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ABSTRACT

This dissertation presents new analytical models for the structural analysis of 

Cured-In-Place Pipes (CIPP) used in the rehabilitation process of deteriorated pipelines. 

Both cases of partially and fully deteriorated pipelines are considered. Specifically, 

analytical models for the stability of CIPP encased in either circular or oval partially 

deteriorated host pipes are presented. The proposed models for the case of partially 

deteriorated host pipes were compared with the results of experimental works. Results 

of the experimental work, which was done during the course of this research, were used 

in the comparison. Other, previously done, related experimental work were also added 

to the experimental results database used in validating those models. Another analytical 

model for the static analysis of CIPP encased in fully deteriorated host pipe was also 

developed and compared with the results of finite element analyses. The research 

concludes that the proposed models in this dissertation compare favorably with either 

the experimental or the finite element results.

in
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CHAPTER 1

INTRODUCTION AND RESEARCH OBJECTIVES

1.1 Introduction

Infrastructure decay, which is caused by many years of neglect, has been 

recognized for centuries and more emphatically over the past ten to twenty years. Until 

recently, the most common construction method to repair deteriorated sewer and water 

pipelines was the open-trench method which includes excavation of the ground, removal 

of the deteriorated pipelines, and replacement with new ones. Since many existing 

pipelines are located principally in congested areas, open-trench construction causes 

significant disruption of service, destroys public property, and presents unsafe trenches 

to pedestrians and construction workers.

In recent years, trenchless methods which either replace or repair existing 

pipelines without the need to excavate the ground have become recognized as viable 

alternatives. Most of the problems associated with open-trench construction can be 

eliminated by using trenchless technology methods, and, in many cases, the job can be 

performed at the same or lower cost than with conventional open-trench operations.

1
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1.2 CIPP Technique

The Cured-In-Place Pipe (CIPP) technique for rehabilitating deteriorated 

pipelines was first introduced in the United States in 1977 (Li, 1994). CIPP enables 

deteriorated pipelines to be repaired and restores integrity from within by the insertion 

of a lining material through existing manholes. The liner is a resin-impregnated tube. 

The tube is fabricated to a size that, when installed, will fit tightly against the internal 

pipe wall. The tube is installed either by inversion using a hydraulic head, or it may 

be winched in place. When the resin cures, by circulating hot water, it hardens into a 

continuous, snug-fitting tube inside the original host pipe.

CIPP is used to rehabilitate and to reconstruct existing pipelines to achieve the 

following purposes:

1. To seal joints and cracks and restore the pipeline integrity:

a. to reduce the infiltration of groundwater into a waste-water sewer and thereby 

reduce treatment plant operation costs and the possible elimination of 

unnecessary capital expenditures for more capacity;

b. to prevent soil infiltration into the waste-water and storm drain sewers, thereby 

avoiding collapse of soil voids and damage to surface improvements;

c. to prevent the exfiltration of conveyed pollutant fluids which may contaminate 

the soil and groundwater;
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3

d. to smooth irregularities at joints, breaks, and cracks, and to provide a smooth 

inside pipe surface with a low roughness coefficient which improves flow 

characteristics.

2. To increase or restore the strength of an existing soil-pipe system or to span limited­

sized holes in the wall or joints of existing pipes.

3. To provide improved corrosion resistance for the inner surface of the pipeline.

1.3 Problem Defined

The CIPP technique is fairly new, and many questions still need to be answered 

regarding the performance of CIPP. Specifically, the structural design methodologies 

for these systems are still in their infancy when compared to those for components in 

bridges, buildings, and other structures. Yet, design approaches for these older 

structural systems are continuously evolving and improving as more research is 

conducted and more experience is gained. The pipeline rehabilitation design process 

is also evolving as new research results are obtained, and it is expected that 

enhancements in the design process will lead to more cost-effective and durable designs.

Finding the appropriate design equations for CIPP which could produce safe and 

economical designs has been recognized as the most demanding problem faced by 

industry. Without adequate and economical design procedures, CIPP techniques may 

never achieve their true and full potential because of the reluctance of engineers to 

consider CIPP as a valuable alternative to traditional construction techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4
The status of the original host pipe as partially or fully deteriorated pipe controls 

the design methodology for the CIPP. In partially deteriorated pipe, the external host 

pipe and the internal liner work together to carry the applied external loads. In this, 

integrated structure, the host pipe plays the role of defending the structure against the 

surrounding soil pressure while the liner, because of the leaking of the host pipe, carries 

the groundwater hydrostatic pressure.

In the case of a fully deteriorated pipe, the host pipe is not structurally sound; 

therefore, it is disregarded in the design. In this case, the CIPP is designed as a buried 

pipe which interacts with the surrounding soil to carry the applied loads. The applied 

loads are the soil pressure above the buried pipe and the groundwater hydrostatic 

pressure, if any. The amount of support the soil can provide and the loads it can exert 

on the pipe depend on the relative stiffness between the CIPP and the surrounding soil. 

The liner under the effect of loads may behave as a flexible or a rigid pipe. Flexible 

pipes exhibit more deformation under the first sign of loads than rigid pipes. Only 

flexible pipes are considered in this research.

The current formulae for the design of CIPP in both partially and fully 

deteriorated host pipes are either empirical in nature, with limited scope and range of 

applications, or analytical solutions with limited practical value. For instance, the 

available analytical design equation for the case of partially deteriorated pipe depends 

on an expression derived primarily for the case of unconstrained pipe under the effect 

of hydrostatic pressure. This configuration does not resemble the actual situation of
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CIPP encased in a partially deteriorated host pipe. The expression was modified based 

on experimental results to account for the existence of the host pipe as a rigid constraint 

around the CIPP. However, this enhancement does not guarantee a satisfactory design 

since it is based on limited test results, and a new design equation is needed.

In most cases, pipelines are out-of-round (oval) as a result of their construction 

or deterioration. Pipeline ovality has been recognized as the cause for the considerable 

reduction in the strength of installed CIPP. Current design equations suggests a 

remarkable reduction in the strength of CIPP when it is installed in oval host pipes. 

The proposed reduction factor, however, is not built upon the principles of engineering 

mechanics; rather it has been developed based on geometrical considerations. For that 

reason, many people in industry believe that providing a design expression, based on 

solid principles of mechanics, for the case of CIPP encased in oval host pipes is as 

important, if not more important, than considering the case of a circular liner.

1.4 Objectives

The main objective of this dissertation is to formulate comprehensive and 

practical equations for the design of CIPP. It is proposed to develop new equations 

with more sound theoretical bases than the ones currently in use and to lay the 

theoretical groundwork for further development of design methodologies. Specifically, 

it is proposed to introduce new formulae for the buckling pressure for the cases of CIPP 

encased in circular and oval partially deteriorated host pipes. Also, a new approach for
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the static analysis of buried flexible pipes based on Vlasov's soil model, which is 

applicable to the case of a fully deteriorated pipe, is presented.

The problem of designing a CIPP encased in a partially deteriorated host pipe 

requires a totally different analytical approach than the one in which the CIPP is 

designed for fully deteriorated host pipe. Therefore, this dissertation is divided into 

two main parts. Part I includes Chapters 2 through 4, and it provides an overview of 

the relevant literature and the derivation of the proposed analytical models. It also 

presents the experimental work which has been done for CIPP encased in partially 

deteriorated oval pipes. Chapter 5 presents conclusions and recommendations for 

further studies covering Part I of the dissertation. Part II encompasses Chapters 6 and 

7, including a literature review and a new analytical model for buried flexible pipes. 

This model is applicable to the case of fully deteriorated host pipes. Chapter 8 includes 

conclusions and recommendations for further studies for Part II.
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CHAPTER 2

BUCKLING THEORIES OF CIPP

2.1 Related Research

This chapter presents the literature review and current practice in the design of 

CIPP installed in partially deteriorated circular and oval host pipes. The literature 

review and current practice in the design of CIPP in fully deteriorated host pipes will 

be discussed in detail in Part n  of this dissertation.

2.1.1 Basic Buckling Theory of a Free Ring

The research on cylindrical tubes under external pressure dates back to the 

middle of the nineteenth century (Fairbaim, 1858). In his experimental work, Fairbaim 

concluded that the pipe length and the ratio of diameter-to-wall thickness are important 

parameters in determining buckling pressure. Bresse (1866), using small deflection 

theory, studied the stability of a thin free-standing (no outside constraint) circular ring 

under external hydrostatic pressure (see Fig. 2.1) and arrived at the following 

expression:

where P„ =  critical buckling pressure;

8
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Hydrostatic Pressure (P)
Buckling Configuration 
of Unconstrained Ring

Fig. 2.1 Buckling of Unconstrained Circular Ring 
Loaded By a Hydrostatic Pressure
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E  =  modulus of elasticity;

I  = moment of inertia of the ring's cross-section;

R = mean radius of the ring.

G.H. Bryan (1888) used the minimum potential energy criterion of stability to 

formulate a similar expression to Equation (2.1) for the case of an infinitely long free­

standing pipe under hydrostatic external pressure. His equation differs from Equation 

(2.1) in the term E  which has been replaced by E/U-v2) to account for the plane strain 

condition of the infinitely long pipe. Considering this modification and substituting for 

l= bt3/ 12, where b is the width and in this case is unity, the resulting equation is

^  = 7 ^ 7  ( j > 3 ■ ■ ( 2 . 2 )1 — V- L>

where D = mean diameter of pipe;

t  = mean pipe wall thickness;

v = Poisson's ratio.

This equation can be written in the following form:

D 2 E 1
pcr =  r  -------------7 . . (2.3)

1 - v 2 (S D R -1)3

where SDR = Standard Dimension Ratio, outside pipe diameter/mean

pipe wall thickness.

Equation (2.3) is frequently credited to Timoshenko because of the summary of 

ring stability presented in his classical text (Timoshenko and Gere, 1961).
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Timoshenko's equation has served for many years as the basis for designing CIPP liner 

systems. Timoshenko's equation is derived for an unconstrained circular pipe loaded 

by an external hydrostatic pressure. This configuration neglects the existence of the 

host pipe as rigid constraints confining the liner.

2.1.2 Current Practice in the Design of CIPP

The current practice in the design of CIPP installed in partially deteriorated host 

pipes uses ASTM F1216-93, Equation X I.I. This equation is a modification of 

Timoshenko's equation, Equation (2.3). These modifications are the addition of an 

enhancement factor, safety factor, ovality reduction factor, and the substitution of the 

long-term modulus of elasticity for the short-term modulus to allow for the creep of 

plastics. The equation requires that the CIPP be capable of supporting only the external 

hydrostatic groundwater pressure as follows:

IKE,
* (1-v2) 0SDR-iy N

where Pw =  groundwater pressure;

. . (2.4)

K =  enhancement factor;

El =  long-term modulus of elasticity;

N = overall safety factor; and,

C =  ovality factor.

The enhancement factor, K, can be attributed to the increase in the buckling 

resistance of a CIPP liner caused by support from the confining host pipe. The
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minimum value recommended by ASTM F1216-93 is 7. An analysis of experimental 

results conducted at Louisiana Tech University (Guice, et al., 1994) has shown that K 

varies significantly from one product to another.

The long-term flexural modulus, El, of a specific CIPP system is determined by 

multiplying the short-term flexural modulus, E, by the creep modulus factor. The 

choice of the creep factor depends on the estimated duration of the application of the 

load, Pw, in relation to the design life of the structure. ASTM F1216-93 suggests a 

reduction of 50% in the short-term flexural modulus to account for the creep of the liner 

over a design life of 50 years. However, this reduction may vary from one product and 

manufacturer to another.

The ovality reduction factor, C, is proposed in ASTM F1216-93 to account for 

the reduction in the CIPP carrying capacity because of the host pipe initial imperfection 

or ovalization. This factor is calculated using the average measured maximum or 

minimum diameter of the existing oval pipe as follows:

„ P-g) . . (2.5)

where

or

maximum diameter - mean diameter 
mean diameter 

mean diameter - minimum diameter 
mean daimeter

. . (2 .6)
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The objective of any CIPP design is to determine the liner thickness. ASTM 

F1216-93 specifies three requirements for the resulting thickness. These requirements 

are (1) the design thickness should be able to bear the applied groundwater water 

pressure, Pw, as stated in Equation (2.4), (2) the design thickness should satisfy a 

minimum requirement of SDR in case no groundwater pressure exists, and (3) the 

design thickness of an ovalized CIPP should be capable of carrying the excess stress 

caused by this ovalization. These requirements are presented in the following 

equations:

* i • • <2^
PWN (1 -v 2)

D
*> =   . . (2 .8)

100

. _ _____________ 3qD____________
3

0.5 +
N

O p r  .  .  (2.9)
0.25 + [6 q(  f i  )]

PwNb(l +4)

where oBL the long-term allowable flexural strength for the CIPP material. It should be 

noted that Equation (2.7) is another form of Equation (2.4) presenting the liner 

thickness as the unknown. A value of 1.5 is often suggested for the overall safety 

factor, N, and the bending stress safety factor, Nb.

Despite this effort to modify Timoshenko's equation, its suitability for CIPP 

design purposes has been questioned. Different models which closely resemble the
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problem of CIPP encased in rigid host pipe, may be found in the literature. Some of 

these models are discussed in detail in the following sections.

2.1.3 Buckling of a Thin Ring Encased 
in a Rigid Circular Host Pipe

Several approaches to the analysis of the failure of a thin ring encased in a rigid 

cavity of constant size can be found in the literature. In his study of steel tunnel 

linings, Amstutz (1969) presented a theory based on the assumption that failure occurs 

in the first mode when the yield stress in an outer fiber is first reached. Amstutz stated 

that under actual conditions, the plastic behavior of steel will cause the lining to yield 

at lower load than needed to cause elastic snap-through buckling. However, for thin 

pipes, the primary mode of structural failure is buckling, which relates to the geometry 

of a structure and its stiffness, rather than to the strength of the material.

The prevention of buckling of the CIPP under external hydrostatic pressure is 

one of the primary criteria typically used in the design of these liners. Leaky host pipes 

allow the groundwater to fill the gap between the liner and the host pipe and exert a 

hydrostatic pressure on the liner while the host pipe still carries the soil loads.

Research on the buckling phenomenon of a thin ring within a rigid cavity began 

with the analysis of a confined ring subjected to a thermal expansion. This problem 

was analyzed by Lo, et al. (1962). They solved the large-deflection equilibrium 

equation for the curved beam and defined the critical circumferential load. Zagustin 

and Herrmann (1967) investigated a thin elastic ring constrained in a rigid circular
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surface under a uniformly distributed parallel loading. An analytical solution for the 

relation between the load and the associated deformed shape of the ring was found.

While this work contributes to the understanding of constrained pipe behavior, 

the resulting models are not particularly applicable to the current problem. Other 

constrained models which are more relevant are summarized below.

2.1.3.1 Chlcurel's Model

Chicurel (1968) considered the shrink buckling of a thin elastic circular ring 

which is compressed by being inserted into a circular opening of smaller diameter than 

the outside diameter of the free ring. The shrink buckling phenomenon is not the same 

as the buckling phenomenon of CIPP liners because shrink buckling is caused only by 

hoop compression, while the buckling of CIPP liners is due to external uniform 

pressure. For shrink buckling, the hoop compressive force is relieved immediately 

after buckling occurs. For a pipe under hydrostatic pressure, the load is sustained after 

buckling is initiated, and the energy associated with the sustained pressure must be 

considered. Nevertheless, the approaches for shrink buckling and external uniform 

pressure are comparable with each other up until the point where buckling is initiated.

Figure (2.2) illustrates the deformed geometry, presented by Chicurel, for the 

buckled portion of the ring. Viewing the buckled portion as an axially compressed 

curved beam, Chicurel used the solution introduced by Timoshenko for a similar 

problem to describe the buckled geometry of deformation. Combining the geometry of 

deformationand the boundary conditions, Chicurel introduced equations for the
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Fig. 2.2 Chicurel’s Geometry o f Deformation
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prebuckling hoop compression force Na which causes the thin ring to buckle for the 

extreme cases of no-slip and no-friction as follows:

N0 = 2.487 -  y[Xl 
R

N0 =2.61 A E

. . (2 . 10)

. .  (2 . 11)

where A

R

cross-sectional area of ring; 

mean radius of the ring; 

modulus of elasticity;

moment of inertia of the ring's cross-section; and,

Nn = prebuckling compression force in buckled arc.

Similar results can be developed for the critical pressure of a thin ring under 

external uniform pressure. If a thin ring is compressed by an external uniform pressure 

P , the relation between the hoop compression N0 and the uniform external pressure 

could be related by P = NJR  (Li, 1994). Considering this modification, the 

equivalent critical hydrostatic pressure of CIPP encased in rigid host pipe for the cases 

of no-slip and no-friction are

P.. =

P =

2.7 6E 
1-v2 

2.87 £  
1 - v 2

( \ i i
±  5

<*>}
I \ 2 t_

. .  (2 . 12) 

. .  (2.13)
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Obviously, the actual situation of buckling of the liner does not match completely either 

the no-slip or no-friction cases. The case of no-slip, Equation (2.12), provides a lower 

bound for the buckling pressure. It should be noted again that Equations (2.12) and 

(2.13) were derived from the shrink buckling of a thin ring which neglects the effect 

of the applied pressure occurring over the arc after buckling is initiated. Also, the 

critical pressure was equivalently transformed from the prebuckling hoop 

compression force Na.

2.1.3.2 Cheney's Model

Cheney (1971) used the linear small-deflections theory to study stability of a 

circular ring encased in rigid boundaries under the effect of external uniform pressure. 

The ring is envisioned, after buckling occurred, to consist of two parts: an upper part 

that buckles inward, and a lower part that bears tightly against the outer rigid wall (Fig. 

2.3). In the upper part of the ring, the ring is free to take any shape compatible with 

the differential equation and the boundary conditions at 0=±<f>. The lower part, 

however, can have deflection only in the circumferential direction; radial deflections 

are not admitted. He further assumed that the walls of the cavity move inward with the 

ring resisting outward movement but not inward movement.

The governing equations of equilibrium were derived using the principle of 

minimum potential energy. The energy expression is obtained by summing the internal 

strain energies caused by extension and bending of the centroid axis minus the work 

done by the external pressure and boundary forces and moments (Fig. 2.3):
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BUCKLED PORTION

UNBUCKL1 PORTION

Fig. 2.3 Cheney’s Model of Buckling of a Thin Ring 
Loaded by a Uniform External Pressure.
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♦<}>

n  = -  f f a i  4 e  + E I & —-  [(« ¥ -  * 1 ]} K dQ
-4,

N.v + Nzu + — (v+u*)
*4>

J-<t>

. .  (2.14)

where n total potential energy;

p = external uniform pressure;

N* = hoop stress resultant;

Nx = shear stress resultant;

a — radial displacement of the ring at center-line;

V = circumferential displacement of the ring at center-line;

0 = circumferential coordinate along z axis, d=z/R;

M = bending moment in cross-section;

±4> = values of 0 at the buckled portion boundaries;

it = (&"+ fy/P2 change in curvature of the ring center-line;

^ee (0- - U)/R , and, ( ) ' .  - ! • ( ) .
d d

Having the lower part of the ring bearing against the cavity wall during buckling 

gives rise to an additional uniform pressure around this part of the ring. The shear 

resultant forces , Nx, at the boundaries, 0 =  ±<1), are required to balance the additional 

pressure and to maintain the equilibrium of the lower part.
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By minimizing the total potential energy and successively integrating by parts, 

Cheney derived the following differential equations governing the buckling of the ring:

EA ,«/ l.2—  (v —u) = C k  —
R 2 /?4

u 'v + (1 +k2) u // +k2 u = C k 2

where C is an arbitrary constant and k  is defined as follows:

. . (2.15) 

. . (2.16)

k 2 - ^
El

. . (2.17)

If the boundaries of the buckling portion are confined at 0 =  ±<(> and the appropriate 

boundary conditions are applied to the differential equations, the value o f k can be 

determined by solving the following two equations in k and 4> simultaneously:

k - * 1 — (j) cot ({)

71 COt <j) ,

4>cot(j> = &4>cot&(|>

. . (2.18) 

. .  (2.19)

where i = radius of gyration =  (I/A)* =  (f/12)*

Examining Equations (2.18) and (2.19) graphically shows that values of k  are not case 

sensitive for values of <j>. This is true when R/i -  «, which is the case for thin rings. 

