
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 1999

Finite element simulation of creep buckling of
CIPP liners under external pressure
Qiang Zhao
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Civil Engineering Commons, and the Other Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Zhao, Qiang, "" (1999). Dissertation. 754.
https://digitalcommons.latech.edu/dissertations/754

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/304?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/754?utm_source=digitalcommons.latech.edu%2Fdissertations%2F754&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type o f computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6” x 9” black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FINITE ELEMENT SIMULATION OF CREEP 

BUCKLING OF CIPP LINERS UNDER 

EXTERNAL PRESSURE

by

Qiang Zhao, M.S.

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

May 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9921790

UMI Microform 9921790 
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, M I 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

_______April 8, 1999_________
Date

We hereby recommend that the thesis prepared under our supervision

by Qiang Zhao

entitled Finite Element Simulation of Creep Buckling

of CIPP Liners under External Pressure

be accepted in partial fu lfillm ent o f  the requirements for the D egree o f  

Doctor of Philosophy

Suppnqsor of Thesis Researoh .
Head of Department 

A p p l i e d  & C o m p u ta t io n a l  A n a l y s i s  & M o d e lin g  

Department

endation aoncurred in:

Advisory Committee

Approved:

Director o f the Graduate SchoolDirector o f Graduate Studii

iedn o f  the College

GS Form 13 
2/97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

The problem o f long-term structural behavior of CIPP liners under external 

hydrostatic pressure has been characterized as a structural instability problem which is 

induced by time-dependent material deformation or creep. It is also a contact problem 

since the liner deflection is externally constrained by the host pipe. The intrinsically 

nonlinear problem is investigated by means of finite element simulation, with emphases 

on (a) the essential structural behaviors and m echanism s of buckling, and (b) the 

influences of inelastic material properties (i.e. yield strengths and creep rates) and 

geometrical parameters on liner's buckling resistance. Results from a series of numerical 

simulations, verified by experimental observations of short- and long-term buckling test 

data, are used to derive an appropriate CIPP liner design strategy.

The problem is treated as a ring encased in a rigid wall, which is circular or 

slightly oval. The liner is considered subject only to hydrostatic pressure, built up by 

infiltration through cracks in the deteriorated host pipe, which is assumed constant during 

the liner's service life. Material properties of a specific CEPP material are used to 

represent a family o f liner products made of polyester. The mechanical behavior o f the 

material can be characterized as linear elastic-perfect plastic, and its creep behavior can 

be modeled by the Bailey-Norton law. The dependency of the inelastic properties on 

stress state is incorporated into the finite element model by using a "composite" beam 

element which combines two normal beam elements, one of which resists tension and the

iii
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other resists compression. Experimentally observed properties such as yield limits and 

creep strain rates for both uniaxial tensile and compressive tests can thus be incorporated 

in the analysis.

The essential structural behavior of constrained liners is investigated by 

simulating the deflection evolution of a liner under instantaneous conditions. The two 

conventionally accepted buckling modes, one- and two-lobe modes, are found to give 

lower and upper bounds for all possible critical pressures, which are significantly higher 

than those of corresponding free liners. A liner first deforms as a free pipe into a two- 

lobe pattern because of the existence o f an initial gap. It will transition to a one-lobe 

mode when one of the two competing lobes becomes dominant. The finite element 

results show excellent agreement with experimental observations. Because mode 

transition and hence the critical pressure depend greatly on geometric factors which are 

usually not controllable in pipe rehabilitation, predictions based on the conservative one- 

lobe model should be used in liner design.

The relationship between critical time and external pressure derived from finite 

element simulation results show that critical time can be expressed as a monotonic 

function of the ratio of applied pressure to the critical (short-term) pressure. This 

relationship shows as expected that critical time at the two extreme pressure levels (zero 

and critical pressure) is infinity and zero, respectively. The model gives excellent 

agreement with the finite element results, and is better than other models used in the 

literature to correlate experimentally observed buckling times with pressure levels.

The buckling resistance o f CIPP liners depends greatly on several geometric 

parameters of the liner-host-pipe system. Finite element simulations are carried out to

iv
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investigate the effects of three essential geometric parameters (i.e. the dimension ratio of 

the liner, the gap between the liner and its host pipe, and the ovality of the host pipe) and 

two geometric imperfections (i.e., variation in liner thickness and initial local 

imperfection in liner shape).

Several issues which are important in design, including the discussion on failure 

states, and an appropriate way to choose a safety factor, are discussed. A methodology is 

presented by which finite element simulation results can be used to CIPP liner design. 

Design curves are given for designing CIPP liners made of a specific CIPP resin. An 

empirical design equation is presented which can determine a safe and cost-effective 

thickness for a given design pressure and given host-pipe configuration.
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CHAPTER 1

INTRODUCTION

Damaged sewer pipelines should be repaired to maintain the system efficiency 

and keep the groundwater clean. Traditional rehabilitation techniques require a huge 

amount of trench work and a long operation period, and often lead to inconvenience in 

traffic and the community.

In recent years, the development of trenchless techniques have made it possible to avoid 

the tedious and time consuming open-trench operations. Because most of the damaged 

sewer pipes are structurally sound, what needs to be done in rehabilitation is to resume 

water-tightness, i.e. stopping the sewer effluent leaking and avoiding the inflow of 

groundwater. This need can be met by the installation of a thin plastic liner inside the 

damaged sewer pipe segment to provide a separation between the sewer refuse and the 

surrounding environment.

1.1 The CIPP Technique

The Cured-In-Place Pipe (CIPP) technique can be employed to install plastic 

liners in damaged sewer pipes. The current practice is to invert a resin impregnated pipe 

relining into the damaged sewer segment and then heat it to let the liner cure in-place and 

take the shape o f the pipe.

l
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The actual loading condition applied to the installed liner may be quite 

complicated due to interactions and load transfers within the soil-pipe-liner system. 

Previous research and field applications suggested that the cracked pipe-soil system is 

usually strong enough to carry ground and traffic loads.

Therefore, the loads from the surrounding soil are mainly carried by the original 

pipes. The only significant loading on the liners is the external pressure resulting from 

the groundwater table. The liners should be designed to resist the sustained external 

pressure without a large deflection or even collapse (buckling) during the whole service 

period, which is usually set to 50 years.

1.2 Background and Research Need 

It is known that slender or thin-walled structural elements are susceptible to 

buckling when the loads acting upon them give rise to compressive stresses. The reason 

is that when the cross-section is subjected to compressive dominant stresses, any 

deflection, whether due to initial imperfection or load eccentricity, will cause an increase 

in the bending moment which in turn will induce additional deflection. In the classical or 

instantaneous case, buckling occurs when a certain pressure (referred to as the critical 

pressure) is approached.

The buckling behavior of thin-walled cylindrical shells subject to external 

pressure was first studied in the late nineteenth century. The shell can often be treated as 

a ring due to the symmetry along the longitudinal direction. The buckling mode of a free 

ring is flattening of the ring, as shown in Fig. 1.1. A typical load-deflection curve is 

shown in Fig. 1.2, in which the critical pressure, based on an ideal initial geometrical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



configuration, is demonstrated by a dashed line. It is shown in the figure that, when the 

critical pressure is approached, a small increase in load causes a disproportionately large 

deflection in the load-deflection curve. The critical load is found to be very sensitive to 

initial geometric imperfections.

 original
■buckled

Fig. 1.1 Typical buckling mode for a free-standing pipe

critical pressure

deflection

Fig. 1.2 Typical pressure-deflection curve for free pipe buckling
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When a thin-wailed cylindrical shell is confined within a rigid cavity, the shell's 

resistance to buckling may be enhanced drastically. This is because the flattening process 

prior to the final collapse is constrained, and thus provides a strong support to the shell. 

The enhancement effect is dependent upon the liner geometry characterized by the ratio 

of liner diameter to liner thickness. The critical pressure of a constrained liner with 

certain D/t ratios can be tens of times higher than that of a similar free liner.

Because of the deteriorated condition of the host pipe and of the limitations of the 

manufacturing and installation techniques, the actual fitting condition for CIPP will not 

be ideal. As such a gap will exist between the liner and the pipe. Considering that the 

support from the host pipe is important, any gap between the liner and the pipe may 

considerably reduce the contact area and thus the enhancement from the pipe. Therefore, 

in the case o f constrained buckling, the magnitude and distribution of the gap is one of 

the most important factors. Similarly, the ovality of the damaged host pipe may also have 

a significant influence.

Since the global flattening o f the liner is now constrained by the pipe, the 

characteristic buckling mode is also changed. A small portion of the liner cross-section 

will deflect inward, while the rest will sustain tight contact with the pipe (Fig. 1.3). This 

phenomenon will lead to high stress on the severely deformed portion and will cause 

plastic strain if  the material yield limit is not high enough. Therefore, material failure 

(plastic yield) is more frequently involved in the buckling analysis of constrained liner 

than in free pipe.

The nature o f buckling is mainly a structural phenomenon which is associated 

with a slim cross-section and compressive loading, but material properties may also be
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highly involved. Conventionally, the total strain can be separated into an elastic and 

inelastic part. The inelastic part can be further decomposed into a time-independent 

(plastic) and time-dependent (creep) components. Creep refers to the phenomenon of a 

solid changing its shape over time even when the loads remain constant.

i

Fig. 1.3 Typical buckling mode for an encased pipe

If the structural material exhibits time-dependent (creep) behavior, the 

phenomenon of structural instability is quite different Buckling can occur under any 

compressive load, however small, provided the load is sustained for a sufficiently long 

time. The mechanism is that any deflection will increase with time, thus increasing the 

bending moment which in turn increases deflection until eventually it leads to collapse. 

Therefore, in the context of creep-induced buckling, the time until buckling (usually 

referred to as critical time) is the most important feature to investigate.

Creep induced buckling has been observed to share numerous similarities with 

instantaneous buckling, including identical buckling modes. Therefore, it is not
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uncommon to trace creep buckling analysis to knowledge obtained from the elastic or 

elastoplastic buckling.

As previously discussed, the problem of long-term behavior of constrained CIPP 

liners undergoing external hydrostatic pressure can be characterized as time-dependent 

material deformation (creep) induced structural instability, which is complicated by 

contact between the liner and the host pipe. These three major resources of nonlinearity 

determine that the problem should be solved with finite displacement formulas. 

Interactions among these nonlinear phenomena reflect the unique nature of the problem.

To provide answers to these questions, the following problems will be studied:

• Mechanical properties of CIPP materials.

• Short-term buckling of liners constrained in rigid host pipes, with emphasis on 

how initial imperfections influence the critical pressure.

• Creep induced buckling of constrained CIPP liners.

Each of these problems listed above has been studied individually by various 

investigators. The new challenge is to give a  whole picture of the problem which clearly 

demonstrates the role of each factor and its interaction with other factors. Recent 

research has considered the effects of initial geometric configurations of liners and the 

enhancement resulting from the external constraints. However, the scope was actually 

limited to the prediction of the instantaneous buckling phenomenon.

1.3 Objectives and Scope

The primary objective of this research is to explore the theoretical background to 

the creep-induced buckling of encased cylindrical shells subject to external pressure by
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means o f finite element simulation. After the fundamental structural behaviors o f 

encased cylinders are studied, a numerical investigation towards the durability prediction 

of CIPP liners under typical rehabilitation conditions will be carried out. Emphasis is 

focused on the effect of the creep phenomenon o f  CIPP materials on the long-term 

buckling behavior of the encased liner. Effects o f other factors, including non-ideal 

fitting between the liner and host pipe and initial imperfections of the liner, will also be 

determined and quantitatively characterized.

A suitable model which can reflect all the important mechanical properties o f 

CIPP materials should be established to fulfill the objectives of the research. The model 

will be formulated from the constitutive relationship observed from currently available 

material characterization tests. A representative CIPP material manufactured by 

Insituform Technologies, Inc. is used to generate input data for the numerical 

investigation, because the mechanical properties o f that material have been extensively 

studied. The complete database includes information from both material and physical 

tests, under instantaneous and up to 12,000-hour long-term testing conditions. Although a 

specific material is used, the methodology can be used also for other materials. It is 

assumed that the trends discovered here can be generalized to other CIPP liners.

The finite element technique is chosen to provide the necessary solution 

procedures. With the aid of a sophisticated finite element package, ABAQUS, the 

intrinsically nonlinear problem can be handled with ease, so as to focus on the simulation 

of long-term behavior o f the encased liners, in which we are most interested. The 

constitutive relationship mentioned above is incorporated into the finite element model 

by using an original combination of capabilities available in ABAQUS.
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The scope of the study is limited to the assumptions that the host pipe can resist 

the traffic and top soil loads and that the shape of the host pipe has remained circular or 

slightly oval. The only load acting on the liner is the hydrostatic pressure due to the 

underground water table. A ring model is considered adequate to represent thin-walled 

liners under the conditions being considered.

The buckling behaviors of encased CIPP liners are investigated in order to reveal 

the characteristic buckling modes and the effects of geometric and material parameters 

on the critical pressure and critical time, under short- and long-term loading conditions, 

respectively. Results are compared to experimental observations to verify the validity of 

the models.

A parametric study is then carried out to investigate the effect of each of the 

selected factors on the buckling time of the liner. This step is significant to the thorough 

understanding of long-term behavior o f CEPP liners. As will be discussed in detail in the 

following chapters, critical pressure (in short-term buckling) and critical time (in long­

term buckling) are related to the selected factors via nonlinear relations. In physical tests, 

these parameters cannot be accurately measured and hence exact predictions of critical 

pressure and critical time are not possible. Precisely controlled tests can only be 

conducted numerically to isolate one factor from another so as to understand the role 

each factor plays. Inadequate knowledge in this aspect can be regarded as the main 

reason for poor understanding of duration prediction of CIPP liners.
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CHAPTER 2

BUCKLING OF THIN-WALLED 

PIPE LINERS

CIPP liners installed in deteriorated sewer pipes are susceptible to buckling under 

external hydrostatic pressure. The primary concerns of the present study are focused on 

the long-term buckling behavior of encased liners subject to sustained pressure in which 

the time-dependent deformation of the polymeric material is the driving force for the final 

collapse. This chapter is intended to give a brief review o f previous research efforts upon 

which the present study has been based. The scope is focused on fundamental buckling 

theories for thin-walled cylinders encased in rigid cavities and on the factors influencing 

accurate prediction of the buckling resistance.

2.1 Overview

In light of the present interest, the buckling problems concerning cylinders subject 

to external pressure can be classified into four categories as shown in Table 2.1, with 

pioneering research work in each of the categories listed.

A thin-walled cylinder is a standard structural element widely used in various 

applications. In designing such a structure, the instability criterion should be emphasized in 

addition to stress verifications, because it may fail by losing its desired configuration under

9
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loads inducing compressive hoop stresses before (or soon after) the allowable stress is 

reached.

Table 2.1 Classification of buckling of thin-walled cylinders

Instantaneous Buckling Creep-Induced Buckling
Fairbaim (1858) 

Free-Standing Bresse(1866) 
______________Bryan (1888)

Sundstrom (1958) 
Hoff (1959) 
Ellington (1960)

Constrained Amstutz (1950, 1953) Welch (1989)
Glock (1977)

Fairbaim (1858) was recognized as the first investigator of the buckling of steel 

pipes subject to external pressure. His experimental results revealed that the buckling 

pressure was influenced by two characteristic geometrical parameters: pipe length and the 

ratio of diameter to wall thickness. Since then, buckling has been regarded more of a 

stiffness issue than a strength issue.

Bresse (1866) was probably the first to give an analytical solution to the buckling 

pressure which is still used in current design practices. In his solution, derived by using a 

small deflection theory, the buckling pressure was expressed in terms of the elastic 

modulus E, and two parameters representing the geometry of the cross-section of the 

pipe, the mean radius R, and the moment of inertia I.

The length effect does not appear explicitly in Eqn. (2.1), yet the equation reflects 

the extreme of a very short pipe, for which the assumption of plane stress is appropriate. 

On the other hand, a similar solution for a very long pipe was given by Bryan (1888) by 

employing the minimum potential energy criterion, as

(2 .1)
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where the effective modulus E  / (I —v 2) was used to assume the plane strain condition of 

an infinitely long pipe.

Many factors can deviate buckling pressures observed in real structures away from 

theoretical predictions. Among those factors, imperfect geometric configuration 

represented by the out-of-roundness (or ovality) of the cylinder is o f most concern, 

because the characteristic deflection pattern (or the first-order buckling mode) of a free­

standing pipe is oval in shape (Fig. 1.1).

Material failure is usually o f  little importance when the pipe is free from external 

constraints, since buckling will occur before the yield strength is approached for typical 

dimensional ratios common to engineering structures.

2.2 Buckling of Pipe Liners

Buried pipes and linings to waterway tunnels or sewer pipelines are typical 

examples o f cylinders whose outward deflections are constrained. The corresponding 

static and buckling analyses are intrinsically nonlinear contact problems.

The support from the surrounding soil to buried pipes works like an elastic 

foundation. The wall will move backward with the outward deflection of a buried pipe but 

has no effect on the inward movement, as was assumed by Cheney (1971). On the other 

hand, the constraint (from rocks or concrete sewer pipes) to a liner could be considered as 

a rigid wall, which allows for no outward deflection.

The buckling resistance o f steel linings subject to hydrostatic pressure induced by
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infiltration through cracks in rocks and concrete grouts or overpressure during grouting 

was studied by a number o f investigators throughout the world for over three decades 

since Amstutz published his pioneering work in 1950 and 1953. Results from these 

studies, which relate to the prediction of instantaneous buckling o f CIPP liners, are 

reviewed in this section.

It was not a surprise to see that quite a few distinct characteristics had been 

revealed in these studies that distinguish the buckling behavior of a constrained liner from 

that o f a free-standing pipe. Liners' resistance to buckling is enhanced drastically due to 

the support from the rigid wall. The ratio of the critical pressure of a constrained elastic 

ring to the classical critical pressure of a free ring

K ^ P ^ I  P ?  (2.3)

is usually referred to as the enhancement factor. The enhancement is influenced by three 

major factors which are addressed in the following sections.

2.2.1 Buckling Modes

When a pipe is constrained externally by a rigid wall, the well-known two-lobe 

buckling mode as shown in Fig. 1.1 becomes impossible. Furthermore, the eigen-analysis 

approach to the solution of critical pressure and buckling mode is not applicable because 

of the nature o f the contact problem.

Early attempts to the solution of this problem did not have "a sound theoretical 

basis" (Yamamoto and Matsubara, 1982). Vaughan (1957) and Borot (1957) assumed that 

the liner will buckle into a uniform sinusoidal wave around the circumference (Fig. 2.1). It 

was pointed out by McCaig and Folberth (1962) and by Yamamoto and Matsubara (1981)
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that this assumption may lead to overestimation of a liner's critical pressure. According to 

the Canadian engineers (McCaig and Folberth, 1962), Amstutz (1953) "assumed more 

correctly" that "a single lobe would form in one particular spot," and the shape of the 

buckled portion was again a sinusoid wave around a mean line with a new mean radius 

(Fig. 2.2). Amstutz's model gave considerably lower critical pressure predictions than 

those of Vaughan and Borot. The validity of his model was checked against field data 

from 14 successful and failed installations by McCaig and Folberth (1962), and against a 

specially designed laboratory test by a Swiss engineer (Ullmann, 1964). Just as Amstutz 

assumed, a single lobe mode was observed in Ullmann's test, which formed "near the 

welding seam where a 4mm deep depression was observed before the test."

■INITIAL GAP

b »  LENGTH OF ONE HALF WAVE

Fig. 2.1 Schematic of model used by Vaughan (1957) and Borot (1957)
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EXTENT OF BUCKLED LOBE

HALF WAVE ABOUT 
NEW MEAN LINE

Fig. 2.2 Schematic of model used by Amstutz (1950, 1953)

Glock's Model. The first theoretically sound model for the buckling of a steel liner 

was derived by Glock (1977), who also adopted the one-lobe mode which was widely 

accepted at his time by researchers of liners and o f buried pipes (Cheney, 1971). In 

Glock's analysis, the radial deflection in the buckled portion was assumed to have the 

functional form

r nQ'
u — ua COS (2.4)

\2(f>j

in which 2$ denoted the deflected region (Fig. 2.3). The steep shape of the deformed liner 

may reflect the post-buckling deflection pattern o f a constrained liner better than a 

sinusoid does. By employing the principle of minimum potential energy and assuming a 

linear elastic stress-strain relation throughout the buckling process, Glock gave a concise
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solution in a similar form to Timoshenko's equation

(2.5)

According to Omara et al. (1997), the exponent 2.2 has been repeatedly derived under 

different constrained buckling problems by several authors (shrink buckling o f rings by 

Chicurel (196B); buried pipe buckling by Cheney (1971); and rings encased in a rigid wall 

by Glock (1977)), even though quite different assumptions o f deflected ring profiles were 

used.

Based on Glock's solution, the enhancement factor can be determined from Eqns.

(2.5) and (2.1), as

This factor is much higher than 1 for the dimension ratios (D/t) commonly used in 

engineering applications. Since a pipe liner is subjected to higher pressure than a free 

standing pipe can resist, the yield strength may be reached before the onset of buckling. 

Therefore, Glock's model, which is based on a purely elastic relationship, may 

overestimate the buckling resistance of liners. Another reason for overestimation is that 

the model does not take into consideration any imperfections in the initial ring-wall 

configuration.

2.2.2 Material Failure

The effect o f material failure was first addressed by Amstutz (1969), who stated 

that the yield limit might be reached first in an outer fiber (in the compressive side) at the

(2 .6)
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Fig. 2.3 Schematic of model used by Glock (1977)
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spot where the maximum deflection occurs. This argument was supported by Ullmann's 

(1964) test, although not explicitly stated in his paper. From the pressure-stress data 

measured on the internal surface of the sample liner (Fig. 2.4), one can trace that the liner 

collapsed soon after the compressive stress exceeded the yield limit of 400 MPa at node 

11. (From a simple calculation, the compressive stress at node 10, that is, on the outer 

surface of the liner where strain gauges could not be applied in an external pressure test, 

should have exceeded the tensile yield limit.) This consideration was later supported by a 

numerical investigation conducted by Yamamoto and Matsubara (1981).

2.2.3 Effects of A nnular Spacing or Gap

The effect o f annular spacing or gap between the steel liner and the waterway 

tunnel were included in models proposed by Amstutz, Vaughan, and Borot. It was 

common knowledge to the tunnel engineers that "The smaller the gap, the greater the 

critical external pressure on buckling" (McCaig and Folberth, 1962). Although grouting 

was normally performed to minimize the undesirable effect, the existence of gap was 

actually unavoidable even under laboratory condition (Ullmann, 1964).

