Heat transfer in microchannels

Xianming Wang

Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Mechanical Engineering Commons

Recommended Citation

https://digitalcommons.latech.edu/dissertations/767

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact digitalcommons@latech.edu.
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
HEAT TRANSFER IN MICROCHANNELS

by

Xianming Wang, M.S.M.E.

A Dissertation Presented in Partial Fulfilment
of the Requirements for the Degree
Doctor of Engineering

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

November 1996
LOUISIANA TECH UNIVERSITY
THE GRADUATE SCHOOL

November 7, 1996
Date

We hereby recommend that the thesis prepared under our supervision
by Xianming Wang
entitled Heat Transfer in Microchannels

be accepted in partial fulfillment of the requirements for the Degree of
Doctor of Engineering

Randall Benson
Supervisor of Thesis Research

Eugene Galambos
Head of Department
Mechanical & Industrial Engineering
Department

Recommendation concurred in:

Tim Ameel

A. D. Hopkinson
Advisory Committee

Approved:

Director of Graduate Studies

Dean of the College

Approved:

Dean of the Graduate School and
University Research

GS Form 13
ABSTRACT

The objective of this research was to develop an analytical solution to the heat transfer problem in microchannels with slip–flow — a heat transfer problem for gases at low pressures or in extremely small geometries, and to verify this solution experimentally. In this investigation, an analytical expression for the velocity distribution with slip–flow was obtained which involved the Knudsen (Kn) number in an infinite series form. The result showed that the velocity always increased as the Knudsen number was increased. The Knudsen number for extremely small channels may become large enough to affect significantly the velocity distribution and consequently affect the heat transfer properties. A mathematical model of temperature distribution was established by combining the energy and momentum equations. A series solution was obtained. Also, expressions for the local and overall Nusselt numbers were derived in terms of the Knudsen number and Graetz number.

A new technique for evaluation of eigenvalues for the solution of the heat transfer problem in microchannels was developed. This method was based on the construction of a matrix. The computational results showed that the method was effective. The local values and average Nusselt number were found for Kn from 0.005 to 0.3 with aspect ratio $a = 1, 2/3, 1/2, 1/4$ and $1/8$. Experiments for helium through a microchannel with dimensions of 117 μm x 24 μm x 63.5 mm and a microtube with inside diameter of 52 μm were conducted.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Heat Transfer Problems in Ducts</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Heat Transfer Problems in Ducts in Slip-flow</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Related Research</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 2 VELOCITY AND TEMPERATURE DISTRIBUTIONS</td>
<td>15</td>
</tr>
<tr>
<td>2.1. Velocity Distribution</td>
<td>15</td>
</tr>
<tr>
<td>2.1.1 Continuity Equation</td>
<td>16</td>
</tr>
<tr>
<td>2.1.2 Velocity Distribution with Slip Condition</td>
<td>17</td>
</tr>
<tr>
<td>2.2 Temperature Distribution</td>
<td>23</td>
</tr>
<tr>
<td>2.3 Summary</td>
<td>24</td>
</tr>
<tr>
<td>CHAPTER 3 ANALYTICAL SOLUTION</td>
<td>25</td>
</tr>
<tr>
<td>3.1 Graetz Solution</td>
<td>25</td>
</tr>
<tr>
<td>3.1.1 Separation of Variables Solution</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2 Determination of Constants C_n</td>
<td>26</td>
</tr>
<tr>
<td>3.2 Heat Transfer Coefficient Correlation</td>
<td>29</td>
</tr>
<tr>
<td>3.2.1 Bulk Temperature</td>
<td>29</td>
</tr>
<tr>
<td>3.2.2 Local Heat Transfer Coefficient</td>
<td>29</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
3.2.3 Overall Convective Heat Transfer Coefficient .. 31

3.3 Summary .. 32

CHAPTER 4 EVALUATION OF EIGENVALUES .. 33

4.1 Introduction .. 33

4.2 Expansion of Eq. (4.6) ... 36

4.3 Simplification of Eq. (4.13) ... 41

4.4 Summary .. 42

CHAPTER 5 COMPUTATIONAL RESULTS ... 43

5.1 Procedures of Computation .. 43

5.2 Calculation of \(\alpha_i \) ... 45

5.3 Calculation of \(d_{ij} \) ... 47

5.4 Determination of \(b_{p,q}(m,n) \) (or \(bmn_{p,q} \)) 47

5.5 Determination of Truncation Eigenfunction .. 51

5.6 Evaluation of Eigenvalue \(\lambda \) and Fully-Developed Nusselt Number ... 53

5.7 Local Heat Transfer Coefficient for the Case of a Microtube 58

5.8 Discussion on Other Eigenvalues ... 63

5.9 Summary ... 63

CHAPTER 6 EXPERIMENTAL APPARATUS AND PROCEDURE 65

6.1 Experimental Apparatus .. 65

6.1.1 Test Section .. 65

6.1.2 Flow Loop .. 66

6.1.3 Data Acquisition ... 71

6.2 Design Background ... 71

6.2.1 Working Fluid, Sizing and Pressure ... 71
6.2.2 Flow Rate ... 73
6.3 Experimental Procedure .. 74
6.4 Data Reduction .. 75
 6.4.1 Data Reduction of the Microchannel 75
 6.4.2 Data Reduction of the Microtube 76
CHAPTER 7 EXPERIMENTAL RESULTS .. 78
 7.1 Heat Transfer with Microchannel 78
 7.2 Heat Transfer with Microtube 81
 7.3 Uncertainty Analysis for the Experimental Data . 85
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS 87
 8.1 Conclusions ... 87
 8.2 Recommendations for Future Study 88
APPENDIX A CALCULATION OF EIGENVALUE λ
 FOR $Kn = 0.00$ WITH ASPECT RATIO $a = 1$ 89
APPENDIX B CALCULATION OF d_{ij} AND $bm_{n,p,q}$
 FOR $Kn = 0.02$ WITH ASPECT RATIO $a = 1$ 99
APPENDIX C THE FIRST THREE EIGENVALUES
 FOR $Kn = 0.00$ BY DENNIS ET AL. 106
APPENDIX D DATA OF ROUGHNESS AND
 DIMENSION OF MICROCHANNEL 108
APPENDIX E EXPERIMENTAL HEAT TRANSFER DATA 111
APPENDIX E REDUCED HEAT TRANSFER DATA 114
APPENDIX G PROPERTIES OF MICROCHANNEL AND
 MICROtube; PROPERTIES OF HELIUM GAS 117
BIBLIOGRAPHY .. 120
VITA ... 123
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.1</td>
<td>The first eight values of (a_i)</td>
<td>45</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Comparison of (\lambda_1(a = 1)) calculated by different approximation</td>
<td>53</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Eigenvalue (\lambda_1(a)) for different aspect ratios</td>
<td>54</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Comparison of (\lambda_1(a)) for Kn = 0 with previously known values</td>
<td>54</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>(\text{Nu}_\infty(a)) for different aspect ratios</td>
<td>57</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>(k(a)) for different aspect ratios</td>
<td>57</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Comparison of (\lambda_{n}(a = 1, Kn = 0.00)) calculated by different approximation</td>
<td>63</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Corresponding pressure for different (D_H) for nitrogen and helium</td>
<td>72</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Properties for nitrogen and helium gases</td>
<td>72</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>Experiment with microchannel</td>
<td>79</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>Experiment with microtube</td>
<td>81</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Temperature change vs. pressure for helium gas</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Nu as a function of Re in microtubes</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Fully developed Nu as a function of Kn (constant wall temperature)</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Fully developed Nu as a function of Kn (constant heat flux)</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Coordinate system</td>
<td>9</td>
</tr>
<tr>
<td>1.5</td>
<td>New coordinate system for dimensionless variables</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Coordinate system for the problem</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>New coordinate system for dimensionless variables</td>
<td>17</td>
</tr>
<tr>
<td>5.1</td>
<td>Velocity eigenvalues α_i as a function of Kn</td>
<td>46</td>
</tr>
<tr>
<td>5.2</td>
<td>Fully developed Nu as a function of Kn for different aspect ratio</td>
<td>55</td>
</tr>
<tr>
<td>5.3</td>
<td>Ratio k as a function of Kn for different aspect ratio</td>
<td>56</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of ratio k between microchannel and microtube</td>
<td>59</td>
</tr>
<tr>
<td>5.5</td>
<td>Ratio of Nu(a)/Nu(1) as a function of aspect ratio</td>
<td>60</td>
</tr>
<tr>
<td>5.6</td>
<td>The local Nusselt number as a function of $x*/G_z$</td>
<td>61</td>
</tr>
<tr>
<td>5.7</td>
<td>The local Nusselt numbers as a function of $x*/G_z$ and Kn</td>
<td>62</td>
</tr>
<tr>
<td>6.1</td>
<td>Side cut-away view of the test section and the blank with microchannel</td>
<td>67</td>
</tr>
<tr>
<td>6.2</td>
<td>Side cut-away view of the test section and the blank with microtube</td>
<td>68</td>
</tr>
<tr>
<td>6.3</td>
<td>Flow loop for micro heat transfer experiments</td>
<td>69</td>
</tr>
<tr>
<td>6.4</td>
<td>Top view and side cut-away view of test fixture</td>
<td>70</td>
</tr>
<tr>
<td>6.5</td>
<td>Control volume of heat transfer in microchannel</td>
<td>75</td>
</tr>
<tr>
<td>7.1</td>
<td>Nusselt number as a function of Reynolds number</td>
<td>79</td>
</tr>
</tbody>
</table>
NOMENCLATURE

\(A_w \)
\(a \)
\(a_{p,q} \)
\(b_{p,q}(m,n) \)
\(C_n \)
\(d_{ij} \)
\(D_H \)
\(e_{m,n} \)
\(F \)
\(G \)
\(G_G(x,y) \)
\(G_v \)
\(G_n \)
\(h_x \)
\(\bar{h}_c \)
\(H \)
\(k \)
\(K_n \)
\(L \)
\(M \)
\(\frac{u_r - u_i}{(U_w - u_i)} \)
\(Q \)
\(R_e \)
\(R_g \)
\(T \)
\(T_B \)
\(T_L \)
\((\Delta T)_{LN} \)
\(u \)
\(u_i \)
\(\lambda /D \)
\(\text{tube surface area [m}^2\text{]} \)
\(\text{aspect ratio h/b} \)
\(\text{coefficient in Eq. (4.2)} \)
\(\text{coefficient in Eq. (4.6)} \)
\(\text{coefficient in Eq. (3.5)} \)
\(\text{coefficient in Eq. (4.11)} \)
\(\delta_{m,n}\Lambda_{m,n} \text{ in Eq. (4.13)} \)
\(\text{specular reflection coefficient} \)
\(\text{G}\text{(x,y) in Eq. (3.3)} \)
\(\text{volume flow rate} \)
\(\text{average convective heat transfer coefficient [W/m}^2\text{-K]} \)
\(\text{characteristic dimension} \)
\(\text{thermal conductivity [W/m-K]} \)
\(\text{Knudsen number, (\lambda/D)} \)
\(\text{length of ducts[m]} \)
\(\text{Mach number; molecular weight} \)
\(\text{fully-developed Nusselt number} \)
\(\text{ber coefficient, (h_cD/k)} \)
\(\text{Nu}_\infty \)
\(\text{Nusselt number, (h_cD/k)} \)
\(\text{local Nusselt number, (h_cD/k)} \)
\(\text{Nu}_x \)
\(\text{fluid pressure [Pa]} \)
\(\text{heat flux per unit wall area} \)
\(\text{heat transfer rate [W]} \)
\(\text{Reynolds number, (pD/\mu)} \)
\(\text{ideal gas constant [J/kg-K]} \)
\(\text{temperature [K]} \)
\(\text{bulk temperature [K]} \)
\(\text{temperature at \(\xi = L \) [K]} \)
\(\text{log-mean-temperature difference (LMTD) [K]} \)
\(\text{velocity in \(\xi \) or x direction [m/s]} \)
\(\text{average streamwise velocity of the incident molecules [m/s]} \)
u_r average streamwise velocity of the reflected molecules [m/s]
U_w average streamwise velocity of the surface [m/s]

\(v \) velocity in \(\eta \) or \(y \) direction [m/s]
\(w \) velocity in \(\zeta \) or \(z \) direction [m/s]

\(\omega_0 \) average velocity [m/s]

\(x \) dimensionless width, \((\xi/D_H) \)
\(x^* \) dimensionless length, \((x/L) \)
\(y \) dimensionless width, \((\eta/D_H) \)
\(z \) dimensionless distance, \((\zeta/D_H) \)

Greek Symbols

\(\alpha \) fluid thermal diffusivity, \((k/qc)\) [m²/s]

\(\alpha_i \) velocity eigenvalues

\(\beta \) \((1+a)/2\)

\(\beta' \) \((1+1/a)/2\)

\(\gamma \) ratio of specific heats

\(\delta_{p,q} \) coefficient in Eq. (4.6)

\(\Delta(\lambda) \) eigenfunction Eq. (5.8)

\(\xi \) width

\(\eta \) width

\(\zeta \) distance along duct

\(\phi \) function in Eq. (4.1)

\(\Lambda \) coefficient in Eq. (4.1)

\(\lambda \) eigenvalue

\(\lambda_m \) mean free path [m]

\(\mu \) dynamic viscosity [kg/m s]

\(\nu \) kinematic viscosity [m²/s]

\(\rho \) density [kg/m³]

\(\Theta(x,y) \) function expressed as Eq. (4.2)

\(\theta_{B,i} \) dimensionless fluid bulk temperature at \(\zeta=L \)

\(\theta_{LN} \) dimensionless LMTD

Subscripts

0 at \(z = 0 \)

B bulk

m average

s slip–flow

w wall

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
ACKNOWLEDGEMENTS

I would like to record my sincerest indebtedness to all the people who have offered encouragement and help during this research.

I am deeply grateful first of all to the Chairmen of my advisory committee, Dr. Randall F. Barron and Dr. Robert O. Warrington, who delivered excellent instruction and quality advising and supplied many useful reference materials and software throughout my research and the development of the dissertation.

My further thanks are due Dr. Timothy A. Ameel, who offered much valuable advising on the research, the conduct to the experiments and on my dissertation.

I would also like to express my sincere appreciation to Dr. Huaijin Gu for his kindly being a member of the advisory committee, for his careful review of this dissertation, and for his many valuable suggestions and comments on the dissertation.

Special thanks are due Dr. Duli Yu, Mr. Roger Stanley, and Mr. Ji Fang for their kindly helping me with the experimental work.

I would like also to publicly acknowledge and thank the Lord God, as I do privately, as it is He who has given me whatever gifts and compassion I possess.

And finally, my profound and continuous thanks to my family, especially my wife, Li Ma, my son, Sean Wang, for all their real love, moral encouragement, and financial support, without which it would have been impossible for me to study at Louisiana Tech University.
CHAPTER 1

INTRODUCTION

The objective of this research is to develop an analytical solution of the heat transfer problem in microchannels with slip-flow — a heat transfer problem for gases at low pressures or in extremely small ducts, and to verify the analytical model experimentally. To do this, the velocity profile with slip-flow must be found first. A mathematical model of the temperature distribution in slip-flow should be established by combining the energy and momentum equations. And finally, an effective technique for evaluation of the eigenvalues for the series solution should be developed and heat transfer experiments with microchannel/microtube should be conducted.

1.1 Heat Transfer Problem in Ducts

By the end of the last century, the problem of forced convection heat transfer in a circular tube in laminar flow gained interest because of its fundamental importance in physical problems such as the analysis and design of heat exchangers.

The Graetz problem is a simplified case of the problem of forced convection heat transfer in a circular tube in laminar flow. With the assumptions of steady and incompressible flow, constant fluid properties, no "swirl" component of velocity, fully developed velocity profile, and negligible energy dissipation effects, Graetz (1883) originally solved this problem analytically. The solution by Graetz involved an infinite number of eigenvalues, and in his paper, only the first two eigenvalues were evaluated.
Since the accuracy of the Graetz solution mainly depends on the number of eigenvalues, it is extremely important to obtain more eigenvalues, as Tribus and Klein (1953) pointed out. For seventy years, the research on this problem focused mainly on finding more eigenvalues. Abramowitz (1953) employed a fairly rapidly converging series solution of the Graetz equation in making the calculation and found the lowest five values with much more accuracy. Sellars et al. (1956) extended the problem to include a more effective approximation technique for evaluation of the eigenvalues of the problem; they could get any number of eigenvalues as needed. This work solved the Graetz problem completely.

Dennis et al. (1959) studied the case in rectangular ducts. By employing homogeneous linear algebraic equations and Rayleigh quotient, they developed a technique for evaluation of the eigenvalues for the analytical solution of the problem of forced convection heat transfer in rectangular ducts with different aspect ratios. The same results were obtained by other researchers numerically (Shah and London, 1978).

1.2 Heat Transfer Problem in Ducts in Slip-Flow

Applications of microstructures such as micro heat exchangers have led to increased interest in convection heat transfer in micro-geometries. Some experimental work has been done, such as the experimental investigations in microtubes (Choi et al., 1991), in microchannels (Pfahler et al., 1991), and in micro heat pipes (Petersen et al., 1993). Appropriate models are needed to explain the significant departures in the micro-scale experimental results from the thermofluid correlations used for conventional-sized geometries. For example, Choi et al. (1991) conducted heat transfer experiments using essentially smooth tubes with a relative roughness of 0.0003 and a diameter ranging from 3 μm to 81 μm. As shown in Fig. 1.1, the measured heat transfer coefficients in laminar
Fig. 1.1 Nu as a function of Re in microtubes [Choi et al.]
flow in small tubes exhibited a Reynolds number dependence, in contrast to the conventional prediction for fully established laminar flow, in which the Nusselt number is constant. Also, an experimental investigation of fluid flow in extremely small channels showed that there are deviations between the Navier–Stokes predictions and the experimental observations (Pfahler et al., 1991).

Therefore, some effects and conditions that are normally neglected when considering macro-scale flow must be taken into consideration in micro-scale convection. One of these conditions is slip-flow (Flik et al., 1992, Beskok and Karniadakis, 1992). It has been found that the analytical model combined with slip-flow conditions can fit the experimental data in microchannels with a uniform cross-sectional area (Arkilic et al., 1994) and with a non-uniform cross-sectional area (Liu et al., 1995).

Slip-flow occurs when gases are at low pressures or for flow in extremely small passages. At low pressures, with correspondingly low densities, the molecular mean free path, which can be expressed as Eq. (1.1), becomes comparable with the body dimensions, and then the effect of molecular structure becomes a factor in flow and heat transfer mechanisms (Eckert and Drake, 1972).

\[\lambda_m = \frac{\mu}{p} \sqrt{\frac{\pi R_u T}{2 g M}} \]

(1.1)

The relative importance of effects due to the rarefaction of a gas can be indicated by the Knudsen number, a ratio of the magnitude of the mean free molecular path in the gas to the characteristic dimension in the flow field. The effects of rarefaction phenomena on flow and heat transfer becomes important when the Knudsen number can no longer be neglected. The Knudsen number may be defined as

\[Kn = \frac{\lambda_m}{D_H} = \frac{\mu}{pD_H} \sqrt{\frac{\pi R_u T}{2 g M}} \]

(1.2)
In defining when slip-flow occurs, Beskok and Karniadakis (1992) have proposed to classify four flow regimes for gases, as follows:

- **Continuum flow:** \(Kn < 10^{-3} \)
- **Slip-flow:** \(10^{-3} < Kn < 0.1 \)
- **Transition flow:** \(0.1 < Kn < 10 \)
- **Free molecular flow** \(10 \leq Kn \)

When slip-flow occurs, the gas adjacent to the surface, in contrast to its behavior in continuum flow, no longer reaches the velocity or temperature of the surface. In continuum flow, intermolecular collisions dominate the flow field, and a usual boundary condition (continuous boundary) at the interface between a fluid and a solid surface is that the fluid adjacent to the surface assumes both the velocity and temperature of the surface. In the case of slip-flow, the molecular mean free path \(\lambda_m \) is rather larger than any significant body dimension so that most of the gas molecules striking and leaving the body surface do not collide with free-stream molecules until very far from the surface. Thus, the gas at the surface has a tangential velocity, and it appears to slip along the surface.

The slip velocity can be expressed as follows as a function of the velocity gradient near the wall:

\[
\frac{u_s}{c} = \frac{2F}{F} \left(\frac{du}{dy} \right)_{y=0} \left(\frac{dH}{dy} \right)_{y=0}
\]

(1.4a)

or

\[
u_s = \frac{2F}{F} \lambda_m \left(\frac{du}{dy} \right)_{y=0}
\]

(1.4b)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
which includes the consideration of three accommodation coefficients represented by the speculation reflection coefficient F, which has values that typically lie between 0.9 and 1 (Ebert et al., 1965). In the case of F having the value one, Eq. (1.4) becomes Eq. (1.3). For simplicity in this investigation, Eq. (1.3) was applied to evaluate the velocity.

The temperature boundary condition can be regarded as discontinuous; that is, there is a jump in temperature at the wall. Actually, the temperature of the gas near the solid surface changes continuously to the temperature of the surface but only in a very thin layer on a microscale so that on the macroscale there appears to be a jump in temperature between the surface and the adjacent gas. Eckert and Drake (1972) give expressions for the temperature jump condition:

$$T_r - T_w = -\left(\frac{2y}{1 + y} \right) \lambda_m \left(\frac{\partial T}{\partial y} \right)_{y=0}$$

(1.5)

where λ_m represents the mean free path for collisions between a moving molecule and the fixed molecules (or λ_m^{-1} is the average number of collisions per unit distance) (Present, 1958), and $\partial T/\partial y$ is the temperature gradient at the wall. As shown in Eq. (1.5), the temperature jump is proportional to λ_m: a small value of λ_m means that a great numbers of molecules are involved in energy transport so that the temperature jump is small, while a large value of λ_m means that fewer molecules are involved in energy transport so that the temperature jump is relatively larger. When λ_m is small enough, as in a conventional case, the temperature jump may be neglected.