Therefore, for the purpose of simplifying the solution, the case of <|>=0 is considered. 

As the critical arc angle <{> goes to zero, the solution for Equations (2.18) and (2.19) is

K r  = 1-57 . . (2 .20)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

The critical pressure of the rigidly encased thin ring is determined by rewriting 

Equation (2.17):

. . (2.21)
R 3

For relatively thin pipes (e.g., SDR >  30), Substituting Equation (2.20) into

Equation (2.21) and considering an infinitely long pipe, then

_u
P = ( i - )  5 . . (2.22)

cr 1 - v 2 D

2.1.3.3 Glock's Approach

Glock (1977) analyzed the stability problem of a circular thin ring encased in 

rigid boundaries under the effect of external hydrostatic pressure as well as thermal 

load. Glock's model assumes that there is no friction between the ring and the rigid 

cavity, but unlike Cheney's model, Glock's model does not require the cavity wall to 

move inward with the ring. Glock used the nonlinear-deformation theory to develop his 

model. However, the derivation of Glock's model is not fully documented, and the 

theoretical bases upon which he built his model are not cited. For the benefit of future 

research, the complete derivation of this model is presented in Chapter 3.

2.1.4 Buckling of a Thin Ring Encased 
in a Rigid Oval Host Pipe

The significance of studying a problem such as the buckling of a thin liner 

encased in a rigid oval host pipe arises from its importance to industry. In the design
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process of CIPP, the design engineer must continuously evaluate the effects of 

manufacturing tolerances, cross-sectional imperfections, and the existing ovalizaliton of 

the original pipeline on the structural performance of the liner. In most cases, 

deteriorated pipelines are out-of-round, and special considerations should be talcen in 

the design to include the effect of this ovalization.

ASTM F1216-93 has incorporated the effect of the host pipe ovalization ■on its 

requirement of CIPP strength by adopting the ovality reduction factor, C, as presented 

in Equation (2.5). In the following sections, other models which been found in  the 

literature and could be applicable to the case of CIPP encased in a rigid oval hosit pipe 

are presented.

The static behavior of the cylindrical shell of arbitrary cross-sections have been 

analyzed by many authors. Novozhilov (1959) presented a method to analyce the 

behavior of a cylindrical short-shell with an elliptical cross-section and loaded by a 

uniform normal external pressure.

Romano and Kempner (1962) conducted a series of studies on the static analysis 

of an oval cylindrical shell whose curvature can be described by the following 

expression:

1 l / i  c— = — ( 1 + 5  cos 
r r„

4 it f
. . (2.23)

where r local radius of curvature, and it is a function o f  the

circumferential coordinates;
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r0 =  radius of a circle whose circumference is equal to that of

the oval;

5 =  eccentricity constant of the oval;

L0 =  circumference of oval pipe =  2nr0; and,

s =  circumference coordinate.

Equation (2.23) represents a group of oval shapes which are slightly different than the 

corresponding ellipses having the same semiaxes.

Slocum (1909) estimated the collapse uniform external pressure of long, 

unconstrained elliptical tubes from the collapse pressure of an "equivalent" circular 

cylinder. The diameter of this equivalent circular cylinder was taken as the maximum 

diameter of the ellipse. The additional stiffness of the ellipse was not considered in the 

analysis. Therefore, the collapse pressure of an elliptical tube is related to the original 

round tube by the relationship

*Lr - **. «9 . . (2.24)

where Poval = collapse pressure of elliptical pipe;

P0 =  collapse pressure of originally round pipe;

a =  minor axis ellipse coordinate/original pipe diameter.

This research predicts significant reductions in collapse pressure for elliptical 

cross-sections. For example, the collapse pressures for elliptical cross-sections with 5 % 

and 10% ovality (a = 0.95 and 0.90, respectively) are only 63% and 39%,
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respectively, of the collapse pressures predicted for the original circular cross-sections. 

These values are close to the reduction values suggested by ASTM F 1216-93 of 64% 

for the case of 5% ovality and 41% for 10% ovality.

Soong and Choi (1985) solved the problem of a thin elastic ring compressed by 

being inserted into a rigid elliptic boundary whose circumference is smaller than the 

unstressed length of the ring. This problem is similar to the shrink buckling problem 

introduced by Chicurel (1968) for the case of a circular ring. They presented the 

governing differential equations, boundary conditions, and step-by-step solution 

procedures for three different buckling cases. These cases were the snap-through 

buckle, the two-buckle case with no friction, and two-buckle with no-slip.

Li and Guice (1995) studied the stability of CIPP encased in rigid elliptical host 

pipe and loaded by external hydrostatic pressure. Following a similar analysis for the 

shrink buckling presented by Chicurel (1968), they reached the following formula for 

the ovality reduction factor lC’:

C = ________ -________
s i . . (2.25)

(l+<7)5 ( l - * ) 5

A comparison between their suggested value for ‘C’ and the proposed value by 

ASTM F1216-93 was also presented. This comparison has shown that the reduction 

factor presented in ASTM F1216-93 gives conservative values compared to Equation 

(2.25). However, no experimental work was presented to support this conclusion.
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Kurt and Mark (1981) developed an approach to predict the short-term collapse 

pressure of oval buried flexible thermoplastic pipelines. The soil radial support has 

been linearized in the solution and presented in terms of the modulus of subsurface 

reaction. Expressing the oval pipes in terms of the curvature function shown in 

Equation (2.23), the solution reduces to two infinite recurrence formulas. The short­

term collapse pressure was calculated by solving these infinite recurrence formulas 

numerically. Parametric studies were conducted to evaluate the effects of cross- 

sectional ovality versus the supporting soil stiffness on the predicted short-term collapse 

pressure. These studies have shown that the cross-sectional ovality does not have a 

significant impact on predicted collapse pressure compared to this significant influence 

of the surrounding soil stiffness on the collapse pressure. Another conclusion drawn 

from these parametric studies is that the use of an equivalent circle whose radius is 

equal to the maximum radius of the non-circular cross-section has greatly magnified the 

influence of ovality when predicting short-term collapse pressure.

2.2 Research Need

In a recent study on the stability of CIPP encased in rigid circular host pipes, 

different theoretical models were compared with experimental results (Li, 1994). 

Models under study include ASTM F1216-Equation XI. 1, Chicurel’s model (1968), 

Cheney’s model (1971), and Glock’s model (1977). The study shows that ASTM 

F1216- Equation XI. 1 gives a remarkable marginal error in comparison with 

experimental results. It also concludes that the model proposed by Glock (1977) gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

the most appropriate values for the instantaneous buckling pressure among other 

models. The documented distinction of Glock's model (1977) among other stability 

models makes it the best candidate to replace the current design equation. However, 

the derivation of Glock’s model (1977) in his paper is not fully documented, and the 

theoretical bases upon which he built his model are not cited. Therefore, and for the 

benefit of future research in CIPP design methodology, it is imperative to reproduce 

Glock's equations and to validate this model experimentally. Also, because of the 

importance of studying the effect of pipeline ovalization on the capacity of the installed 

CIPP, it is desirable to investigate such a problem. A similar model to Glock's 

approach (1977) and which is applicable to the case of CIPP encased in oval host pipes 

is needed.

Chapter 3 presents a complete derivation for Glock’s model. It also provides 

a comparison study between Glock’s model and the results of three sets of experimental 

work. Chapter 4 includes a derivation of a new model for the stability of CIPP encased 

in oval host pipes. The new model is validated with experimental work which was done 

during the course of this research.
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CHAPTER 3

GLOCK’s MODEL FOR THE INSTABILITY OF CIPP

3.1 Glock's Approach

Consider the system of polar coordinates and deformations shown in Fig. (3.1), 

where u is the radial displacement and v is the circumferential displacement. The 

following assumptions are used for the case of a thin ring (El-Bayoumy, 1972; Kerr and 

Soifer, 1969):

°zz = 0 ffrr « aee • • (3.1)

«zr = *ze = 0 • • (3.2)

er0 = 0 • • (3-3)

With the above assumptions, the strain energy expression for a thin circular ring 

reduces to

u  = ~ f f f e e e a oe d v  . .  (3.4)
v

where V is the volume of the ring. Assuming the validity of Hooke's law, the above 

expression for the strain energy can be rewritten as follows:

i **
u  = j f  [ f fE eegdA]rde . . (3.5)

-<t> A

28
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Fig. 3.1 Displacements of a Thin Ring in Polar Coordinates
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where r is the radius of the point under consideration as shown in Fig. (3.1). The 

general expression for the nonlinear circumferential strain is (El-Bayoumy, 1972; Kerr 

and Soifer, 1969)

8ee
dv

I 30
■+u

2r
du

I 30
-- v 1

2 r 2

dv
30

. . (3.6)

For thin rings, it is possible to assume that u, v, v'« u' (El-Bayoumy, 1972) which 

reduces expression (3.6) to

-so —{v' + u) + —  ( u f  
r 2 r 2

• - (3.7)

where ( )' = —  ( ) 
dQ

Denoting the displacement of the ring axis by & and v, then the displacement 

components u(r,Q) and v(r,d) may be expressed in terms of the displacement 

components of the ring axis as follows:

u (r,0) = -u (0 ) (3.8)

v(r ,0 ) = v (0) + p /(0 ) • • (3.9)

where p is the radial distance from the ring axis to the point under consideration (Fig. 

3.1). The unknown function f(Q) is determined from the linearized form of the 

condition e^=0; therefore,

Ad)  = -  + v)
R 30 (3.10)
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where the approximations p«R and (l-p/R)«1.0 are used to reach the above expression 

and R is the ring mean radius. Substituting Equation (3.10) into Equation (3.9), the 

final forms for u(r,Q) and v(r,Q) in terms of & and P are

Using Equations (3.11) and (3.12), the expression for the nonlinear circumferential 

strain, Equation (3.7) becomes

Equation (3.13) is the general form of the nonlinear circumferential strain of an 

elastic ring in terms of its central axis displacements. This expression encompasses two 

parts. The first part, See, represents the axial extension of the ring’s centroid axis, and 

the second part, pfc, represents the change of curvature at the point under consideration. 

Many researchers such as Novozhilov (1953), Kerr and Soifer (1969), and El-Bayoumy

u (r ,0 ) = -« (0 ) . . (3.11)

v (r ,0 ) = v +
R

. . (3.12)

eee _ e0 e + P * . . (3.13)

where

. . (3.14)

and

k = u
. . (3.15)
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(1972) have used Equation (3.13) to study several problems of circular rings and 

arches.

In a similar approach to Cheney’s model (1971), Glock (1977) envisioned the 

ring to be made up of two regions: region I and region II as shown in Fig (3.2). 

Region I includes the buckled part of the ring, where there is no contact between the 

ring and the external rigid pipe. Region II is the unbuckled portion of the ring, and it 

is in contact with the rigid host pipe. Region I carries both a hoop force and a bending 

moment. While in region II, because no change of curvature is induced in this part of 

the ring, the bending moment vanishes, and only the hoop force needs to be considered.

Substituting Equations (3.14) and (3.15) into Equation(3.5), the strain energy 

expressions in regions I and II can be written as follows:

t/, = j£rtC4eJe +/K;)rf0 . . (3.16)
o

. . (3.17)

where

. . (3.18)

. / /

. . (3.19)K * 2 = 0
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BUCKLED PORTION 
I (REGION I)

M+dM

N+dN

UNBUCKLED PORTION 
(REGION II) s_ I

Fig. 3.2 Glock’s Buckling Model of a Thin Ring 
Loaded by a Hydrostatic Pressure
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The terms Uj and ^  denote the radial displacements in region 1 and II, respectively, and 

Vj and v2 are the circumferential displacements. Since Region II is attached to the host 

pipe, &2 and fc2 are assumed to be zero in the above expression of the strain energy in 

region II. The total potential energy of the system is

U = Ux + U2 - W . . (3.20)

where W is the work potential of the external hydrostatic pressure. Substituting 

Equations (3.16) and (3.17) into the expression of the total potential energy, Equation 

(3.20), and collecting similar terms, then

$  <J) It <t>

A = E lji^RdB  + EA{ fe \eRdB + J%eRdB } - 2 j 'Pu1RdQ . . (3.21)
o o <t> o

The first term in the above expression represents the potential energy resulting from the

change of curvature, and the second term represents the potential energy resulting from

the axial strains of the ring center line. Substituting Equations (3.18) and (3.19) into

the above expression, the total potential energy in terms of the center line displacements

can be stated as

<f> <t>
n  = - ^ 7  fufdB +EA{ /•[-( v j - u ^ - i - i i f f /w e  

2R3{ i  R 2R
* • • (3.22)

+J[— )2RdB} - 2 jP 0ux RdB 
4> ^ o

Another simplification for the above expression of the total potential energy was 

suggested by Glock (1977). This modification entails the assumption of
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. . (3.23)

which results in the elimination of the term U2, the strain energy in region II. Of 

course, this is not the actual situation in that part of the ring. To account for this 

discrepancy, Glock (1977) averaged the strain energy density caused by the extension 

strains over the ring’s circumference. The reason behind that, as is shown later, is to 

get the expression of total potential energy, Equation (3.22), in terms of only one 

unknown displacement, Averaging the strain energy caused by hoop force carries 

the assumption of having a constant hoop force along the entire ring. The average 

value for this hoop force is calculated by summing the hoop force in region I and 

dispensing it over the ring circumference as follows:

By replacing the hoop strain potentials in Equation (3.22) with equivalent terms of the 

average hoop force, then the total potential energy reduces to

Equation (3.25) is the total potential energy form used in Glock’s solution (1977). An 

approximate form for the radial deflection in region I could be assumed as follows:

. . (3.24)
0 0

(J> Jt It

. . (3.25)

itj = u0cos* . . (3.26)
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where &0 is the radial deflection at 0=0 . Substituting the above approximate form of 

radial displacements into the expression of and performing the integration results 

in

N.»v*
EA<fr 
2Rn K  -

. 2

8 R

I

A .
. . (3.27)

It is clear from Equation (3.27) that is a constant value and not a function of 0. 

Substituting Equation (3.26) into the expression of the total potential energy, Equation 

(3.25), then

4> t
n . M l r»3 J -  U . COS-

710
2<J>2 2(f) J

dQ
N.»Vg

EA
RdQ

I *

Performing the integration the above expression reduces to

n  = -*L < j>
16R3

711 2 Ntvg2 R71 PRt  \  4 

— I U
I 4>J

  -  ------------

2 EA 2

(3.28)

(3.29)

Employing the principle of minimum total potential energy, then

dE = — dua * —  d<\> = 0
as. ad>

a n
du.

= 0 , & a n
d((>

= 0

Performing the differentiation, the resulting equation will be as follows:

a n  = _e i_ ^
dun 8 R 3

' - V & .  + N.vg —  - —  <i> =0
"g du.  EA 2U J

. (3.30) 

• (3.31)

. (3.32)
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but since

dN,vg EA <(>
du0 Rn 2

i - i  *
u

then Equation (3.32) becomes

E l ( n 4 N«vg
/ \ 

71
2

8R 3 \ 8R . <l>y

PR
2

Also,

an :
8<J>

N."«
2

_3_ E lf jrc
16 r 3( 4>J

i ’ * N  3N-  ? R -tvg d<t> EA
— =  0

(3.33)

(3.34)

(3.35)

but

5N,

d<J>
»vg _ 1  M

2 Rtt
+  i f l  —

8 R 1 <J>

With the substitution of Equation (3.36) into Equation (3.35), then

l l  H
16 R 3

/ \ 
7t

t.

N.»vg
16R

/ \ 71 PR
2

N.«vg

(3.36)

(3.37)

Equations (3.34) and (3.37) are two equations with two unknowns, &0 and <j>, and Nmg 

in terms of <(> could be obtained by subtracting Equation (3.37) from Equation (3.34); 

then

5 El 
3 R2

( \ 7t
I 4>J

(3.38)

Equating Equation (3.38) and Equation (3.24) results in
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77,

- I  u 0 -
16  ̂ 4»J

Til K  
R

5 E l 1 
3 EA R

1 \ 2 
—  1 = 0

U J
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. . (3.39)

Equation (3.39) is a quadratic equation in terms of &0 with the two roots

16 K2 1
\ n

80 E l 
3 EA

Also, with the substitution of Equation (3.38) into Equation (3.34), we get

Uo =
6 PR* [ V + 10/?(

El I

Equating Equation (3.40) with Equation (3.41),

P R 3 
E l

/ \ 
TC 16 80EI I

3EA /?2

I \ 5

( i )

Assuming that

77

4> = Y
and a = P/?3

El

then Equation (3.42) can be simplified to 

a = Y2 1 ± I
6M

1 6  -

3EA /?2

and to find the critical pressure Pw then,

8P = 0 _  da
dy dy

« 0

(3.40)

. .  (3.41)

(3.42)

. (3.43)

. (3.44)

or
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2Y 1± !
6 \

1 6 -^ . I i -L y S
3 EAR2

400 El /
Y2 3 £4/?* Q
12

u s - I o ^ L i ^
2 EAR-

(3.45)

with the root

YCr = 0.856 M r2
BI ,

I/s
(3.46)

Substituting the value of Yo- into Equation (3.43), we get

“ or =

or

0.9690 2/5

0.4964 EI J - (3.47)

P .*
E l

3 0.969 f —  R1] 30
El

. . (3.48)

Assuming that E  is constant for both flexural and axial stiffness aned accounting 

for the plane strain condition of long pipes, the above expression for the critical 

pressure of thin rings could be reduced to a form similar to the case o f  thin pipes 

encased in rigid cavity as follows:

(  \  2.2 t
1 - v 2 \ D )

- (3.49)
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3.2 Discussion of Models

The models reviewed in this chapter and Chapter 2 for the case of a thin ring 

encased in rigid cavity all result in equations for the critical buckling pressure which 

are similar in form. The basic form of these equations is

^ r =JL7  — 7 . . (3.50)
1-v2 ( S D R - i f

where q =  coefficient,

P =  exponent.

The resulting coefficients and exponents for each model are summarized in Table (3.1). 

It should be noted that there are consistencies in the exponents for the different models. 