The effect o f gap on a liner’s critical pressure is difficult to quantify by the classical 

approaches discussed earlier, especially when elastoplastic behavior is taken into account. 

This problem was not satisfactorily resolved until Yamamoto and Matsubara conducted 

their series of numerical studies in early 1980’s.

Yamamoto and M atsubara’s Study. A finite element analysis was reported by 

Yamamoto and Matsubara (1981) in which both gap (distribution as well as size) and 

material nonlinearity were taken into account, and there was no need for a pre-defined
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liner deflection pattern. The pressure under which a liner buckles was referred to as the 

ultimate pressure (instead of the conventional term, the critical pressure) to emphasize 

the elastoplastic solution obtained from a nonlinear load-deflection analysis.

By taking advantage of convenient geometrical modeling capabilities provided by 

the finite element approach, Yamamoto and Matsubara considered three typical gap 

distribution patterns: initial deflection (or more precisely, imperfection), even, and uneven 

gaps (Fig. 2.5). For a given yield strength of 235 MPa, the ultimate pressure predictions 

were given in a dimensionless format PcrR/Et over a representative range of liner-tunnel 

configurations characterized by the radius thickness ratio (R/t) and the dimensionless gap 

(maximum gap/radius). In this paper they concluded that

1) The liner buckles into a one-lobe mode in the uneven gap and initial deflection cases, 

whereas it buckles into a two-lobe in the even gap case.

2) For a given R/t value, the enhancement factor K  (as defined in Eqn. 2.5) decreases 

with an increase in gap.

Fig. 2.4 UHmann’s (1964) test results
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3) For a given gap/radius ratio, K  increases with an increase in R/t ratio.

4) The critical pressure associated with one-lobe mode deflection (under uneven gap) 

was lower than that associated with two-lobe buckling mode (under even gap), 

provided the total gap is the same. Therefore, predictions by using the one-lobe mode 

were proposed to be used for practical purposes.

5) The effect of plastic yield is significant in the cases o f even (when gap is small) and 

uneven (when gap is large) gaps, and not significant for the case of initial deflection.

2.3 Creep-Induced Buckling

As is pointed out in Chapter 1, the fundamental difference between classical and 

creep-induced buckling is that, in the classical case, instability occurs when the increasing 

load reaches a certain value (critical load), whereas in creep-induced buckling, time is the 

driving force. A structural element whose material creeps will buckle under a sustained 

load (usually lower than the classical critical value) when a finite critical time is reached.

Early studies (as reviewed by Hoff, 1958, and Gerdeen and Sazawal, 1961) 

emphasized that a finite critical time exists only when the creep strain rate is a nonlinear 

function of stress. Otherwise, critical time becomes infinitely large. This restriction may 

not hold when the effects of stress redistribution and maximum allowable displacement are 

taken into account. Fortunately, the empirical creep laws for commonly used engineering 

materials such as metals and polymers are usually nonlinear, as will be discussed in 

Chapter 3. Therefore, this fact makes it possible to accept the following intuitive 

assumptions (adapted from Hoff, 1958):

1) A structural element will not buckle when no compressive load is applied.
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2) A structural element will buckle instantaneously when the critical load is applied.

3) When a compressive load smaller than the critical value is applied, an element whose 

material creeps will buckle when a finite critical time is reached (provided the loading 

is continuous).

4) A greater load will correspond to a shorter critical time, and vice versa.

Despite o f the difference mentioned above, creep-induced buckling has been 

observed sharing numerous similarities with its classical counterpart, among which the 

most important aspect is the identity between the creep and instantaneous buckling modes 

(Sammari and Jullien, 1995). Therefore, it is not uncommon to trace creep buckling 

analysis to the knowledge obtained from the elastic or elastoplastic analysis.

Just like instantaneous buckling, creep buckling is also highly sensitive to initial 

imperfections in structure geometry, because any initial deflection in a structural element 

will increase with time, which directly increases the bending moment (or internal stresses). 

The increase in stress in turn increases creep rate and hence deflection, until the structural 

element eventually collapses. Because of the nonlinear stress-creep strain rate relation, the 

effect of initial imperfection in a creep buckling problem may be much more serious than 

that in a similar instantaneous buckling problem.

Another analogy between creep and instantaneous buckling includes the concept of 

critical deformations, e.g. critical strain and critical deflection. Gerard (1956) conjectured 

that an initially perfect column could first buckle under the creep process when the total 

strain is the same as the (critical) strain at which it would buckle under the classical 

critical load with the absence of creep. This conjecture was proved not to be generally 

valid by Hoff (1958). Hoff then suggested in the same paper that the most realistic
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approach should be based on the critical deflection of a column under instantaneous 

loading, which can be calculated by using the realistic (non-linear) stress-strain relation of 

the material. Critical time could then be determined by the time needed to reach the 

critical deflection, based on realistic creep data o f the material. However the two 

concepts may not seem much different from a practical standpoint. Some simplified 

methods based on the critical strain concept were claimed to give good predictions 

(Chem, 1978), while others were not as satisfactory (Menges and Gaube, 1969).

Pipes Subject to External Pressure. The creep buckling of (free-standing) 

cylindrical shells under uniform external pressure was first investigated by Sundstrom 

(1957), but a later study by Hoffs et al. (1959) based on a sandwich model had more 

influence on later studies. In the sandwich model, an outer and an inner sheet is used to 

resist the hoop stress and an undeformable core annulus is used to support the shear 

stress. The effect o f elastic deformation was neglected, except for the calculation o f the 

initial deformation as the result of loading. Bargmann (1972) modified the method by 

including elasticity throughout the analysis. Ellington (1960) employed the principle of 

potential energy, which allowed him to take into account the elasticity and a linear stress 

distribution through the pipe wall. These methods gave explicit solutions, yet were 

restricted to the use o f the Norton-Bailey type creep law

eCR = A a nt m (2.9)

Nishiguchi et al. (1990) made a further improvement by allowing the incorporation 

of general formed creep laws into the calculation. The only assumptions employed were 

the linear strain distribution in the pipe wall and a quasi-elliptical cross section
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characterized by a single shape factor adopted from Hoff et al. (1959). Nonlinear stress 

distribution through the wall of the tube was allowed, and the growth of the displacement 

field was represented by the change of the shape factor with time governed by an 

ordinary differential equation. A numerical procedure, such as the Euler's method, was 

necessary to solve the problem incrementally.

Finite element approaches were frequently used in more recent investigations 

(Heller and Anderson, 1984; Nishiguchi et al. 1990; Sammari and Jullien, 1995; Kaji et 

al., 1996; Koundy et al., 1996; Eslami and Shariya, 1997), mainly because of the 

powerful nonlinear solution capabilities provided by the finite element models. These 

capabilities have been found essential in incorporating specific creep laws and factors 

like geometric imperfections, so as to accurately predict critical time.

2.4 Buckling of CIPP Liners

The instantaneous buckling of CIPP liners was first tested by Aggarwal and 

Cooper (1984). From 49 specimens with D/t ratios ranging from 30 to 90, they found that 

the enhancement factors varied from 6.5 to 25.8. These observations were used as the 

foundation to the practically used ASTM (1993) design guideline in which an 

enhancement factor of 7 is recommended for any liner where a "tight fitting" is available.

A number of experimental and analytical studies on the structural behavior of 

constrained CIPP liners has been carried out since the late 1980’s (Boot and Welch, 1989; 

Welch, 1989). The following methodology used by Boot and Welch (1989) and by 

Shotton and Boot (1995) represents a state-of-the-art approach for the study of CIPP 

liners during the past decade.
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1) Determination of the long-term constitutive behavior o f CIPP material over a fifty year 

period.

2) A series of short- and long-term buckling tests to (a) assess the imperfection 

sensitivity, and (b) calibrate the mathematical model.

3) Development of a mathematical model suitable for predicting liner behavior subject to 

long term creep under external pressure in order to achieve a rational design criterion.

2.4.1 Material Characterization

Various polymeric materials have been used in commercial CIPP products and 

related experiments, including polyester, polyvinyl chloride (PVC), vinyl ester, epoxy, and 

polyurethane. Polyester seems the most widely used. Five out of the seven products 

studied in the long-term tests by Guice et al. (1994) were made of polyester.

An InsituForm product, Insituform Enhanced, using an unsaturated polyester (UP) 

resin has been studied by several research groups. The standard quasi-static tests on this 

product were first reported in Guice et al. (1994). The classical linear elastic-perfectly 

plastic behavior was observed, and the material failure was characterized by stable fracture 

accompanied with a "creaking" sound. The elastic modulus determined from bending test 

was considerably lower than that by tension test whereas the ultimate strength in bending 

was more than twice the tension strength. By employing a four-point bending apparatus 

and larger specimen depth than recommended in ASTM D 2990-77, Boot and Javadi 

(1998) minimized the difference between axial and "flexural" moduli observed by Guice et 

al. (1994) and verified other observations.

Welch (1989) was the first to study the time-dependent behavior of polymeric
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materials for liner life prediction by using a polyurethane (PUR) resin. Similar tests for the 

Insituform UP resin were conducted by Lin (1995) under tension, compression, and 

bending conditions for 3,000 hours, and continued by Mahalingam (1996) to 6,000 hours 

under bending. Torsion tests were also included in a more comprehensive characterization 

program by Boot and Javadi (1998). It was observed in the tests that the materials crept at 

different rates under different stress states. As for the Insituform resin, the creep rates 

descended in the following order: tension, flexural, and compression.

To adopt creep data obtained in the first several thousands of hours to the design 

life span of 50 years, various extrapolation techniques have been discussed by these 

investigators. High temperature tests were proposed by Hall et al. (1997) to accelerate 

creeping so as to reduce the test period.

2.4.2 Buckling Tests

A series of 10,000-hour buckling tests were conducted at the Trenchless Technology 

Center (TTC) at Louisiana Tech University (Guice et al, 1994.; TTC, 1998b). Short-term 

tests were conducted at TTC (1998a) and elsewhere (Welch, 1989; Lo et al., 1994, Javadi 

and Boot, 1998) for better knowledge of constrained buckling.

Various commercially available CIPP products were evaluated by Guice et al. (1994). 

The diameter-thickness ratio was in a range o f 30 to 70, and the load ratio, which is the 

ratio of the sustained pressure to the critical pressure observed in the instantaneous test, 

was in the range of 40% to 80%. Results of linear regression analyses, which correlated 

the external pressure to the buckling time, suggested that the ratio o f long-term to 

instantaneous critical pressure would be in the range o f 34% to 46%. Wide variations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

were observed in times to buckling, to which thorough theoretical explanations are 

needed.

The failure mechanisms of the Insituform Enhanced liners under short- and long-term 

conditions were very similar: "a sudden 'dimpling' of the liner" (at a certain spot near the 

mid-span) initiated with "some 'creaking' sound, indicating large deformations of the 

material" (Guice et al., 1994). Leaking might be noticed during or after snap-through 

(TTC, 1998c). By using a different test setup, in which liners were not clamped at the 

ends, Welch (1989) observed that the failure would start at both ends of the specimen and 

propagate to the center. For liners installed in the field, both failure mechanisms may 

occur, depending upon specific deterioration modes of their host pipes (as classified in 

WRC, 1993). For the cases of a hole (H) or a circumferencial crack (CC) near the mid­

span, the liner may buckle in the middle whereas for the case of a longitudinal crack (CL), 

buckling may be initiated near the ends.

The deflected profiles of liners were also measured in tests by using LVTD's (Welch, 

1989; TTC, 1998a). Typically, a liner deflected in a two-lobe mode which was roughly 

symmetric along a certain unpredictable direction. In most cases, a liner would collapse 

into a one-lobe mode (as also observed in Ullmann's (1964) steel liner test), with one 

dominant lobe snapping through while the opposite lobe was being released partially or 

completely (TTC, 1998a). Occasionally, there would be one liner which buckled into the 

one-lobe mode right away (Boot and Welch, 1996; TTC, 1998a).

Deteriorated sewer pipes may lose their original circular shape. The effect o f host pipe 

ovality on liner resistance were also tested by Welch (1989), and Hail (1998a). Results 

showed that the effect was significant. The gap between a liner and its host pipe was also
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measured by using feeler (Guice et al, 1994), or, more preferably, by measuring the 

volume o f the annular spacing (TTC, 1998a).

However, geometrical factors are usually hard to control in manufacturing and are 

even difficult to detect accurately. As an example, the variation in the thickness of a liner 

(according to test records, e.g., Omara, (1996)) could be as high as ± 15% of the mean 

thickness value.

2.4.3 Analytical and Numerical Studies

Welch (1989) is the only reference, known to the author, who conducted a creep 

buckling analysis o f constrained cylindrical shells. A finite element approach was 

employed, which could handle the rigid wall constraint and large displacement. The liner 

was modeled with two-node beam elements. Because different mechanical properties were 

found in CIPP materials under different loading conditions, the flexural and axial 

deformations were treated separately, with incorporation of specific creep properties 

characterized from tests. The critical time was predicted for a given nominal liner diameter 

and thickness and external pressure. Design curves were then plotted for the design 

pressure corresponding to a design life of 50 years.

The two-lobe buckling mode was assumed to reflect the typical deflected shape of 

the liner observed in the accompanying short-term tests. Although the plane stress 

assumption which gave the lower bound predictions was employed, the numerical 

estimations to the buckling pressure were slightly, yet consistently, higher than the test 

results (Boot and Welch, 1996).

An analytical modeling of collapse resistance o f CIPP liners was conducted by Lo
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and Zhang (1993) focusing on the effect of radial gap between the encased liner and its 

host pipe. The elastic solution to a clamped shallow arch under uniform pressure 

(Timoshenko and Gere, 1961) was adopted and the critical pressures (in terms of the

determined by an iterative numerical procedure. They concluded that the enhancement 

factor is "simply a function of the gap size ratio," i.e. gap-size/host-pipe-radius, and is

the sum of the initial gap A, (induced by contraction due to temperature drop after the 

curing process) and the gap increase A2 (induced by hydrostatic pressure during the test). 

When correlating the analytical predictions to observed buckling pressures reported in Lo 

et al. (1993), a good agreement was found as shown in Fig. 2.6: test data scattered within 

and all over the range bounded by the lower and higher extremes predicted by the one- 

and two-lobe modes, respectively.

Based on analyses of experimental buckling pressure data obtained by Aggarwal 

and Cooper (1984), Lo et al. (1993), and Guice et al. (1994), Omara et al. (1997) 

suggested that the critical pressure of a constrained liner can be related to the D /t ratio as 

follows

The fitting parameters a  and m, obtained by a regression analysis of Aggarwal and 

Cooper’s data, were determined to be 1.07 and 2.17, respectively, which were very close 

to 1.0 and 2.2 as in Glock's equation (2.5).

enhancement factor) o f an encased liner associated with one- and two-lobe modes was

almost free from the geometry of the liner-pipe system. In this context, the gap size A was

(2 .10)
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Fig. 2.6 Schematic of model used by Lo and Zhang (1993)
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El-Sawy & Moore (1997) investigated the effect of liner geometry and 

imperfections on liner buckling strength. Parametric studies were conducted to quantify 

the effects of liner diameter to thickness ratio, initial liner imperfection (defined as a 

wavy intrusion), loose fitting (uneven gap) between a liner and its host pipe, and ovality 

of host pipe. Empirical formulae for reduction factors accounting for various 

imperfections were proposed to be used in design practices.

More practical considerations were included in Falter (1997) which may be important in 

a rehabilitation design. Criteria based on both material failure and structural stability 

requirements were emphasized to be consistent with bursting failures observed in 

buckling tests conducted by Wagner (1992). The snap-through pressure of an encased 

liner was given by multiplying reduction factors concerning initial imperfection and 

initial gap with the Glock's solution. His reduction factors, adopted from parametric 

studies conducted earlier (Falter, 1994), led to very conservative predictions of test 

results reported by Boot and Welch (1996).

2.5 Summary

Unique features o f constrained creep buckling of CIPP liners are highlighted by a 

structural instability problem, which is entangled with liner-hostpipe interactions and 

complex creep behaviors of polymeric materials. Research interests in this problem have 

been invoked by the demanding needs for this advanced rehabilitation technique during 

the past 15 years. However, theoretical models appropriate for liner life prediction are 

still yet to come.

As can be concluded from the brief review of existing approaches to similar
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problems, a closed-form analytical solution, which considers all sources of nonlinearity 

arising from both material and geometrical aspects, is very hard to realize. Therefore, a 

numerical approach is considered appropriate in the current study. The philosophy is to 

conduct numerical simulation so as to reveal the fundamental structural behavior of 

constrained CEPP liners subject to external pressure and to quantify the effects of 

different factors discussed in this chapter. From these simulation results, models for 

accurate and efficient prediction o f CIPP liner life can be established.
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CHAPTER 3

MECHANICAL PROPERTIES OF 

CIPP MATERIALS

In this chapter, the mechanism and mechanics o f material properties of cured-in- 

place plastics will be discussed, with close reference to a typical commercial product, 

Insituform Enhanced (polyester) resin. After explaining test observations available at the 

TTC and from other resources via a contemporary material science point of view, a visco- 

elastoplastic constitutive model appropriate for CIPP liner short- and long-term buckling 

analysis will be presented.

It is common knowledge that the mechanical behavior of polymers is greatly 

influenced by temperature. The normal ambient temperature, under which the material was 

characterized and the liner will be working, will be used as default throughout this chapter 

and the whole dissertation. The temperature effect will therefore not be mentioned in the 

sequel for simplicity.

3.1 Thermosetting Polymers Formed by Curing

The formation of thermosetting plastics by means of curing usually takes a two- 

stage reaction. In the first stage, the starting materials (usually two or more monomers) 

are inter-combined to form a resin, which contains the high polymer molecules with a

32
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heterochain structure. In the second and curing stage, an additional monomer called curing 

agent is added into the liquid resin to crosslink the original chain-like polymer molecules 

into a random network. The preparation and curing of unsaturated polyesters are 

illustrated in Fig 3.1 (as quoted from Hall, 1981)

Once set by heating, the crosslinked structure cannot be melted and exhibits a 

good stifihess and resistance to creep. These desired qualities make polyester popular in 

sewer rehabilitation applications.

Because of the irregularity of the random molecular structure, the cured polyester 

behaves more like an amorphous substance than crystalline polymers. Unfortunately, the 

mechanical behavior of thermosetting polymers is "rather nondescript" (Courtney, 1990), 

and the mechanisms are usually poorly understood. The uncertainty of the concentration 

and configuration of the crosslinked structure may contribute to the differences of 

mechanical properties of materials from different batches, which makes the problem even 

more complicated. However, network polymers actually possess some mechanical 

characteristics common to many long-chain polymers, such as linear elasticity and 

viscoelasticity at ordinary temperature. Imagining a mixture of amorphous and long-chain 

mechanisms co-resident and competing to each other will help to understand the unique 

features o f thermosets (or CIPP materials).

3.2 Time-Independent Properties

Conventionally, the total strain is divided into elastic (recoverable) and inelastic 

(permanent) components. The inelastic portion can still be divided into plastic (time- 

independent) and creep (time-dependent) parts. The classification can be expressed as
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Preparation and curing o f  unsaturated polyesters

Typical starting materials

HQ—CH—CH2—OH 

propylene glycol

We represent these molecules by the symbols

H O -B -O H  Q  g
o o

Polymerisation produces a linear unsaturated polyester with a 
structure like this:

-o -^o -^^o H H -o -Q -o -B -o -Q -

The addition of a vinyl monomer such as styrene 
makes a liquid resin which can be 
crosslinked by a free-radical 
initiato r (curing agent)

O
styrene

Schematic crosslinked polyester structure

Fig. 3.1 Crosslinked polyester formed by curing 
(From Hall (1981), Table 1.9)

0 ^  No"  ^ 0

phthalic anhydride

CH=CH

maleic anhydride
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eT= e E+e 1 (3.1)

s l = e p + s CR (3.2)

The elastoplastic behavior is discussed in this section, while the creep phenomenon and

pertinent numerical models are to be discussed in the section that follows.

3.2.1 Linear Elasticity

As have been observed from material characterization tests of typical Insituform 

resins (Guice et al, 1994; Boot and Javadi, 1998), for small deformation, typical CIPP 

materials exhibit linear elasticity. The elastic modulus is in the range of 105 ~ 10s psi 

(103 ~ 104MPa) and is about the same in compression as in tension. As compared to 

metals and ceramics for which deformation involves primary bond stretching, the lower 

modulus of thermosets reflect that small strain involves relative movement of atoms or 

molecule segments which are not directly bonded (in the van der Waals' force fields) (Hall, 

1981).

3.2.2 Yield and Fracture—axial

Polymeric materials can exhibit either brittle or ductile behavior under different 

loading conditions. Under normal room temperature and at a low strain rate (e.g., 1 

in/min), a typical stress-strain curve of a Insituform product sample subject to tensile 

loading is shown in Fig 3.2a (Omara, 1996). As reported by various resources (Guice et 

al., 1994; Boot and Javadi, 1998), the failure process with no significant necking is 

characterized by "clearly audible stable fracturing" (Boot and Javadi, 1998) and can be 

modeled by an ideal elastic-plastic law, with a yield strength o f  about 3,500 psi.
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Fig. 3.2 Typical material test results
(From Omara (1996), Appendix A)
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In the competition between yielding and fracturing, the heterogenous mass of 

amorphous molecules tends to nucleate cracks or voids all over the volume to allow for a 

considerable strain o f 3% before the final breakage, yet no necking is noticeable.

The compressive failure behavior has not been reported yet, but the "yield" 

strength under compression is known to be more than twice the tensile strength. The 

reason can be explained as follows: compressive fracture may occur (in brittle and some 

ductile materials) as the result of cracks induced by heterogenous yielding, and the crack 

nucleation and propagation stresses are higher in compression than in tension. Therefore, 

unlike metals whose yield strengths are almost independent of hydrostatic pressure, in 

polymers, pressure does affect the yield condition in the following way: tensile 

components of stress promote yielding while compressive components delay it. According 

to Courtney (1990), the following yield criterion can be used for glassy polymers under 

multiaxial stresses

S + ocpp > r y (3.3)

to replace the von Mises criterion for general uses.

- G i f  +(O j -o 'a )2 +(o*3 ~ ^ i ) 2]l/2 = S > r y (3.4)

In the equations, t y is the yield stress in pure shear, p  = (crx +cr2 +cr3)/3 is the mean 

pressure affecting volume, and cr,, a 2 and cr3 are the principal stress components.

