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ABSTRACT

The objective of this research was to develop an analytical solution to the heat
transfer problem in microchannels with slip-flow — a heat transfer problem for gases at
low pressures or in extremely small geometries, and to verify this solution
experimentally. In this investigation, an analytical expression for the velocity
distribution with slip—flow was obtained which involved the Knudsen (Kn) number in an
infinite series form. The result showed that the velocity always increased as the Knudsen
number was increased. The Knudsen number for extremely small channels may become
large enough to affect significantly the velocity distribution and consequently affect the
heat transfer properties. A mathematical model of temperature distribution was
established by combining the energy and momentum equations. A series solution was
obtained. Also, expressions for the local and overall Nusselt numbers were derived in
terms of the Knudsen number and Graetz number.

A new technique for evaluation of eigenvalues for the solution of the heat transfer
problem in microchannels was developed. This method was based on the construction
of a matrix. The computational results showed that the method was effective. The local
values and average Nusselt number were found for Kn from 0.005 to 0.3 with aspect ratio
a=1,2/3,1/2, 1/4 and 1/8. Experiments for helium through a microchannel with
dimensions of 117 um x 24 um x 63.5 mm and a microtube with inside diameter of 52

um were conducted.
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a

NOMENCLATURE

tube surface area [m?]

aspect ratio h/b

apqap, coefficient in Eq. (4.2)

bp,q(m,n) coefficient in Eq. (4.6)

Gy
Gz

&l

Kn

coefficient in Eq. (3.5)
coefficient in Eq. (4.11)

hydraulic diameter{m]

OmpAmn in Eq. (4.13)

specular reflection coefficient
(U —uy)/ (Uw - uy)

G(xy) in Eg. (3.3)

volume flow rate

Graetz number, (RePr(D/L))

local convective heat transfer

coefficient [W/m2-K]

average convective heat transfer

coefficient [W/m2-K]

characteristic dimension

thermal conductivity [W/m—K];
ratio of Nu,(Kn)/Nu,(0)

Knudsen number, (WD)

length of ducts[m]

Nu

Nu
Nuy

Mach number; molecular

weight

fully—developed Nusselt num—

ber coefficient, (h.D/k)

Nusselt number, (h.D/k)

local Nusselt number, (h.D/k)

fluid pressure [Pa]

heat flux per unit wall area

[W/m?]

heat transfer rate [W]

whwg

Reynolds number, (QuD/p)

ideal gas constant [J/kg-K]

Prandtl number, (v/a)

T(r,x), temperature [K]

bulk temperature [K]

temperature at ¢=L [K]
log-mean—temperature
difference (LMTD) [K]

velocity in § or x direction [m/s]

average streamwise velocity of

the incident molecules {m/s}]
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ur average streamwise velocity of
the reflected molecules [m/s]

Uw average streamwise velocity of
the surface [m/s]

v velocity in  or y direction [m/s]

w velocity in ¢ or z direction [m/s]

wo average velocity [m/s]

x dimensionless width, (§/Dy)

X* dimensionless length, (x/L)

y dimensionless width, (WDgy)

z dimensionless distance, (¢/Dy)

Greek Symbols

a fluid thermal diffusivity, (k/pc)
[m%s]

o; velocity eigenvalues

B (1+a)/2

B’ (1+1/a)2

Y ratio of specific heats

dpgq coefficient in Eq. (4.6)

4(A)  eigenfunction Eq. (5.8)

3 width

1 width

S distance along duct

/)] function in Eq. (4.1)

A coefficient in Eq. (4.1)

A eigenvalue

y - mean free path {m]

1} dynamic viscosity[kg/m s]

v kinematic viscosity [m2/s]

0 density[kg/m3]

n 3.141592654

6 (T-Tw)/(To-Tw) dimensionless
temperature

Og (Tg-Tw)/(To-Ty) dimension—
less bulk temperature

0L dimensionless fluid bulk
temperature at g=L

6N dimensionless LMTD

O(xy) function expressed as Eq. (4.2)

Subscripts

0 atz=0

B bulk

m average

S slip—flow

w wall
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CHAPTER 1

INTRODUCTION

The objective of this research is to develop an analytical solution of the heat transfer
problem in microchannels with slip—flow — a heat transfer problem for gases at low
pressures or in extremely small ducts, and to verify the analytical model experimentally.
To do this, the velocity profile with slip—flow must be found first. A mathematical model
of the temperature distribution in slip flow should be established by combining the energy
and momentum equations. And finally, an effective technique for evaluation of the
eigenvalues for the series solution should be developed and heat transfer experiments

with microchannel/microtube should be conducted.

1.1 Heat Transfer Problem in Ducts

By the end of the last century, the problem of forced convection heat transfer in a
circular tube in laminar flow gained interest because of its fundamental importance in
physical problems such as the analysis and design of heat exchangers.

The Graetz problem is a simplified case of the problem of forced convection heat
transfer in a circular tube in laminar flow. With the assumptions of steady and
incompressible flow, constant fluid properties, no swirl” component of velocity, fully
developed velocity profile, and negligible energy dissipation effects, Graetz (1883)
originally solved this problem analytically. The solution by Graetz involved an infinite

number of eigenvalues, and in his paper, only the first two eigenvalues were evaluated.
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Since the accuracy of the Graetz solution mainly depends on the number of
eigenvalues, it is extremely important to obtain more eigenvalues, as Tribus and Klein
(1953) pointed out. For seventy years, the research on this problem focused mainly on
finding more eigenvalues. Abramowitz (1953) employed a fairly rapidly converging
series solution of the Graetz equation in making the calculation and found the lowest five
values with much more accuracy. Sellars et al. (1956) extended the problem to include
a more effective approximation technique for evaluation of the eigenvalues of the
problem; they could get any number of eigenvalues as needed. This work solved the
Graetz problem completely.

Dennis et al. (1959) studied the case in rectangular ducts. By employing
homogeneous linear algebraic equations and Rayleigh quotient, they devoloped a
technique for evaluation of the eigenvalues for the analytical solution of the problem of
forced convection heat transfer in rectangular ducts with different aspect ratios. The same
results were obtained by other researchers numerically (Shah and London, 1978).

1.2 Heat Transfer Problem in Ducts
in Slip-Flow

Applications of microstructures such as micro heat exchangers have led to increased
interest in convection heat transfer in micro—geometries. Some experimental work has
been done , such as the experimental investigations in microtubes (Choi et al., 1991), in
microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993).
Appropriate models are needed to explain the significant departures in the micro—scale
experimental results from the thermofluid correlations used for conventional-sized
geometries. For example, Choi et al. (1991) conducted heat transfer experiments using
essentially smooth tubes with a relative roughness of 0.0003 and a diameter ranging from

3 um to 81 pm. As shown in Fig. 1.1, the measured heat transfer coefficients in laminar
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flow in small tubes exhibited a Reynolds number dependence, in contrast to the
conventional prediction for fully established laminar flow, in which the Nusselt number
isconstant. Also, an experimental investigation of fluid flow in extremely small channels
showed that there are deviations between the Navier-Stokes predictions and the
experimental observations (Pfahler et al., 1991).

Therefore, some effects and conditions that are normally neglected when
considering macro—scale flow must be taken into consideration in micro—scale
convection. One of these conditions is slip—flow (Flik et al., 1992, Beskok and
Kamniadakis, 1992). It has been found that the analytical model combined with slip—flow
conditions can fit the experimental data in microchannels with a uniform cross—sectional
area (Arkilic et al., 1994) and with a non—uniform cross—sectional area (Liu et al., 1995).

Slip-flow occurs when gases are at low pressures or for flow in extremely small
passages. Atlow pressures, with correspondingly low densities, the molecular mean free
path, which can be expressed as Eq. (I.1), becomes comparable with the body
dimensions, and then the effect of molecular structure becomes a factor in flow and heat
transfer mechanisms (Eckert and Drake,1972).

i =H# [ER.T
m =P\ 2gM (L.1)

The relative importance of effects due to the rarefaction of a gas can be indicated by
the Knudsen number, a ratio of the magnitude of the mean free molecular path in the gas
to the characteristic dimension in the flow field. The effects of rarefaction phenomena on
flow and heat transfer becomes important when the Knudsen number can no longer be

neglected. The Knudsen number may be defined as

Kn = .’lﬂ __4 7R,T
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In defining when slip—flow occurs, Beskok and Kamiadakis (1992) have proposed

to classify four flow regimes for gases, as follows:

Continuum flow: Kn <1073
Slip—flow: , 103 <Kn<0.1
Transition flow: 0.1<Kn<10
Free molecular flow 10 <Kn

When slip—flow occurs, the gas adjacent to the surface, in contrast to its behavior in
continuum flow, no longer reaches the velocity or temperature of the surface. In
continuum flow, intermolecular collisions dominate the flow field, and a usual boundary
condition (continuous boundary) at the interface between a fluid and a solid surface is that
the fluid adjacent to the surface assumes both the velocity and temperature of the surface.
In the case of slip-flow, the molecular mean free path Ay, is rather larger than any
significant body dimension so that most of the gas molecules striking and leaving the
body surface do not collide with free-stream molecules until very far from the surface.
Thus, the gas at the surface has a tangential velocity, and it appears to slip along the
surface.

The slip velocity can be expressed as follows as a function of the velocity gradient

near the wall:

us = ~Am( 'g_; )y=0 (1.3)

and Arkilic et al. (1994) give the expression as follows:

us _ 2-F du/c

< =F K G o (142)
or

w=ZE 4, (%), , (1.4b)
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which includes the consideration of three accommodation coefficients represented by the
speculation reflection coefficient F, which has values that typically lie between 0.9 and
1 (Ebertet al., 1965). In the case of F having the value one, Eq. (1.4) becomes Eq. (1.3).
For simplicity in this investigation, Eq. (1.3) was applied to evaluate the velocity.

The temperature boundary condition can be regarded as discontinuous; that is, there
is a jump in temperature at the wall. Actually, the temperature of the gas near the solid
surface changes continuously to the temperature of the surface butonly in a very thin layer
on a microscale so that on the macroscale there appears to be a jump in temperature
between the surface and the adjacent gas. Eckert and Drake (1972) give expressions for
the temperature jump condition:

AN

= aT

where Ap, represents the mean free path for collisions between a moving molecule and
the fixed molecules (or A~ is the average number of collisions per unit distance )
(Present, 1958), and dT/dy is the temperature gradient at the wall. As shown in Eq. (1.5),
the temperature jump is proportional to Ap: a small value of A, means that a great
numbers of molecules are involved in energy transport so that the temperature jump is
small, while a large value of A;, means that fewer molecules are involved in energy
transport so that the temperature jump is relatively larger. When Ap, is small enough, as
in a conventional case, the temperature jump may be neglected.

With the introduction of the slip—flow condition into the Graetz problem, it becomes
more difficult to solve such problems. The classical Graetz problem is governed by a
partial differential equation with a continuous temperature boundary condition; while in
the Graetz problem combined with slip~flow condition, the temperature boundary
condition is no longer continuous, which makes the solution as well as the corresponding

eigenvalues much more complicated and difficult.
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In the case of circular tubes in slip-flow, that s, gasesat low pressures orinextremely
small tubes, the heat transfer coefficient depends not only on the Reynolds number and
Prandtl number, but also on the Knudsen number. Barron et al. (1995) developed a
technique and evaluated the eigenvalues of the analytical solution for this problem in the
case of a constant wall temperature. Wang et al. (1995) solved this problem completely.
Their studies shows that the Nusselt number increases significantly with the increase of

the Knudsen number, as shown in Fig. 1.2. Ameel et al. (1996) studied the case with

&

Nusselt number, N,
5

url--l.l‘lJlLAJlllll‘lllLlJ bk

0.00 (Y] 004 0.08 0.08 0.10 012
Knudsen number, Kn

Fig. 1.2 Fully developed Nu as a function of Kn [Barron et al.]
(constant wall temperature)

constant heat flux, and the results indicate that the fully-developed Nusselt number
decreases with the increase of the Knudsen number, as shown in Fig. 1.3. Therefore,
some research is needed to analyze this type of problem in the case of rectangular ducts

in slip—flow.
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Nusselt number, Nig_

1.5 b FEFSFEE PP PP PP R |

0 0.05 0.1 0.2 0.3
Knudsen number, Kn

Fig. 1.3 Fully developed Nu as a function of Kn [Ameel et al.]
(constant heat flux)
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1.3 Related Research

Ebert and Sparrow (1965) have found the fluid velocity distribution for slip—flow in

microchannels. Their results can be summarized as follows:

The momentum equation can be written as follows in the coordinate system shown

in Fig. 1.4:
Pw  Pw _ 1dp
&2 an? H ds
{
21h > E
o—— 2 ——|
Fig. 1.4 Coordinate system

with the slip—flow boundary condition

— _2-F,ow —
w= F'laﬂ atn h,
w _Fla§ at & b,
L atyp =0, 0 =§
an
MW_0 amE=0 0=xg
3 ’

IA

IA

=& <bh

(1.6)

(1.7a)

(1.7b)

(1.7¢)

(1.7d)
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10

The velocity can expressed as

_ 22 cos a; sin a; " cosh ﬁé
Dydp ~ Uizl a? 1+2Knsina; o & =+ 2Kna;sin%
H# dz
(1.8)
and the mean velocity can be determined by
3 in? a a; sinh G
22 L 7 2 )
D,,dp i=1 5 +2Knsm2 cosh%+2Kna,~sin%
A dz
where the eigenvalues g; satisfy
|
a; tan a; = m (1.10)

Dennis et al. (1959) solved the problem of forced heat convection in laminar flow
through rectangular ducts with non-slip—flow. Their results may be summarized as

follows:

The energy equation can be written as follows in the coordinate system shown in Fig.
1.5:

32T a2T a _ __aT
Mgz T a2 T a2 = @y (L.11)
s M » B’

2h - & B
: x

fo—— 2 ——

- __4h _2h _l+a 2 _1+1/a
a=hb  Dp=17 B=5 =3 P =p,""32

Fig. 1.5 New coordinate system for dimensionless variables

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

with the boundary condition
I, = T, c> 0 (1.12a)
T=T, c< 0 (1.12b)

Introducing dimensionless variables

_ £ _ 1 _ S _ I-Ty
*TD; YD, *~Db; °°Tm

where the hydraulic diameter Dy = 4A/S, and the aspect ratio a and Knudsen number

F 2h

When the aforementioned change of variables is carried out and neglecting the axial
conduction k32T/3c% for large enough Peclet number, since it is of order (1/Pe)?
compared to the axial convection term wdT/dg, the governing equations and the boundary
conditions become

2w , 32w _ Dydp 2 _ Dydp
a2 T ot = T or Vi'w= T (1.13)

T , 32T, _ .p oT
Moz T52 = "Puy; o V%= -Wio%‘z’- (1.14)

w=-Knp% a y =0amdf, 0 <x<p (1.152)
=-Knﬂ'g—‘g at x=0andf, 0 <y <p (L.15b)
d B ,

'ﬁ':O ay =35, 0 =sx=<§8 (1.15¢)
%:0 atx=%, 0<sy=<§ (1.15d)
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and
6w =6, = 0 z> 0 (1.16a)
0 =1 z=< 0 (1.16b)

The solution of Eq. (1.16) can be written as
6 = Zlc,,c;,.(x, etz + 6, (1.17)
n=

where G, and 4, are eigenfunctions and eigenvalues required to make the solution to the

following membrane equation:

VIZG+)'w$:’y)G= 0 (1.18)

subject to the boundary condition deduced from Egs. (1.14) G, =0 on the boundary C’.