Those models which impose a constraint around the surface yield solutions with an 

exponent of 2.2.

However, the coefficients can vary significantly depending upon the types of 

assumptions made. Each of the models presented has merits and under certain 

conditions might be the most appropriate one for consideration. However, each of the 

models also has limitations, and even for the most complex of the models some factors 

have not been included.

The stability analysis of a restrained pipe is complicated by nonlinear 

geometries, various interface and boundary conditions, and nonlinear material behavior. 

Other factors which must ultimately be considered by a model include visco-elastic
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effects, host pipe geometry (such as ovality), and defects as well as other anomalies 

which may occur.

Table 3.1 Buckling Equation Parameters

Model Coefficient, r\ Exponent, P

Timoshenko unconstrained 2.0 3.0

Chicurel’s shrink buckling 2.76 2.2

Cheney’s encased ring 2.55 2.2

d o c k ’s encased ring 1.0 2.2

3.3 Evaluation of Buckling Models Through 
Experimental Results

The application of any analytical model into practice requires validation and 

calibration through experimental research. Until analytical models have been developed 

to include the necessary conditions, the resulting equations must be tuned by 

experiment, and safety factors must be included to address various uncertainties.

The equations derived by the approaches presented above may be evaluated 

through comparisons with available experimental data. The mathematical tools of linear 

regression and error analysis may be employed to develop the value of the coefficient 

and exponent based on the experimental results.

Very little CIPP pipe experimental data exist for evaluating the theoretical 

models. Some organizations are known to have conducted proprietary experimental 

work related to this study, but most have not been published in the public domain.
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Three sets of data which are used in this evaluation include work done by Aggarwal and 

Cooper at Coventry Polytechnic in 1984 (unpublished); Lo, Chang, Zhang, and Wright 

at Utah State University (1993); and Guice and others at Louisiana Tech University 

(1994).

Aggarwal and Cooper Tests. Aggarwal and Cooper conducted external 

pressure tests of Insituform liners. In these tests, the liners were inserted in steel pipes. 

Pressure was applied and increased between the liner and casing in increments of 

approximately l/10th of the expected failure pressure, until failure. Internal 

observation was carried out to determine when bulging occurred. The experimental 

failure pressure was found to be much larger than the theoretical buckling pressure 

obtained by Equation (2.3).

An enhancement factor was defined by Aggarwal and Cooper as K  =  PIes/ / ,lA,ao,. 

The enhancement factor reflects the difference between the results by experiment and 

theory. Aggarwal and Cooper indicated that the values of the enhancement factor 

varied from 6.5 to 25.8 with a range of pipe SDRs from approximately 30 to 90. 

Aggarwal and Cooper indicated that 46 of the 49 tests gave a value of K  greater than 

7. The term enhancement was used because the buckling resistance of the liners 

appeared to be significantly enhanced by the constraining effects of the host pipe. For 

the remaining portion of this chapter, K  will simply be referred to as a factor which 

compensates for the deviation between experimental results and theory.
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Aggarwal and Cooper's tests included data for 49 specimens with a relatively 

large range of standard dimension ratios (SDR from 29.86 to 90.25) and a variety of 

material properties (modulus of elasticity from 895,700 KPa to 2,521,740 KPa).

Shell Development Company Tests. Shell Development Company conducted 

an experimental program at Utah State University to evaluate the collapse resistance of 

CIPP liners made with various epoxy resins (Lo, et al., 1993). The specimens of the 

tests had a constant outside diameter and different thicknesses. The results of these 

tests were also analyzed to determine the enhancement factor K. Lo found the values 

of the factors ranged from 9.66 to 15.1.

Louisiana Tech University Tests. Louisiana Tech University has conducted 

research on the long-term effects of hydrostatic pressures on CIPP liners under the 

Corps of Engineers Construction Productivity Advancement Research (CPAR) program 

(Guice, et al., 1994). Seven different products from five companies were evaluated. 

Several short-term tests for each product were also conducted. Test specimens were 12 

inches in diameter, and SDRs ranged from 30 to 60.

3.3.1 Analysis of Data

If the term is defined as the experimental buckling pressure and the factor 

K is defined as the ratio of P ^  to P„, the following equation can be obtained: 

r\E______ 1= K*P„ =
t e s t  c r

( l - v 2) (SDR- l)p
. . (3.51)
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and,

Log Logi\ -  P Log (SDR-1)  ̂ LogK  . . (3.52)

If the subscript of i is used to designate individual test results (i = 1, 2, 3, ..., 

«,), where n is the number of the tests in the sample, Equation (3.52) can be expressed 

in terms of subscript i as follows:

Log
{ E , / ( l - v * ) j

Logr\ -  p Log(SDRt -1) ♦ LogKt <• e, . . (3.53)

The values of t j  and p  may be determined by the particular analytical equation 

used for the critical pressure Pcr. The term Ptest i is the test result of ih specimen, 

while Ej and SDR, are the corresponding modulus of elasticity and standard dimension 

ratio. The term K t reflects the deviation between the theoretical and experimental 

buckling pressures of a specific test specimen, while e; is the associated statistical error. 

If the results of a series of short-term buckling tests are employed to verify a theoretical 

equation with corresponding values of constant Log t j  and /?, a sample Log AT, (/'= 1, 

2, ... n) can be obtained, and the mean Log K  and standard deviation s of the test 

sample can be determined. The factor K  is affected by many known and unknown 

factors of the specimen and the process of testing.

When evaluating different equations, the theoretical formula is first selected, and 

the error related to the deviation between the theoretical and experimental buckling 

pressures is determined. On the other hand, it would be interesting to determine the
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coefficients and exponents which could best predict the buckling pressures. To do this, 

best-fitting regression may be employed using the method of least squares.

3.3.2 Results

If the coefficients and exponents presented in Table (3.1) are substituted into 

Equation (3.53), the data may be analyzed to yield estimates of the mean error LogK  

and the enhancement factor isT corresponding to the error for each theoretical equation. 

The results of this analysis for Timoshenko's unconstrained model and Glock’s 

constrained model are presented in Table (3.2). The results of the best-fitting regression 

analysis of Aggarwal and Cooper's data are also presented in Table (3.2).

Since the other analytical models presented are similar in form and vary only by 

a constant with either Timoshenko's or Glock's equations, the results for the other 

models were not included for comparison in Table (3.2). The average deviations 

between the theoretical and experimental buckling pressures are smaller for Glock's 

equation than Timoshenko's equation. Further, a best-fitting regression analysis results 

in coefficients and exponents very similar to those for Glock's model.

The test results from Shell Development Company and Louisiana Tech 

University were analyzed for comparison with the Timoshenko and Glock equations. 

The data were analyzed to determine average values of statistical deviations based upon 

each of the two models. Those results are summarized in Table (3.3). The smaller 

deviations between experiment and theory are again noted for Glock's equation.
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3.4 Conclusion

The development of several analytical models for the design of CIPP encased 

in partially deteriorated host pipe were presented and compared with experimental data. 

The comparison study shows that the coefficient and exponent suggested by Glock’s 

model are the most appropriate values for use in the design of CIPP. Furthermore, it 

is clear that the enhancement factor, K, of 7 which is in common use in industry to 

compensate strictly for the deviation between experimental results and the theoretical 

unconstrained pipe critical pressure is conservative. This factor, of course is not all 

encompassing as it does not address conditions such as host pipe ovality and stiffness, 

visco-elastic effects and uncertainties about loading. Other factors must be employed 

to address these issues in the current design practice.

The conclusion of this study is that Glock’s model is the best available model 

in literature to replace the current design practice. On preliminary basis, it would 

appear to be possible to accomplish the replacement of the current design equation 

through the utilization of a coefficient t) in Glock’s model based on a best-fitting 

regression analysis of additional test data. Therefore, additional research is required 

before any new equation can be recommended as a design expression for CIPP.
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Table 3.2 Evaluation of Buckling 
Models With
Aggarwal and Cooper Data

Equation n P LogK K s

Timoshenko 2.00 3.00 1.075 11.89 0.139

Glock 1.00 2.20 0.078 1.20 0.107

Best-Fitting Regression 1.07 2.17 0.000 1.00 0.107

Table 3.3 Analysis of Experimental Data

Data Timoshenko Glock

LogK K s LogK K s

Aggarwal and Cooper 1.08 11.89 0.14 0.08 1.20 0.11

Shell Development 1.13 13.38 0.06 0.04 1.10 0.06

Louisiana Tech 0.99 9.81 0.11 -0.05 0.90 0.08

t| =  coefficient
p =  exponent
LogK =  mean value (average deviation between theoretical and experiemntal results)
K  =  the enhancement factor corresponding to the mean value (LogK) 
s =  standard deviation of the error values
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CHAPTER 4

INSTABILITY OF CIPP ENCASED IN OVAL HOST PIPES

4.1 Introduction

This chapter presents a new model for predicting the buckling pressure of CIPP 

encased in rigid oval host pipes. It also encompasses a detailed discussion of the 

experimental work which has been conducted to verify this new model. The results of 

the experimental work are compared with the proposed model and other analytical 

models.

4.2 Analytical Model

Glock's model (1977) for predicting the buckling pressure of CIPP encased in 

circular host pipes has been presented in Chapter 3. Statistical analyses comparing 

Glock's model with other buckling models versus three different experimental works 

have also been presented in this chapter. The results of these analyses showed that 

Glock's model has the lowest marginal error among other models when it is compared 

with experimental results. This conclusion reveals the suitability of Glock's 

assumptions, in general, to study CIPP instability problems. Because of this proven 

success of Glock's model, a similar model for the case of CIPP encased in oval host

48
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pipes is proposed in this section. The derivation of this new model follows the same 

basic steps Glock used in the derivation of his model.

Coordinate System. In the analysis of problems which have elliptical 

boundaries, it is usually preferable to employ a coordinate system which resembles 

those boundaries. For the problem under study, it is found that employing the system 

of oval coordinates, as described later, simplifies the problem.

Romano and Kempner (1962) have used this system of coordinates to analyze 

the deformations and stresses in a short oval cylindrical shell under the effect of 

external uniform pressure. In their study, they have presented the oval coordinates as 

shown in Fig. 4.1. In this figure, the term, s, is the circumferential length measured 

along the oval perimeter, and, r, is the radial coordinate measured as the inner normal 

to the meridian surface. The terms 0 and G are the circumferential and radial 

displacements of the meridian surface, respectively.

The oval coordinate system (Fig. 4.1) can be characterized implicitly by a 

governing equation describing its curvature at every point as follows:

-  = —  [1 +€cos(ps)] . . (4. l)
R R0

where R =  local radius of curvature as a function of s,

R„ =  radius of a circle whose circumference L* is equal to that of the oval, 

P =  4tc/L0, and,
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a) Sign Convention For Coordinates and Displacements

X
I

'\-

b-aa

s,vb

b) Coordinates For Oval

c) Eccentricity of Oval

Fig. 4.1 Sign Convention and Geometrical Properties of Oval Pipe 
(after Romano and Kempner 1958)
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$ =  measure of eccentricity (non-circularity) of the oval and it is a

function of the oval semiaxes and obeys the inequality |£|^1.

The following equation gives £ in terms of the oval semiaxes:

5 = 3
b -a b-a
b+a b+a

. (4.2)

Or,

? = 3  q - q 3 . . ( 4 . 3 )

where b =  oval major semiaxis, 

a =  oval minor semiaxis,

q =  measure of ovality as stated in ASTM F1216, Equation (2.6). 

Figure (4.2) shows the relationship between q and £ as stated in Equation (4.3). 

For the purpose of simplifying the problem of stability of CIPP encased in oval host 

pipe, a slight change in Equation (4.1) is needed. This change is a result of considering 

a different location for the origin point, as shown in Fig. (4.3). In that case, the 

governing equation for the radius of curvature is

-  = —  [ 1 -^cos(pj)] (4 4)
R  R  •  •O

The following analysis uses nonlinear small-deflection theory and, in general, 

it is applicable to the case of homogenous, isotropic, elastic, thin-walled liners.
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s,v

b

a) Coordinates For Oval (Proposed Model)

ib-a

b) Eccentricity of Oval

c) Buckling Configuration For the Proposed Model

Fig. 4.3 Coordinates, Eccentricity and Buckling Configuration For 
Oval Pipes
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Therefore, the strain-displacement relationships of the mid-surface of the oval pipe can 

be presented as follows:

where t ,  and ft, are the extensional strain and change of curvature of the mid-surface 

of the oval. When the liner buckles inside the host pipe, it buckles in a small portion 

of the liner (Fig. 4.3), while the rest of it still bears against the inner walls of the host 

pipe. In a similar approach to Glock's solution (1977), the radial displacement 

function, Q, for the buckled portion can be assumed as follows:

u = ua cos2 (y s) . . (4.7)

where 0o =  radial deflection at the origin, O,

Y  = n/(2s0), and,

s0 =  half length of buckled portion.

Averaging the normal force in the liner wall would result in

. . (4.5)

. . (4.6)

. . (4.8)

Performing the integrations in Equation (4.8), then

. . (4.9)
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sin{(2--£)YsJ sin{(2+—)y-s0) 2sin(Ps„}

£
Y

Y . . (4.10)

Y Y
Parameter n as stated in Equation (4.10) is dimens ionsless. A reasonable value 

for ii and consequently for the buckling load could be obtained by assuming a goodi 

approximation for s,/L0. This factor is the ratio between half length of the buckled- 

portion to the total perimeter of the ring. Figure (4.4) shows the variation of n versus 

s,/L0. At the limit when s</L0 - 0 , n - ic. During the course of testing oval pipes under 

the effect of hydrostatic pressure, it was observed that the value of s0/L0 increases with 

the increase in the tested pipe ovality. Only two measurements for this ratio were 

recorded during testing. The difficulties encountered to access the inside of the pipes 

and to measure the buckled portion were the reasons for having only two records. 

Measurements were taken using a regular measuring tape and it was found that s /̂L,, is

0.05 (the internal perimeter is almost 20 times the half-length of the buckled portion of 

the liner) for the case of 5% ovality and 0.10 for the case of 20% ovality. As a 

reasonable assumption, it could be stated that this ratio increases linearly with the 

increase in the degree of ovality, q. Based on this assumption, Fig. (4.5) presents the 

change in n versus the change in the degree of ovality q.
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The total potential energy function in terms of the normal force, N4Vg, the change 

of curvature, ft,, and the applied external hydrostatic pressure, P, can be expressed as 

follows:

2

n  = £L C(<tlLfds + f  ds - f  Puds • • (4-l l)
2 J P*2 j  2EA j

Performing the integrations, Equation (4.11) is reduced to 

n  . . ( 4 . 1 2 ,

Minimizing the total potential energy function, II, Equation (4.12) requires that 

■ T-r 311 , . 311 , n
dTl = —  duo + —  <*Y=0 . . (4.13)dua 3y

and

3E n 3H n
= 0 ; —  = 0 (4 1 4 )

du0 dy

where

311 i Rnn Pn
A T , 0 (4.15)

311 3n ■, •> dN^, R„n Pu„n—  = — £ / ( u J Y )  — ~ —  + — -
dy 2 3y EA 4Y2

l i t  <> C 7 i Y „  xv_71

^ £ / ( u 0V )  +^  - ~-  -- +— V  = 0 • • (4-!6)

By differentiating Equation (4.9) with respect to Go and y, respectively, then

. .  (4.17)dua 4nR0 y R(O
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d N a v g  = EA ^“o (7t ~̂ T1) + £ . 2 ]
dy ~ 4nR0 R0 f  2 °

. . (4.18)

Substituting Equations (4.17) and (4.18) into Equations (4.15) and (4.16) results in

. .  (4.19)

. . (4.20)

u0 [-itEIy4 + Y2! = +
4 4 4ft,

n Pit t Na 
4 4F

Subtracting Equation (4.19) from Equation (4.20), then

N 20
avg E l f . . (4.21)

Equating Equation (4.21) to Equation (4.9) results in

I . •» *>
  U nT
2ft. °

(I - - ^ )
 E _ «  + *2 . I L f  = o

R 2 3 EA

Equation (4.22) is a quadratic equation in G0, with the following roots:

d - i i )
it

RoT \

( i - iH )2
71 160 El

R 2f  3 EA

(4.22)

(4.23)

To find an expression of P in terms of and y, substitute Equation (4.9) with the value 

of N„g into Equation (4.19):

PR.
El 3 it 3

(4.24)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Substituting with the value of do, Equation (4.23), into the above expression and 

simplifying,

PR.
El

-=4r(
it 6 \

16(1 -13 .)2 -  2 ^ 2  R 3 y5
ti 3 EA

To find Pcr and yCT, differentiate Equation (4.25) with respect to y:

dP
d y

= 0

which results in

2 ±
2

\

I 160 El R0 s 
3 M  ( i - JH ) 2̂

71

200 El Rq 5 
3 £ 4 (1_ jr1)2Ycr

Tt = 0

with the root

, 160 El R0 s
1 ----------------------------------- y  cr

3 £ 4 (1_ i n )2
7T

YCr = 0-428
EA
El

(1 -  ^ ) 2
n

Substituting this value of y a into Equation (4.25), then

/>
"  ( 1 - v 2)

/  \ 22

where

1.8

. . (4.25)

. . (4.26)

. . (4.27)

. . (4.28)

. . (4.29)

. . (4.30)
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Equation (4.29) provides the critical hydrostatic buckling pressure for CIPP 

encased in oval host pipes. The critical pressure is identified in terms of the liner’s 

mechanical and geometrical properties. Equation (4.29) resembles Glock’s equation 

for the case of perfect circular pipe except for the factor ‘C’ which reflects the 

reduction in the liner carrying capacity because of its ovality. The suggested ovality 

reduction factor, Equation (4.30), is dependent on the pipe degree of ovality, q, and the 

factor So/L0. Figure (4.6) presents a comparison between different ovality reduction 

factors ‘C’ suggested in ASTM F1216, Li and Guice (1995), and the proposed model 

for different degrees of ovality, q. It shows that there is a close agreement in values 

between the suggested reduction factor, Equation (4.30), and that presented in ASTM 

F1216. It also shows that the reduction factor suggested by Li and Guice (1995) gives 

lower values compared to the other models.

4.3 Experimental Work

4.3.1 Pipe Installation and Specimen 
Preparation

Eighteen (18) specimens of CIPP encased in oval steel host pipes with three 

different degrees of ovalities (Fig.4.7) were scheduled for testing. Six (6) pipes were 

tested for each degree of ovality. The tested degrees of ovality were q =  5 %, 10 % and 

20%, where q is defined in Equation (2.6). These degrees of ovality were chosen based 

on the recommendations of people working in the CIPP construction industry. They
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indicated that the most common degree of ovality they face in practice fluctuates around 

the number q =  10%.

Each test specimen was installed to fit snugly inside a 6-foot-long by 12-inch- 

initial-ID schedule 40 seamless steel casing (Fig. 4.7). The pipe size was selected to 

have a length of at least six times the original pipe diameter to minimize the possible 

effects of edge restraint at the ends. These dimensions were selected based on a 

preliminary investigation of the effect of the pipe length-to-diameter ratio on the 

resulting buckling pressure (Guice, et al., 1994).