With the introduction of the slip–flow condition into the Graetz problem, it becomes more difficult to solve such problems. The classical Graetz problem is governed by a partial differential equation with a continuous temperature boundary condition; while in the Graetz problem combined with slip–flow condition, the temperature boundary condition is no longer continuous, which makes the solution as well as the corresponding eigenvalues much more complicated and difficult.
In the case of circular tubes in slip-flow, that is, gases at low pressures or in extremely small tubes, the heat transfer coefficient depends not only on the Reynolds number and Prandtl number, but also on the Knudsen number. Barron et al. (1995) developed a technique and evaluated the eigenvalues of the analytical solution for this problem in the case of a constant wall temperature. Wang et al. (1995) solved this problem completely. Their studies show that the Nusselt number increases significantly with the increase of the Knudsen number, as shown in Fig. 1.2. Ameel et al. (1996) studied the case with constant heat flux, and the results indicate that the fully-developed Nusselt number decreases with the increase of the Knudsen number, as shown in Fig. 1.3. Therefore, some research is needed to analyze this type of problem in the case of rectangular ducts in slip-flow.
Fig. 1.3 Fully developed N_u as a function of Kn [Ameel et al.]
(constant heat flux)

Pr = 0.7
$\gamma = 1.4$
1.3 Related Research

Ebert and Sparrow (1965) have found the fluid velocity distribution for slip–flow in microchannels. Their results can be summarized as follows:

The momentum equation can be written as follows in the coordinate system shown in Fig. 1.4:

\[
\frac{\partial^2 w}{\partial \xi^2} + \frac{\partial^2 w}{\partial \eta^2} = \frac{1}{\mu} \frac{dp}{dz}
\]

(1.6)

\[a = h/b\]

\[D_H = \frac{4h}{1 + a}\]

Fig. 1.4 Coordinate system

with the slip–flow boundary condition

\[w = -\frac{2-F}{F} \lambda \frac{\partial w}{\partial \eta} \text{ at } \eta = h, \ 0 \leq \xi < b \]

(1.7a)

\[w = -\frac{2-F}{F} \lambda \frac{\partial w}{\partial \xi} \text{ at } \xi = b, \ 0 \leq \eta < h \]

(1.7b)

\[\frac{\partial w}{\partial \eta} = 0 \text{ at } \eta = 0, \ 0 \leq \xi < b \]

(1.7c)

\[\frac{\partial w}{\partial \xi} = 0 \text{ at } \xi = 0, \ 0 \leq \eta < h \]

(1.7d)
The velocity can be expressed as

\[
\frac{w}{D_H \frac{dp}{dz}} = -2 \sum_{i=1}^{\infty} \frac{\cos \alpha_i \eta}{\alpha_i^3} \left(\frac{\sin \alpha_i}{1 + 2 Kn \sin^2 \alpha_i} \right) \left(1 - \frac{\cosh \alpha_i \xi}{\cosh \frac{\alpha_i}{a} + 2 Kn \alpha_i \sin \frac{\alpha_i}{a}}\right)
\]

and the mean velocity can be determined by

\[
\frac{w_0}{D_H \frac{dp}{dz}} = -2 \sum_{i=1}^{\infty} \frac{\alpha_i}{\alpha_i^3} \left(\frac{\sin \alpha_i}{1 + 2 Kn \sin^2 \alpha_i} \right) \left(1 - \frac{\sinh \alpha_i \xi}{\cosh \frac{\alpha_i}{a} + 2 Kn \alpha_i \sin \frac{\alpha_i}{a}}\right)
\]

where the eigenvalues \(\alpha_i \) satisfy

\[
a_i \tan \alpha_i = \frac{1}{2 Kn}
\]

Dennis et al. (1959) solved the problem of forced heat convection in laminar flow through rectangular ducts with non-slip-flow. Their results may be summarized as follows:

The energy equation can be written as follows in the coordinate system shown in Fig. 1.5:

\[
k \left(\frac{\partial^2 T}{\partial \xi^2} + \frac{\partial^2 T}{\partial \eta^2} + \frac{\partial^2 T}{\partial \xi^2} \right) = \rho c_w \frac{\partial T}{\partial \xi}
\]

Fig. 1.5 New coordinate system for dimensionless variables
with the boundary condition

\[T_w = T_1 \quad \delta > 0 \quad (1.12a) \]
\[T = T_0 \quad \delta < 0 \quad (1.12b) \]

Introducing dimensionless variables

\[x = \frac{\xi}{D_H} \quad y = \frac{\eta}{D_H} \quad z = \frac{\zeta}{D_H} \quad \theta = \frac{T - T_1}{T_0 - T_1} \]

where the hydraulic diameter \(D_H = 4A/S \), and the aspect ratio \(a \) and Knudsen number

\[a = \frac{h}{b} \quad \text{Kn} = \frac{2F \lambda_m}{F 2h} \]

When the aforementioned change of variables is carried out and neglecting the axial conduction \(k \partial^2 T/\partial \delta^2 \) for large enough Peclet number, since it is of order \((1/Pe)^2\) compared to the axial convection term \(w \partial T/\partial \delta \), the governing equations and the boundary conditions become

\[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{D_H dp}{\mu dz} \quad \text{or} \quad \nabla_1^2 w = \frac{D_H dp}{\mu dz} \quad (1.13) \]

\[k(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}) = wD_H \frac{\partial T}{\partial z} \quad \text{or} \quad \nabla_1^2 \theta = \frac{w \partial \theta}{w_0 dz} \quad (1.14) \]

where \(\nabla_1^2 \equiv \partial^2/\partial x^2 + \partial^2/\partial y^2 \), \(w_0 \) is the mean velocity, and

\[w = -\text{Kn} \beta \frac{\partial w}{\partial y} \quad \text{at} \quad y = 0 \quad \text{and} \quad \beta, \quad 0 < x < \beta' \quad (1.15a) \]
\[w = -\text{Kn} \beta' \frac{\partial w}{\partial \delta} \quad \text{at} \quad x = 0 \quad \text{and} \quad \beta', \quad 0 < y < \beta \quad (1.15b) \]
\[\frac{\partial w}{\partial y} = 0 \quad \text{at} \quad y = \frac{\beta}{2}, \quad 0 \leq x \leq \beta' \quad (1.15c) \]
\[\frac{\partial w}{\partial x} = 0 \quad \text{at} \quad x = \frac{\beta'}{2}, \quad 0 \leq y \leq \beta \quad (1.15d) \]
and
\[
\theta_w = \theta_1 \neq 0 \quad z > 0 \quad (1.16a)
\]
\[
\theta = 1 \quad z \leq 0 \quad (1.16b)
\]

The solution of Eq. (1.16) can be written as
\[
\theta = \sum_{n=1}^{\infty} C_n G_n(x,y)e^{-\lambda_n z} + \theta_1 \quad (1.17)
\]
where \(G_n\) and \(\lambda_n\) are eigenfunctions and eigenvalues required to make the solution to the following membrane equation:
\[
\nabla_x^2 G + \frac{2w(x,y)}{w_0} G = 0 \quad (1.18)
\]
subject to the boundary condition deduced from Eqs. (1.14) \(G_n = 0\) on the boundary \(C'\).

Coefficients \(C_n\) can be determined by
\[
C_n = \frac{\iint_{D'} \frac{w \cdot G_n}{w_0} \, dx \, dy}{\iint_{D'} \frac{w}{w_0} \, dx \, dy} \quad (1.19)
\]

The Nusselt number can be determined by
\[
Nu(z) = \frac{1}{4\theta_B} \sum_{n=1}^{\infty} \lambda_n C_n^2 e^{-\lambda_n z}
\]
where
\[\theta_B = \frac{\iint_{D'} w \theta \, dx \, dy}{\iint_{D'} w \, dx \, dy} \]

\[= \sum_{n=1}^{\infty} C_n^2 e^{-\lambda_n x} \]

and \(\text{Nu}_\infty = \lambda_1 / 4 \).

Eigenvalues \(\lambda_n \) can be determined by the following infinite set of homogeneous linear algebraic equations

\[\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \{ \delta_{p,q}(m,n) \lambda_{m,n} - \lambda b_{p,q}(m,n) \} a_{p,q} = 0 \quad (m, n = 0, 1, 2, \ldots) \quad (1.21) \]

where

\[\delta_{p,q}(m,n) = \iint_{D'} \phi_{m,n} \phi_{p,q} \, dx \, dy \quad (1.22) \]

\[\delta_{m,n}(m,n) \lambda_{m,n} = (\pi^2 / 4a) (m^2 + n^2), \quad (1.23) \]

\[b_{p,q}(m,n) = \frac{1}{4} \{ d_{m-p,n-q} - d_{m-p,n+q} + d_{m+p,n+q} - d_{m+p,n-q} \} \quad (1.24) \]

\[d_{ij} = \int_0^\beta \int_0^{\beta'} \frac{w}{w_0} \cos \left(\frac{i \pi x}{\beta} \right) \cos \left(\frac{j \pi y}{\beta'} \right) \, dx \, dy \quad (i,j=0,1,2,\ldots) \quad (1.25) \]

\[b_{p,q}(m,n) \begin{cases} \neq 0 & \text{for all } p, q, m, n \neq 0 \\ = 0 & \text{for any } p, q, m, n = 0 \end{cases} \quad (1.26) \]
Dennis et al. (1959) estimated the eigenvalues for different aspect ratios for
nonslip-flow by employing the Rayleigh quotient

\[\lambda_n = - \int_0^\beta \int_0^{\beta'} \nabla_1^2 \theta_n dx \, dy / \int_0^\beta \int_0^{\beta'} \theta_n^2 dx \, dy \]

\[= \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \delta_{p,q}(p,q)(\beta_p^2 + \gamma_q)[A_p \theta_q(n)]^2 / \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{p=1}^{\infty} \sum_{q=1}^{\infty} b_{p,q}(i,j)A_{i,j}(n)A_{p,q}(n) \]

(1.27)

for example, for aspect ratio \(a = 1 \), \(\lambda_1 = 11.91 \) and \(\text{Nu}_{\infty} = 2.98 \).

Therefore, based on those research, a model for the case of rectangular channel in
slip-flow can be established and a technique of evaluation of the corresponding
eigenvalues for the analytical solution of the model should be developed.
CHAPTER 2

VELOCITY AND TEMPERATURE DISTRIBUTIONS

In order to build the mathematical model for the problem in slip-flow, the velocity profile must be found first in the new coordinate system. In this chapter, based on some assumptions, the expression for velocity will be derived from the continuity equation and momentum equation. The slip condition will be used to evaluate the slip velocity, and the velocity will be expressed in terms of a Knudsen number. A mathematical model of temperature distribution in slip-flow will be established by combining the energy and momentum equations.

2.1 Velocity Distribution

Consider the flow of a fluid in a rectangular duct, as shown in Figure 2.1:

![Fig. 2.1 Coordinate system for the problem](image)

For this model, the following conditions have been assumed (Barron, 1996):

1. The flow is steady. This means that the properties of the flow are time independent.

2. The fluid is incompressible (or, if a gas is considered, the Mach number is less than 0.30). In this case, the density may be assumed constant.
(3) The flow is fully established. In this case, the axial velocity, \(w \), is a function of the coordinates \(\eta \) and \(\xi \) only, and not a function of the axial coordinate \(\zeta \). In addition, the radial velocity is zero.

(4) The "swirl" component of velocity is identically zero. This means that both \(u = 0 \) and \(v = 0 \).

(5) Fluid properties are constant.

(6) Energy dissipation effects are negligible.

(7) The tube wall temperature is constant.

2.1.1 Continuity Equation

The general continuity equation can be written in the cartesian coordinates as follows:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial \xi} (\rho u) + \frac{\partial}{\partial \eta} (\rho v) + \frac{\partial}{\partial \zeta} (\rho w) = 0
\]

(2.1)

For steady flow of an incompressible fluid, the equation above reduces to:

\[
\frac{\partial u}{\partial \xi} + \frac{\partial v}{\partial \eta} + \frac{\partial w}{\partial \zeta} = 0
\]

(2.2)

For fully developed flow,

\[
\frac{\partial w}{\partial \zeta} = 0
\]

Therefore,

\[
\frac{\partial u}{\partial \xi} + \frac{\partial v}{\partial \eta} = 0
\]

Since the normal velocity is zero at the walls (the wall is impermeable), we must conclude that:
17

\[u = 0 \text{ (identically).} \]

and

\[v = 0 \text{ (identically).} \]

2.1.2 Velocity Distribution with Slip Condition

The Momentum Equation can be written in the coordinates shown in Fig. 2.2 as follows (Kays et al., 1993) for fully-developed (hydrodynamic) flow:

\[
\frac{\partial^2 w}{\partial \xi^2} + \frac{\partial^2 w}{\partial \eta^2} = \frac{1}{\mu} \frac{dp}{dc}
\]

(2.3)

Fig. 2.2 New coordinate system for dimensionless variables

with the slip-flow boundary condition

\[w = -\frac{2-F\lambda_m}{F} \frac{\partial w}{\partial \eta} \text{ at } \eta = 0, 2h, \quad 0 < \xi < 2b \]

(2.4a)

\[w = -\frac{2-F\lambda_m}{F} \frac{\partial w}{\partial \xi} \text{ at } \xi = 0, 2b, \quad 0 < \eta < 2h \]

(2.4b)

\[\frac{\partial w}{\partial \eta} = 0 \text{ at } \eta = h, \quad 0 \leq \xi \leq 2b \]

(2.4c)

\[\frac{\partial w}{\partial \xi} = 0 \text{ at } \xi = b, \quad 0 \leq \eta \leq 2h \]

(2.4d)
Introducing dimensionless variables

\[
x = \frac{k}{D_H}, \quad y = \frac{\eta}{D_H}, \quad z = \frac{\varsigma}{D_H}
\]

where the hydraulic diameter \(D_H = 4A/S \), and the aspect ratio \(a \) and Knudsen number

\[
a = \frac{h}{b}, \quad Kn = \frac{2hF_m}{F'F}
\]

The governing equations and the boundary conditions become

\[
\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{D_H dp}{\mu dz} \quad \text{or} \quad \nabla^2 w = \frac{D_H dp}{\mu dz} \quad (2.5)
\]

\[
w = -Kn \beta \frac{\partial w}{\partial y} \quad \text{at} \quad y = 0 \quad \text{and} \quad \beta , \quad 0 < x < \beta' \quad (2.6a)
\]

\[
w = -Kn \beta' \frac{\partial w}{\partial x} \quad \text{at} \quad x = 0 \quad \text{and} \quad \beta' , \quad 0 < y < \beta \quad (2.6b)
\]

\[
\frac{\partial w}{\partial y} = 0 \quad \text{at} \quad y = \frac{\beta}{2} , \quad 0 \leq x \leq \beta' \quad (2.6c)
\]

\[
\frac{\partial w}{\partial x} = 0 \quad \text{at} \quad x = \frac{\beta'}{2} , \quad 0 \leq y \leq \beta \quad (2.6d)
\]

The solution may be proposed as

\[
\frac{w}{D_H dp \frac{\partial w}{\partial y}} = \sum_{i=1}^{\infty} \Psi_i(x) \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i \quad (2.7)
\]

where \(\alpha_i \) are a set of eigenvalues, and the \(\Psi_i(x) \) are a set of \(x \) - dependent functions. Eq. (2.7) identically satisfies boundary condition (2.6c), that is

\[
\frac{\partial w}{\partial y} = -\frac{2}{\beta} \sum_{i=1}^{\infty} \Psi_i(x) \sin \left(\frac{2y}{\beta} - 1 \right) \alpha_i = 0 \quad \text{at} \quad y = \beta/2
\]

By substituting Eq. (2.7) into the boundary condition (2.6a), we have
For a non-trivial velocity solution, it is necessary that

\[\frac{w}{D_L \frac{dp}{dz}} = \sum_{i=1}^{\infty} \psi_i(x) \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i \]

\[-K \beta \frac{\partial w}{\partial y} = -K \beta \left(\frac{2y}{\beta} \sum_{i=1}^{\infty} \psi_i(x) \sin \left(\frac{2y}{\beta} - 1 \right) \alpha_i \right)\]

so

\[\sum_{i=1}^{\infty} \psi_i(x) \left[\cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i - 2K \beta \sin \left(\frac{2y}{\beta} - 1 \right) \alpha_i \right] = 0 \quad (2.8) \]

For a non-trivial velocity solution, it is necessary that

\[\alpha_i \tan \alpha_i = \frac{1}{2K} \quad (2.9) \]

This is the condition from which the eigenvalues are determined.

Now, we find the function \(\psi_i(x) \). To do this, Eq. (2.5) can be rewritten as

\[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} = \frac{D_L dp}{d z} \sum_{i=1}^{\infty} \Omega_i(x) \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i \quad (2.10) \]

From Eq. (2.7), we have

\[\frac{\partial^2 w}{\partial x^2} = -\frac{D_L dp}{d z} \sum_{i=1}^{\infty} \frac{d^2 \psi_i}{dx^2} \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i \quad (2.11) \]

\[\frac{\partial^2 w}{\partial y^2} = -\frac{D_L dp}{d z} \frac{4 \alpha_i^2}{\beta^2} \sum_{i=1}^{\infty} \psi_i \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i \]

so we derive a differential equation

\[\frac{d^2 \psi_i}{dx^2} - \left(\frac{2 \alpha_i}{\beta} \right)^2 \psi_i = 0 \quad (2.12) \]
We can obtain the homogeneous solution from

\[\lambda^2 - \left(\frac{2\alpha}{\beta}\right)^2 = 0 \]

(2.13)

that is,

\[\lambda = \pm \left(\frac{2\alpha}{\beta}\right) \]

(2.14)

Therefore, let

\[\Psi_i = C_1 e^{\frac{2\alpha}{\beta}x} + C_2 e^{-\frac{2\alpha}{\beta}x} + C_3 \]

(2.15)

substituting Eq. (2.15) into Eq. (2.12), we have

\[- \left(\frac{2\alpha}{\beta}\right)^2 C_3 - \Omega_i = 0 \]

or

\[C_3 = -\frac{\beta^2 \Omega_i}{4\alpha_i^2} \]

(2.16)

From boundary condition (2.6d), that is,

\[\frac{d\Psi_i}{dx} = \left(\frac{2\alpha_i}{\beta}\right)^2 [C_1 e^{\frac{2\alpha_i}{\beta}x} - C_2 e^{-\frac{2\alpha_i}{\beta}x}]_{x = \beta'/2} = 0 \]

(2.17)

Therefore, we obtain

\[C_2 = C_1 e^{\frac{2\alpha_i}{\beta}} \]

so

\[\Psi_i = C_1 e^{\frac{2\alpha_i}{\beta}x} \left[e^{\frac{a_i}{\beta}(2x - \beta')} + e^{-\frac{a_i}{\beta}(2x - \beta')} \right] + C_3 \]

\[= D_1 \cosh \frac{a_i}{\beta}(2x - \beta') + C_3 \]

(2.18)
And from boundary condition (2.6b), we have

\[
\frac{w}{D_n dp} = \sum_{i=1}^{\infty} \Psi_i(x) \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i = -Kn \beta \frac{dw}{dz}
\]

\[
= -Kn \beta \left[\sum_{i=1}^{\infty} \frac{\partial \Psi_i(x)}{\partial x} \sin \left(\frac{2y}{\beta} - 1 \right) \alpha_i \right]_{x=p}
\]

or

\[
\Psi_i(x) + Kn \beta \left[\frac{\partial \Psi_i(x)}{\partial x} \right]_{x=p} = 0
\]

(2.19)

Substituting Eq. (2.18) into Eq. (2.19), we have

\[
C_1 \left[e^{\frac{2\alpha_i}{\beta}} + e^{\frac{-2\alpha_i}{\beta}} \right] + C_3 + C_1 Kn \beta \frac{2\alpha_i}{\beta} \left[e^{\frac{2\alpha_i}{\beta}} - e^{\frac{-2\alpha_i}{\beta}} \right] = 0
\]

\[
C_1 = C_3 / \left[\left(e^{\frac{2\alpha_i}{\beta}} + 1 \right) + 2 Kn \frac{\alpha_i}{\beta} \left(e^{\frac{2\alpha_i}{\beta}} - 1 \right) \right]
\]

\[
= - \frac{\beta^2 \Omega_i}{4 \alpha_i^2} e^{-\frac{2\alpha_i}{\beta}} \left[\cosh \frac{\alpha_i}{\beta} + 2 Kn \frac{\alpha_i}{\beta} \sinh \frac{\alpha_i}{\beta} \right]
\]

(2.20)

Evaluation of \(\Omega_i(x) \) can be made from the assumption

\[
\sum_{i=1}^{\infty} \Omega_i(x) \cos \left(\frac{2y}{\beta} - 1 \right) \alpha_i = 1
\]

(2.21)

and the property of orthogonality

\[
\Omega_i \int_{\beta/2}^{\beta} \left[\cos \alpha_i \left(\frac{2y}{\beta} - 1 \right) \right]^2 d \left(\frac{2y}{\beta} - 1 \right) = \int_{\beta/2}^{\beta} \cos \alpha_i \left(\frac{2y}{\beta} - 1 \right) d \left(\frac{2y}{\beta} - 1 \right)
\]

(2.22)
Let $\sigma = (2y/\beta - 1)$, we have

$$\sum_{i=1}^{\infty} \Omega_i (x) \cos \alpha_i \sigma = 1 \quad (2.23)$$

From the orthogonality we have

$$\Omega_j \int_0^1 \cos \alpha_i \sigma \cos \alpha_j \sigma \, d\sigma = \int_0^1 \cos \alpha_j \sigma \, d\sigma \quad (2.24)$$

Carrying out the integration for $\alpha_i = \alpha_j$, we obtain:

$$\Omega_i \left[\frac{\alpha_i + \sin \alpha_i \cos \alpha_i}{2 \alpha_i} \right] = \frac{\sin \alpha_i}{\alpha_i}$$

or

$$\Omega_i = \frac{2 \sin \alpha_i}{\alpha_i + \sin \alpha_i \cos \alpha_i} = \frac{2}{\alpha_i} \left(\frac{\sin \alpha_i}{1 + 2 \text{Kn} \sin^2 \alpha_i} \right) \quad (2.25)$$

Now, the velocity can be expressed as

$$\frac{w}{C} = -2 \sum_{i=1}^{\infty} \frac{\cos \alpha_i (2y/\beta - 1)}{\alpha_i^3} \left(\frac{\sin \alpha_i}{1 + 2 \text{Kn} \sin^2 \alpha_i} \right) \left(1 - \frac{\cosh \frac{\alpha_i}{d} (2x/\beta - 1)}{\cosh \frac{\alpha_i}{d} + 2 \text{Kn} \alpha_i \sin \frac{\alpha_i}{d}} \right) \quad (2.26)$$

where $C = (D\mu/\mu)(dp/dz)$ and the mean velocity is found by integration of Eq. (2.26) across the section of the channel: thus,

$$w_0 = \frac{1}{A} \int_A w \, dA \quad (2.27)$$

Upon carrying out the indicated operation, we obtain:
\[w_0/C = -2 \sum_{i=1}^{n} \alpha_i \sin^2 \frac{\alpha_i}{1 + 2 Kn \sin^2 \alpha_i} (\frac{\sinh \frac{\alpha_i}{a}}{\cosh \frac{\alpha_i}{a} + 2 Kn \alpha_i \sin \frac{\alpha_i}{a}}) \]

(2.28)

2.2 Temperature Distribution

The general temperature field equation for flow of an incompressible fluid with zero swirl or angular components, zero energy generation, and negligible frictional energy dissipation is:

\[k \left(\frac{\partial^2 T}{\partial \xi^2} + \frac{\partial^2 T}{\partial \eta^2} + \frac{\partial^2 T}{\partial \zeta^2} \right) = \rho c_w \frac{\partial T}{\partial \zeta} \]

(2.30)

with the boundary condition

\[T_w = T_1 \quad \zeta > 0 \]

(2.31a)

\[T = T_0 \quad \zeta < 0 \]

(2.31b)

introducing dimensionless variables

\[x = \frac{\xi}{D_H} \quad y = \frac{\eta}{D_H} \quad z = \frac{\zeta}{D_H} \quad \theta = \frac{T-T_1}{T_0-T_1} \]

When the aforementioned change of variables is carried out and the axial conduction \(k \partial^2 T / \partial \zeta^2 \) can be neglected for a large enough Peclet number, the governing equations and the boundary conditions become

\[k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) = \rho c_w D_H \frac{\partial T}{\partial z} \quad \text{or} \quad \nabla_1^2 \theta = \frac{w}{w_0} \frac{\partial \theta}{\partial z} \]

(2.32)

where \(\nabla_1^2 \equiv \partial^2/\partial x^2 + \partial^2/\partial y^2 \), with the boundary condition
\[\theta_w = \theta_1 = 0 \quad z > 0 \]
(2.33a)

\[\theta = 1 \quad z \leq 0 \]
(2.33b)

2.3 Summary

In this chapter, the velocity distribution with slip-flow has been obtained which can be expressed simply in terms of the Knudsen number. From the relationship of \(Kn \) in terms of pressure and dimension, we can see that \(Kn \) in microtubes may become large enough to significantly affect the velocity distribution and consequently affect the heat transfer for this problem. Also, a mathematical model of temperature distribution in slip-flow has been established by combining the energy and momentum equations.
CHAPTER 3

ANALYTICAL SOLUTION

In the last chapter, the velocity distribution was expressed in terms of mean velocity and Knudsen number, and a mathematical model of temperature distribution in slip–flow was established by combining the energy and momentum equations. In this chapter, a series solution will be obtained by the method of Frobenius. Considering the boundary condition, a temperature distribution in terms of a generalized Fourier series will be derived. Also, expressions for the local and overall Nusselt numbers will be obtained.

