = 2.41 x 104. This data fit shows no 
improvement over the RAAD model, SSE = 2.39 x 104. Simplex optimized 
DMb is 1 x 1 0 '7 times normal (« 0 ).
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Figure 16: Relative histogram diffetences, 1 X E>Mb (RAAD+Mb vs. RAAD). Deviations 
of the RAAD+Mb model predicted histogram from that of the RAAD model. 
Difliisivity of myoglobin fixed at IX normal. SSE shows no improvement 
over the fully optimized solution in Figure 15, SSE = 2.41 x 104. Myoglobin 
is shown to act primarily in  the low p(> 2  range.
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Figure 17: Relative histogram differences, 5 X Dm, (RAAD+Mb vs. RAAD). Deviations 
of the RAAD+Mb model predicted histogram from that of the RAAD model. 
Diffusivity of myoglobin fixed at 5X normal. SSE (2.66 x 104) is improved 
when compared to the IX D\a (2.90 x 104). SSE shows no improvement 
over the fiilly optimized solution in Figure 15, SSE = 2.41 x 104. Myoglobin 
is shown to have little effect on the model at 5X normal D ^ . Further 
increases of Dm, do not lead to improved SSE versus the fully optimized 
RAAD+Mb model (optimal Dk®, * 0 ).
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Figure 18: Relative histogram differences, 10 X IXa (RAAD+Mb vs. RAAD).
Deviations of the RAAD+Mb model predicted histogram from that of the 
RAAD model. Difiusivity of myoglobin fixed at 10X normal. The higher 
SSE (2.79 x 104) states that the 10X normal solution does not fit the 
experimental data as well as the 5X D ^  solution (2.66 x 104). Further 
increases o f D ^  do not lead to improved SSE versus the fully optimized 
RAAD+Mb model, 2.41 x 104.
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Similar fixed Dmi plots for the RAAD+M-M+Mb model are shown in Figures 19, 20, and 

21 for Dm, of 1, 5, and 30 times normal. Results for the fixed myoglobin diffusivity trials 

are summarized in Table 4. Figure 22 shows the relative contribution of myoglobin to 

total oxygen flux for the models with myoglobin.
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Figure 19: Relative histogram differences, 1 X Dmb (RAAD+M-M+Mb vs. RAAD+M- 
M). Deviations of the RAAD+M-M+Mb model predicted histogram from 
that of the RAAD+M-M model. Difiusivity of myoglobin fixed at IX normal. 
SSE (5.66 x 104) shows no improvement over the fully optimized solution in 
Figure 14, (1.76 x 104). As expected myoglobin acts primarily in the low p02 
range.
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Figure 2 0 : Relative histogram differences, 5 X  E>Mb (RAAD+M-M+Mb vs. RAAD+M- 
M). Deviations of the RAAD+M-M+Mb model predicted histogram from 
that o f the RAAD+M-M model. Diffiisivity of myoglobin fixed at 5 X  normal. 
S S E  is reduced (2 .7 5  x 104)  relative to the I X  DMb RAAD+M-M-Mb model 
(5 .6 6  x 104), but shows no improvement over the fully optimized RAAD+M- 
M+Mb solution in Figure 1 4 , ( 1 .7 6  x 104). Further increases in D \ib  do not 
lead to S S E  below that found by the simplex optimization of the RAAD+M- 
M+Mb solution, D ^ *  0.
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Figure 21: Relative histogram differences, 30 X Dm, (RAAD+M-M+Mb vs. RAAD+M- 
M). Deviations of the RAAD+M-M+Mb model predicted histogram from 
that o f the RAAD+M-M model. Difrusivity o f myoglobin fixed at 3 OX 
normal. SSE is elevated (2.82 x 104) relative to the IX and 5X DMb trials. 
Elevating DMb further leads to increased SSE.
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Table 4: Simplex results for fixed values of the myoglobin diffusion coefficient. In these 
simulations, the diffusion coefficient of myoglobin (Dms) is fixed while the 
diffusion coefficient of oxygen (D zjis) is optimized by simplex. The error 
determined by simplex for the fully optimized models is not improved by fixing 
Dmb. The solutions of both the RAAD+Mb and RAAD+M-M+Mb models have 
minimal SSE when Dms is near zero.

Fixed Mb Simulations

( histogram error x 10"4)

model RAAD 
+ lx  Mb**

RAAD 
+ 5x Mb

RAAD 
+ lOxMb

RAAD 
+ 20x Mb

SSE x 104 2.90 2.66 2.71 3.29

optimal 
Dzjis 

x normal
12.75 12.71 11.52 10.47

model RAAD+M-M 
+lx Mb**

RAAD+M-M
+5xMb

RAAD+M-M 
+20x Mb

RAAD+M-M 
+30x Mb

SSE x 104 5.66 2.75 2.22 2.82

optimal 
Dzjis  

x normal
8.53 6.39 7.01 7.03

* D zjis (normal) = 1.65 x 10*5 cm2 / s ** lx Mb means DMb = 2.2 x IO'7 cm2 / s
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optimized models show no Mb facilitation of flux
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Non-optimized RAAD+Mb 
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Figure 22: Plot of relative oxygen flux. For this plot the oxygen-myoglobin reaction is 
assumed at equilibrium. Total oxygen flux includes oxygen diffusion and 
myoglobin facilitation of oxygen diffusion. Free oxygen flux includes only 
oxygen diffusion and no myoglobin facilitation. A value o f 1.0 for the ratio of 
total to free oxygen flux means that myoglobin contributes nothing to overall 
transport o f oxygen [see Baylor and Pape, 1988], Plots for the non-optimized 
solution show a maximum myoglobin facilitation of 98% and 41% at the lethal 
end of the tissue for the RAAD+Mb and RAAD+M-M+Mb models, 
respectively. Yet, plots of the optimized solutions show that myoglobin does 
not facilitate oxygen diffusion for either model (plots overlap).
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CHAPTER 5

DISCUSSION

The RAAD model solutions were stiff at the inlet region of the capillary. This 

property is exhibited by the fact that about half (48% for RAAD, 40% for RAAD+Mb) of the 

total nodes in the solution occur in the first 10% of the capillary length. This result is not 

entirely surprising since others have observed ringing of the capillary solution [Fletcher, 

Schubert, 1987], Noticeable features of the capillary and tissue profiles include the following:

1. little concentration gradient between the capillary and the tissue after z = 0.015 or 

7.5 pm (Figure 9),

2. steep initial decline o f pC>2 in the capillary (Figure 9, top),

3. capillary exit pC>2 near zero (Figure 9, top),

4. pC>2 dependence of O2 consumption (Figure 10), and

5. high Mb saturation in the tissue (Figure 11).