Coefficients G, can be determined by

IJ w Gp dx dy
D

C, = (1.19)

e

The Nusselt number can be determined by

Nu(z) = .4_'!_; lenane”lﬂz
n=

where
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ff w dx dy (1.20)
D

and Nu. =4 /4.

Eigenvalues 4, can be determined by the following infinite set of homogeneous

linear algebraic equations
pé:) ‘é'o{dp,q(m,n) Ampd bpgimn)} apg =0 (mn=0,1,2, .. ) (1.21)
where
8pglm,n) = f]ol¢m,.¢p'q dx dy (1.22)
Omn(mn) A p = (72 [ 4a) (m? + a®n?), (1.23)
bpg(m,n) = %{ A plin-gi ~ Dmpin+q * Imtpntq = Amsping } (1.24)

B (P . .
dij = j I 7= COS & cos (E,Z) dcdy  (ij=01.2,..) (l1.25)
0Jo ' © B B

# 0 forall pg,mn =0

bp.glm.m) { (1.26)

=0 for any p,q,m,n =0
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Dennis et al. (1959) estimated the eigenvalues for different aspect ratios for

nonslip—flow by employing the Rayleigh quotient

B B (F
ln = - envl ondx dy/ I‘andx dy
0JoO oJo

Ms

[ -] @®

2 8,40 ) B2 + ylApgm? 2 .
0 ¢=0 i=1 j

i M

1 qZ;'lbp,q(i, DA ()Ap4(n)
(1.27)

4 1

for example, for aspect ratio a = 1, 4| =11.91 and Nu,, = 2.98.
Therefore, based on those research, a model for the case of rectangular channel in
slip—flow can be established and a technique of evaluation of the corresponding

eigenvalues for the analytical solution of the model should be developed.
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CHAPTER 2
VELOCITY AND TEMPERATURE DISTRIBUTIONS

In order to build the mathematical model for the problem in slip-flow, the velocity
profile must be found first in the new coordinate system. In this chapter, based on some
assumptions, the expression for velocity will be derived from the continuity equation and
momentum equation. The slip condition will be used to evaluate the slip velocity, and
the velocity will be expressed in terms of a Knudsen number. A mathematical model of

temperature distribution in slip-flow will be established by combining the energy and

momentum equations.

2.1 Velocity Distribution

Consider the flow of a fluid in a rectangular duct, as shown in Figure 2.1:

L L 4 o
jr T
- - - - - - c=t—e C = ! - ?.Il
Jk - &

I
i

Fig. 2.1 Coordinate system for the problem

For this model, the following conditions have been assumed (Barron, 1996):

(1) The flow is steady. This means that the properties of the flow are time

independent.

(2) The fluid is incompressible (or, if a gas is considered, the Mach number is less

than 0.30). In this case, the density may be assumed constant.

15
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(3) The flow is fully established. In this case, the axial velocity, w, is a function of
the coordinates 77 and § only, and not a function of the axial coordinate ¢. In addition, the
radial velocity is zero.

(4) The ”swirl” component of velocity is identically zero. This means that both u =
Oandv=0.

(5) Fluid properties are constant.

(6) Energy dissipation effects are negligible.

(7) The tube wall temperature is constant.

2.1.1 Continuity Equation

The general continuity equation can be written in the cartesian coordinates as

follows:

de

d d 3 —
5% T a_g(‘"‘) + %(QV) + a—C(QW) =0 2.1

For steady flow of an incompressible fluid, the equation above reduces to:

awtm T " 2.2)
For fully developed flow,

w _

ot~ 0
Therefore,

du , dv

—_— e — =

% "oy

Since the normal velocity is zero at the walls (the wall is impermeable), we must conclude

that:
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u = 0 (identically).
and

v = 0 (identically).

2.1.2 Velocity Distribution with
Slip Condition

The Momentum Equation can be written in the coordinates shown in Fig. 2.2 as

follows (Kays et al., 1993) for fully-developed (hydrodynamic) flow:

'a'gﬂ‘w = Uz (2.3)
lrn Y& ﬁ,
2h B
QE X
e —
- _ _4h _2h _l+a y_2b _1+1/a
a= Wb DH_l+a 'B—DH_ 2 ﬂ_DH_ )

Fig. 2.2 New coordinate system for dimensionless variables

with the slip—flow boundary condition

2F, 3

w=-2FE1.2 ary =02 0 <& <2 (2.42)
= _2-F; ow =

w=-— F’l’"ag at & 0,2, 0 <9 < 2h (2.4b)

%ﬂ"i=0atr}=h, 0 <& =<2 (2.4c)

g_*g_-_o(,,g:b, 0<n§ <2h (2.44)
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Introducing dimensionless variables

_ £ _ N _ ¢
*=p, » "D, *~D,

where the hydraulic diameter Dy = 4A/S, and the aspect ratio @ and Knudsen number

a=% _ 2-Fin

F 2h

The governing equations and the boundary conditions become

sy %« - e
w=—Knﬂ%:- at 'y =0andf, 0 <x <p' (2.6a)
w=-Knp% a x =0andf, 0 <y <S8 (2.6b)
Moo ay=5, 0sxz=p (26¢)
Y )

%—‘;=O atx=%—,, 0=ys=§ (2.6d)

The solution may be proposed as

had 2
w_ = EI'I/‘- (x) cos (—gi-l)a,— Q2.7

N%
A&

where q; are a set of eigenvalues, and the ¥; (x) are a set of x— dependent functions. Eq.

(2.7) identically satisfies boundary condition (2.6c), that is

aw ©

2, ¥ n Z_la, = -
Dydp ﬂa,i=l‘1f, (x) sin (ﬁ Da; =0 aty = /2
M dr

By substituting Eq. (2.7) into the boundary condition (2.6a), we have
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D:’ pr § . (x) cos (%—l)a
o dz

—Kn B %_‘;’ = —Kn ﬂ[—%aiizz ¥, (x) sin (%-l)ai ]

SO

g.’l ¥, (x) [cos (%-m,- — 2Kn a; sin (2—5-1)a,. 1=0 (2.8)

For a non-trivial velocity solution, it is necessary that

a,- tan a,- = 'zl—Kn (2.9)

This is the condition from which the eigenvalues are determined.

Now, we find the function ¥; (x). To do this, Eq. (2.5) can be rewritten as

3w 32w _ Dydp
el dZEQ @) cos(ﬂ ~1)a; (2.10)

From Eq. (2.7), we have

8x2 # de—l dx2

cos (—ZBy——l)a,-

(2.11)
32w Dydpda?
ay2_ #dzﬂzgll’ os(ﬂ Da;
so we derive a differential equation
Y,  2a,
Ez— - (?)2 !If‘_ Qi =0 (2-12)
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We can obtain the homogeneous solution from

2a.
22 _ (__l)2 =0 2.13)
B
that is,
2.
A =% (2.14)
B
Therefore, let
?ai 2¢‘~
V.= Cie7* + Coe™ 7" + G (2.15)

substituting Eq. (2.15) into Eq. (2.12), we have

2a.
- 7‘)2c3 -2, =0
or
g2,
C; = - F‘Z‘ (2.16)
From boundary condition (2.6d), that is,
dv; 2a; 2a; 2
— = 7’)2[cle7x-c2e-7x Je=psy =0 (2.17)
Therefore, we obtain
2a;
SO
lp"*= Cle% [ e%f(z;:—ﬁ') + e—%i(zx—ﬂ') ] + C3
a; ’
= D, cosh F(Zx—ﬂ ) + G (2.18)
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And from boundary condition (2.6b), we have

W_ = JW () cos (%—l)a,- = —Kn g 3—‘;’

# v 3¥; (%) 2
= —Kn B'[& ——== sin (Fy—l)a,- Jempr

S
Sy

or

¥ & 2.19)

Y () + Kn Bl—p— 1,5 = 0

Substituting Eq. (2.18) into Eq. (2.19), we have

2a;
e

2a;

2a; 2; 2a;
Cl[eT+eT"T]+C3+ClKhﬂ'ﬂ 1=0

[+ —¢

Ci = G/le + 1)+ 2 Kn ZD(e= 1))

(2.20)

[ cosh% + 2 kn Zisink % ]

Evaluation of £;(x) can be made from the assumption

g‘l Q; (%) cos (2—5-1)@ =1 2.21)

and the property of orthogonality

B
(ly--l)]2 d(ﬂ-l) = I cos a; (ﬂ-l) d(z—y-l) (2.22)
B2 A 2

B
Q; | leos a
f 52 cos a 3 B
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Let o = (2y/B - 1), we have

EI.Q,- (x) cosa;o=1 (2.23)
From the orthogonality we have
1 1
QJ- cos a; 0 cos a; 0 do = cos a; o do 2.24)
0 0

Carrying out the integration for aj = a; , we obtain:

a; + sina; cosa; sina;
Qi[ zai' ! = _—ai !
or
= 2sina; _2 sina ;-
Q= a; + sina; cosa; E}( 1+ 2 Kn sinia, ) (2.25)
Now, the velocity can be expressed as
.~ 7] a; '
wic=2Z G @BN _ sinai ., coshg@x/fD
i=1 ai 1+ 2 Kn sin a; cosh #+2Knai sinﬁ‘
(2.26)

where C = (Dy/u)(dp/dz) and the mean velocity is found by integration of Eq. (2.26)

across the section of the channel: thus,

Wwo = %Lw dA (2.27)

Upon carrying out the indicated operation, we obtain:
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sin? a; a;
1+2Kn sm2 a

sinh %
a) (2.28)

WO/C——ZL .
i=1 5 cosh%-'+2Kna,-sinﬁ'-

2.2 Temperature Distribution
The general temperature field equation for flow of an incompressible fluid with zero
swirl or angular components, zero energy generation, and negligible frictional energy

dissipation is:

kT o °T | 97Ty _ aT
dE2 a,,z ac2 ocw ag (2.30)
with the boundary condition
T, = T, c> 0 (2.31a)
T =T, ¢< 0 (2.31b)
introducing dimensionless variables
_ £ - — S T-T,
*=p, ? b, *=Dp, =TT

When the aforementioned change of variables is carried out and the axial conduction
kc’?ZT/ag2 can be neglected for a large enough Peclet number, the governing equations and

the boundary conditions become

w 96

= aT 2, _
) ocwDy 5~ or V.6 = Wo dz

(2.32)

where V12 = 3%/0x2 + 82/3y2, with the boundary condition
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0, =6, = 0 z2> 0 (2.332)

6 =1 z= 0 (2.33b)

2.3 Summary
In this chapter, the velocity distribution with slip—flow has been obtained which can

be expressed simply in terms of the Knudsen number. From the relationship of Kn in
terms of pressure and dimension, we can see that Kn in microtubes may become large
enough to significantly affect the velocity distribution and consequently affect the heat
transfer for this problem. Also, a mathematical model of temperature distribution in

slip—flow has been established by combining the energy and momentum equations.
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CHAPTER 3
ANALYTICAL SOLUTION

In the last chapter, the velocity distribution was expressed in terms of mean velocity
and Knudsen number, and a mathematical model of temperature distribution in slip—flow
was established by combining the energy and momentum equations. In this chapter, a
series solution will be obtained by the method of Frobenius. Considering the boundary
condition, a temperature distribution in terms of a generalized Fourier series will be

derived. Also, expressions for the local and overall Nusselt numbers will be obtained.

3.1 Graetz Solution
3.1.1 Separation of Variables Solution

The governing equation
2, _ wdb
Vl 6 = L 0z (3'1)

where V2 =9%/ax2 + 3%/3y2, with the boundary condition
6y = 0 z> 0 (3.2a)

0 = 1 z< 0 (3.2b)

Eq. (3.1) can be solved by a separation—of—variables technique. Suppose we let:

0(x,y,z) = G(x,y) Z(z)

25
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Making this substitution into Eq. (3.1) and rearranging results in the following:

3G | 3G Yo _dZ _ _,
a2 T e (Gw " Zdz (3.3)

where 4 is an arbitrary constant. The ordinary differential equations which result are:

dz =
2 13z =0 (3.4)
and
v,%G + Aw(x’y)c =0 (3.5)

with boundary conditions:
G(0,0)=0
G0l)=0
G(l’'0)=0
G(’,l) = 0.
The solution of Eq. (3.4) is:

Z(z) =C exp[ Az ] (3.6)

The constant C in Eq. (3.6) will be evaluated below and 4 will be evaluated later.

3.1.2 Determination of Constants C,

We can write the solution for the temperature distribution in terms of a generalized

Fourier series, as follows:
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6 = Z'lc,,G,,(x, y)e i ' (3.5)
n=

where G, and 4, are eigenfunctions and eigenvalues required to make the solution to the
Eq. (3.3) subject to the boundary conditions deduced from the boundary condition Eq.

(3.2a)
G(0,0) = G(0,l) = G(I',0) = G(I',]) = 0.

The constants G, can be found from the entrance condition, Eq. (3.2b)
atz=0, q(xy0)=1

Making this substitution into Eq. (3.5), we obtain:
2 Cn Grlxy) = 1 (3.6)
j=

The govemning differential equation, along with the boundary conditions, is a

Sturm-Liouville problem, with a weight function,
W =w(x,y)

where w(x,y) is the z—component of velocity and from orthogonality,

II w(x, )G pGm dx dy = 0 for m#n (3.7
D

The constants may be evaluated by multiplying Eq. (3.6) on both sides by
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and integrating between on the domain D’ bounded by C’. Only the term in which m

=n is the result non—zero, and we find:

Cn I [ w(x, y)(Gn)?dx dy = I ] w(x,y) Gn dx dy (3.8)
D’ D'
therefore,

w(x,y) G, dx
[[, e craa

II w(x,y) (Gn)zdx dy
D’

C, =

Each G, has arbitrary amplitude which we choose for convenience, so

that

IID’ w(x,y) Gp dx dy (3.10)

I [ w(x,y) dx dy
D

The temperature 8( x, y, z ) is therefore known to any desired accuracy once sufficient

Gy, have been found. Two further thermal quantities are of interest. Experimental
measurements are made on the basis of a mean mixed temperature of the fluid, that is,
0( x,y, z) averaged with respect to the local fluid velocity over any section of the channel.
This temperature is a function of z only and its difference between any two sections gives
a measure of the heat transferred across the wall between them.