3.1 Graetz Solution

3.1.1 Separation of Variables Solution

The governing equation

\[\nabla^2 \theta = \frac{w \partial \theta}{w_0 \partial z} \]

(3.1)

where \(\nabla^2 \equiv \partial^2/\partial x^2 + \partial^2/\partial y^2 \), with the boundary condition

\[\theta_w = 0 \quad z > 0 \]

(3.2a)

\[\theta = 1 \quad z \leq 0 \]

(3.2b)

Eq. (3.1) can be solved by a separation–of–variables technique. Suppose we let:

\[\theta(x,y,z) = G(x,y) Z(z) \]
Making this substitution into Eq. (3.1) and rearranging results in the following:

\[
\left(\frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} \right) \frac{w_0}{G w} = \frac{dZ}{dz} = -\lambda \tag{3.3}
\]

where \(\lambda \) is an arbitrary constant. The ordinary differential equations which result are:

\[
\frac{dZ}{dz} + \lambda Z = 0 \tag{3.4}
\]

and

\[
\nabla^2 G + \frac{\lambda w(x, y)}{w_0} G = 0 \tag{3.5}
\]

with boundary conditions:

\[
G(0,0) = 0
\]
\[
G(0,l) = 0
\]
\[
G(l',0) = 0
\]
\[
G(l',l) = 0.
\]

The solution of Eq. (3.4) is:

\[
Z(z) = C \exp[-\lambda z] \tag{3.6}
\]

The constant \(C \) in Eq. (3.6) will be evaluated below and \(\lambda \) will be evaluated later.

3.1.2 Determination of Constants \(C_n \)

We can write the solution for the temperature distribution in terms of a generalized Fourier series, as follows:
\[\theta = \sum_{n=1}^{\infty} C_n G_n(x, y) e^{-\lambda_n z} \quad (3.5) \]

where \(G_n \) and \(\lambda_n \) are eigenfunctions and eigenvalues required to make the solution to the Eq. (3.3) subject to the boundary conditions deduced from the boundary condition Eq. (3.2a)

\[G(0,0) = G(0,l) = G(l',0) = G(l',l) = 0. \]

The constants \(C_n \) can be found from the entrance condition, Eq. (3.2b)

at \(z = 0 \), \(q(x,y,0) = 1 \)

Making this substitution into Eq. (3.5), we obtain:

\[\sum_{j=0}^{\infty} C_n G_n(x, y) = 1 \quad (3.6) \]

The governing differential equation, along with the boundary conditions, is a Sturm–Liouville problem, with a weight function,

\[w = w(x,y) \]

where \(w(x,y) \) is the \(z \)-component of velocity and from orthogonality,

\[\int \int_{D'} w(x, y) G_n G_m \, dx \, dy = 0 \quad \text{for } m \neq n \quad (3.7) \]

The constants may be evaluated by multiplying Eq. (3.6) on both sides by

\[w(x,y)G_m \]
and integrating between on the domain D' bounded by C'. Only the term in which $m = n$ is the result non-zero, and we find:

$$C_n \int \int_{D'} w(x,y)(G_n)^2 \, dx \, dy = \int \int_{D'} w(x,y) \, G_n \, dx \, dy$$ \hspace{1cm} (3.8)

therefore,

$$C_n = \frac{\int \int_{D'} w(x,y) \, G_n \, dx \, dy}{\int \int_{D'} w(x,y) \, (G_n)^2 \, dx \, dy}$$ \hspace{1cm} (3.9)

Each G_n has arbitrary amplitude which we choose for convenience, so that

$$C_n = \frac{\int \int_{D'} w(x,y) \, G_n \, dx \, dy}{\int \int_{D'} w(x,y) \, dx \, dy}$$ \hspace{1cm} (3.10)

The temperature $\theta(x, y, z)$ is therefore known to any desired accuracy once sufficient G_n have been found. Two further thermal quantities are of interest. Experimental measurements are made on the basis of a mean mixed temperature of the fluid, that is, $\theta(x, y, z)$ averaged with respect to the local fluid velocity over any section of the channel. This temperature is a function of z only and its difference between any two sections gives a measure of the heat transferred across the wall between them.

From these expressions, we can see that the coefficients G_n and C_n must be predetermined in order to calculate the temperature.
3.2 Heat Transfer Coefficient Correlation

3.2.1 Bulk Temperature

The bulk or average temperature can be determined from:

$$\theta_B = \frac{\iint_{D'} w(x, y) \theta \, dx \, dy}{\iint_{D'} w(x, y) \, dx \, dy}$$

or

$$\theta_B(z) = \sum_{n=1}^{\infty} C_n^2 e^{-\lambda_n^2 z}$$ \hspace{1cm} (3.11)

where:

$$\theta_B = \frac{T_B - T_w}{T_0 - T_w}$$

3.2.2 Local Heat Transfer Coefficient

The local or "point" convective heat transfer coefficient can be defined by:

$$\frac{Q}{A_w} = h_x \left(T_B - T_w \right)$$ \hspace{1cm} (3.12)

The heat flux can also be written, as follows:

$$q = \frac{Q}{A_w} = -k \int_C \frac{\partial T}{\partial s} \, ds = -k \left(T_0 - T_w \right) \cdot ds \int_C \frac{\partial \theta}{\partial s} \, ds$$ \hspace{1cm} (3.13)
where \(s \) is the distance measured along the perimeter of the boundary curve \(C \) in an anti-clockwise direction and \(v \) is the outward-drawn coordinate normal to the channel wall: \(v' = v/D_H, s' = s/D_H \). Equating the heat flux from Eqs. (3.12) and (3.13) and making the substitutions from Eq. (3.11) for the temperature gradient at the wall and for the local bulk temperature, the following expression is obtained for the local or "point" Nusselt number.

\[
Nu(z) = -D_H \int_C \frac{\partial \theta}{\partial v'} \, ds' / S \theta_B
\]

(3.14)

We now eliminate \(q \) in terms of the \(G_n \) by Eq. (3.5) and apply Green's theorem to Eq. (3.3), so that

\[
\int_C \frac{\partial G_n \theta}{\partial v'} \, ds' = -\frac{\lambda_n}{w_0} \int_{D'} w(x,y)
G_n \, dx \, dy
\]

(3.15)

Using Eq. (3.10) and since \(\int_{D'} w \, dx \, dy = A'w_0 \), where \(A' \) is the dimensionless area within \(C' \), we finally obtain

\[
Nu(z) = \frac{1}{4\theta_B} \sum_{n=1}^{\infty} \lambda_n C_n^2 \, e^{-\lambda_n z}
\]

(3.16)

At large distances down the channel, \(Nu(z) \) approaches a limiting minimum value. If \(\lambda_1 \) is the smallest of the \(\lambda' \) we have, as \(z \to \infty \), that \(4\theta_B \, Nu(z) \to \lambda_1 C_1^2 \exp (-\lambda_1 z) \) and \(\theta_B (z) \to C_1^2 \exp (-\lambda_1 z) \) so that

\[
Nu(\infty) = \frac{\lambda_1}{4}
\]

(3.17)
3.2.3 Overall Convective Heat Transfer Coefficient

The average or overall convective heat transfer coefficient is defined through the following expression:

\[Q = \bar{h}_c \left(4 h_b L \right) (\Delta T)_{LN} = \int_0^L h_c \left(T_0 - T_w \right) (4 h_b dz) \]

(3.18)

where \((\Delta T)_{LN}\) = log-mean-temperature difference (LMTD).

The LMTD may be written in terms of the inlet temperature \(T_0\) and the exit bulk temperature \(T_L\), as follows:

\[(\Delta T)_{LN} = \frac{\left(T_0 - T_w \right) - \left(T_L - T_w \right)}{\ln \left[\frac{(T_0 - T_w)}{(T_L - T_w)} \right]} = \frac{(\theta_{BL} - 1) (T_0 - T_w)}{\ln (\theta_{BL})} \]

(3.19)

Let us define the dimensionless LMTD, as follows:

\[\theta_{LN} = \frac{(\Delta T)_{LN}}{T_0 - T_w} \]

(3.20)

Then,

\[\theta_{LN} = \frac{(\theta_{BL} - 1)}{\ln (\theta_{BL})} \]

(3.21)

The expression for the average convective heat transfer coefficient can then be written, from Eq. (3.18):

\[\bar{h}_c = \frac{1}{\theta_{LN}} \int_0^1 h_c \theta_B \, dz \]

(3.22)

In the fundamental equation, we have \(q = h_{LN} S \zeta \Delta T_{LN} \). Now \(q \) can either be obtained by integrating Eq. (3.13) from zero to \(\zeta \) or, alternatively, it is the heat given up by the fluid.
in cooling from T_0 to T_m, so that $q = Aw_0 q_c(T_0 - T_m)$. Equating these two and
introducing dimensionless quantities, we have the mean logarithmic Nusselt number, $h_{LN}D_H/k$, given by:

$$
\overline{Nu} = \frac{1 - \theta_{BL}}{4 \theta_{LN}} = \frac{1}{4} \ln \left(\theta_{BL} \right)
$$

(3.23)

3.3 Summary

In this chapter, a series solution for the mathematical model of temperature
distribution in slip flow in microchannels has been obtained. Considering the given
boundary condition, a temperature distribution in terms of a generalized Fourier series
has been derived. Also, expressions for the local and overall Nusselt numbers have been
obtained. All these expressions can be taken as functions of the Knudsen number and
the Graetz number. In order to calculate either the temperature or the Nusselt numbers,
the coefficient C_n and λ_n must be predetermined.
CHAPTER 4

EVALUATION OF EIGENVALUES

In the last chapter, we obtained a series solution for the temperature distribution. Also, expressions for the local and overall Nusselt numbers have been obtained as functions of the Knudsen number and aspect ratio. In this chapter, we present a technique for evaluation of eigenvalues for the solution of the heat transfer problem in slip-flow, since eigenvalues λ_n must be predetermined for the calculation of either the temperature distribution or the Nusselt numbers. A matrix will be constructed and a formulation described to find the coefficients $b_{p,q}(m,n)$. Based on these $b_{p,q}(m,n)$ the eigenvalues λ_n can be calculated numerically.

4.1. Introduction

We consider the general domain D'. Based on the principle of the method of Galerkin, let $\{\phi_{m,n}\}$ be the complete set of eigenfunctions of the equation

$$\nabla^2 \phi + \Lambda \phi = 0$$

(4.1)

with $\partial \phi / \partial n = -N \phi$ on C'. Any arbitrary function $\Theta(x,y)$ which satisfies these boundary conditions and which possesses continuous partial derivatives up to the second order can be expanded in an absolutely and uniformly convergent series in the form

$$\Theta(x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} a_{m,n} \phi_{m,n}(x,y)$$

(4.2)
where

\[a_{m,n} = \frac{1}{\delta_{p,q}(m,n)} \int \int_{D'} \Theta \phi_{m,n} \, dx \, dy \] \hspace{1cm} (4.3)

and

\[\delta_{p,q}(m,n) = \int \int_{D'} \phi_{m,n} \phi_{p,q} \, dx \, dy \] \hspace{1cm} (4.4)

\[\delta_{p,q}(m,n) = 0 \text{ unless } m = p \text{ and } n = q. \]

We can make \(\Theta \) the solution of Eq. (3.5) so that multiplying this equation by \(\phi_{m,n} \) and integrating over \(D' \) we have, by Eqs. (4.1) and (4.3),

\[\delta_{m,n}(m,n) \Lambda_{m,n} a_{m,n} = \lambda \int \int_{D'} r(x,y) \Theta \phi_{m,n} \, dx \, dy \] \hspace{1cm} (4.5)

where \(r(x,y) = w(x,y)/w_0. \) If we substitute for \(\Theta \) by Eq. (4.2), then Eq. (4.5) is reduced to an infinite set of homogeneous linear algebraic equations

\[\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \{ \delta_{p,q}(m,n) \Lambda_{m,n} \lambda \ b_{p,q}(m,n) \} \ a_{p,q} = 0 \ (m,n = 0,1,2, ...) \] \hspace{1cm} (4.6)

where

\[b_{p,q}(m,n) = \int \int_{D'} r \phi_{m,n} \phi_{p,q} \, dx \, dy \] \hspace{1cm} (4.7)

The matrix associated with Eqs. (4.6) is symmetrical since \(b_{p,q}(m,n) = b_{m,n}(p,q) \) and the eliminant for a non–trivial solution gives an infinite determinantal equation \(\Delta(\lambda) = 0 \) whose latent roots are the eigenvalues of Eq. (3.5). Dividing each row of \(\Delta(\lambda) \) by its leading diagonal elements, the resulting determinant converges if the off–diagonal sum is absolutely convergent and \(\lambda \) has no value which makes a leading diagonal element zero.
If this condition is satisfied, then the convergence of sum $\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} |a_{p,q}|$ and, moreover, of sum $\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \delta_{p,q}(p,q) \lambda_{p,q} |a_{p,q}|$ follows. The eigenvectors $\{a_{p,q}^{(n)}\}$ corresponding to a given root $\lambda = \lambda_1$ can then be obtained, theoretically, in terms of any arbitrary coefficient; in practice, the determination of a given eigensolution is a problem in numerical analysis.

Eigenvalues λ_n can determined by the following infinite set of homogeneous linear algebraic equations

$$\sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \left(\delta_{p,q}(m,n) \lambda_{m,n} \lambda - b_{p,q}(m,n) \right) a_{p,q} = 0 \quad (m, n = 0, 1, 2, \ldots) \quad (4.6)$$

where

$$\delta_{p,q}(m,n) = \int_{D'} \phi_{m,p} \phi_{n,q} \, dx \, dy \quad (4.8)$$

$$\delta_{m,n}(m,n) \lambda_{m,n} = (\pi^2/4a) \left(m^2 + a^2 n^2 \right), \quad (4.9)$$

$$b_{p,q}(m,n) = \frac{1}{4} \left\{ d_{m+p,n+q} - d_{m-p,n-q} + d_{m+p,n+q} - d_{m+p,n+q} \right\} \quad (4.10)$$

$$d_{ij} = \int_{0}^{l} \int_{0}^{\rho} \frac{w}{w_0} \cos \left(\frac{i\pi}{\beta} x \right) \cos \left(\frac{i\pi}{\beta} y \right) \, dx \, dy \quad (i,j=0,1,2,\ldots) \quad (4.11)$$

with

$$b_{p,q}(m,n) \{ \begin{array}{ll} = 0 & \text{for all } p, q, m, n \neq 0 \\ = 0 & \text{for any } p, q, m, n = 0 \end{array} \quad (4.12)$$
4.2 Expansion of Eq. (4.6)

Considering the condition Eqs. (4.8) and (4.12) and underlining the only one with both \(p = m \) and \(q = n \), we have the following expansion:

1) \(m = 0, n = 0 \)

\[
(\delta_{1,0}A_{0,0} - \lambda b_{0,1})a_{0,0} + (\delta_{1,1}A_{0,0} - \lambda b_{1,1})a_{1,1} + (\delta_{2,2}A_{0,0} - \lambda b_{2,2})a_{2,2} + (\delta_{3,3}A_{0,0} - \lambda b_{3,3})a_{3,3} + \ldots
= 0
\]

the underlined term may not be equal to zero. All terms of \(\delta_{p,q}A_{0,0} \) and coefficients of \(\lambda, b_{p,q} \) but \(\delta_{0,0}A_{0,0} \) are zeros according to the condition Eqs. (4.8) and (4.12); therefore,

\[
(\delta_{0,0}A_{0,0})a_{0,0} = 0
\]

2) \(m = 0, n = 1 \)

\[
(\delta_{0,0}A_{0,1} - \lambda b_{0,2})a_{0,0} + (\delta_{1,1}A_{0,1} - \lambda b_{1,2})a_{1,1} + (\delta_{2,2}A_{0,1} - \lambda b_{2,2})a_{2,2} + (\delta_{3,3}A_{0,1} - \lambda b_{3,3})a_{3,3} + \ldots
= 0
\]

therefore,

\[
(\delta_{0,1}A_{0,1})a_{0,1} = 0
\]

Similarly,

3) \(m = 0, n = 2 \)

\[
(\delta_{0,2}A_{0,2})a_{0,2} = 0
\]

4) \(m = 0, n = 3 \)

\[
(\delta_{0,3}A_{0,3})a_{0,3} = 0
\]
5) $m = 1, n = 0$

\[\delta_{0,0}\Lambda_{1,0} - \lambda b_{0,0} a_{0,0} + (\delta_{0,1}\Lambda_{1,0} - \lambda b_{0,1}) a_{0,1} + (\delta_{0,2}\Lambda_{1,0} - \lambda b_{0,2}) a_{0,2} + (\delta_{0,3}\Lambda_{1,0} - \lambda b_{0,3}) a_{0,3} + \ldots \]

\[\delta_{1,0}\Lambda_{1,0} - \lambda b_{1,0} a_{1,0} + (\delta_{1,1}\Lambda_{1,0} - \lambda b_{1,1}) a_{1,1} + (\delta_{1,2}\Lambda_{1,0} - \lambda b_{1,2}) a_{1,2} + (\delta_{1,3}\Lambda_{1,0} - \lambda b_{1,3}) a_{1,3} + \ldots \]

\[\delta_{2,0}\Lambda_{1,0} - \lambda b_{2,0} a_{2,0} + (\delta_{2,1}\Lambda_{1,0} - \lambda b_{2,1}) a_{2,1} + (\delta_{2,2}\Lambda_{1,0} - \lambda b_{2,2}) a_{2,2} + (\delta_{2,3}\Lambda_{1,0} - \lambda b_{2,3}) a_{2,3} + \ldots \]

\[\delta_{3,0}\Lambda_{1,0} - \lambda b_{3,0} a_{3,0} + (\delta_{3,1}\Lambda_{1,0} - \lambda b_{3,1}) a_{3,1} + (\delta_{3,2}\Lambda_{1,0} - \lambda b_{3,2}) a_{3,2} + (\delta_{3,3}\Lambda_{1,0} - \lambda b_{3,3}) a_{3,3} + \ldots \]

\[= 0 \]

therefore,

\[(\delta_{1,0}\Lambda_{1,0}) a_{1,0} = 0 \]

6) $m = 1, n = 1$

\[\delta_{0,0}\Lambda_{1,1} - \lambda b_{0,0} a_{0,0} + (\delta_{0,1}\Lambda_{1,1} - \lambda b_{0,1}) a_{0,1} + (\delta_{0,2}\Lambda_{1,1} - \lambda b_{0,2}) a_{0,2} + (\delta_{0,3}\Lambda_{1,1} - \lambda b_{0,3}) a_{0,3} + \ldots \]

\[\delta_{1,0}\Lambda_{1,1} - \lambda b_{1,0} a_{1,0} + (\delta_{1,1}\Lambda_{1,1} - \lambda b_{1,1}) a_{1,1} + (\delta_{1,2}\Lambda_{1,1} - \lambda b_{1,2}) a_{1,2} + (\delta_{1,3}\Lambda_{1,1} - \lambda b_{1,3}) a_{1,3} + \ldots \]

\[\delta_{2,0}\Lambda_{1,1} - \lambda b_{2,0} a_{2,0} + (\delta_{2,1}\Lambda_{1,1} - \lambda b_{2,1}) a_{2,1} + (\delta_{2,2}\Lambda_{1,1} - \lambda b_{2,2}) a_{2,2} + (\delta_{2,3}\Lambda_{1,1} - \lambda b_{2,3}) a_{2,3} + \ldots \]

\[\delta_{3,0}\Lambda_{1,1} - \lambda b_{3,0} a_{3,0} + (\delta_{3,1}\Lambda_{1,1} - \lambda b_{3,1}) a_{3,1} + (\delta_{3,2}\Lambda_{1,1} - \lambda b_{3,2}) a_{3,2} + (\delta_{3,3}\Lambda_{1,1} - \lambda b_{3,3}) a_{3,3} + \ldots \]

\[= 0 \]

therefore,

\[(\delta_{1,1}\Lambda_{1,1} - \lambda b_{1,1}) a_{1,1} + (\lambda b_{1,2}) a_{1,2} + (\lambda b_{1,3}) a_{1,3} + \ldots \]

\[+ (\lambda b_{2,1}) a_{2,1} + (\lambda b_{2,2}) a_{2,2} + (\lambda b_{2,3}) a_{2,3} + \ldots \]

\[+ (\lambda b_{3,1}) a_{3,1} + (\lambda b_{3,2}) a_{3,2} + (\lambda b_{3,3}) a_{3,3} + \ldots = 0 \]

or,

\[(\delta_{1,1}\Lambda_{1,1} - \lambda b_{1,1}) a_{1,1} + (\lambda b_{1,2}) a_{1,2} + (\lambda b_{1,3}) a_{1,3} + \ldots \]

\[+ (\lambda b_{2,1}) a_{2,1} + (\lambda b_{2,2}) a_{2,2} + (\lambda b_{2,3}) a_{2,3} + \ldots \]

\[+ (\lambda b_{3,1}) a_{3,1} + (\lambda b_{3,2}) a_{3,2} + (\lambda b_{3,3}) a_{3,3} + \ldots = 0 \]