The first three characteristics reflect that the modeled data were taken from an organ perfused 

with a hemoglobin-free linear perfusate, not blood, which was equilibrated with 95% oxygen 

and 5% carbon dioxide. The capillary p02 profile would look much different had the model 

included hemoglobin; in particular, the steep capillary gradients would be reduced. At the 

capillary inlet, the steep gradients for oxygen transport (>200 mmHg) cause a large amount of

78
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oxygen to be drawn out of the capillary. The pCh gradient at a capillary position of 0.015, 

which corresponds to 7.5 pm past the inlet, is reduced to less than 1 mmHg. These effects are 

also attributed to the elevated axial transport in the tissue region. The addition of Michaelis- 

Menten kinetics on the RAAD model leads to a distinct pC>2 dependence for oxygen 

consumption rate (Figure 10). This rate should not be confused with whole-organ 

consumption. Tissue myoglobin saturation profiles (Figure 11) show that myoglobin exists 

near complete saturation with oxygen for about 95% of the capillary length. Myoglobin 

remains saturated because much of the tissue is at a p02 above the Pjo of Mb, which is the 

oxygen partial pressure required for 50% saturation of myoglobin (2.07 mmHg) [Wittenberg, 

1970; Wittenberg, Wittenberg, 1989]. Saturation never drops below 44% for low perfusion 

pressure and 46% for high. Saturation profiles for Michaelis-Menten kinetics show that 

oxygen consumption is near maximum for about 80% of the tissue region (Figure 11). Only in 

the last 15% of the tissue region does the p02 fall below the Michaelis-Menten kinetic 

constant, Kn,. The relative values of P50 and Km (4 to 5, vs. 2 mmHg) suggest that myoglobin 

will affect the p02 distribution over a smaller range. Radial profiles predicted by the RAAD 

model are not plotted because the tissue is considered space-averaged radially; once the 

axial p02 distribution is determined, the radial p02 values are given. A plot of p02 versus 

r, for any given axial position z, is a straight line. Further discussion of radial PO2  profiles 

is given by Fletcher and Schubert [1987] and Zhang [1992],

Before evaluating the addition of myoglobin, the RAAD model solution with 

Michaelis-Menten was verified with a comparison to Napper’s results, Table 2. The 

RAAD+M-M model solution gives nearly identical results; both predict a Dz,ns of about 8
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times normal with histogram errors near 1.70 x 104. The RAAIX-M-M model shows a slightly 

lower histogram error (1.69 x 104), but predicts a higher Dz.ro of 8.17 versus Napper’s 8.03 

times normal. Both models remain within the whole-organ A-V difference constraints. 

Optimized values for Km are similar (Table 2). The feet that the RAAD model with Michaelis- 

Menten kinetics predicts the same results as Napper is offered as proof of mathematical 

procedures. This allows us to build upon Napper’s previous modeling efforts.

Prior to the addition o f myoglobin diffusion or Michaelis-Menten kinetics, the 

RAAD model (Table 3, column 1) required a 12.6 times normal Dz.ro to predict 

histograms similar to the p02 data measurements of Schubert. This solution gave a 

histogram error of 2.39 x 104. Therefore, to match the experimental histograms, the 

model parameter value used for Dzjis must be increased to about 12 times the literature 

accepted value of 1.65 x 10‘5 cm2/s (2/3-Dwater) [Homer et al., 1984]. Adding myoglobin 

to the RAAD model (Table 3, column 2) did not reduce the histogram error and therefore 

did not improve the model fit to data. The resulting error, 2.41 x 104, is slightly higher 

than the histogram error of the RAAD model, 2.39 x 104. The simplex parameter search 

determined an optimal Dmb value of 1 x 10*7 times normal, effectively removing the 

influence of myoglobin from the simulation.

The addition of Michaelis-Menten to the RAAD model provided the greatest 

reduction of histogram error, 1.69 x 104, corresponding to a Dz.ro of 8.17 times normal 

(Table 3, column 3). The RAAD+M-M model predicted histograms similar to the 

experimental data for both low and high perfusion pressures (Figure 12). The addition of 

myoglobin to the RAAD+M-M model (Table 3, column 4) did not lead to further
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reduction of histogram error, 1.69 x 104. The simplex optimal Dmb for the RAAD+M- 

M+Mb model was also near zero, 1 x IO"6 times normal. Simplex optimization of the 

RAAD models with myoglobin led to near zero values for diffusion coefficient of myoglobin as 

the routine searched to minimize the cost function predicted by the models. The assumption of 

non-equilibrium of oxygen-myoglobin reaction imparts Dm, in the denominator of the equation 

describing MbQj diffusion in tissue. Because of this assumption, the simplex is unable to zero 

out the diffusion coefficient of myoglobin. It should be noted that solutions for the 

RAAD+Km model with Dm, in the range of 1 x 10'3 to 1 x 10'7 times normal produced errors 

similar to the minimum error (within 0.06 x 104). Based upon this result, it appears that the 

simplex solutions predict a Dm, close to, but not equal to, zero.