3.2.3 Yield and Fracture—flexural

The deformation and failure behavior of Insituform Enhanced resin under (three- 

and four-point) bending conditions has also been tested. The fracturing mechanism is the
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same, but the stress-strain curve shows a rather different phenomenon: the plateau beyond 

the yield point in the tensile curve is now replaced by a ramp (Fig. 3.2b).

Applying the discussion on the difference between tensile and compressive yield 

limits, this ramp can be explained as follows: the strain increases proportional to the stress 

with a slope equal to the axial modulus until the tensile yield limit is reached at the 

extreme fiber in the tensile region. After that, the slope of the curve drops with the 

propagation of the yielded area in the stretched side. The compressive yield limit will then 

be reached in the opposite side, and the sample under bending stresses will finally fail 

when a plastic hinge forms at the mid-span point. The nominal bending stress (determined 

by the moment over the specimen inertia) at failure should be lower than the compressive 

yield limit (when ideal elastic-plasticity assumed).

Therefore, the flexural behavior is primarily a structural phenomenon rather than 

an essential material property. The bending-till-failure behavior will be simulated in the 

next chapter by using a specially designed composite beam element incorporating specific 

material properties observed in tests.

3.3 Creep Properties

The concept of creep, or time-dependent deformation under constant stress, can be 

phenomenologically illustrated by Fig. 3.3. A typical creep strain development curve is 

usually divided into three stages: primary (rapidly growing), secondary (steady), and 

tertiary (rupture). The division is rather arbitrary. Constant strain rates are rarely found in 

real test data. In addition, the tertiary stage may not occur when the stress (rather than the 

load) is kept constant (Conway, 1965). In creep-induced buckling analyses, the major
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b. strain rate

Strain (a) and strain rate (b) vs. Time in a constant-stress creep test The creep curve can be 
divided into three stages, hi Stage I (transient creep), the strain rate decreases until it attains a 
steady-state, minimum value (Stage II). Tertiary creep (Stage HI), characterized by an increasing 
strain rate, precedes fracture at t j-. Increasing stress and/or temperature raises the overall level of
the creep curve and also results in higher creep strain rates.

Fig. 3 3  Phenomenological description of creep 
(From Courtney (1990), Fig. 7.2)
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concern is focused on the second stage, which may last for decades under certain stress 

levels. The typical way to model the primary and secondary creep strain is by employing 

an empirical expression based on specific test data.

3.3.1 Creep Mechanisms

In crystalline materials such as metals, dislocation glide along arrays of lattices 

plays an important role in creep under certain temperature ranges. In amorphous 

substances like thermosetting plastics, whose irregular micro structures prevent the 

likelihood of dislocations, creep is induced mainly by thermal diffusions.

One diSusional mass transport mechanism, Nabarro-Herring creep, originally used 

to explain creep of metals under temperatures where dislocations are not active, is also 

observed in amorphous materials. The idea can be adopted to help understand the creep 

phenomena in thermosets.

As illustrated in Fig. 3.4 (Figure .7.5 of Courtney, 1990), Nabarro-Herring creep 

results from the tendency o f mass flux toward and vacancy (or void among lattices or 

granular microstructures) flux away from the areas subject to tensile stresses. In crystalline 

substances, these fluxes are because of the changes of atomic volume in accordance to 

stresses. In crosslinked polymers, it can be considered as (partial) alignment of chain 

segments (especially where crosslinked networks are incomplete) along the direction of 

tensile stresses or perpendicular to the direction of compressive stresses.

Another closely related concept is stress relaxation, which is based on the same 

mechanism as creep but occurs in different situations. Creep and relaxation can be
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Nabarro-Herring creep results from a higher vacancy concentration in regions of a material 
experiencing a tensile stress vis-a-vis regions subject to a compressive stress. This results in a 
vacancy flux from the former to the latter areas, and a mass flux in the opposite direction (a). The 
resulting change in the grain dimensions (b) is equivalent to a creep strain.

Fig. 3.4 Nabarro-Herring creep mechanism 
(From. Courtney (1990), Fig. 7.5)
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thought of as two sides of the same sheet of paper. When the material is subject to a 

sustained load (as in the case of creep buckling), stress may redistribute along with 

uneven deformation rather than decrease (or release) over the whole volume.

Creep recovery is also significant in polymers. Even large strains can be 

recovered almost completely after loads are removed for a certain period o f time. For 

thermosetting plastics, recovery can be explained as the crosslinked structure influences 

the time-dependent deformation and the changes in this structure induced by stress or 

strain are "remembered" in some sense (Finnie and Heller, 1959). Once again recovery 

may be negligible in creep buckling processes in which stresses change (redistribute) 

gradually rather than release completely, as under the assumption of constant pressure.

For long-term CIPP liner buckling where the external pressure on the Liner 

changes due to variation in the groundwater level, recovery may play an important role in 

the evolution of the stresses, strains, and deflections in the liner. Further investigations 

are needed to include the effect of recovery into the modeling.

3.3.2 Creep Under Various Loading 
Conditions

Another important aspect that needs to be addressed is that the creep rates o f  the 

Insituform resin is a strong function of the loading condition. For a specific nominal 

stress level, the tensile strain rate is significantly larger than the compressive strain rate, 

with the flexural strain rate residing in between. In addition, the steady creep stage for 

compression can last thousands of hours at stress levels under which tensile samples will 

break instantaneously or rupture within a few days.
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Although the mechanism for this phenomenon is not yet clearly known, analogue 

can be made to the yield and fracture situation where the influence of hydrostatic pressure 

has been used to explain the difference between tensile and compressive yield strengths. 

Under a negative pressure (as in compression), the same magnitude relative movement of 

polymer segments where crosslinked networks are incomplete will need greater stresses or 

longer time, whereas under a positive pressure (in tensile regions), it is comparatively 

easier to stretch in alignment to the stress. This type of movement has been considered the 

main reason for creep strains in space (crosslinked) polymers (Findley, 1960).

The randomness of imperfect spatial structures leaves a great deal o f room for 

variations among creep curves from different samples. However, consistency has been 

found for specimens from the same batch for which the concentration o f crosslinks can be 

considered as a constant in a statistical sense.

The creep o f specimens under bending is considered here as a structural behavior 

in which the concave side suffers compression and the convex side suffers tension. The 

overall (nominal) creep rate should be in the range bounded by tensile and compressive 

rates. With the occurrence and propagation of plastic yield region in the stretched side, the 

specimen is actually undergoing a visco-elastoplastic deformation. This case will also be 

simulated by using finite element analysis in Chapter 4.

3.3.3 Creep Models

Although rational models such as Maxwell's or Voigt's and the Boltzmann's 

Principle are frequently used in literature to depict viscoelasticity, empirical models are 

widely used in structural analyses involving creep to allow for specific test data. Early
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empirical creep models were reviewed by Convey (1965), and a more extensive list is 

available in Skrzykep (1993). Interested readers can refer to them for more details.

Under constant stresses, creep phenomena are found primarily dependent on time, 

stress, temperature, and other factors (such as moisture). Many researchers assumed that 

the effects o f various factors are separable. In the present study, the creep strain is 

assumed to be a function of time t and stress c  as follows

s CR=f{t)g{cx)  (3.5)

A. Norton-type creep law (Norton, 1929) has been widely used for metals under high 

temperature, where (nearly) constant creep strain rate was found under constant stresses.

e CR = K am (3.6)

The equation has also been extended to include the primary phase, by combining a Bailey 

(1928) law, in which g(cr) is also a power function, to provide more variability.

=Kcxmt n (3.7)

The concise form allowed close-formed solutions being obtained for creep- 

buckling o f rectangular plates and cylindrical shells when the stress exponent was odd 

numbers (Hoofi 1957, 1959; Ellington, 1960).

For plastic materials, Findley (1962) suggested a simple expression based on his 

1900-hour creep tests

sCR=s[r  ' (3.8)

in which et is test constant dependent on a. The equation was proved later to give a good 

fit to test data obtained over a continuous time span o f as many as 26 years (Findley, 

1987).
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Although a hyperbolic-sine function was proposed for some plastics (Findley and 

Khosla, 1955), it is also possible to relate et to stress a  by a power function. In the

current study, based on a re-analysis of Lin's (1995) data, the Bailey-Norton type creep 

model (Eqn.. 3.7) is used. Different constants are used for creep strain under tensile and 

compressive stress. The fit curves and test data are compared in Fig 3.5, with the 

corresponding creep constants listed in Appendix A (Table A.1).

3.3.4 Creep Under Changing Stresses

The stress is subjected to change (or redistribution) in the creep buckling process, even 

when the load is kept constant. Time and strain hardening theories are two possible ways 

to determine the accumulated creep strains under changing stresses. Despite the 

convenience associated with time hardening expressions when analytical approaches are 

used, it has been known for a long time that they may lead to incorrect predictions, 

especially in creep buckling analyses (Shanley, 1952). The strain hardening law is hence 

adopted according to Findley and Khosla (1955), as expressed in the following equation 

where the time-dependent strain rate is described as a function o f strain s CR

The integration o f strain rate allows creep strain being accumulated as shown in Fig.

will occur. In the case of a constrained liner undergoing constant external pressure, 

stresses mainly increase monotonically, as will be shown in later chapters.

n (k a m) Un
(3.9)

3.6. The strain hardening law is applicable to plastic materials when no stress decreases
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3.4 Summary

The constitutive model used in the present study can be summarized as follows:

1) The conventional division o f total strain, as expressed by Eqns (3.1) and (3.2), will be 

adopted.

2) Linear elasticity before yield and ideal plasticity beyond yield is assumed.

3) The same modulus (obtained from tensile tests) is used for tensile and compressive 

elastic deformations.

4) Different yield strengths are used for tensile and compressive deformations in 

accordance with test observations.

5) The Norton-Bailey creep law (Eqn. 3.7) is adopted, with two different sets of 

parameters (k , m, and n) associated with tensile and compressive deformations.

6) The strain hardening law is used to determine creep strains subject to stress 

redistribution.

Creep under bending is considered as a structural phenomenon, which should be 

determined by applying the essential properties obtained in axial tests.

Based on specific characterization tests, this model reflects all the major features of 

the mechanical behavior of a typical CIPP material, and hence is considered appropriate 

for both short- and long-term buckling analyses of CIPP liners. Incorporation the model 

into the finite element representation will be detailed in the next chapter.
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CHAPTER 4

FINITE ELEMENT MODEL 

AND ANALYSIS

A finite element approach is employed to model the liner-pipe configurations and 

provide the necessary solution procedures. With the aid o f a sophisticated finite element 

package, ABAQUS, the intrinsically nonlinear problem can be handled with ease so as to 

focus on the simulation of long-term behavior of the encased liners in which we are most 

interested.

The assumptions made in this study are addressed first in this chapter. These 

assumptions are followed by the finite element model design and implementation to bring 

these assumptions into reality. The ABAQUS features used in the modeling are also 

described where necessary.

4.1 Essential Assumptions

Rigidity of Host Pipe. The host pipe, though deteriorated, is assumed rigid 

because its stiffness is typically much higher that that of a CIPP liner. In addition, it is also 

assumed that the pipe-soil system is still strong enough to resist all the loads transferred 

from the surrounding soil. The case in which the host pipe is still (nearly) circular or 

slightly oval is considered in this dissertation.

49
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Loading Condition. To really focus on the liner, the panorama o f the soil-pipe- 

Iiner system under all possible environmental loads will be reduced to an idealized 

situation in which the liner is subjected only to hydrostatic pressure as the result of 

underground water and interacts with its host pipe. The hydrostatic pressure induced by 

underground water inflows through the cracks on the host pipe is assumed constant 

throughout a liner's service life.

2-D (Ring) Configuration. In a typical rehabilitation application, the length of a 

liner will be much greater than the diameter of the liner. Along longitudinal direction, the 

fitting condition between the liner segment and the sewer pipe into which the liner is 

installed would be roughly the same, and the hydrostatic pressure will be, in the worst 

case, uniformly distributed. To simplify the solution procedure, the original problem 

concerning a cylindrical shell is reduced to a commonly used ring configuration (with the 

plane strain condition adopted), assuming a single cross-section o f the liner (with a width 

of unity) can be used to represent the whole liner.

Ring/Beam Model. The ring structure will be modeled with 2-D beam elements 

(B21) in the finite element simulations. Actually, the beam model has been widely used by 

previous investigators as reviewed in Sections 2.2 and 2.4. In the present study, the use of 

beam elements is also based on the consideration of specific CIPP properties.

Material Properties. A particular CIPP product, the Insituform Enhanced resin, 

is chosen as the object o f the study because both the material and physical test data 

necessary for use are available. The trend revealed from the study based on a specific
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material is considered applicable to many others.

The Insituform Enhanced product is made of polyester, a thermosetting plastic. Its 

inelastic properties, such as yield limits and creep rates, associated with various loading 

conditions have been found quite different. This phenomenon reflects that the inelastic 

behavior o f the material depends not only on effective stress (or the second stress 

invariant) but also on hydrostatic pressure as well (Chapter 3). The inclusion of this 

specific feature is considered essential to the accurate prediction o f the buckling behavior 

o f CIPP liners in both short and long time scales. However, sophisticated constitutive 

models for the polymeric materials have not been well established.

For the simplified thin ring configuration and throughout the buckling process, the 

stress state through the liner thickness is dominated by circumferencial components: 

compression plus bending in the deflected part(s); and pure compression in the remaining 

part(s). Therefore, it can be assumed that any fiber within the liner thickness is subject to 

uni-axial stresses: either compressive (on the concave side) or tensile (on the convex side). 

The effect o f an actual multi-axial stress state can be taken into account by introducing 

proper adjustment factors to relevant material properties, e.g. multiplying the Young's 

modulus E  by a factor o f (1 -  v2) to account for the plane strain condition.

It is assumed in this study that the liner material can be phenomenologically 

divided into two parts: one part can resist tensile stress only, and the other part can resist 

compressive stress only. The constitutive relations can then be modeled by using 

experimentally determined properties under uniaxial tension and compression tests. The 

tensile and compressive behaviors can be modeled as concluded in Section 3.5.
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4.2 Incorporating CIPP Properties into 
Finite Element Model

The specific mechanical properties of the polymeric material as discussed in the 

prior section can be incorporated into the finite element model by employing the 

ABAQUS features as detailed next.

4.2.1 "Composite" Beam Element

To simulate the different material properties with respect to tensile and 

compressive deformations, a composite beam element is implemented by using two B 2 1  

(2-node beam) elements back to back as one. One of the elements is assumed "NO­

TENSION," and the other "NO-COMPRESSION," using the capability provided by the 

ABAQUS (HKS, 1995) material library. The "composite" beam element makes it 

convenient to incorporate different modulii, Poisson's ratios, yield limits, and creep 

properties associated with tensile and compressive stresses into the analysis. This feature 

allows the analyst adhere to specific material properties observed in tests.

Material Properties. Different CIPP materials may exhibit quite different 

mechanical properties under short- and long-term loading conditions. Even for the same 

product used in this study, Insituform Enhanced, considerably different short- and long­

term properties have been reported by several resources because specimens from different 

batches have been used (Guice et al., 1994, and Lin, 1995; Boot and Javadi, 1998). While 

each resource presents a very similar elastic modulus, E, and a single Poisson's ratio, v, 

different yield limits and creep rates are listed for tension and compression. The 

compression yield limit has not been characterized. However, it has been noticed that it
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should be slightly higher than twice the value of the tensile yield limit.

Three sets of material properties will be used in this dissertation for different 

purposes:

1) LONG (Guice et al., 1994, and Lin, 1994) This set of data is associated with 

the CPAR tests which gives the most comprehensive long-term buckling 

database until now. LONG will be used wherever long-term properties are 

needed.

2) SHT1 (Boot and Javadi, 1998) This set gives a complete spectnam of yield 

limits which can be used to validate the performance of the proposed 

composite beam elements.

3) SHT2 (Stokeld, 1998) This set is associated with the latest short-term tests 

conducted at the TTC. It will be used in Chapters 5 and 6 to verify short-term 

FEA predictions against test rests.

The material properties (instantaneous and creep) with appropriate adjustments as 

the result of the plane strain assumption are listed in Appendix A 1.

4.2.2 Performance Validation

The performance of the proposed "composite" beam element under various loading 

conditions will be verified in this subsection.

Axial Loading. Only one composite beam element with a length of unity is used 

in the simplest loading condition. SHT1 data (from Boot & Javadi, 1998) is used because 

they gave the most complete set o f properties. The element is completely constrained at 

one end and loaded by the application of forced displacement at the other end (See the
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original ABAQUS input file AXLYLD. inp in Appendix B .l for details) . The stress-strain 

curve is given in Fig. 4.1. The material deforms and yields in a way exactly as defined.
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Fig. 4.1 Finite element simulation of axial loading

Flexural Loading. This simulation is a real test for the performance of the new 

element. The SHT1 data is also used here. A three-point bending test is simulated, in 

accord with the ASTM D 2990-77 (1977) standards: the specimen under bending is .21 

inches in width (o) and depth (h), and the span (2L) between supports is 3.36 inches, 

sixteen times of the depth. Only half of the test setup is modeled with 20 composite beam 

elements. The axial and flexural displacements are constrained at mid-span for symmetry, 

and the lateral DOF is constrained at the end node to simulate a simple support condition 

(cf. FLXYLD. in p  in Appendix B.2). The response curve for the lateral displacement A at 

mid-span node to the applied load P  (on the half beam model) is converted to the nominal 

stress-strain curve for the outermost fibers at the mid-span.
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e = 2 h M 2 l}  (4.1)

a  = 6PLI bh2 (4.2)

The stress-strain curve is given in Fig. 4.2, showing a "ramp" similar to a real flexural test 

curve (as reported in Omara, 1996, Fig. 3.2b).

There is no significant yield point on the flexural stress-strain curve. It can be 

traced from the tensile stress history that when the outermost fiber on the tensile side 

starts to yield at 3150 psi, the nominal "flexural" stress is about 3800 psi, coinciding with 

the yield stress o f3700 psi (25.7 MPa) by Boot and Javadi (1998). The flexural curve then 

grows at a gradually decreasing rate until it stops at 7684 psi when a plastic hinge is 

formed at the mid-span node.

The predicted breakage stress (7684 psi) shows good agreement with the reported 

values, 7350 psi, while the predicted nominal strain at break, 3.43%, shows less 

agreement. Besides the possible influence from the artificially assigned yield limit (8000 

psi) associated with the compressive deformation, the differences may be induced by the 

absence o f the fracture mechanism in the finite element model. An ultimate tensile strain of 

3% was reported by Boot and Javadi (1998), which was proposed as a failure criterion. In 

the simulation, when this ultimate strain is reached at the outermost fiber under tension, 

the nominal flexural stress is 7100 psi with a nominal strain of 1.89%. After that point, 

local breakage should have occurred which tends to reduce further stiffening of the beam 

and to enlarge the lateral deflection.

The simulation of fracturing during the bending test is not intended in this study. 

This example shows that the composite beam element can accurately simulate the short­

term behavior o f CIPP materials (represented by the Insituform Enhanced resin) subject to
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various loading conditions when observed tensile and compressive properties are used.

The simulation of long-term behaviors will be verified next.
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Fig. 4.2 Finite element simulation of flexural loading

Axial Creep. The same geometry as used in the short-term axial test is used, with 

the material properties from LONG (Guice et al., 1994; and Lin, 1995) because of the 

availability o f long-term properties. Four stress levels have been used for tensile and 

compressive creep, as done by Lin (1995) in his characteri2ation tests. The corresponding 

ABAQUS input file, AXLCRP. in p  is listed in Appendix B.3, and the simulation results 

are shown in Fig. 3.5. The predicted creep curves agree well with the observed test data.

Flexural Creep. The three-point bending model and the material property set 

LONG are used in this example. The four nominal stress levels used in Lin's (1995) tests, 

1000, 2000, 3000, and 4000 psi, are applied. The load P in each case is determined by an
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alternative form of Eqn. (4.2), as

P = abhr /  6L (4.3)

The simulations are accomplished by four ABAQUS runs. Each time, the applied 

load in the line following the *CLOAD command in FLXCRP.inp (Appendix B.4) is 

adjusted accordingly. The predicted creep curves are shown in Fig. 4.3, with Lin's test 

data for comparison.
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Fig. 4.3 Finite element simulation of flexural creep strain

From the comparison, the predicted total strains show good agreement with the 

observed values at the beginning, but this agreement decreases at longer times and higher 

stress levels.

To investigate the reason for this discrepancy, the stresses at the outermost fibers 

for both tensile and compressive sides are plotted in Fig. 4.4 for all four stress levels, 

together with the nominal flexural stress histories. The maximum tensile stress under each
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case decreases with time, while the maximum compressive stress increases. This 

phenomenon may occur because material in the tensile side creeps at a faster rate than in 

the compressive side. This mismatch in creep rates would lead to partial release of the 

tensile stress and stress redistribution across the beam thickness. This phenomenon might 

be happening in real bending tests, yet the detail is not known. From the numerical 

analysis standpoint, the predicted curves might be able to fit the test data if the stress is 

constant during the entire time span. Hence, constant stress assumption is the cornerstone 

of the creep model established in this study.
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Fig. 4.4 Finite element simulation of flexural stress history

Unexpected differences between simulated and experimentally observed flexural 

creep rates may indicate some unknown mechanisms in CEPP material properties. More 

thorough experimental investigations and analytical modeling are recommended.
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4.3 Finite Element Model Setups

As discussed earlier, the buckling behavior of constrained CEPP liners depends 

strongly on both material and geometric parameters. An appropriate methodology to 

define the typical geometric configuration of the liner-pipe system is another cornerstone 

of the present study.

4.3.1 Constraint from Host Pipe

First of all, the liner deflection should always be constrained within the confines of 

its host pipe. During the constrained buckling process, a liner interacts with its host pipe 

through the contact area(s) which may change in size and position with the evolution of 

liner deflection. This contact condition is simulated by employing the surface contact 

capability in ABAQUS.

In the finite element model, the host pipe, assumed to be rigid, is modeled with a 

set o f R2D2 (2-node two-dimensional rigid body) elements. The set is then defined as a 

rigid body, whose translational and rotational displacements are represented by a "master" 

or reference node. All the degrees of freedom o f the reference node are then constrained 

so as to fully constrain the host pipe against any motion.

The inner surface of the rigid pipe and the outer surface o f the liner are defined 

appropriately by using the "*SURFACE DEFINITION" command, and then defined as a 

"CONTACT PAIR," indicating the potential contact between the two surfaces.

Contact elements internal to ABAQUS will be generated automatically at run time 

to deal with the contact condition. Any liner nodal displacement attempting to penetrate 

the rigid body surface will be cut back, and the iteration will be repeated until an allowable
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liner profile is reached or the number of iterations exhausted. The contact pressure is 

positive at an individual node whenever the gap between the pair o f surfaces is closed; 

otherwise, the contact pressure will remain zero.