7) $m = 1, n = 2$

\[\delta_{0,0}\Lambda_{1,2} - \lambda b_{0,0} a_{0,0} + (\delta_{0,1}\Lambda_{1,2} - \lambda b_{0,1}) a_{0,1} + (\delta_{0,2}\Lambda_{1,2} - \lambda b_{0,2}) a_{0,2} + (\delta_{0,3}\Lambda_{1,2} - \lambda b_{0,3}) a_{0,3} + \ldots \]
\[
\begin{align*}
(\delta_{1,0} \Lambda_{1,2} - \lambda b_{1,0})a_{1,0} + & (\delta_{1,1} \Lambda_{1,2} - \lambda b_{1,1})a_{1,1} + (\delta_{1,2} \Lambda_{1,2} - \lambda b_{1,2})a_{1,2} + (\delta_{1,3} \Lambda_{1,2} - \lambda b_{1,3})a_{1,3} + \\ (\delta_{2,0} \Lambda_{1,2} - \lambda b_{2,0})a_{2,0} + & (\delta_{2,1} \Lambda_{1,2} - \lambda b_{2,1})a_{2,1} + (\delta_{2,2} \Lambda_{1,2} - \lambda b_{2,2})a_{2,2} + (\delta_{2,3} \Lambda_{1,2} - \lambda b_{2,3})a_{2,3} + \\ (\delta_{3,0} \Lambda_{1,2} - \lambda b_{3,0})a_{3,0} + & (\delta_{3,1} \Lambda_{1,2} - \lambda b_{3,1})a_{3,1} + (\delta_{3,2} \Lambda_{1,2} - \lambda b_{3,2})a_{3,2} + (\delta_{3,3} \Lambda_{1,2} - \lambda b_{3,3})a_{3,3} + \\
= 0 \\
\text{therefore,} & \\
(-\lambda b_{1,1})a_{1,1} + & (\delta_{1,2} \Lambda_{1,2} - \lambda b_{1,2})a_{1,2} + (-\lambda b_{1,3})a_{1,3} + \\ +(-\lambda b_{2,1})a_{2,1} + & (-\lambda b_{2,2})a_{2,2} + (-\lambda b_{2,3})a_{2,3} + \\ +(-\lambda b_{3,1})a_{3,1} + & (-\lambda b_{3,2})a_{3,2} + (-\lambda b_{3,3})a_{3,3} + = 0 \\
\text{or,} & \\
(-\lambda b_{1,1})a_{1,1} + & (\delta_{1,2} \Lambda_{1,2} - \lambda b_{1,2})a_{1,2} + (-\lambda b_{1,3})a_{1,3} + \\ +(-\lambda b_{12,1})a_{2,1} + & (-\lambda b_{12,2})a_{2,2} + (-\lambda b_{12,3})a_{2,3} + \\ +(-\lambda b_{12,3})a_{3,1} + & (-\lambda b_{12,3})a_{3,2} + (-\lambda b_{12,3})a_{3,3} + = 0 \\
8) m = 1, n = 3 & \\
(\delta_{0,0} \Lambda_{1,3} - \lambda b_{0,0})a_{0,0} + & (\delta_{0,1} \Lambda_{1,3} - \lambda b_{0,1})a_{0,1} + (\delta_{0,2} \Lambda_{1,3} - \lambda b_{0,2})a_{0,2} + (\delta_{0,3} \Lambda_{1,3} - \lambda b_{0,3})a_{0,3} + \\ (\delta_{1,0} \Lambda_{1,3} - \lambda b_{1,0})a_{1,0} + & (\delta_{1,1} \Lambda_{1,3} - \lambda b_{1,1})a_{1,1} + (\delta_{1,2} \Lambda_{1,3} - \lambda b_{1,2})a_{1,2} + (\delta_{1,3} \Lambda_{1,3} - \lambda b_{1,3})a_{1,3} + \\ (\delta_{2,0} \Lambda_{1,3} - \lambda b_{2,0})a_{2,0} + & (\delta_{2,1} \Lambda_{1,3} - \lambda b_{2,1})a_{2,1} + (\delta_{2,2} \Lambda_{1,3} - \lambda b_{2,2})a_{2,2} + (\delta_{2,3} \Lambda_{1,3} - \lambda b_{2,3})a_{2,3} + \\ (\delta_{3,0} \Lambda_{1,3} - \lambda b_{3,0})a_{3,0} + & (\delta_{3,1} \Lambda_{1,3} - \lambda b_{3,1})a_{3,1} + (\delta_{3,2} \Lambda_{1,3} - \lambda b_{3,2})a_{3,2} + (\delta_{3,3} \Lambda_{1,3} - \lambda b_{3,3})a_{3,3} + \\
= 0 \\
\text{therefore,} & \\
(-\lambda b_{1,1})a_{1,1} + & (-\lambda b_{1,2})a_{1,2} + (\delta_{1,3} \Lambda_{1,3} - \lambda b_{1,3})a_{1,3} + \\ +(-\lambda b_{2,1})a_{2,1} + & (-\lambda b_{2,2})a_{2,2} + (-\lambda b_{2,3})a_{2,3} + \\ +(-\lambda b_{3,1})a_{3,1} + & (-\lambda b_{3,2})a_{3,2} + (-\lambda b_{3,3})a_{3,3} + = 0 \\
\text{or} & \\
(-\lambda b_{13,1})a_{1,1} + & (\delta_{1,2} \Lambda_{1,3} - \lambda b_{13,2})a_{1,2} + (-\lambda b_{13,3})a_{1,3} + \\ +(-\lambda b_{13,2})a_{2,1} + & (-\lambda b_{32,2})a_{2,2} + (-\lambda b_{13,3})a_{2,3} + \\ +(-\lambda b_{13,3})a_{3,1} + & (-\lambda b_{13,3})a_{3,2} + (-\lambda b_{13,3})a_{3,3} + = 0 \\
\cdots &
\end{align*}
\]
Similarly,

9) \(m = 2, n = 0 \)

\[(\delta_{2,0}\Delta_{2,0})a_{2,0} = 0 \]

10) \(m = 2, n = 1 \)

\[(-\lambda b_{21,1})a_{1,1} + (-\lambda b_{21,2})a_{1,2} + (-\lambda b_{21,3})a_{1,3} + ... \\
+ (\delta_{2,1}\Delta_{2,1} - \lambda b_{21,2})a_{2,1} + (-\lambda b_{21,2})a_{2,2} + (-\lambda b_{21,3})a_{2,3} + ... \\
+ (-\lambda b_{21,3})a_{3,1} + (-\lambda b_{21,3})a_{3,2} + (-\lambda b_{21,3})a_{3,3} + ... = 0 \]

11) \(m = 2, n = 2 \)

\[(-\lambda b_{22,1})a_{1,1} + (-\lambda b_{22,2})a_{1,2} + (-\lambda b_{22,3})a_{1,3} + ... \\
+ (-\lambda b_{22,1})a_{2,1} + (\delta_{2,2}\Delta_{2,2} - \lambda b_{22,2})a_{2,2} + (-\lambda b_{22,2})a_{2,3} + ... \\
+ (-\lambda b_{22,3})a_{3,1} + (-\lambda b_{22,3})a_{3,2} + (-\lambda b_{22,3})a_{3,3} + ... = 0 \]

12) \(m = 2, n = 3 \)

\[(-\lambda b_{23,1})a_{1,1} + (-\lambda b_{23,2})a_{1,2} + (-\lambda b_{23,3})a_{1,3} + ... \\
+ (-\lambda b_{23,1})a_{2,1} + (-\lambda b_{23,2})a_{2,2} + (\delta_{2,3}\Delta_{2,3} - \lambda b_{23,2})a_{2,3} + ... \\
+ (-\lambda b_{23,3})a_{3,1} + (-\lambda b_{23,3})a_{3,2} + (-\lambda b_{23,3})a_{3,3} + ... = 0 \]

..............

13) \(m = 3, n = 0 \)

\[(\delta_{3,0}\Delta_{3,0})a_{3,0} = 0 \]

14) \(m = 3, n = 1 \)

\[(-\lambda b_{31,1})a_{1,1} + (-\lambda b_{31,2})a_{1,2} + (-\lambda b_{31,3})a_{1,3} + ... \\
+ (-\lambda b_{31,2})a_{2,1} + (-\lambda b_{31,2})a_{2,2} + (-\lambda b_{31,3})a_{2,3} + ... \\
+ (\delta_{3,1}\Delta_{3,1} - \lambda b_{31,3})a_{3,1} + (-\lambda b_{31,3})a_{3,2} + (-\lambda b_{31,3})a_{3,3} + ... = 0 \]
15) \(m = 3, n = 2 \)

\[\begin{align*}
(-\lambda b_{32,1})a_{1,1} +& (-\lambda b_{32,1,2})a_{1,2} + (-\lambda b_{32,1,3})a_{1,3} + \\
+ (-\lambda b_{32,2,1})a_{2,1} +& (-\lambda b_{32,2,2})a_{2,2} + (-\lambda b_{32,2,3})a_{2,3} + \\
+ (-\lambda b_{32,3,1})a_{3,1} +& (\delta_{32,3,2} - \lambda b_{32,3,2})a_{3,2} + (-\lambda b_{32,3,3})a_{3,3} +
\end{align*} = 0 \]

16) \(m = 3, n = 3 \)

\[\begin{align*}
(-\lambda b_{33,1,1})a_{1,1} +& (-\lambda b_{33,1,2})a_{1,2} + (-\lambda b_{33,1,3})a_{1,3} + \\
+ (-\lambda b_{33,2,1})a_{2,1} +& (-\lambda b_{33,2,2})a_{2,2} + (-\lambda b_{33,2,3})a_{2,3} + \\
+ (-\lambda b_{33,3,1})a_{3,1} +& (\delta_{33,3,2} - \lambda b_{33,3,2})a_{3,2} + (-\lambda b_{33,3,3})a_{3,3} +
\end{align*} = 0 \]

From all these expansions, we can obtain

\[(\delta_{i,0}a_{i,0}) = 0 \]

and, in matrix form and introducing \(e_{m,n} = \delta_{m,n}A_{m,n} \), Eq. (4.6) becomes

\[\begin{bmatrix}
 e_{1,1} - \lambda b_{11,1,1} & -\lambda b_{11,1,2} & -\lambda b_{11,1,3} & \ldots & -\lambda b_{11,2,1} & -\lambda b_{11,2,2} & -\lambda b_{11,2,3} & \ldots \\
 -\lambda b_{12,1,1} & e_{1,2} - \lambda b_{12,1,2} & -\lambda b_{12,1,3} & \ldots & -\lambda b_{12,2,1} & -\lambda b_{12,2,2} & -\lambda b_{12,2,3} & \ldots \\
 -\lambda b_{13,1,1} & -\lambda b_{13,1,2} & e_{1,3} - \lambda b_{13,1,3} & \ldots & -\lambda b_{13,2,1} & -\lambda b_{13,2,2} & -\lambda b_{13,2,3} & \ldots \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
 -\lambda b_{21,1,1} & -\lambda b_{21,1,2} & -\lambda b_{21,1,3} & \ldots & e_{2,1} - \lambda b_{21,2,1} & -\lambda b_{21,2,2} & -\lambda b_{21,2,3} & \ldots \\
 -\lambda b_{22,1,1} & -\lambda b_{22,1,2} & -\lambda b_{22,1,3} & \ldots & e_{2,2} - \lambda b_{22,2,1} & -\lambda b_{22,2,2} & -\lambda b_{22,2,3} & \ldots \\
 -\lambda b_{23,1,1} & -\lambda b_{23,1,2} & -\lambda b_{23,1,3} & \ldots & -\lambda b_{23,2,1} & -\lambda b_{23,2,2} & e_{2,3} - \lambda b_{23,2,3} & \ldots \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
\end{bmatrix}
\begin{bmatrix} a_{1,1} \\ a_{1,2} \\ a_{1,3} \\ \vdots \\ a_{2,1} \\ a_{2,2} \\ a_{2,3} \\ \vdots \end{bmatrix} = 0 \]

(4.13)

In the next section, we will deal with Eq. (4.13).
4.3 Simplification of Eq. (4.13)

From condition (4.12) and \(b_{mnp,q} \) being non-zero only if \(m+p \) and \(n+q \) are both even, Eq. (4.13) can be further simplified as

\[
\begin{bmatrix}
 e_{1,1} - \lambda b_{11,1} & 0 & -\lambda b_{11,3} & \ldots & 0 & 0 & 0 & \ldots \\
 0 & e_{1,2} - \lambda b_{12,2} & 0 & \ldots & 0 & 0 & 0 & \ldots \\
 -\lambda b_{13,1} & 0 & e_{1,3} - \lambda b_{13,3} & \ldots & 0 & 0 & 0 & \ldots \\
 \ldots & \ldots \\
 0 & 0 & 0 & \ldots & e_{2,1} - \lambda b_{21,1} & 0 & -\lambda b_{21,3} & \ldots \\
 0 & 0 & 0 & \ldots & 0 & e_{2,2} - \lambda b_{22,1} & 0 & \ldots \\
 0 & 0 & 0 & \ldots & -\lambda b_{23,1} & 0 & e_{2,3} - \lambda b_{23,3} & \ldots \\
 \ldots & \ldots \\
\end{bmatrix}
\begin{bmatrix}
 a_{1,1} \\
 a_{1,2} \\
 a_{1,3} \\
 a_{1,4} \\
 a_{2,1} \\
 a_{2,2} \\
 a_{2,3} \\
 \ldots \\
\end{bmatrix} = 0
\]

or generalized as

\[
\begin{bmatrix}
 x & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots & x & 0 & 0 & \ldots \\
 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots \\
 x & 0 & x & \ldots & 0 & 0 & 0 & \ldots & x & 0 & x & \ldots \\
 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots \\
 \ldots & \ldots \\
 0 & 0 & 0 & \ldots & x & 0 & x & \ldots & 0 & 0 & 0 & \ldots \\
 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots \\
 0 & 0 & 0 & \ldots & 0 & 0 & x & \ldots & 0 & 0 & 0 & \ldots \\
 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots \\
 \ldots & \ldots \\
 x & 0 & x & \ldots & 0 & 0 & 0 & \ldots & x & 0 & x & \ldots \\
 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots \\
 x & 0 & x & \ldots & 0 & 0 & 0 & \ldots & x & 0 & x & \ldots \\
 0 & x & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & x & 0 & \ldots \\
 \ldots & \ldots \\
\end{bmatrix}
\begin{bmatrix}
 a_{1,1} \\
 a_{1,2} \\
 a_{1,3} \\
 a_{1,4} \\
 a_{2,1} \\
 a_{2,2} \\
 a_{2,3} \\
 a_{2,4} \\
 \ldots \\
\end{bmatrix} = 0
\]

(4.14)

where \(x \) are \((e_{p,q} - \lambda b_{pq,p,q}) \) and \(x \) are \(-\lambda b_{mnp,q} \).
Employing block matrices, Eq. (4.14) can be further rewritten as

\[
\begin{bmatrix}
X_1 & 0 & x_{13} & 0 & x_{15} & \cdots & 0 & x_{1q} \\
0 & X_2 & 0 & x_{24} & 0 & \cdots & 0 & x_{2q} \\
x_{31} & 0 & X_3 & 0 & x_{35} & \cdots & 0 & x_{3q} \\
0 & x_{42} & 0 & X_4 & 0 & \cdots & 0 & x_{4q} \\
x_{51} & 0 & x_{53} & 0 & X_5 & \cdots & 0 & x_{5q} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & x_{p-1} & 0 & x_{pq} & 0 & \cdots & 0 & x_{pq} \\
0 & 0 & x_{p+1} & 0 & x_{pq+1} & \cdots & 0 & x_{pq+1} \\
0 & 0 & 0 & x_{p+2} & 0 & \cdots & 0 & x_{pq+2} \\
0 & 0 & 0 & 0 & x_{p+3} & \cdots & 0 & x_{pq+3} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & x_{p+4} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & x_{p+q} \\
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_2 \\
A_3 \\
A_4 \\
A_5 \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{bmatrix}
= 0
\]

(4.15)

where

\[
X_p = \begin{bmatrix}
x_1 & 0 & x & 0 & \cdots \\
0 & x_2 & 0 & x & \cdots \\
x & 0 & x_3 & 0 & \cdots \\
0 & x & 0 & x_4 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & x_p \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
x_{pq} = \begin{bmatrix}
x & 0 & x & 0 & \cdots \\
0 & x & 0 & x & \cdots \\
x & 0 & x & 0 & \cdots \\
0 & x & 0 & x & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & x \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
A_p = \begin{bmatrix}
a_{p,1} \\
a_{p,2} \\
a_{p,3} \\
a_{p,4} \\
\vdots \\
a_{p,q} \\
\end{bmatrix}
\]

4.4. Summary

In this chapter, a technique for calculation of the eigenvalues occurring in the heat transfer problem in slip–flow has been derived by constructing a matrix. With this formulation, any number of eigenvalues can be theoretically determined. The next chapter will deal with the algorithms and the computational procedure, and the calculation of the eigenvalues will be carried out.
CHAPTER 5

COMPUTATIONAL RESULTS

In the previous chapter, the formulation for the calculation of the coefficients occurring in the eigenfunction was determined. In this chapter, we will discuss the procedures for the evaluation of eigenvalues for the heat transfer problem in slip-flow. We will calculate the eigenvalues and discuss the computational results.

5.1 Procedures of Computation

The procedures of computation are as following:

1) Calculate a_i for certain Knudsen number Kn by Eq. (2.10) in Chapter 2

\[a_i \tan a_i = \frac{1}{2} Kn \]

(5.1)

2) Calculate coefficients d_{ij} for certain Knudsen number Kn and aspect ratio a by Eq. (4.11) in Chapter 4

\[d_{ij} = \int_{0}^{\beta} \int_{0}^{\beta'} \frac{w}{w_0} \cos \left(\frac{i\pi x}{\beta'} \right) \cos \left(\frac{i\pi y}{\beta} \right) dx \, dy \quad (i,j=0,1,2,\ldots) \]

(5.2)

where

\[\frac{w}{C} = -2 \sum_{i=1}^{\alpha} \frac{\cos \alpha_i \left(\frac{2}{\beta'} y - 1 \right)}{\alpha_i^3} \left(\frac{\sin \alpha_i}{1 + 2 Kn \sin^2 \alpha_i} \right) \left(1 - \frac{cosh \frac{\alpha_i}{a} \left(\frac{2}{\beta'} x - 1 \right)}{cosh \frac{\alpha_i}{a} + 2 Kn \alpha_i \sin \frac{\alpha_i}{a}} \right) \]

(5.3)
and

$$w_0/C = -2 \sum_{i=1}^{\infty} \frac{a_{i}}{\alpha_i} \left(\frac{\sin^2 \alpha_i}{1 + 2 Kn \sin^2 \alpha_i} (\alpha_i + \frac{\sin \alpha_i}{\alpha_i}) \right)$$

(5.4)

3) Determine $b_{p,q}(m, n)$ (or $b_{mn,p,q}$) by Eq. (4.10) in Chapter 4

$$b_{p,q}(m, n) = \frac{1}{4} \left\{ d_{in-p,ln-q} - d_{im-p,l,n+q} + d_{m+p,n+q} - d_{m+p,in-q} \right\}$$

(5.5)

4) Calculate $e_{p,q} = \delta_{p,q} A_{p,q}$ for certain m and n by Eq. (4.9)

$$\delta_{p,q}(m,n) A_{p,q} = (\pi^2/4a) (m^2 + a^2 n^2),$$

(5.6)

5) Determine truncation eigenfunction for certain m and n by Eq. (4.15) in Chapter 4

$$\begin{bmatrix} X_1 & 0 & x_{13} & 0 & x_{15} & \ldots \\ 0 & X_2 & 0 & x_{24} & 0 & \ldots \\ x_{31} & 0 & X_3 & 0 & x_{35} & \ldots \\ 0 & x_{42} & 0 & X_4 & 0 & \ldots \\ x_{51} & 0 & x_{53} & 0 & X_5 & \ldots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \\ \vdots \end{bmatrix} = 0$$

(5.7)

where

$$X_m = \begin{bmatrix} x & 0 & x & 0 & \ldots \\ 0 & x & 0 & x & \ldots \\ x & 0 & x & 0 & \ldots \\ 0 & x & 0 & x & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad x_{mn} = \begin{bmatrix} x & 0 & x & 0 & \ldots \\ 0 & x & 0 & x & \ldots \\ x & 0 & x & 0 & \ldots \\ 0 & x & 0 & x & \ldots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \quad A_m = \begin{bmatrix} a_{m,1} \\ a_{m,2} \\ a_{m,3} \\ a_{m,4} \\ a_{m,n} \end{bmatrix}$$

where x are $(e_{p,q} - \lambda b_{mn,p,q})$ and x are $-\lambda b_{mn,p,q}$ and $e_{p,q} = \delta_{p,q} A_{p,q}$ for certain m and n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
For example, the truncated eigenfunction for \(m, n = 0,1 \) and for \(m, n = 0,1,2,3 \) are respectively

\[
\Delta_1(\lambda) = \left| X_1 \right| = 0
\]

(5.8a)

\[
\Delta_3(\lambda) = \left| X_1 \right| \left| X_2 \right| \left| X_3 \right| - \left| x_{31} \right| \left| X_2 \right| \left| x_{31} \right| = 0
\]

(5.8b)

and \(\Delta(\lambda) = \lim_{p \to \infty} \Delta_p(\lambda) \) when \(p \to \infty \).

6) Evaluate the eigenvalue \(\lambda \) by the known truncated eigenfunction such as Eq. (5.8)

7) Determine the fully-developed Nusselt number by Eq. (3.17) in Chapter 3

\[Nu_{\infty} = \frac{\lambda_1}{4} \]

(5.9)

5.2 Calculation of \(\alpha_i \)

Table 5.1 lists the first eight values of each \(\alpha_i \) for \(Kn \) from 0.005 to 0.3 by Eq.(5.1). Fig.5.1 shows that \(\alpha_i \) vary as functions of \(Kn \). From Fig.5.1, we can see that the difference of the adjacent \(\alpha_i \) and \(\alpha_{i+1} \) becomes smaller as \(Kn \) increases but goes to a constant \(\pi \) as both \(Kn \) and \(i \) increase.