The effects o f adding myoglobin and Michaelis-Menten kinetics to the RAAD 

model are not discernible through a comparison of axial p02 plots predicted by the various 

models. Yet, effects can be detected between models when comparing the relative 

changes in the predicted pC>2 histograms. The addition of Michaelis-Menten kinetics to 

the RAAD model shows distinct effects across the entire range of p02 from 5 to 240 

mmHg (Figure 13). A similar plot for the addition of myoglobin to the RAAD+M-M 

model (Figure 14) shows only minor variations in the 5 to 20 mmHg p02 range. Similarly, 

the addition of myoglobin to the RAAD model does little to change the predicted 

histograms (Figure 15). Minor variations exist in the 5 to 15 mmHg range. The lack of 

variation between the models with and without myoglobin is not surprising considering 

that the optimal D\ib was near zero. The greatest variation between models appeared with
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the addition of Michaelis-Menten kinetics to the RAAD model (Figure 13) and 

corresponds to an improved data fit, 1.69 x 104 vs. 2.39 x 104 (Table 3, column 3).

Although the global minimum was found to exist with Dm, « 0 for both the 

RAAD+Mb and RAAD+M-M+Mb models, several local minima resulted in non-zero values 

for DMbi however these solutions provided an inferior fit, in terms of SSE, to the experimental 

pC>2 distributions. These solutions are not reported here. However, hints of local minima can 

be seen in the fixed Dm, results (Table 4).

Results of the fixed Dm, trials show how the addition of myoglobin facilitation 

affects the histogram distributions of the RAAD and RAAD+M-M model. By fixing Dm» 

the relative effects of adding myoglobin to the RAAD models can be assessed without the 

simplex routine eliminating the contribution of myoglobin to oxygen transport by setting 

D m , ~ 0. From Table 4 (top), increasing D m , in the RAAD+Mb model leads to reduced 

values for the diffusion coefficient of oxygen, but this improvement is coupled with an 

increasing histogram error. Recall that the simplex optimized RAAD+Mb solution 

predicted a D0 2 of 12.63 times normal and an SSE of 2.39 x 104. A value of 20 times Dm, 

leads to a 17% reduction in D0 2  (12.63 to 10.47 times normal). Unfortunately, this 

improvement also corresponds to an increase in SSE, 3.29 x 104. Deviations from the 

RAAD model are shown for the RAAD+Mb model with fixed D m , (Figures 16-18). A 1 

times normal D m , leads to the greatest difference in predicted histograms. Table 4 

(bottom) shows the effects o f increasing D m , on the RAAD+M-M+Mb model. Increasing 

D m , leads to reduced D0 2  but at the cost of increased histogram error. Recall the optimal 

RAAD+M-M+Mb solution of D0 2  8.17 times normal and an SSE of 1.69 x 104 The
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greatest reduction of D0 2  in the RAAD+M-M+Mb model is 14% (8.17 to 7.01 times 

normal) with an increase in SSE to 2.22 x IO4 The RAAD+M-M and RAAD+M-M+Mb 

with fixed Dm, are compared in Figures 19-20 for D m , of 1, 5, and 30 times normal. The 

greatest deviation occurs in the 5 to 20 mmHg range. Increasing E>Mb beyond 30 times 

normal in the RAAD+M-M+Mb model did not lead to further reduction o f D0 2 , but did 

lead to ever-increasing SSE. None of the fixed Dm, trials for the RAAD models resulted 

in an SSE less than that determined by the simplex optimization routine. The local 

minimum for the RAAD+M-M+Mb model with Dm fixed at 20 times normal (Table 4, 

column 3) was confirmed to be merely a local minimum by restarting the simplex and 

allowing optimization of Dm- The fully optimized solution then converges to the global 

minimum (Table 3, column 4).

The effect of myoglobin on the total oxygen flux for the RAAD+Mb and 

RAAD+M-M+Mb models is shown for low p02 in Figure 22. Baylor and Pape [1988] 

use similar plots to evaluate myoglobin facilitation. They determined that about 2/3 (an 

additional 150%) of the total oxygen flux at the lethal end was due to myoglobin. For the 

non-optimized solutions of the RAAD+Mb and RAAD+M-M+Mb models, myoglobin 

facilitation is shown to provide about 1/3 (an additional 41%) and about 1/2 (an additional 

98%) of the total oxygen flux at the lethal end, respectively. However, similar plots for 

the optimized solutions of the RAAD+Mb and RAAD+M-M+Mb models show no 

effective myoglobin facilitation. This result means that myoglobin does not increase the 

flux of oxygen in the tissue and does not facilitate oxygen diffusion.
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The results o f the simplex optimization suggest that the myoglobin does not 

significantly facilitate oxygen diffusion to tissue. Parameter optimizations determine a 

minimal D\jb (~ 0) for the optimized solutions of the RAAD+Mb and RAAD+M-M+Mb 

solutions (Table 3). Fixed D\o> trials show that increasing E>Mb does not lead to an 

improved data fit for the RAAD+Mb or RAAD+Mb+M-M models (Table 4). Basically, 

the RAAD and RAAD+M-M models are better at fitting the p02 distribution without the 

inclusion of myoglobin (Table 3). Without question, the incorporation of Michaelis- 

Menten kinetics in the RAAD model improves the experimental data fit, leading to SSE 

reduction from 2.39 x 104 to 1.69 x 104 (Table 3). The addition of Michaelis-Menten 

kinetics is significant in reducing the need for an elevated tissue oxygen difiiision coefficient in 

the RAAD model, from 12.6 to 8.3 times normal (Table 3). The combined effects of 

myoglobin and Michaelis-Menten consumption do not provide a better fit to data (Table 3, 

column 4). Optimized values for K ^ o  and are not shown to change with the 

addition of myoglobin (Table 3, row 4, columns 3 and 4). This result suggests that 

exclusion of myoglobin from the RAAD+M-M model does not account for the somewhat 

high values of Km determined by Napper [Napper, Schubert, 1988].