The flexible liner surface, or the "slave" surface in the pair, is allowed to slide 

along the rigid ("master") pipe surface, and the relative sliding can be "finite." The 

tangential interactions or frictional forces can also be assumed by the definition of an 

appropriate friction coefficient. For simplicity and to be conservative, the friction 

coefficient between the liner and pipe is usually defined as zero in the present study. 

However, nonzero tangential frictional coefficients and the resulting forces are included in 

simulations of the evolution of deflected shape of the liner (Chapter 5). The coefficient 

value is varied from 0 to 0.2 (Hall, 1981) to investigate the consequences.

4.3.2 Definitions of Geometric 
Parameters

The geometric configuration of the liner-host pipe system can be characterized by 

parameters from the following three categories: liner dimension ratio, annular spacing or 

gap between the liner and host pipe, and imperfections on liner-pipe geometry. These 

parameters will be defined as follows in dimensionless forms to extend the applicability of 

the FEA results.

Liner Dimensional Characteristic. The cross-section of a liner is first idealized 

as a perfect circular ring. The "slenderness" of the ring is conventionally described by its 

dimension ratio

D R = D lt (4.4)
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in which D and t are the mean diameter (measured at the mid-surface of the liner) and the 

thickness of a liner, respectively. When any imperfection, e.g. variable thickness or ovality, 

is taken into consideration, an equivalent perfect cross-section can be thought of which 

will provide the DR  ratio for comparison.

Annular Gap between Liner and Host Pipe. The existence of gap in the Iiner- 

pipe system is inevitable. In the idealized case, the gap is the annular space between two 

perfect circles, one of which is encased in the confines o f another. Although the relative 

position of the two circles may vary, the total space depends only on A, the difference of 

the inner diameter of the host pipe and the outer diameter of the liner. The size of gap, g, 

is then defined as one half of the diameter difference, or as a uniform gap, when it is 

evenly distributed along the liner circumference. 

g  = A/2 

(4-5)

The relative or dimensionless gap is defined as

G (%) = g/D* 100 (4.6)

On the other extreme, when the annular gap is unevenly distributed, a G (%) gap describes 

the maximum gap 2g (or A) at one side and no gap at the opposite side.

Imperfections in Liner and/or Host Pipe. Since the liner stifihess is much 

smaller as compared to that of its host pipe, the liner deflection will be influenced greatly 

by the shape of its host pipe. Therefore, the ovality o f the (damaged) host pipe is a major 

influencing factor which should be taken into account. In the present study, the ovality of 

the liner is always assumed to be the same as that of its host pipe.
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O V (%) = (I)max - Dmin)/( Dmax 4* Dmtn )*100 (4.7)

Other imperfections of liner geometry, such as thickness variation and noncircular (wavy) 

shape local to a certain ring segment (Fig. 4.5), are also considered, especially in liner life 

prediction. Thickness variation, V, and a relative local dent, W, are expressed as

V(%) = vft* 100 (4.8)

and

W (%) = w/Z)* 100 (4.9)

These localized imperfections should also be related to an angle § defining the range of 

imperfection as shown in Fig. 4.5..

I

Fig. 4.5 Schematic of local imperfection

4.3.3 Model Setups

By using the definitions in the prior subsection, the geometry of the liner-pipe 

system can be determined by the selection of D, the mean diameter o f the liner. Other 

dimensions necessary in the finite element model definition can be determined as 

DpiPe =  D * ( \+ 2 G ) \
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Dpipe = £>*(1 + 2G);

Dmm = D*(l - OF), £ W  = D*(l + OV) for oval pipes, and 

/ = D/DR.

When any local imperfection is present, the range angle <j> is also needed

Three types o f finite element models are used in this study for different purposes: 

one- and two-lobe, and transition models. Although each type relates to different 

conditions, they all share a single assumption that the liner will buckle in the vertical 

axis. In reality, an encased liner may tend to snap through along the short axis of the 

ovalized host pipe or at an imperfect locality where the liner is thinner or dented The 

vertical axis of the finite element model is assumed to align with that direction.

One-Lobe Model. This type o f model is characterized by a one-lobe buckling 

mode and is most frequently used throughout this study. In the one-lobe model, gap is 

assumed unevenly distributed (the gap is 2g at the top and 0 at bottom). The radial 

displacement at the bottom node where the liner touches the host pipe is constrained for 

simplicity. In this case, only one half of the liner and host pipe is modeled with 

composite beam elements (as discussed in the prior section) and rigid body elements 

(R 2 D 2 ), respectively. Symmetrical boundary conditions are applied to both end nodes of 

the half liner (Fig. 4.6).
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Fig. 4.6 Schematic of the one-lobe model

Two-Lobe Model. In this type o f model, the gap is assumed even, and the 

resultant buckling mode is symmetric with respect to the horizontal axis. Therefore, only 

a quarter of the liner-pipe system is meshed up, with symmetric boundary conditions 

being applied at the end nodes (Fig. 4.7). This model is be used to provide "upper bound" 

predictions where comparisons are needed.

Transition ModeL This kind o f model is used mainly in Chapter 5 to investigate 

more realistic deflection evolution of an encased liner other than the conventional one- 

and two-lobe assumptions. One half of the liner-pipe system is modeled as in the one- 

lobe model, yet the boundary conditions at the end nodes are different: only the rotational 

degree of freedom is constrained. The liner is thus allowed to "float" within the confines

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

of its host pipe. Logical connector elements, i.e. spring and dashpot elements (HKS, 

1995), will be used to provide a small stiffness to resolve the numerical difficulty which 

will otherwise be induced by a singular system stiffness matrix. The setup of this kind of 

model will be described in further detail in Section 5.4.

/ i \
0.0D/2

Fig. 4.7 Schematic of the two-lobe model

4.3.4 Solution Procedures

The deflection of an encased liner can be driven either by an increasing external 

pressure or by the accumulation o f creep strain with time under a sustained constant 

external pressure. The final collapse will occur when the critical value corresponding to 

the increasing pressure (critical pressure) or elapsed time (critical time) is reached. The 

physical processes involved can be idealized as elastopiastic deformation under loading 

and visco-elastoplastic deformation under constant pressure, which are time-independent 

and time-dependent, respectively.

Two different solution procedures in ABAQUS can be used to simulate the two
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different processes: *STATIC for time-independent loading, and *VISCO for time- 

dependent creeping. Both procedures can deal with the geometrical nonlinearity resulting 

from finite displacements of the liner during liner buckling.

ABAQUS allows the user to divide the solution of a complex nonlinear problem 

into a sequence of "steps," and to choose different procedures in different steps. If  the 

geometrical nonlinearity effect is considered, i.e. NLGEOM is selected in a specific step, 

the final state o f the model (displacements, stresses, strains, etc.) can be included in the 

response in the step that follows.

Instantaneous Buckling Solution Procedures. A typical finite element analysis 

o f the short-term buckling of an encased liner includes two * STATIC steps.

1) Application of an initial disturbance: the gravity force (assuming a specific weight o f 

.0361 Ib f / in 3) is loaded upon the liner, to distort the perfect circular configuration 

and introduce initial deflections.

2) Loading: The uniformly distributed external pressure is applied on the liner and 

increased until the onset o f buckling is reached.

Creep Buckling Solution Procedures. A typical finite element analysis o f long­

term buckling induced by creep is composed o f three steps. The first two are * STATIC 

steps similar to the ones described above. An additional *VISCO step is needed to solve 

the creep problem.

1) Application of the initial disturbance.

2) Loading: Applying and increasing the pressure until the desired load level (lower than 

the critical load) is reached.
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3) A * VIS CO step in which the deflection o f the liner grows with time under a constant 

external pressure as a result o f the creep phenomenon. The solver can automatically 

assign appropriate time increments according to the error tolerance on creep strain 

defined by the user. The solution stops at the onset o f liner collapse. At that point, no 

convergent solution satisfying the error tolerance can be reached when the attempted 

time increment is equal to or smaller than its lower limit.

4.4 Summary

Finite element models incorporating specific mechanical properties of CEPP 

materials and simulating representative liner-pipe configurations are discussed in this 

chapter. The performance of the proposed composite beam element has also been 

validated against characterization test data. After an appropriate mesh refinement study 

(as detailed in Appendix C.2), the models employing 144 equal length (composite) 

elements can be used.
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CHAPTER 5

FUNDAMENTAL BUCKLING BEHAVIOR 

OF CONSTRAINED PIPES

The fundamental structural behavior of encased CIPP liners during the short term 

buckling process will be simulated in this chapter by using the finite element model 

incorporating experimentally observed material properties as discussed in Chapters 2 

through 4.

The constrained buckling analyses based on the conventional one- and two-lobe 

models are first conducted. The validity o f the proposed method based on a composite 

beam element is calibrated by comparing the predicted results against buckling pressure 

data observed from the latest short-term tests at the TTC (Hall, 1998a). The effects of 

plastic yield and buckling mode on the prediction accuracy are discussed. Also, the 

mechanism for possible deflection evolution patterns of buckled liners is discussed.

5.1 Fundamental Buckling Behavior

A typical liner-pipe configuration is used here to demonstrate the basic buckling 

behavior of a constrained CIPP liner under external pressure. The dimension ratio DR = 

50, a relative gap G =  0.4%, and both the even and uneven gaps are used. The predicted 

ultimate pressures corresponding to one- and two-lobe modes are 78.17 and 106.0 psi,

68
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respectively. Compared to an unconstrained liner, the critical pressure from the 

Timoshenko's Equation (2.2) is predicted to be 9.91 psi

5.1.1 Stress Distribution and Evolution

Curves showing the stress distribution along the liner for both models are given in 

Fig. 5.1. In the figure, maximum stresses can be found at the middle and at the border of 

the buckled part(s), which are denoted as points I and n , respectively.
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Fig. 5.1 Stress distribution for a one-lobe model

As compared with a free-standing pipe, the constrained ring sustains a much 

higher pressure, and the deformation of the buckled part(s) is much more severe. A 

stress-pressure plot is given in Fig. 5.2. The plastic yield limit is first reached at the inner 

fiber at point I. After that, the outer fiber yields (at point I) which is under compression. 

Thereafter, the material at point H (both inner and outer fibers) yields. The liner collapses 

when plastic hinges are formed at both points I and II, making the buckled portion a
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three-point mechanism. Without the incorporation o f material failure, a significantly 

higher critical pressure, 93.7 psi, will be predicted.
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Fig. 5.2 Stress history for a one-lobe model

The ultimate pressure for the two-lobe model (predicted as 100.6 psi) is higher 

than that for the one-lobe model. The higher pressure can be explained as follows: in the 

two-lobe model, more o f the ring undergoes high stresses resulting in more strain energy 

storage.

A structure is expected to deform along a path associated with the lowest possible 

potential energy level. This is the reason why the one-lobe mode is the most frequently 

observed buckling mode of constrained (steel and plastic) liners. The concept of possible 

buckling paths will be discussed in detail later.
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5.1.2 Effect of Plastic Yield

The constrained ring suffers a structural instability problem. However, for the 

reasons discussed in the prior subsection, the plastic yield strengths (associated with 

tensile and compressive stresses) are reached before the critical pressures predicted by 

elasticity can be approached. Therefore, an elastic model tends to overestimate liners' 

buckling resistance when they are externally constrained.

The dashed curve in Fig 5.2 shows the critical pressure prediction obtained by 

adopting an elastic stress-strain relation throughout the buckling process. When the 

purely elastic model is used, maximum stresses at Point I went far beyond the yield limits 

for tensile and compressive conditions. These stresses were 13942 psi in the tensile 

region and -19323 psi in the compressive region for the one-lobe model. A similar finite 

element run reveals that the maximum stresses are 14000 and -20000 psi for the two-lobe 

model. However, the corresponding tensile yield limit was found to be 3600 psi. The 

compressive yield limit was known to be higher than twice that o f the tensile limit, and is 

assumed as 8000 psi in the present study (See Table A.3 for more detail) .

5.2 Model Verification with Short-Term Tests

A new buckling test program was carried out at the TTC in 1998, to investigate 

the short and long term buckling behavior of CIPP liners encased in circular and oval 

pipes. The short term test results (TTC, 1998) will be used here and in the next chapter to 

verify the validity of the proposed model before the simulation o f creep-induced 

constrained buckling is carried out.
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5.2.1 Test Summary

Results from two series o f short term tests, conducted with nominal 12 "ID and 

8"ED round pipes, are used here. Each series had three sets each has a different nominal 

thickness as 5.5, 6.5, and 7.5 mm (or 0.217, 0.256 and 0.295 in) for 12", and 4.5, 5.5, and 

6.5 mm (0.177, 0.217 and 0.256 in) for 8". Each set had 5 samples. Liner thickness and 

outer diameter values were measured at both ends of each specimen, and the average 

values were recorded as listed in Appendix A.2. The total volume of the annular spacing 

was also measured to estimate the gap magnitude in each test.

Material properties used in these tests were characterized by Stokeld (1998) as 

listed in Appendix A. 1, under SHT2.

As can be seen from the observed buckling pressures listed in Appendix A.2, the 

liner buckling resistance increased with a decrease in the DR ratio.

5.2.2 Predicted Results and Comparison

Finite element analyses were conduced based on the one- and two-lobe models to 

give theoretical predictions. To compare with the test data, liners with dimension ratios 

of 35, 40, 45, 50, 55, 60, and 65 were used. According to the annular volume 

measurements, an average total gap g  = 0.05" was used. The nominal diameter o f the 

rigid surface (host pipe) was set as 12". For the 8" case, the thickness and gap values 

were adjusted accordingly to obtain the desired DR ratios.

Critical pressure predictions based on one- and two-lobe models are listed in 

Table 5.1.
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Table 5.1 FEA Predictions of critical pressure
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DA K
(psi)

Z
(psi)

35 177.7 230.3
40 133.7 177.6
45 102.9 138.9
50 80.5 110.2
55 64.1 88.8
60 52.0 72.5
65 42.9 60.1

Both test and FEA results are plotted in Fig. 5.3 for comparison. It can be seen 

that numerically determined critical pressure predictions exhibit excellent agreement 

with experimental results. The majority of test records fall in a band bounded by the 

lower and upper extreme lines predicted by the one- and two-lobe models, respectively. 

Outlying points, such as the fifth specimen from the 12"OD 5.5mm set, can be found 

below the lower bound. Deviation of these experimental results from the numerical 

results can be caused by a number of factors, such as local variations in liner thickness, 

gaps, and material properties.

These results show a phenomenon extremely similar to what was reported by Lo 

and Zhang (1993) as discussed in Subsection 2.4.3. They suggested a "combined effect o f 

these two competing collapse mechanisms" (i.e., one- and two-lobe buckling models) to 

explain the fact that the observed enhancement factors were bounded by upper and lower 

bounds. The author proposes that this phenomenon may be caused by a transition from 

the two-lobe configuration to the one-lobe configuration before the higher pressure 

associated with two-lobe buckling is reached. The concept of deflection mode transition 

will be discussed in the following section.
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Fig. 5.3 Comparison of predicted and observed buckling pressure

5.3 Experimental Observations of Liner Deflections

The deflection evolution of CIPP liners during short-term and long-term (creep- 

induced) buckling tests have been investigated by a number o f researchers (Lo et al., 

1993; Guice et al., 1994; and Boot and Welch, 1996). The vast majority of liner buckling 

tests conducted at the Trenchless Technology Center (TTC), Louisiana Tech University, 

indicated that the deflection o f the constrained liners starts with the two-lobe mode, and 

undergoes roughly symmetric lobe development during the majority o f the tests (Guice et 

al., 1994). Figure 5.4 shows a typical deflected liner profile recorded during recent liner 

buckling experiments at the TTC. The deflection of the liner was amplified by a factor of 

10 to make it easy to be observed, and hence some part o f the liner appears erroneously 

to have moved out o f its host pipe. A two-lobe deflection pattern remained in effect as 

the pressure approached, the buckling pressure. However, at the onset of buckling, one of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

the lobes became dominant (in all tests), resulting in a one-lobe collapse (Fig. 5.5). The 

other lobe either remained stationary or was released during buckling.

20

19

II

U 12

 Host Pipe
 OPSI
 20 PSI
 40 PSI
 60 PSI
 70 PSI
 80 PSI
 90 PSI
 95 PSI

100 PSI

Fig. 5.4 Typical deflected profiles observed in test (TTC, 1998) 
(Note: Measured deflections are amplified by a factor of 10)

f e i f c  j
Fig. 5.5 Typical post-buckling profile

Lo et al. (1993) report a similar single-lobe collapse phenomenon for buckling 

tests on encased CIPP pipe liners. Boot and Welch (1996) report a two-lobe deformation
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history leading up to buckling, but do not report the mode of final collapse; one o f their 

14 specimens exhibited a one-lobe deformation history. Based on several experimental 

studies, Gumbel (1997) indicates that snap through will occur on one lobe or the other 

even when the deflection begins in a two-lobe mode.

Experimental results suggested that liner deflection may undergo a transition 

from the two-lobe mode to the one-lobe mode. Because there is no predominant 

preference in the distribution of annular spacing, it seems reasonable to assume a 

symmetric initial gap distribution which favors the two-lobe deflection. Yet, the 

development of symmetrical deformation will be distorted by any initial asymmetries (in 

pipe shape, liner thickness, and/or gap distribution), which will be amplified with the 

external pressure increment. When the asymmetry becomes so great that the support 

(from the diminishing contact area between the liner and the host pipe) can no longer 

arrest its development, the buckled liner configuration tends to transition from the two- 

lobe mode into the one-lobe mode which corresponds to a lower critical pressure. The 

phenomenon is rather natural, since any structural behavior always tends to proceed 

along the path which associates with the lowest possible potential energy level, which is 

the lowest critical pressure in the case of liner buckling.

5.4 Simulating Mode Transition by FEA

When simulating mode transitions, the liner is initially located at the center of the 

cavity within its host pipe. A single dashpot (DASHPOT1) element links the top node of 

the liner to a virtual fixed point, and a spring (SPRING1) element links the bottom node 

to another, so as to provide a nontrivial stiffness associated with the vertical DOF at the
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two nodes (Fig. 5.6). A small perturbation force is applied at the middle node to ensure 

that the liner initially deforms in a two-lobe configuration.

crown

dashpot

spnng

invert

Fig. 5.6 Finite element model for mode transition analysis

The spring and the dashpot elements provide a  small resistance to sudden liner 

movements and are essential for computational stability. The spring applies resistance at 

low liner velocities while the dashpot limits the velocity from becoming too large. The 

spring element also produces a slight asymmetry in the vertical direction. As discussed 

later, the small nodal forces induced by these elements are much smaller than the forces 

induced by the applied pressure or the liner-host pipe frictional forces and produce little 

or no change in the final buckling pressure,.

According to buckling theory, the deflection o f a constrained liner may have 

components of both the one- and two-lobe modes, and possibly those o f other higher 

order modes.
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The model configuration as used for this simulation can be summarized in as DR 

= 50, g  = 0.025 in, D  = 12 in, k  =  0.01 Ibfrin, and tj = 0.0001 lbfr(in/sec). The upper and 

lower bound predictions are known to be 110.24 and 80.51 psi, respectively. The slight 

asymmetry induced by the two weak connector elements is enough to activate mode 

transition. To introduce the initial deflection, a small concentrated load pointing 

outwards is applied to the middle node in the disturbance step.

A typical mode transition process is illustrated in Figure 5.7. To emphasize the 

evolution o f the liner profile, the displacement has been magnified by a factor o f 10 (the 

apparent extension of the liner outside o f the host pipe is a consequence of the initial gap 

and this magnification). The initial configuration (Fig. 5.7a) quickly deforms into a 

roughly symmetric pattern after the pressure is applied (Fig. 5.7b). The slight asymmetry 

in Fig. 5.7b is caused by a small initial shift o f the liner toward the spring as the inward 

deflection at the lobes begins. This slight asymmetry is natural in applications and can 

be caused by small variations in liner thickness and material properties as well as by 

buoyancy forces. Figure 5.4 verifies that such asymmetries occur experimentally.

The deflection continues to develop in a two-lobe mode but becomes 

increasingly asymmetric as the pressure rises (Fig. 5.7c). The larger of the two lobes will 

generate higher liner-hostpipe contact pressures near the location where the lobe departs 

from the host pipe. This difference between contact pressure on the upper and lower 

portions o f the liner is the driving force for mode transition (in the absence o f other 

effects such as buoyancy forces). When the asymmetry in liner profile becomes so severe 

that the liner and the frictional force between the liner and the host pipe can no longer 

withstand the imbalance in the net vertical contact forces associated with the opposite
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lobes, one lobe will become dominant and snap through, and the other lobe may be 

released, resulting in a shape as shown in Fig. 5.7d and 5.7e. The mode transition as 

shown in Fig. 5.7d and 5.7e may not always occur; it is possible that one lobe will simply 

become dominant and buckle while the opposite lobe remains fixed in a stable 

unreleased configuration.

The load-deflection history of the extreme upper and lower nodes is plotted in 

Fig. 5.8. Here, it appears that the sudden release of the lower lobe, which occurs when 

the deflection o f the lower node returns to zero, corresponds to snap-through buckling of 

the upper lobe. Other possible deflection paths are described in the following section.

host pipe

Hner

a.initial configuration
(the small initial gap between the liner and host pipe is not visible)

Fig 5.7 Typical deflection evolution process
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b. initial two-lobe deflection mode

2.

c. increasing asymmetry 

Fig 5.7 Typical deflection evolution process (cont’d)
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d. mode transition

.2

e. one-lobe mode collapse

(Note: The displacement has been magnified by a factor of 10. 
therefore parts of the liner seem outside of the pipe)

Fig 5.7 Typical deflection evolution process (cont’d)
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Fig. 5.8 Load-deflection history for upper and lower nodes

5.5 Possible Load-Deflection Paths

The deflection evolution of a liner depends on a number o f factors including 

variations in liner and host pipe geometry, frictional conditions, and material properties. 

Figure 5.9 shows the deflection evolution o f the extreme upper and lower nodes for six 

cases o f liner buckling. As discussed below, changes in the frictional coefficient 

between the liner and the host pipe may cause the liner to transition from two-lobe to 

one-lobe buckling at different pressure levels.

Path A: The deflection evolution for a free liner (no host pipe constraint) is given 

for comparison.