<table>
<thead>
<tr>
<th>(Kn)</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_3)</th>
<th>(\alpha_4)</th>
<th>(\alpha_5)</th>
<th>(\alpha_6)</th>
<th>(\alpha_7)</th>
<th>(\alpha_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>1.5552</td>
<td>4.6658</td>
<td>7.7764</td>
<td>10.887</td>
<td>13.998</td>
<td>17.109</td>
<td>20.221</td>
<td>23.333</td>
</tr>
<tr>
<td>0.01</td>
<td>1.5400</td>
<td>4.6202</td>
<td>7.7012</td>
<td>10.783</td>
<td>13.867</td>
<td>16.952</td>
<td>20.039</td>
<td>23.128</td>
</tr>
<tr>
<td>0.02</td>
<td>1.5105</td>
<td>4.5330</td>
<td>7.5603</td>
<td>10.595</td>
<td>13.638</td>
<td>16.690</td>
<td>19.752</td>
<td>22.822</td>
</tr>
<tr>
<td>0.06</td>
<td>1.4039</td>
<td>4.2416</td>
<td>7.1452</td>
<td>10.114</td>
<td>13.132</td>
<td>16.183</td>
<td>19.258</td>
<td>22.348</td>
</tr>
<tr>
<td>0.08</td>
<td>1.3570</td>
<td>4.1286</td>
<td>7.0112</td>
<td>9.9841</td>
<td>13.014</td>
<td>16.079</td>
<td>19.165</td>
<td>22.265</td>
</tr>
<tr>
<td>0.20</td>
<td>1.1422</td>
<td>3.7318</td>
<td>6.6431</td>
<td>9.6776</td>
<td>12.760</td>
<td>15.864</td>
<td>18.981</td>
<td>22.104</td>
</tr>
<tr>
<td>0.30</td>
<td>1.0211</td>
<td>3.5776</td>
<td>6.5330</td>
<td>9.5967</td>
<td>12.697</td>
<td>15.813</td>
<td>18.937</td>
<td>22.067</td>
</tr>
</tbody>
</table>
Fig. 5.1 Velocity eigenvalues a_i as functions of Kn
5.3 Calculation of d_{ij}

For $Kn = 0.00$ and $a = 1$ (for $Kn = 0.00$ and $a = 1$ see Appendix B), and $i,j = 0,1,2, ..., 10$, the d_{ij} are as following:

$$d_{ij} = \begin{bmatrix}
1.0015 & 0 & -0.27819 & 0 & -0.08309 & 0 & -0.03854 & 0 & -0.02209 & 0 & -0.01431 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.27809 & 0 & 0.08285 & 0 & 0.02237 & 0 & 0.00979 & 0 & 0.00542 & 0 & 0.00342 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.08299 & 0 & 0.02237 & 0 & 0.00725 & 0 & 0.00338 & 0 & 0.0192 & 0 & 0.00122 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.03844 & 0 & 0.00979 & 0 & 0.00338 & 0 & 0.01670 & 0 & 9.73e-4 & 0 & 6.31e-4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.02198 & 0 & 0.00542 & 0 & 0.00191 & 0 & 9.73e-4 & 0 & 5.82e-4 & 0 & 3.84e-4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.01418 & 0 & 0.00343 & 0 & 0.00122 & 0 & 6.30e-4 & 0 & 3.94e-4 & 0 & 2.63e-4
\end{bmatrix}$$

5.4 Determination of $b_{p,q}(m,n)$ (or $b_{mn_{p,q}}$)

$b_{p,q}(m,n)$ (or $b_{mn_{p,q}}$) for $m,n = 1,2,3$ and $p,q = 0,1,2, ..., 5$ are as following:

$$b_{11_{p,q}} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.41015 & 0 & -0.06390 & 0 & -0.01428 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.06390 & 0 & 0.01134 & 0 & 0.002178 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.01428 & 0 & 0.002178 & 0 & 5.340 e-4
\end{bmatrix}$$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.3463 & 0 & -0.07818 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.05256 & 0 & 0.01352 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.01211 & 0 & 0.002718 & 0 \\
\end{bmatrix}
\]

\[
b_{12_{p,q}} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.06390 & 0 & 0.3320 & 0 & -0.08338 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.01134 & 0 & -0.05040 & 0 & 0.01425 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.002178 & 0 & -0.01157 & 0 & 0.002908 \\
\end{bmatrix}
\]

\[
b_{13_{p,q}} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.07818 & 0 & 0.3268 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01352 & 0 & -0.04965 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.002718 & 0 & -0.01137 & 0 \\
\end{bmatrix}
\]

\[
b_{14_{p,q}} =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.01428 & 0 & -0.08338 & 0 & 0.3243 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.00218 & 0 & 0.01425 & 0 & -0.04933 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 5.4 \times 10^{-4} & 0 & 0.00291 & 0 & -0.01128 \\
\end{bmatrix}
\]
\[
b_{21,p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.3463 & 0 & -0.05256 & 0 & -0.01211 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.07818 & 0 & 0.01352 & 0 & 0.002718 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
b_{22,p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.2937 & 0 & -0.06466 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.06466 & 0 & 0.01624 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
b_{23,p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.05256 & 0 & 0.2816 & 0 & -0.06914 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01352 & 0 & -0.6194 & 0 & 0.01715 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
b_{24,p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.06466 & 0 & 0.2771 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01624 & 0 & -0.061024 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.01207 & 0 & -0.06984 & 0 & 0.3126 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.02460 & 0 & 0.01568 & 0 & -0.06173 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.06373 & 0 & 0.01040 & 0 & 0.001988 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.3705 & 0 & -0.05134 & 0 & -0.01595 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.08289 & 0 & 0.01306 & 0 & 0.002629
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.05333 & 0 & 0.012390 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.31922 & 0 & -0.6294 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.06984 & 0 & 0.01568 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -0.5134 & 0 & 0.01306 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.05134 & 0 & 0.3076 & 0 & -0.06721 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.01306 & 0 & -0.06721 & 0 & 0.01658
\end{bmatrix}
\]
\[b_{34p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01239 & 0 & -0.05068 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.06294 & 0 & 0.3033 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01568 & 0 & -0.06631 & 0
\end{bmatrix} \]

\[b_{35p,q} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \]

\[b_{mn}^p _q \text{ should be equal to } b_{nm}^p _q \text{ or the matrices } b_{mn} \text{ should be equal to } b_{mn}^T. \] Using these properties, we can check the computational errors. For example, from \(b_{113,1} = -0.06390 \) and \(b_{311,1} = -0.06373 \), we know the third digit in these values may not be correct.

5.5 Determination of Truncation Eigenfunction

\[X_1 = \begin{bmatrix}
4.9348 - \lambda 0.41015 & 0 & \lambda 0.06390 & \ldots \\
0 & 12.33701 - \lambda 0.3463 & 0 & \ldots \\
\lambda 0.06390 & 0 & 24.67401 - \lambda 0.3320 & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{bmatrix} \]
If we take the first 3x3 elements of each matrices only, we have then

\[|X_1| = (12.33701-\lambda 0.3463)\cdot (4.93484-\lambda 0.41015)\cdot (24.67401-\lambda 0.3320) - \lambda^2 0.06390^2 \]

\[|X_2| = (19.73921-\lambda 0.3294)\cdot (12.33701-\lambda 0.3463)\cdot (32.07621-\lambda 0.3705) - \lambda^2 0.05256^2 \]

\[|X_3| = (32.07621-\lambda 0.3705)\cdot (24.67401-\lambda 0.3320)\cdot (44.41322-\lambda 0.3076) - \lambda^2 0.05134^2 \]

\[|x_{13}| = |x_{31}| = \lambda^3 [(0.06373)(0.05333)(0.05134) - (0.0104)^2(0.05333)] \]

Therefore,

\[\Delta f(\lambda) = |X_1| \]

\[= (12.33701-\lambda 0.3463)\cdot (4.93484-\lambda 0.41015)\cdot (24.67401-\lambda 0.3320) - \lambda^2 0.06390^2 = 0 \]
and

\[\Delta_3(\lambda) = |X_1| |X_2| |X_3| - |X_3| |X_2| |X_1| \]

\[= \{(12.33701 - \lambda 0.3463) [(4.9348 - \lambda 0.41015) (24.67401 - \lambda 0.3320) - \lambda^2 0.06390^2] - (19.73921 - \lambda 0.3294) [(12.33701 - \lambda 0.3463) (32.07621 - \lambda 0.3705) - \lambda^2 0.05256^2] - (32.07621 - \lambda 0.3705) [(24.67401 - \lambda 0.3320) (44.41322 - \lambda 0.3076) - \lambda^2 0.05134^2] - ((19.73921 - \lambda 0.3294)^6 [(12.33701 - \lambda 0.3463) (32.07621 - \lambda 0.3705) - \lambda^2 0.05265^2] \}

\[= 0 \]

In the first order approximation of eigenfunction \(\Delta_1(\lambda) \), the value of \(\lambda_1 \) can be calculated approximately by the first term (4.9348 - \(\lambda \) 0.41015), because the value of the term (\(\lambda^2 0.06373^2 \)) can be neglected. It will be discussed in the following section.

5.6 Evaluation of Eigenvalue \(\lambda \) and Fully-Developed Nusselt Number

From the above approximation of eigenfunctions, we can evaluate the eigenvalues. Table 5.2 shows the comparison of \(\lambda_1(a = 1) \) for \(Kn = 0.00 \) with previously known values (see Appendix C). From this comparison, we know that the first eigenvalues calculated by the first term are sufficiently accurate.

Table 5.2	Comparison of \(\lambda_1(a = 1) \) calculated by different approximation			
	Dennis et al.	First term	\(\Delta_1(\lambda) \)	\(\Delta_3(\lambda) \)
\(\lambda_1 \)	11.91	12.030528	11.96289311	11.962888035
difference %	0	1.012	0.44410672	0.44406406

Table 5.3 gives the computational results of \(\lambda_1(a) \) by the first term for different aspect ratios. Table 5.4 lists the comparison of \(\lambda_1(a) \) for \(Kn = 0.00 \) with previously known values.
Table 5.3 Eigenvalue $\lambda_1(a)$ for different aspect ratios

<table>
<thead>
<tr>
<th>Kn</th>
<th>$\lambda_1(1)$</th>
<th>$\lambda_1(2/3)$</th>
<th>$\lambda_1(1/2)$</th>
<th>$\lambda_1(1/4)$</th>
<th>$\lambda_1(1/8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.0305</td>
<td>12.6418</td>
<td>13.7316</td>
<td>17.9174</td>
<td>22.487</td>
</tr>
<tr>
<td>0.005</td>
<td>12.219</td>
<td>12.7896</td>
<td>13.873</td>
<td>18.0654</td>
<td>22.653</td>
</tr>
<tr>
<td>0.01</td>
<td>12.380</td>
<td>12.9928</td>
<td>14.071</td>
<td>18.2681</td>
<td>22.839</td>
</tr>
<tr>
<td>0.02</td>
<td>12.680</td>
<td>13.1959</td>
<td>14.266</td>
<td>18.4708</td>
<td>23.025</td>
</tr>
<tr>
<td>0.04</td>
<td>13.204</td>
<td>13.5795</td>
<td>14.638</td>
<td>18.8488</td>
<td>23.465</td>
</tr>
<tr>
<td>0.06</td>
<td>13.646</td>
<td>13.9631</td>
<td>15.011</td>
<td>19.2153</td>
<td>23.905</td>
</tr>
<tr>
<td>0.08</td>
<td>14.027</td>
<td>14.3466</td>
<td>15.383</td>
<td>19.5876</td>
<td>24.344</td>
</tr>
<tr>
<td>0.10</td>
<td>14.359</td>
<td>14.7302</td>
<td>15.755</td>
<td>19.9829</td>
<td>24.784</td>
</tr>
<tr>
<td>0.20</td>
<td>15.549</td>
<td>15.8749</td>
<td>17.281</td>
<td>20.8838</td>
<td>25.467</td>
</tr>
<tr>
<td>0.30</td>
<td>16.295</td>
<td>16.6361</td>
<td>17.618</td>
<td>21.7846</td>
<td>26.151</td>
</tr>
<tr>
<td>0.50</td>
<td>17.189</td>
<td>17.5510</td>
<td>18.563</td>
<td>22.6739</td>
<td>27.517</td>
</tr>
</tbody>
</table>

Table 5.4 Comparison of $\lambda_1(a)$ for $Kn = 0.00$ with previously known values

<table>
<thead>
<tr>
<th>$\lambda_1(a)$</th>
<th>$\lambda_1(1)$</th>
<th>$\lambda_1(2/3)$</th>
<th>$\lambda_1(1/2)$</th>
<th>$\lambda_1(1/4)$</th>
<th>$\lambda_1(1/8)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>12.0305</td>
<td>12.6418</td>
<td>13.7316</td>
<td>17.9174</td>
<td>22.487</td>
</tr>
<tr>
<td>Dennis et al.</td>
<td>11.91</td>
<td>12.49</td>
<td>13.57</td>
<td>17.76</td>
<td>22.38</td>
</tr>
<tr>
<td>difference%</td>
<td>1.01</td>
<td>1.21</td>
<td>1.19</td>
<td>0.89</td>
<td>0.48</td>
</tr>
</tbody>
</table>

and it shows that all of the differences are less than 1.3 percent. From this comparison, we know that the first eigenvalues calculated by the first term are sufficiently accurate for all different aspect ratios.

Table 5.5 shows the computed results of $Nu_\infty(a)$ for different aspect ratios by Eq.(5.9), and Figure 5.2 shows $Nu_\infty(a)$ as functions of Kn. It shows that Nusselt number Nu_∞ increase as the Knudsen number Kn increases and that the values of Nu_∞ increase as the aspect ratio, a, decreases for a fixed Kn.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Fig. 5.2 Fully developed Nu as a function of Kn for different aspect ratio
Fig. 5.3 Ratio k as a function of Kn for different aspect ratio

$[\, k = \frac{Nu(Kn)}{Nu(0)} \,]$
Table 5.5 \(\text{Nu}_{\infty}(a) \) for different aspect ratios

<table>
<thead>
<tr>
<th>(Kn)</th>
<th>(\text{Nu}_{\infty}(1))</th>
<th>(\text{Nu}_{\infty}(2/3))</th>
<th>(\text{Nu}_{\infty}(1/2))</th>
<th>(\text{Nu}_{\infty}(1/4))</th>
<th>(\text{Nu}_{\infty}(1/8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0076</td>
<td>3.1605</td>
<td>3.429</td>
<td>4.4794</td>
<td>5.6217</td>
</tr>
<tr>
<td>0.005</td>
<td>3.0548</td>
<td>3.1974</td>
<td>3.468</td>
<td>4.5164</td>
<td>5.6632</td>
</tr>
<tr>
<td>0.01</td>
<td>3.0950</td>
<td>3.2482</td>
<td>3.518</td>
<td>4.5670</td>
<td>5.7098</td>
</tr>
<tr>
<td>0.02</td>
<td>3.1700</td>
<td>3.2990</td>
<td>3.566</td>
<td>4.6177</td>
<td>5.7563</td>
</tr>
<tr>
<td>0.04</td>
<td>3.3010</td>
<td>3.3949</td>
<td>3.660</td>
<td>4.7122</td>
<td>5.8662</td>
</tr>
<tr>
<td>0.06</td>
<td>3.4115</td>
<td>3.4908</td>
<td>3.753</td>
<td>4.8038</td>
<td>5.9761</td>
</tr>
<tr>
<td>0.08</td>
<td>3.5068</td>
<td>3.5867</td>
<td>3.846</td>
<td>4.8969</td>
<td>6.0861</td>
</tr>
<tr>
<td>0.10</td>
<td>3.5898</td>
<td>3.6826</td>
<td>3.939</td>
<td>4.9957</td>
<td>6.1961</td>
</tr>
<tr>
<td>0.20</td>
<td>3.8873</td>
<td>3.9688</td>
<td>4.320</td>
<td>5.2209</td>
<td>6.3668</td>
</tr>
<tr>
<td>0.30</td>
<td>4.0736</td>
<td>4.1590</td>
<td>4.405</td>
<td>5.4462</td>
<td>6.5376</td>
</tr>
<tr>
<td>0.50</td>
<td>4.2970</td>
<td>4.3878</td>
<td>4.6408</td>
<td>5.6685</td>
<td>6.8792</td>
</tr>
</tbody>
</table>

Table 5.6 \(k(a) \) for different aspect ratios

<table>
<thead>
<tr>
<th>(Kn)</th>
<th>(k_{\text{tube}})</th>
<th>(k(1))</th>
<th>(k(2/3))</th>
<th>(k(1/2))</th>
<th>(k(1/4))</th>
<th>(k(1/8))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0.005</td>
<td>1.015</td>
<td>1.016</td>
<td>1.012</td>
<td>1.011</td>
<td>1.008</td>
<td>1.007</td>
</tr>
<tr>
<td>0.01</td>
<td>1.028</td>
<td>1.029</td>
<td>1.028</td>
<td>1.026</td>
<td>1.020</td>
<td>1.016</td>
</tr>
<tr>
<td>0.02</td>
<td>1.054</td>
<td>1.054</td>
<td>1.044</td>
<td>1.040</td>
<td>1.031</td>
<td>1.024</td>
</tr>
<tr>
<td>0.04</td>
<td>1.099</td>
<td>1.100</td>
<td>1.074</td>
<td>1.067</td>
<td>1.052</td>
<td>1.043</td>
</tr>
<tr>
<td>0.06</td>
<td>1.138</td>
<td>1.137</td>
<td>1.105</td>
<td>1.094</td>
<td>1.072</td>
<td>1.063</td>
</tr>
<tr>
<td>0.08</td>
<td>1.170</td>
<td>1.169</td>
<td>1.135</td>
<td>1.122</td>
<td>1.093</td>
<td>1.083</td>
</tr>
<tr>
<td>0.10</td>
<td>1.198</td>
<td>1.194</td>
<td>1.165</td>
<td>1.149</td>
<td>1.115</td>
<td>1.102</td>
</tr>
<tr>
<td>0.20</td>
<td>–</td>
<td>1.292</td>
<td>1.256</td>
<td>1.260</td>
<td>1.166</td>
<td>1.133</td>
</tr>
<tr>
<td>0.30</td>
<td>–</td>
<td>1.354</td>
<td>1.316</td>
<td>1.285</td>
<td>1.216</td>
<td>1.163</td>
</tr>
<tr>
<td>0.50</td>
<td>–</td>
<td>1.459</td>
<td>1.388</td>
<td>1.353</td>
<td>1.266</td>
<td>1.224</td>
</tr>
</tbody>
</table>

Note: \(k = \text{Nu}_{\infty}(Kn)/\text{Nu}_{\infty}(0) \), \(k_c \) – for channel and \(k_{\text{tube}} \) – for round tube

To see the effect of the Knudsen number \(Kn \) on the Nusselt number \(\text{Nu}_{\infty} \) for a certain aspect ratio with respect to the case of non-slip-flow, a ratio \(k = \text{Nu}_{\infty}(Kn)/\text{Nu}_{\infty}(0) \) was
introduced. Table 5.6 gives the computed results of \(k(a) \) for different aspect ratios.

Figure 5.3 shows that the ratio \(k \) as a function of the Nusselt number \(Kn \) for different aspect ratios. It shows that the ratio \(k \) increases as \(Kn \) increases for all aspect ratios and that the ratio \(k \) decreases as the aspect ratio decreases for \(0 < Kn < 0.30 \). The maximum increase of \(k \) (or the Nusselt number \(Nu_\infty \)) is as follows: 35.4 percent \((Kn = 0.30) \) for \(a = 1 \); 31.6 percent for \(a = 2/3 \); 28.5 percent for \(a = 1/2 \); 21.6 percent for \(a = 1/4 \); and 16.3 percent for \(a = 1/8 \). Figure 5.4 shows the comparison of Nusselt number values with that of a round tube. The result of an aspect ratio \(a = 1 \) agrees with that of the round tube (the maximum difference is 0.33 percent), because the "aspect ratio" of the round tube can be regarded as around 1 while the ratio \(k \) becomes smaller with a decreasing aspect ratio.

The aspect ratio \(a \) also affects the Nusselt number \(Nu_\infty \). Fig. 5.5 shows the ratio of the Nusselt number with the aspect ratio \((a < 1) \) to Nusselt number with \(a = 1 \), or \(Nu(a)/Nu(1) \), as a function of aspect ratio \(a \). As shown in Fig. 5.5, these ratios increase greatly as the aspect ratio \(a \) moves toward 0; however, the effects are weakened slightly with the increase of the Knudsen number \(Kn \).

5.7 Local Heat Transfer Coefficient for the Case of a Microtube

The local heat transfer coefficient \(Nu_x \) plays an important role in determining the thermal effect of \(Kn \) in the entrance length. To depict how the local heat transfer coefficient \(Nu_x \) behaves with length, at least two eigenvalues are needed. Unfortunately, it is extremely difficult at present to obtain the second eigenvalue in the case of a microchannel. However, based on the similarity of the circular microtube and the square microchannel, the situation in the Graetz problem with slip-flow condition can be revealed by considering the microtube solution.
Fig. 5.4 Comparison of ratio k between microchannel and microtube

$[k = \frac{Nu(Kn)}{Nu(0)}]$
Fig. 5.5 Ratio of $\text{Nu}(a)/\text{Nu}(1)$ as a function of aspect ratio
Figure 5.6 shows the local Nu_x value in the case of a microtube as a function of x*/Gz for Kn = 0.02 and with the number of eigenvalues as a parameter. The value of the local Nusselt number converges dramatically with the increase in the number of eigenvalues in the computation. When x*/Gz is 0.02, the error in Nu_x is 0.7 percent when two eigenvalues are used and, comparing to the straight line (using one eigenvalue), the error is 14 percent. It can be concluded that the results using four eigenvalues are sufficiently accurate for x*/Gz > 0.02. When x*/Gz is greater than 0.05, the error is at most 1.3 percent—that is, all three plots become nearly flat, indicating a thermally fully-developed condition.
Figure 5.7 shows the local Nusselt number as a function of Kn. It is obvious that Kn has an influence on the Nusselt number. All the plots in Fig. 5.7 show that the Nusselt number increases as Kn increases and that this effect is magnified near the entrance. When x^*/G_z is greater than 0.05, all the plots become nearly flat, indicating a thermally fully-developed condition.

![Graph of local Nusselt numbers as functions of x^*/G_z and Kn]

From the above discussion, we can see that:

1. slip--flow has a positive influence on the heat transfer coefficient and can enhance the heat transfer efficiency;
2. the influence depends on the Knudsen number and increases as Kn increases;
3. when Kn is equal or greater than 0.02, the increase in the fully--developed Nu is greater than 5 percent so that the effect of slip--flow should be taken into
consideration in the computations of the heat transfer coefficient; and

(4) that the influence of Kn on Nu_∞ will decrease as Kn increases.

5.8 Discussion on Other Eigenvalues

In the expressions of $\Delta_p(\lambda)$, if we take X_m to be an $i \times i$ matrix, then there should exist i^p eigenvalues. For example, for $p = 1$ and $i = 1$, there exists only one eigenvalue; for $p = 1$ and $i = 3$, that is $\Delta_1(\lambda)$ in the calculations, there exists three eigenvalues; and for $p = 3$ and $i = 3$, that is $\Delta_3(\lambda)$ in the calculations, there should exist nine eigenvalues rather than the five shown in Table 5.7 (four eigenvalues are missing). The calculated results are shown in Table 5.7 (see Appendix A in details). From the results in Table 5.7, it is obvious that the first eigenvalue is reliable, while the others are not reliable due to truncation error. Therefore, in this research, only first eigenvalues were evaluated.