From these expressions, we can see that the coefficients G, and C, must be

predetermined in order to calculate the temperature.
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3.2 Heat Transfer Coefficient Correlation
3.2.1 Bulk Temperature

The bulk or average temperature can be determined from:

[j w(x,y) 0 dx dy
D

j f w(x,y) dx dy
D

68=

or
05(z) = ’élc,.z g2 (3.11)
where:
o—Tw

3.2.2 Local Heat Transfer Coefficient

The local or "point” convective heat transfer coefficient can be defined by:
Q/Ay =hx (T -Tw) (3.12)

The heat flux can also be written, as follows:

c

‘6_7' p-——q— — . ﬁ
Cavds k ( Ty Tw)dgf 5 ds  (3.13)
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where s is the distance measured along the perimeter of the boundary curve C in an
anti—clockwise direction and v is the outward—drawn coordinate normal to the channel
wall: v’=v/Dy, s’=s/Dy . Equating the heat flux from Egs. (3.12) and (3.13) and making
the substitutions from Eq. (3.11) for the temperature gradient at the wall and for the local
bulk temperature, the following expression is obtained for the local or “point” Nusselt

number.
_ a0 .
Nu(z) = —DH] — ds'/S0g (3.14)
c

We now eliminate g in term of the Gy, by Eq. (3.5) and apply Green’s theorem to Eq. (3.3),

so that

3Gn ,, _ A,
jc ‘—a-v,— ds' = —w—of ID'W(x,)') G, dx dy (3.15)

Using Eq. (3.10) and since [ p’ w dx dy = A’wp, where A’ is the dimensionless area
within C’, we finally obtain

Nu(z) = Zb}" 2 A Cp2 e (3.16)
B n=1
Atlarge distances down the channel, Nu(z) approaches a limiting minimum value.
If 4, is the smallest of the A’ we have, as z — oo, that 46 Nu(z) ~ A1 C)2 exp (=11 2)
and 8 (z) ~ C12 exp (-1 2) so that

4

Nu(») = vy (3.17)
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3.2.3 Overall Convective Heat
Transfer Coefficient

The average or overall convective heat transfer coefficient is defined through the

following expression:

- L
Q=hc(4th)(AT)LN=I h; ( Ty=Tw) (4 h b do) (3.18)
: 0

where ( AT )iy = log-mean—temperature difference (LMTD).
The LMTD may be written in terms of the inlet temperature Tp and the exit bulk
temperature 77 , as follows:

(To—Tw)—(TL—Tw) _(gB.L—l)(TO"Tw)

A = (T To) I (L= To)1 T (05 (3-19)

Let us define the dimensionless LMTD, as follows:

o (4T
W= "T, (3.20)

Then,

6. = (0g;—-1)
W= In (6g;) (3.21)

The expression for the average convective heat transfer coefficient can then be written,

from Eq. (3.18):
- 1 1
he = 32— f h, 0p dz (3.22)

In the fundamental equation, we have g = iz § ¢ ATry. Now g can either be obtained

by integrating Eq. (3.13) from zero to ¢ or, alternatively, it is the heat given up by the fluid
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in cooling from Ty to Ty, so that g = Awgocp(Ty ~ Tr)- Equating these two and

introducing dimensionless quantities, we have the mean logarithmic Nusselt number,

hynDy/k, given by:
= (1-65) 1 (3.23)
Nu——-4—0uv————z ln(GBL)

3.3 Summary

In this chapter, a series solution for the mathematical model of temperature
distribution in slip flow in microchannels has been obtained. Considering the given
boundary condition, a temperature distribution in terms of a generalized Fourier series
has been derived. Also, expressions for the local and overall Nusselt numbers have been
obtained. All these expressions can be taken as functions of the Knudsen number and
the Graetz number. In order to calculate either the temperature or the Nusselt numbers,

the coefficient G, and 4, must be predetermined.
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CHAPTER4
EVALUATION OF EIGENVALUES

In the last chapter, we obtained a series solution for the temperature distribution.
Also, expressions for the local and overall Nusselt numbers have been obtained as
functions of the Knudsen number and aspect ratio. In this chapter, we present a technique
for evaluation of eigenvalues for the solution of the heat transfer problem in slip—flow,
since eigenvalues A, must be predetermined for the calculation of either the temperature
distribution or the Nusselt numbers. A matrix will be constructed and a formulation
described to find the coefficients by, ;(m,n). Based on these bp,q(m,n) the eigenvalues An

can be calculated numerically.

4.1. Introduction
We consider the general domain D’. Based on the principle of the method of

Galerkin, let {¢nn} be the complete set of eigenfunctions of the equation
V% +A¢ = 0 4.1)

with d¢ /v’=-Ng on C’. Any arbitrary function @(x,y) which satisfies these boundary
conditions and which possesses continuous partial derivatives up to the second order can

be expanded in an absolutely and uniformly convergent series in the form

Oy = 2 2 ans Pmalx.y) 42)

33
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where
=1
Ampy = 6P.Q(m’ n) f ID' 6¢m.u dx dy 4.3)
and
ép.q('na n) = I I . ¢m.r¢p.q dx dy 4.4)

8p,q(m,n) = 0 unless m = p and n = q. We can make @ the solution of Eq. (3.5) so that
multiplying this equation by ¢,,, , and integrating over D’ we have, by Egs. (4.1) and (4.3),

Omn(m,n) Ampa@mp = A f[ r(x,y)O¢mn dx dy 4.5)

D

where r(x,y) = w(x,y) /wp. If we substitute for @ by Eq. (4.2), then Eq. (4.5) is reduced
to an infinite set of homogeneous linear algebraic equations
2 -—

o {0pg(m,n) Appd bpgimn)} apg =0 (mn=20,1,2, ..) (4.6)

0

where

bpg(m,n) = I I r Omabpq dx dy 4.7)
Dl

The matrix associated with Egs. (4.6) is symmetrical since by, o(m,n) = by »(p,q) and the
eliminant for a non-trivial solution gives an infinite determinantal equation 4(4) = 0
whose latent roots are the eigenvalues of Eq. (3.5). Dividing each row of A(4) by its
leading diagonal elements, the resulting determinant converges if the off-diagonal sum

is absolutely convergent and A has no value which makes a leading diagonal element zero.
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If this condition is satisfied, then the convergence of sum 2p=029=o | @4 | and,

moreover, of sum Zp=02q=0 Op,q(P:9) Ap g} a4y 4 | follows. The eigenvectors {ay, ™)
corresponding to a given root A =4 can then be obtained, theoretically, in terms of any
arbitrary coefficient; in practice, the determination of a given eigensolution is a problem
in numerical analysis.

Eigenvalues 4, can determined by the following infinite set of homogeneous linear
algebraic equations

o

2 2 (6,0mn) Aph bpgmn)) apg =0 (mn=0,1,2 ..) (46)

p=0 =0
where
6P~q(m’ n) = f I OPmAbpq dx dy 4.8)
DI
Omn(mn) Amn = (72/4a) (m? + a2n?), (4.9)
1
bP'q(m’n) = Z{ dlm—pl.ln—ql - dlrn—pl.n+q + dm+p.n+q - dm+p‘|n_q| } (4~10)

L[r ., .
diJ=I ] " cos(-‘l‘;—tx) cos(Em,-y)dxdy (ij=0,1,2,...) (4.11)
with

#0 foral p,gmn =0

by q(m,n 4.12
palm:n) { =0 for any p,g,m,n =0 “*12)
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4.2 Expansion of Eq. (4.6)

Considering the condition Egs. (4.8) and (4.11) and underlining the only one with
both p =m and q = n, we have the following expansion:
)m=0,n=0
(80,0A0,0-Abo,0)a0,0+(80,1A0,0-Abo, 1)20,1+(80,2A0,0-Abo 2)a0,2+(80,3A0,0-Abo 3)ap 3+...
(81,0M0,0-Aby 0)a1,0+(81,1A0,0-Aby, 1)a1,1+(81,2A0,0-Aby 2)a1 2+(81 3A0,0-Ab1 3)ay 3+...
(82,0A0,0-Ab2,0)22,0+(82,1A0,0-Ab2, )22, 14+(82,2A0,0-Ab7,2)az 2+(82,3A0,0-Ab2 3)ap,3+...
(83,0A0,0-Ab3,0)23,0+(83,1A0,0-Ab3, 1)a3,1+(83,2A0,0-Ab3 2)a3 2+(83,3A0,0-Ab3 3)a3 3+...
=0
the underlined term may not be equal to zero. All terms of Gp'qu'g and coefficients of A,
bp,q but 80.0Ag o are zeros according to the condition Egs. (4.8) and (4.12); therefore,

(00,0M0,0)200 =0

2)m=0,n=1

(80,0M0,1-M0,0)a0,0+(80,1A0,1-Abo, 1)a0,1+(80,2A0,1-Abo 2)a0,2+(80,3A0,1-Abo,3)a0,3+...
(31,0A0,1~Ab1,0)21,0+(81,1A0,1-Ab1,1)a1,1+(81,2A0,1-Ab1 2)a1 2+(81,3A0,1—Ab) 3)a) 3+...
(82,0A0,1-Mb2,0)a2,0+(82,1A0,1-Ab2,1)az 1 +(82,2A0,1-Ab2 2)ag 2+(82,3A0,1-Ab2 322 3+-..
(93,0AA0,1-Ab3,0)a3,0+(83,1A0,1-Ab3,1)a3,1+(83, 2A0,1-Ab3 2)a3 2+(83 3 A0, 1-Ab3 3)a3 3+...
=0

therefore,

(80,1A0,1)a0,1 =0
Similarly,
3y m=0,n=2

(80,2AA02)a02 =0

49)m=0,n=3
(60,3A03)a03=0
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.............................

SSm=1,n=0
(80,07 1,0-Mbo,0)ag 0+(S0,1A1,0-Abo,1)a0,1+(80,2A 1 0—~Abo,2)a0 2+(80, 3A 1 0-Abg 3)ag 3+
(31.0A10-hb10)a; 0+(81,1A1,0-Aby,1)a1,1+(81,2A1,0-Ab1 2)a; 2+(81 3A1,0-Ab1 3)ap 3+...
(92,0A1,0-Ab2 0)az o+(02,1A1,0-Ab2 1)a2, 1 +(82,2A 1 0-Ab2 2)a 2+(82 3A 1 0~Ab7 3)az 3+...
(83,0A1,0-Ab3 0)a3 0+(83,1A1,0-Ab3 1)a3 1 +(83 2A 1 0-Ab3 2)a3 2+(83 3A1,0-Ab3 3)a3 3+...

=0

therefore,
(81.0A10)210=0

6)m=1,n=1

(80,0A1,1-Abo,0)a0,0+(80,1A 1,1-Abo,1)20,1+(80,2A1,1-Abo,2)a0, 2+(80,3A 1,1-Abo,3)a0 3+...
(81,0A1,1-Ab1,0)a; 0+(B1 1AL 1-Ab 1)a),1+(81,2A1,1-Mb1,2)a1 2+(81,3A 1, 1-Aby 3)a 3+...
(82,0A1,1-Ab2,0)a2, 0+(82,1A1,1-Mb2, 12z, 1 +(82,2A1,1-Mb2 2)ag 2+(82,3A 1,1-Ab2 3)a 3+...
(83,0A1,1-Ab3,0)a3 0+(83,1A1,1-Ab3,1)a3,1+(03 2A 1, 1-Ab3 2)a3 3+(83 3A |, 1-Ab3 3)a3 3+...
=0

therefore,

(81,1A11-Aby 1)ag 1 +(<Aby 2)a) o+(-Ab) 3)a; 3+...
+(=Aba,1)ag 1+(-Ab2 2)az 2+(-Ab2 3)ag 3+ ...
+(-Ab3,1)a3 1 +(-Ab3 2)a3 2+(-Ab3 3)a3 3+ ... = 0

Or,

(BL1Ars -Ab11y 1)ay, 1 +(-Ab11; 2)ag 2+(-Abl1; 3)ag 3+ ..
+(-Abl13 )az, 1+(-Ab1132)az 2+(-Abl1; 3)a 3+ ...
+(-Ab113 1)a3 1 +(-Ab113 2)as 2+(-Abll3 3)a3 3+ ... =0

Nm=1,n=2
(80,0A1,2-Abo,0)ag,0+(80,1A 1,2-Abo, 1)a0,1+(80,2A1,2-Abo,2)a0,2+(80, 3A 1 2—Abg 3)ag 3+...
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(81,0A1.2-Ab1 0)a1 0+(81,1A1,2-Aby 1)ay, 1+(81.2A1,2-Ab1 2)a1 2+(81,3A1,2-Aby 3)ay 3+..
(82,0A1.2-Ab2,0)a 0+(82,1A1,2-Aby, )2z 1+(82,2A1 2-Ab2 2)a2 2+(82,3A 1 2-Aby 3)ag 3+...
(83,0A1,2-Mb3,0)a3 0+(83,1A1,2-Ab3 1)as 1 +(83,2A1 2-Ab3 2)a3 2+(83 3A | 2-Ab3 3)a3 3+...
=0
therefore,
(=Mb1,Da1,1+(81,2A1,2-Ab1,2)a1 2 +(-Abj 3)a) 3+...
+(=Abg,1)az 1+(-Abz 3)az 2+(-Aby 3)az 3+ ...
+(-Ab3 1)a3 j+(-Ab3 2)a3 2+(-Ab3 3)a3 3+ ... = 0
or,
(-Ab121 ay 1+(812A1 2 -Ab12; 2)ay 2+(-Ab12} 3)ar 3+ .
+(-Ab12; 1)ag 1+(-Ab127 2)az 2 +(-Ab12; 3)ap 3+ ...
+(-Ab123 1)az j+(-Ab123 2)a3 2>+(~Ab123 3)a33+...=0

8 m=1,n=3
(30,0A1,3-Abo,0)a0,0+(80,1A1,3-Abo, 1)a0,1+(80,2A1,3-Mbo 2)ap 2+(80,3A 1,3-Mbo 3)ap 3+...
(81,0A1,3-Ab1,0)21,0+(81,1A1,3-Aby 1)y 1 +(81,2A1,3-Aby 2)a) 2+(81 3A13-Mb) 3)a) 3+...
(82,0A1,3-Mb2,0)a2,0+(82,1A1,3-Ab2, 1)ag, 1 +(82,2A1,3-Ab2 2)ag 2+(82,3A 1 3-Aby 3)ap 3+...
(33,0A1,3-Mb30)a3,0+(83,1A1,3-Ab3 1)a3 1 +(83 2A1,3-Ab3 2)a3 2+(83 3A 1 3-Ab3 3)a3 3+...
=0
therefore,
(-Abi,1)ay,1+(-Ab1,2)a1 2H(81,3A 1 3-Ab; 3)a 3+...
+(=Aby, 1)ag 1 +(-Ab3 2)a 2+(-Aba 3)a 3+ ...
+(—Ab3,1)a3,1+(-Ab3 2)a3 2+(-Ab3 3)a3 3+ ... =0
or
(-Ab13} 1)ar 1+(812A12 -Ab13] 2)a; 2+(-Ab13) 3)a L 3+ .
+(-Ab13,1)az 1+(-Ab322 2)az 2+(-Ab132 3)ag 3+ ...
+(-Ab133 )a3 1 +(-Ab133 2)a3 2+(-Ab133 3)a3 3+ ... = 0

............................
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Similarly,
m=2,n=0
(82,0A2,0)220=0

10)m=2,n=1
(-Ab21y,1)ay, 1 +(-Ab21 2)ay 2+(-Ab21] 3)a) 3+ ...