Paths B and C : Path B and Path C correspond to conventional one- and two-lobe 

buckling modes, respectively. Path C coincides with Path A until the deflected liner 

begins to receive support from the host pipe. Path B for the upper side (or crown) takes a
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slightly different course because liner-hostpipe contact begins at a lower pressure; notice 

that the deflection at the lower side (or invert) is restricted to zero. Path B and C 

correspond to lower and upper bound buckling pressures of 558 and 764.0 KPa (80.5 and 

110 psi), respectively.

Path D: When there is little or no friction between the liner and the host pipe, the 

transition from a two-lobe to a one-lobe deflection pattern can occur in an early stage of 

lobe development. Notice that for Path D, the deflection evolution suddenly transitions 

to the conventional one-lobe pattern, thereafter following Path B to failure.

Path E: The presence of significant friction between the liner and the host pipe 

will prevent early transition from a two- to a one-lobe pattern. Path E shows that with 

friction present, the liner snaps through at a pressure slightly greater than the lower 

bound pressure. Here, snap-through corresponds to collapse of the crown and the 

simultaneous disappearance of the lobe at the invert

Path F : As the friction between the liner and the host pipe increases, the pressure 

level at which the dominant lobe snaps through also increases. Path F indicates that 

increased friction results in snap through at a pressure level closer to the conventional 

two-lobe buckling pressure. The invert lobe may stay stationary or completely release 

after snap-through from the crown lobe. The post-buckling behavior was not attempted in 

the present study.

Paths D, E, and F above correspond to liner-hostpipe friction factors of 0, 0.14, 

0.20, respectively. Buckling mode transition may be initiated by a number of other
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factors including variations in liner thickness and material properties as well as in host 

pipe geometry variations. Finite element simulations of mode transition caused by liner 

thickness variations and initial eccentricity of the liner-pipe system have been undertaken 

in this study.

A -  F re e  
B  -  O n e - lo b e  
C  -  T w o -lo b e  
D , E , & F  -  M o d e  
T ra n s it io n  P a t h s
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E  lo w e r

E
E u p p e r•*

«
Q -5 --

-1 0  ■■
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Fig. 5.9 Possible transition paths

In summary, variations in liner-hostpipe geometry and material parameters result 

in liner buckling at pressures between the lower bound (one-lobe) buckling pressure and 

the upper bound (two-lobe) buckling pressure. As a result o f the complex nature of this 

buckling phenomenon and the lack of precise data in field applications, it is
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recommended that liner design be based on the lower bound buckling pressure associated 

with one-lobe buckling models.

5.6 Conclusions

Experimental results showing the load-deflection evolution of liners constrained 

within rigid host pipes indicate an initial two-lobe buckling mode which eventually leads 

to a single-lobe collapse. The phenomenon whereby the buckling mode transitions from 

a two-lobe mode to a one-lobe mode is not well understood. This chapter helps to clarify 

this issue through finite element simulations of buckling mode transition, resulting in the 

conclusions listed below.

1) The conventional one- and two-lobe buckling modes are found to give lower 

and upper bounds for all possible critical pressures. The finite element predictions show 

excellent agreement with experimental data, with most of the experimental data falling 

between the predicted lower and upper bounds.

2) Experimentally observed load-deflection paths are characterized by transitions 

from the two-lobe mode, which corresponds to a higher critical pressure, to the one-lobe 

mode. A. finite element approach has been used to simulate the possible deflection 

evolution paths.

3) The load-deflection paths determined from finite element analysis are seen to 

fall between the paths corresponding to the conventional one-lobe and two-lobe buckling 

modes, depending on the specific conditions of the liner system (e.g. friction factor, 

initial gap, liner thickness variations, etc.).

4) Because these conditions are not controllable in many engineering
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applications, the design of such liner systems should be based on one-lobe buckling 

models corresponding to a conservative lower-bound buckling prediction.
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CHAPTER 6

BUCKLING PRESSURE OF CIPP LINERS 

IN CIRCULAR AND OVAL PIPES

The effect of geometric parameters on accurate prediction of buckling pressure of 

CIPP liners will be discussed in this chapter. An empirical model will be used to relate the 

buckling pressure, based on the one-lobe mode (Chapter 5), to the dimension ratio (DR) 

of liners and to coefficients that depend on geometric imperfections of the liner-host pipe 

system. These coefficients can be determined by a small number of finite element runs over 

a range of the geometric parameters and by numerical analysis techniques such as the 

Lagrange interpolation and least-squares.

6.1 Parametric Study

Since buckling resistance of an encased liner is highly enhanced by the interaction 

with its host pipe, any factor which causes a certain change (or degradation) from the ideal 

fitting between a liner and its host pipe may lead to a reduction in the enhancement, and 

hence to reduction in the liner's buckling pressure. The effect of each factor can be 

determined by a parametric study.

6.1.1 Influential Parameters

The dimension ratio (DR) is the first parameter to be included in the study, since is

87
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is essential to any pipe design where buckling is involved. In the context o f constrained 

CIPP liners, the most influential factors are the geometric imperfections of the liner-pipe 

system as a whole, most important of which is the gap (annular spacing) between a liner 

and its host pipe. When the deteriorated pipe loses its original circular shape, the ovality 

of the host pipe should be considered. These three factors (gap, DR, and ovality) are 

considered essential for accurate prediction o f buckling pressure, and will be included in 

the following study in order to develop an empirical model for liner design based on 

short term buckling criterion. Other factors, such as variation of liner thickness and local 

imperfections will be discussed in the long-term buckling case (Chapter 8).

Of the parameters, DR and host pipe ovality (OV) are dimensionless. To enhance 

the applicability of the model and the ability to compare its results with those available in 

the literature, an effective gap parameter, which is the ratio of the total gap to the mean 

diameter of the liner, is used.

Because of the thermal contraction after the curing process, a gap between a liner 

and its host-pipe cannot be avoided in the liner-pipe system. In Guice et ai. (1994), gap 

was measured by using feeler gages and thus limited to the ends of the specimens. Total 

annular spacing volume was included in the latest test program at the TTC (1998a) as a 

measure of average gap size. According to the volume measurement data, an effective 

(uniform) gap size g  can be determined by averaging the volume uniformly over the 

whole outer area of the liner. A dimensionless gap parameter G is defined as the ratio of 

the uniform gap size g  to the liner mean diameter D.

As discussed in Chapter 5, in a practical design process, the one-lobe model can 

be used to give a lower bound on the prediction o f critical pressure of an encased CIPP
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liner. Therefore, in this chapter, gap is assumed to be unevenly distributed along the

circumference, which implies that the one-lobe model will be used. In the one-lobe

model, the gap size is 2g  at the crown; at and is zero at the invert.

The ranges of interest of the dimensionless parameters are defined as follows:

1) Dimension Ratio (DR): This parameter is defined as the ratio of the mean diameter 

(measured at the middle surface) to the thickness of a liner. Three levels (35, 50, and 

65) were chosen over a moderate range of DR, to ensure that meaningful empirical 

formulas can be derived.

2) Dimensionless Gap (G): Three levels for even gap ratio G were chosen as 0.1, 0.4, 

and 0.7%, based on test conditions which are considered representative in real 

applications.

3) Host Pipe Ovality (OV): The ovality levels o f 0, 3, and 6% were selected to compare 

with experimental data, in which nominal ovality values of 2 and 5% were used. An 

ellipse shape for both pipe and liner were assumed.

6.1.2 Results and Analysis

Based on the following considerations, only three levels were chosen for each

parameter and the finite element analyses were run over the 27 combinations:

1) The dependency of ultimate pressure on each parameter is rather monotonous. 

Ultimate pressure decreases when any or all o f DR, G, and OV  increases.

2) The response surface of Per is smooth enough over the selected region to allow 

accurate interpolation by employing simple numerical techniques, such as the 

Lagrangian polynomial.
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3) It is convenient in the design environment if only a few finite element runs will help 

to set up adequate design criteria.

The short term buckling analysis procedure, as discussed in Chapter 4, was 

employed to give ultimate pressure predictions. The material properties were from 

Stokeld's (1998) test (see Appendix A.I). The 27 ultimate pressure values are listed in 

Table 6.1.

Table 6.1 FEA predictions of critical pressure

o v = o OV=3% OV=6%
G=.l% G=.4% G=.7% G=.l% G=.4% G=.7% G=.l% G=.4% G=.7%

DR=35 190.8 146.3 118.9 163.8 123.9 99.1 142.6 105.1 82.7
DR=50 89.9 61.9 48.1 77.2 52.0 40.1 65.8 44.1 33.7
DR=65 49.3 31.8 24.1 42.1 26.8 20.2 36.1 22.5 17.0

6.2 Empirical Model

As mentioned in Chapter 2, Omara et al. (1997) suggested that Glock's model for 

constrained pipes (Eqn. 2.5) and the Timoshenko's equation (Eqn. 2.2) can be expressed 

in the same form (Eqn. 2.10) as a power function of the D/t ratio. Equation (2.10) can be 

rewritten in the following format

Pa.IE '= a D R T m (6.1)

where the effective modulus E* is the Young's modulus E  for plane stress and 

E  / (1 -  v2) for plane strain. In Glock's model, a and m are 1 and 2.2, while in the 

Timoshenko's equation, a and m are 2 and 3, respectively. Equation (6.1) may be used as 

an empirical model, with the coefficient a and exponent m to be determined for various 

geometric parameters.
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6.2.1 Effect of Dimension Ratio

The effect o f DR is visualized by log-log plots for each {G, OV) combination, as 

illustrated in Fig. 6.1. As can be clearly seen from the figure, each curve, corresponding 

to a specific {G, OV) combination, looks very close to a straight line,

I g ( I E ' )  = \ga-m \g{D R )  (6.2)

which verifies the proposed expression in Eqn. (6.1).

By employing the least-square regression technique, the a and m values were 

determined for each of the 9 {G, OV) combinations, as listed in Table 6.2. Of the 9 

regression analyses, the lowest R-squared value is 0.9997, very close to the highest 

possible value 1. This R-squared value indicates that Eqn. (6.1) is a good model 

expressing Per as a. function of DR. Results listed in Table 6.2 show that the values vary 

approximately from 0.55 to 1.65 for a and 2.15 to 2.55 for m.

As can be seen from Eqn. (6.2), m is the slope and lg(a) the intercept o f the linear 

regression equation. One feature of the a and m pair is that a smaller m tends to 

accompany a smaller a, since a less inclined line tends to intersect the vertical axis at a 

lower point.

Table 6.2 Fitting constants a and m 

a. intercept factor a b. slope m

m

oII>O 0sroII>o

OV = 6%0sII*o

2.1506 2.1526 2.1934Vp0srfIIo

2.4369 2.4532 2.4607
G = .7% 2.5552 2.5512 2.5661

a

oII>o O'II>o '-So'V
OII>O

O II ON 0.626380 0.541558 0.544630

O II o'' 1.328110 1.191958 1.038094■V?o'r-IIo

1.643238 1.349973 1.197897
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6.2.2 Effect of Gap

As illustrated in Fig. 6.1, ultimate pressure drops with an increase in G for any 

given pair of {DR,0 V). It can also be seen from Fig. 6.2 and Table 6.2b that the slope m 

value increases with an increase in G. This implies that Per decreases faster with an 

increase in DR under a large dimensionless gap G.

The effect of gap, especially when combined with DR, on the enhancement factor 

K, is investigated by using Eqn. (6.1) and the Timoshenko's equation (2.2). Here, K  may 

be expressed as

K  = ^ D R 3-m (6.3)

Table 6.3 gives the K  values thus obtained for a circular pipe and liner over the region of 

interest, which vary from 3.95 (for DR = 35 and G = 0.1%) to 14.94 (for DR =  90 and G 

= 0.7%). The variation shows that the validity o f assuming K  = 7 depends on both the 

dimension ratio DR and liner-pipe fitting condition achieved in a rehabilitation 

application. The accuracy of predictions for K  listed here will be verified shortly in the 

model validation section.

Table 6.3 Predicted enhancement factor K

DR 0 0 .1 % O 0.2% 0 0 .3 % 0 0 .4 % O 0.7%
35.0 6.27 5.71 5.24 4.83 3.95
39.0 6.92 6.23 5.65 5.17 4.16
44.0 7.74 6.86 6.15 5.57 4.40
49.0 8.54 7.48 6.64 5.96 4.64
50.0 8.70 7.60 6.73 6.03 4.68
52.5 9.10 7.91 6.97 6.22 4.79
58.5 10.05 8.63 7.52 6.65 5.05
65.0 11.08 9.39 8.09 7.10 5.31
90.0 14.94 12.19 10.18 8.69 6.21
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Fig. 6.2 Effect of G

6.2.3 Effect of Ovality

As can be seen from Fig. 6.2 and Table 6.2b, the slope m does not vary much for 

different ovality levels. This means that the reduction factor as the result of pipe ovality, 

P °v /  P™  is almost independent o f the DR ratio. An equation for the reduction factor 

based on the lower bound developed from FEA results listed in Table 6.1 can be written 

as
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a  = exp{-O V  /15} (6.4)

which is lower than the equation proposed by El-Sawy and Moore (1997). This 

difference is because in the present study, the effects of plastic yield and gap between the 

liner and its host pipe were taken into account.

DR35/G.1 
DR35/G.4 
DR35/G.7 
DR50/G.1 
DR50/G.4 
DR50/G.7 
DR65/G.1 
DR65/G.4 
DR65/G.7 
envelop 
ASTM

2 3 4
'  O V  (%)

Fig. 6.3 Reduction factor due to pipe ovality OV

6.3 Model Verification

The ultimate pressure predictions given in the prior section will be checked 

against analytical and experimental results to verify the validity of the proposed model.

6.3.1 FEA Results versus Glock's Model

A number of FEA runs were conducted for the case o f G — 0, i.e. the no-gap case, 

in order to compare with the analytical solution given by Glock (1977). Both elastic and 

elastoplastic constitutive relations were used in the finite element runs. It can be seen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

from Fig. 6.1a that the elastic solutions agreed well with Glock's, as was also observed by 

El-Sawy and Moore (1997). The corresponding elastoplastic analyses gave lower 

predictions since material failure did accelerate the final collapse of the liner. The slope 

of the elastoplastic solution curve (m = -1.9388) was lower than that in Glock’s model 

because the thicker the liner (corresponding to a lower DR ratio), the higher the influence 

of the plastic yield. Consequently, the a coefficient (a = .3199) was also lower, indicating 

that the less inclined line intersects with the \g{Pcr) axis at a lower point than that 

associated with Glock's solution.

6.3.2 FEA versus Experimental Results

The latest physical test data available at the TTC, Louisiana Tech University, 

were used to validate the FEA results presented in earlier sections. In addition to the data 

for the two circular pipe series (12'TD and 8"ID) mentioned in Chapter 5, results from a 

series of oval pipe tests with a nominal (equivalent) diameter of 12" were also used. The 

recorded dimension ratio, ovality and gap measurements were used to generate the 

parameters necessary for interpolating the predictions o f ultimate pressure from FEA 

results given in Table 6.4. The FEA results gave lower bound predictions as expected 

because the one-lobe mode is used.

It can be seen from Fig. 6.4a that a majority o f the observed buckling pressures 

were above the G = 0.2% curve, which is the average gap as determined by the gap 

volume measurements. The curves corresponding to G — 0.1, 0.3, and 0.4% are also 

presented. Only one of the test data points fell below the range, and may therefore be 

deemed as an outlier.
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In the oval pipe tests, the average gap magnitude was 5%. It can be seen from Fig.

6.4b that for 0 and 2% ovality, most o f the test data were above the G = 0.5% curve. For 

O V = 5%, the observed buckling pressures were closer to the 5% curve. This 

phenomenon may be explained by the fact a liner is more ready to buckle in the one-lobe 

mode when ovality o f its host pipe is large.

2.3

□  Ptest
 G=0.1 %
 G=0.2%
 G=0.3%
 G=0.4%

1.5
1.7 1.751.5 1.65 1.8 1.851.55 1.6
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a. Circular pipes
150

A P_test
 G=0.3%
 G=0.4%
-  -  G=0.5% 
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130 ii
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70 --
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Fig. 6.4 Predicted versus test data
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6.4 Conclusions

From the results presented in this chapter, the following conclusions can be

drawn:

1) The finite element simulation revealed the fundamental structural behavior of 

constrained CEPP liners subjected to external pressure. Accurate prediction of 

ultimate buckling pressure depends greatly on knowledge of material properties and 

the geometrical factors of the liner-pipe system.

2) By using an appropriate finite element approach, the effects of specific mechanical 

properties (e.g. yield limit), gap, and ovality were determined. Excellent agreement 

between analytical and test results were found.

3) The critical pressure at which a liner buckles can be determined by Eqn (6.1). The 

dependency of the a and m on the ovality, DR, and gap was determined from finite 

element runs and standard interpolation techniques.

4) The enhancement factor K  (frequently referred to in CIPP design guidelines and in 

the literature) depends greatly on parameters including the dimension ratio, gap, 

ovality, and yield limits. The suggested K  = 7 value may not be suitable for design 

purpose. Predictions by means o f the methodology presented in this paper will lead to 

conservative designs.

5) A comparison between predicted and test results show that in the case of oval pipes, 

buckling pressures tend to be close to the lower bound predicted by the one-lobe 

buckling mode.
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CHAPTER 7

CREEP BUCKLING OF CIPP LINERS

Finite element simulation of creep-induced buckling behavior of encased CIPP 

liners will be discussed in this chapter. The similarities between long- and short-term 

buckling will be addressed first, especially the stress and strain evolution curves. Emphasis 

will then be focused on models used to correlate the critical time to the external pressure 

level.

Creep property characterization results from Lin (1995) will be used to predict the 

critical time. Finite element results will be checked against long-term test results from 

Guice et al. (1994) to calibrate the proposed model.

7.1 Similarities to Instantaneous Buckling

The one- and two-lobe models are again used here to illustrate the typical long­

term buckling behavior of a constrained CIPP liner. The pipe inner diameter is set at 12". 

The liner geometry is taken from the average o f the 39 Instituform Enhanced samples (D- 

series) reported by Guice et al. (1994) with a liner mean diameter Dmean = 11.729", and 

thickness t = 0.221". The mean gap, g =  0.025", is determined as one half of the difference 

between pipe inner and liner outer diameters. The dimension ratio DR and the relative gap 

G can then be determined as 53.07 and 0.213 %, respectively (Fig. 4.6).

99
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A free ring as specified above is known to buckle at a critical pressure of 9.91 psi 

(assuming the plane strain condition) based on the well-known Timoshenko's equation

(2.2). The buckling pressure predictions associated with the one- and two-lobe models 

have been calculated by employing the same short-term buckling procedure as in Chapter 

5, as 78.17 and 105.07 psi, respectively.

The finite element models used in creep buckling analysis are not different from the 

ones used in the instantaneous analysis, except for the additional information of creep 

property. As introduced in Chapter 4, in the loading step, the external pressure is applied 

to the liner and increased until a desired level (lower than the instantaneous buckling 

pressures given above) is reached. A. * VIS CO step is then used to simulate the time- 

dependent deformation induced by creep under constant pressure. The solution step stops 

when one o f the strain rate components is infinitely large, which is the indication of the 

onset o f buckling.

7.1.1 Stress Distribution and Evolution

A sustained pressure o f 65.236 psi, or 80% of the critical pressure of the one-lobe 

model, is used here as an example. The buckling mode and stress distribution are identical 

to those discussed in the previous section. Figures 7.1 and 7.2 show the curves of 

maximum deflection (at Point I) and maximum stresses (at Points I and II) versus time for 

the one-lobe model, respectively.

The stress history shows that the compressive yield limit is reached at the middle 

of the lobe (Point I), after the pressure (o f 62.536 psi) is loaded for about 70 hours. The 

ring then becomes weaker than the elastic model, and buckles soon after the tensile stress
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at the middle of the lobe and the compressive stress at the end of the lobe reach their limits 

at the same time, 250 hours after the pressure is applied.

When material failure is not taken into account, the predicted critical time 

increases greatly, from 250.39 to 1153.63 hours.

For comparison purposes, critical times (visco-elastic and visco-elastoplastic) 

predicted for the two-lobe model under the same pressure (65.236 psi) are also presented 

in Table 7.1. As can be seen, they are much greater than the corresponding one-lobe 

predictions. Therefore, to be on the conservative side, only the one-lobe model will be 

used in the sequel to investigate liner life-time prediction.

Table 7.1 FEA predictions for the example

/M psi) fiMjn) Tcr(hr) cLrQ. n)
Free model

realistic 9.97 — — —
One-lobe model
realistic 78.17 0.4048 250.39 0.4840
elastic 93.74 0.6119 1153.63 0.7912

Two-lobe model
realistic 105.07 0.2511 84133.4 0.4707
elastic 127.61 0.4343 106465.0 0.6950

As shown in Fig 7.1, the effect of plastic yield is not so significant in the two-lobe 

model as in the one-lobe model. This phenomenon can be explained by the fact that the 

external pressure applied was only 61.9% of the instantaneous critical pressure for the 

two-lobe model. The maximum stresses (Fig. 7.3) start at low levels and reach the yield 

limits just before the elastic snap-through time is approached.
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Fig. 7.3 Typical maximum stress history for the two-lobe model

7.1.2 Time-Deflection Curves for 
Various Pressure Levels

As mentioned earlier in the analysis of creep-induced buckling, there are two 

critical parameters used in pairs: the critical time associated with a specific load which is a 

fraction of the critical load for instantaneous buckling. Sometimes the applied sustained 

load is also called critical load in the sense that the structure is in the critical state (for 

buckling) under that specific load which lasts for a certain period of time.

It is reasonable to assume that the critical time will decrease with an increase in 

external pressure. This trend has been observed in long-term buckling tests by Guice et al. 

(1994), although the data scattered considerably because of the variation in liner 

geometry. With the aid of finite element simulation, the geometric parameters of the liner-
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pipe system can be precisely controlled, and the buckling behavior o f an encased liner 

under various pressure levels (denoted by dimensionless pressure ratio PR  = P/P^  ) can be

studied systematically.

Typical time-deflection curves for the present example under various pressure 

levels (i.e. PR  = 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9) are plotted in Fig. 7.4. It can be seen that 

the critical time decreases when the external pressure level increases (Table 7.2).
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Fig. 7.4 Typical time-deflection curves for various pressure levels

The effect of plastic yield in the liner material can be seen by examining the critical 

deflection against associated pressure level: when pressure is high, i.e. P R> 0.6 in the 

specific example, material yields before deflection is fully developed and buckling occurs 

immediately thereafter. By contrast, when pressure is low, material may not yield until the 

deflection is very large.
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7.2 Models for Predicting Critical Time

The correlation between the critical time and the applied compressive load is 

desirable in designs based on creep buckling criteria. Empirical models used in the 

literature to fit buckling test data will be first discussed, followed by a presentation of a 

model to be used in the present study.