Based upon these simulations, myoglobin facilitated transport of oxygen does not 

account for the elevated difiiision found in modeling pC>2 data [Schubert, Fletcher, 1993], 

Myoglobin appears to be rendered ineffective because of its relatively low value of Pso, 

2.07 mmHg. At this value, myoglobin remains near complete saturation for most of the 

tissue region (Figure 11). The 50% saturation point for myoglobin corresponds to 95% of 

the capillary length (475 pm). In other words, only 5% of the tissue region exists at a pC>2
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level low enough to cause significant unloading of oxygen from oxymyoglobin. Because 

myoglobin remains so highly saturated (~ 50% at capillary exit) and does not appear to 

diffuse significantly, myoglobin’s function may be limited to that of an oxygen reserve when 

the heart becomes very hypoxic. Others have also concluded that myoglobin difiiision is too 

low to significantly facilitate oxygen difiiision in muscle [Jaquez,1984; Gonzalez- 

Femandez, Atta, 1982, 1986],

Because of the significant contribution of Michaelis-Menten consumption for 

reducing the error between model predictions and experimental data, Michaelis-Menten 

kinetics of oxygen consumption should be maintained in further numerical studies regarding the 

working heart. Further, as Napper and Schubert [1988] showed, Michaelis-Menten kinetics 

provides a basis for flow-dependent oxygen consumption, Gregg’s phenomena, an interesting 

result consistent with experimental studies [McGoron, Nair, Schubert, 1996], Based upon 

simulations performed in this study, it is recommended that myoglobin facilitation of oxygen 

difiiision be neglected from subsequent steady-state modeling studies of the isolated heart 

perfused with Krebs-Henseleit solution. Simulations performed using the RAAD model to 

assess myoglobin facilitation lead to the conclusion that myoglobin does not act as a significant 

facilitator of oxygen transport in cardiac tissue. These simulations do not dispute myoglobin’s 

possible role as a short-term store for oxygen protecting the tissue from hypoxia during 

transient drops in p02 [Covell, Jaquez, 1987], The transient role o f myoglobin cannot be 

assessed with the steady-state RAAD tissue model.
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Since myoglobin is ineffective for explaining the disparity between experimental pC>2 

distributions and modeling results, other possibilities must be explored to explain why difiiision 

appears to be elevated in the working heart. Several researchers have suggested that working 

tissue appears stirred [Stainsby, 1973; Kreuzer, 1982; Jaquez, 1984; Schubert, Fletcher, 1993]. 

Schubert and Fletcher have proposed that working cardiac tissue may be stirred by the 

mechanisms responsible for contraction [Schubert, Fletcher, 1993], This theory depicts the 

contractile elements in muscle as hinged stirring devices. Myosin and actin filaments involved 

in muscle contraction go through a process called cross-bridge cycling. The crystal structure of 

the myosin head has been determined in an effort to understand this mechanism further 

[Rayment, et al., 1993], The proposed tissue stirring occurs when the myosin molecule moves 

along the actin filament (Figure 23). The myosin molecule has a hinged-head structure that 

“ratchets” along the actin filament during muscle contraction. It is this movement of the 

myosin head that may provide a convective source of transport in working tissue. Even during 

isovolumic contraction, the head of the myosin molecule “ratchets” in place without moving 

along the actin filament. Tissue stirring could explain the need for an elevated oxygen difiiision 

coefficient in the RAAD tissue model.

Baylor and Pape [1988] measured the diffusion coefficient of myoglobin in frog 

muscle during contraction. Also, Papadopoulos et al. [1995] measured the diffusion 

coefficient of myoglobin in rat skeletal muscle and tested the influence of muscle 

contraction. Baylor and Pape found no increased myoglobin difiiision through muscle 

contraction. Papadopoulos et al. found an increased diffusion coefficient o f myoglobin in 

contracting muscle vs. resting muscle. The E>Mb increased from 1.25 x 10*7 to 1.33 x 10'7
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Figure 23: Myosin and actin interaction. Top: Highly schematic view of cross bridge 
cycling. This event may cause stirring of tissue as the actin and myosin bond, 
ratchet, and release [Katz, 1992], Center: Location of two distinct hinge 
portions on the myosin molecular head. The crystalline structure o f the myosin 
head has been determined. Also, the existence of flexible “hinge” regions on 
the myosin molecule has been proven [Rayment, et al., 1993]. Bottom: A 
better representation of myosin and actin interaction. CA-B1 Myosin binds 
ATP and is released from the actin filament. (C-D) Myosin diffuses to the next 
active binding site on the actin filament. (E-F) Myosin binds to actin and 
hinges as ADP is released [Science. 1993],
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cm2/s, but the difference was not statistically significant. Papadopoulos et al. suggest that 

the myoglobin molecule is too large to be effectively stirred by the contractile proteins 

because of sterical hindrance. The diameter of myoglobin is 3.5 nm and is the same order 

of magnitude in size as the spacing between filaments [Papadopoulos, Jurgens, Gros, 

1995]. Papadopoulos et al. state that the highly structured cytoskeletal system and 

contractile apparatus of the muscle cell cause inhibited diffusion of large molecules such as 

myoglobin. Because molecular oxygen is much smaller than myoglobin, this hindrance 

would not apply to the oxygen. No measurement has been made of species similar to 

oxygen diffusing through contracting tissue.

Popel et al. found a ten-fold discrepancy in oxygen flux between experimental 

spectrophotometric measurements and a mathematical model describing oxygen transport 

[1989], Trying to explain this discrepancy several measurements of oxygen diffusion 

coefficient in living tissue have been made [Meng, Bentley, Pittman, 1992; Bentley, Meng, 

Pittman, 1993], Bentley et al. [1993] found that in hamster striated muscle at 37 °C 

D02jis was 2.4 times higher than previously reported values. Bentley’s finding of elevated 

diffusion coefficient at higher temperature was not sufficient to fully explain the 

discrepancy between Popel’s model and experimental data [Popel, Pittman, Ellsworth, 

1989],

Wholpers et al. [1990] required the use of a short capillary length in their modeling 

of tracer washout curves in beating dog hearts to explain faster than normal transport. 