Pipes were pressed to the required degree of ovality using a 400-ton press which 

was fitted with special jigs to ensure the roundness of the pipe at points of pressure. 

To achieve the proposed degree of ovality, each pipe was pressed twice. The first press 

was provided to bring the pipe's cross-section within the range of the required 

dimensions. Load was then removed, and the pipe was relinquished to spring up freely. 

The second press was applied to bring the pipe's cross-section to the required 

dimensions.

The materials and installations of the CIPP were provided through a contribution 

from Insituform Technologies, Inc. (ITI), Memphis, Tennessee. Before installation, 

the steel casing pipes were cleaned using compressed-air sand blasters. Steel casings 

were then treated with a release agent to minimize the bond between the liner and 

casing pipes to ensure a uniform water flow around the liner during testing. Then,
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they were shipped to Memphis, Tennessee, where the installation process took place at 

the Insituform facility under the observation of the author.

The individual casing pipes were aligned in continuous rows to allow one 

continuous installation for each product tested; see Fig. (4.8). Clamshell couplings were 

installed in between each casing with a distance of about 2 inches left between adjacent 

clamshells to allow space for cutting the liners and separating the pipes into individual 

specimens. The plastic liner was then installed in the casing pipes using standard 

procedures as recommended by m  (refer to Figs 4.9 to 4.15). During the installation, 

the liner was forced to pass through two flat plates placed between the pipe sections in 

order to provide flat specimens for conducting material characterization tests.

After the installation of the liner inside the casing pipe took place, the resin 

curing was initiated by circulating hot water inside the pipe for a period of time, as 

specified by the manufacturer, until the resin was cured. During curing, records of the 

water temperature at different places along the length of the liner and the environmental 

conditions were recorded.

The liner was cured according to the following curing schedule:

1. Ramped to 140° F and maintained at that temperature for almost 1 hour.

2. Ramped to 180°F and maintained at that temperature for about 4 to 5 hours.

3. Allowed to gradually cool down overnight prior to opening the ends.

After the resin was allowed to cool down to the ambient temperature, the liner 

was then cut apart and shipped to the testing facility. During transportation to the test
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Fig. 4.8 Pipes Were Lined Ready for Installation

Fig. 4.9 Vacuum Was Used to Impregnate the Tube with Resin
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Fig. 4.10 Tube Was Filled with Resin

Fig. 4.11 Tube Was Drawn Through Two Rollers to Ensure 
a Constant Thickness
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4
Fig. 4.14 Tube Was Installed by Inversion

Fig. 4.15 After Curing, Pipes Were Cut into Separate Specimens
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facility, the clamshells were kept on the ends of the test specimens to serve as a 

protection for the specimen ends.

Once the specimens were installed and shipped to the testing facility, several 

steps were required to prepare the specimens for pressure testing. Preparing the 

specimens for testing involved trimming the ends flush with the clamshells to enable 

removal of the clamshells. Another 2 to 3 inches were trimmed from each end after the 

removal of the clamshells to enable the end seals and stiffeners to fit. Any excess resin 

or dirt was removed, and the ends of the specimens were cleaned and made ready for 

taking measurements and end sealing.

Measurements were recorded of the liner thickness for at least three different 

locations on each end of each specimen and averaged to determine the average liner 

thickness. Measurements of the thickness were made using a micrometer, with an 

accuracy of 0.001 inch. Table (4.1) provides the recorded measurements of the liner 

thickness for each tested pipe. All measurements are recorded in inches.

After the completion of taking measurements, specimens were then fitted with 

the end seals. End seals were provided to close the gap between the liner and the 

casing pipe at each end. A short piece of steel pipe (stiffener) with diameter smaller 

than the inner diameter of the CIPP was also fitted into each end of the specimen. 

These stiffeners were made on a slightly conical shape to facilitate the installation. 

These stiffeners are provided to support the liner underneath the end seals during 

testing. These steps were followed for each specimen prior to testing.
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Table 4.1 Measurements of Liners Taken Before Short-Term Buckling Tests

Pipe
No.

End #1

Thickness Measurements 
(inch)

n  #2 #3

End #2

Thickness Measurements 
(inch)

n  n  #3

Avg.

Thickness

(inch)

5-1 0.234 0.231 0.245 0.245 0.228 0.226 0.235
5-2 0.231 0.232 0.221 0.247 0.216 0.238 0.231
5-3 0.256 0.238 0.243 0.223 0.248 0.230 0.240
5-4 0.240 0.236 0.234 0.237 0.238 0.240 0.238

5-5 0.231 0.235 0.236 0.241 0.240 0.224 0.235
5-6 0.239 0.242 0.239 0.225 0.224 0.241 0.235

Average 0.236
Standard Deviation 0.003

10-1 0.224 0.245 0.244 0.237 0.247 0.240 0.240
10-2 0.218 0.230 0.218 0.210 0.235 0.222 0.222
10-3 0.220 0.262 0.220 0.250 0.238 0.258 0.241
10-4 0.234 0.236 0.229 0.226 0.229 0.224 0.230
10-5 0.235 0.226 0.228 0.248 0.240 0.238 0.236
10-6 0.235 0.242 0.231 0.241 0.243 0.244 0.239

Average 0.235
Standard Deviation 0.007

20-1 0.213 0.237 0.252 0.226 0.228 0.230 0.231
20-2 0.212 0.217 0.228 0.268 0.270 0.258 0.242
20-3 0.220 0.217 0.230 0.224 0.246 0.217 0.226
20-4 0.233 0.234 0.235 0.226 0.243 0.237 0.235
20-5 0.241 0.240 0.226 0.239 0.231 0.247 0.237

20-6 0.221 0.254 0.238 0.210 0.230 0.220 0.229

Average 0.233
Standard Deviation 0.005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

4.3.2 Testing

After preparing the specimens for testing, an external pressure was applied 

between the host pipe and the liner from a pressurized water distribution system (Fig. 

4.16). This system uses a hydro-pneumatic pressure vessel for its source of pressure. 

This reservoir has the capacity of almost 300 gallons with a free surface that is held at 

a constant pressure by an air compressor supplying air through a regulated line. As the 

liner fails or leaks occur and water is lost from the system, the regulator ensures that 

the system pressure remains constant. When the water level drops, a level switch is 

activated which energizes two high-pressure positive displacement pumps connected to 

the city water system to bring the tank level back to full. As the water level rises, a 

pressure relief valve is activated to bleed off the excess pressure resulting from 

compressing the air pocket.

The test specimens were attached to this system through a hose controlled by a 

regulator to increase the water pressure to the required level. A pressure gauge was 

attached to this regulator to monitor the change in the water pressure and to provide 

guidance in controlling the rate of increasing the testing pressure. Two other pressure 

gauges were ported at both the inlet and the outlet of the tested specimen to define the 

pressure during testing. The reading of the two gauges was also helpful in controlling 

the rate of pressure application which was maintained at an approximately constant 

value. If a significant difference between these gauge readings was observed, the test 

was stopped and evaluated.
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Reservoir (Capacity 300 gallons, 225 psi)
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Fig. 4.16 Schematic of the Hydraulic System Used for Testing
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Before testing, the annular gap between the liner and the steel casing was bled 

to remove any air. After attaching the testing supply hose to the pipe inlet as shown in 

Fig. (4.16), the top gate valve was opened, and water was fed into the bottom of the 

specimen at very low pressure, usually 5 psi or less. This was continued for about 5 

minutes. During this time, if any end seal leaks were observed, the end seals were 

tightened. Once the water from the top of the casing was free of air bubbles, the steel 

casing was tapped with a wooden stick to remove any remaining entrapped air.

After bleeding the air, the water pressure was dropped using the regulator, and 

the outlet gate valve was closed. Initial readings for the three gauges were recorded. 

However, only the inlet and the outlet gauge readings were included in the averages 

presented in the results. The regulator was then used to raise the pressure gradually in 

the specimen. The load rate used for the tests was approximately 0.3 to 0.5 psi/sec. 

Once the test was started, the rate of load application was held approximately constant 

until failure of the liner occurred. The rate was adjusted to keep the inlet and outlet 

pressures close together. During testing, a reading of the three gauges was recorded 

every 15 seconds until failure. Once the failure occurred, the failure pressure was 

noted, and the general position of failure and the failure mode, whether buckling or 

rupture, were recorded.

During the process of conducting the tests, some specimens leaked at the end 

seals. In those situations and depending on the seriousness of the resulting leaks, the 

test was stopped. In the case of minor leaking, the test was completed since the
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pressure could be maintained between the pipe and the liner despite the leaking. In 

other specimens where the leaking was major and the pressure was not increasing 

during testing, the test was stopped until those defects were fixed. Then the tests were 

restarted at zero pressure.

4.3.3 Test Results

Table (4.2) presents the average measured liner thickness, the failure pressure, 

and the associated mode of failure for each specimen. Thicknesses are presented in 

inches while the resulting failure pressure is in psi. The measured failure pressure, P ^ , 

is typically representative of an average pressure based upon readings of gauges at both 

the inlet and the outlet ports of each specimen as shown in Fig. (4.16).

During testing, only the buckling failure mode was observed. The buckling 

failure mode is due to the instability of the liner under the effect of external pressure. 

This type of failure was always recognized by the accompanied creaking sounds which 

indicate the initiation of the buckling failure. The deformation shape in the buckling 

M ure mode always took the bulb shape, as shown in Figures (4.17) and (4.18) for the 

cases of 5% and 20% ovality, respectively.
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. . . .

Pipe
No.

Avg.
Thickness*

(inch) psi Observed Failure Mode

5-1 0.235 57.75 Buckling Failure
5-2 0.231 54.25 Buckling Failure
5-3 0.240 52.50 Buckling Failure
5-4 0.238 49.75 Buckling Failure
5-5 0.235 62.50 Buckling Failure
5-6 0.235 54.50 Buckling Failure

55.20 Average
4.05 Standard Deviation

10-1 0.240 39.25 Buckling Failure
10-2 0.222 37.00 Buckling Failure
10-3 0.241 37.50 Buckling Failure
10-4 0.230 33.00 Buckling Failure
10-5 0.236 35.00 Buckling Failure
10-6 0.239 32.50 Buckling Failure

35.71 Average
2.43 Standard Deviation

20-1 0.231 16.00 Buckling Failure
20-2 0.242 14.30 Buckling Failure
20-3 0.226 23.90 Buckling Failure
20-4 0.235 16.90 Buckling Failure
20-5 0.237 — pipe was leaking and the test was not completed
20-6 0.229 18.20 Buckling Failure

17.86 Average
3.28 Standard Deviation

* Presented values are tabulated in Table (4.1).
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Fig. 4.17 Buckling Mode of Failure (q=5 %)

Fig. 4.18 Buckling Mode of Failure (q=20%)
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4.4 Material Characterization Tests

Material characterization tests were performed to define the flexural and tensile 

properties for the CIPP system used in the experimental program. Tests were 

conducted according to ASTM D790-89 and ASTM D638-89 to determine flexural and 

tensile properties, respectively. Specimens were taken from those samples installed 

inside the flat plates placed between the pipe sections during the installation process. 

Specimens were cut from intermediate sections away from the edges to minimize the 

effects of the edge curvature on the results. Other than the basic cutting and trimming 

required for the specimens, no additional machining or surface finish alterations were 

made. An MTS servo-hydraulic test system was used for conducting tests. The 

resulting data were recorded automatically with a Keithley Data Acquisition System.

Flexural tests were conducted primarily to determine the flexural modulus of 

elasticity of the material. Three (3) specimens were tested. Tests were performed using 

the three-point test method or test method (I) as mentioned in ASTM D790-89. The 

guidelines mentioned in this specification regarding specimen dimensions were followed 

strictly. Table (4.3) includes the average measured thickness and width for each 

specimen before testing. Dimensions in this table are presented in inches.

During testing, the load-deflection data were recorded simultaneously. The 

load-deflection curve for each specimen was plotted using the recorded data, and the 

initial slope for each curve was determined and used to calculate the flexural modulus 

of elasticity. The resulting load-deflection curves for all specimens are provided in
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Appendix (A). The calculated flexural modulus of elasticity for each specimen and the 

average value for all specimens are presented in Table (4.3).

The resulting modulus o f elasticity from the tension tests along with the tensile 

strength at failure, and their averages for four (4) tested specimens are presented in 

Table (4.4). It is noticed that the average modulus of elasticity resulting from tension 

tests is higher than the average modulus of elasticity resulting from bending tests by 

8.5%.
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Table 4.3 Results of Flexural Tests.

Sample
No.

Avg.
Thickness

(inch)

Avg.
Width
(inch)

Initial Flexural Modulus of 
Elasticity 

(psi)

B-l 0.217 0.979 382,287

B-2 0.223 0.990 427,391

B-3 0.221 0.959 362,773

Average 390,817

Standard Deviation 27,061

Table 4.4 Results of Tension Tests.

Sample
No.

Avg.
Thickness

(inch)

Avg.
Width
(inch)

Tensile Modulus of 
Elasticity (psi)

Tensile 
Strength 
at Break 

(psi)

Percent of 
Elongation 
at Break

T-l 0.223 0.738 459,524 4,152 17.50

T-2 0.228 0.759 368,366 4,174 12.10

T-3 0.223 0.698 352,670 3,806 20.80

T-4 0.225 0.760 528,041 4,148 17.20

Average 427,150 4,070 16.90

Standard Deviation 71,116 153
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4.5 Analysis of Short-Term Buckling Tests

Table (4.5) presents a comparison between the short-term buckling test results 

versus different analytical models of oval pipes. The analytical models under study 

include the following:

1. the current design practice (ASTM-F1216-93) with the enhancement factor, K, 

equal to 7;

2. Glock's model (1977) with the inclusion of the ovality reduction factor, C, as 

presented in ASTM-F1216, and hereafter will be referred as modified Glock's 

model;

3. the proposed model presented in this chapter.

The average elastic modulus of elasticity as determined in the flexural tests was 

used in the analysis. The modulus of elasticity from the flexural test is most commonly 

used in practice for representing the material stiffness to predict the critical buckling 

pressure, and that practice is used here as well.

The analysis shows that ASTM-F1216 underestimates the buckling pressure of 

CIPP encased in oval host pipes for all degrees of ovalities under study. It 

underestimates the actual buckling pressure by 44% for the case of 5% ovality, 45% 

for the case of 10% ovality, and 56% for the case of 20% ovality. Since the buckling 

pressure is underestimated, this analysis is conservative from the design standpoint.

Both the proposed model discussed in this chapter and the modified Glock's 

model have shown a good agreement with the experimental results. However, the
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proposed model showed a better agreement with the experimental results for the case 

of 5% and 20% ovalities. For the case of 10%, ovality the proposed model 

overestimates the actual pressure by 20%, while modified Glock's model 

underestimates it and is closer than the proposed model to the actual value.

The analysis shows also that the proposed model overestimates the critical 

buckling pressure for all degrees of ovality, while the modified Glock’s model 

underestimates them. That might reveal the unsuitability of both oval and elliptical 

coordinates used to develop both the proposed model and modified Glock’s model, 

respectively, to study the problem.
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Table 4.5 Experimental Results versus Different Analytical Models For Oval Pipes

Degree

of

Ovality

Experimental

Results

ASTM-F1216with

K=7.0

Modified Glock's 

Model
Proposed Model

SDR.

(Avg.)

P««
(Avg.)

C
P«/

Pk,
c Per

PJ  

P^
5 LA C K

P„/

P«

5% 50.9 55.2 0.64 31.0 0.56 0.64 50.5 0.91 0.15 20 3.06 0.75 59.4 1.08

10% 51.1 35.7 0.41 19.6 0.55 0.41 32.1 0.90 0.30 15 3.00 0.54 42.7 1.19

20% 51.5 17.9 0.17 7.9 0.44 0.17 13.1 0.73 0.59 10 2.83 0.25 19.5 1.09

E = 390,817 psi
v = 0.3 (as suggested by ASTM-F1216) 
R0 = 6 inches
K = 7 (as suggested by ASTM-F1216) 
L0 = 2n R„

00
u>



CHAPTERS

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER RESEARCH (PART I)

5.1 Conclusions

Analytical models for predicting the critical hydrostatic buckling pressure of 

CIPP encased in partially deteriorated host pipes were presented. Both cases of circular 

and oval deteriorated host pipes were considered. The proposed analytical model for 

the case of circular host pipes was initially developed by Glock (1977). However, the 

derivation of this model was not complete, and the theoretical bases upon which that 

model was developed were not cited. For the benefit of future developments in CIPP 

design methodologies, Glock’s equations were reproduced, and the theoretical bases 

were referenced. The basic steps Glock used to derive his model were then followed 

to develop a similar analytical model for the case of CIPP encased in oval host pipes. 

The proposed model resembles Glock’s equation for the case of perfect circular pipe 

except for the factor ‘C’ which reflects the reduction in the liner carrying capacity 

because of its ovality. The suggested ovality reduction factor is dependent on the pipe 

degree of ovality, q, and the factor s</L0.

84
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Both Glock’s model and the proposed model for oval pipes were compared with

other analytical models versus experimental results. Based on these comparative

studies, the following conclusions are obtained:

5.1.1 Case of Circular Host Pipes

1. Glock's model has the lowest marginal error among other analytical models when 

they are compared with experimental work.

2. The results of best-fitting regression analysis for Aggarwal and Cooper data give 

coefficient and exponents for the design equation close to Glock's model.

3. ASTM-F1216, Equation XI. 1, deviated considerably from the experimental results, 

and the suggested enhancement factor ‘k’ was found to vary significantly from 

product to another.

5.1.2 Case of Oval Host Pipes

1. Only the buckling mode of failure was observed during testing. However, buckling 

is not the only mode of failure for CIPP. In fact, during a recent experimental 

study on one of the CIPP systems conducted at Louisiana Tech University, another 

mode of failure was observed. Failures were identified as splittings in the liner 

walls. The real cause for this type of failure is yet unknown. Therefore, future 

research should concentrate on studying other possible modes of failure for CIPP. 

It is also required to identify the conditions under which those modes of failure are 

initiated.
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2. There is a consistent decrease in the buckling pressure with the increase in the pipe 

degree of ovality.

3. ASTM-F1216, Equation X .l, underestimates the buckling pressure for all tested 

degrees of ovality. It deviates from experimental results by 44% for the case of 5% 

ovality, 45% for the case of 10% ovality, and 56% for the case of 20% ovality.

4. Both the proposed model and the modified Glock's model (see Section 4.5) show 

good agreement with experimental results and are closer to those results than 

ASTM-F1216, Equation X .l.

5. The proposed model overestimates the buckling pressure for all degrees of ovality 

and it deviates from the actual values by 8% to 20% of the test results. Modified 

Glock's model underestimates all values and it deviates from the test results within 

the same range as above.

While several models have been investigated and comparisons made but no final 

recommendation is made because an insufficient amount of research data is available 

to develop a final design expression at this time.

5.2 Recommendations for Further 
Research

The analytical models and test results presented in this dissertation should be 

beneficial to CIPP manufacturers in their quest for continued improvement of their 

products and designs. However, it should be emphasized that the proposed analytical 

models were derived under certain assumptions and limitations in theory. Limitations
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include the consideration of small-deflections only, linear-elastic materials, no friction 

on the interface between CIPP and the host pipe, non-linear geometry, and no 

consideration of the visco-elastic effect (creep).