7.2.1 Models for Fitting Test Data

Several empirical models have been used in the literature to depict the monotonic 

descendent relation between buckling time T  and compressive load P.

A two-parameter power function was used by Guice et al. (1994) to fit the 10,000- 

hour buckling test data. For the purpose of determining design pressure with regard to the 

expected service life of CIPP liners, external pressure P  was expressed as a function of 

time T  as follows.

P = aT~b - (7.1)

A least-square regression analysis was used to calculate the constants a and b, 

based on the {P , 7} pairs observed in long-term buckling tests. This simple formed model 

was shown to give good fit to the test data.

An exponential function was used by Cohen and Arends (1989a) to fit critical time 

data obtained from creep buckling tests o f plastic bars. In their experiment, the geometry 

of the high-density polyethylene (HDPE) bars could be controlled more precisely by 

means of machining, and there were no such uncertainties as those induced by gap and 

external rigid constraints. The data could be best fitted by the following exponential 

function
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=T0 exp(-P  / P0) (7.2)

where T0 and P0 are constants. The time constant T0 was a very large number, intended 

to reflect the infinitely large critical time when no compressive load was applied; and P0 

was much smaller than the critical pressure of the plastic bar. This equation was modified 

later (Cohen and Arends 1989b) to the following form in order to force Tcr to be infinite 

when P — 0.

T„ = U P J F )e * v (r P IP z) (7.3)

7.2.2 Proposed Model

Precisely controlled numerical tests conducted in the present study allow for a 

more rational model to be specified based directly on knowledge of critical pressure. The 

relationship between critical time and the external pressure P  can be expressed as

Tlr = T1t( \ / P - U P iry  (7.4)

By introducing the dimensionless pressure ratio PR = P/P„ , the model can be 

rewritten as

Tcr = T0( l / P R - \ y  (7.5)

This model intends to reflect the following intuitions to the Tcr-P  relation:

1) When PR = 1, i.e. the critical pressure is applied, a liner will buckle 

instantaneously, i.e. = 0;

2) A liner will not buckle ( — <x>) when no pressure is applied, i.e. PR = 0;

3) The critical time increases monotonically with a decrease in PR;
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4) The time constant T0 is the nominal life o f a constrained liner (with a specific 

DR and G) when the applied pressure is one half o f the corresponding critical 

pressure (PR =  0.5).

A parameter b, slightly less than 1, may be needed in fitting

Tcr = TQ( b / P R - l ) n (7.6)

in order to give better agreement over the whole PR range. Furthermore, a purely 

dimensionless relationship can be reached by introducing the time ratio TR = / T0 into

Eqn. (7.6) to yield

TR = ( b / P R - l ) n (7.7)

1E+13

1E + 10■
O  FEA

1E+07 ■
sz

10000 -

fitting equation 
Tcr= To (b/PR- 1)110 -

0.01
0.2 0.6 0.80 0.4 1

PR

Fig. 7.5 Typical critical time-pressure ratio curve

The critical times for various pressure ratios (as listed in Table 7.2, column FEA) 

are plotted in a linear-log coordinate system in Fig. 7.5 together with the least squares 

fitting curve based on Eqn. (7.6). (See Appendix D for the source code of the computer 

program used for this purpose.) The curve shows that the model fits extremely well with
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FEA results over the whole range of PR (from 0.1 to 0.9). A standard regression analysis 

gives the value of 1.0 for the correlation between predicted (by Eqn. 7.6) and FEA results.

Table 7.2 Critical time versus pressure ratio

PR FEA Eqn. (7.6) Eqn. (7.2) Eqn. (7.3) Eqn. (7.1)* Eqn.
(7.1)**

Eqn. (7.1)

0.95 — 1.42E-02 2 .3 1E+00 2.21E+00 2.85E+01 6.53E+03 9.77E+01
0.90 2.43E+00 2.44E+00 8.86E+00 8.00E+00 6.54E+01 9.45E+03 1.63E+02
0.80 2.50E+02 2.58E+02 1.30E+02 1.06E+02 3.99E +02 2.11E +04 4.97E+02
0.70 4.82E+03 4.66E+03 I.90E+03 I.44E+03 3.10E+03 5.27E +04 1.76E+03
0.60 4.86E+04 4.71E +04 2.79E+04 1.98E+04 3.31E +04 1.51E+05 7.55E+03
0.50 3.78E+05 3.83E+05 4.09E+05 2.80E+05 5.43E+05 5.27E+05 4.23E+04
0.30 2.82E+07 2.91E+07 8.80E+07 6.52E+07 1.39E+09 1.74E+07 5 .3 1E+06
0.10 2.74E+10 2.71E+10 1.89E+10 2.73E+10 2.94E +16 3 .19E +10 1.73E+11

The parameters T0, n, and b are dependent on material properties and Iiner-pipe 

configuration. The determination of these parameters by means of finite element analysis 

will be presented in detail in Chapter 8.

7.2.3 Evaluation of Models

The same set of critical time data are then fitted (by using least squares) to the 

models given in Eqns. (7.1) to (7.3). The results are compared in Table 7.2 and Fig. 7.6.

The two exponential functions (Eqns. 7.2 and 7.3) do not differ significantly from 

each other, except for PR <0.1. They both fit well with the finite element results within 

the moderate PR range, from 0.3 to 0.7. For lower Pi? ratios, i.e. PR  < 0.3, they tend to 

give conservative predictions for critical time. On the other hand, they tend to give higher 

predictions when PR is higher then 0.7. This trend is usually acceptable, since CDPP liners 

will rarely be designed to work under Pi? greater than 0.3.
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The power function (Eqn. 7.1) represents a straight line in a log-log plot, which 

does not resemble the curvature characteristic depicted by the finite element results over 

the whole PR  range (from 0.1 to 0.9). Two separate fits have been performed by using 

Eqn. (7.1) over PR  ranges of [0.1, 0.5] and [0.5, 0.8], respectively. The latter Pi? range, 

[0.5, 0.8] is very close to that used in the CPAR tests (Guice et al., 1994). The fit based 

on the power function over the 0.5 to 0.8 range (labeled as Eqn. (7.1)* in Fig. 7.6) tends 

to give considerably higher predictions than finite element results. The other fit (labeled as 

Eqn. (7.1)**) gives better predictions for the low PR range, but still is not on the 

conservative side.

1e+11 

1e+10 - 
1 e+ 9  - 

1 e+ 8  - 

1 e + 7  - 

1 e+ 6  - 

1 e+ 5  -t .
^  1 e+ 4  - a

1 e+ 3  - 

1e+2 - 

1 e+ 1  - 

1 e+ 0  -  E qn. (7 .6)
• E qn. (7 .3) 

 E qn . (7 .1)1e-1

1 e -2

1 e-3
10.1

PR

Fig. 7.6 Comparison of models for predicting critical time

Therefore, it seems that the exponential models, especially Eqn. (7.2), are more 

preferable in fitting long-term buckling test data, because o f their conservative predictions.
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Comparison with Models Using 2-D Continuum Elements. To verify the 

capability of the proposed composite beam element in the analysis of creep buckling of a 

constrained ring subject to external pressure, the following example has been modeled by 

composite beam, CPE 8 elements (8-node 2-D elements with the plane strain assumption), 

respectively (Fig. 7.7). The liner mean diameter Dmean is set to 25", with a thickness t of 

0.5", and a maximum gap 2g  of 0.5". Therefore, the dimension ratio DR and relative gap 

G are 50 and 0.2 %, respectively.

i

Fig. 7.7 2-D FEA model using CPE 8 elements

As can be seen from the results listed in Table 7.3, the two models predict very 

similar critical results for both instantaneous and long-term (creep-induced) buckling. The 

beam model is just a little bit stiffer than the 2-D element model.
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Table 7.3 Finite element model comparison

Per dcr Ter dcr
(psi) (in) (hr) (in)

b 2 1 64.11 2.435 2668.0 3.047
CPE8H 64.03 2.389 2504.7 3.120

Comparison with Physical Tests bv Guice et al. (1994). Finite element results 

have also been compared with long-term buckling test results reported by Guice et al 

(1994). The average DR and G values (53.05 and 0.2131%, respectively) from all 39 

specimens in the D-series are used. The critical pressure under instantaneous buckling 

condition was determined as 78.17 psi. The critical time values were calculated for PR 

ratios from 0.1 to 0.9. The proposed model, Eqn. (7.6), was used to express the critical 

time-pressure relation. The original test data and fitted curve are plotted in Fig. 7.8, with 

the fitting constants listed in Table 7.4.

Equation (7.1) used by Guice et al. (1994) and empirical models suggested by 

Cohen and Arends (1989), Eqns. (7.2) and (7.3), are also used to fit the same test results. 

The fitting curves are all plotted in Fig. 7.8 for comparison. The corresponding fitting 

constants are listed in Table 7.4.

As can be seen from Fig. 7.8, Eqn. (7.1) gives much greater liner life (critical time) 

predictions than the other models in the lower pressure range (i.e. 10 to 40 psi) which is 

more likely to occur in practical designs. The straight line model tends to overestimate the 

durability of CIPP liners. The model proposed in the present study (Eqn. (7.6)) better 

represents the time-pressure relation in high PR range, yet predicts longer life in the design 

range than the two empirical models by Cohen and Arends (1989a and 1989b). The
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difference may be partially attributed to the simplified constitutive relation, or perhaps to 

geometrical imperfections (e.g. ovality o f host pipe and liner, local dents in liner cross- 

section, and imperfection in liner thickness). The effects o f geometric imperfections on 

liner durability will be discussed in Chapter 8.

Table 7.4 Fit constants for various models

n or -a Ta P0 or b P>„ P\0kh P  
50 Y

Eqn. (7.1) -0.0532 n/a 81.5 81.5 49.93 40.87
Eqn. (7.2) n/a 2.300e+08 4.0513 83.67 46.36 31.10
Eqn. (7.3) n/a 1.638e+09 22.1388 83.11 47.01 32.79
Eqn. (7.6) 5.0428 4.670e+05 0.9807 71.31 52.27 38.63

7.4 Conclusions

Creep-induced buckling of constrained CIPP liners subject to external pressure has 

been investigated by using a finite element approach. Long term structural behaviors are 

illustrated by a typical example, and the similarities to corresponding instantaneous 

behaviors are addressed. The importance of incorporating specific material properties, 

especially the difference in yield limits and creep rates under tensile and compressive 

stresses, is emphasized.

A special kind of composite beam element is implemented to incorporate specific 

mechanical properties of CIPP materials characterized by standard tests. The applicability 

o f the new element is validated by comparing the corresponding results with those from a 

model using 2-D continuum elements.

A model relating critical time to the dimensionless pressure ratio is proposed. The 

equation is a monotonical function o f pressure ratio, and reflects the rational estimates that
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the critical times at the two extremes (zero and the critical pressure) are infinity and zero, 

respectively. The model gives excellent agreement with the finite element results.

The modeling approach is verified by comparing the predicted results to buckling 

test data. The sensitivity o f the critical time to geometric parameters prevents close 

specimen-by-specimen matches. However, good agreements are found on the average, 

especially for lower pressure levels which are more practical in sewer rehabilitation.
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Fig. 7.8 Comparison of predicted and test results
(Note: Test data truncated at 10,000 hr)
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CHAPTER 8

FACTORS INFLUENCING LINER LIFE

Generally speaking, the similarity between creep buckling and its instantaneous 

counterpart can be reflected in the following way: a longer life (or critical time) can 

usually be expected for a liner with a higher critical pressure, and the critical time 

depends strongly on material properties and geometric parameters.

The effects of geometric parameters and imperfections on the accurate prediction 

of long-term buckling resistance are discussed in this chapter. As in Chapter 6, the one- 

lobe mode is employed here to give lower bound predictions. The material properties 

used here are from the set LONG.

8.1 Essential Factors

The essential geometric parameters discussed in Chapter 6 are once again used in 

this section to show the trends of liner life with respect to each parameter. These 

parameters are dimension ratio (DR), gap (G), and ovality (OV). Three levels are 

assigned to each parameter. The critical pressure (for instantaneous buckling) results for 

the 27 combinations are given in Table 8. la.

The critical times are calculated for 80, 75, 70, 60, and 50% of the critical 

pressure for each [DR, G, OV} combination. Results are given in Appendix C.
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Table 8.1 Effect of geometric parameters on pai n, T0 and b

a. /^(psi)
DR

ollO

OV=3% O V -6%
G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0,7% G = 0.1% G = 0.4% G = 0.7%

35 216.27 166.85 136.33 185.92 140.91 111.24 161.27 118,68 92.33
50 104.58 72.25 55.75 90.59 60.60 46.37 77,20 50,96 38.29
65 58.31 37.47 28.36 49.95 31.37 23.60 43,06 26.63 19.77

b. n
DR O ll o

>5CT'mIIixO

O K -6%
G = 0.1% G = 0.4% G = 0.7% G = 0,1% G = 0.4% G = 0.7% G = 0,1% G = 0.4% G = 0.7%

35 4.5966 4.6426 4.8417 4.3923 4.6826 4.7259 4.6315 4.5912 4.6705
50 4.7118 4.9257 5.1709 4.8821 4.9418 5.1122 4.8578 5.1387 5.0302
65 4.9096 5.3113 5.4377 4.7196 5.2712 5.4624 5.1891 5.2893 5.4549

c. r0(hr)
DR ollo

O ll u> xO O V= 6%
G = 0.1% G = 0.4% G = 0.7% G-0.1% G-0.4% G = 0.7% G = 0.1% G = 0.4% G = 0,7%

35 8.90E+05 1.46E+06 1.89E+06 9.87E+05 1.28E+06 2.07E+06 7.04E+05 1.51E+06 2.61E+06
50 4.88E+05 8.92E+05 1.09E+06 3.66E+05 8.23E+05 1.16E+06 3.83E+05 6.95E+05 1.22E+06
65 3.65E+05 5.03E+05 6.47E+05 4.28E+05 4.98E+05 6.15E+05 2.67E+05 4.55E+05 6.18E+05

d. b
DR ollO

OV= 3% OV= 6%
G = 0.1% G = 0,4% G = 0.7% G = 0,1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7%

35 0.99385 0.9626 0.95146 0.97705 0.97061 0.9626 0,9999 0.95928 0.95342
50 0.97568 0.9501 0.9501 0.99209 0.95322 0.95029 0.98662 0.9749 0.95713
65 0.97607 0.9626 0.9501 0.95459 0.95986 0.95615 0.9874 0.95244 0.95576
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Predictions o f critical time are also correlated to the pressure levels applied, by 

using Eqn. (7.6). The constants T0, n and b are listed in Table 8.1. The effects of the 

three parameters DRy G, and OF on the model constants, and on the liner life are 

discussed next.

8.1.1 Effect of DR

The dimension ratio DR is the fundamental design parameter in the CIPP 

application. The expected life of a liner can be effectively changed by selecting the DR 

value in accord with the external pressure.

The effect o f DR on liner life is first shown in the log -P coordinate plot in Fig. 

8.1. For a given pair o f G  and OV  values, a higher DR value corresponds to a lower 

critical pressure. The critical time is infinitely large when the external pressure is zero. It 

decreases to zero when pressure approaches the instantaneous critical value. Therefore, 

for a liner with a high DR  value, drops fast with an increase in pressure. For instance, 

for G — 0.4% and OV=  0, when pressure P = 30 psi, the predicted critical times for DR = 

65, 50, and 35 are 1.04 x 102, 4.41 x 106, and 1.35 x 109 hours, respectively. If the design 

life is set to 50 years (or 432000 hours), the maximum working pressures are 18, 38, and 

95 psi, respectively (Fig. 8.1a).

The critical time should always be discussed with reference to a specific external 

pressure level. To evaluate the trend of liner life with respect to different geometric 

configurations, it is convenient to use the normalized form as expressed by Eqn. (7.3), 

and plot critical time versus the corresponding pressure ratio, PR. When PR «  1 and PR 

> 0, Eqn. (7.3) can be rewritten approximately as
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Ig T ^ ^ C -n lg iP R )  (8.1)

Therefore, n is the rate at which approaches infinity when PR becomes infinitely

small. For a given combination of G and OV, the exponent n increases with an increase in 

DR, while T0 decreases. The normalized -PR curves are distinguished from each other 

only at the high pressure range (Fig. 8.1b).

8.1.2 Effect of Gap

In addition to the DR effect, the buckling resistance of an encased liner is 

influenced also by geometric imperfections in the liner-pipe system. As has been shown 

in Chapters 5 and 6, the existence of a gap between the liner and its host pipe can reduce 

the enhancement greatly with respect to the critical pressure. For the case of DR = 50 and 

OV=  0, the predicted critical pressures for G = 0.1, 0.4 and 0.7% are 104.58, 72.25, and 

55.75 psi, respectively. The corresponding -P curves are given in Fig. 8.2a. These 

curves show that the critical time drops faster (with an increase in pressure) in the case of 

a large gap than in the case of a small gap.

The normalized T^-PR curves are given in Fig. 8.2b. The three curves can be 

distinguished from each other only in the low PR range. The exponent n and T0 increase 

with an increase in G for a given combination of DR and OV  (Table 8.1).

8.1.3 Effect of Ovalitv

When the deteriorated host pipe is slightly oval, the critical pressure of the 

encased liner decreases with an increase in pipe ovality. The drop in the -P curve 

increases with an increase in the OV value. Yet, the -PR curves for OV=  0, 3, and 6%
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coincide with each other, as shown in Fig. 8.3b. Therefore, the critical time of a liner 

installed in a slightly oval pipe can be predicted by using the {n, T0, b} values for 

circular pipes and its own value.

8.2 Effect of Variation of Thickness 

In addition to the parameters discussed, some other geometric imperfections are 

also common to CIPP liners. One type of imperfection is the variation in liner thickness, 

which can be found in any CIPP liner as the result of installation and manufacturing 

processes. A common practice in buckling tests is to measure the liner thickness at 

several different locations (at each end of a liner span). The average value over locations 

will be used as a measure of liner thickness in subsequent analyses. In the present study, 

Imperfection in thickness o f a liner will be characterized by the variation in thickness 

(VT), which is defined as

VT = [MAX(t() -  M N (t t)] /  21 (8.2)

In the equation, tt refers to the recorded thickness measurements for a liner, and t 

is the mean value for all t , 's. The variation is usually significant According to Omara 

(1996), the highest and lowest VT value found in 18 samples were 11.98% and 1.26%, 

respectively; with an average VT of 5.55%. A more detailed study on the variation in 

thickness can be found in Stokeld (1998).

In the finite element model, the full circumference of a liner is divided into three 

parts: average, thin, and thick, with corresponding thickness values o f t, t-At, and t+At, 

respectively. For simplicity, the thin part is always at the top o f the cross section and is 

adjacent to the thick part. Both parts are equal in length so that the average thickness is t
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(Fig. 8.4). The deviation of thickness, At = VT*t, is varied from 1% to 15% of the mean 

thickness t. The ratio of thin part to the whole circumference is varied from 1/12 to 1/2 

(or the angle § is varied from 15 to 90 degree). As an extreme situation, the 

circumference of the liner is divided into a thin and a thick part of equal length, when 

<f> = 90°.

Fig. 8.4 Schematic of model with varying thickness

8.2.1 Instantaneous Buckling

The effect o f variation in thickness on critical pressure has been investigated for 

the case of DR = 50, G = 0.25%. Results are listed in Table 8.2.

The critical pressure results corresponding to t-At values are also listed in the 

column under 180°. It can be seen that when <f> > 45° or the thin part makes up more than
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1/4 of the liner circumference, the critical pressure is very close to that of a liner with a 

uniform thickness equivalent to the thin part, t-At. Fig. S.5b shows that the critical 

pressure Pcr decreases at a rate approximately twice that o f V T.

Table 8.2 Effect of thickness variation on critical pressure

VT PCr (psi)
(%) 0=15° 0=30° rf=45° 0=60° 0=90° <25=180°

0 85.53 85.53 85.53 85.53 85.53 85.53
1 84.80 84.59 83.60 83.74 83.69 83.57
2 84.21 83.56 81.64 81.93 81.93 81.62
5 82.10 79.69 76.13 76.54 76.53 75.87

10 78.91 72.30 67.12 67.82 67.78 66.63
15 75.90 64.63 59.24 59.48 59.40 58.02

8.2.2 Long-Term Buckling

The dependence of critical time on thickness imperfection is investigated by 

incorporating creep properties discussed in the prior section into the finite element 

model. Only one pressure level, 50 psi, is used. Results are listed in the following table 

and illustrated in Figure 8.6.

Table 8.3 Effect of thickness variation on critical time

VT Ter (hr)
(%)

0II <25=30° <25=45° <25=180°
0 82825.2 82825.2 82825.2 82825.2
1 75126.4 67779.3 61500.0 60176.2
2 68237.4 54686.2 44833.6 43512.6
5 50950.1 25685.2 15803.6 14067.3

10 31408.2 4593.7 1625.5 1020.1
15 18660.1 334.9 32.1 11.1
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It can be seen that a liner with a high short term buckling resistance (i.e., critical 

pressure) also has a long life (critical time). For the case in which the thin part is 1/4 or 

more of the liner perimeter, the critical time o f such a liner is very close to that of a liner 

with a uniform thickness of t-At. As is seen from Table 8.3, the influence of VT on Tcr is 

greater than its influence on Pcr. For instance, 2X V T -  5%, Tcr decreases by 38.5%, 69.0% 

and 80.9% for ^=15°, 30° and 45°, respectively.

To model localized imperfections, the shape of the dented cross-section is 

assumed to follow Eqn. (8.3),

with W  = w/D being the dimensionless magnitude of the imperfection (in 

percentage), and 2<j) being the range o f the dented part.

The configuration of DR = 50 is selected, with W  varying from 0.5% to 2% and <j> 

from 5 to 180°. The dependency of Per on W  and <j> is illustrated in Figure 8.7.

It can be observed that when W  = G, the critical pressure value associated with 

localized imperfection is significantly higher than that associated with uneven gap. The 

lowest Pg. occurs around 10 to 15° for the W  values considered. (Larger <(> values, i.e.

greater than 45°, corresponds to free arch configurations, which are not desirable in 

CIPP applications and therefore not discussed in this study.)

For the case of localized imperfection, the pressure ratio-critical time relationship 

can also be expressed by equation (7.6).

8.3 Effect of Local Imperfection

un ~ WD cos (8.3)
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8.4 Conclusions

The effects o f geometric parameters on critical time o f liner are discussed in this 

chapter. The following can be concluded from the finite element results:

1) The critical time varies with the external pressure, which may not be higher than the 

critical pressure determined in the instantaneous buckling analysis. Knowledge of 

critical pressure can be used in the prediction o f the liner life duration by using Eqn. 