+(02,1A2,1 -Ab217 j)ag 1+(-Ab212 2)az 2+(-Ab217 3)az 3+ ...
+(-Ab213 1)az 1 +(-Ab213 2)az 2+(-Ab2133)az 3+ ... =0

11)m=2,n=2
(-Ab22 1.1)ay, 1+(—).b221'2)a1,2+(—)»b22 1,3)a1,3+ ...

+(-Ab123 1)az,1+(82.2A22 -Ab12; 2)az 2 +(-Ab123 3)az 3+ ...
+(-Ab223 j)as,;+(—Ab223 2)a3 2+(-Ab223 3)az 3+ ... =0

12Y)m=2,n=3
(-Ab23 1,1)a1, 1+(-Ab23 1,2)a1 2+(—)»b23 1,3)a1 3+ ...

+(—}»b232,1)a2, 1+(-Ab237 5)az 2+(823A2.2 -Ab23; 3)az 3+ ...
+(—)»b233,1)a3, 1+(-)»b233'2)a3,2+(—)»b233,3)a3 3+..=0

.............................

13)3=2,n=0
(83,0730 )a3z0=0

14ym=3,n=1
(=Ab31y 1)a,1+(-Ab31) p)as 2+(-Ab31) 3)a; 3+ ...
+(=Ab312,1)az 1+(-Ab3 13 2)az 2+(-Ab3 15 3)az 3+ ...
+(821A31 -Ab313 1)a3,1+(-Ab313 2)a3 2+(~Ab313 3)a3 3+ ... = 0
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15\ m=3,n=2

16)m=3,n=3

.............................

(-Ab32;, 1)ay, 1 +(-Ab32] 2)a] 2+(-Ab32] 3)ay 3+ ...
+(-Ab323 1)ag 1 +(-Ab323 2)az 2 +H(—Ab323 3)az 3+ ...
+(-Ab323,)a3,1+(83,2A32 ~Ab323 2)a3 2+(-Ab323 3)a3 3+ ... = 0

(-Ab33y,1)ay, 1+(-Ab33] 2)a; 2+(—kb33 1,3)a1 3+ ...
+(-Ab333 1)az, 1 +(~Ab337 2)ag 2+(-Ab337 3)az 3+ ...
+(—Ab333,1)a3 1 +(-Ab333 2)a3 2+(83 3A33 -Ab3333)az 3+ ... =0

From all these expansions, we can obtain

and, in matrix form and introducing ep, p = O nA

—Ab12,,
-Ab13,

-b21,,

e, \-Ab11,, -Abll,,

el’z—lb12l'2

(6:.0Ai 0 )aj0=0

—Ab11, 5
—Ab12 5

Abll,;  -Abll,,
Ab12,,  -Abl12,,

—Ab131‘2 e|‘3—lb131‘3 .. —;'b132.l —lb132‘2

—Ab21,,
-Ab22,,

—lb211'3 .. ez‘l—leIZ‘l —lbzlm

-Ab22, 5

Ab23;,  Ab23,,  -Ab23,

, Eq. (4.6) becomes

Abll,,
Ab13, 5

—lb232‘l —lb232 2 €, 3—lb232‘3

In the next section, we will deal with Eq. (4.13).

"

40

(4.13)
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4.3 Simplification of Eq. (4.13)
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From condition (4.12) and bmny, 4, being non-zero only if m+p and n+g are both

even, Eq. (4.13) can be further simplified as

e, -Ab11 0 -Abll,5 ... 0
O e12—1b1212 0

—Ab13, 0 e 3-4bl13,5 ... 0
0 ...ez‘l"ﬂvbzlz‘l

0
0 .. -Ab23,,

or generalized as

'x 0 x 0...00O0O .. xO0x
0 x0x...0O0OOO.. 0x2O0
x 0x0..00OO. x O0x
0x0x..00O0O0.0x20
0000..x0x0..000
0000..0x0x..000
0000..00x0..000
0000..0x0x..000
x 0x0..00O0OO .. x0x
0x0x.0000..0x290
x 0x0..00OO . xO0x
0x0x.000O0..0x2O0
L ooooooooo soe . XYy rrx) oo e nee soe e

where x are ( ep,q —Abpgp q ) and x are —Abmny 4.

] -01.1-
%12
|43
wew e b = O
0 —Ab212'3 az‘]
e22—1b2222 0 . 02'2
0 82‘3—1b2323 .. 02'3
see s ...- L oo J
4.14)

oo o

P OX O

HOM O
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Employing block matrices, Eq. (4.14) can be further rewritten as

q9 ¢

X, 0 x;3 0 x5 .. ][ A1 ]
0 X, 0 x0 0 ..}l 4,
Xy 0 X, 0 x,c ...
31 3 . 35, A, =0 4.15)
0 X42 0 X4 0 .ee A
x51 0 x53 0 XS eee 4
Ag
p.o ...... J- o ]
where
# 0 x 0. 'x 0 x 0 ..] [ a, | |
0 x, 0 x .. 0 x 0 x . ap2
=[x 0 x; 0 .. =|x 0x 0. =1 %3
X, 3 Xpgq Ap a5y
0 x 0 x,.. 0 x0x. 2
a
m|. ; m| ] g
L nJ n - -
4.4. Summary

In this chapter, a technique for calculation of the eigenvalues occurring in the heat
transfer problem in slip—flow has been derived by constructing a matrix. With this
formulation, any number of eigenvalues can be theoretically determined. The next
chapter will deal with the algorithms and the computational procedure, and the

calculation of the eigenvalues will be carried out.
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CHAPTER S
COMPUTATIONAL RESULTS

In the previous chapter, the formulation for the calculation of the coefficients
occurring in the eigenfunction was determined. In this chapter, we will discuss the
procedures for the evaluation of eigenvalues for the heat transfer problem in slip—flow.

We will calculate the eigenvalues and discuss the computational resuits.

5.1 Procedures of Computation
The procedures of computation are as following:

1) Calculate a; for certain Knudsen number Kn by Eq. (2.10) in Chapter 2

a; tan ;= == (5.1)

2) Calculate coefficients d; j for certain Knudsen number Kn and aspect ratio a by Eq.

(4.11) in Chapter 4

B (B . .
d‘-J- = I ;r{- cos ( L0 ) cos ( Ef—y ) dx dy (ij=012,..) (5.2)
0Jo O B B

where

© COS Q; (%y -1 cosh %—‘(%x -1)

sin a;
w/C =22 { - )
i=1 a? L+2Knsin® ;" cosh &+ 2 Kn a; sin %
(5.3)
43
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and

o . . a;
sin? a; a; sinh =
wo/C = 22 2 i G a )
° i=1a? 1 +2 Knsin? a;” % cogp %—" + 2 Kn a; sin %ﬁ 5-4)

3) Determine by, o(m, n) (or bmny, q) by Eq. (4.10) in Chapter 4

1
bpa(m,n) = 2{ dpnpiing — Cmpin+qg * Im+pn+q — dmepng } (5.5
4) Calculate ep,q = dp 415 q for certain m and n by Eq. (4.9)
Op,q(mnjAp, q = (2/4a)(m?+a’n?), (5.6)

5) Determine truncation eigenfunction for certain m and n by Eq. (4.15) in Chapter 4

(X, 0 x;3 0 xi6 ... || A1 ]
0 X, 0 x50 0 .. || 4,
X3l 0 X3 0 X35... A3
=0 5.7
0 X420 X4 0 A ()
X 0 x; 0 X, .. Q1 ¢
b P
where
x 0 x 0 ..] [x 0 x 0 ..] [ a,,; ]
0 x 0 x .. 0 x 0 x. am2
Xm=x010... x"m=XOX0. Am= am3
0 x 0 x .. 0 x 0 x. a_."’j“
. Am,n
L ] A ] ]

where x are (e 4 ~Abmny, 4 ) and x are —Abmny, ; and e, 4 =8y, oA, o for certain m and n.
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For example, the truncated eigenfunction for m, n = 0,1 and form, n =0,1,2,3 are

respectively
4;3)=1Xg1 =0 (5.8a)
A3(4) = X1 1X5! X351 = besp | 1IXo] beg31 =0 (5.8b)

and A(A) = limAp(/l) whenp — .
6) Evaluate the eigenvalue A by the known truncated eigenfunction such as Eq. (5.8)
7) Determine the fully—developed Nusselt number by Eq. (3.17) in Chapter 3

A

Nyowo = vy 5.9

5.2 Calculation of ¢g;

Table 5.1 lists the first eight values of each a; for Kn from 0.005 to 0.3 by Eq.(5.1).
Fig.5.1 shows thata; vary as functions of Kn. From Fig.5.1, we can see that the difference
of the adjacenta; and aj+| becomes smalleras Kn increases but goes to a constant st as both

Kn and i increase.

Table 5.1 The first eight values of a;

Kn ai az as as as ag ay as
0.005 | 1.5552 | 4.6658 | 7.7764 | 10.887 | 13.998 | 17.109 | 20.221 | 23.333
0.01 | 1.5400 | 4.6202 | 7.7012 | 10.783 | 13.867 | 16.952 | 20.039 | 23.128
0.02 | 1.5105 | 4.5330 | 7.5603 { 10.595 | 13.638 | 16.690 | 19.752 | 22.822
0.04 | 1.4549 | 4.3757 | 7.3240 | 10.306 | 13.320 | 16.360 | 19.421 | 22.498
0.06 | 1.4039 | 4.2416 | 7.1452 | 10.114 | 13.132 | 16.183 | 19.258 | 22.348
0.08 | 1.3570 | 4.1286 | 7.0112 | 9.9841 | 13.014 | 16.079 | 19.165 | 22.265
0.10 | 1.3138 | 4.0336 | 6.9096 | 9.8928 | 12.935 | 16.011 | 19.106 | 22.213
0.20 | 1.1422 | 3.7318 | 6.6431 | 9.6776 | 12.760 | 15.864 | 18.981 | 22.104
0.30 | 1.0211 | 3.5776 | 6.5330 | 9.5967 | 12.697 | 15.813 | 18.937 | 22.067
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5.3 Calculation of d;
For Kn =0.00 and a = 1 (for Kn = 0.00 and a = 1 see Appendix B),and i,j=0,1,2, ..., 10,

the d;; are as following:

0
0
diJ= 0

0

0

[ 1.0015
-0.27809
-0.08299
-0.03844
-0.02198

-0.01418

0 -0.27819 0 -0.08309 0 -0.03854 0 —0.02209 0 —0.01431]

0
0
0
0
0
0
0
0
0
0

0 0
0.08285 0
0 0
0.02237 0
0 0
0.00979 0
0 0
0.00542 0
0 0
0.00343 0

0 0 0

0.02237 0  0.00979 0 0.00542

0 0 0

0.00725 0  0.00338 0 0.0192

0 0 0

0.00338 0 0.01670 0 9.73e-4

0 0 0

0.00191 0 9.73e-4 0 5.82¢—4

0 0 0

0.00122 0 6.30e-4 0 3.94¢—4

5.4 Determination of B, 4(m, n) (or bmny 4)

0 0

0 0

0 0

0 0

0 0

0

0
0
0
0
0
0
0
0
0

47

0
0.00342
0
0.00122
0
6.31e4
0
3.84¢—4
0
2.63¢-4 |

bp,q(m, n) (or bmny, 5) form,n=1,2,3 and p,g=0,1,2, ..., 5 are as following:

bll,, =

[0
0
0
0
0
0

0
0.41015
0
—0.06390
0
-0.01428

o O O O O o

0
-0.06390
0
0.01134
0
0.002178.

0
0
0
0
0
0

0
—0.01428

0
0.002178

0
5.340 &4
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0 0 0 0 0 07
0 0 03463 0 —0.07818 0
0 0 0 0 0 0
bl2pg=1o o0 —00s256 0 001352 0
0 0 0 0 0 0
0 0 —001211 0 0002718 O
0 0 0 0 0 o ]
0 —006390 0 03320 0 -0.08338
AP L 0 0 0 0
27 o 001134 0 -005040 0  0.01425
0 0 0 0 0 0
0 0002178 0 001152 0  0.002908
0 0 0 0 0 07
0 0  —0.07818 0 03268 0
0o 0 0 0 0 0
bldpa=1o o 001352 0  —0.04965 0
0 0 0 0 0 0
0 0 0002718 0 001137 0
0 0 0 0 o 0 |
0 -001428 0 -0.08338 0 03243
pis, = |0 O 0 0 0 0
0 000218 0 001425 0 -0.04933
0 0 0 0 0 0
0 S4e4 0 000291 0 -001128 |
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0 0 0 0 0 0
0 0 0 0 0 0
0 03463 0 -0.05256 0 -0.01211
P2Laa=10 o 0 0 0 0
0 -0.07818 0 001352 0 0.002718
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 02937 0 006466 0
b22,5=10 o 0 0 0 0
0 0 -006466 0 001624 0
0 0 0 0 0 0]
0 0 0 0 o o0 |
0 0 0 0 0 0
0 —0.05256 0 02816 0 -0.06914
P2pa=1y o 0 0 0 0
0 001352 0 -0.6194 0 001715
0 0 0 0 0 0 |
0 0 0 0 0 0
0 0 0 0 0 0
0 0 ~0.06466 0 02771 0
b24,0=10 o 0 0 0 0
0o 0 0.01624 0  —0.061024 0
0o 0 0 0 0 0
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0 o 0 0 o o0 |
0 o0 0 0 0 0
bas,, = |0 001207 0 -006%4 0 03126
7" lo o 0 0 0 0
0 002460 0 001568 0 —0.06173
o o 0 0 0 o0 |
[0 0 0 0 0 0o
0 -0.06373 0 001040 0  0.001988
b1, = |° 0 0 0 0 0
27 lo 03705 0 -005134 0  —0.01595
0 0 0 0 0 0
0 —0.08289 0 001306 0  0.002629 |
0 0 0 0 0 0)
0 0  —005333 0 0012390 0
p32,, =0 O 0 0 0 0
0 0 03192 0 -0.6294 0
0 0 0 0 0 0
0 0 00698 0 001568 O]
0 0 0 0 0 0 |
0 001040 0 -05134 0 001306
b, =0 O 0 o0 0 0
47 lo 005134 0 03076 0 —0.06721
0 0 0 0 0 0
0 001306 0 006721 0  0.01658 |
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b35,, =

bmny, ;should be equal to bnmy, ;or the matrices bmn should be equal to bnmT . Using these
properties, we can check the computational errors. For example, from b113 1 =-0.06390

and b31;,) =-0.06373, we know the third digit in these values maybe not be correct.

00
0 0
0 0
0 0
0 0
0o o0
0 0
0 0.001988
0 0
0 -0.01160
0 0
0 0.002629

0 0 0 0]
001239 0  -0.05068 0
0 0 0 0
-0.06294 0 0.3033 0
0 0 0 0
001568 0  -0.06631 0
0 0 0 0
0 0.01306 0 —0.05038
0 0 0 0
0 -006721 0 0.3013
0 0 0 0
0 0.01658 0 -0.06591

5.5 Determination of Truncation Eigenfunction

[4.9348-40.41015 0 A0.06390 ]
0 12.33701-40.3463 0
X, = 20.06390 0 24.67401-10.3320 ...
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'12.33701-10.3463 0 : 10.05256 ..