Table 5.7 Comparison of $\lambda_n(a = 1, Kn = 0.00)$ calculated by different approximation

<table>
<thead>
<tr>
<th></th>
<th>Dennis et al.</th>
<th>$\Delta_1(\lambda)$ or X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>$\Delta_3(\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>11.91</td>
<td>11.962893</td>
<td>$-\ $</td>
<td>$-\ $</td>
<td>11.962888</td>
</tr>
<tr>
<td>λ_2</td>
<td>$-\ $</td>
<td>35.62984</td>
<td>34.96576</td>
<td>$-\ $</td>
<td>35.62984</td>
</tr>
<tr>
<td>λ_3</td>
<td>71.07</td>
<td>77.06352</td>
<td>67.20875</td>
<td>71.40406</td>
<td>71.40407</td>
</tr>
<tr>
<td>λ_4</td>
<td>$-\ $</td>
<td>$-\ $</td>
<td>121.27253</td>
<td>113.90901</td>
<td>113.90902</td>
</tr>
<tr>
<td>λ_5</td>
<td>157.9</td>
<td>$-\ $</td>
<td>$-\ $</td>
<td>180.87005</td>
<td>121.27253</td>
</tr>
</tbody>
</table>

5.9 Summary

In this chapter, the procedures for the evaluation of eigenvalues for the heat transfer problem through microchannels in slip–flow were developed. The first eigenvalues and the fully–developed Nusselt number Nu_∞ were found for different aspect ratios. From the comparison and discussion, it is evident that the new technique for evaluation of the first eigenvalues and the fully–developed Nusselt numbers of the Graetz Problem through
rectangular microchannels in slip-flow is computationally effective, and the calculated Nusselt numbers are valuable to predict the heat transfer coefficients for the dimensionless length x^*/Gz greater than 0.05.
CHAPTER 6

EXPERIMENTAL APPARATUS AND PROCEDURE

The purpose of this work was to determine the heat transfer coefficient and Nusselt number in the rectangular microchannel and microtube in a laminar flow region and compare the analytical results with experimental measurements. Section 6.1 details the test section with the microchannel and microtube. The flow loop and the data acquisition system are described. Section 6.2 discusses the design background for the apparatus. Section 6.3 describes the procedure used to obtain the data in the experiment. It should be noted that while an attempt was made to verify the analytical results experimentally, the data obtained from the experiments was inconclusive. It is hoped that the details of the experiments contained in the next two chapters may aid others what attempt similar experiments in slip-flow.

6.1. Experimental Apparatus
6.1.1 Test Section

The test section is the part of the experimental apparatus where the microchannel and microtube are tested. The microchannel/microtube were fabricated from 3.2 mm (0.125 in) thick 6061-T6 aluminum bar. Aluminum was chosen for its high thermal conductivity. Conventional cutting and milling processes were used to machine the aluminum pieces and channel blanks, to the final 25.4 mm x 101.6 mm (1 in x 4 in) shape. The fabrication technique was discussed in detail by Bailey (1996).
The microchannel blank configuration is shown in Figure 6.1. The macrochannel with dimensions of 117 µm x 24 µm x 63.5 mm was milled by Dr. Craig Friedrich of the Institute for Micromanufacturing. The milling machine, referred to as the Ultra Precision Milling Center, is a one-of-a-kind machine that was specially built by Dover Instrument Corporation for the Institute for Micromanufacturing at Louisiana Tech University.

The roughness of the channel was obtained by using a WYKO Roughness/Step Tester (RST) along the channel at 30 locations. The raw data are shown in Appendix D. The average roughness was shown to be 2.28 µm.

The WYKO RST was also used to determine the channel width and depth. The average top width is 120.43 µm, and the average bottom width is 112.76 µm; the average depth is 24.04 µm.

An aluminum cover was glued onto the surface of the blank with epoxy. A 70 mm long microtube (shown in Fig. 6.2) was glued into the channel having dimensions of 350 µm x 350 µm x 63.5 mm. Two pieces of lexan also were glued onto the glued aluminum parts to form the whole test section with a water jacket. Lexan was chosen based on its combination of the properties of insulation, strength, and machinability. Care was exercised to prevent the glue from entering the microchannel section.

6.1.2 Flow Loop

Figure 6.3. shows the flow loop used to conduct heat transfer experiments. It consisted of (a) a helium gas cylinder (full pressure of 2200 psi), (b) three flowmeters, (c) two metering valves, (d) a heater, (e) a test section, (f) two vacuum gages, (g) a vacuum pump, and (h) a constant temperature water bath. The test section, as shown in Fig. 6.3, consisted of a microchannel and a water jacket with two thermocouples. As shown in Fig. 6.4, two other thermocouples located at the ends of the microchannel fixed in the test fixture (Bailey, 1996) were used to measure the inlet and outlet conditions of the
Fig. 6.1 Side cut-away view of the test section and the blank with microchannel

(117 µm x 24 µm x 63.5 mm)
Fig. 6.2 Side cut-away view of the test section and the blank with microtube

\(D_i = 52.1 \, \mu m, D_o = 350 \, \mu m, L = 70 \, mm \)
Fig. 6.3 Flow loop for micro heat transfer experiments
Fig. 6.4 Top view and side cut-away view of test fixture
microchannel or microtube. The reading from the thermocouple in the water jacket was used to determine the overall heat transfer coefficient.

6.1.3 Data Acquisition

The data acquisition system consisted of a Gateway 2000 personal computer equipped with a LabVIEW for Windows data acquisition system. The raw data consisted of temperature readings (°C) from the thermocouples, voltage output from the pressure transducers, and frequency from the flowmeters. Converted data are displayed on the monitor to allow the user to determine when a steady state has been reached. The raw data can be sent to an Excel spreadsheet when desired. Once in the spreadsheet, the voltage output can be converted into pressure, and the frequency output can be converted into volumetric flow rate by using the calibration curve supplied with the meters. In addition, the pressure and temperature readings at the exit of the flowmeter can be used to convert the volumetric flow rate into a mass flow rate.

6.2 Design Background

There are two restrictions that must be achieved in the experimental apparatus:

1) The flow must be in the slip–flow regime, so
\[0.01 < \text{Kn} < 0.30 \]

2) The flow must be laminar, so
\[\text{Re} < 2300 \]

6.2.1 Working Fluid, Sizing and Pressure

For a gas, the Knudsen number is found from:

\[\text{Kn} = \frac{\mu}{pD_H} \sqrt{\frac{\pi R_T T}{2g_{\text{c}} M}} \]

(6.1)
Therefore, there are three factors which may be chosen to achieve slip flow:

1) Small geometry (small hydraulic diameter),
2) Low pressure, and
3) Large value of gas viscosity.

Table 6.1 shows the corresponding pressure ranges for different D_H for nitrogen and helium from Eq. (6.1). Knowing that a microchannel of 10 μm on aluminum could not be milled on the Ultra Precision Milling Center, $D_H = 50 \mu m$ is chosen. Thus, for the case of the microtube, the diameter $D = 50 \mu m$, and for the case of microchannel, the dimension is 100 μm wide x 25 μm deep, $D_H = 40 \mu m$. Helium gas was chosen as the working fluid because its required pressure for a given Knudsen number is three times higher than that of nitrogen. Note that the atmospheric pressure is $p_{atm} = 14.7$ psia (101.3 kPa). Thus, we conclude that a vacuum must be used to achieve slip flow. Table 6.2 lists the fluid properties for two gases.

<table>
<thead>
<tr>
<th>D_H: μm</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kn</td>
<td>0.01</td>
<td>0.3</td>
<td>0.01</td>
</tr>
<tr>
<td>p (psia)</td>
<td>N₂</td>
<td>9.7</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>29.1</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Table 6.2 Properties of nitrogen and helium gases

<table>
<thead>
<tr>
<th></th>
<th>g_c kg/m·N·s²</th>
<th>μ kg/m·s</th>
<th>M g/mol</th>
<th>R_u J/mol·K</th>
<th>T K</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>1</td>
<td>1.784×10^{-5}</td>
<td>28.95</td>
<td>8.3144</td>
<td>300</td>
</tr>
<tr>
<td>He</td>
<td>1</td>
<td>1.987×10^{-5}</td>
<td>4.003</td>
<td>8.3144</td>
<td>300</td>
</tr>
</tbody>
</table>
6.2.2 Flow Rate

To assure the gas flow in the slip flow condition, we let \(p_1 = 5.82 \) psia (300 torr) and \(p_2 = 0.19 \) psia (9.79 torr) or less. Thus, we assume that flow in such a condition (rarefied gas) should be treated as a compressible flow. Consequently, the estimation of pressure drop, Reynolds number, and flow rate become complicated problems.

The exit pressure and inlet pressure are related by (Shapiro, 1953):

\[
\frac{p_2}{p_1} = \frac{(p/p^*)_2}{(p/p^*)_1}
\]

(6.2)

where

\[
\frac{p}{p^*} = \frac{1}{M} \sqrt{\frac{\gamma + 1}{2[1 + (\gamma - 1)M^2/2]}}
\]

(6.3)

for helium. The flow can be treated as choked flow, that is, \(M_2 = 1 \), \(M_1 \) must be known for the estimation of inlet pressure, while the determination of \(M_1 \) (or the velocity of the fluid at the inlet) depends on the inlet pressure and outlet pressure. Also, the Reynolds number is a function of pressure and may increase at most ten times of that at STP (standard temperature and pressure, 300 °K and 101.325 kPa or 1 atm) (White, 1991).

The rough estimation of the Reynolds number is carried by using the formulas for incompressible flow. The maximum mass flow rate to achieve laminar flow may be found as follows:

\[
Re = \frac{D G}{\mu} = 2300
\]

\[
G = \frac{m}{A_c} = \frac{(2300)(0.01987)(10^{-3})}{(50)(10^{-6})} = 914.0 \text{ kg/s·m}^2
\]
\[m = (914.0)(\pi/4)(50 \times 10^{-6})^2 = 1.795 \times 10^{-6} \text{ kg/s} \]

The corresponding volumetric flow rate at STP is:

\[\dot{v} = \frac{m}{\rho_0} = \frac{(1.795)(10^{-6})}{(0.1625)} = 11.04 \times 10^{-6} \text{ m}^3/\text{s} \]

\[\dot{v} = 11.04 \text{ cm}^3/\text{s} = 662.6 \text{ cm}^3/\text{min. at STP} \]

This is the maximum flow rate for the slip flow condition, corresponding to a Reynolds number of 2300. If the flow rate is reduced to 10 cm\(^3\)/min. at STP, which is the minimum flow rate for the flowmeter in the lab in the Institute for Micromanufacturing, the corresponding Reynolds number is:

\[\text{Re} = (2300)(10/662.4) = 34.7 \]

Even ten times this value (347) is much less than 2300, the value of Reynolds number for laminar flow. Thus, laminar flow should be assured with the design parameters. Taking the experiment conducted by Yu (1994) as a reference (D\(_i\) = 52.1 \(\mu\)m, nitrogen, \(p_1\) = 42.64 psia, flow rate = 9.81 ml/min, Re = 255.91), the flow rate maybe higher than 10 ml/min. Therefore, the experiments should be carried out without technical problems.

6.3 Experimental Procedure

The test gas was supplied from an industrial helium gas cylinder and the pressure of the test gas was reduced down to the proper pressure (about 100 psia) by the coarse valve. The pressure and the flow rate were controlled precisely by the fine metering valve.

Before entering the test component, the gas was heated to the desired temperature range by a heater strip with a length of 400 mm wrapped around the stainless steel tube. The input power was controlled by a temperature controller. In the test section, water was circulated on the outside of the microchannel by a recirculating pump in the constant...
The experimental procedures in the experiments were as follows:

1) Pump the test section including the steel pipes connected to the flow meter over 40 hours to check gas leakage and water leakage.
2) Run the acquisition system half an hour.
3) Control the metering valve to desired flow rate.
4) Take the data when the flow reaches steady-state. It took about 20 minutes for stabilization.

6.4 Data Reduction

6.4.1 Data Reduction of the Microchannel

For the heat transfer test, the heat transfer coefficient of the inside channel is derived by the following procedures. From the energy balance of the control volume as shown in Figure 6.5, we have

\[-h \frac{A_w}{L} \ dx (T - T_w) = \dot{m} \ C_p \ dT \quad (6.4)\]

![Fig.6.5 Control volume of heat transfer in microchannel](image)
Integrating Eq. (6.4) over the entire length of the channel yields

\[
-\frac{hA_w}{mC_p} \int_0^L \frac{dx}{L} = \int_{T_1-T_{w_1}}^{T_2-T_{w_2}} \frac{dT}{T-T_{w_2}}
\]

resulting in

\[
\frac{T_2-T_{w_2}}{T_1-T_{w_2}} = \exp \left(-\frac{hA_w}{mC_p} \right)
\]

The wall temperature was considered constant along the microchannel so that the heat transfer coefficient \(h\) was estimated by Eq. (6.6) and the Nusselt number by Eq. (6.7)

\[
Nu = \frac{DG_v\varrho C_p}{A_wk} \ln \left(\frac{T_2-T_{w_2}}{T_1-T_{w_2}} \right)
\]

Fluid properties were evaluated at the mean bulk temperature of the fluid. The Reynolds number is evaluated as follows:

\[
Re = G_v \frac{4}{\pi D_v}
\]

6.4.2 Data Reduction of the Microtube

In the case of the microtube, because the tube is made of polymide (low thermal conductivity), the wall temperature will change along the microtube, decreasing from \(T_{w_1}\) to \(T_{w_2}\) so that the average temperature difference is over-estimated by Eq. (6.6). Traditionally, a correction factor is used to correct the error, where \(F\) is a function of parameters \(F(T_1, T_2, T_{w_1}, T_{w_2})\) and the function is readily available from Holman (1986).

The heat transfer process in the tube involves a combination of convection and conduction. The overall heat transfer is expressed in terms of an overall heat transfer coefficient \(U\) as:
\[Q = U A_w \Delta T \]

where \(U \) is dependent on the definition of \(\Delta T \). If \(\Delta T = T_{\text{fluid}} - T_w \), the \(h \) is given by

\[
\frac{1}{U \pi D_i} = \frac{1}{h_i \pi D_i} + \frac{\ln(D_i)}{2\pi k_i} + \frac{\ln(D_o)}{2\pi k_c} \tag{6.9}
\]

Once \(U \) (= \(h \)) is evaluated from Eq. (6.6), \(h_i \) can be calculated from the above equation. Fluid properties were evaluated at the mean bulk temperature of the fluid.
CHAPTER 7

EXPERIMENTAL RESULTS

In this chapter, the experimental results involving the microchannel and the microtube are discussed. It was noted that there was a significant discrepancy between the Nusselt number measured experimentally and the Nusselt number calculated from the analytical model involving slip-flow. The fact that the gas temperature did not increase from inlet to outlet as heat was added to the flow passage indicated that there was some problem in measurement of the gas temperature at the exit. Upon examination of the thermocouple location at the flow passage exit, it was noted that the thermocouple position was not at the centerline of the flow channel; therefore, the indicated temperature was not the gas exit temperature, in all likelihood. It is possible (but not probable) that micro-specific mechanisms caused the results of the experimental study to deviate significantly from the analytical model.

7.1. Heat Transfer with Microchannel

In this experiment, inlet and outlet pressures, flow rate, and inlet and outlet fluid temperatures were measured. These readings were used to determine the heat transfer coefficient of the microchannel with a certain Knudsen number. It was found that the temperature drop of the flow media depended on the flow rate, as shown in Table 7.1.

In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, Re.

From this experiment, one can observe:

1) Constant wall temperature. As shown in Table 7.1, the temperature differences of wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.
Table 7.1 Experiment with microchannel

<table>
<thead>
<tr>
<th>G_v ml/min</th>
<th>T_{inlet} °C</th>
<th>T_{outlet} °C</th>
<th>T_{w1} °C</th>
<th>T_{w2} °C</th>
<th>Nu</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>343.3</td>
<td>29.90</td>
<td>37.47</td>
<td>78.41</td>
<td>78.56</td>
<td>80.96</td>
<td>720</td>
</tr>
<tr>
<td>300.9</td>
<td>29.62</td>
<td>33.56</td>
<td>74.89</td>
<td>74.96</td>
<td>43.18</td>
<td>618</td>
</tr>
<tr>
<td>246.7</td>
<td>29.84</td>
<td>32.15</td>
<td>69.83</td>
<td>69.88</td>
<td>20.43</td>
<td>507</td>
</tr>
<tr>
<td>198.6</td>
<td>29.77</td>
<td>31.69</td>
<td>74.81</td>
<td>74.89</td>
<td>11.78</td>
<td>408</td>
</tr>
<tr>
<td>173.3</td>
<td>29.42</td>
<td>30.54</td>
<td>70.65</td>
<td>70.69</td>
<td>6.59</td>
<td>356</td>
</tr>
<tr>
<td>149.2</td>
<td>29.31</td>
<td>30.12</td>
<td>72.13</td>
<td>72.22</td>
<td>3.59</td>
<td>307</td>
</tr>
<tr>
<td>125.9</td>
<td>29.21</td>
<td>29.67</td>
<td>71.07</td>
<td>71.12</td>
<td>1.76</td>
<td>259</td>
</tr>
<tr>
<td>101.8</td>
<td>29.11</td>
<td>29.18</td>
<td>68.69</td>
<td>68.74</td>
<td>0.11</td>
<td>208</td>
</tr>
<tr>
<td>*47.3</td>
<td>29.33</td>
<td>23.79</td>
<td>70.65</td>
<td>70.71</td>
<td>0.52</td>
<td>97</td>
</tr>
</tbody>
</table>

$\dot{N}u = 3.233 \times 10^{-9} Re^{3.64}$

(a = 117/24 = 0.227)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
In Figure 7.1, Nusselt number was plotted as a function of Reynolds number, \(Re \).

From this experiment, one can observe:

1) Constant wall temperature. As shown in Table 7.1, the temperature differences of the wall are less than 0.2°C; it is reasonable to regard the condition as an isothermal wall.

2) Microchannel flow. Fig. 7.1 shows that Nusselt numbers were much larger than those of the empirical formula (Dittus et al. 1930) for laminar flow if the flow rate is greater than 200 ml/min (\(Re > 400 \)). It is obvious that the flow condition cannot be explained simply by slip-flow or even turbulent flow. For the case of laminar with \(Kn = 0.00 \) and \(\alpha = 1/4 \), \(Nu = 4.48 \); when \(\alpha = 1/8 \), \(Nu = 5.62 \); and, even in slip-flow with \(Kn = 0.30 \) and \(\alpha = 1/8 \), \(Nu = 6.54 \). Therefore, there is likely a different mechanism in a flow through a microchannel/microtube to explain such a large discrepancy. It will be discussed in detail later in the next section of this chapter.

3) Non-heating-up-phenomenon. The experimentally measured gas temperature at the outlet was higher than the inlet gas temperature when the flow rate was relatively large (343.3 ml/min., for example). As the gas flow rate was decreased to a value less than 125 ml/min., the gas temperature difference became quite small. In fact, a negative temperature increase (i.e., a temperature decrease) was indicated when the flow rate was less than 47.3 ml/min. This phenomenon was not anticipated.

Upon examination of the test apparatus, it was noted that the thermocouple at the flow channel exit was not positioned exactly along the centerline of the flow channel. As the gas exited the test flow channel, instead of impinging directly on the thermocouple, the gas mixed with the gas already within the plenum chamber at the flow passage exit. The thermocouple indicated the gas temperature in the exit plenum instead of indicating the exit gas temperature.
This thermocouple measurement error is the most probable source of the so-called "non-heating-up" phenomenon observed in the experiments. For high flow rates, the gas in the plenum chamber was rapidly replaced by gas exiting the flow passage; therefore, the thermocouple indication was more nearly that of the exit gas temperature. On the other hand, at low flow rates, the warm gas exiting from the flow passage mixed with the much larger volume of colder gas already in the plenum chamber. As a result, the gas mixture temperature (measured by the thermocouple) was significantly lower than the gas exit temperature.

It is also possible that there was some leakage along the length of the microchannel, although gas leakage would not result in a decrease of the gas temperature while the gas was being heated.

7.2. Heat Transfer with Microtube

In this experiment, the flow rate was carefully controlled to 0.1 ml/min in an attempt to keep the inlet pressure in the vacuum regime. After twenty minutes, the data were measured with the inlet pressure 737 torr (14.3 psia) and outlet pressure 5 torr (0.097 psia); the gas temperature in the pipe far away from the test section was 25°C. The results are shown in Table 7.2.

<table>
<thead>
<tr>
<th>Run no.</th>
<th>G<sub>v</sub> ml/min</th>
<th>T<sub>inlet</sub> °C</th>
<th>T<sub>outlet</sub> °C</th>
<th>T<sub>W1</sub> °C</th>
<th>T<sub>W2</sub> °C</th>
<th>Nu</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11</td>
<td>29.50</td>
<td>25.11</td>
<td>88.41</td>
<td>82.56</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
<td>30.05</td>
<td>25.58</td>
<td>91.35</td>
<td>85.43</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>30.28</td>
<td>25.87</td>
<td>89.50</td>
<td>84.12</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>30.29</td>
<td>25.92</td>
<td>87.73</td>
<td>82.93</td>
<td>0.015</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
From Table 7.2, one can observe that:

1) Non-constant wall temperature. It is obvious that constant wall temperature condition cannot be achieved by the current designed apparatus. The temperature difference between the inlet wall temperature T_{w1} and the outlet wall temperature T_{w2} (approximately) is about 6 °C. It is due to that the microtube wall being made of polymite ($k = 0.155 \text{ W/m-}K$) rather than aluminum ($k = 204 \text{ W/m-}K$). Therefore, it cannot be regarded as an isothermal wall.

2) Non-heating-up-phenomenon. The experimental results shows that the inlet gas temperature T_{inlet} is higher than the outlet gas temperature T_{outlet} by about 4.5°C, which was not the anticipated situation. This phenomenon happened also in the experiment with the microchannel when the flow rate was 47.3 ml/min.

One explanation is that the Joule-Thomson effect caused by the expansion of the gas at the outlet may result in a cooling effect to such an extent that the outlet gas temperature T_{outlet} is of a smaller value. The expansion of a real gas from a high to a lower pressure in an isenthalpic (constant-enthalpy) process will result in a temperature change, which may be either positive or negative, depending on the pressure and temperature and type of gas. For helium gas expanding from $T_1 = 300 \text{ K} = 26.8^\circ\text{C}$ to an exit pressure of 1 atm, we find the following values (Table 7.3) for the exit temperature, using $h_1 = h_2$ (Mann, 1962). Note that the temperature increases during the Joule-Thomson expansion for helium gas. We may conclude that any decrease in temperature of the helium gas could not be caused by the Joule-Thomson expansion effect. Any Joule-Thomson effect for helium gas around the ambient temperature would result in a warming effect or an increase in temperature. Unless the inlet pressure is greater than about 30 atm (440 psia), the temperature change is small (less than 2°C or 4°F).
Table 7.3 Temperature change vs. pressure for helium gas

<table>
<thead>
<tr>
<th>PRESSURE, p_1</th>
<th>EXIT TEMPERATURE, T_2</th>
<th>$(T_2 - T_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>atm</td>
<td>psia</td>
<td>kPa</td>
</tr>
<tr>
<td>4</td>
<td>58.8</td>
<td>405</td>
</tr>
<tr>
<td>6</td>
<td>88.2</td>
<td>608</td>
</tr>
<tr>
<td>8</td>
<td>117.6</td>
<td>811</td>
</tr>
<tr>
<td>10</td>
<td>147.0</td>
<td>1013</td>
</tr>
<tr>
<td>20</td>
<td>294.0</td>
<td>2027</td>
</tr>
<tr>
<td>50</td>
<td>735.0</td>
<td>5066</td>
</tr>
</tbody>
</table>

Other explanations are as follows:

Wang et al. (1994) pointed out, based on their experiments:

Microscale heat transfer and transport phenomena are expected to be quite different from those in customary situation. . . .