Although they acknowledged that the anatomical capillary length in a dog heart was 500 

pm or greater, a capillary length of 200 pm was required in their simulation to match the
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experimental data. Schubert and Fletcher [1993] discuss this finding, noting that 

parameters of the RAAD model suggest shortened capillaries as a possible alternative 

interpretation. However, capillaries are much longer than 200 pm in dog heart, and 

lengths this short are not consistent with dog physiology [Bassingthwaighte, Yipintsoi, 

Harvey, 1974]. Zhang [1992] shows through mathematical modeling that the RAAD 

model with capillary length reduced from S00 to 150-200 pm appears to fit experimental 

PO2 data using a nominal value for oxygen diflusion coefficient. However, closer 

inspection reveals that there are observable differences in the model predicted histograms 

at higher pC>2 when using reduced capillary length. Schubert and Fletcher [1993] reject 

short capillary length as an explanation for faster than normal transport and suggest that 

elevated diflusion is more consistent with the known physiological mechanisms of muscle 

contraction. From these studies of oxygen transport in tissue, it becomes apparent that 

transport and delivery of oxygen in living, working tissue may be enhanced by mechanisms 

not yet known.
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CHAPTER 6

CONCLUSIONS

The addition of myoglobin to the RAAD and RAAD+M-M model does not reduce 

the need for an elevated tissue oxygen diflusion coefficient required to obtain a reasonable 

match between modeled and experimental p02 distributions. Simplex parameter 

optimizations suggest that myoglobin does not diffuse significantly in tissue and does not 

act to facilitate oxygen diffusion in the steady-state. Fixed myoglobin difiusivity trials also 

suggest that inclusion of myoglobin in the RAAD model does nothing to improve the 

model’s ability to predict experimental data or lower the apparent diflusion coefficient of 

oxygen in tissue, D zjis . The addition of Michaelis-Menten kinetics to the RAAD model 

led to an improved fit of the pC>2 data as it had in previous work. No further improvement 

was found by the combined addition of Michaelis-Menten and myoglobin to the model. 

Based upon these findings, it is suggested that myoglobin be excluded from further steady- 

state modeling efforts involving the saline perfused isolated heart preparation. Myoglobin 

facilitated diflusion of oxygen does not account for the disparity between the RAAD or 

the RAAD+M-M model and isolated heart pC>2 data which causes the need for an elevated 

tissue oxygen diflusion coefficient in the model. The simulations performed do not 

identify a cause for the elevated diffusion, but tissue stirring by contractile elements seems
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possible. A measurement determining the transport o f a diffusible species similar to 

oxygen in working heart tissue is needed to rectify this modeling perplexity.
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CHAPTER 7

RECOMMENDATIONS

To provide clear evidence of elevated diflusion in working muscle, experiments 

must be performed that will reveal the mechanisms responsible for the appearance o f 

elevated diflusion. Measurement of a diffusible species similar in transport properties to 

oxygen should be made in working heart muscle. The rat papillary muscle would be a 

viable preparation for assessing elevated diflusion. The muscle must be small enough in 

cross-section to ensure oxygenation. One method for ensuring oxygenation is isolating 

the muscle preparation in a chamber where the concentration of oxygen in the gas 

surrounding the muscle is controlled and adjusted for experimentation. Because the 

muscle consumes more oxygen during contraction than at rest, the p02 deep in tissue may 

approach zero as the muscle contracts. A hypoxic core could alter the surrounding tissue 

and the rate of pH sensitive enzymes involved in metabolism. A full discussion of this 

phenomenon is contained in McGoron [1991], Efforts should be made to avoid 

measurements in or near the hypoxic region. Modeling shows that even the use of 95% 

0 2 and 5% C02 will not prevent the formation of a hypoxic core in working papillary 

muscle of 1 mm diameter [Schubert, personal communication]. However, the outer 100 

pm remain a viable region to study oxygen diflusion in working heart muscle. Because of
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its flammability, working with high oxygen concentration may present hazardous 

conditions and will require heightened consideration for safety.

The current RAAD tissue model should be extended to include hemoglobin in the 

capillary regions. The RAAD model with hemoglobin could no longer be compared to the 

isolated heart experimental pC>2 data because the heart was perfused with a cell-free, high 

PO2, perfusate that did not contain hemoglobin. However, the theoretical evaluation of 

this addition would answer questions regarding the effects of hemoglobin on the model- 

predicted p02 distribution. Results could lead to better understanding of the oxygen 

transport situation in the isolated heart preparation and the modeling assumptions 

associated with this preparation. The strong axial diffusion found in modeling the saline 

perfused heart may not exist in a heart perfused with a hemoglobin containing perfusate 

such as blood. Enhanced diffusion would still be present, but tissue gradients may be 

reduced because of hemoglobin in the capillary. In the blood perfused heart, dissolved 

oxygen accounts for only a small amount (less then 5%) of the oxygen in blood [Guyton, 

Hall, 1994], The majority of the oxygen in blood is bound to hemoglobin. However, in 

saline perfusate there is no hemoglobin, and all of the oxygen exists in dissolved form. 

Therefore, to deliver the same amount o f oxygen to tissue, the capillary inlet concentration 

of oxygen must be much higher for saline perfusion than for blood perfusion. The 

capillary pC>2 profile (Figure 9) clearly shows that the inlet pC>2, 620.3 mmHg, is far above 

the physiological value of 100 mmHg. Also, the capillary exit p02 is near zero which is 

much lower than 40 mmHg found in blood perfused heart. The inclusion of hemoglobin 

should reduce the steep axial gradients at the capillary inlet. The effect on the tissue
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region is unknown, but the need and/or importance of an elevated axial diflusion 

coefficient of oxygen may be reduced with hemoglobin in the capillary.

Multi-component transport as it relates to the possibility of interacting fluxes 

should be investigated [Kreuzer, 1982; Taylor, Krishna, 1993], The possibility exists that 

transport in cardiac muscle cannot be described simply as binary diflusion. In the heart, 

rapid transport of ions is common during the cardiac cycle. Calcium ion fluxes within the 

muscle fiber may interact with the flux of oxygen providing enhanced transport [Kreuzer, 

1982]. During excitation and contraction of the muscle fiber, calcium is released from the 

sarcoplasmic reticulum in large amounts and rapidly diffuses to the contractile elements within 

the muscle [Katz, 1992], During relaxation, calcium is actively transported from the 

intracellular fluid (cytosol) to both the extracellular fluid and the sarcoplasmic reticulum. This 

extensive movement of calcium ions may pull oxygen molecules more quickly through the 

working heart tissue.