0 19.73921-10.3294 0

X, = 40.05256 0 32.07621-40.3705 ...
(24.67401-/10.33'20 0 20.05134

0 32.07621-10.3705 0

X; = 10.05134 0 44.41322-10.3076 ...
| -

[ 10.06373 0  -10.01040 ...
0 10.05333 0 )
*13 = ¥31 T |_40.01040 0 20.05134 ...

L LYY [32Y oo von
-

If we take the first 3x3 elements of each matrices only, we have then

LX;1 = (12.33701-10.3463)[(4.9348-10.41015)(24.67401-10.3320)-A20.063902]
Xol = (19.7392l—k0.3294)[(12.33701—X0.3463)(32.07621—)»0.3705)—)».20.052562]
X3 = (32.07621-10.3705)[(24.67401-10.3320)(44.41322-10.3076)-A20.051342]
bes | = begs! = A3[(0.06373)(0.05333)(0.05134) — (0.0104)2(0.05333)]

Therefore,
A4;2) = Xl
= (12.33701-10.3463)[(4.9348-10.41015)(24.6740 1—}\0.3320)—&20.063902]: 0
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and
A3(2) = 1X;1 X5| X31~ besg | X1 beg3l
= {(12.33701-A0.3463)[(4.9348-10.41015)(24.67401-A0.3320)-120.06390%]—
(19.73921-10.3294)[(12.33701-A0.3463)(32.07621-10.3705)-A20.052562]
(32.07621-10.3705)[(24.67401-1A0.3320)(44.41322-10.3076)-A%0.051342] }
{(19.73921-10.3294)A5[(12.33701-A0.3463)(32.07621-10.3705)-120.052652]
[(0.06390)(0.05333)(0.05134) — (0.0104)2(0.05333)]2} = 0

In the first order approximation of eigenfunction A1(A), the value of A; can be
calculated approximately by the first term (4.9348-A0.41015), because the value of the
term (120.06373%) can be neglected. It will be discussed in the following section.

5.6 Evaluation of Eigenvalue A and
Fully-Developed Nusselt Number

From the above approximation of eigenfunctions, we can evaluate the eigenvalues.
Table 5.2 shows the comparison of Aj(a =1) for Kn = 0.00 with previously known values
(see Appendix C). From this comparison, we know that the first eigenvalues calculated

by the first term are sufficiently accurate.

Table 5.2 Comparison of Aj(a =1) calculated by different approximation

Dennis et al. First term A4i(A) A3(R)
A 11.91 12.030528 11.96289311 | 11.962888035
difference % 0 1.012 0.44410672 0.44406406

Table 5.3 gives the computational results of A(a) by the first term for different aspect

ratios. Table 5.4 lists the comparison of Aj(a) for Kn=0.00 with previously known values
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Table 5.3 Eigenvalue A;(a) for different aspect ratios

Kn (1) A (2/3) A(172) Ai(1/4) A1 (1/8)
0 12.0305 12.6418 13.7316 17.9174 22.487
0.005 12.219 12.7896 13.873 18.0654 22.653
0.01 12.380 12.9928 14.071 18.2681 22.839
0.02 12.680 13.1959 14.266 18.4708 23.025
0.04 13.204 13.5795 14.638 18.8488 23.465
0.06 13.646 13.9631 15.011 19.2153 23.905
0.08 14.027 14.3466 15.383 19.5876 24.344
0.10 14.359 14.7302 15.755 19.9829 24.784
0.20 15.549 15.8749 17.281 20.8838 25.467
0.30 16.295 16.6361 17.618 21.7846 26.151
0.50 17.189 17.5510 18.563 22.6739 27.517

Table 5.4 Comparison of Aj(a) for Kn = 0.00 with previously known values

Ai(a) A1) A(2/3) A1 (172) A1(1/4) A1 (1/8)

This work 12.0305 12.6418 13.7316 17.9174 22.487
Dennis et al. 1191 12.49 13.57 17.76 22.38
difference% 1.01 1.21 1.19 0.89 0.48

and it shows that all of the differences are less than 1.3 percent. From this comparison, we
know that the first eigenvalues calculated by the first term are sufficiently accurate for all
different aspect ratios.

Table 5.5 shows the computed results of Nu.(a) for different aspect ratios by
Eq.(5.9), and Figure 5.2 shows Nu,(a) as functions of Kn. It shows that Nusselt number
Nu,, increase as the Knudsen number Kn increases and that the values of Nu,, increase as

the aspect ratio, a, decreases for a fixed Kn.
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Nu(Kn)/Nu(0)

Fig. 5.3 Ratio k as a function of Kn for different aspect ratio
[ k = Nu(Kn)/Nu(0) ]
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Table 5.5 Nuc(a) for different aspect ratios

Kn Nu..(1) Nu..(2/3) Nu..(1/2) Nu..(1/4) Nu..(1/8)

0 3.0076 3.1605 3.429 4.4794 5.6217
0.005 3.0548 3.1974 3.468 4.5164 5.6632
0.01 3.0950 3.2482 3.518 4.5670 5.7098
0.02 3.1700 3.2990 3.566 4.6177 5.7563
0.04 3.3010 3.3949 3.660 4.7122 5.8662
0.06 3.4115 3.4908 3.753 4.8038 5.9761
0.08 3.5068 3.5867 3.846 4.8969 6.0861
0.10 3.5898 3.6826 3.939 4.9957 6.1961
0.20 3.8873 3.9688 4.320 5.2209 6.3668
0.30 4.0736 4.1590 4.405 5.4462 6.5376
0.50 42970 4.3878 4.6408 5.6685 6.8792

Table 5.6 k(a) for different aspect ratios

Kn kiube k(1) k(2/3) k(1/2) k(1/4) k(1/8)
0 1 1 1 1 1 1

0.005 1.015 1.016 1.012 1.011 1.008 1.007
0.01 1.028 1.029 1.028 1.026 1.020 1.016
0.02 1.054 1.054 1.044 1.040 1.031 1.024
0.04 1.099 1.100 1.074 1.067 1.052 1.043
0.06 1.138 1.137 1.105 1.094 1.072 1.063
0.08 1.170 1.169 1.135 1.122 1.093 1.083
0.10 1.198 1.194 1.165 1.149 1.115 1.102
0.20 - 1.292 1.256 1.260 1.166 1.133
0.30 - 1.354 1.316 1.285 1.216 1.163
0.50 - 1.459 1.388 1.353 1.266 1.224

Note: k = Nu.. (Kn) /Nu., (0), k. — for channel and k. — for round tube

To see the effect of the Knudsen number Kn on the Nusselt number Nu.. for acertain

aspect ratio with respect to the case of non-slip—flow, a ratio k = Nu.. (Kn) /Nu., (0) was
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introduced. Table 5.6 gives the computed results of k(a) for different aspect ratios.
Figure 5.3 shows that the ratio & as a function of the Nusselt number Kn for different
aspect ratios. It shows that the ratio k increases as Kn increases for all aspect ratios and
that the ratio k decreases as the aspect ratio decreases for 0< Kn <0.30. The maximum
increase of k (or the Nusselt number Nu.. ) is as follows: 35.4 percent (Kn = 0.30) fora=1;
31.6 percent for a = 2/3; 28.5 percent for a = 1/2; 21.6 percent for a = 1/4; and 16.3 percent
for a = 1/8. Figure 5.4 shows the comparison of Nusselt number values with that of a
round tube. The result of an aspect ratio @ = 1 agrees with that of the round tube (the
maximum difference is 0.33 percent), because the "aspect ratio” of the round tube can be
regarded as around 1 while the ratio k becomes smaller with a decreasing aspect ratio.
The aspectratio a also affects the Nusselt number Nu... Fig. 5.5 shows the ratio of the
Nusselt number with the aspect ratio (a < 1) to Nusselt number with a = 1, or Nu(a)/Nu(1),
as a function of aspect ratio a. As shown in Fig. 5.5, these ratios increase greatly as the
aspect ratio a moves toward 0; however, the effects are weaked slightly with the increase

of the Knudsen number Kn.

5.7 Local Heat Transfer Coefficient
for the Case of a Microtube

The local heat transfer coefficient Nuy plays an important role in determining the
thermal effect of Kn in the entrance length. To depict how the local heat transfer
coefficient Nuy behaves with length, at least two eigenvalues are needed. Unfortunately,
it is extremly difficult at present to obtain the second eigenvalue in the case of a
microchannel. However, based on the similarity of the circular microtube and the square
microchannel, the situation in the Graetz problem with slip—flow condition can be

revealed by considering the microtube solution.
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1.2 " tube
|
| a=1
a=172
s [
=
§£ a=1/4
i:, 1.1 —
= f— a=1/8
Y
1.0 i L | N | Kn
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Fig. 5.4 Comparison of ratio k between microchannel and microtube
[ kK = Nu(Kn)/Nu(0) ]
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Nu(a)/Nu(1)

aspect ratio, a

Fig. 5.5 Ratio of Nu(a)/Nu(1) as a function of aspect ratio
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Figure 5.6 shows the local Nuy value in the case of a microtube as a function of x*/Gz

for Kn = 0.02 and with the number of eigenvalues as a parameter. The value of the local

Nusselt number converges dramatically with the increase in the number of eigenvalues in

the computation. When x*/Gz is 0.02, the error in Nuy is 0.7 percent when two

eigenvalues are used and, comparing to the straight line ( using one eigenvalue ), the error

is 14 percent. It can be concluded that the results using four eigenvalues are sufficiently

accurate for x*¥/Gz > 0.02. When x*/Gz is greater than 0.05, the error is at most 1.3

percent —that s, all three plots become nearly flat, indicating a thermally fully—developed

condition.

Nuy

8 Kn=0.02

7

6 4.39365
4.39326
4.38428

S 3.85581

n: number of eigenvalues used in calculation
R: radius of tube

3.90820
3.90620

3.90820

oF net 3.85581

3 2 1 N ;I a2 [l y ' J | B | . I L A 2 4 g J il 2 2 2 l

0.00 0.02 0.04 (0.05) 0.08 0.08 0.10
x*¥/Gz

Fig. 5.6 The local Nusselt number as a function of x*/Gz
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Figure 5.7 shows the local Nusselt number as a function of Kn. It is obvious that Kn
has an influence on the Nusselt number. All the plots in Fig. 5.7 show that the Nusselt
number increases as Kn increases and that this effect is magnified near the entrance. When
x*/Gz is greater than 0.05, all the plots become nearly flat, indicating a thermally
fully—developed condition.

Nu(x)
58S - \
'_’ n=4
% 0.12
50} \ 0.10
X \ Kn 0.08
| 0.06
5 \ / 0.04
45 \' 447
L L7 4.380
- { / 4228
S \ 4.180
wl 00233 4.020
[ 0.01
_ 0,005 3.855
[ 0.00 3750
: 3.675
3.5 2 P S S | 4 M 3, 1 a4 " 2 1 4 2 PR [ ﬂ(ampr)
0.00 0.02 0.04 0.08 0.08

Fig. 5.7 The local Nusselt numbers as functions of x*/Gz and Kn

From the above discussion, we can see that:

(1) slip—flow has a positive influence on the heat transfer coefficient and can enhance
the heat transfer efficiency;

(2) the influence depends on the Knudsen number and increases as Kn increases;

(3) when Kn is equal or greater than 0.02, the increase in the fully-developed Nu is

greater than 5 percent so that the effect of slip—flow should be taken into
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consideration in the computations of the heat transfer coefficient; and

(4) that the influence of Kn on Nu., will decrease as Kn increases.

5.8 Discussion on Other Eigenvalues

In the expressions of 4p(4), if we take X,,, to be an ixi matrix, then there should exist
ip eigenvalues. For example, forp=1and i =1, there exists only one eigenvalue; forp=1
andi=3, thatis 44(4) in the calculations, there exists three eigenvalues; and forp=3 and i
=3, that is 43(4) in the calculations, there should exist nine eigenvalues rather than the
five shown in Table 5.7 (four eigenvalues are missing). The calculated results are shown
in Table 5.7 (see Appendix A in details). From the results in Table 5.7, it is obvious that
the first eigenvalue is reliable, while the others are not reliable due to truncation error.

Therefore, in this research, only first eigenvalues were evaluated.

Table 5.7 Comparison of Ap(a =1, Kn = 0.00) calculated by different approximation

Dennis et al. | 4;(4) or X; X X3 A43(2)
Al 11.91 11.962893 - - 11.962888
Y - 35.62984 34.96576 - 35.62984
A3 71.07 77.06352 67.20875 71.40406 71.40407
A - - 121.27253 | 113.90901 | 113.90902
As 157.9 - - 180.87005 | 121.27253
5.9 Summary

In this chapter, the procedures for the evaluation of eigenvalues for the heat transfer
problem through microchannels in slip~flow were developed. The first eigenvalues and
the fully—developed Nusselt number Nu,, were found for different aspect ratios. From the
comparison and discussion, it is evident that the new technique for evaluation of the first

eigenvalues and the fully—developed Nusselt numbers of the Graetz Problem through
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rectangular microchannels in slip—flow is computionally effective, and the calculated
Nusselt numbers are valuable to predict the heat transfer coefficients for the

dimensionless length x*/Gz greater than 0.05.
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CHAPTER 6

EXPERIMENTAL APPARATUS AND PROCEDURE

The purpose of this work was to determine the heat transfer coefficient and Nusselt
number in the rectangular microchannel and microtube in a laminar flow region and
compare the analytical results with experimental measurements. Section 6.1 details the
test section with the microchannel and microtube. The flow loop and the data acquisition
system are described. Section 6.2 discusses the design background for the apparatus.
Section 6.3 describes the procedure used to obtain the data in the experiment. It should
be noted that while an attempt was made to verify the analytical results experimentally,
the data obtained from the experiments was inconclusive. It is hoped that the details of
the experiments contained in the next two chapters may aid others what attempt similar

experiments in slip—flow.

6.1. Experimental Apparatus
6.1.1 Test Section

The test section is the part of the experimental apparatus where the microchannel and
microtube are tested. The microchannel/microtube were fabricated from 3.2 mm (0.125
in) thick 6061-T6 aluminum bar. Aluminum was chosen for its high thermal
conductivity. Conventional cutting and milling processes were used to machine the
aluminum pieces and channel blanks, to the final 25.4 mm x 101.6 mm (1 in x 4 in) shape.

The fabrication technique was discussed in detail by Bailey (1996).

65
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The microchannel blank configuration is shown in Figure 6.1. The macrochannel
with dimensions of 117 um x 24 pm x 63.5 mm was milled by Dr. Craig Friedrich of the
Institute for Micromanufacturing. The milling machine, referred to as the Ultra Precision
Milling Center, is a one—of—a—kind machine that was specially built by Dover Instrument
Corporation for the Institute for Micromanufacturing at Louisiana Tech University.

The roughness of the channel was obtained by using a WYKO Roughness/Step
Tester (RST) along the channe.l at 30 locations. The raw data are shown in Appendix D.
The average roughness was shown to be 2.28 pm.