Further experimental and analytical research is needed to validate the proposed 

models and to verify the behavior of CIPP systems considering parameters which were 

not included in this study, such as the following:

1. The effect of addressing other values of SDR and host pipe geometry.

2. The visco-elastic (creep) behavior of the CIPP material over time.

3. The effect of considering other degrees of ovality.

4. The effect of other types of host pipe anomalies, such as a small imperfection over 

a short length of the host pipe.

5. The effect of the size of the gap between CIPP and confining host pipe.
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CHAPTER 6

LITERATURE SURVEY

6.1 Introduction

The design of CIPP encased in fully deteriorated host pipe requires a different 

analytical approach from the case of partially deteriorated host pipe. Fully deteriorated 

host pipes are not structurally sound to carry external loads or to provide any 

appreciable support for the encased CIPP. In that case, the host pipe is disregarded in 

the design, and it is assumed that the CIPP interacts with the surrounding soil to carry 

the applied loads and the CIPP is designed as a buried pipe.

This part of the dissertation is devoted to studying the problem of CIPP encased 

in fully deteriorated host pipe. It consists of Chapters 6, 7, and 8. Chapter 6 presents 

a classification for different buried pipes, sources of supporting strength for each case, 

and a literature survey for the available analytical methods for those types of structures. 

Chapter 7 presents a new approach for the design of CIPP encased in fully deteriorated 

host pipe. This approach utilizes Vlasov’s variational method to model the pipe-soil 

system. Chapter 8 ends Part II by providing conclusions and recommendations for 

further research.

89
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6.2 Classification of Buried Pipes

Buried pipes are usually classified according to their structural performance as 

either rigid or flexible. In the design of rigid pipes, the pipe itself is the basic structure 

which is designed to support the soil loads and the surface loads. In marked 

contradiction, a very flexible pipe serves as a form to retain the shape of the 

passageway in soil or as a boundary condition for the soil around the pipe, but the soil 

itself becomes the basic load-carrying structure. In between these two extreme cases, 

there are the cases of different relative flexibility between structure and soil (Watkins 

1964).

Buried flexible pipes are those buried pipes which by definition exhibit yielding 

or other noticeable structural deformation immediately at the first sign of load. They 

continue this yielding or reduction in volume behavior throughout the rising load cycle. 

A pipe is considered flexible if it experiences at least 2% deflection under the effect of 

loading, without any structural distress such as rupture or cracking. In contrast, rigid 

pipes are those pipes which by definition undergo negligible deformation upon loading, 

almost 2% deflection as the maximum limit without exhibiting any rupture or excessive 

cracks (Watkins 1964). Most CIPP are manufactured from materials which can endure 

2% of deflection or more without expressing any rupture or cracking. Therefore, for 

most practical purposes, the CIPP encased in fully deteriorated host pipe should be 

designed as a buried flexible pipe.
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6.3 Sources of Supporting Strength 
of Buried Pipes

In general, buried pipes derive their ability to support the earth above them from 

two sources: first, the inherent strength of the pipe to resist the external loads and, 

second, the lateral pressure of the soil at the sides of the pipes. Lateral pressure 

produces stresses in the pipe ring in opposite directions to those produced by the 

vertical loads and, thereby, assists the pipe in supporting the vertical loads.

In rigid pipes, the inherent strength of the pipe is the predominant source of 

supporting strength. The only lateral pressure that can be safely depended upon to 

augment the load-carrying capacity of the pipes is the active lateral pressure of the soil 

(Spangler 1973). Rigid pipes deform very little under the vertical loads, and, 

consequently, the sides do not move outward enough to develop any appreciable passive 

resistance pressure. In flexible pipes, the pipe itself has relatively little inherent 

strength, and a large part of its ability to support vertical load is derived from the 

passive lateral pressure induced as the sides move outward against the soil. The ability 

of a flexible pipe to deform readily and thus utilize the passive soil pressure on the sides 

of the pipe is its principle distinguishing structural characteristic and accounts for the 

fact that these relatively lightweight, low-strength pipes can support earth fills of 

considerable height without showing evidence of structural distress (Spangler 1973).
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6.4 Pipe Design Criteria

Design criteria are usually established by the design engineer based upon 

required performance and capability of a specified product. When the capability of a 

product is reached or exceeded, it is said that a design limit has been reached (Moser 

1990).

For buried pipes, design limits are the ones at which the buried pipe fails. 

Failure is directly related to either stress, strain, deflection, or buckling. It is not 

implied that stress, strain, deflection, and buckling are independent, but only convenient 

parameters on which to focus one's attention. Failure here refers to collapse rather than 

merely M ure to function satisfactorily under service conditions. Causes of failure of 

buried pipes are widely varied and dependent upon many factors such as the soil 

stiffness, pipe stiffness, and loading distribution. According to Luscher and Hoeg 

(1964) and Moser (1990), failure may be initiated due to:

1. wall crushing;

2. excessive deformation leading to caving-in of the crown of the tube;

3. overall elastic buckling of the tube wall under hoop stresses or local instability, for 

instance, as demonstrated by snap-through buckling caused by local decrease in 

curvature; and,

4. formation of yield hinges caused by excessive bending or hoop stresses in the tube 

wall, and collapse occurring when a mechanism develops.
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Wall crushing failure is more likely to occur in the case of buried rigid pipe, 

whereas excessive deformation and/or buckling modes of failure are more likely to 

occur for buried flexible pipes.

Limiting the pipe deflection under the effect of loads is the design criterion 

employed in the Iowa formula (Spangler 1941), as discussed later. The ring 

compression theory (White and Layer 1960) adopted pipe wall crushing or yielding 

caused by excessive hoop stress as a design criterion. Both the Iowa formula and ring 

compression theory have a different point of view about which design limit would occur 

first and cause the pipe to fail. A successful design, however, should consider all 

possible modes of failure, and the designer should use his or her experience and 

judgment to predict those possible modes of failure for each particular case. 

Disregarding any possible mode of failure during the design process might result in 

unsafe designs.

6.5 Related Research

6.5.1 Semi-Empirical Methods

It is generally recognized that Marston (1913) was the first researcher to bring 

some engineering insight to the design and analysis of underground conduits (Katona 

1993, and Linger 1972). Prior to that time, pipes were installed with limited structural 

design. Marston was the first researcher to recognize that the loading on an 

underground structure is dependent on the interaction of the structure and the 

surrounding soil. His main contribution was to estimate the net vertical soil force
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acting on the buried conduit. In 1913, he published the Marston theory on soil drainage 

pipes (Marston 1913). This theory assumes that the soil load on the underground 

conduit is due to a prism of soil whose movement relative to the adjacent soil develops 

and imposes the load on the conduit. This theory clearly takes into account the relative 

deflection of the pipe and the settlement of the soil.

Despite the effort to consider the soil-structure phenomenon in the design of 

buried pipes, this effort stopped short at only considering the influence of this 

phenomenon on applied loads. The design of buried pipes, at that time, was based on 

comparing vertical loads, calculated using Marston’s theory, with the pipe carrying 

capacity under a three-edge bearing test. Neglecting the interaction between pipe and 

soil, created as a result of the pipe lateral deflection towards the soil which invokes the 

soil support for the pipe, made this design methodology applicable only to the design 

of buried rigid pipes such as clay tile or concrete.

For the design of flexible pipes, the earliest development was based on empirical 

equations using the results of the American Railway Engineering Association 

investigation (Linger 1972, AREA, 1926). Design tables were developed for the pipe 

thickness and diameter for various heights of fill. These tables were based on the 

assumption that failure occurred when the pipe deflection reached 20% of the diameter. 

For design purposes, the deflection was limited to 5% of the diameter, thus providing 

a safety factor of 4. It is interesting to note that no attempt was made to correlate the 

load-carrying capacity with soil characteristics.
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As highway construction increased during the 1930s, the use of larger and more 

costly drainage structures grew rapidly. The need for a more rational concept for the 

design of flexible pipes was observed by Spangler, a former student of Marston. 

Spangler observed that the Marston theory for calculating loads on buried pipes was not 

adequate for flexible pipe design. Spangler noted that flexible pipes provide little 

inherent stiffness in comparison to rigid pipes, yet they perform remarkably well when 

buried in soil (Spangler 1941). This significant ability of flexible pipes to support 

vertical soil loads is derived from the lateral pressure of the soil at the sides of the 

pipes, which produces stresses in the pipe ring in opposite directions to those produced 

by the vertical loads (Spangler 1973, Luscher and Hoeg 1964). These considerations, 

coupled with the idea that the ring deflection may form a basis for flexible pipe design, 

prompted Spangler to study flexible pipe behavior to determine an adequate design 

procedure. His research and testing led to the derivation of the Iowa formula published 

in 1941.

Based on Marston1 s theory, Spangler estimated the amount of uniformly 

distributed load at the top of the pipe. He also assumed a uniform pressure over part 

of the bottom, depending upon the bedding angle. On the sides, he assumed that the 

horizontal pressure on each side would be proportional to the deflection of the pipe into 

the soil. The constant of proportionality was called the modulus of passive resistance 

of the soil. Through analysis, he derived the Iowa formula:

D ,K W R 3
A X  ----- =------  . . (6.1)

E l  ♦  0.061 eR*
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where

ax =  horizontal deflection or change in diameter, in.;

Dl = deflection lag factor;

K =  bedding constant;

Wc =  Marston's load per unit length of pipe, lb/in.;

R = mean radius of the pipe, in.;

E = modulus of elasticity of the pipe material, lb/in?;

I = moment of inertia of the pipe wall per unit length, in4/in.;

e = modulus of passive resistance of the side fill, lb/(irf)(in.).

Although the Iowa formula, Equation (6.1), was derived mainly to calculate the 

horizontal deformation of buried pipes, Spangler (1941) assumed that the vertical 

deflection of buried pipes is equal to the horizontal deformation. However, it is well 

recognized that the vertical deformation is always greater than the horizontal 

deformation (Howard 1981). Equation (6.1) can be used to predict deflections of buried 

pipes if the three semi-empirical constants ‘K ,’ ‘Dl, ’ and ‘e’ are known. For design 

purposes, it is recommended that the pipe deflection should not exceed a certain 

percentage of the nominal pipe diameter. For example, in the case of corrugated steel 

pipes the calculated deformation should not exceed 5 % of the nominal diameter (Moser 

1990).
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The bedding constant, K, varies with the angle of bedding achieved in the 

installation. A list of the bedding constants, K, for various values of the bedding angle 

was determined theoretically by Spangler and published in 1941 (Spangler 1941).

The deflection lag factor, Dl, incorporated in Equation (6.1) was proposed by 

Spangler to take into consideration the continuous yielding of the soil at the sides of the 

pipe in response to the horizontal pressures over a considerable period of time. This 

yielding results in a continuation of the pipe deformation to a value beyond that which 

is primarily attributable to the vertical load (Spangler 1973). His experience had shown 

that deflections could increase by as much as 30% over a period of 40 years (Moser 

1990). For this reason, Spangler recommended the incorporation of a deflection lag 

factor in the Iowa formula. The lag factor cannot be less than one, and it depends upon 

the quality of the soil at the sides of the pipe. A well-graded dense soil will permit very 

little, if any, residual deflection, and the lag factor can safely be ignored, while a loosely 

placed soil may induce a relatively large deflection lag. For well-compacted backfill 

soil, a deflection lag factor of about 1.25 was recommended for design purposes by 

Spangler (Spangler 1973).

In 1958, Reynold K. Watkins, a graduate student of Spangler, investigated the 

modulus of passive resistance. The analysis determined that ‘e’ could not possibly be a 

true property of the soil in that its units are not those of a true modulus (Watkins and 

Spangler 1958). As a result of Watkins' effort, another soil parameter was defined.
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This was the modulus of soil reaction, £ =  eR. Consequently, a new formula called 

the modified Iowa formula was proposed.

D .K W R 3
* *    . . (6.2)

E l  ♦  0.061 ER3

Several research efforts have attempted to measure the modulus of soil reaction, 

£, without success. The most useful method involved the measurement of deflections 

of a buried pipe for which installation conditions were known, followed by a back- 

calculation through the Iowa formula to determine the effective value of £ (Moser 

1990). This approach requires assumed values for the load, the bedding factor, and the 

deflection lag factor. Inconsistent assumptions led to a wide scatter in reported values 

of £.

Howard (1981) introduced a new equation to calculate the vertical reaction of 

flexible pipes. In this equation, referred to as the USBR equation, the percent of 

vertical deflection is calculated rather than the horizontal deflection since it is of the 

most concern and the easiest to measure. The USBR equation is strictly an empirical 

formula based on back-calculated parameters from reported measurements on field 

installations of flexible pipes. The empirical parameters used in this equation were 

evaluated assuming a prism load on the pipe and using a pipe stiffness represented by 

the expression EI/R3. The equation is written as follows:

A T(% ) - T —° ? Y-— ► c l/ (6  3 n
r  EUR3 ♦  S,Df  1 f  •  •
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where

AY 2 percent vertical deflection;

Tf = time-lag factor, dimensionless;

0.07 = combination of conversion factors and bedding constant, ftVin2;

Y = back-fill density, lb/ft3;

h = depth of cover, ft. ;

R = pipe radius, ft.;

EI/R3 = pipe stiffness factor, lb/in2;

= soil stiffness factor, lb/in2;

Df = design factor, dimensionless;

cf = construction factor, percent vertical factor;

h = inspection factor, percent vertical deflection.

Equation (6.3) should be used only when the depth of cover is less than 50 feet 

and the trench wall support is as good as or better than the pipe bedding (Howard 

1981). The various parameters used in Equation (6.3) provide many options as to how 

the equation may be used. Either the average or the maximum vertical deflection can 

be predicted. Both the predicted initial and long-term deflections can be calculated.

Both the Iowa formula and the USBR formula use the same design criterion for 

buried flexible pipes. This criterion assumes that the pipe will fail because of excessive 

deformations. In 1960, White and Layer proposed the ring compression theory as an 

alternative criterion for the design of buried flexible pipes. This theory assumes that
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the ring deflection of the structure is negligible and that failure occurs by crushing of 

the pipe walls. It also assumes that the load is distributed uniformly around the pipe, 

and it neglects the existence of the surrounding soil as an additional support for the 

pipe.

The major drawback of these traditional methods is that they are not based on 

the mechanics of pipe-soil interaction. They are rather based on observations and 

approximations obtained from a large number of laboratory tests on conventional pipes 

(Katona 1993). Although the Marston/Spangler approach still represents the most 

popular design method for conventional pipes, it has limitations because of its empirical 

nature. This limitation restricts its applicability to pipe products whose scale, shape, 

or materials are outside the parameters of the Marston/Spangler approach. 

Consequently, the Marston/Spangler approach may not be applicable to new innovations 

in pipelines installation such as those in trenchless technology.

6.5.2 Elasticity Solution

Bums and Richard (1964) realized the shortcomings in the Marston/Spangler 

methodology and formulated one of the earliest known closed-form solutions of the 

problem. Bums and Richard’s solution (1964) is suitable for the case of an elastic, very 

deep cylindrical pipe encased in an isotropic, homogeneous infinite elastic medium with 

a uniformly distributed pressure acting on a horizontal plane far from the pipe. Two 

solutions for the soil-pipe interface conditions, bonded and unbonded interfaces, were 

developed. In the case of bonded interface, it is assumed that the shear stress and the
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radial forces are transmitted on the interface between the pipe and the surrounding 

continuum. For the case of unbonded interface, no shear stress is transmitted on the 

interface between soil and pipe. Equations for the interaction radial pressure, pipe 

radial deflection, moment, and thrust for both cases of bonded and unbonded interfaces 

were developed. Hoeg (1968) used an elastic model and formulated a solution similar 

to that proposed by Bums without imposing a specific value for the soil lateral pressure 

coefficient.

Two recent studies of pipe-soil interaction (Galili et al. 1978; Shmulevich 1980) 

compared experimental data with the existing theories. The results show that both the 

analytical and semi-empirical methods reported above are not applicable for a wide 

range of pipe-soil stiffness ratios, especially in the intermediate range of semi-flexible 

pipes. The solutions proposed by Bums and Hoeg are not adequate for the following 

reasons:

1. Solutions are limited to the case of an infinitely distributed surface pressure 

neglecting other load cases.

2. The effect of soil overburden pressure on the stress values is neglected.

3. They are valid for the case of very deep pipe neglecting the existence of the upper 

surface as a boundary condition.

Galili and Shmulevich (1981) realized the limitations in the Bums and H5eg 

solutions and proposed a refined model for the problem which gives good agreement 

between analytical and experimental work. Their proposed refinement does not depend
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on a modification of the theory; instead it depends on proposing more realistic boundary 

conditions by substituting for the soil lateral pressure coefficient a value gathered from 

experimental work. This proposed solution gives good agreement with the experimental 

work; however, its application is limited only to the cases considered in their 

experimental work.

Both solutions presented by Bums (1964) and Hoeg (1968) can be used to design 

buried flexible pipes using either limiting pipe wall deflections or stress as a design 

criterion. More rigorous research (Luscher and Hoeg, 1964) proved that the excessive 

deflection or hoop stress are not the only failure patterns of buried pipes, and the 

buckling failure may take place especially in the case of thin-walled pipes.

6.5.3 Buckling Theories of 
Buried Pipes

A flexible pipe buckles when compressive force acts to reduce the pipe flexural 

stiffness so that there is no resistance to lateral movements. In the case of buried 

flexible pipes, the surrounding soil increases significantly the buckling strength of the 

pipe. It is not possible to determine the buckling strength of a buried pipe merely by 

considering only laboratory tests on the unsupported structure. Neither is it feasible to 

test each structure individually in the field. Theoretical models are therefore needed to 

quantify the buckling behavior of buried flexible pipes, and these should be verified and 

calibrated using field and laboratory test data.
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Much research has been done to investigate the conditions under which the 

buried pipe loses its stability. This research is categorized either as unconfined 

(unsupported) pipe theories or confined pipe theories. Details of each category are 

presented in the next sections.

6.5.3.1 Unconfined Pipe Buckling 
Theories

The classical buckling formula of an unconfined ring is presented in Chapter 2 

(Equation 2.3). This equation, widely known as Timoshenko’s equation, assumes the 

critical external pressure to be applied hydrostatically and that no support whatsoever 

exists around the pipe. Allowing the load to be applied hydrostatically neglects the 

change, during deformation, of the magnitude and direction of the applied pressure on 

the magnitude of the buckling load. It is well known, however, that small alterations in 

the character of the applied loads may change the magnitude of the buckling load 

considerably.

Boresi (1955) has shown that the coefficient in Timoshenko’s equation would 

be 4.5 instead of 3 if the external pressure is assumed to remain directed towards the 

pipe center during deformation. Bodner (1958) showed that the coefficient would be 4 

if the external load maintained a constant direction during deformation.

Armenakas and Herrmann (1963) introduced a more rigorous expression for the 

critical external pressure which may induce buckling in the ring by considering the ring 

as a cylindrical shell. A solution for the problem based on their theory of bending of
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the cylindrical shell under the influence of a general state of initial stress was presented. 