(1) For single-phase liquid forced convection through microchannel, a fully developed heat transfer regime is initiated at about $Re = 1000-1500$. The transition to turbulent mode is influenced by liquid temperature, velocity and micro size. . . .

(2) Transition and laminar heat transfer in microchannels are highly strange and complicated [italics added], compared with the conventionally sized situation. The range of transition zone, and heat transfer characteristics of both transition and laminar flow are highly affected by liquid temperature, velocity and micro size.

Yu (1994) pointed out in his dissertation:

One may ask the reason and significance of the shifting. It is well known now that the process of convective heat transfer depends on flow field. The relative rates of diffusion of heat and momentum are related by the Prandtl number. In the micro tube experiments, it has been shown that flow resistance was reduced both in laminar and turbulent flow. As it is well known, if the velocity profile follows a parabolic curve, then the friction factor f times the Reynolds number should be 64. But in various micro tube experiments, the number is around 50. As discussed before in Section 1, it cannot be caused by a slip boundary condition. This

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
manifests that there are some alterations in velocity profile, and this in turn will affect convective heat transfer [italics added]. Similarly, flow resistance reduction is also found in turbulent flow. All of these will lead one to expect that heat transfer in micro tubes will behave differently both in laminar and turbulent flow [bolds added].

Also Bailey et al. (1995) pointed out:

Several effects and conditions can exist in micro–scale convection that are normally neglected when considering macro–scale flow. . . . Another observed micro–scale effect is that of large temperature variations of the transport fluid [italics added] (Wang and Peng, 1994). This can cause a significant variation in fluid properties throughout a micro–system, invalidating the often used assumption of constant properties. . . . As of yet, it is not completely clear when these factors come into play as fluid convection systems are reduced in size. At present, there are not enough experimental data to make this determination. Additionally, there are likely more micro–specific effects and conditions that have yet to be observed [bolds added].

The experimental results for the heat transfer in the microtube and the microchannel were different in this study. In both the microchannel and the microtube, the Reynolds number was significantly less than 2000; therefore, the flow pattern was completely within the laminar flow regime. Although it is possible that unrecognized micro–specific phenomena could be responsible for the unusual experimental results, it is more probable that the placement error of the thermocouple at the flow channel exit caused the unanticipated experimental results at the very low flow rates.

The fact that the dimension of the flow passages and the thermocouple bead were the same order of magnitude could also contribute to the thermocouple measurement error. Because of these uncertainties, the experimental data obtained in this research are likely to be of little value in assessing the validity of the analytical solutions.
7.3 Uncertainty Analysis for the Experimental Data

Along with statistical analysis, uncertainly analysis mainly concerns uncertainty in the final results because of uncertainties in the primary measurements. The method presented by Kline and McClintock (1953) was used in this research. If the final result R is a function of several independent variables, x_1, x_2, \ldots, x_n,

$$R = R(x_1, x_2, \ldots, x_n),$$

then the uncertainty of R associated with the uncertainties in measuring the primary variables is:

$$U_R = \left(\frac{\partial R}{\partial x_1} U_1\right)^2 + \left(\frac{\partial R}{\partial x_2} U_2\right)^2 + \ldots + \left(\frac{\partial R}{\partial x_n} U_n\right)^2 \right)^{1/2}$$

or

$$\frac{U_R}{R} = \left\{ \left(\frac{U_1}{x_1}\right)^2 + \left(\frac{U_2}{x_2}\right)^2 + \ldots + \left(\frac{U_n}{x_n}\right)^2 \right\}^{1/2}$$

From the manufacturers' data, the measuring uncertainties for each independent variable are:

- $U_{D/D} = 0.0025$, $U_{L/L} = 0.001$, $U_{Gv/Gv} = 0.0128$
- $U_{P/P} = 0.0025$, $U_T = 0.4^\circ C$, $U_c/cp = U_Q/Q = U_{v/v} = U_k/k = 0.005$

(1) uncertainty in the Reynolds number

$$\frac{U_{Re}}{Re} = \left[\left(\frac{U_{Gv}}{Gv}\right)^2 + \left(\frac{U_D}{D}\right)^2 + \left(\frac{U_v}{v}\right)^2 \right]^{1/2}$$

and $U_{Re}/Re = 1.4\%$.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
(2) uncertainty in dimensionless temperature

\[
\frac{U_\theta}{\theta} = \sqrt{2} \left(\frac{U_T}{\Delta T} \right) [1 + \left(\frac{1}{\theta} \right)^2]^{1/2}
\]

\(U_\theta/\theta = 1.45\% \) for the case of microtube; \(U_\theta/\theta = 2.13\% \) for the case of a microchannel with \(G_v = 343.3 \text{ ml/min} \) and \(U_\theta/\theta = 1.92\% \) with \(G_v = 149.2 \text{ ml/min} \).

(2) uncertainty in the Nusselt number

\[
\frac{U_{Nu}}{Nu} = \left(\frac{U_{Gv}}{G_v} \right)^2 + \left(\frac{U_D}{D} \right)^2 + \left(\frac{U_k}{k} \right)^2 + \left(\frac{U_{Gv}}{c_p} \right)^2 + \left(\frac{U_{Gv}}{\theta} \right)^2 + \left(\frac{U_{Gv}}{\theta \ln \theta} \right)^2 \right]^{1/2}
\]

\(U_{Nu}/Nu = 18.3\% \) for the case of a microtube; \(U_{Nu}/Nu = 36.0\% \) for the case of a microchannel with \(G_v = 343.3 \text{ ml/min} \) and \(U_{Nu}/Nu = 14.9\% \) with \(G_v = 149.2 \text{ ml/min} \).
CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

In the previous chapters, the mathematical models of velocity distribution and temperature distribution were established, and the expression for the series solution shows the importance of the eigenvalues. Since those eigenvalues were extremely difficult to evaluate directly from the original expansion, a concise matrix was derived based on the properties of the elements in the original matrix. A truncated eigenfunction was obtained which can be used to evaluate the eigenvalues. The procedures were developed and some results were obtained. Also, the heat transfer experiments were conducted with a single microchannel and with a microtube. From the discussions of analytical and experimental results, the following conclusions can be drawn:

1) The technique for evaluation of the eigenvalues of the heat transfer problem in slip–flow is computationally effective in the evaluation of the first eigenvalues;

2) The Nusselt number increases as Kn increases, or the heat transfer is enhanced under slip–flow conditions for a given aspect ratio;

3) When Kn is equal to or greater than 0.02, the increase in Nu_m is greater than 5 percent so that the effect of slip flow conditions should be taken into consideration in the computations of the heat transfer coefficient;

4) The experiments were of no value in assessing the validity of the analytical solutions in this research.
8.2 Recommendations for Future Study

Considering the results such as the non-heating-up-phenomenon occurring in the heat transfer experiment with a microchannel/microtube may be caused totally by measurement errors due to the small flow rate and the fact that both the dimensions of the microtube to be measured and that of the t-c bead are of the same dimension level, it is suggested that further experiments which may result in acceptable data be conducted. The suggested changes to the experiment include the following:

1) A microchannel machined in the aluminum should be used to reach an approximate isothermal wall condition. The wall made of a material with high heat conductivity can easily maintain a small temperature difference between the inlet and the outlet, better approximating the isothermal boundary condition.

2) A much shorter microchannel or several parallel microchannels should be employed to increase the flow rate for a reasonable pressure drop.

3) A hot gas that is cooled by a surrounding cold water jacketed should be used rather than the reverse situation. A high temperature is desired at the inlet in order to produce a relatively large Kn.

For the analytical solution, the evaluation of the eigenvalues is very important for the solution of the heat transfer problem through microchannels in slip-flow. Although the technique is effective for the first values, it is extremely time-consuming and the computational error is a problem for other eigenvalues. It is suggested that new codes be developed on a supercomputer to solve the extremely large matrices to obtain more eigenvalues more effectively so that the thermal entrance effect in the rectangular microchannels can be established.
APPENDIX A

CALCULATION OF EIGENVALUE λ FOR $Kn = 0.00$

WITH ASPECT RATIO $a = 1$
Calculation of Eigenvalue \(\lambda \) for \(Kn = 0.00 \) with Aspect Ratio \(a = 1 \)

\[
\lambda_1 = \beta = (1+a)/2 \quad \text{and} \quad \lambda_2 = \beta' = (1+1/a)/2
\]

\(i = 0, 1, \ldots, 10 \), \(j = 0, 1, \ldots, 10 \)

\[
R_0 = \frac{8}{3} \sum_{k=1}^{3} \frac{1}{(2k-1)^3} \left[1 - \frac{2}{(2k-1)\pi} \tanh \left(\frac{(2k-1)\pi}{2} \right) \right]
\]

\[
R(x,y) = \frac{4}{3} \sum_{k=1}^{8} \frac{1}{(2k-1)^3} \sin \left(\frac{(2k-1)\pi}{2} \right) \left[1 - \frac{\cosh \left(\frac{(2k-1)\pi}{2} (x-0.5) \right)}{\cosh \left(\frac{(2k-1)\pi}{2} \right) \cosh \left(\frac{(2k-1)\pi}{2} \right)} \right]
\]

Calculating time is about 30 minutes for \(i = j = 10 \)

\[
d_{i,j} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 0 & 0 \end{bmatrix} \cos \left(i\pi \cdot \frac{x}{\lambda_1} \right) \cos \left(j\pi \cdot \frac{y}{\lambda_2} \right) dxdy
\]

\[
d = \begin{bmatrix}
1.00147 & 0 & -0.27819 & 0 & -0.08309 & 0 & -0.03854 & 0 & -0.02209 & 0 & -0.01431 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.27809 & 0 & 0.08285 & 0 & 0.02237 & 0 & 0.00979 & 0 & 0.00542 & 0 & 0.00343 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.08299 & 0 & 0.02237 & 0 & 0.00725 & 0 & 0.00338 & 0 & 0.00192 & 0 & 0.00122 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.03844 & 0 & 0.00979 & 0 & 0.00338 & 0 & 0.00167 & 0 & 9.73085\times10^{-4} & 0 & 6.30798\times10^{-4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.02198 & 0 & 0.00542 & 0 & 0.00191 & 0 & 9.72637\times10^{-4} & 0 & 5.81959\times10^{-4} & 0 & 3.83988\times10^{-4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.01418 & 0 & 0.00343 & 0 & 0.00122 & 0 & 6.29649\times10^{-4} & 0 & 3.93537\times10^{-4} & 0 & 2.62711\times10^{-4} \\
\end{bmatrix}
\]
\(m = 0 \quad n = 0 \)

\(p = 0,1,\ldots,5 \quad q = 0,1,\ldots,5 \quad b_{6,0} = 0 \quad b_{7,0} = 0 \quad b_{8,0} = 0 \)

\[
b_{p,q} = \frac{1}{4} \left(d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} \right)
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\(b_0 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \quad b_{00} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \)

\(m = 1 \quad n = 1 \)

\(p = 0,1,\ldots,5 \quad q = 0,1,\ldots,5 \)

\[
b_{p,q} = \frac{1}{4} \left(d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} \right)
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.41015 & 0 & -0.063895 & 0 & -0.0142825 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.063895 & 0 & 0.01134 & 0 & 0.0021775 \\
\end{bmatrix}
\]

\(b = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \quad b_{11} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \)

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.41015 & 0 & -0.063895 & 0 & -0.0142825 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.063895 & 0 & 0.01134 & 0 & 0.0021775 \\
\end{bmatrix}
\]

\(b = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \quad b_{11} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \)

\(m = 1 \quad n = 1 \)

\(p = 0,1,\ldots,5 \quad q = 0,1,\ldots,5 \)

\[
b_{p,q} = \frac{1}{4} \left(d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} - d_{m-p,n-q} \right)
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.41015 & 0 & -0.063895 & 0 & -0.0142825 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.063895 & 0 & 0.01134 & 0 & 0.0021775 \\
\end{bmatrix}
\]

\(b = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \quad b_{11} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{align*}
\text{bl2} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.346255 & 0 & -0.0781775 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.052555 & 0 & 0.0135175 & 0 \\
0 & 0 & -0.012105 & 0 & 0.0027175 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\text{bl3} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.063895 & 0 & 0.3319725 & 0 & -0.0833825 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.01134 & 0 & -0.0503775 & 0 \\
0 & 0 & -0.0021775 & 0 & 0.014245 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\text{bl4} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.0781775 & 0 & 0.3267675 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.0135175 & 0 & -0.04965 & 0 \\
0 & 0 & 0.0027175 & 0 & -0.0113742 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\text{bl5} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\end{align*}
\]

\[
\begin{align*}
\text{b21} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.346255 & 0 & -0.052555 & 0 & -0.012105 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.0781775 & 0 & 0.0135175 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\text{b22} &=
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \\
\end{align*}
\]
<table>
<thead>
<tr>
<th>b23 =</th>
<th>0.0123898 & -0.0629381 & 0.0165838</th>
<th>b24 =</th>
<th>0.016235 & -0.0610242</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.012105 & -0.0691375 & 0.2749975</td>
<td></td>
<td>0.0027175 & 0.0171533 & -0.0606123</td>
</tr>
<tr>
<td></td>
<td>0.3319725 & -0.0503775 & -0.011565</td>
<td></td>
<td>0.009843 & -0.0691425 & 0.0171532</td>
</tr>
<tr>
<td>b31 =</td>
<td>-0.083385 & 0.0142425 & 0.0029107</td>
<td>b32 =</td>
<td>-0.0691425 & 0.0171532</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>0.009843 & -0.0691425 & 0.0171532</td>
<td></td>
<td>0.008129 & 0.0171532</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
b33 =	0 0 0 0 0 0 0
	0 0.0104014 0 -0.051343 0 0.0130546 0
	0 0 0 0 0 0 0
	0 -0.0513426 0 0.3075718 0 -0.0672085 0
	0 0 0 0 0 0 0
	0 0.0130546 0 -0.0672105 0 0.0165824 0
	0 0 0 0 0 0 0
	0 0 0 0 0 0 0
b34 =	0 0 0 0 0 0 0
	0 0.01134 0 -0.0503775 0 0.014245 0
	0 0 0 0 0 0 0
	0 -0.0503775 0 0.27003 0 -0.0662292 0
	0 0 0 0 0 0 0
	0 0.0142425 0 -0.0662318 0 0.018148 0
	0 0 0 0 0 0 0
	0 0 0 0 0 0 0
b35 =	0 0 0 0 0 0 0
	0 0.0021775 0 0.014245 0 -0.0493275 0
	0 0 0 0 0 0 0
	0 -0.011565 0 -0.0662292 0 0.2637127 0
	0 0 0 0 0 0 0
	0 0.0029107 0 0.018148 0 -0.064789 0
	0 0 0 0 0 0 0
	0 0 0 0 0 0 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Comparison of different approximation used in evaluation of eigenvalue

\[\lambda = 11, 11.1 \ldots 80 \]

\[X_1(\lambda) = (4.9348 - \lambda \cdot 0.41015) \cdot (12.33701 - \lambda \cdot 0.346255) \cdot (24.67401 - \lambda \cdot 0.331973) \cdot (1) - \]

\[- (12.33701 - \lambda \cdot 0.346255) \cdot \lambda^2 \cdot 0.063895^2 \]

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\text{root}(X_1(\lambda), \lambda))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11.96289</td>
</tr>
<tr>
<td>40</td>
<td>35.62984</td>
</tr>
<tr>
<td>70</td>
<td>77.06352</td>
</tr>
</tbody>
</table>

\[X_2(\lambda) = (19.73921 - \lambda \cdot 0.2937) \cdot (12.33701 - \lambda \cdot 0.346255) \cdot (32.07621 - \lambda \cdot 0.281595) - \]

\[- (19.73921 - \lambda \cdot 0.2937) \cdot \lambda^2 \cdot 0.06466^2 \]

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\text{root}(X_2(\lambda), \lambda))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>34.96576</td>
</tr>
<tr>
<td>70</td>
<td>67.20875</td>
</tr>
<tr>
<td>120</td>
<td>121.27253</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[\lambda = 70, 70.05 \ldots 190 \]
\[X_3(\lambda) = (24.674 - \lambda - 0.331973)(32.07621 - \lambda - 0.281595)(44.41322 - \lambda - 0.270) \]
\[- (32.07621 - \lambda - 0.281595)\lambda^2 - 0.0691425^2 \]

\[
\begin{array}{c|c}
\lambda & \text{root}(X_3(\lambda), \lambda) \\
\hline
70 & 71.40406 \\
110 & 113.90901 \\
180 & 180.87005 \\
\end{array}
\]

\[
\begin{array}{c|c}
\lambda & \frac{24.67401}{0.331973} = 74.32535 \\
& \frac{32.07621}{0.281595} = 113.90902 \\
& \frac{44.41322}{0.27003} = 164.47513 \\
\end{array}
\]
\[\lambda = 11, 11.05, 125 \]

\[x(\lambda) = \lambda^3 - 0.063895 \cdot 0.0503775 - 0.00291065925 - \lambda^3 - 0.083385 \cdot 0.0503775 - 0.0021775 \]

\[X123(\lambda) = X1(\lambda) \cdot X2(\lambda) \cdot X3(\lambda) - X2(\lambda) \cdot x(\lambda)^2 \]

\[\lambda = 10 \]
\[\text{root}(X123(\lambda), \lambda) = 11.96288801491174 \]

\[\lambda = 40 \]
\[\text{root}(X123(\lambda), \lambda) = 35.62984 \]

\[\lambda = 70 \]
\[\text{root}(X123(\lambda), \lambda) = 71.40407 \]

\[\lambda = 110 \]
\[\text{root}(X123(\lambda), \lambda) = 113.90902 \]

\[\lambda = 165 \]
\[\text{root}(X123(\lambda), \lambda) = 121.27253 \]
\(a = h/b\) aspect ratio

\[a = 1 \quad \lambda = 1 \]

\[n = 0, 1, \ldots, 5 \]

\[m = 0, 1, \ldots, 5 \]

\[\delta_{m,n} = \frac{\pi^2}{4-a} (m^2 + a^2 \cdot n^2) \]

\[
\delta = \begin{bmatrix}
0 & 2.4674011 & 9.8696044 & 22.2066099 & 39.4784176 & 61.6850275 \\
2.4674011 & 4.9348022 & 12.3370055 & 24.6740111 & 41.9438187 & 64.1524286 \\
9.8696044 & 12.3370055 & 19.7392088 & 32.0762143 & 49.348022 & 71.5546319 \\
22.2066099 & 24.6740111 & 32.0762143 & 44.4132198 & 61.6850275 & 83.8916374 \\
39.4784176 & 41.9438187 & 49.348022 & 61.6850275 & 78.9568352 & 101.1634451 \\
61.6850275 & 64.1524286 & 71.5546319 & 83.8916374 & 101.1634451 & 123.370055
\end{bmatrix}
\]
APPENDIX B

CALCULATION OF d_{ij} AND b_{mnpq} FOR $Kn = 0.02$

WITH ASPECT RATIO $\alpha = 1$
Calculation of d_{ij} and $b_{mn_{p,q}}$ for $Kn = 0.02$ with Aspect Ratio $a = 1$

$Kn = 0.02 \ \ \ a = .01, .02, .22$

$f(a) = 2 - Kn \cdot \alpha - \tan(\alpha) - 1 \quad \tan(\alpha) = \alpha \quad u(\alpha) = \frac{1}{(2 - Kn)}$

\[\text{root}(f(a), a) = 1.510451617057772 \quad b_1 = 1.510451617057772 \]
\[a = 4.533017031227471 \quad b_2 = 4.533017031227471 \]
\[\text{root}(f(a), a) = 4.533017098853988 \quad b_3 = 4.533017098853988 \]
\[a = 7.560312429685289 \quad b_4 = 7.560312429685289 \]
\[\text{root}(f(a), a) = 7.560312976908389 \quad b_5 = 7.560312976908389 \]
\[a = 10.59472926320076 \quad b_6 = 10.59472926320076 \]
\[\text{root}(f(a), a) = 10.59472964716824 \quad b_7 = 10.59472964716824 \]
\[a = 13.63777351248604 \quad b_8 = 13.63777351248604 \]
\[\text{root}(f(a), a) = 13.63777658025087 \quad b_9 = 13.63777658025087 \]
\[a = 16.69010436230128 \quad b_{10} = 16.69010436230128 \]
\[\text{root}(f(a), a) = 16.69010802858231 \quad b_{11} = 16.69010802858231 \]
\[a = 19.75169253134426 \quad b_{12} = 19.75169253134426 \]
\[\text{root}(f(a), a) = 19.75169677799757 \quad b_{13} = 19.75169677799757 \]
\[a = 22.82205687896281 \quad b_{14} = 22.82205687896281 \]
\[\text{root}(f(a), a) = 22.82205788967408 \quad b_{15} = 22.82205788967408 \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
w/w₀ (w) for 8 a's for ratio a = 1 (here a = b) in Eq.(19) [Eqs. (12) and (13)]

\[w₀ = -2 \cdot \sum_{i=1}^{3} \frac{a \sin(b_i)^2}{(b_i)^5 \left(1 - 2 \cdot Kn \cdot \sin(b_i)^2 \right)^2} \left[\frac{b_i}{a} - \frac{\sinh(b_i/a)}{\cosh(b_i/a) - 2 \cdot Kn \cdot b_i \cdot \sinh(b_i/a)} \right] \]

\[w₀ = -0.16265 \]

\[w₀ = -2 \cdot \sum_{i=1}^{8} \frac{a \sin(b_i)^2}{(b_i)^5 \left(1 - 2 \cdot Kn \cdot \sin(b_i)^2 \right)^2} \left[\frac{b_i}{a} - \frac{\sinh(b_i/a)}{\cosh(b_i/a) - 2 \cdot Kn \cdot b_i \cdot \sinh(b_i/a)} \right] \]

\[i = 1, 2, \ldots, 8 \]

\[w₀ = -0.16284 \]

\[c_i = \frac{\sin(b_i)}{1 - 2 \cdot Kn \cdot \sin(b_i)^2 \left(b_i \right)^3} \quad g_i = \frac{1}{\cosh\left(b_i/a\right) + 2 \cdot Kn \cdot b_i \cdot \sinh\left(b_i/a\right)} \]

\[w(x, y) = -2 \cdot \sum_{i=1}^{3} \cos\left[b_i \left(2 \cdot x - 1 \right) \right] \cdot c_i \cdot \left[1 - \cosh\left(b_i \left(2 \cdot x - 1 \right) \right) \right] \cdot g_i \]

\[w(0, 0.5) = -0.02681 \]

\[w(1, 1) = -0.00259 \]

\[w(0.5, 0) = -0.02498 \]

\[w(x, y) = -2 \cdot \sum_{i=1}^{8} \cos\left[b_i \left(2 \cdot x - 1 \right) \right] \cdot c_i \cdot \left[1 - \cosh\left(b_i \left(2 \cdot x - 1 \right) \right) \right] \cdot g_i \]

\[w(0, 0.5) = -0.0265 \]

\[w(1, 1) = -0.00305 \]

\[w(0.5, 0) = -0.02629 \]