The WYKO RST was also used to determine the channel width and depth. The
average top width is 120.43 um, and the average bottom width is 112.76 pm; the average
depth is 24.04 um.

An aluminum cover was glued onto the surface of the blank with epoxy. A 70 mm
long microtube (shown in Fig. 6.2) was glued into the channel having dimensions of 350
pm x 350 um x 63.5 mm. Two pieces of lexan also were glued onto the glued aluminum
parts to form the whole test section with a water jacket. Lexan was chosen based on its
combination of the properties of insulation, strength, and machinability. Care was

exercised to prevent the glue from entering the microchannel section.

6.1.2 Flow Loop

Figure 6.3. shows the flow loop used to conduct heat transfer experiments. It
consisted of (a) a helium gas cylinder ( full pressure of 2200 psi ), (b) three flowmeters, (c)
two metering valves, (d) a heater, (e) a test section, (f) two vacuum gages, (g) a vacuum
pump, and (h) a constant temperature water bath. The test section, as shown in Fig. 6.3,
consisted of amicrochannel and a water jacket with two thermocouples. As shown in Fig.
6.4, two other thermocouples located at the ends of the microchannel fixed in the test

fixture (Bailey, 1996) were used to measure the inlet and outlet conditions of the
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microchannel or microtube. The reading from the thermocouple in the water jacket was

used to determine the overall heat transfer coefficient.

6.1.3 Data Acquisition

The data acquisition system consisted of a Gateway 2000 personal computer
equipped with a LabVIEW for Windows data acquisition system. The raw data consisted
of temperature readings (°C) from the thermocouples, voltage output from the pressure
transducers, and frequency from the flowmeters. Converted data are displayed on the
monitor to allow the user to determine when a steady state has been reached. The raw data
can be sent to an Excel spreadsheet when desired. Once in the spreadsheet, the voltage
output can be converted into pressure, and the frequency output can be converted into
volumetric flow rate by using the calibration curve supplied with the meters. In addition,
the pressure and temperature readings at the exit of the flowmeter can be used to convert

the volumetric flow rate into a mass flow rate.

6.2 Design Background
There are two restrictions that must be achieved in the experimental apparatus:
1) The flow must be in the slip-flow regime, so
0.01<Kn <0.30
2) The flow must be laminar, so

Re <2300

6.2.1 Working Fluid, Sizing and Pressure

For a gas, the Knudsen number is found from:

_u AR
Kn = b 2z 6.1)
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Therefore, there are three factors which may be chosen to achieve slip flow:

1) Small geometry (small hydraulic diameter),

2) Low pressure, and

3) Large value of gas viscosity.

Table 6.1 shows the corresponding pressure ranges for different Dy for nitrogen and
helium from Eq. (6.1). Knowing that a microchannel of 10 um on aluminum could not
be milled on the Ultra Precision Milling Center, Dy = 50 um is chosen. Thus, for the case
of the microtube, the diameter D = 50 um, and for the case of microchannel, the dimension
is 100 pm wide x 25 um deep, Dy =40 um. Helium gas was chosen as the working fluid
because its required pressure for a given Knudsen number is three times higher than that
of nitrogen. Note that the atmospheric pressure is payn = 14.7 psia (101.3 kPa). Thus,
we conclude that a vacuum must be used to achieve slip flow. Table 6.2 lists the fluid

properties for two gases.

Table 6.1 Corresponding pressure for different Dy for nitrogen and helium

Dy: um 10 50 100
Kn 0.01 03 0.01 0.30 0.01 0.30
p N, 9.7 0.32 1.94 0.064 0.97 0.032
(psia) He 29.1 0.96 5.82 0.190 291 0.096
Table 6.2 Properties of nitrogen and helium gases
&c ® M Ry T

kg-m/N-s2 | kg/ms g/mol J/mol-K K

N, 1 1.784x10-> 28.95 8.3144 300

He l 1.987x10-3 4.003 8.3144 300
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6.2.2 Flow Rate

To assure the gas flow in the slip flow conditioﬁ, we let p; = 5.82 psia (300 torr) and
p2= 0.19 psia (9.79 torr) or less. Thus, we assume that flow in such a condition (rarefied
gas) should be treated as a compressible flow. Consequently, the estimation of pressure
drop, Reynolds number, and flow rate become complicated problems.

The exit pressure and inlet pressure are related by (Shapiro,1953):

P, _ (®/p%); 62

P (p/p*) ©6.2)
where

p_1 Y+ 1

p* M 2[1 + (y-1)M2/2] (6.3)

+ 1

for heliupl* - -1% \/ 2[1 + Zy—l)MZ/ 2] ow can be treated as choked flow, that is, M>
= 1, M| must be known for the estimation of inlet pressure, while the determination of
M; (or the velocity of the fluid at the inlet) depends on the inlet pressure and outlet
pressure. Also, the Reynolds number is a function of pressure and may increase at most
ten times of that at STP (standard temperature and pressure, 300 °K and 101.325 kPa or
1 atm) (White,1991).

The rough estimation of the Reynolds number is carried by using the formulas for
incompressible flow. The maximum mass flow rate to achieve laminar flow may be found

as follows:

Re =-2.G = 2300

u
m (2300)(0.01987)(10-3) 2
= = = 914. s-m
G Ac (50)(10-% 914.0 ke/
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m = (914.0)(/4)(50 x 1076)2 = 1.795 x-10~% kg/s

The corresponding volumetric flow rate at STP is:

(1.795)(10-5):
(0.1625)

v = -1 = = -6 3
V=% 11.04 x 10~° m?/s

v = 11.04 cm*/s = 662.6 cm*/min. at STP

This is the maximum flow rate for the slip flow condition, corresponding to a Reynolds
number of 2300. If the flow rate is reduced to 10 cm3/min. at STP, which is the minimum
flow rate for the flowmeter in the lab in the Institute for Micromanufacturing, the
corresponding Reynolds number is:
Re = (2300)(10/662.4) = 34.7

Even ten times this value (347) is much less than 2300, the value of Reynolds number for
laminar flow. Thus, laminar flow should be assured with the design parameters. Taking
the experiment conducted by Yu (1994) as a reference ( D; =52.1 um, nitrogen, p; =42.64
psia, flow rate = 9.81 ml/min, Re =255.91), the flow rate maybe higher than 10 ml/min.

Therefore, the experiments should be carried out without technical problems.

6.3 Experimental Procedure
The test gas was supplied from an industrial helium gas cylinder and the pressure of
the test gas was reduced down to the proper pressure (about 100 psia) by the coarse valve.
The pressure and the flow rate were controlled precisely by the fine metering valve.
Before entering the test component, the gas was heated to the desired temperature
range by a heater strip with a length of 400 mm wrapped around the stainless steel tube.
The input power was controlled by a temperature controller. In the test section, water was

circulated on the outside of the microchannel by a recirculating pump in the constant
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temperature water bath.

The experimental procedures in the experiments were as follows:

1) Pump the testsection including the steel pipes connected to the flow meter over 40
hours to check gas leakage and water leakage.

2) Run the acquisition system half an hour.

3) Control the metering valve to desired flow rate.

4) Take the data when the flow reaches steady—state. It took about 20 minutes for

stabilization.

6.4 Data Reduction
6.4.1 Data Reduction of the Microchannel

For the heat transfer test, the heat transfer coefficient of the inside channel is derived
by the following procedures. From the energy balance of the control volume as shown in

Figure 6.5, we have

hA% dx (T-T,) = @ CpdT 6.4)
Ay Tw
s
/
T T +dT

dx

Fig.6.S Control volume of heat transfer in microchannel
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Integrating Eq. (6.4) over the entire length of the channel yields

L Tr-Tw

_hAw |dx _ dT (6.5)
mC, | L T-T,,
resulting in
TyTap _ w (6.6)
T T P Cac,

The wall temperature was considered constant along the microchannel so that the

heat transfer coefficient h was estimated by Eq. (6.6) and the Nusselt number by Eq. (6.7)

_ DGwCp Ty-Ty, (6.7)
No=— (s ))

Fluid properties were evaluated at the mean bulk temperature of the fluid. The

Reynolds number is evaluated as follows:

Re = G, m‘:‘)v (6.8)

6.4.2 Data Reduction of the Microtube

In the case of the microtube, because the tube is made of polymide (low thermal
conductivity), the wall temperature will change along the microtube, decreasing from
Twi to Ty so that the average temperature difference is over-estimated by Eq. (6.6).
Traditionally, a correction factor is used to correct the error, where F is a function of
parameters F(Ty, T, Ty, Tw2) and the function is readily available from Holman (1986).

The heat transfer process in the tube involves a combination of convection and
conduction. The overall heat transfer is expressed in terms of an overall heat transfer

coefficient U as:
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Q=UAyAT
where U is dependent on the definition of AT. If AT = Tqyig — Tw , the h is given by

D, e
1 R,

= (6.9)
UnD, ~ haD, ' 2mk, T 2mk,

Once U (= h) is evaluated from Eq. (6.6), h; can be calculated from the above

equation. Fluid properties were evaluated at the mean bulk temperature of the fluid.
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CHAPTER 7

EXPERIMENTAL RESULTS

In this chapter, the experimental results involving the microchannel and the
microtube are discussed. It was noted that there was a significant discrepancy between
the Nusseltnumber measured experimentally and the Nusselt number calculated from the
analytical model involving slip—flow. The fact that the gas temperature did not increase
from inlet to outlet as heat was added to the flow passage indicated that there was some
problem in measurement of the gas temperature at the exit. Upon examination of the
thermocouple location at the flow passage exit, it was noted that the thermocouple
position was not at the centerline of the flow channel; therefore, the indicated temperature
was not the gas exit temperature, in all likelihood. It is possible (but not probable) that
micro—specific mechanisms caused the results of the experimental study to deviate

significantly from the analytical model.

7.1. Heat Transfer with Microchannel
In this experiment, inlet and outlet pressures, flow rate, and inlet and outlet fluid
temperatures were measured. These readings were used to determine the heat transfer
coefficient of the microchannel with a certain Knudsen number. It was found that the
temperature drop of the flow media depended on the flow rate, as shown in Table 7.1.
In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, Re.
From this experiment, one can observe:
1) Constant wall temperature. As shown in Table 7.1, the temperature differences of

wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.
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Table 7.1 Experiment with microchannel

79

Gy Tiniet Toutlet Twi Tw2 Nu Re
ml/min °C °C °C °C
343.3 29.90 37.47 78.41 78.56 80.96 720
300.9 29.62 33.56 74.89 74.96 43,18 618
246.7 29 84 32.15 69.83 69.88 20.43 507
198.6 29.77 31.69 74.81 74.89 11.78 408
173.3 29.42 30.54 70.65 70.69 6.59 356
149.2 29.31 30.12 72.13 72.22 3.59 307
125.9 2921 29.67 71.07 71.12 1.76 259
101.8 29.11 29.18 68.69 68.74 0.11 208
*47.3 2933 2%.79 70.65 7071 0.52 97
102 1+36%
[ Nu =3.233 x 109 Re36¢ ’
L (a=117/24 =0.227)
: =
Z
E
=3
=
S 10|
g L
Z e e —— 562 (@=1/8,Kn=0)
+ 448 (@=1/4,Kn=0)
----------------- 3.65 (circular tube, Kn=0) — -
N \‘/ 0.8 p0.3
= — Nu = 0.023 Re08 p0-
1 0 1 N 1 A i
(259) 300 400 500 600 700

Reynolds number, Re

Fig. 7.1 Nusselt number as a function of Reynolds number
( microchannel of 117 pm x 24 um x 63.5 mm )
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In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, Re.

From this experiment, one can observe:

1) Constant wall temperature. As shown in Table 7.1, the temperature differences of
the wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.

2) Microchannel flow. Fig. 7.1 shows that Nusselt numbers were much larger than
those of the empirical formula ( Dittus et al. 1930) for laminar flow if the flow rate is
greater than 200 ml/min (Re .> 400). It is obvious that the flow condition cannot be
explained simply by slip—flow or even turbulent flow. For the case of laminar with Kn =
0.00 and a = 1/4, Nu =4.48; when a = 1/8, Nu = 5.62 ; and, even in slip—flow with Kn =
0.30 and a = 1/8, Nu = 6.54. Therefore, there is likely a different mechanism in a flow
through a microchannel/microtube to explain such a large discrepancy. It will be
discussed in detail later in the next section of this chapter.

3) Non-heating—up—phenomenon. The experimentally measured gas temperature at
the outlet was higher than the inlet gas temperature when the flow rate was relatively large
(343.3 ml/min., for example). As the gas flow rate was decreased to a value less than 125
ml/min., the gas temperature difference became quite small. In fact, a negative
temperature increase (i.e., a temperature decrease) was indicated when the flow rate was
less than 47.3 ml/min. This phenomenon was not anticipated.

Upon examination of the test apparatus, it was noted that the thermocouple at the
flow channel exit was not positioned exactly along the centerline of the flow channel. As
the gas exited the test flow channel, instead of impinging directly on the thermocouple,
the gas mixed with the gas already within the plenum chamber at the flow passage exit.
The thermocouple indicated the gas temperature in the exit plenum instead of indicating

the exit gas temperature.
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This thermocouple measurement error is the most probable source of the so—called
“non-heating—up” phenomenon observed in the experiments. For high flow rates, the gas
in the plenum chamber was rapidly replaced by gas exiting the flow passage; therefore,
the thermocouple indication was more nearly that of the exit gas temperature. On the
other hand, at low flow rates, the warm gas exiting from the flow passage mixed with the
much larger volume of colder gas already in the plenum chamber. As a result, the gas
mixture temperature (measured by the thermocouple) was significantly lower than the
gas exit temperature.

It is also possible that there was some leakage along the length of the microchannel,
although gas leakage would not result in a decrease of the gas temperature while the gas

was being heated.

7.2. Heat Transfer with Microtube

In this experiment, the flow rate was carefully controlled to 0.1 m/min in an attempt
to keep the inlet pressure in the vacuum regime. After twenty minutes, the data were
measured with the inlet pressure 737 torr (14.3 psia) and outlet pressure 5 torr (0.097
psia); the gas temperature in the pipe far away from the test section was 25°C. The results

are shown in Table 7.2.

Table 7.2 Experiment with microtube

Run Gy Tintet Toutlet Twi Tw2 Nu Re
no. ml/min °C °C °C °C
1 0.11 29.50 25.11 88.41 82.56 0.27
2 0.11 30.05 25.58 91.35 85.43 0.27
3 0.11 30.28 25.87 89.50 84.12 0.27
4 0.11 30.29 25.92 87.73 82.93 0.015 0.27
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From Table 7.2, one can observe that:

1) Non—constant wall temperature. It is obvious that constant wall temperature
condition cannot be achieved by the current designed apparatus. The temperature
difference between the inlet wall temperature Ty,; and the outlet wall temperature Ty,
(approximately) is about 6 °C. Itis due to that the microtube wall being made of polymite
(k = 0.155 W/m-K) rather than aluminum (k = 204 W/m-K). Therefore, it cannot be
regarded as an isothermal wall.