The proposed expression for the critical pressure is

= etth 3
. . (6.4)

k ^— ; and k. = n 2- l
c 1.25 ‘

where k,. and k h are coefficients related to the constant and hydrostatic loading cases, 

respectively, and,

R = pipe mean radius;

n =  number of circumferential waves and should be an integer;

D = pipe flexural rigidity (EtVl2 (l-v2); 

v = pipe Poisson’s ratio; 

t =  pipe wall thickness;

E =  pipe flexural modulus; and,

S = t/2R.

The advantage of Armenakas and Herrmann’s equation is that the coefficients 

k,. and k b are not fixed values, as is the case in Timoshenko’s equation and others; 

rather, they are functions of the pipe dimensions and the buckling mode. In order to 

compute these buckling coefficients for a shell with specific dimensions, it is necessary 

to establish the buckling mode. The authors introduced a set of charts to determine the

buckling mode for each case. These charts are an extension to a work done previously

by Windenburg and Trilling (1934).
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6.5.3.2 Confined Pipe Buckling 
Theories

The aforementioned buckling models do not address the pipe confining soil as 

an additional support enhancing the pipe capacity to resist the applied loads. One of the 

earliest works which addresses the soil existence was developed by Meyerhof and 

Baikie (1963). Their work is based on the extension of the theory of elastic stability of 

plates to the problem of curved sheets supported by an elastic medium. Through 

analysis they proved that

kEIN . . (6.5)

where Ncr = critical hoop force, and,

k = soil coefficient of subgrade reaction.

The other terms were described before. Equation (6.5) is derived for buckling modes 

higher than the first buckling mode. Meyerhof and Baikie proved that the critical hoop 

force is practically independent of the radius of the pipe for good compaction of the 

back-fill.

Luscher (1966) presented a study in which buried flexible pipes were confined 

by a thick-walled soil cylinder and the system was brought to failure by applying 

external, uniform, static radial pressure. A theoretical expression for the buckling 

resistance of the pipe-soil system was derived. Through the analysis, soil is modeled as 

a series of independent springs resisting the radial deformation of the pipe. The soil 

modulus of elastic support was presented as a function of the geometrical and
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mechanical properties of the confining soil. The critical hoop force in the pipe wall 

which causes the pipe instability is given by

where all parameters are as mentioned before.

Forrestal and Herrmamn (1965) presented the first solution of the stability of 

buried pipes in which soil was presented as an elastic continuum. The loading on the 

pipe is assumed to be exerted by the surrounding soil as a uniform external pressure. 

The critical external pressure for both cases of bonded and unbonded interfaces were 

presented in the study.

Duns and Butterfield (1971) introduced another solution for the problem 

considering soil as an elastic continuum surrounding the pipe. The critical hoop force 

in this case is given by

Since ‘n’ must always be a whole number, the critical mode number for a 

particular pipe geometry will be the nearest integer not greater than the ‘n’ value 

satisfying Equation (6 .8).

. . (6.6)

N  -  k ( - Y  ♦ D ( — )2 
rt R . . (6.7)

where

E t 3 . . (6 .8)
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Moore and Booker (1985) presented a solution for the instability of buried 

flexible pipes. Soil was presented as an elastic medium around the pipe. The uniform 

hoop force which leads to the pipe instability is given by

Ncr '  J ♦ 2GtR
R

2n (l-v j)-( l-2v j)

n2(3-4vj) . . (6.9)

where Gs is soil shear modulus and vs is the soil Poisson’s ratio. Equation (6.9) is valid 

for the case of rough pipe-soil interface, i.e. no slip along the interface is permitted. 

For the case of smooth interface, the critical hoop force is given by

^ • ( n 2- 1 ) ^ - 2  G,RRl
1

2n(l - Vj)+(1 -2vj) . . (6 .10)

6.5.4 Finite Element Methods (FEM)

The finite element analysis (FEA) technique was developed for computer 

analysis of complex structural systems. The technique was developed to analyze 

structural responses to different loading conditions. Through the years, the technique 

has been extended through rigorous mathematical formulation of element behavior. It 

has proven to be a useful tool in research and in everyday engineering analysis.

One area where the use of FEA has been promoted is in soil-structure interaction 

mechanics. The finite element analysis for soil-structure interaction problems varies in 

several ways from finite element analysis of simple linear elastic problems as follows 

(Moser 1990):

1. The soil properties are strain dependent (nonlinear).
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2. For flexible pipes, the structure may be geometrically nonlinear.

3. It may be necessary in some instances to allow movement between the soil and the 

walls of the pipe.

A number of FE computer programs have been developed to solve the problem 

of the soil-structure interaction. CANDE (Katona et al. 1976), SPIDA (Selig 1982), 

and SSTIPN (Moser 1990) are some examples of the available programs. These 

software packages model the pipe-soil system as a two-dimensional problem. The pipe 

is represented by either a beam or bar element, and the soil is modeled as a linear or 

a nonlinear material. These programs could also address the incremental load stages 

applied during the construction phases.

Despite the similarities between these FE programs they are different in many

details:

1. The capability to incorporate some special features in the solution, such as 

predicting the shear or the tension failure in soil.

2. The capability of meshing the problem and representing different installation and 

bedding conditions.

3. The capability to incorporate interface elements to allow movement between the soil 

and the structure.

FEM in soil-structure interaction has many advantages over the closed-form 

elastic solutions, such as its ability to represent different culvert installations and 

different types of loads. However, the FEM results are only as good as the ability of
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the software to model the behavior of soil structure interaction. The user should have 

a good knowledge of the FEM and the theory of elasticity, which may be beyond the 

expertise of many design engineers. Available FEM packages certainly offer the 

engineer a powerful tool for comprehensive analysis of pipe-soil systems but may not 

be suitable to meet the needs of the design engineer for a straight-forward, analytical 

design tool. Therefore an easy, rather accurate, method for determining stress and 

displacement in the pipe wall under any level or type of loads is needed.

6.5.5 Current Design Practice

The current design practice for CIPP installed in fully deteriorated host pipes is 

presented in ASTM F1216-93, Equation X1.3. This equation was adopted from 

ANSI/AWWA C950 by adding the ovality reduction factor, C, as presented in Chapter 

2, and using a design safety factor of 1.5, rather than the AWWA safety factor of 1.8. 

The AWWA equation was a modification of an equation developed by Lusher (1966) 

to predict the buckling pressure of buried flexible pipes. Therefore, this equation uses 

the buckling failure as a design criterion. ASTM F1216, Equation X I.3, requires that 

the CIPP is designed to support hydraulic, soil, and live loads as follows:

qt . £.[32RwB'E't (.!¥)]'n . . (6.11)

where

qt =  total external pressure on pipe, psi (MPa);

=  water buoyancy factor (0.67 minimum);
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= 1-0.33 OVH);

1^  =  height of water above top of pipe, ft(m);

H =  height of soil above top of pipe, ft(m);

B- =  coefficient of elastic support;

=  l/( l+ 4 e '0065H) inch-pound units, 1/(1 +4e‘°-2I3H) SI units;

I = 13/12 - moment of inertia of CIPP, iriVin. (mmVmm);

t = thickness of CIPP, in. (mm);

C = ovality reduction factor, as presented in Chapter 2, Equation (2.5);

N = factor of safety;

Es = modulus of soil reaction, psi (MPa);

El = long-term modulus of elasticity for CIPP, psi (MPa); and

D = mean inside diameter of original pipe, in. (mm).

The maximum anticipated groundwater height, H„, and the soil height, H, 

should be measured or estimated for design. The value for Ej, should be selected on the 

basis of soil explorations and site engineering judgment. The ASTM further provides 

in Equation X I.4 that the maximum permissible SDR be determined by a minimum 

thickness as calculated using the short-term flexural modulus of elasticity, as follows:

— ------------    i  0.093 (US Units) ; * 0.00064 (SI Units) 121
D 1 12 (SDK? K }

where E = initial modulus of elasticity;

SDR = standard dimension ratio (D/t).
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The major shortcomings of ASTM F1216-93 for the design of CIPP installed on 

fully deteriorated host pipes are

1. There are no guidelines for calculating the external loads, q; rather, it is dependent 

on the designer’s judgment.

2. The solution uses the modulus of subsoil reaction, which is very difficult to obtain 

accurately, to represent the surrounding soil.

3. The procedure uses the pipe failure by buckling as the only design criterion and 

neglects other expected failure criteria.

4. In most cases, deteriorated pipes are leaky pipes, which allow for the infiltration of 

groundwater and fine particles from the soil surrounding the pipe. This immigration 

of fine particles creates voids and changes mechanical properties in the pipe 

surrounding area. Therefore, representing soil with one value of subgrade reaction 

modulus which neglects the change in the mechanical properties in the pipe 

surrounding soil might lead to unsafe designs. Another method which could take 

into consideration the difference in mechanical properties between the pipe 

surrounding soil and the entire soil medium is needed.

6.5 Research Need

Based upon a thorough literature review, it can be concluded that the current 

methods of analysis of buried flexible pipes are classified into four main groups. The 

first group includes the conventional solutions of the problem, such as the Iowa 

formula, the USBR equation, and the ring compression theory. The second group is
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the elasticity solutions developed by Burns and Richard (1964) and Hoeg (1968). The 

buckling theories of buried flexible pipe represent the third group of the available 

solutions for the buried pipes problem while the finite element approach is the fourth 

group.

It can be concluded that the available analysis methods of buried flexible pipes, 

excluding the finite element methods, are neither accurate enough for the design 

purposes nor flexible enough to consider the new innovation in the construction 

technique for the following reasons:

1. Both the Iowa formula and the USBR equation have been derived based on the 

results of extensive experimental works; therefore, they are empirical formulae with 

preliminary analysis involved. The disadvantages of these methods arise from their 

empirical nature which limits their scope of application inside the range of the pipes' 

dimensions and properties used in the experimental work (Katona 1993). In 

addition, they are derived mainly for conventional construction methods, such as the 

open-cut and embankment construction methods.

2. The ring compression theory developed by White and Layer (1960) neglects the 

existence of the surrounding soil as a boundary condition. It also assumes that the 

applied loads are exerted on the pipe uniformly distributed around the pipe 

peripheral.
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3. The elasticity solutions (Burns and Richard, 1964, and Hoeg, 1968) suffer from 

major drawbacks, such as the neglect of the soil’s own weight and the pipe burial 

depth, and their limitation to only one loading case.

4. Both the conventional methods and the buckling theories, including the current 

design practice ASTM F1216-93 rely on unrealistic parameters, such as the subsoil 

modulus reaction which has been proved, through years of experience, to be very 

difficult to obtain accurately and precisely (Vallabhan and Das 1988).

5. The current design practice shortcomings include the failure of providing provisions 

for calculating the applied loads and considering the other possible failure criteria.

6 . All solutions including the current design practice do not reflect the change in the 

mechanical properties of the pipe surrounding soil. The phenomenon results from 

the groundwater infiltration into the leaky pipe and washes out the fine particles 

from the surrounding soil.

A comprehensive solution based on the principles of mechanics of the soil-pipe 

interaction and which is flexible enough to accommodate field conditions and to 

eliminate most of the drawbacks of current available methods is needed. In the next 

chapter, a new approach for the static analysis of buried flexible pipes based on the 

well-known Vlasov’s model will be presented. The suggested solution has the 

following advantages:

1 . it eliminates the use of the subsoil subgrade modulus and replaces it with parameters 

based on the measurable soil mechanical properties;
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2 . it considers the effect of the pipe burial depth and treats the soil top surface as 

boundary condition;

3. it is based on solid principles of mechanics;

4. it addresses the variation on the mechanical properties of the pipe surrounding soil;

5. it can be modified to address different type of loads; and,

6 . the solution is developed to study the statics (stress and deflection) of the flexible

buried pipes; however, it is possible to modify the solution to address the stability 

of those structures.
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CHAPTER 7

STATICS OF BURIED FLEXIBLE PIPES

7.1 Introduction

In the previous chapter, a literature survey of the analysis of buried flexible 

pipes was presented. The primary conclusion of Chapter 6 is that the available 

analytical methods of buried flexible pipes are neither accurate enough for design 

purposes nor flexible enough to consider the new innovations in construction 

techniques. A new solution for the problem which could overcome the shortcomings of 

the available analytical methods is needed.

The purpose of this chapter is to present a new approach for the static analysis 

of buried flexible pipes. This approach uses Vlasov's soil model (Vlasov and Leont'ev 

1966) as a basis to solve for the problem. The presented analysis is valid for the case 

of an elastic, thin, circular pipe buried in an elastic, homogeneous, isotropic soil and 

loaded by a concentrated force acting on the soil top surface.

The solution is limited for medium to deep buried pipes with burial depths 

greater than one pipe diameter measured from the soil surface to the pipe crown. More 

details regarding this type of limitation are presented through the analysis.

115
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7.2 Vlasov’s Soil Model Versus 
Other Soil Models

The design of buried pipes is considered a soil-structure interaction problem. 

The field of soil-structure interaction, in general, is constantly advancing to new levels 

of knowledge and rigor. Many soil-structure interaction models have been developed 

in the last few decades. None of these models can be said to represent definitely the 

soil behavior completely and precisely. The degree of precision of each model depends 

on the assumptions used in the solution.

Winkler (1867) introduced his model to solve for the internal forces of an 

infinitely long beam resting on soil. His solution carries the assumption that the soil 

exhibits linear elastic behavior and the pressure on the surface is proportional to the 

deflection of the soil surface under the load as follows:

P = k w  . . (7.1)

where

p  =  applied pressure;

k  = modulus of subgrade reaction; and,

w =  surface deformation of the soil.

In this model, soil is symbolized by a series of vertical springs without any 

mutual interaction between them. The constant of proportionality, k, of these springs 

is known as the modulus of subgrade reaction. Winkler’s model (1867) is a one- 

parameter soil model, since it uses one parameter, k, to define the soil capacity of 

carrying surface loads.
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The modulus of subgrade reaction, k, is a dependent on many other factors. 

Among these factors are the type of load, the loaded area, soil properties, and the depth 

of soil stratum. It is practically impossible to define a unique value for this modulus for 

a given type of soil.

Using the concept of unrelated vertical springs to represent the soil has the 

disadvantage of neglecting the soil shear carrying capacity. Shear stresses are developed 

in the subsoil if the vertical displacements between adjacent springs vary. Neglecting 

soil shear-carrying capacity is the major drawback of Winkler’s model (1867). This 

shortcoming has led to non-conservative designs in many practical cases, specifically 

in the case of uniformly distributed surface loads (Vallabhan and Das, 1988).

Realizing the inconsistency in Winkler's model, many researchers have 

attempted to account for the shear capacity of soil. Filonenko-Borodich (Kerr 1964) 

assumed that the top ends of the spring elements are connected to an elastic membrane 

subjected to a constant tension ‘T .’ The load-displacement relation in this case is

p = k w -  TV2w . . (7.2)

where V 2 is the Laplace operator. The interaction between the spring elements in

Filonenko-Borodich's model is characterized by the intensity of the tension field ‘T ’ in

the membrane.

Hetenyi (Kerr 1964) in his model accomplished the interaction between the 

independent spring elements by imbedding an elastic beam or plate in Winkler’s model.
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It is assumed that the beam or the plate deforms in bending only. The relation between 

load ‘p’ and deflection for the three-dimensional case is

p = kw+DV2 V2w •• (7.3)

where V2 V1 is the biharmonic operator. In this case, the interaction of the spring

elements is characterized by the flexural rigidity of the plate, D.

Pasternak (Kerr 1964) used a series of compressible vertical elements capable

of resisting transverse shear. In this case, the load-displacement relation is

p = kw -  GV2 w . .  (7.4)

The second term on the right-hand side of Equation (7.4) is the effect of the shear

interaction of the vertical elements.

Equations (7.2), (7.3), and (7.4) represent the group of two-parameter soil

models. These two parameters are the soil modulus of subgrade reaction, k, and the

shear modulus which has been represented by the mechanical properties of either a

membrane, a beam, or a plate.

Representing soil with two different parameters without any interrelationship

between them and the elastic properties of soil is the main shortcoming in this group

of soil models.

Vlasov and Leont'ev (1966) introduced a model for analyzing structures on 

elastic foundations based on the variational principles of mechanics. This model is 

widely known as Vlasov’s soil model. Vlasov and Leont'ev’s model is significant in its 

ability to fine tune the solution according to prior experience or experimental data
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describing the phenomenon under consideration. This, of course, can ease the 

correlation between any experimental work and the analytical solution for most practical 

purposes.

The general concept of Vlasov's model relies on expending the unknown soil 

displacements in finite series as follows:

h(*jO - *-l,2 ....m . . (7 .5)

vOyO - E t W  $*0 ) k l ,2 ..../i . . (7 .6 )

where u(x,y) and v(x,y) represent the displacement at any point within the soil mass in 

the horizontal and vertical directions, respectively. The functions Ut (x) and V k (x) 

represent the components of displacements at the soil surface, and the functions ip, (y) 

and <j> fc (y) represent the distribution of the displacements within the soil mass in the 

vertical direction (Fig. 7.1).

The advantage of using Vlasov's variational method lies in the fact that using a 

finite series to represent the unknown displacements allows the analyst to have an input 

in the solution by assuming the shape functions. These functions can be chosen to 

simulate properly the field conditions based on past experience or field experimental 

results. It is often convenient to introduce those functions in dimensionless format, and 

(x) and Vk (x) will then have the dimension of length.

Assuming the shape function reduces the problem to find a solution for the 

surface displacement functions U, (x) and Vk (x). This is equivalent to reducing the 

problem to a system of a finite number of degrees of freedom in one direction and an
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infinite number of degrees of freedom in the other direction. This means that the 

problem has been transferred from a two-dimensional to a one-dimensional problem.

Using this approach, Vlasov solved a wide range of soil-structure interaction 

problems. In his solutions, soil properties were described by two generalized elastic 

parameters. Therefore, this model is considered a two-parameter model. The 

advantage is that these two parameters are interrelated and dependent on the elastic 

properties of soil and structure, and the depth of the soil layer.

Increasing the number of terms in Equations (7.5) and (7.6) is, however, 

undesirable, since an increase in the number of the differential equations would result. 

The accuracy of the solution could also be increased by a better selection of the shape 

functions ^  (y) and <t> k (y) (Vlasov 1966). Therefore, as an approximation, it is always 

convenient to limit the series to only one term.

7.3 Vlasov's Model Applied to 
Buried Pipes

7.3.1 Assumptions

Generally, the following assumptions are used throughout the solution:

1. Two-dimensional plane-strain geometry is used.

2. Soil is represented by a linear, elastic, homogeneous, isotropic material.

3. Thin shell theory is used to describe the pipe behavior.

4. Small strain theory is employed.
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5. Static plane loading conditions exist with no loads applied in the out-of-plane 

direction.

6 . Full contact between the pipe and the surrounding soil is assumed to exist.

Plane strain implies that the pipe installation is a long, prismatic configuration 

with no variation in the soil-pipe system or the loading along the longitudinal axis. The 

inference is that there is no deformation in the longitudinal direction and that every 

cross-section deforms in the same manner. Consequently, the problem reduces to 

describing a single representative cross-section.