Therefore, using 8 a's is accurate enough
\[m = 1 \quad n = 1 \]

\[p = 0, 1 \ldots 5 \quad q = 0, 1 \ldots 5 \]

\[b_{p,q} = \frac{1}{4} (d_{m-p, n-q} - d_{m-p, n+q} - d_{m-p, n-q} - d_{m-p, n+q}) \]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.38917 & 0 & -0.05173 & 0 & -0.01325 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.05191 & 0 & 0.0079 & 0 & 0.00198 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.01406 & 0 & 0.00199 & 0 & 4.625 \times 10^{-4} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[b_{11} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.38917 & 0 & -0.05173 & 0 & -0.01325 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.05191 & 0 & 0.0079 & 0 & 0.00198 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.01406 & 0 & 0.00199 & 0 & 4.625 \times 10^{-4} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[b_{1,1} = 0.38917 \]

similarly,

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.33744 & 0 & -0.06498 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.04401 & 0 & 0.00988 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -0.01207 & 0 & 0.00245 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[b_{12} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.05173 & 0 & 0.32419 & 0 & 0.07135 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.0079 & 0 & 0.04203 & 0 & 0.01056 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00199 & 0 & 0.01161 & 0 & 0.00264 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.06498 & 0 & 0.31782 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00988 & 0 & -0.04134 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00245 & 0 & -0.01142 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[b_{13} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.05132 & 0 & 0.08323 & 0 & 0.36255 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00198 & 0 & 0.01306 & 0 & 0.0537 \\
0 & 0 & 0 & 0 & 0 \\
0 & 4.625 \times 10^{-4} & 0 & 0.00264 & 0 & 0.01134 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.05173 & 0 & 0.32419 & 0 & 0.07135 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.0079 & 0 & 0.04203 & 0 & 0.01056 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00199 & 0 & 0.01161 & 0 & 0.00264 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[b_{14} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.06498 & 0 & 0.31782 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00988 & 0 & -0.04134 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00245 & 0 & -0.01142 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

\[b_{15} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0.05132 & 0 & 0.08323 & 0 & 0.36255 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0.00198 & 0 & 0.01306 & 0 & 0.0537 \\
0 & 0 & 0 & 0 & 0 \\
0 & 4.625 \times 10^{-4} & 0 & 0.00264 & 0 & 0.01134 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.33726 & 0 & -0.04383 & 0 & 0.01127 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.06596 & 0 & 0.00989 & 0 & 0.00244 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.29343 & 0 & -0.0551 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -0.05608 & 0 & 0.01233 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.04383 & 0 & 0.28216 & 0 & -0.06079 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0.00989 & 0 & -0.05363 & 0 & 0.0132 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
\[
\begin{align*}
\text{d}_{i,j} &= \begin{bmatrix} -11 & -12 \\ 0 & 0 \end{bmatrix} \frac{w(x,y)}{w_0} \cos\left(\frac{i\pi - x}{11}\right) \cos\left(\frac{j\pi - y}{12}\right) \, dy \, dx \\
\text{\textit{interrupted}}
\end{align*}
\]

\[
\begin{bmatrix}
0.99883 & 0 & 0.24674 & 0 & -0.08526 & 0 & -0.04342 & 0 & -0.0222 & 0 & -0.01381 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.24538 & 0 & 0.0573 & 0 & 0.0202 & 0 & 0.00912 & 0 & 0.00486 & 0 & 0.00306 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.08324 & 0 & 0.0202 & 0 & 0.00639 & 0 & 0.00315 & 0 & 0.00162 & 0 & 0.00101 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.03838 & 0 & 0.0087 & 0 & 0.00297 & 0 & 0.00158 & 0 & 7.94552 \times 10^{-4} & 0 & 4.91934 \times i0^{-4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.02189 & 0 & 0.00493 & 0 & 0.00169 & 0 & 9.45238 \times 10^{-4} & 0 & 4.68553 \times 10^{-4} & 0 & 2.89189 \times 10^{-4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-0.01411 & 0 & 0.00313 & 0 & 0.00108 & 0 & 6.24868 \times 10^{-4} & 0 & 3.15992 \times 10^{-4} & 0 & 1.94737 \times 10^{-4}
\end{bmatrix}
\]

\[
\begin{align*}
m &= 0 \quad n = 0 \\
p &= 0,1,5 \quad q = 0,1,5
\end{align*}
\]

\[
b_{p,q} = \frac{1}{4} \left(d_{m-p,|n-q|} - d_{m-p,|n+q|} - d_{m-p,|n+q|} - d_{m-p,|n-q|} \right)
\]

\[
b = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
b_{00} = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
APPENDIX C

THE FIRST THREE EIGENVALUES FOR $Kn = 0.00$

BY DENNIS ET AL.
THE FIRST THREE EIGENVALUES FOR $Kn = 0.00$ (DENNIS ET AL.)

<table>
<thead>
<tr>
<th>α</th>
<th>1.000</th>
<th>0.667</th>
<th>0.500</th>
<th>0.250</th>
<th>0.125</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_1</td>
<td>11.91</td>
<td>12.49</td>
<td>13.57</td>
<td>17.76</td>
<td>22.38</td>
</tr>
<tr>
<td>λ_2</td>
<td>71.09</td>
<td>51.58</td>
<td>41.17</td>
<td>28.17</td>
<td>25.61</td>
</tr>
<tr>
<td>λ_3</td>
<td>157.9</td>
<td>99.71</td>
<td>94.93</td>
<td>47.82</td>
<td>31.81</td>
</tr>
<tr>
<td>β_1</td>
<td>0.804</td>
<td>0.802</td>
<td>0.789</td>
<td>0.756</td>
<td>0.737</td>
</tr>
<tr>
<td>β_2</td>
<td>0.104</td>
<td>0.064</td>
<td>0.071</td>
<td>0.107</td>
<td>0.091</td>
</tr>
<tr>
<td>β_3</td>
<td>0.014</td>
<td>0.043</td>
<td>0.020</td>
<td>0.028</td>
<td>0.034</td>
</tr>
</tbody>
</table>
APPENDIX D

DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL
DATA OF ROUGHNESS AND DIMENSION OF MICROCHANNEL

<table>
<thead>
<tr>
<th>Test #</th>
<th>Re: nm</th>
<th>Rq: nm</th>
<th>Rt: micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>143.31</td>
<td>179.43</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>140.81</td>
<td>169.44</td>
<td>2.74</td>
</tr>
<tr>
<td>3</td>
<td>102.9</td>
<td>129.28</td>
<td>1.77</td>
</tr>
<tr>
<td>4</td>
<td>141.38</td>
<td>176.5</td>
<td>3.39</td>
</tr>
<tr>
<td>5</td>
<td>116.37</td>
<td>154.2</td>
<td>2.36</td>
</tr>
<tr>
<td>6</td>
<td>106.88</td>
<td>141.12</td>
<td>2.61</td>
</tr>
<tr>
<td>7</td>
<td>91.45</td>
<td>121.73</td>
<td>2.16</td>
</tr>
<tr>
<td>8</td>
<td>97.82</td>
<td>131.5</td>
<td>3.06</td>
</tr>
<tr>
<td>9</td>
<td>149.83</td>
<td>187.22</td>
<td>2.25</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>117.6</td>
<td>1.86</td>
</tr>
<tr>
<td>11</td>
<td>98.37</td>
<td>122.61</td>
<td>2.05</td>
</tr>
<tr>
<td>12</td>
<td>118.83</td>
<td>155.26</td>
<td>2.26</td>
</tr>
<tr>
<td>13</td>
<td>82.42</td>
<td>111.46</td>
<td>3.39</td>
</tr>
<tr>
<td>14</td>
<td>98.07</td>
<td>124.16</td>
<td>1.81</td>
</tr>
<tr>
<td>15</td>
<td>79.71</td>
<td>100.51</td>
<td>1.81</td>
</tr>
<tr>
<td>16</td>
<td>75.25</td>
<td>95.66</td>
<td>2.05</td>
</tr>
<tr>
<td>17</td>
<td>100.62</td>
<td>129.55</td>
<td>2.89</td>
</tr>
<tr>
<td>18</td>
<td>91.26</td>
<td>117.22</td>
<td>3.02</td>
</tr>
<tr>
<td>19</td>
<td>127.49</td>
<td>160.78</td>
<td>1.71</td>
</tr>
<tr>
<td>20</td>
<td>128.89</td>
<td>157.93</td>
<td>2.12</td>
</tr>
<tr>
<td>21</td>
<td>115.02</td>
<td>146.06</td>
<td>2.02</td>
</tr>
<tr>
<td>22</td>
<td>93.57</td>
<td>118.38</td>
<td>2.37</td>
</tr>
<tr>
<td>23</td>
<td>115.21</td>
<td>149.07</td>
<td>2.15</td>
</tr>
<tr>
<td>24</td>
<td>142.57</td>
<td>181.83</td>
<td>2.28</td>
</tr>
<tr>
<td>25</td>
<td>149.95</td>
<td>184.24</td>
<td>1.97</td>
</tr>
<tr>
<td>26</td>
<td>88.13</td>
<td>119.18</td>
<td>1.86</td>
</tr>
<tr>
<td>27</td>
<td>128.61</td>
<td>162.84</td>
<td>1.99</td>
</tr>
<tr>
<td>28</td>
<td>105.2</td>
<td>133.64</td>
<td>1.69</td>
</tr>
<tr>
<td>29</td>
<td>93.32</td>
<td>122.5</td>
<td>1.92</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean: 2.280333
Standard Error: 0.089209
Median: 2.135
Mode: 2.05
Standard Deviation: 0.488619
Variance: 0.238748
Kurtosis: -0.00615
Skewness: 0.973331
Range: 1.7
Minimum: 1.69
Maximum: 3.39
Sum: 68.41
Count: 30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
<table>
<thead>
<tr>
<th>Test #</th>
<th>Width</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top</td>
<td>Bottom</td>
</tr>
<tr>
<td>1</td>
<td>115.56</td>
<td>112</td>
</tr>
<tr>
<td>2</td>
<td>133.11</td>
<td>114.12</td>
</tr>
<tr>
<td>3</td>
<td>133.97</td>
<td>114.23</td>
</tr>
<tr>
<td>4</td>
<td>131.56</td>
<td>113.19</td>
</tr>
<tr>
<td>5</td>
<td>128.01</td>
<td>114.97</td>
</tr>
<tr>
<td>6</td>
<td>118.52</td>
<td>114.37</td>
</tr>
<tr>
<td>7</td>
<td>117.34</td>
<td>113.19</td>
</tr>
<tr>
<td>8</td>
<td>117.82</td>
<td>114.23</td>
</tr>
<tr>
<td>9</td>
<td>118.52</td>
<td>112.6</td>
</tr>
<tr>
<td>10</td>
<td>117.93</td>
<td>110.82</td>
</tr>
<tr>
<td>11</td>
<td>119.17</td>
<td>113.21</td>
</tr>
<tr>
<td>12</td>
<td>122.6</td>
<td>113.03</td>
</tr>
<tr>
<td>13</td>
<td>128</td>
<td>112.61</td>
</tr>
<tr>
<td>14</td>
<td>126.12</td>
<td>113.63</td>
</tr>
<tr>
<td>15</td>
<td>123.2</td>
<td>113.04</td>
</tr>
<tr>
<td>16</td>
<td>118.89</td>
<td>112.35</td>
</tr>
<tr>
<td>17</td>
<td>117.22</td>
<td>111.24</td>
</tr>
<tr>
<td>18</td>
<td>117.2</td>
<td>112.44</td>
</tr>
<tr>
<td>19</td>
<td>118.42</td>
<td>114.83</td>
</tr>
<tr>
<td>20</td>
<td>119.71</td>
<td>112.6</td>
</tr>
<tr>
<td>21</td>
<td>118.41</td>
<td>112.44</td>
</tr>
<tr>
<td>22</td>
<td>118.52</td>
<td>113.18</td>
</tr>
<tr>
<td>23</td>
<td>116.74</td>
<td>112.01</td>
</tr>
<tr>
<td>24</td>
<td>114.35</td>
<td>110.01</td>
</tr>
<tr>
<td>25</td>
<td>120.02</td>
<td>113.63</td>
</tr>
<tr>
<td>26</td>
<td>117.15</td>
<td>112.41</td>
</tr>
<tr>
<td>27</td>
<td>116.84</td>
<td>112.02</td>
</tr>
<tr>
<td>28</td>
<td>116.59</td>
<td>112</td>
</tr>
<tr>
<td>29</td>
<td>116.61</td>
<td>111.89</td>
</tr>
<tr>
<td>30</td>
<td>114.69</td>
<td>110.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Width</th>
<th>Depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>120.4263</td>
<td>112.7623</td>
</tr>
<tr>
<td>Standard</td>
<td>0.991225</td>
<td>0.22057</td>
</tr>
<tr>
<td>Median</td>
<td>118.47</td>
<td>112.605</td>
</tr>
<tr>
<td>Mode</td>
<td>118.52</td>
<td>112</td>
</tr>
<tr>
<td>Standard</td>
<td>5.429164</td>
<td>1.20811</td>
</tr>
<tr>
<td>Variance</td>
<td>29.4782</td>
<td>1.459289</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.910125</td>
<td>-0.0658</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.396207</td>
<td>-0.21856</td>
</tr>
<tr>
<td>Range</td>
<td>19.62</td>
<td>4.96</td>
</tr>
<tr>
<td>Minimum</td>
<td>114.35</td>
<td>110.01</td>
</tr>
<tr>
<td>Maximum</td>
<td>133.97</td>
<td>114.97</td>
</tr>
<tr>
<td>Sum</td>
<td>3612.79</td>
<td>3382.87</td>
</tr>
<tr>
<td>Count</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>
APPENDIX E

EXPERIMENTAL HEAT TRANSFER DATA
Inlet, outlet and wall temperatures

Experiment date: June 3, 1996
Flow media: Helium gas
Size of microchannel: 117 μm x 24 μm
Length of microchannel: 63.5 mm
Operation temperature: 24°C

<table>
<thead>
<tr>
<th>Run number</th>
<th>G_v (ml/min)</th>
<th>T_{inlet} °C</th>
<th>T_{outlet} °C</th>
<th>T_{w1} °C</th>
<th>T_{w2} °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>343.3</td>
<td>29.90</td>
<td>37.47</td>
<td>78.41</td>
<td>78.56</td>
</tr>
<tr>
<td>2</td>
<td>300.9</td>
<td>29.62</td>
<td>33.56</td>
<td>74.89</td>
<td>74.96</td>
</tr>
<tr>
<td>3</td>
<td>246.7</td>
<td>29.84</td>
<td>32.15</td>
<td>69.83</td>
<td>69.88</td>
</tr>
<tr>
<td>4</td>
<td>198.6</td>
<td>29.77</td>
<td>31.69</td>
<td>74.81</td>
<td>74.89</td>
</tr>
<tr>
<td>5</td>
<td>173.3</td>
<td>29.42</td>
<td>30.54</td>
<td>70.65</td>
<td>70.69</td>
</tr>
<tr>
<td>6</td>
<td>149.2</td>
<td>29.31</td>
<td>30.12</td>
<td>72.13</td>
<td>72.22</td>
</tr>
<tr>
<td>7</td>
<td>125.9</td>
<td>29.21</td>
<td>29.67</td>
<td>71.07</td>
<td>71.12</td>
</tr>
<tr>
<td>8</td>
<td>101.8</td>
<td>29.11</td>
<td>29.18</td>
<td>68.69</td>
<td>68.74</td>
</tr>
<tr>
<td>9</td>
<td>47.3</td>
<td>29.33</td>
<td>28.79</td>
<td>70.65</td>
<td>70.71</td>
</tr>
</tbody>
</table>
Inlet, outlet and wall temperatures

Experiment date: June 18, 1996
Flow media: Helium gas
Size of microtube: 52.1 μm
Length of microchannel: 70 mm
Operation temperature: 25°C

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Gv (ml/min)</th>
<th>Tinlet (°C)</th>
<th>TOutlet (°C)</th>
<th>TW1 (°C)</th>
<th>TW2 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11</td>
<td>29.50</td>
<td>25.11</td>
<td>88.41</td>
<td>82.56</td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
<td>30.05</td>
<td>25.58</td>
<td>91.35</td>
<td>85.43</td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>30.28</td>
<td>25.87</td>
<td>89.50</td>
<td>84.12</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>30.29</td>
<td>25.92</td>
<td>87.73</td>
<td>82.93</td>
</tr>
</tbody>
</table>
APPENDIX F

REDUCED HEAT TRANSFER DATA
Data reduction of heat transfer

Experiment date: June 3, 1996

Flow media: Helium gas

Size of microchannel: 117 μm x 24 μm

Length of microchannel: 63.5 mm

Operation temperature: 24°C

Table F.1

<table>
<thead>
<tr>
<th>Run number</th>
<th>G_v ml/min</th>
<th>T_{inlet} °C</th>
<th>T_{outlet} °C</th>
<th>T_{w1} °C</th>
<th>T_{w2} °C</th>
<th>Nu</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>343.3</td>
<td>29.90</td>
<td>37.47</td>
<td>78.41</td>
<td>78.56</td>
<td>80.96</td>
<td>720</td>
</tr>
<tr>
<td>2</td>
<td>300.9</td>
<td>29.62</td>
<td>33.56</td>
<td>74.89</td>
<td>74.96</td>
<td>43.18</td>
<td>618</td>
</tr>
<tr>
<td>3</td>
<td>246.7</td>
<td>29.84</td>
<td>32.15</td>
<td>69.83</td>
<td>69.88</td>
<td>20.43</td>
<td>507</td>
</tr>
<tr>
<td>4</td>
<td>198.6</td>
<td>29.77</td>
<td>31.69</td>
<td>74.81</td>
<td>74.89</td>
<td>11.78</td>
<td>408</td>
</tr>
<tr>
<td>5</td>
<td>173.3</td>
<td>29.42</td>
<td>30.54</td>
<td>70.65</td>
<td>70.69</td>
<td>6.59</td>
<td>356</td>
</tr>
<tr>
<td>6</td>
<td>149.2</td>
<td>29.31</td>
<td>30.12</td>
<td>72.13</td>
<td>72.22</td>
<td>3.59</td>
<td>307</td>
</tr>
<tr>
<td>7</td>
<td>125.9</td>
<td>29.21</td>
<td>29.67</td>
<td>71.07</td>
<td>71.12</td>
<td>1.76</td>
<td>259</td>
</tr>
<tr>
<td>8</td>
<td>101.8</td>
<td>29.11</td>
<td>29.18</td>
<td>68.69</td>
<td>68.74</td>
<td>0.11</td>
<td>208</td>
</tr>
<tr>
<td>9</td>
<td>47.3</td>
<td>29.33</td>
<td>28.79</td>
<td>70.65</td>
<td>70.71</td>
<td>-0.52</td>
<td>97</td>
</tr>
</tbody>
</table>
Experiment date: June 18, 1996
Flow media: Helium gas
Size of microtube: 52.1 µm
Length of microchannel: 70 mm
Operation temperature: 25°C

Table F.2

<table>
<thead>
<tr>
<th>Run no.</th>
<th>G_v ml/min</th>
<th>T_{inlet} °C</th>
<th>T_{outlet} °C</th>
<th>T_{w1} °C</th>
<th>T_{w2} °C</th>
<th>Nu</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.11</td>
<td>29.50</td>
<td>25.11</td>
<td>88.41</td>
<td>82.56</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>0.11</td>
<td>30.05</td>
<td>25.58</td>
<td>91.35</td>
<td>85.43</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>3</td>
<td>0.11</td>
<td>30.28</td>
<td>25.87</td>
<td>89.50</td>
<td>84.12</td>
<td></td>
<td>0.27</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>30.29</td>
<td>25.92</td>
<td>87.73</td>
<td>82.93</td>
<td>-0.015</td>
<td>0.27</td>
</tr>
</tbody>
</table>
APPENDIX G

PROPERTIES OF THE MICROCHANNEL AND MICROTUBE

PROPERTIES OF HELIUM GAS
Table G.1. Physical properties of the microchannel

<table>
<thead>
<tr>
<th>Channel material</th>
<th>Aluminum</th>
<th>Polymide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density, kg/m³</td>
<td>2707</td>
<td>1042</td>
</tr>
<tr>
<td>(lbm/ft³)</td>
<td>(169)</td>
<td>(65)</td>
</tr>
<tr>
<td>Tensile Strength (MPa)</td>
<td>120.7</td>
<td>103</td>
</tr>
<tr>
<td>(psi)</td>
<td>(17500)</td>
<td>(15,000)</td>
</tr>
<tr>
<td>Thermal Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/m–K</td>
<td>204</td>
<td>0.155</td>
</tr>
<tr>
<td>(Btu/hr–ft–°F)</td>
<td>(118)</td>
<td>(0.090)</td>
</tr>
<tr>
<td>Specific Heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KJ/kg–K</td>
<td>0.896</td>
<td>1.088</td>
</tr>
<tr>
<td>(Btu/lb m –°F)</td>
<td>(0.214)</td>
<td>(0.260)</td>
</tr>
</tbody>
</table>

Table G.2. Properties of helium gas at atmospheric pressure

Values of μ, k, and C_p are not strongly pressure–dependent for He and may be used over a fairly wide range of pressures.

<table>
<thead>
<tr>
<th>T,K</th>
<th>ρ kg/m3</th>
<th>C_p kJ/kg °C</th>
<th>μ kg/m s</th>
<th>ν m2/s</th>
<th>k W/m °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>0.2435</td>
<td>5.200</td>
<td>15.66x10$^{-6}$</td>
<td>64.38x10$^{-6}$</td>
<td>0.1177</td>
</tr>
<tr>
<td>255</td>
<td>0.1906</td>
<td>5.200</td>
<td>18.17</td>
<td>95.50</td>
<td>0.1357</td>
</tr>
<tr>
<td>366</td>
<td>0.13280</td>
<td>5.200</td>
<td>23.05</td>
<td>173.6</td>
<td>0.1691</td>
</tr>
<tr>
<td>477</td>
<td>0.08282</td>
<td>5.200</td>
<td>27.50</td>
<td>269.3</td>
<td>0.197</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Mann, D. B., The Thermodynamic Properties of Helium from 3 to 300 K between 0.5 and 100 Atmospheres, *National Bureau of Standards Technical Note* #154 (1962)

VITA

Xianming Wang was born on April 15, 1954, in Chongqing, Sichuan, China. He graduated from Chongqing University, China, in July 1983 with a Master of Science in Mechanical Engineering. Following graduation, he worked in Chongqing Jiaotong Institute. In December 1992, he joined the Department of Mechanical and Industrial Engineering, Louisiana Tech University, and entered the Doctor of Engineering program at Louisiana Tech University in the following quarter.