Higher-order models of oxygen consumption should be considered [personal 

communication, Dr. F. Jones]. Buerk and Saidel [1978] used zero-order, first-order, and 

Michaelis-Menten kinetics of oxygen consumption to model metabolism in brain and liver 

slices. They found that the Michaelis-Menten kinetic model provided the best data fit. Napper 

[1985] also found an improved data fit when he added Michaelis-Menten to the RAAD model 

which previously used zero-order kinetics of oxygen consumption. Adding a multi-step kinetic 

model, multiple Km, for oxygen transport to the RAAD model may provide an even better fit to 

the experimental pC>2 data, thereby explaining some of the elevated axial diflusion coefficient.
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It is recommended that further numerical modeling studies involving the PASVA 

routine make use of a PC compiler and not the IBM VM mainframe. Mainframe trials 

requiring over 30 minutes of processing time are limited to a schedule of 11 p.m. to 7 a.m. 

One problem is that the current PASVA and simplex code are programmed in IBM VS 

FORTRAN. This version of FORTRAN is a hybrid of FORTRAN 77 and FORTRAN 90. 

The FORTRAN VS code is not directly portable to FORTRAN 77 compilers. Based 

upon numerous inquiries to the comp. lang. fortran newsgroup, the Watcom compiler is 

recommended [Powersoft], This compiler is not to be confused with the ‘learning tool” 

FORTRAN compiler Watfor. Several programmers surveyed suggested that Microsoft 

Powerstation does not readily compile FORTRAN VS code. They recommended 

Watcom as the best compiler for using FORTRAN VS mainframe code on an IBM PC 

platform.
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PARAMETER LIST

ATP = adenosine triphosphate

A-V = Arterio-venous

AVdiff = A-V difference, mmHg (see Appendix D)

C.Mb = concentration o f myoglobin

CMboins = concentration o f oxymyoglobin in tissue

C0 = normalizing concentration, varies, mol / cm3

C0 2 , c a p  = capillary oxygen concentration

C0 2 , c a p  = normalized capillary oxygen concentration

C o 2 ,c a p /  C0
CMbjoT = total tissue concentration of myoglobin,

1.0 x 10-6 mol / cm3 [Fletcher, 1980; Wittenberg, Wittenberg, 1990] 

Coins = tissue oxygen concentration

C0 2 , ns = normalized tissue oxygen concentration

Coins / C0
CONSERR = difference between experimental and model A-V difference 

(see Appendix D)

DMb = Mb tissue diffusion coefficient

DmW2
Dmkm = MbC>2 tissue diffusion coefficient,

2.2 x 10'7 cm2/  s [Papadopoulos, Jurgens, Gros, 1995]

DMbOins =  DMb02

Dz, ns = axial diffusion coefficient of oxygen in tissue,

2/3 x Dwater (165 x 10'5 cm2 / s) [Homer et al., 1984]

D o in s  =  D z,tis

Dwater = diffusion coefficient of oxygen in water
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Dr = radial diflusion coefficient o f oxygen in tissue

1/2 x Dz,ro [Schubert, Fletcher, 19"93]

DELEPS = parameter used in PASVA to advance EPSNU

d = differential operator

EPSNU = parameter used in PASVA for continuation

Flowrate = flow rate of perfusate (see Table 1)

HI = denotes high perfusion pressure

HISERR = histogram error, sum of SSElo and SSEffl

HISDIFF = histogram error, (SSElo - SSEm)2

HISTdatajx) = experimental data histogram for low perfusion pressure 

HISTmodelxo = model histogram for low perfusion pressure 

k = 0 2  metabolic rate in tissue, mol I s can3

perfusion dependent (see Appendix D) 
k model = O2  metabolic rate in tissue calculated from model, mol / s cm3 

(see Appendix D) 

ki = oxygen-myoglobin on rate,

2.4 x IO10 cm3 / mol-s [Wittenberg 1970; Fletcher, 1980] 

k2 = oxygen-myoglobin off rate,

65 s*1 [Wittenberg, 1970; Fletcher, 1 980]

Km = Michaelis-Menten kinetic constant, mmHg

K = RAAD model parameter defined in Equation (6) for first-order O2

consumption or Equation (18) for M M  consumption 

L = capillary length, also Krogh cylinder length

0.05 cm [Napper, Schubert, 1988]

LO = denotes low perfusion pressure

Mb = myoglobin

Mb02 = oxymyoglobin

M-M = Michaelis-Menten

N = number of parameters to be optimized

NDataLo = number of data points for low perfusion pressure
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N q 2,c a p  = capillary oxygen flux

N02,tis = tissue oxygen flux

N o ? , = oxygen flux leaving capillary at r = tCap

O2 = oxygen

P = capillary mass transport coefficient (see Appendix C and D)

chosen to match radial Krogh extraction, cm / s 

p02 = partial pressure o f oxygen, mmHg, similar to concentration

(e.g., C0 2  = solubility x PO2)
PP = perfusion pressure

P50 = PO2 required for 50% saturation of myoglobin
PASVA = finite-difference routine used to solve RAAD model

RAAD = Radially-Averaged, Axially-Distributed 

r = radial position, cm

Tc a p  = capillary radius,

2.5 x 10^ cm [Napper, Schubert, 1988] 

r-ns = Krogh tissue cylinder radius (see Appendix D)

perfusion dependent, cm 

R c =  Tcap

SSE = sum-of-squares error, measure of model fit to data set

SSElo = sum-of-squares error for tow perfusion pressure

SSEhi = sum-of-squares error for high perfusion pressure

Van -  maximal tissue oxygen consumption, mol / s cm3

VARlo = estimate o f variance for low perfusion data, Equation (22)

Y = fraction of Mb saturated with oxygen, Equation (19) for oxygen-
myoglobin reaction at equilibrium