(7.6). Under a specific pressure level, a longer critical time can usually be expected 

for a liner with a higher critical pressure.

2) The parameters n, T0, and b in Eqn. (7.6) are strongly influenced by the parameters, 

DR, G, and OV. For a given G  and OV  combination, an appropriate DR value can be 

determined to meet the duration requirement.

3) -PR curves for various OV  values are almost identical.

4) The effect o f imperfection in thickness on liner buckling resistance is shown to be 

significant. The critical pressure decreases at a rate twice that of VT whereas critical 

time decreases at a rate 8 to 16 times that of VT.

5) The effect o f  local imperfection (wavy dented shape) is most significant when ^=15°.

Coupling (or interaction) effects may exist among the essential parameters and 

both types of imperfections. Critical time of a liner can be determined from Eqn. (7.6) by 

interpolating the dependence of n, T0, and b on essential parameters DR, G, and OV  and 

then applying appropriate reduction factors with respect to imperfections.
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CHAPTER 9

CIPP LINER DESIGN METHODOLGY

This chapter deals with the structural design issues, which an engineer will be 

facing when the CIPP technique is chosen in a sewer rehabilitation project. General 

considerations for design criteria common to encased thin-walled liners subjected to 

creep will be discussed, first The 50-year pressure predicted by using the finite element 

results presented in the prior chapters will be compared with that determined by the 

ASTM (1993) guidelines. Design curves and simplified (empirical) formulas based on 

these results will be proposed for designs using a specific CIPP product, Insituform 

Enhanced.

9.1 General Design Considerations

The basic design decision to make in CIPP application is to choose an appropriate 

thickness t  o f the liner for a deteriorated sewer pipe segment of a given diameter Dp , so 

that the liner can withstand a constant external hydrostatic pressure P and provide 

separation between the sewer refuse and the surrounding environment for a desired 

period of time TD. An efficient yet safe design should predict correctly the time- 

dependent behavior of the liner material and meet the service life requirement, rather 

than simply satisfy the conventional instantaneous conditions.

129
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9.1.1 Basics

For a satisfactory rehabilitation, the design durability requirement To for the CIPP 

liner is usually set at 50 years (or 432000 hours), as required by the industry. The 

hydrostatic pressure P under which a liner will be subjected during its service life may 

vary with the geographic region. To achieve a tight fit, the outer diameter of the liner, 

Da , is nominally chosen to be the same as the inner diameter of the pipe, Dp , which 

may also change from case to case.

As shown in Fig 8.1, under a given external pressure, a specific liner product can 

have different time spans when different dimension ratio (DR) values are used. At the 

same time, a given life span requirement can be met by using different DR ratios under 

different external pressures. The liner thickness t can then be determined as

t = D0 [{DR + \) (9.1)

The effect of gap shouid also be taken into account, because gap can not be 

eliminated in the liner-host pipe system. In many rehabilitation cases, the deteriorated 

pipes may have become slightly oval in shape or dented in certain localities. The pipe 

ovality and magnitude o f local imperfections should be accurately measured or assessed 

and considered in the design, because they can significantly influence liner service life.

9.1.2 Critical for Failure) State

It is not clearly defined in the literature or design practices which o f the following 

factors should be used to define the critical or failure state in CIPP liner design:
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Final Collapse. As observed in experimental tests and simulated by means of 

finite element analyses, a liner installed in its host pipe will eventually collapse when the 

ultimate pressure Per is reached or with accumulation of creep strain under a certain 

pressure level which is lower than Per.

M aterial Failure. This occurs when the allowable maximum stress (e.g. the yield 

or breakage stress observed in standard material characterization tests) is reached. This 

usually happens immediately before the final collapse o f the liner structure. When the 

pressure ratio (PR) is low, e.g. 0.4 or lower, the difference between time until material 

failure and time till buckling may be negligible.

Maximum Allowable Deflection. The deflection of the liner may become so 

large that the deformed liner may not take its designed function, e.g. groundwater can 

actually infiltrate through the annular gap between liner and its host pipe. When the PR  

ratio is small, the maximum deflection prior to the onset of buckling may be large.

The final collapse is taken in the present study to be the critical state, as implied 

in the ASTM guidelines (1993).

9.1.3 Safety Factor

There are two ways to apply an appropriate safety factor in structural instability 

designs in which creep is the main concern.

External Pressure. As recommended by the CEPP design guideline (ASTM, 

1993), the usual way is to apply a safety factor M (e.g. N  = 2) to the 50-year pressure 

which is determined by the following equation
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2 KEL C 
P ~ ( l - v 2) DR (9-2)

Referring to Fig. 7.8, for the Insiticform Enhanced liners, to divide the 50-year 

pressure by 2 will lead to an increase in critical time by 261.4 and 101.2 times by using 

finite element predictions (Eqn 7.6) and the exponent regression model given by Eqn.

(7.3), respectively. This approach will most likely give highly conservative designs.

L iner Buckling Time, Because the durability requirement is of main concern in 

CIPP liner design, a safety factor (e.g. 10) can thus be applied directly to the service life 

requirement (i.e. 50-year). An appropriate liner thickness can be determined according to 

the finite element results presented in Chapter 8, which will lead to a safe and efficient 

design.

It has been shown in Chapter 8 that the proposed model (Eqn. 7.6) gives a close 

fit to finite element predictions which take into account the essential design parameters 

(i.e. DR, OV) and geometrical imperfections (i.e. G, VT, and W). The model will be 

reformatted next to show how the fitting constants (i.e. n, T0, and b) listed in Table 8.1 

can be used to determine the fifty-year pressure, PD, needed for design purpose.

To start with, the left-hand side of Eqn. (7.6), i.e. the critical time Tcr, will be 

assigned as the desired service life TD. The pressure ratio PR  on the right-hand side will 

be replaced with PD / P^. The design equation can thus be expressed as

9.2 The Fifty-Year Pressure

(9.3)
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Eqn. (9.3) can be rewritten as

(9.4)

where the coefficient 3 is

(9.5)

As such, the 50-year pressure can be determined by using TD and results from finite 

element analyses given in Table 8.1. The 3 and PD results are listed in Table 9.1.

For comparison, the ASTM guideline (Eqn. 9.2) is used to determine the 50-year 

pressure. The enhancement factor K  is assumed as 7. The long-term modulus is chosen as 

one half of the short-term value, i.e. EL = E  /  2. The reduction factor C, which accounts 

for the effect of pipe ovality is defined as

Results are listed in Table 9. lc.

The 50-year pressures, determined based on finite element results and by using 

ASTM guideline (Eqn. 9.2), are plotted and compared in Fig. 9.1. Predictions based on 

the ASTM guideline, which does not explicitly take into account annular gaps between 

liners and host pipes, happens to give results for fifty-year pressures which are similar to 

the finite element approach. However, the ASTM predictions for the case o f DR = 35 are 

not on the conservative side, especially for the circular pipe configuration. This result 

may be because plastic yield plays a more important role, when the thickness is large and 

the enhancement factor is not so large as assumed (K=  7). For the cases o f DR = 50 and 

65, the ASTM predictions intersect the finite element solutions within the range of O =

C = [ ( l -O V ) /( l  + OV)2]3 (9.6)
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0.2% to 0.5%, which are found to be representative of the liners used in the buckling 

tests at the TTC (Guice et al., 1994; TTC, 1998a).

Notice that the 50-year pressure corresponding to a single DR ratio with a specific 

pipe ovality OV  can still vary significantly over the G range from 0.2% to 0.5%. For 

instance, for the case of DR = 50 and OV = 0%, the 50-year pressure will drop by 

approximately 25%, from 45 psi to 34 psi, when the gap ratio G increases from 0.2% to 

0.5%. Therefore, it is desirable that a design equation takes into account a gap parameter. 

The designer can select a proper gap ratio in liner design, according to the practical 

limitation in the practicing liner installation techniques. Design curves based on adequate 

parametric studies, as will be presented shortly, are thus highly recommended.
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Table 9.1 Determination of fifty-year pressure

a. Factor p

oIIO

OV= 3% O F= 6%
DR G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7% G = 0.1% G -  0.4% G = 0.7%
35 0.5352 0.5434 0.5470 0.5336 0.5406 0.5597 0.5255 0.5439 0,5667
50 0.4934 0.5093 0.5168 0.4869 0.5070 0.5203 0.4865 0.5093 0.5271
65 0.4790 0.4876 0.4921 0.4761 0.4858 0.4929 0.4702 0.4779 0.4930

b. Fifty-year pressure PD

oilO

OF =3% 0 ii O' 1

DR G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7%
35 115.74 90.66 74.58 99.20 76.18 62.26 84.75 64.55 52.32
50 51.60 36.80 28.81 44.11 30.72 24.12 37.56 25.96 20.18
65 27.93 18.27 13.96 23.78 15.24 11.63 20.25 12.73 9.75

c. Fifty-year pressure by ASTM guideline

OF= 0%

o'rnIIo

OF =6%
35 120.94 92.44 70.81
50 41.48 31.71 24.29
60 24.01 18.35 14.06
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A safety factor is always necessary in a practical design to account for any 

unexpected effects. In a normal structural design methodology, a safety factor is usually 

applied to the critical design load. The common practice in CIPP liner design is to divide 

the 50-year pressure (obtained by using Eqn. (9.2)) by a safety factor of two. This 

treatment is on the safe side, but it may sometimes be too conservative.

Referring back to Fig. 7.8 and Table 7.4, the CPAR data indicate that when the 

50-year pressure is divided by a safety factor of two, the resultant pressure corresponds to 

liner life predictions 46.44, 101.22, and 455440 times greater (than 50 years) based on 

Eqns. (7.2), (7.3), and (7.1), respectively. The corresponding safety factors on time by the 

proposed model, Eqn. (7.6), vary from 166.21 to 453.30 times over the range of 

geometrical parameters discussed (Table 9.2). This factor N T can be derived from Eqns.

(9.3) through (9.5), as

N t = (9.7)
b - 0 .

Apart from the power function (Eqn. 7.1) used in the CPAR report, which may 

overestimate liner life time when the pressure ratio is low, the other models agree in that 

the resultant safety factor on time should be in the range o f 102 when a safety factor of 

two is applied to the 50-year pressure. A safety factor that large may not be necessary.

Another way to apply an appropriate safety factor is to apply the safety factor 

directly to the desired service life of the liner to be installed. A factor of ten might seem 

reasonable. The maximum working pressure for a liner with a specific {DR, G, OV) 

characteristic can thus be determined as

P ^ P P c r  (9-8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

In the equation, the coefficient /?* (with a safety factor o f ten being accounted for) is

f  .  _ _  \  I In
MO To

i - i

+  1
V i 0

{9.9)

For comparison, P'D and PD12 results are listed in Table 9.3 and plotted in Fig. 

9.2. The results show that PD!2 is significantly smaller than P'D in every case. These 

results will be reformatted in the next section to provide the design curves which can be 

used to determine a safe and economic liner thickness. For example, when the pipe is 

circular (OV=  0%) and the gap ratio (G) is within the range 0.1% to 0.7%, liners with a 

DR of 50 can be used under 39.35 to 22.94 psi according to a safety factor o f 10 on time, 

or 25.80 to 14.41 psi according to a safety factor of 2 on pressure.
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Fig. 9.2 Design pressure
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Fig. 9.2 Design pressure (cont’d)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 9.2 Safety factor on time due to a safety factor of two on fifty-year pressure

Nr O II o O V =3% ! I o x ii o

DR G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0,4% G = 0.7%
35 200.05 254.01 349.71 166.21 252.09 319.97 190.92 243.37 331.85
50 183.60 287.18 404.61 201.22 283.85 388.39 198.84 331.62 361.90
65 207.21 358.38 449.04 177.21 341.77 453.30 254.93 338.19 450.34

Table 9.3 Determination of design pressure

a.

p*
r D

oiio

OK= 3% OK= 6%
DR G = 0.1% G = 0.4% G = 0.7% G = 0,1% G = 0,4% G = 0.7% G = 0.1% G = 0.4% G = 0.7%
35 89.03 70.85 59.24 75.57 59.45 49.30 64.92 50.35 41.58
50 39.35 28.83 22.94 33.75 24.04 19.19 28.73 20.44 16.01
65 21.41 14.41 11.13 18.08 11.99 9.28 15.66 10.01 7.77

b.

V  2
oIIo

OK =3% OK =6%
DR G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7% G = 0.1% G = 0.4% G = 0.7%
35 57.87 45.33 37.29 49.60 38.09 31.13 42.38 32.27 26.16
50 25.80 18.40 14.41 22,06 15.36 12.06 18.78 12,98 10.09
65 13.96 9.13 6.98 11.89 7.62 5.82 10.12 6.36 4.87
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9.3 Design Curves and Empirical Equations

As mentioned earlier, the basic design decision to make in CIPP liner application 

is to choose an appropriate thickness t  which will guarantee that the liner survives the 

assumed service life (usually set at 50 years) under a certain underground water table. It is 

equally effective if the DR ratio o f the liner can be determined because the diameter of the 

sewer and hence of the liner is also known in design. Therefore, the design curves will be 

given hereafter in the DR- PD coordinate system.

Design curves for the cases of circular (OV = 0) and slightly oval (OV = 3% and 

6%) host pipes are plotted in Figures 9.3 through 9.5. Each curve is associated with an 

individual gap ratio, G, which allows an engineer to pick an appropriate gap level in 

accordance with the specific installation and curing technique employed. The gap ratios 

observed under laboratory conditions (Hall, 1998a) were in the neighborhood of 0.2% to 

0.4%. A CIPP system having a G value greater than 0.7% is very undesirable, and usually 

cannot be employed in rehabilitation. For instance, in the case of 12 inch pipe, a gap ratio 

(G) o f 0.7% means a one-sided gap of over 0.16 inches (4 mm) or an evenly distributed 

gap o f 0.08 inches (2mm).

As can be seen from Figures 9.3 to 9.5, the DR-Pd curves are approximately 

straight lines in the iog-log scale. Simplified design equations can then be given in the 

form of

\gPD = a -b \g D R  (9.10)

in which the slope -b has a negative value, and a is the intercept at DR = 1. To determine 

the design DR ratio for a given pressure PD, Eqn. (9.10) can be rewritten as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

o< >

.. «o co

■ «o

_  u)
CO

CO

CO

ooto 10to
<0to CO

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 9
.3 

De
sig

n 
cu

rv
es

 
for

 
ci

rc
ul

ar
 

pi
pe

s 

(b
as

ed
 

on 
the

 
m

at
er

ia
l 

co
ns

ta
nt

 s
et 

LO
N

G
)



143

_ to  o>

CD

.  .  lO  
CO

CO

- .  to  
CO

<o

m

<d
CO

ooo
CM

mto
CM

mo o
CO

oto

Osd) 9a d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g. 

9.4
 

De
sig

n 
cu

rv
es

 f
or 

sli
gh

tly
 

ov
al

 p
ip

es 
(O

V-
 

3%
) 

(b
as

ed
 

on 
the

 
m

at
er

ia
l 

co
ns

ta
nt

 s
et 

LO
N

G
)



G 
(%

)

144

U)»< ►

a

. .  •<> 
CO

CO

o

<o

CO

in
CO

oo
CM

©oom
Osd) ma d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fi
g.

 9
.5 

De
sig

n 
cu

rv
es

 
for

 s
lig

ht
ly

 
ov

al 
pi

pe
s 

(O
V 

= 
6%

)



145

Ig DR = c — d\e,PD (9.11)

or

DR = lOc{PDY d (9.12)

The fitting parameters c and -d are now functions of the gap ratio, G, and the host 

pipe ovality OF, as shown in Figures 9.6 and 9.7. These functions can be expressed 

empirically (using least squares) as follows:

c = (c0 + + c2G2 ) ( l - 0.005*0 V) (9.13)

d ^ d o + d tG + d zG 2 (9.14)

The family o f c curves can be generated from a master curve (corresponding to 

the circular pipe case) adjusted by the pipe ovality OV  through the factor (1 - 0.005*OV), 

as shown in Fig. 9.6.

2.5

•OV = 0% 
•OV = 3% 
OV = 6%

2.4 --

o  2.3 --

2.1
0.1 0.3 0.60 0.5 0.7 0.8

G (%)

Fig. 9.6 Dependency of coefficient c on G and OV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

0.45

OV = 0% 
OV = 3% 
OV = 6%0.43 --

0.41 --
T3

0.39 --

0.37 - ■

0.35
0 0.1 0.3 0.50.2 0.4 0.6 0.7 0.8

G(%)

Fig. 9.7 Dependency of coefficient d o n G  and OV

The dependence of d  on OV  is not significant, but d  depends on G. The lower 

bound envelope is thus given in Eqn. (9.14), which is on the conservative side. That is, a 

single d  value can be used for all circular and slightly oval configurations.

The fitting constants c, 's and d ,'s are listed in Table 9.4. Similar analyses have 

been conducted based on the safety factor 2 for pressure. The same trend is revealed and 

the corresponding coefficients c, 's and d i 's are also given in Table 9.4.

Once the DR ratio is determined, the minimum thickness t of the CIPP liner can 

be obtained by using the following equation.

t =
Dc

l + (l + 2 G)DR

in which Dp is the inner diameter of the deteriorated sewer pipe.

(9.15)
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9.4 Conclusions

In this chapter, design issues have been discussed, including the definition of a 

failure state, and an appropriate way to choose a safety factor. Methodology is presented 

by which finite element simulation results can be used in the CIPP liner design.

Design curves are given for designing CEPP liners made of the Insituform 

Enhanced resin as characterized by Lin (1994) and tested by Guice et al. (1993). An 

empirical design equation is presented which can determine a safe and cost-effective 

thickness for a given design pressure and a given pipe-liner system.

Table 9.4 Coefficients in empirical equations (9.13) and (9.14)

co c2 d0 d x d2or—̂II 2.447158 -0.58885 0.342266 0.461271 -0.28008 0.211944
NP = 2 2.370064 -0.60045 0.361546 0.457858 -0.27633 0.212063
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CHAPTER 10

SUMMARY AND CONCLUSIONS

In the present study, the problem of long-term structural behavior of CEPP liners 

undergoing external hydrostatic pressure is characterized as a structural instability 

problem which is induced by time-dependent material property (i.e. creep). At the same 

time, it is a contact problem since the liner deflection is externally constrained by the 

host pipe.

This intrinsically nonlinear problem has been investigated by means of finite 

element simulation, with emphases on (a) the essential structural behaviors and 

mechanisms of buckling, and (b) the influences of inelastic material properties (i.e. 

plastic yield strengths and creep rates) and geometric parameters on liner's buckling 

resistance. Results from a series of finite element simulations verified against 

experimental observations on short- and long-term buckling, ware used to derive an 

appropriate CIPP liner design strategy. Specific contributions and conclusions drawn 

from this study are listed below.

10.1 Constraint/Loading Conditions

Based on an extensive survey of the literature, the following assumptions were 

adopted in this study:

148
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1) The host pipe was assumed rigid, because its stiffness is typically much higher than 

that of a CEPP liner.

2) A liner was subjected only to the hydrostatic pressure built up by infiltration through 

cracks in the deteriorated host pipe. For simplicity, the pressure is assumed constant 

during the liner's service life.

3) The liner can be represented by a single cross-section with a width of unity to which 

the plain strain condition holds, and

4) The structural behavior of the 2-D configuration can be adequately modeled as a 

beam (or ring).

10.2 M aterial Behavior

The constitutive model for a specific liner product was assumed to be

representative of the family of cured-in-place plastics, which are essentially amorphous

substances with a randomly sidelinked network:

1) The total strain can be divided into three components: linearly elastic, perfectly 

plastic, and creep strain which follows a Norton-Bailey model.

2) The inelastic behaviors of CIPP materials depend not only on von Mises stresses, but 

on hydrostatic pressure as well.

3) Simplified constitutive relations reflecting dependency on stress state have been 

incorporated into the finite element models by means of the "composite" beam 

element, which is a combination o f two normal beam elements. One o f these two 

elements was assumed capable of resisting only tensile deformation and the other 

compressive deformation. Experimentally determined material properties (including
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yield limits and creep strain rate) under uniaxial tension and compression tests were 

assigned to each of the two component beam elements.

4) The performance of the composite beam element was verified by comparing finite 

element simulation results and material characterization test data under both short- 

and long-term conditions.

10.3 Buckling Mechanism and Behavior

The interaction between a liner and its host pipe brings about a number of unique 

features to the deflection evolution of the constrained cylindrical shell subjected to short- 

and long-term external pressure:

1) Finite element results based on specific CIPP material properties showed that 

material failure (i.e. plastic yield) had a significant effect on the buckling resistance 

of the liner in both the instantaneous and long-term buckling cases.

2) Deformation until collapse of a constrained liner typically undergoes a two-step 

buckling process. The liner first buckles (as a free pipe) into a two-lobe pattern, 

mainly because of the existence of annual spacing between the liner and host pipe. 

With initial asymmetries in geometric and/or material properties being amplified by 

the increase in pressure or time duration, the two-lobe mode will transition to a one- 

lobe mode when one of the two competing lobes becomes dominant.

3) In the instantaneous buckling case, the two conventionally accepted buckling modes, 

one- and two-lobe modes, are found to give lower and upper bounds for all possible 

critical pressures. The finite element predictions and experimental data show 

excellent agreement, with most of the experimental data falling between the
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predicted lower and upper bounds.

4) The Ioad-deflection paths determined from finite element analysis are seen to fall 

between the paths corresponding to the conventional one-lobe and two-lobe buckling 

modes, depending on the specific conditions of the liner system (e.g. friction factor, 

initial gap, liner thickness variations, etc.)

5) Because the initial conditions are not controllable in many engineering applications, 

the design o f such liner systems should be based on one-lobe buckling models 

corresponding to a conservative lower-bound buckling prediction.

10.4 Long-Term Buckling Model

The relationship between critical time and external pressure applied to the liner 

was derived from finite element simulation results. As shown in equation (7.6), critical 

time can be expressed as a monotonic function of the pressure ratio (P/Pcr), and reflects 

the intuition that the critical time at the two extreme pressure levels (zero and the critical 

pressure) are infinity and zero, respectively. The model gives excellent agreement with 

the finite element results, and is better than other models used in the literature for 

correlating experimentally observed buckling times to load levels.