2) Non-heating—up—phenomenon. The experimental results shows that the inlet gas
temperature Tipje is higher than the outlet gas temperature Tyyye; by about 4.5°C, which
was not the anticipated situation. This phenomenon happened also in the experiment with
the microchannel when the flow rate was 47.3 ml/min.

One explanation is that the Joule-Thomson effect caused by the expansion of the gas
at the outlet may result in a cooling effect to such an extent that the outlet gas temperature
Toutter is of a smaller value. The expansion of a real gas from a high to a lower pressure in
an isenthalpic (constant—enthalpy) process will result in a temperature change, which
may be either positive or negative, depending on the pressure and temperature and type of
gas. For helium gas expanding from T =300 K =26.8°C to an exit pressure of 1 atm, we
find the following values (Table 7.3) for the exit temperature, using h; =h; (Mann, 1962).
Note that the temperature increases during the Joule~Thomson expansion for helium gas.
We may conclude that any decrease in temperature of the helium gas could not be caused
by the Joule-Thomson expansion effect. Any Joule-Thomson effect for helium gas
around the ambient temperature would result in a warming effect or an increase in
temperature. Unless the inlet pressure is greater than about 30 atm (440 psia), the

temperature change is small (less than 2°C or 4°F).
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Table 7.3 Temperature change vs. pressure for helium gas

PRESSURE, p; EXIT TEMPERATURE, T, (T-Ty)
atm psia kPa K °F °C °C °F
4 588 405 300.2 80.6 27.0 02 04
6 882 608 300.3 80.8 271 03 05
8 117.6 8ll 300.4 81.0 27.2 04 07
10 147.0 1013 | 300.6 81.3 274 06 1.1
20 2940 2027 301.2 824 28.0 12 22
50 7350 5066 | 303.2 86.0 30.0 32 58

Other explanations are as follows:
Wang et al. (1994) pointed out, based on their experiments:

Microscale heat transfer and transport phenomena are expected to be quite
different from those in customary situation. ...

(1) For single—phase liquid forced convection through microchannel, a fully
developed heat transfer regime is initiated at about Re = 1000-1500. The
transition to turbulent mode is influenced by liquid temperature, velocity and
micro size. ...

(2) Transition and laminar heat transfer in microchannels are highly strange
and complicated [italics added], compared with the conventionally sized
situation. The range of transition zone, and heat transfer characteristics of both
transition and laminar flow are highly affected by liquid temperature, velocity and
micro size.

Yu (1994) pointed out in his dissertation:

One may ask the reason and significance of the shifting. Itis well known now
that the process of convective heat transfer depends on flow field. The relative
rates of diffusion of heat and momentum are related by the Prandtl number. In the
micro tube experiments, it has been shown that flow resistance was reduced both
in laminar and turbulent flow. As itis wellknown, if the velocity profile follows a
parabolic curve, then the friction factor f times the Reynolds number should be 64.
But in various micro tube experiments, the number is around 50. As discussed
before in Section 1, it cannot be caused by a slip boundary condition. This
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manifests that there are some alterations in velocity profile, and this in turn will
affect convective heat transfer [italics added]. Similarly, flow resistance
reduction is also found in turbulent flow. All of these will lead one to expect that
heat transfer in micro tubes will behave differently both in laminar and
turbulent flow [bolds added].

Also Bailey et al. (1995) pointed out:

Several effects and conditions can exist in micro-scale convection that are
normally neglected when considering macro—scale flow. ... Another observed
micro—scale effect is that of large temperature variations of the transport fluid
[italics added] (Wang and Peng, 1994). This can cause a significant variation in
fluid properties throughout a micro-system, invalidating the often used
assumption of constant properties. ... As of yet, it is not completely clear when
these factors come into play as fluid convection systems are reduced in size. At
present, there are not enough experimental data to make this determination.
Additionally, there are likely more micro-specific effects and conditions that
have yet to be observed [bolds added].

The experimental results for the heat transfer in the microtube and the microchannel
were different in this study. In both the microchannel and the microtube, the Reynolds
number was significantly less than 2000; therefore, the flow pattern was completely
within the laminar flow regime. Although itis possible that unrecognized micro-specific
phenomena could be responsible for the unusual experimental results, it is more probable
that the placement error of the thermocouple at the flow channel exit caused the
unanticipated experimental results at the very low flow rates.

The fact that the dimension of the flow passages and the thermocouple bead were the
same order of magnitude could also contribute to the thermocouple measurement error.
Because of these uncertainties, the experimental data obtained in this research are likely

to be of little value in assessing the validity of the analytical solutions.
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7.3 Uncertainty Analysis for the
Experimental Data

Along with statistical analysis, uncertainly analysis mainly concerns uncertainty in
the final results because of uncertainties in the primary measurements. The method
presented by Kline and McClintock (1953) was used in this research. If the final result R

is a function of several independent variables, x1, X2, .. ., Xp,
R=R (xl, X2 ¢ oo xn),

then the uncertainty of R associated with the uncertainties in measuring the primary

variables is:

= ((Ruyy2 + OR . y2 IR 17 y211/2
Uy [(axl_Ul) +(ax2'U2) +"'+(ax.,U'*)]

or
Ur _ U, Us, Un2.1/2
R-oOE+&Q+. ..+
From the manufacturers’ data, the measuring uncertainties for each independent
variable are:

Up/D =0.0025, UL/L =0.001, Ug/Gy = 0.0128
Up/P = 0.0025, Ut = 0.4 °C, U/cp = Ug/o = Uy/v = Up/k =0.005

(1) uncertainty in the Reynolds number

Ure _ ;Yowa . Upy | Uw2
Te = G+ )+ YT

and Ug/Re = 1.4%.
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(2) uncertainty in dimensionless temperature
=2 ( DI+ (6)21‘/2

Ug/0=1.45% for the case of microtube; Ug/0 =2.13% for the case of amicrochannel with
Gy =343.3 ml/min and Ug/0 = 1.92% with G, = 149.2 ml/min

(2) uncertainty in the Nusselt number

UNu =

UG")2+( 2y 4 (2 4 (e 62+< )2+(e )1

UNuw/Nu = 18.3% for the case of a microtube; Un,/Nu = 36.0% for the case of a
microchannel with Gy = 343.3 mI/min and Un,/Nu = 14.9% with G, = 149.2 mI/min.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In the previous chapters, the mathematical models of velocity distribution and
temperature distribution were established, and the expression for the series solution
shows the importance of the eigenvalues. Since those eigenvalues were extremely
difficult to evaluate directly from the original expansion, a concise matrix was derived
based on the properties of the elements in the original matrix. A truncated eigenfunction
was obtained which can be used to evaluate the eigenvalues. The procedures were
developed and some results were obtained. Also, the heat transfer experiments were
conducted with a single microchannel and with a microtube. From the discussions of
analytical and experimental results, the following conclusions can be drawn:

1) The technique for evaluation of the eigenvalues of the heat transfer problem in
slip—flow is computationally effective in the evaluation of the first eigenvalues;

2) The Nusselt number increases as Kn increases, or the heat transfer is enhanced
under slip~flow conditions for a given aspect ratio;

3) When Kn is equal to or greater than (.02, the increase in Nu.. is greater than 5
percent so that the effect of slip flow conditions should be taken into consideration in the
computations of the heat transfer coefficient;

4) The experiments were of no value in assessing the validity of the analytical

solutions in this research.
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8.2 Recommendations for Future Study

Considering the results such as the non-heating—up—phenomenon occurring in the
heat transfer experiment with a microchannel/microtube may be caused totally by
measurement errors due to the small flow rate and the fact that both the dimensions of the
microtube to be measured and that of the t—c bead are of the same dimension level, it is
suggested that further experiments which may result in acceptable data be conducted.
The suggested changes to the experiment include the following:

1) A microchannel machined in the aluminum should be used to reach an
approximate isothermal wall condition. The wall made of a material with high heat
conductivity can easily maintain a small temperature difference between the inlet and the
outlet, better approximating the isothermal boundary condition.

2) A much shorter microchannel or several parallel microchannels should be
employed to increase the flow rate for a reasonable pressure drop.

3) A hot gas that is cooled by a surrounding cold water jacked should be used rather
than the reverse situation. A high temperature is desired at the inlet in order to produce
a relatively large Kn.

For the analytical solution, the evaluation of the eigenvalues is very important for
the solution of the heat transfer problem through microchannels in slip—flow. Although
the technique is effective for the first values, it is extremely time—consuming and the
computational error is a problem for other eignevalues. It is suggested that new codes
be developed on a supercomputer to solve the extremely large matrices to obtain more
eigenvalues more effectively so that the thermal entrance effect in the rectangular

microchannels can be established.
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APPENDIX A

CALCULATION OF EIGENVALUE A FOR Kn = 0.00

WITH ASPECT RATIOa =1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

Calculation of Eigenvalue A for Kn = 0.00 with Aspect Ratioa=1 10/27/95

1 =p=(1+a)/2and 2 = B' = (1+1/a)/2

In=112=1 a-=1

i =0,1..10j =0,1..10

3
e

2

l(2:k- 1)-1:]]

r oy k- 10}

@k-1)x [ 2

coch] (2K~ D (x-05)]]
a _]'

[

[ttt |
-
|

coshl(Zk 1)z } f

Calculating time is about 30 minutes fori=j= 10

'?

i

(il r2 R(%.y) \ \
d. = f . X,Y) cosii-nX -cos|j-1- | dy dx
Mol iRo Ry Ranl iy A
0 0
-n(\,nup'u_l_j'—‘——'
1.00147 0 -027819 0 -0.08309 0 -003854 0 -002209 O -0.01431
;0 0 o 0 o0 0 0 0 0 0 0
1-027809 0 008285 0 002237 0 000979 O 000542 O 0.00343
0 0 0 0 o 0 0 0 0 0 0
i-0.08299 0 002237 0 000725 O 000338 0 000192 O 000122
4= 0 0 o0 0 o 0 0 0 0 0 0
-0.03844 0 0.00979 0 000338 0 000167 0 9.73085-10°* 0 6.30798-10°¢
0 0 0 0 o 0 0 0 0 0 0
-002198 0 0.00542 0 000191 0 9.72637-10* 0 5.81959-100* 0 3.83988-10°*
Il o0 0 o o o 0 0 0 0 0 0
[-0.01418 0 000343 0 0.00122 0 629649-10°* 0 3.93537-10°* 0 2.62711-10°*]
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m=0n =0

p =0,1.5q =0,1.5 bg, =0 by, =0 by, =0

L =Z"\d‘:m-pi ,n—-q d?m—pi n-q " 9n_pa—q”dup, n-q/
000000 000000’
00000 O l :
| 000000
00000O0O0: i00000O0]
00000 0 000000:
b=/0 0000 0, B0 =0 0 00 0 O
100000 0O0: 000000:
00000 0; 000000
{00000 O0; 00000 O0;
000000, 000000
m=1 n-=1
p =0,1.5q =0,1.5
_1 , \
bp.q -Z'\dim—-pi ,in—ql dim—-p| ,a~q dm-;-p,n-—q— m+p, in—-q /
'0 0 00 00 ) '0 0 0 0 0 0
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;0 0 00 00 : 10 0 0 0 0 0
10 -0.063895 0 001134 0 0.0021775 | 0 -0063895 0 001134 0 00021775 |
b=/0 0 00 00 bll =i0 0 0 0 o 0 ‘
-0 -0.0142825 0 00021775 0 54°10 % | 10 -0.0142825 0 0.0021775 0 54-10°*
00 00 00 ; 0 0 0 0 o0 0
00 00 00 ‘0 0 0 0 0 0
00 00 00 . .0 0 0 0 Y 0
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00 o0 o 0 0 0 o o 0 0 0
0 0 0.346255 0 -0.0781775 0 : -0 -0.063895 0 03319725 0 -0.0833825 .
00 0 0 o0 o0 o o o o0 0 0
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o o o o0 o o 00 0 o o0 o
0 0 0 o0 0 0 00 0 o0 o0 o
0 0 0 0 0 0 00 0 0 0 o0
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Comparison of different approximation used in evaluation of eigenvalue

L =11,11.1..80

XI1(k) =(4.9348 - 1-0.41015)-(12.33701 - 1-.346255)-(24.67401 - 1-.331973)-(1) -

~1000 i 1 1 1 1 1
10 20 30 40 50 60 il 80
~ (12.33701 - A-.346255)-12.0.0638952 A
A =10
root(X1(1), 1) =11.96289 49348 _ 120317
oo 0.41015
root(X1(1), 1) =35.62984 1233701 _ 15 62084
0346255
» =170 1973921
root(X1(1),1) =77.06352 73921 _ 750875

02937
A =30,30.1.. 130
X2(}) =(19.73921 ~ 2-0.2937)-(12.33701 - 1.0.346255)-(32.07621 - 1.0.281595) -

2000 [ ‘ ‘ ; .

or -
X21)
—2000 1 ] 1 1 |
% “ 60 LY 100 120 140
- (19.73921 ~ 1-0.2937)-12.0.06466° A
A =10 1233701 _ oo oes
root(X2(1),1) =34.96576 0.346255
x =70 1973921 _ o 20e7s
root(X2(1),%) =67.20875 0.2937
» =120 3207621 _ 13 9000
root(X2(),%) =121.27253 0.281595

i ibi i mission.
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% =70,70.05..190
X3(2) =(24.674 - 2-0.331973)-(32.07621 — 1-0.281595)-(44.41322 - i-0.270)

- (3207621 - 1-0.281595)-12.0.06914252

2000 P~ _
1000 - _
o,
(1)

o B —
=1000~ _
=2000

“ 200
A

L =70

root(X3(}), 1) =71.40406 2467401 _,, s

0331973 535

* =110 3207621

root(X3(%),+) =113.90901 m-lS_QS =113.90902
* =180 441322

root(X3(1),1) = 180.87005 027003 164.47513
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A =11,11.05.. 125
x(h) =1.0.063895-0.0503775.0.00291065925 — 1°-0.083385-0.0503775-0.0021775

X123(k) =X1(h)-X2(1)-X3(R) - X2(h)-x(h)*

10" T T T T T T
se10° |- -
o i
0
X123(1)
-5010° |- -
~1o1010 |- ~
~1.51010 L 1 ] ] 1 1
) 0 20 © 60 0 100 120 140
2
i =10
root(X123(1),1) =11.96288801491174
A =40
root(X123(1),1) =35.62984
A =70
root(X123(1),1) =71.40407
A =110
root(X123(1),%) =113.90902
i =165

root(X123(1),A) =121.27253
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a=h/b aspect ratio

a=1 1=1
n =0,1.5
m =0,1..5
v 2. 22
Sm’n =n-(m +a~n")
0 2.4674011
24674011 49348022
5= 9.8696044 12.3370055
22.2066099 24.674011
39.4784176 419458187
| 61.6850275 64.1524286
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9.8696044
12.3370055
19.7392088
32.0762143
49.348022

71.5546319

22.2066099
24674011

320762143
444132198
61.6850275
83.8916374

39.4784176
41.9458187
49348022
61.6850275
78.9568352
101.1634451

61.6850275
64.1524286
71.5546319
83.8916374
101.1634451
123.370055
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APPENDIX B