Z, z = axial position, cm

Z = normalized axial position

Z / Z 0

Z0 = normalizing length, capillary length

0.5 cm
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a  = RAAD model parameter defined in Equation (5)

P = RAAD model parameter defined in Equation (11)

(icAP = capillary density, capillaries / cm3

vCa p  = perfusate velocity in capillary (see Appendix D)

perfusion dependent, cm / s 

Qi = RAAD model parameter defined in Equation (7)

Q2 = RAAD model parameter defined in Equation (9)

c>i, ®2, © 3 = weights for cost function,

1.0

7t = 3.14159265259

p = oxygen-myoglobin reaction rate, mol / s-cm3, Equation (2)

Note: Solubility of oxygen in tissue used in simulations was 1.31147 x 10'9 mol / 
mmHg cm3 corrected for temperature at 32.5 °C [Napper, Schubert, 1988],

Schuder et al. using subunit-exchange chromatography determined a myoglobin 
concentration in cat ventricle tissue of 177 pmol/kg (0.2 mol/cm3) [Schuder et al., 
1978]. This value was not used in modeling of the isolated cat heart because the 
sample size was too small to cancel out the large variations of CMb that exists 
among animals [J.B. Wittenberg, personal communication].
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FULL DERIVATION OF RAAD MODEL

B.1 RAAD Model Assumptions

1. Steady state

2. Straight, parallel, concurrent, homogeneously distributed 

capillaries (Krogh cylinders)*

3. Constant perfusate velocity in capillary

4. Slight solubility of oxygen in perfusate

5. Radially uniform capillary

6. Zero-order oxygen consumption in the tissue region, model 

is also solved with Michaelis-Menten kinetics

7. Homogeneous oxygen consumption in the tissue region

8. Radially uniform tissue (radially space-averaged)

9. Axial diflusion in tissue

10. Equal solubility in tissue and perfusate

* See Kreuzer [1982] for an extended discussion of the Krogh cylinder model 
assumptions.
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B.2 RAAD Model Derivation

The RAAD model is derived following the shell-balance method discussed in Bird, 

Stewart, and Lightfoot, Chapter 17 [I960],

B.2.1 Derivation of RAAD 
Capillary Region

An oxygen mass balance on the differential shell describing the capillary region, Figure 

24, with the assumption of steady state, yields

{Total Flux]m -  {Total Flux}ouj = 0 (Bl)

{Total FIux}[N = Tcrltp ,CAP Z = Z (B2)

{Total Flux}OUT =  ktqap NQi CAP
Z=Z +A Z +  2  71 rCAP AZ N 02,R c r - R c (B3)

Axial flux in the capillary is modeled as convection only; therefore,

^Ch.CAP -Cch,CAPvCAP (B4)

Equation (B4) incorporates the assumption that oxygen is slightly soluble in the perfusate.
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K 0 2, CAP N ,O j, CAP

z = z Z =Z+AZ

r = Rc

Figure 24: Differential shell describing the capillary region. The shell has a radius of
r = Rc and a differential thickness of AZ. The capillary is axially distributed 
and radially averaged. A space averaged flux, Noyic, exits the capillary 
radially at Rc.
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Flux leaving the capillary radially is represented as a mass transfer coefficient times a 

concentration gradient:

^ Q i 'R c  ~  P ' (f ' 0 2,CAP ~  ^ O i J J s )  ( B 5 )

The value chosen for P is discussed in Appendix C. Dividing the species mass balance by 

7c c a p  AZ and taking the limit as AZ-^0 yields the differential equation describing the 

capillary region:

d N 0 2,CAP 2 P  ^  ^
d 2  ~ ~r   ̂ °2’T1S ~ c 02,CAP ) (B6)L/u

Substituting Equation (B4) into (B6) and dividing by v c a p  , the equation describing the capillary 

region in terms of concentration is

dCat.cAP 2 P
j 7  “  „  \S'oljis c Oj,c a p  ) (B7)

CAP CAP

The equation can then be normalized by dividing the dependent variables by appropriately 

chosen normalizing coefficients, CQ and Zc [Myers, 1987]:

C«Zo’d Cgi,cAP 2 P C
C 7  . d 7  ~  V r K ^ o2,cap) '  r  ( B 8 )
'“ oZ'o  CAP '  CAP o
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The resulting normalized equation is

dCnrAP 2 P Z  — —
-  Q > ,o . ) (B9)

u  CAP CAP

B.2.2 Derivation of RAAD 
Tissue Region

The equations for the tissue region are developed by the same methods used for the 

capillary region. An oxygen mass balance on the differential shell describing the tissue region, 

Figure 25, with the assumption of steady state, yields

|Total Flux}m {Total Flux}QfjT + [Total production} = 0  (BIO)

{TotalFlux}IN= f f ^ s -rc AP}N o2 71S z=z + 2arCAPAZN02j ic (Bll)

{Total FIux}qut = 7t(rfas  -  r̂ AP)N {o2,ns z=z+& z (B12)

{Total production} = -  7c[r ŝ -  rc )AZ(k"'+p ) (B13)

where k represents homogeneous oxygen consumption and p is the reaction rate of 

myoglobin-oxygen reaction as given by

(B14)
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^ A , US

Z =  Z
^ a , h s

Z — Z+AZ

Figure 25: Differential shell describing the tissue region. The tissue is axially distributed
and radially averaged. The shell has an inner radius of r = Rc, an outer radius 
of r = Rt, and a differential thickness of AZ. The space averaged flux exiting 
the capillary, enters the tissue region at r = Rc. No flux leaves the surface at 
r = Rt in agreement with the assumption of non-interacting Krogh-like tissue 
cylinders.
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In the case of Michaelis-Menten kinetics o f oxygen consumption, k is replaced by

V Cr  M AX  ' - ' 0  2,775

2,775 +  ^ < n ]

(B15)

Axial flux in the tissue region is modeled as simple diffusion; therefore,

rf Qjj yis

N02 JIS =  ~D02 ,TIS ^  ( B 16)

Equation (B16) implies that oxygen is slightly soluble in the tissue. Flux entering the 

tissue radially is represented as a mass transfer coefficient times a concentration gradient, 

Equation (B5).