Soil behaves as a heterogeneous, nonlinear, orthotropic material. It is 

considered heterogeneous since it can exhibit compressive strains because of the applied 

forces, but it cannot support any tensile strains. This behavior of soil makes the 

analysis of buried pipes a difficult problem. The approximation that considering soil 

behaves as a linear, elastic, homogeneous isotropic material proved its applicability as 

a good approximation in many soil-structure interaction problems, and it will be used 

here as well.

Thin shell theory implies that the SDR (Standard Dimension Ratio) of the buried 

pipe is 20 or more (Ugural, 1981). In most practical applications of CEPP, the SDR 

exceeds this limit and that justifies the use of thin shell theory. The remainder of the 

assumptions regarding the loads and the contact between the pipe and the surrounding 

soil are self-explanatory.
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7.3.2 Pipe-Soil Model

Consider an elastic pipe of radius ‘a’ buried in a homogeneous, isotropic, 

linearly elastic soil medium at depth ‘h’ measured from the pipe spring-line up to the 

top soil surface (Fig.7.2). The total depth of the soil stratum is assumed to be ‘H .’

According to St. Venant's principle (Shams and Dym 1985), the disturbance in 

the original soil state of stress and displacement caused by the existence of the pipe is 

limited to the vicinity of the pipe. Therefore, the pipe effect on the surrounding soil 

is assumed to be bounded by an imaginary soil cylinder with radius ‘b’ (Fig. 7.2). 

Outside these boundaries, soil returns to its free-field status.

Depending upon the relative stiffness of the pipe and the surrounding medium, 

radius ‘b’ may vary roughly between one to two pipe diameters (Bums and Richard 

1964). Throughout the proposed solution, radius ‘b’ is chosen to be one pipe diameter. 

This choice explains the limitation of the solution discussed in the introduction section 

of this chapter.

Using the above concept, the pipe-soil model can be visualized as two regions 

(Fig. 7.2). The first region extends vertically from the top soil surface down to the 

incompressible layer at depth ‘H’ and horizontally from to +<*», excluding the area 

marked as Region II. The second region outlines a soil cylinder of radius ‘b’ 

surrounding the buried pipe.

The division of the buried pipe model into two regions has the advantage of 

providing the analyst the flexibility to consider any disturbance in the soil properties in
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the vicinity of the pipe. This disturbance could be a result of either fine particles’ 

migration because of the host pipe leaking or a result of the installation process of a new 

pipeline using the trenchless techniques. Fine particles’ migration creates voids in the 

soil around the pipe and changes its physical and mechanical properties. While different 

pipeline installation techniques may result in different types of disturbance in the soil 

properties. Field and laboratory investigations should play a major role in identifying 

and quantifying the effect of these disturbances. The focus of this work will be limited 

to present the new method of analysis.

The division of the pipe-soil model into two regions also allows one to simulate 

the soil behavior using two sets of shape functions. The first shape function, <&lt (Fig. 

7.2) was first introduced by Vlasov and Leont'ev (1966). It describes the rate of change 

of soil surface displacements with depth in Region I. This function is selected based on 

the soil properties as if no pipe or soil hole exists. A second shape function, is 

introduced to describe the rate of change of pipe deformations in its vicinity. A 

description of these two shape functions and the proposed analysis is presented in the 

following sections.

7.3.3 Displacements Functions

7.3.3.1 Region I

Using the Cartesian coordinate system shown in (Fig. 7.2), the displacement 

functions in this region can expressed as follows:

xx(xy)-X(x) i|i,0) . .(7.7)
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yfcy) - Y(?) 4>,(y) . .  (7.8)

where Xj(x,y) and y2(x,y) are the horizontal and vertical displacement components within 

the soil mass inside Region I, respectively. The functions X(x) and Y(x) represent the 

soil surface horizontal and vertical displacements, respectively. In most practical 

applications, the horizontal displacement is negligible in comparison with the value of 

the vertical displacement (Vlasov, 1966). Consequently, the horizontal displacement is 

neglected in the following analysis. Selecting the shape function ^ (y ),

. sinhYCtf-̂ ty)
* '0') ■ ~ i h Tg "  • • <7-9>

where $ t(h) = 1.0, $,(0) =  sinhY(H-h)/sinhYH, S^Ch-H) =  0

Equation (7.9) is a modification for the shape function introduced by Vlasov 

(1966). The modification is necessary to reflect the choice of a different location of 

the cartesian axes. The term V  presented in Equation(7.9) is a constant which 

determines the rate of decrease of displacements with depth. Despite the fact that V  

was first introduced by Vlasov (1966), he did not provide a specific value for that 

parameter in his text. Vallabhan and Das (1988) proved that this parameter is 

dependent of the soil and structure mechanical properties and dimensions. They 

introduced an iterative numerical technique to calculate V  for the case of an elastic 

beam resting on soil. Many research efforts that consider other types of structures 

resting on soil have followed Vallabhan and Das’ attempt. Straughan (1990) provided
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a similar numerical technique for calculating V  for the case of an elastic plate resting 

on soil.

Since the scope of this research is limited to the introduction of a new analysis 

of buried flexible pipes, deriving a specific value of ‘y’ is not considered. However, 

because of the limited effect of the pipe existence on the overall soil behavior, it would 

be justifiable to use the same ‘y ’ used in a similar problem of soil stratum as if no pipe 

or soil hole exists.

7.3.3.2 Region II

Similar to Region I, the displacements in the soil mass in Region II can be 

expressed by

where w(r, 8) and v(r, 8) represent the radial and circumferential displacements within 

the soil mass in Region II, respectively (Fig. 7.2). Functions W(8) and V(8) represent 

the radial and circumferential pipe displacements, respectively. The shape functions 

<J>2(r) and qr2(r) describe the rate of change of W(8) and V(8) inside Region II and are 

assumed to be linear as follows:

w(r,0) = WQBf) <|>2(r) * r(x)d>,(y) sin0 . . (7.10)

v(r,0) = V(Q) i|f2(r) ♦ Y(x)<b{(y) cos0 . . (7.11)

. . (7.12)

. . (7.13)
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7.3.4 Total Potential Energy Function

The proposed solution depends on determining the total potential energy 

function for the entire system as follows:

where

II = total potential energy;

Upipe =  strain energy of the pipe;

Ujou =  strain energy of the soil; and,

Wp =  work done by the external loads.

The resulting total potential energy of the entire system is a function of the 

unknown top surface displacement function Y(x) and the pipe displacement functions 

W(d) and V(d).

7.3.5 Soil Strain Energy

The general form for the strain energy stored in an elastic medium is (Langhaar,

where e ij are the strain components and o ij are the corresponding stress components. 

Imposing the plane strain condition in the solution requires

n = u . + u , - wpipe soil p . . (7.14)

1962)

. . (7.15)

v =
1-v,S

. . (7.16)
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where E, and v , are the soil modulus of elasticity and Poission's ratio, respectively. 

Neglecting the horizontal strain in the soil mass, as argued before, then the strain 

energy expression of Equation (7.15) reduces to

A

Equation (7.17) is a general expression for the soil strain energy in cartesian 

coordinates and shall be used to generate the strain energy expression in Region I.

7.3.5.1 Strain Energy in Region I

Substituting with Equation (7.8) into the kinematic relationships for the case of 

plane strain, the strain components in Region I can be expressed as follows: 

dy.(x,y) rf<t>,(y)
ey = - ^ -  = Y ( x ) - ..(7 .18) 

dy dy

( 7 19)
ax dx

Substituting Equations (7.18) and (7.19) into Equation (7.17), one obtains the following 

expression for the strain energy in Region I:

U ' ~ l f  / f ^ [KW * 0 ,
*  dx > . .  (7.20)

£i
h - GJz

1-v?

where
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it12 b

-it/20

(y— sin20 +— $ x sin0 cosO)2 
dy dx

+ 2 Vj (y-^lsin20 + — 4>! sin0cos0) 
dy dx

* (y——cos2© -  sin0cos0)
dy dx

+ (y—  cos2© - — <j>t sinOcosO)2 
dy dx

rdrdB . . (7.21)

it/2 6 . .
/, = f  f(2Y— -sin0cos0 +-^<{)1cos20)2 rdrdQ 

J J dy dx
- i t / 2 0

. . (7.22)

where Ex, vlt and Gx are the moulus of elasticity, Poission’s ratio and shear modulus 

in Region I, respectively. Simplifying Equation (7.20), then

Ei , v2,^  . ^  e,dY{x\z
1-vT

- f j ^ x )  + Gi/2( ^ V )
dx l -v t

where/; and/2 are constants as follows:

h - H
dy

dy = V2 [ff , sinhyffcoshyffj 
sinh2ŶT 2 2y

(7.23)

(7.24)

/ 2 ■ m,00p<<y -  L—  [ sinhyff coshytf _ H ,
J J sintfyff 2y 2A-ff

(7-25)

7.3.5.2 Strain Energy in Region n

The general expression for strain energy in elastic medium, Equation (7.15), can 

be expressed in polar coordinates as follows (Langhaar, 1962):
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u safl = \  f  <er ar + e e ° e  + W r e )  r d r d Q . . (7.26)

Using the constitutive relationships for plane strain in polar coordinates, Equation 

(7.26) reduces to

U.soil 4/1 ^  [eJ+2v2ere0 +eJ]+G2Y*6 jrdr</0
(1-v^)

. . (7.27)

Using Equations (7.10) and (7.11), one obtain the following expressions for the radial 

and the circumferential strains in Region II as follows:

dr dr dr
. . (7.28)

Utilizing the following expansion,

d d dx d dy , dx „  0 . dy . Q—  =---------+-------- where:— =coso ;and—i =smo
dr dx dr dy dr dr dr

. .  (7.29)

then

er= m )
dtyr)

dr
' , d<W(y) . 2a dY(x) . , . . 0 oY(x) sin 0 +— — <P1Cy)sin0cos0

dy dx
(7.30)

Similarly,

e0 = i[w :0 )  4>2(r) i|l
dQ

Y(x)— — a®2© --^^^OOsinO cos©  
dy dx

(7.31)

and
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Y,e = e)*2« l
dr r{ dO 1

2Y(x)d^ - sinBcose + ^ £ >  <1>t(y)cos2 
dy dx

(7.32)

Substituting Equations (7.30), (7.31), and (7.32) into the general expression of the 

strain energy in polar coordinates, Equation (7.27), then the strain energy in Region II 

can be simplified as follows:

t/2 = i/21 + 1/22 + 1/23 

where

. (7.33)

b it

u« 4 / / ^  t ( » ^ ) 2+—- - - addr dr(l-v?)

■<*0 r dB dr

. .  (7.34)

Introducing the following constants,
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a a a

a

* di|r2

a

* di|r2

a

^ f v dra

br %2 .
h ’ f ~ r

a
*> -/ r *  

a

Tt
2

j x = f W ld6
71

n

h . ) w % i  9
Tt

71

Tt
2 7 2

7t
7

h = f V 2dQ
_ 71 Tt

7t

Tt
2 7 7

7S

/ , . / ( * ♦ - J * .
71
2

Equation (7.34) reduces to 

EzU21 = ------   [(/  ̂+2v2̂  +k3)jl +2(Sj +v2Sj)y + ^ 3]
( l - v 2) . .  (7.36)

+ G2 [(tj -2r2 +2(s2 -sj)js +Vel

and the term U22 would be
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Tt

b 2

(/„ = [ {  {———[(2 IK— )(r— sin20 + — (JjjSine cos0) 
J J 1 - v2 dr dy dxa _jt * v2 

2

+2v2(lK— )(K— cos2© - — 4>1sin0cos0) 
dr dy dx

2v, a v  d(b, , a y
+ ( W i +— tyJiY---- sin20 + — <t>tsin0cos0)

r dd dy dx

+ +— i|r,)(r—  cos2©4 > . s i n 0 co s0 ) ]
r “ dd dy dx

*2G2[ ( K ^  * '  - «
dr dd r r
dii>, a y

* (2Y sin0cos0 + — <J)1cos20)]|rdr40
dy dx

Simplifying, then

^22 = a 3+/*) + W s+ lt)
i -v:

where

'3 =

jr 
& 2

I f  
a . *

2

(2 tK— XI"—  sin20 + — <J), sin 0 cos 0 ) 
dr dy dx

+2v2(1K—  )(r—  cos2© - — 4>.sin0cos0) 
dr dy dx

2v, d4>i , wy
+ — — -sin20 + — 4>lSin0cos0) 

r dy d*

♦ - (B ^ X K ^ -c o s 2© 4) .sin0cos0)]
r dy dx

rdrdQ

. . (7.37)

. . (7.38)

. . (7.39)
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n 
b 2

//
a  _ n

2

— (—  tyJiX—  sin20 + — fysinOcosO) 
r dQ dy dx

+— i|r2) (Y—— cos2 0 - — <J). sin 0 cos 0) 
r dQ dy dx

rdrdQ

/< = r r 1  (— $.)(2r— sin0cos0+— 4>, cos20) 
J J  r d Q  dy dx 1

rdrdQ

dtfr, Kilr, d&. Ay
2(V—  —)(2Y—  sin0cos0 + — <f>,cos20)

dr r dy dx

The term is

V* = ^  ■ [(lr—^-sin20 + — (j), sin 6 cos 6 )2 
dx1-vf dy

Tt

b 2

/ /
a  _ jt

2
dd>, , a y

+2v2(7  sin 0+ — 4>,sin0cos0)
dy dx

* (T— cos2© -  —  <J)jSin0cos0) 
dy dx

+( cos2 0 - — <J>j sin 0 cos 0 )2 ] 
dy dx

+2G2[(2Y—  sin0cos0 + —  <|>,cos20)2] 
dy dx

rdrdQ

Simplifying Equation (7.43), then
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2̂3 = — V 7 + G2/8 . . (7 .4 4 )
1-V2

where

I t

b 2

r, = f f j(r— sin20 + — 4>jSin0cos0)2 
J J I d y  dx

d<b, , dY
+2v2(y sin 0+ — (hjSinOcosO) . . (7.45)

dy dx
t/(b dY

* (Y-cos2©  <J>,sin0cos0)
dy dx

+( Y cos2 0 - — <J>! sin 0 cos 0 )21 r dr dQ 
dy dx J

and

d<b. dY
/g = f  f  (2 Y------sin0cos0 + — <(̂ 0 0 8 2 0 ) rdrcdQ . . (7.46)

J J dy  dx

7.3.6 Pipe Strain Energy

Strain energy stored in a two-dimensiooial elastic body in terms of the polar 

coordinates is given in Equation (7.27). For tli-e case of thin pipes, it is assumed that 

the stresses normal to the mid-plane ‘or’ arewery small compared with other stress 

components. The same is also true for the shear stresses ‘r ^ . ' Neglecting or and 

in Equation (7.27) leads to

u pipe = j f eea e a d r d d  . . (7.47)
A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

Using the following expression for strains in a thin cylinder shell (Flugge 1973, and 

Kerr and Soifer 1969),

e0 = e0 + p Ke . . (7.48)

where

e9 =  mid-surface circumferential strain;

Ke = change in curvature of mid-surface in the circumferential direction;

p =  radial distance measured from mid-surface up to the point under

consideration.

By neglecting the nonlinear terms, the mid-surface strain and change of curvature 

components can be presented in terms of the pipe mid-surface displacements as follows: 

l ,d v
e0 = - ( - r r  + w> . . (7.49)a do

1 cPw.
) . . ( 7 . 5 0 )

where w and v represent the radial and circumferential pipe displacements, respectively.

Substituting Equations (7.48), (7.49), and (7.50) into Equation (7.47),

E  2,1 2
V&, =  ~ r  f  f  (e02 + P % 2) adrdQ  . . (7.51)

V  o -r
P>P*

2(1

Performing the integration over the thickness of the pipe wall,

( / .  = —  f  (—  + wY + (vv + — )
^  c 3 J 30  302

12a2 , dv .  ̂ A 5 ^ 2
dQ . . (7.52)
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where

D =  flexural rigidity =  Ep f/{12(l-vp2)}\ 

vp =  pipe Poisson's ratio;

Ep = pipe modulus of elasticity; 

t — pipe wall thickness; and, 

a =  pipe mean radius.

The pipe mid-surface displacements are

w(a,0) * W;6) + IT x ^ ^ s in O  . . (7.53)

v(a,6) = V(Q) + Y(x) <{>, (y)cos0 . . (7.54)

where x, y are the coordinates of the pipe mid-surface. Substituting Equations (7.53) 

and (7.54) into the general expression of pipe strain energy, Equation (7.52), then

u * . - f
-JL

2

120 *aY(x^^— co ^ Q -a ^ ^ ^ sin d co se
d d  d y  dxat*

D PK+-^-^+a(2cos20 -sin20) Y(x)—  
rf©2 dy

-3asm0cos0-^^-c}).(y) +a2Y(x)—^^-sinOcos2© 
dx dy1

- 2 a= « M i .0Cose<<,= « * , ^ 3 9  U e  
de dy d&

(7.55)

Simplifying, then

(7.56)
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a Y(x) —— cos20 - a ^ ~ -  <(>,(*) sin0cos0 
dy dx

dQ (7.57)

71 
2

/,0 ' f2tt1I ''
r 71 

2

a y(ic) co^O -a -^ ^ ^ C iQ sin B cosB
dy dx

dQ (7.58)

A . - / 2 - d0
aK(^)-----—  cos20 - a — ^ ^ (^ s in S c o s S

dy dx
dQ (7.59)

Jt
2 r

i u - i rfy2 d0 dy

+a2 — 4>.(y)sin30 + aK(i) (2cos20 -sin20)
dO2 dy

3 a  d l ^ (j)̂ sjngcos0 d0

(7.60)

/l!= / 2(H' " 0 )_ 71
’ 2

a 2y ®  ^ l(^ sin0cos20 ~2az dYQ  -̂ l(^ sin20cos0 
dy2 d0 dy

+a ^ ^ ^ ( y j s i n 3© + ay(Jc)-^ ^ (2cos20 -sin20)
dO2 dy

-3a-^^^<J>,(y)sm 0C O S0
dx

dQ

(7.61)
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7.3.7 Solution

Equations (7.23), (7.33), and (7.56) represent the strain energy stored due to 

the deformation in Region I, Region n , and the pipe, respectively. These expressions 

are written in terms of the unknown displacement functions Y(x), W(6), and V(6). 

Employing the Rayleigh-Ritz principle, a reasonable yet practical solution for the 

problem can be reached by assuming the following displacement functions:

where C t , C 2 , and C 3 are constants to be determined. The assumed displacement 

function for the top surface displacement, Equation (7.62), is the same solution 

presented by Vlasov (1966) for the case of a soil stratum loaded with a concentrated 

load on the surface. Substituting Equations (7.62), (7.64), and (7.65) in the presented 

expressions for strain energies, then

Y(x) .  C,e “ . . (7.62)

where

. . (7.63)

also,

fF(0) - C2cos 20 . . (7.64)

V(Q) - C3( sin 20+cos 20) . . (7.65)

I
. . (7.66)
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d-v^)

* { - ? £ - cl  
(1-vl)

■ — 2 ^ CM ° A )  * g& c m c m
l - v 2

Ua . [ - ^ i ,  * G2 it]Cl  
1_V2

^  • -^ T  [*9 C12 w'io C1C 2 w'i, C.C3 v, c l  v3 c l  ♦ 2y2 C2 C3] 
af2

a 3

where // 2 J are the integrations // Zi after substituting the assumed displacement 

functions and factoring out the constants Cl5 Q , and C3.