CALCULATION OF d;j AND bmnj,, FOR Kn = 0.02

WITH ASPECT RATIOa =1
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Repro

Calculation of d;; and bmn,, , for Kn = 0.02 with Aspect Ratio a = 1

Kn =0.02 ¢ =.01,.02..22

f(a) =2-Kn-o-tan(a) - 1.

tg(a)
o)

tg(a) =tan(a)-c wa) =

1

100

" (2Kn)

3000 T T I 1 r
2000 |- N
1000 f~ 7
_ 1 ! 1 1

lmo 5 10 15 20 25 30

a

root(f(e),a) =1.510451617057772 b, =1.510451617057772

e =4.533017031227471 -

root(f(a), ) =4.533017008853988 D2 - 4-533017098853988

a =7.560312429685289

root(f(2), @) =7.560312976908389 b, =7.560312976908389

a =10.59472926320076

root(f(), @) =10.59472964716824 b, =10.59472964716824

a =13.63777351248604

root(f(®), ) =13.63777658025087 b, =13.63777658025087

a =16.69010436230128

root((), @) = 16.69010802858231 b, = 16.69010802858231

a =19.75169253134426

rool(f(2), ) =19.75169677799757 b, =19.75169677799757

e =22.82205687896281 -

rool(f(a),a) = 22.82205788967408 U8 _ 22-32205788967408
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wwO (w) for 8 o's for ratio a =1 (here «=b)in Eq.(19) [ Egs. (12) and (13) ]

3 2 sab |
w0 =-2. Z a sin(b,) b \a/ |
& 4,b.-‘5 1+ 2-Ka-sin(b. 2| g 'b‘ ‘b, |
i=1 %) ( :) I cosh hdy
! 2-Kn-b.-sinh(— | |
;_ [,/ PSR w0 =-0.16265
- , ;
ib.\ !
8 2 I LY i
/ | smh— f
wo =-2. ) A G &) |
S (6)° 1+ 2Kasin(b,)2 | # i) b |
i=1 % i) | coshk——':—z-Kn-b.-smh——'){
L a/ ' \a/l
i 1.2.8 w0 =—0.16284
. = sin(b;) 1 _ 1
i i
1 -2-Kn-sin(b,)? (b;)° 5 B /b
coshl—)a—ZKnb smh\—
a
<17 ;— -b ‘.: “
w(x,y) =-2- Z cos| b 12——1 I;’ci-il—eoshl'—'-'z—’i—l‘{g“
! /.U L ta\ 2 )J ; w(0,0.5) =-0.02681
w(1,1) =0.00259
w(0.5,0) =-0.02498
8 - .
b .
w(x 'H"”r|0|l-coshl—-'2—-1|] ‘
i=1 i Ji L 2T 0,05 =-0026s

w(1,1) =-0.00305
. 0.5,0) =0.
Therefore, using 8 u's is accurate enough " ) =7002629
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m=1 n-=l
p =0,1.5q =0,1..5
1,

bv.q :Z'(dlm—pl vin—q ~ Yim_pl .nw-q‘_dm:-p.n-;-q— dm-e-p, jn-q)
00 00 00 ’l }-0 o o0 o o 0 ]
0 038917 0 005173 0 001325 | 0 038917 0 -005173 0 -0.01325 |
{00 00 00 ! ,0 0 0 0 0 0 E
0 005191 0 0.0079 0 0.00198 ] ‘0 -0.05191 0 0.0079 O 0.00198 |
b={0 O 00 00 Ebll='i0 o o o o o |
0 -0.01406 0 00019 0 462510 * | |0 -0.01406 0 000199 0 4.625-10°*
0 0 00 00 l o o o o o o0
0 0 00 00 ‘ o o o o o o |
L0 0 00 00 o 0o o 0o o o0 |
b, , =0.38917

similarly, N i X
oo o o o o 0 o0 o o o o ]
|0 0 033744 0 -0.06498 0 10 -0.05173 0 032419 0 -0.07135 !
00 0 0 0 0 io 0 0 o0 0 0 ;
0 0 -0.04401 0 0.00988 0 |0 00079 0 -004203 0 0.01056 |
B2=l00 0 o0 o0 o] bI3=0 0 o0 o0 0 o0 |
0 0 -0.01207 0 000245 O | 10 0.00199 0 -001161 0 0.00264 !
60 0 o o0 0 0o o0 o o0 o0 0 |
60 o0 o o0 o] 0o 0o o 0o o o |
00 0o o 0 0] o o0 o0 o o0 0 |
00 o o0 o 0] o 0 6 0 0 0 |
10 0 -0.06498 0 031782 O | 0 -001325 0 -0.08323 0 0.36255 |

00 o o o o 0 o0 o0 ©0 o0 0
0 0 000988 0 -0.04134 0 0 0.00198 0 0.01306 0 -0.05037

bl4=00 o0 o0 o0 oi{bIS={0 © 0 0 0 O
0 0 000245 0 -0.01142 0 0 462510 0 000264 0 -0.01134

00 o0 o0 0 O 0 o0 o0 0 o o
00 0 o0 o0 O o o o o0 o0 o |
00 0 o0 o0 0 o o o o o o !
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b2l =

(=2~ I~ A -~ -~ I~ T =)

[

b23 =

b25 =

~—
(=]

————

cocooco o o o o

o O O O 0o O o C

[

0
0

0.33726

0

-0.06596

0

0
0
0

-0.04383

0.00989

-0.01127

0.00244

o O O ©

0
0

0

(= = B = =

= A - RN - - - -

O c c o oo oo o

©C O O OO0 O o o o

-0.04383

0.00989

(= I~ ]

0

0
0.28216

0
-0.05363

0

0
0
0

-0.06079

0.0132

S © ©

0 o0 00
0 o 00
0 -0.01127 00
0 0 00
0 0.00244 b22 =lg o
0 0 00
0 0 00
0 0 jo 0
o o | 10 0
0 0 00
0 0 00
0 -0.06079 00
0 o 00
0 00132 b24 ={0 0
0 0 00
0 0 00
0 o 00
0 0 i 00
0 0 0 0
0 0 0 -0.05191
0 027422 0 o0
0 o 10 032321
0 -0.0523%31 =|0 0
0 o0 0 -007107
0 o0 0 o0
0 0 0 o
0 o0 0o 0
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0 0 0 01
0o 0 o0 o
029343 0 -0.0551 0
o 0 o0 o
-0.05608 0 0.01233 0
0o 0 o0 o
0o 0o o o
0o 0 o0 o
©o 0 0 o0
0o 0 o o
0 0 o0 0
00551 0 027647 0
0 0 o0 o0
001233 0 -0.05277 0
o 0 o0 o0
0o 0 0 0]
0o 0 0 0
0 0o o0 0]
o 0 o0 o
0 00079 0 000198
0o 0 0 o0
0 -0.04184 0 -0.01081
o 0 o0 o
0 001055 0 0.0026
0o 0 0 o
0o o0 o0 o
6o 0 o0 o
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0 o o0 o0 o0 o 0 0 o 0 o0 ]
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00 0 0 o0 0 60 0 0 0o o |
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i =0,1.10 j =0,1..10
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rl 12 wy) L x\
= X,Y " .y
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APPENDIX C

THE FIRST THREE EIGENVALUES FOR Kn = 0.00

BY DENNISET AL.
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THE FIRST THREE EIGENVALUES FOR Kn = (.00 (DENNIS ET AL.)

a 1.000 0.667 0.500 0.250 0.125
A 11.91 12.49 13.57 17.76 22.38
Ay 71.09 51.58 41.17 28.17 25.61
A3 157.9 99.71 94.93 47.82 31.81
B 0.804 0.802 0.789 0.756 0.737
B, 0.104 0.064 0.071 0.107 0.091
B3 0.014 0.043 0.020 0.028 0.034
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APPENDIX D

DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL
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DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL

Test# Ra: nm Raq: nm Rt: micro

1 143.31 179.43 2.8

2 140.81 169.44 274

3 102.9 129.28 1.77

4 141.38 176.5 3.39

5 116.37 154.2 2.36

6 113.79 144 95 2.05

7 108.68 141.12 2.81

8 91.45 121.73 2.16

9 97.62 1315 3.06

10 149.83 187.22 2.25

1 90 117.61 1.86

12 98.37 122.61 205

13 118.83 155.26 2.26

14 82.42 111.46 3.39

15 98.07 124.16 1.81

16 79.71 100.51 1.81

17 75.25 95.66 2.05

18 100.62 129.55 2.89

19 91.26 117.22 3.02

20 127.49 160.78 1.71

21 128.89 157.93 2.12

22 115.02 146.06 2.02

23 93.57 118.38 2.37

24 115.21 149.07 2.15

25 142.57 181.83 2.28

26 149.95 184.24 1.97

27 88.13 119.18 1.86

28 128.61 162.84 1.99

29 105.2 133.64 1.69

30 93.32 122.5 1.82

Mean 2.280333
Standard Error 0.089209
Median 2.135
Mode 2.05
Standard Deviation 0.488619
Variance 0.238748
Kurtosis -0.00615
Skewness 0.973331
;ﬂﬁ 1.7
Minimum 1.69
Maximum 3.39
Sum 68.41
Count 30
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Test#] Width | ~ Depth
Top Bottom

1l 11556 112 20.97

2] 133.11 114.12 20.58

3 133.97 114.23 22.32

4] 131.58 113.19 20.87

5| 128.01 114.97 21.51

6/ 118.52 114.37 21.96

71 117.34 113.19 22.29

8] 117.82 114.23 23.67

9] 118.52 112.6 22.71

10/ 117.93 110.82 21.55

11 11917 113.21 22.85

12 122.6 113.03 24.61

13 128 112.61 22.65

14| 126.12 113.63 25.18

15 123.2 113.04 25.83

16| 118.89 112.35 25.51

17| 117.22 111.24 24.86

18 117.2 112.44 24.41

19| 11842 114.83 23.27

20 119.71 112.6 24.62

21] 11841 112.44 25.34

22| 11852 113.18 26.81

23] 116.74 112.01 24.84

24| 114.35 110.01 25.94

25 120.02 113.63 27.81

26| 117.15 112.41 27.22

27| 11684 112.02 23.92

28] 116.59 112 26.25

29| 116.61 111.89 26.66

30 114.69 110.58 24.21

Mean 120.4263 112.7623 24.04067

Standard § 0.991225 0.22057 0.368448

Median 118.47 112.605 24.31
Mode 118.52 112 #N/A

Standard [| 5.429164 1.20811 2.018072

Variance | 29.47582 1.459529 4.072613

Kurtosis | 0.910125 -0.0858 -0.96811

Skewness| 1.396207 -0.21856 -0.01815

19.62 4.96 7.23

Minimum 114.35 110.01 20.58

Maximum| 133.97 114.97 27.81

Sum 3612.79 3382.87 721.22

Count 30 30 30
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APPENDIX E

EXPERIMENTAL HEAT TRANSFER DATA
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Inlet, outlet and wall temperatures

Experiment date: June 3, 1996

Flow media: Helium gas

Size of microchannel: 117 uym x 24 um
Length of microchannel: 63.5 mm

Operation temperature: 24°C

112

Run Gy Tinlet Touttet Twi Twa

number ml/min °C °C °C °C
1 3433 29.90 37.47 78.41 78.56
2 300.9 29.62 33.56 74.89 74.96
3 246.7 29.84 32.15 69.83 69.88
4 198.6 29.77 31.69 74.81 74.89
5 173.3 29.42 30.54 70.65 70.69
6 149.2 2931 30.12 72.13 72.22
7 125.9 29.21 29.67 71.07 71.12
8 101.8 29.11 29.18 68.69 68.74
9 47.3 29.33 28.79 70.65 70.71
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Inlet, outlet and wall temperatures _
Experiment date: June 18, 1996
Flow media: Helium gas
Size of microtube: 52.1 um
Length of microchannel: 70 mm

Operation temperature: 25°C

113

Run Gy Tintet Toutlet Tw1 Tw2
no. ml/min °C °C °C °C
1 0.11 29.50 25.11 88.41 82.56
2 0.11 30.05 25.58 91.35 85.43
3 0.11 30.28 25.87 89.50 84.12
4 0.11 30.29 25.92 87.73 82.93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




APPENDIX F

REDUCED HEAT TRANSFER DATA
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Data reduction of heat transfer
Experiment date: June 3, 1996
Flow media: Helium gas
Size of microchannel: 117 pym x 24 um
Length of microchannel: 63.5 mm

Operation temperature: 249C

115

Table F.1
Run Gy Tintet Toudet Twi Tw2 Nu Re
number | ml/min °C °C °C °C

1 3433 29.90 37.47 78.41 78.56 80.96 720
2 3009 29.62 33.56 74.89 74.96 43.18 618
3 246.7 29.84 32.15 69.83 69.88 20.43 507
4 198.6 29.77 31.69 74.81 74.89 11.78 408
5 173.3 29.42 30.54 70.65 70.69 6.59 356
6 149.2 29.31 30.12 72.13 72.22 3.59 307
7 1259 29.21 29.67 71.07 71.12 1.76 259
8 101.8 29.11 29.18 68.69 68.74 0.11 208
9 47.3 29.33 28.79 70.65 70.71 -0.52 97
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Experiment date: June 18, 1996

Flow media: Helium gas

Size of microtube: 52.1 pm

Length of microchannel: 70 mm

Operation temperature: 250C

Table F.2
Run Gy Tintet Toutlet Twi Tw2 Nu Re
no. ml/min °C °C °C °C
1 0.11 29.50 25.11 88.41 82.56 0.27
2 0.11 30.05 25.58 91.35 85.43 0.27
3 0.11 30.28 25.87 89.50 84.12 0.27
4 0.11 30.29 25.92 87.73 82.93 -0.015 0.27
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APPENDIX G

PROPERTIES OF THE MICROCHANNEL AND MICROTUBE

PROPERTIES OF HELIUM GAS
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Table G.1. Physical properties of the microchannel

Channel material Aluminum Polymide
Mechanical Properties
Density, kg/m3 2707 1042
(Ibr/ft3) (169) (65)
Tensile Strength (MPa) 120.7 103
(psi) (17500) (15,000)
Thermal Properties
Thermal Conductivity
W/m-K 204 0.155
(Btwhr—ft-OF) (118) (0.090)
Specific Heat
KJ/kg-K 0.896 1.088
(Brw/lbm -9F) (0.214) (0.260)

Source of Data: J.P. Holman, Heat Transfer, McGraw-Hill Book Co., New York, 1986
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Table G.2. Properties of helium gas at atmospheric pressure

Values of u, k, and C;, are not strongly pressure—dependent for He and may be used over

a fairly wide range of pressures.

T.K o G u v k
kg/m3 kl/kg 0C kg/m s m?%/s W/m 0C
200 0.2435 5.200| 15.66x10°9| 64.38x10-° 0.1177
255 0.1906 5.200| 18.17 95.50 0.1357
366 0.13280 5.2001 23.05 173.6 0.1691
477 0.08282 5.200] 27.50 269.3 0.197
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