Dividing the species mass balance by tc ( f ro  - i ĉap) AZ and taking the limit as AZ->0 

yields the differential equation for the tissue region:

d ^ 0 2,T!S 2 rCAPP
dZ  -  (4 ,s -  rcAp) 2,T1S ~ °'-CAp) ~ k ~ P (B ,7 )

Substituting Equation (B16) into (B17) and dividing by - Dcxuis, the equation describing the 

tissue region in terms of concentred jn is

^ C o i j i s  _  - 2 r CAp P  tc'" p

dZ 2 D (r2 - r 2 r °*JIS n +  n  C8 1 8 )“  ^  V 77S r CAP)  u o1j i s  u o2j i s
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The equation can be normalized in the same manner as the capillary equation, resulting in

d  Q,,ns - I r ^ P Z ]  — — Zl
J ? 2 ~ rx , 2 2 JS'O ĴIS ^02,CAp ) +  n  r  (*  +P) (B19)

O^TISx. TIS 'C A P ) Oj J I S ^ o

The differential equation describing myoglobin transport is derived through a species 

mass balance on MbC>2. The equations are the same as the equations for oxygen in tissue with 

the exception that there is no k and there is a sign difference on the myoglobin reaction term 

because, as the reaction term is written, oxygen is “consumed” by the myoglobin reaction to 

form MbC>2. This appears as a consumption term in the oxygen balance and as a production 

term in the Mb02 balance. Following the same mass balance procedure, the equation 

describing MbCfe transport in tissue is

j 2
U  MbQ2,TIS

(B20)

The total amount of myoglobin in tissue is fixed, Cmmut. The relationship between myoglobin 

saturation and oxymyoglobin saturation is C m k q  = x  Y, where Y is the fraction of

myoglobin saturated with oxygen. With this, Equation (B20) can be rewritten:

d 2r  pCMbJOT~T^2 = - 7; (B21)
“ z  u Mb02JlS
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The equation describing oxymyoglobin transport is then normalized to

d 2Y  p  Z l
d Z 2 D uhm  tis CiMb02,TlS Mb,TOT
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DERIVATION OF SPACE-AVERAGED PERMEABILITY

The RAAD model incorporates a mass transfer coefficient or permeability, P, times 

a concentration gradient to represent radial transport of oxygen. The value of P is 

determined such that in the absence of axial diffusion, the RAAD model produces radial 

fluxes equivalent to the Krogh model. To do this, the Krogh model is space-averaged 

radially to determine an averaged radial flux. This flux is set equal to the expression for 

the capillary flux in the RAAD model, and P is determined.

The Krogh-Erlang solution for radial diffusion in tissue with zero-order oxygen 

consumption is

The tissue equation for the RAAD model with no axial diffusion and zero-order 

oxygen consumption is

(Cl)

CAP
(C2)

112
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The Krogh model, Equation (C l), is space-averaged over the tissue compartment 

and se t equal to the RAAD model expression for radial flux:

r TIS,

y \ ( r 2-rh p )-rm ^
V rC A P '

^CApP
I'm ~ rCAp)~

dr

CAP
r TJS 

jr d r

r  CAP

(C3)

The resulting value for the space-averaged permeability is

-  D r (r-frs -  rcAP)

P  = _________________________________________ /  rCAP

2 (rTIS ~ rCAp)+ 4~(rTIS +  rCAp)+ rTIS i f f  IS ~  r C A P )

(C4)
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WHOLE-ORGAN MODELING CONSTRAINTS

Whole-organ constraints are applied to the RAAD tissue model in an effort to 

maintain consistency between model and experiment. Table 1 lists experimentally 

determined parameters from the isolated cat heart experiment at low and high perfusion 

pressure. These experimental parameters are used to calculate model parameters for 

simulation. Capillary velocity, vCa p ,  is a function o f perfusion pressure and is determined 

from experimental flow rate by assuming equal distribution of flow into each capillary and 

plug flow,

F low rate • L
VCAP ~  2 (D l )

K  rCAP • F c a p

where L is the Krogh cylinder length (0.05 cm) and Pcap is capillary density 

(capillaries/cm2). The Krogh tissue radius, r-ns, is dependent on the capillary density which 

is assumed to change with low and high perfusion pressure. Krogh tissue radius is 

determined by

2 h  + x  r£AP  •  Mc a p )
rTlS ~  (D2)

FCAP

115
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Equation (D2) is determined as the metabolizing area represented by a cross-section of the 

RAAD model (see Schubert, 1976 for details). This area does not include the capillary 

region. Additionally, the space-averaged permeability, P, is dependent on r-ns and 

therefore changes with perfusion pressure (see Appendix C).

The whole-organ consumption for the isolated heart preparation was determined 

from extraction (A-V difference) measurements at low and high perfusion pressure. An 

extra constraint on the RAAD model is that the consumption predicted by the model must 

match the whole-organ consumption. For the homogeneous consumption case, the model 

consumption is simply set to the experimentally determined values for whole-organ 

consumption (after various modifications) [Schubert, 1976]; but, in the case of Michaelis- 

Menten kinetics, the overall consumption cannot be set in the model. For comparison, the 

predicted A-V difference from the model can be used to calculate an overall consumption, 

from

The A-V difference predicted by the RAAD model is constrained to match the 

experimentally determined extraction. In this way, the model is guaranteed to maintain 

physiological consistency regarding oxygen consumption by predicting values equal to that 

of the whole-organ data. This consumption matching method is used to adjust the 

capillary inlet p02 boundary condition. Adjustments are made until the model converges

A V diff • vCAP r̂ Ap 

L y r is  ~  rCAP)
mod el (D3)
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to an acceptable A-V difference (95% confidence, as described by Schubert, Whalen, and 

Nair [1978]) which corresponds to ± 4 nunHg and ± 5 mmHg for low and high perfusion 

pressure, respectively. The same procedure was used by Napper and Schubert [1988],
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