7.3.8 External Work Done

The general expression for the work done by external loads and soil weight is

k —
WP ■ -PC, - f  f  Yr Y(x) $,(h) dxdy . . (7.71)

where P is the surface concentrated load (Fig. 7.2), and yg is the soil specific weight. 

Substituting Equations (7.9), and (7.62) and performing the integration, then

Wp '  -C>  (coshyff- 1)] . . (7.72)p aysinhy H

. . (7.67)

. . (7.68) 

. . (7.69)

. . (7.70)
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The total potential energy of the whole system in terms of its regional strain 

energies can be expressed as follows:

n  = Ux + (t/2I + Un  + Cfc) . . (7.73)

The above equation is a function of the unknown constants C1? Cj, and Q . A set of 

three algebraic equations is obtained by the partial differentiation of Equation (7.73) 

with respect to the unknown constants; then

[A\ {C} = {/*) . . ( 7 . 7 4 )

where [A] is a 3x3 matrix and {C} and {P} are the unknown constants and the load

vectors, respectively. The coefficients of matrix [A] are given in the following page.

The unknown constants and the load vectors are as follows:

C,

• ;  a n d  {Pj =

2 y ,
- [ / > + ------- 11— (c o sh y //-1)]

ccysinhY/f
C2

0

3 0

. . (7.75)
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13 "  t  2 I4 + ^ 2 Ie l + t  ,  f l l l

1 - v 2 a t2

/42i /l^

E J i  12y.D LD
A22 = 2 [ — ^ — {kl + l \ 1k2 +ki ) +j6G2ki ] +2[— —— + —— ] 

(1 - v 2) a ?2 a 3

2£,y2 24 LD
A,3 = [ — ^ ( 5 3+v2J l)-*-2y5G2(52-s 3)]-H[—
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7.4 Results

A computer program was written in MathCad code (Appendix B) to evaluate the 

solution of buried flexible pipes based on the above equations. The program was then 

used to solve for a problem of a buried pipe and loaded with a surface concentrated 

load. The solution is compared with a finite element solution for the same problem. 

The finite element solution was conducted using CANDE-89 program (CANDE-89 

User Manual, 1989).

The following parameters are used in the example

E, (Region I) = 2000 psi; v5 (Region I) = 0.35

Es (Region II) = 2000 psi; vs (Region II) = 0.35

P — 2000 lb/inch; Yg = 0.064 lb/in3

h = 60 inch; H = 120 inch

yH = 2; t = 0.5 inch

a = 12 inch; b = 2a

Ep = 350,000 psi;
v p

= 0.3

Figures (7.3) to (7.6) show the results for the pipe radial and circumferential 

displacements, bending moments, and thrust force in the pipe wall. Three solutions for 

the same example are presented: the proposed solution, the finite element solution, and 

the solution proposed by Bums and Richard (1964). Attention should be drawn to the 

sign convention used in these figures, where a positive sign indicates outward radial
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displacement, counterclockwise circumferential displacement, tension thrust force, and 

positive bending moment which creates tension in the inner pipe surface.

Results show that the proposed solution and the FE solution are in good 

agreement for the case of radial displacement (Fig. 7.3). The proposed solution gives 

almost 92% of the FE result at the point of maximum radial displacement. Figure (7.4) 

shows that the proposed solution underestimates pipe circumferential displacement when 

it is compared with the FE solution. At the point of maximum circumferential 

displacement, it is found that the proposed solution gives only 72% of the FE results. 

In both cases of radial and circumferential displacements, the solution proposed by 

Burns and Richard (1964) seems to be incomparable with the results of the FE solution 

or the proposed solution. It should be noted that the solution proposed by Burns and 

Richard does not address the rigid displacement of the pipe.

The results also show that there is some discrepancy of the bending moment 

results between the proposed solution and the FE solution (Fig. 7.5). This tends to be 

true especially around the pipe crown. However, the difference in the maximum 

bending moment in both cases is in the acceptable range. It is found that the proposed 

solution gives almost 73% of the maximum bending moment resulted from the FE 

solution.

Figure (7.6) shows an agreement between the proposed solution and the FE 

solution regarding the thrust force sign around the pipe circumference. The proposed 

solution seems to overestimate the thrust force when it is compared with the FE
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solution. However, this increase in the estimated thrust force is conservative for 

design.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS FOR 

FURTHER RESEARCH (PART H)

8.1 Conclusions

The soil model proposed by Vlasov and Leont'ev (1966) for solving soil- 

structure interaction problems is expanded to model the behavior of buried flexible 

pipes. The new method is capable of predicting the behavior of flexible pipes buried 

at a depth of one pipe diameter or more. In his solution of a single-layer soil model, 

Vlasov introduced the idea of shape functions to represent the rate of decay of soil 

displacement. In this research, a second shape function is introduced to describe the 

rate of change of the displacements in the soil mass surrounding the buried pipe. This 

shape function can be selected to reflect the behavior of the soil mass disturbed by the 

pipe installation or because of the host pipe leaking.

The presented solution utilizes the energy principles of mechanics to solve for 

the static of buried pipes. The resulting total potential energy function of the whole 

system is calculated, and the well-known Raleigh-Ritz principle is used to solve for the 

pipe displacements and internal forces. A comparison study between the proposed 

solution, the finite element solution, and Bums and Richard’s solution for one example

151
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of buried pipe was conducted. The results of the comparison study show that there is a 

good agreement between the proposed solution and the finite element solution.

Applying Vlasov's soil model through this research in the solution of 

buried flexible pipe problems has proved that it has the following advantages over the 

conventional solutions:

1. It has a better presentation of the boundary conditions.

2. It employs the energy methods which open the door for the application of many 

useful approximate techniques designed especially for the application of the 

energy methods such as the Rayleigh-Ritz method. Also, the solution could be 

expanded to study the stability problem of buried pipes.

In addition, this model has the following potentials to solve the soil-pipe problems:

1. The flexibility in addressing different site and construction conditions.

2. The solution could be done for any type of loads.

8.2 Future Work

The method of static analysis of buried flexible pipes presented here provides 

researchers with a versatile model for describing the behavior of the soil mass 

surrounding the buried pipe. Certain assumptions and limitations were imposed in order 

to present the analysis in a simple and understandable format. Future research work 

should expand the solution beyond the imposed limitations and validate it using either 

numerical or experimental results. Some topics which could be pursued in future 

research are:
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1. Conduct field and laboratory experimental work to observe the behavior of the 

soil mass surrounding the pipe under different pipe installation methods in order 

to justify the use of different shape functions and to compare the new method of 

analysis with field and laboratory results.

2. Expand the analysis for other types of surface loads.

3. Investigate the effect of the viscoelastic behavior of soils and pipes on the long­

term behavior of pipe-soil systems.

4. Expand the new approach to study the stability behavior of buried flexible 

pipes.

5. Modify existing public domain programs such as CANDE (Katona 1976) to 

accommodate the new approach or develop a new software package, whichever 

is more feasible.

6. Develop design guidelines, charts, and tables which can be utilized by the pipe 

design engineer in most design works without the reliance on exhaustive FE 

analysis or complex formulation.

7. Develop an expert system for the design of flexible pipes capable of capturing 

the accumulated experience and wisdom of contractors, engineers, designers, 

and manufacturers in the field. Analysis and design software can be tied to this 

expert system software to facilitate the design/analysis process.
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MATERIAL CHARACTERIZATION 

TEST RESULTS
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MATHCAD PROGRAM
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Soil Properties 

Region I

vsl =0.35

Esl = 2000 

vslvl =

El =

Gl

(1 -v s l)

Esl 

(l - vsl2)

El
2 (1 -  v l)

Soil Poisson's Ratio in Region I 

psi Soil Modulus of Elasticity in Region I

psi

psi

Yg 0.064 lb/in3 Soil Self Weight

yH =2

H = 120 inches Depth of Bed Rock

yH
y = y =0.01667 Shape Function Relaxation Factor

fi =
y2 ,H sinh(yH)-cosh(yH)\

sinh(yH)2 \ 2 2-y

 ̂ 1 /sinh(yH)-cosh(yH) H
sinh(yH)2 \ 2‘7 2

a = 2-fl
.|(1 -vl)-£2 a  =0.04021

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



164

Region II

vs2 =0.35

Es2 =2000 

vs2
v2 =

E2 =

(1 -vs2)

Es2 

( l - vs22)

G2 =
E2

Soil Poisson's Ratio in Region II 

psi Soil Modulus of Elasticity in Region II

2 ( 1 - v2)

psi

psi

Pipe Properties

a = 12 

b = 3-a 

1
1 2. 

vp = 0.3

inches

inches

Ep = 350000 psi

p 5 ^
[ 12.(1 -vp3);

Pipe Mean Radius 

Imaginary Soil Cylinder Radius

inches Pipe Wall Thickness

Pipe Poisson's Ratio 

Pipe Modulus of Elasticity

Pipe Flexural Rigidity

h = 60 inches Pipe Burial Depth
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Assumed Functions and Their Derivatives

Y(r,0) s e (-*peo* fl))

sinh(y(H - h * r-sin(0)))
♦ 1(r’0) =  iSKcFH)----------

Y'(r,0) = -a-Y(r,0)

^  ycosh(y(H  - h -  r-sin(0)))
♦1(r>0)   iSEfiFH)-----------

W(0) = cos(2-0)

W'(0) r-2-sin(2-0)

W"(0)  ̂ -4-cos(2-0)

V(0) = (sin(2-0) -cos(2-0))

V'(0) = 2-(cos(2-0) - sin(2-0))

V"(0) = -4-(sin(2-0)-cos(2-0)) 

r - b
♦ 2 ( r )  = 

♦2’(r) =

V 2 ( r )  = 

V2'(r) =

(a - b)

1
( iT b )

r - b
(THb)

l
( a - b )
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Integrations

; r-l {Y (r,0H r(r,0)-sin (8)2 -  Y’(r,8H l(r,0)-sin (0)-cos(0);2 ... d0 dr
; +2-vl-(Y(r,0)-<j>r(r,0)-sin(0)2 - Y '(r,0H l(r,0)-sin(0)-cos(0); ...

• ; + (Y(r,0)-<t»r(r,0)-cos(0)2 - Y'(r,0)-(j>l(r,0)-sin(0)-cos(0); ...
• + (Y(r,0)-i)»r(r,0)-cos(0)2 - Y'(r,0)-i(il(r,0)-sin(0)-cos(0))

i ic

y  2

;* 3 t

2
r-(2-Y(r,0)-<|>r(r,0)-sin(0)-cos(0) - Y '(r.0H I(r,0)-cos(2-0))2 d0 dr

jt
/ 2

2
r-i (2-W(0)-<t»2,(r))-(Y(r,0)*<|>r(r.0)-sin(0)2 - Y '(r.0H I(r,0)-sin(0)-cos(0); ...

+ (2-v2-W(0)-<j)2'(r))- Y(r,0)-(|»r(r,0)-cos(0)2 - Y '(r,0H I(r,0)-sin(0)-cos(0)

2-^-W(8)-i(i2(r)'!-{Y(r,8)-(jir(r,0)-sm(8)2 - Y’(r,8)-<|>l(r,8)-sin(8)-cos(8)
'2 '■ /  ■,

; + i-W (0 H 2 (r)i-(Y (r ,0 H r(r ,0 )-co s(0 )2 - Y’(r,0)-*l(r,0)-sin(0)-cos(0)'
L ’■r /

31

J 2

r-j I 2-^r -V'(0)-\|/2(r)j-(Y(r,0)-((ir(r,0)-sin(0)2 - r(r,0)-<t>l(r,0)-sin(0)-cos(0))
1 ! 12 \ , ....   _  . _  . •i + [=-V'(0)-i)/2(r))-(Y(r,0)-(i)r(r,0)-cos(0)2 - Y’(r,0)-<t>l(r,0)sin(0)-cos(0)
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15 r- ; —W'(9)-«t»2(r) !-(2-Y(r,0)-<t»r(r,0)-sin(0)-cos(0) - Y’(r,0)-(|»l(r,0)-cos(2-0)) d0dr
L ' r  i

J 2

16 =

*a

r-i; 2-V(0)-(\f/2’(r) -  ) l-f(2-Y (r,0H l’(r,0)-sin(0)-cos(0)) ' d0 dr
+ Y’(r,0)-<|>l(r,0)-cos(2-0)

it
o

17

> it 
2

K
T

r- Y (r,0H r(r,0)-sin(0) * Y’(r,0)-<t>l(r,0)-sin(0)-cos(0)r -
+ '2-v2-: Y(r,0)-it»r(r,0)-sm(0)2 - Y,(r,0) <t»l(r,0)-sin(0)-cos(0)/ 

Y(r,0)-<|>l'(r,0)-cos(0)2 - Y’(r,0) <t»l(r,0)-sia(0)-cos(0)
+ Y(r,0)-<j>r(r,0)-cos(0)2 - Y’(r,0)-(()l(r,0)-sin(0)-cos(0)/~

d0dr

h **
2

18 = ; r-(2-Y(r,0)^r(r,0)-sin(0)-cos(0) - Y’(r,0H l(r,0)-cos(2-0))2 d0 ch­
it

' a J" 2

Other Integrations in terms of Solution Constants

j i  =

* jr 
2

i *
J ' 2

W(0)2 d0 j2

• it 
2

It
2

W(0)-V’(0)d0

* TC 
; 2

j3 = V’(0)2 d0
i it

J ' 2

j4

:* I t  

2

: 7t 
* 2

v(0r d©
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! 2
j5 =

: 11
J ' 2

,* Jt

i 2 

j 7  = ;

7t

/ 2

Y(0) =

♦ 1( 0 ) --

Y'(0) =

♦ l'(0)

Y"(0)

♦i"(0)

* Jt
i  2 

19 = :
; it 
. 1

l*jt

2
110 = j

i Jt

W (0)-V(0) d0

r Jt

j6 = ' W’(0) d0
: K 

j ' 2

(W(0) -  W"(0))2 d0

e(-aacos(e);

sinh(y-(H - hi- a-sin(0))) 
sinh(y-H)

-a-Y (0)

ycosh(y(H - h -  a-sin(0))) 
sinh(yH)

= a 2-Y(0)

= y2<t*i(0)

! a-(Y(0) <(>r(0)-cos(0)2 - Y'(0)-<|)l(0)-sin(0)-cos(0))f d0 

2-W(0)-[a-(Y(0)-<(»r(0)-cos(0)2 - Y’(0)-<(»l(0)-sin(0)-cos(0)) j d0
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rit 
| 2

111 = ! 2 V'(0)-[a-(Y(0)-i}»r(0)-cos(0)2 - Y’(6)-<i>l(0)-sm(0)-cos(0)) j d0
i  J

J ' 2

112 =

k
|(a2 Y(0W l"(0)-sin(0)-cos(0)2) -  (2-a2-Y’(0)-«t»r(0)-sin(0)2-cos(0)) ...]"d0 
+ (a2-Y’(0)-<f>l(0)-sin(0)3J ...
+ a-Y(0)-<(ir(0)-(2-cos(0r - sin(0)2) -  3-a-Y’(9M l(0)-sm (0)-cos(0)

; 2
113 = , 2( W(0) - W"(0))-'a2-Y(0)-<|)r,(0)-sin(0)-cos(0)2 ... ' d0

+ (-2)-a2-Y’(0) <j)r(0)-sin(0)2 cos(0) ...
+ a2-Y"(0)-(t»l(0)-sin(0)3 ...
+ a-Y(0)-«t»r(0)-(2-cos(0)2 - sin(0)2 ...
+ (-3)-a-Y’(0)-<t»l(9)-sin(0)-cos(0)

n

Solution. Constants

,-b
kl r-<J2’ (r)2 dr t l  = } r-\|/2*(r)‘i dr

J aJ a

•b
si = | v2(r)-<fr2'(r)dr

Ja

* b |* b r b
k2 = j  $2(r)-<j>2'(r) dr t2 = j  vj/2(r)-M/2'(r) dr s2 = | <j>2(r)-y2'(r) dr

j a

k3 = dr
J a

t3 = V 2 ( r  ) ‘ dr
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External Load

p  -- 2000 lb Top Soil Surface Concentrated Load

Elements of the Solution Matrix

A U  ■ 21 C1' l ^  - E ! : -  » V S _ »  -  02-181 -  2 . : 'H |- I 9I > 2  / I v2  ’ i a - t2

E2 12-D D
A12 =   - - I 3  -  G 2 -I5 -------r—110 -  -r-I1 3

1 - v22 ! a-t2 a3

E2 12-D
A13 = - -------- —-14 -  G 2 -I6 ------- — 111

(1 - v2 , a-t2

A21 = A12

A22 = 2-i
E2-j 1 12-il-D 17-D1

 -----—Tr-(kl - 2-v2-k2 - k3) - j6-G2-k3 - . 3
1 - v22' a-r a3

A23 = ' 2 E2 j!, -(s3 -  v2-sl) -  2-j5-G2-(s2 - s 3 ): - 24'j2D
: (i - v22) ■>a-r

A31 = A13

A32 = A23

A33 = 2-i ■— 'j3j -G - j4-G2-(tl - 2-t2 - 13) -  12-j3--5- j  
' 1 - v22 a-r ;
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Solution for Constants

/A ll A12 A13\ 
A = |A21 A22 A23 1 

\A31 A32 A33 /

_ yg-2 1 - cosh(y-H) ] 
a  ysinh(yH) j

0  !

o !

C = A''-L

/-1.27721' 
C = 0.05914 j 

-0.02615/

Pipe Displacement and Internal Forces (Bending Moments 
and Axial Force) Diagrams

1- Pipe Displacements

71 99-71 71

=  ' 2 ’"200  "2

W1(0) =C,-W (0) V1(0) =C2-V(0) Y1(0) =Co-Y(0)

W1'(0) = C ,-W (0) V1'(0) =C2-V’(0) Y1'(0) =Co-Y'(0)

W1"(0) =C,-W -(0) V1"(0) * C2-V"(0) YI"(0) = Co-Y"(0)
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w(0) = W1(0) r Y l(0H l(0)-sin (0)  

v(0) = V1(0) - Y l(0M l(0)-cos(0)

0

e

v(8) 0

e
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2- Pipe Internal Forces

I a2-Yl(0)-«j»r'(0)-sin(0)-cos(0)2 ... j ,
| +(-2)-a2-Yl'(0)-(j>r(0)-sin(0)2-cos(0) ..j 
i+a2 Y r’(0H l(0 )-sin (0 )3 ... ! i
i  +a-Y l(0H r(0)-(2-cos(0)2 - sin(0)2) J j
 ̂+ (-3)-a-Yl'(0)<t>l(0)-sin(0)-cos(0) jj

N(0) = — V1' (0) T a -(Y l(0 H l’(0)-cos(0)2 - Y l’(0)-<|>l(0)-sin(0)-cos(0)) -  W1(0) 
a-vl -  vp ) k

10

M(0) 0

-10

0

-500
N(8)

-1000

e

e

M(0) =
D\

T  j '\ a /
w i(0) - w r(0) -
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