10.5 Influence of Geometric Factors 

The buckling resistance of CIPP liners depends to a great extent on some 

geometric parameters o f the liner-host-pipe system. Finite element simulation was carried 

out to investigate the effects of three essential geometric parameters (i.e. the dimension 

ratio DR of the liner, gap G between the liner and its host pipe, and the ovality OV  of 

host pipe) and two geometric imperfections (variation in liner thickness and initial local
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imperfection in liner shape). The following conclusions can be summarized from the 

numerical results.

1) Generally, an increase in any of the geometric factors listed above tends to decrease 

the buckling resistance (critical pressure and critical time) of CEPP liners.

2) Critical pressure was empirically expressed as a power function o f the liner's 

dimension ratio (Eqn. 6.1). The dependency of the two constants in the equation on 

gap ratio and pipe ovality was determined from a small number o f finite element 

runs.

3) Similarly, critical time was expressed as a function of the pressure ratio (Eqn. 7.6). 

The dependency of the three constants in the equation on gap ratio and pipe ovality 

was determined from a small number of finite element runs.

10.6 Design Issues

Design issues were discussed, including the definition of a failure state and an 

appropriate way to choose a safety factor. Methodology was presented by which finite 

element simulation results could be used in CIPP liner design.

Design curves are given for designing CIPP liners made o f the Insituform 

Enhanced resin as characterized by Lin (1994) and tested by Guice et al. (1993). An 

empirical design equation is derived which can determine a safe and cost-effective 

thickness for a given design pressure and a given pipe-liner system.

10.7 Recommendations for Further Studies

The fundamental buckling behavior of CIPP liners and the effects of geometric 

parameters were investigated in-depth in the present study. Finite element simulation
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results and simplified empirical equations were presented in this dissertation.

Further studies in the following aspects are recommended.

1) More thorough material characterization tests, including the ones aiming at yield or 

failure mechanism, are highly recommended. The dependency of time-dependent and 

time-independent inelastic behaviors on the stress state should be investigated in 

detail. More sophisticated constitutive relations should be investigated.

2) Further studies should be undertaken that apply the present methodology to other 

CIPP materials or vary the creep rate coefficients. Such studies can reveal explicit 

relationships of critical time (or the constants in the empirical equation (7.6)) on 

creep properties of CIPP materials.

3) Previous and present studies are all based on the assumption that the external 

hydrostatic pressure is constant. Although it can be inferred from AmolcLS (1987) 

results that the effect of a varying load is not significant if the external pressure was 

always positive (i.e., no internal-external cyclic pressure), the behavior of CIPP liners 

subjected to seasonal fluctuation of underground water table is always worth 

studying. This might be accomplished by the following approaches: (a) employing a 

modified strain hardening law (which can reflect reversal in creep rate when stresses 

decrease) with the current simplified constitutive equation; and (b) following 

Arnold's (1987) visco-elastoplastic analysis.

4) The influence of various geometric factors were revealed in this study. At the same 

time, extensive measurements on geometry of actual liners used in buckling tests are 

underway at the TTC (1998c). Further numerical investigations can be conducted for 

comparisons with these experimental observations. Effects of coupled geometric
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imperfections which are observed in test setup on critical time can thus be explored.

5) Three-dimensional finite element models can be used to investigate the effects of 

some factors that are not considered in the present study on the creep buckling 

behavior o f CIPP liners. These factors include deflection patterns and the geometric 

imperfections along the longitudinal direction, as well as the boundary condition at 

the ends of a liner span. The effect of the length of a liner-span, which was discussed 

by several researchers (Bakeer and Berber, 1996; Moore, 1998) can also be 

determined. Furthermore, three-dimensional finite element analysis can help to 

explore the availability of the CIPP technique in rehabilitating pipelines with joints or 

other complex configurations.

6) The behavior of more advanced CIPP liner systems, such as those employing fiber 

reinforced plastics, may further improve liner’s resistance to creep and thus enhance 

service life. Experiments coupled with finite element simulations are recommended.
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APPENDIX A 

MATERIAL PROPERTIES AND 

TEST RESULTS USED

A.I. Material Characterization Tests

Table A.1 Material property set LONG
(Guice et al, 1993; Lin, 1994)

Short Term
E E ' V <*y

Tensile 650000 740741 0.35 3500 3988
Compressive 650000 740741 0.35 8000 9117
Long Term

k k ' m n
Tensile 3.50E-07 2.57E-07 1.150 0.11
Compressive 4.20E-08 7.30E-08 1.146 0.24

Note:
(1) £ '  = £ / (  1 - v 2)
(2) <7y = CTy / (I — v2)

(3) k '= k (3 /4 ) Cn+1)/2

Table A.2 M aterial property set SHT1
(Boot and Javadi, 1998)

Test
Type

Statistical
Property

E

(psi)

Strain at 
Yield 
(%)

Stress a t 
Yield 
(psi)

Ultimate
Strain

(%)

Ultimate
Stress
(psi)

Tension Mean (of 6) 556336 0.27 3142 3.00 3660
Std. Error 20178 0.02 101 0.53 115

Flexure Mean (of 7) 536595 0.67 3700 5.50 7350
Std. Error 6774 0.03 187 0.40 101
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Table A.3 Material property set SHT2
(Stokeld, 1998)

Test No. E °V <?ult Note
atm02 562977.7 3683 3683
btm02 781097.7 3686 3700
dbmOl 571863.9 3383 3400
rl275 495348.8 3550 3850
pi 275 400189.0 3783 3500
abm02 661142.9 2971 3700 *
ctm03 580829.5 2745 3900 *
cbmOl 437578.6 4593 n/a **

dmm02f 405907.7 2217 3650 **
Set of all 9 specimens

Average 544104.0 3401.2 3672.9
Deviation 150625.1 723.4 217.4

Set of first 7 specimens
Average 579064.2 3400.1 3676.143
Deviation 111401.9 367.2 164.2319

Set of first 5 specimens
Average 562295.4 3616.9 3626.6
Deviation 125480.5 138.5 158.7

Note:

Material characterization tests conducted by Stokeld (1998) are summarized in the 
above table. Average and deviation values of elastic modulus and stress limits have 
been calculated for three subsets of the nine specimens:

1) All nine specimens;
2) The first seven specimens, deleted two outliers (with **) with respect to a y ;
3) The first five specimens, deleted four outliers (with */**) with respect to <ry.

The modulii are then determined as

E = 560000 psi 
<7^=3600 psi
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A.2. Short Term Buckling Test Results (TTC, 1998a)

Table A.4 Short-term buckling test results (circular pipes)

Test No. t
(in)

Dmeart
(in)

DR Per
(psi)

12"OD5.5mml 0.200 11.64 58.22 64
12"OD5.5mm2 0.202 11.65 57.67 60
12"OD5.5mm3 0.197 11.66 59.11 54
12"OD5.5mm4 0.197 11.67 59.17 50
12"OD5.5mm5 0.205 11.68 57.04 36

Average 0.200 11.66 58.24 52.8
12"OD6.5mml 0.244 11.67 47.90 80
12"OD6.5mm2 0.238 11.67 49.04 86
12"OD6.5mm3 0.232 11.66 50.32 92
12"OD6.5mm4 0.235 11.67 49.69 105
12"OD6.5mm5 0.241 11.65 48.38 98

Average 0.238 11.66 49.07 92.2
12"OD7.5mml 0.259 11.68 45.12 138
12"OD7.5mm2 0.261 11.67 44.66 127
12"OD7.5mm3 0.263 11.62 44.14 103
12"OD7.5mm4 0.262 11.59 44.20 112
12"OD7.5mm5 0.267 11.59 43.47 139

Average 0.262 11.63 44.32 123.8
8"OD4.5mml 0.148- 7.83 52.99 80
8"OD4.5mm2 0.151 7.82 51.88 86
8"OD4.5mm3 0.150 7.85 52.41 80
8"OD4.5mm4 0.146 7.77 53.42 88
8"OD4.5mm5 0.154 7.86 51.16 78

Average 0.150 7.83 52.37 82.4
8"OD5.5mml 0.160 7.79 48.65 92
8"OD5.5mm2 0.162 7.74 47.74 105
8"OD5.5mm3 0.165 7.81 47.29 110
8"OD5.5mm4 0.159 7.84 49.23 115
8"OD5.5mm5 0.159 7.81 49.19 112

Average 0.161 7.80 48.43 106.8
8"OD6.5mml 0.182 7.79 42.78 113
8,,OD6.5mm2 0.176 7.83 44.42 115
8"OD6.5mm3 0.176 7.79 44.39 133
8"OD6.5mm4 0.174 7.79 44.73 115
8"OD6.5mm5 0.177 7.77 43.92 113

Average 0.177 7.80 44.05 117.8
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Table A.5 Short-term buckling test results (oval pipes)

Test No. t
(in)

Dmeart
(in)

DR O V
(%)

Per
(psi)

12"ODO%OV1 0.308 11.65 37.85 n/a 134
12"ODO%OV2 0.293 11.64 39.80 n/a 117
12"ODO%OV3 0.294 11.77 40.06 n/a 125
12"ODO%OV4 0.295 11.66 39.54 n/a 131
12"ODO%OV5 0.302 11.69 38.76 n/a 109

Average 0.298 11.68 39.19 n/a 122.9
12"OD2%OVl 0.296 11.64 39.36 1.94 105
12"OD2%OV2 0.293 11.68 39.91 1.82 105
12"OD2%OV3 0.313 11.65 37.27 1.65 90
12"OD2%OV4 0.306 11.63 38.03 1.62 99
12"OD2%OV5 0.281 11.68 41.54 1.81 98

Average 0.298 11.66 39.17 1.77 99.3
12"OD5%OVl 0.304 11.68 38.46 3.56 75
12"OD5%OV2 0.293 11.66 39.75 4.59 81
12"OD5%OV3 0.291 11.71 40.28 5.35 67
12"OD5%OV4 0.293 11.66 39.77 4.72 74
12"OD5%OV5 0.302 11.62 38.523 4.19 78

Average 0.297 11.67 39.34 4.48 75.0
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A3. Long Term Buckling Test Results

Table A.6 Long-term buckling test summary
(Guice etal, 1993)

Test No. D R G
(%)

P
(psi)

Ter
(hr)

1 51.27 0.4174 75 0.5
2 51.09 0.2553 75 51
4 52.87 0.3408 75 68
5 52.44 0.3491 75 1.5
6 49.34 0.5986 70 33
7 52.96 0.2722 75 54
8 52.24 0.6806 69 0.2
9 53.82 0.6819 70 3
11 51.27 0.3322 70 2
12 52.39 0.4942 65 521
13 54.07 0.4261 70 136
14 52.30 0.5548 65 1056
15 53.27 0.5461 65 528
16 54.72 0.4590 60 2455
17 52.83 0.4604 60 200
18 52.44 0.2989 60 54
19 51.78 0.6722 60 2455
21 53.23 0,5979 60 494
22 52.30 0.5121 55 3272
23 54.02 0.5200 60 1536
24 53.43 0.6837 55 4349
25 55.10 0.4260 55 3384
26 53.82 0.4262 55 455
27 55.71 0.7692 55 144
28 55.90 0.4259 55 2236
29 54.02 0.5118 50 5379
31 53.57 0.4432 50 6013
32 53.86 0.3407 50 10000
33 54.02 0.5118 50 1272
34 53.32 0.4263 50 3302
35 52.83 0.4263 50 3338
36 52.98 0.5978 45 10000
37 53.77 0.5119 45 10000
38 53.18 0.7350 45 10000
39 54.58 0.5283 45 1616
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APPENDIX B

TYPICAL ABAQUS INPUT FILES

Nine typical ABAQUS input files used in this study have been listed in 
section for reference:

B.l. ABAQUS Input File ALXYLD.inp
(Material Characterization Test —  Axial)

B.2. ABAQUS Input File FLXYLD. inp
(Material Characterization Test —  Flexural)

B.3. ABAQUS Input File ALXCRP. inp
(Creep Characterization Test —  Axial)

B.4. ABAQUS Input File FLXCRP. inp
(Creep Characterization Test —  Flexural)

B.5. ABAQUS Input File lLOBE.inp
(One-lobe Circular Pipe Model —  Short Term)

B.6. ABAQUS Input File 2L0BE.inp
(Two-lobe Circular Pipe Model —  Short Term)

B.7. ABAQUS Input File FLOAT. inp
("Float" Circular Pipe Model —  Short Term)

B.8. ABAQUS Input File OVAL, inp
(One-lobe Oval Pipe Model —  Short Term)

B.9. ABAQUS Input File 1LOBE. inp
(One-lobe Circular Pipe Model —  Creep Buckling)
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B.l ABAQUS INPUT FILE ALXYLD. in p

^heading
Material Characterization Test —  Axial 
*wavefront minimization, suppress 
*node 
1, 0., 0.
2 , 1 . ,  0 .
3, 0., 1.
4, 1., 1.

*element, type = b21, elset = TENS 
1, 1, 2
2, 3, 4

^element, type = b21, elset = COMP 
11, 1, 2 
12, 3, 4

*beam sect, sect = rect, elset = TENS, material = SHT1_TENS 
0 . 21, 0.21 

^material, name = SHT1_TENS 
*no comp 
^elastic 
550000.

*plastic
3150.
3650., .03

*beam sect, sect = rect, elset = COMP, material = SHT1_C0MP 
0 . 2 1 , 0 . 2 1  

•'■'material, name = SHT1_C0MP 
*no tens 
^elastic 
550000.

*plastic
8000.

^boundary
1, encastre
3, encastre 

*restart, write
*step, nlgeom, inc = 100 
*static
0.1, 1.

*boundary
2, 1, 0.05.
4, 1, -0.1 

*end step
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B.2 ABAQUS INPUT FILE FLXYLD.inp

*heading
Material Characterization Test —  Flexural 
*wavefront minimization, suppress
*node
1
2 1 , 1 . 6 8  
*ngen, nset = beam 

1 , 2 1
^element, type = b21 
1, 1, 2 
21 , 1 , 2 
*elgen, elset = TENS 
1, 20

*elgen, elset = COMP
2 1 , 20 

★ ★
** ...(beam section & material definitions, same as B.l)
ic  **r

*boundary 
1, 1 
1, 6 
21 , 2

^restart, write, freq = 5 
**
*step, nlgeom, inc = 100 
*static
0.1, 1.

*cload 
1, 2, -5.

*node print, freq = 50 
u
*el print, elset = TENS, freq = 50 
sll 

*end step
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B.3 ABAQUS INPUT FILE ALXCRP. in p

*heading
Material Characterization Test —  Axial 
*wavefront minimization, suppress
k

*node 
1, 0 . , 0.
4, 3., 0.
11, 0., 1.
14, 3., 1.

*ngen, nset = fix
I, 4

*ngen, nset = free
II, 14

^element, type = b21 
1 , 1 , 11
5, 1, 11

*elgen, elset = TENS 
1, 4

*elgen, elset = COMP 
5, 4

•k k

*beam sect, sect = rect, elset = TENS, material = LONG_TENS 
0 . 2 1 , 0 . 2 1  

*material, name = LONG_TENS 
*no comp 
*elastic 
650000.

*plastic
3500.

*creep, law = strain
0.2825866e-7, 1.15, -.89 

* *

*beam sect, sect = rect, elset = COMP, material = LONG_COMP 
0 . 2 1 , 0 . 2 1  

^material, name = LONG_COMP 
*no tens 
*elastic 
650000.

*plastic
8500.

*creep, law = strain
0.7296456481e-8, 1.14585, -.76

*boundary
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fix, encastre 
*restart, write
k  k

*step, nlgeom, inc = 10 
*static
0.1, 1.

*cload
11, 1, -22.05.
12, 1, -44.1
13, 1, -66.15.
14, 1, -88.2

k  k

** the following data lines should be used in a separate run
** simulating the compressive creep tests
** 11, 1, 44.1
** 1 2 , 1 , 8 8 . 2
** 13, 1, 132.3
** 14, 1, 176.4 
*■ *
*end step
*step, nlgeom, inc = 500 
*visco, cetol = l.e-4 
l.e-8, 3000., l.e-30, 24.

*node print, freq = 500 
u
*el print, elset = TENS, freq = 500 
sll 

*end step
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B.4 ABAQUS INPUT FILE FLXCRP. in p

*heading
Creep Characterization Test —  Flexural 
*wavefront minimization, suppress
k  k

** ...(node definition, same as B.2)
k

** ...(element definition, same as B.2)
** ...(beam section & material definitions, same as B.3) 
**
^boundary 
1, 1 
1, 6 
2 1 , 2

*restart, write, freq = 5
k  k

*step, nlgeom, inc = 100 
*static 
l.e-5, 1.

*cload 
1, 2, -2.75625

** the concentrated load should be changed in each run to 
** simulate one of the four stress levels in Lin's test 
** load: -3.675 -2.75625 -1.8375 -0.91875
** stress: 4000 3000 2000 1000
k  k

*node print, freq = 50 
u
*el print, elset = TENS, freq = 50 
sll 
*end step
*step, nlgeom, inc = 500 
*visco, cetol=l.e-4 
l.e-8, 3000., l.e-30, 24.

*node print, freq = 500 
u
*el print, elset = TENS, freq = 500 
sll 

*end step
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B.S ABAQUS INPUT FILE 1LOBE. in p

*heading
one-lobe circular pipe model —  short term.
*node

1, 0 . ,  6 .
73, 6.
145, 0., -6.

*ngen, nset = RING, line = c 
1, 73, 1, 0, 0.0 

73, 145, 1, 0, 0.0 
*element, type = b21 

1, 1, 2 
501, 1, 2 

*elgen, elset = TENS 
1, 144 

*elgen, elset = COMP 
501, 144

*beam sect, elset = TENS, material = SHT2_TENS, sect = rect
1., .24

^material, name = SHT2_TENS
*no comp
^elastic
638177., .35 

*plastic
4100.

jc  7C

*beam sect, elset = COMP, material = SHT2_COMP, sect = rect
1., .24
^material, name = SHT2_C0MP
*no tens
*elastic
638177., .35 

Aplastic
9116.8

•h ic

** mesh definition for host pipe
ic  ic

*node 
1001, 0., 6.096 
1073, 6.048, 0.048 
1145, 0., -6.

*ngen, nset = HOSTPIPE, line = c 
1001, 1073, 1, 0, 0. , 0.048 
1073, 1145, 1, 0, 0. , 0.048 

*element, type = r2d2
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1 0 0 1 , 1 0 0 1 , 100 2  
*elgen, elset = HOSTPIPE 
1001, 144

*rigid body, elset = HOSTPIPE, ref node = 1001
ic  ir

** contact condition
** (ASURF :: contact surface on liner)
*surface definition, name = ASURF
TENS, spos 

*-*
** (BSURF :: rigid host pipe)
* surface def, name = BSURF 
HOSTPIPE, sneg

ic  ic

** (contact pair)
^contact pair, interaction = SMOOTH 
ASURF, BSURF 
*surface interaction, name = SMOOTH
^boundary 

1, 1 
1 r 6

145, encastre 
1001, encastre

ic  ic

^restart, write, freq = 5
■k ic

** loading 
**
*step, nlgeom, inc = 30 
*static 
l.e-1, 1., l.e-10 

*cload 
73, 1, l.e-1 
*node print, freq = 50 
u
*el print, elset = TENS, freq = 50 
s
*end step
ic  ic

*step, nlgeom, inc = 1000 
*static
l.e-3, 2., l.e-10, l.e-2 
*dload 
TENS, p2, -200.
*node print, freq = 500
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u
*el print, elset = TENS, freq = 500 
s

*end step
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B.6 ABAQUS INPUT FILE 2LOBE. in p

^heading
two-lobe circular pipe model —  short term 
*node

1 , 0 . , 6 .
73, 6.

*ngen, nset = RING, line = c 
1, 73, 1, 0, 0.0

*element, type = b21 
1, 1, 2 

501, 1, 2 
*elgen, elset = TENS 
1, 72

*elgen, elset = COMP 
501, 72

ic  ic

** ...(beam section & material definitions, same as B.5)
ic  ic  

ic ic

** mesh definition for host pipe
ic  ic

*node 
1001, 0., 6.048 
1073, 6.048 

*ngen, nset = HOSTPIPE, line = c 
1001, 1073, 1, 0, 0., 0.

*element, type = r2d2 
1 0 0 1 , 1 0 0 1 , 1002  

*elgen, elset = HOSTPIPE 
1001, 72

*rigid body, elset = HOSTPIPE, ref node = 1001 
** ...(contact condition, same as B.5)
ic  ic

*boundary
1, 1
1, 6

73, 2
73, 6

1001, encastre 
★ ★
** ...(loading, same as B.5)
★ ★
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B.7 ABAQUS INPUT FILE FLOAT. i n p

*heading
"float" circular pipe model —  short term 

** ...(liner node & element definitions, same as B.5)
ic  ic

** ...(beam section & material definitions, same as B.5)
ic

** spring & dashpot elements
^element, type = springl, elset = SPX 
1000, 145 

*spring, elset = SPX 
2
l.e-2

*element, type = dashpotl, elset = DPX 
2 0 0 0 , 1 
3000, 145 
*dashpot, elset = DPX 

2
l.e-3

ic  ic

** mesh definition for host pipe
ic  ic

*node
1001, 0., 6.048
1073, 6.048
1145, 0., -6.048

*ngen, nset = HOSTPIPE,
1001, 1073, 1, 0, 0., 0
1073, 1145, 1, 0, 0., 0

^element, type = r2d2
1001, 1001, 1002

*elgen, elset = HOSTPIPE
1001, 144

*rigid body, elset = HOSTPIPE, ref node = 1001
ic ic

** ...(contact conditions, same as B.5)
ic  ic

*boundary 
1 , 1 
1 , 6 

145, 1 
145, 6 
1001, encastre
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** ...(loading, same as B.5)
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B.8 ABAQUS INPUT FTT/E OVAL, in p

^heading
one-lobe oval pipe model —  short term
*node, input = d:\yyy\gap.dat 
*■ *
** ...(all other info, same as B.l; except for node 
** definition for host pipe, which is given in the
** following file)
ir  ★

A separate file, d : \yyy\gap. dat, defining liner and host pipe nodes, will be input at 
runtime to provide nodal information.

1 0 . 0 0 0 6 . 0 0 0
2 0 . 1 3 1 5 . 9 9 9
3 0 . 2 6 2 5 . 9 9 4
4 0 . 3 9 2 ' 5 . 9 8 7
5 0 . 5 2 3 5 .  9 7 7
6 0 .  653 5 .  9 6 4
7 0 . 7 8 3 5 .  9 4 9
8 0 .  913 5 . 9 3 0
9 1 .  0 4 2 5 .  9 0 9
10 1 . 1 7 1 5 . 8 8 5
( .  . . . . . )
1 4 0 0 .  653 - 5 . 9 6 4
1 4 1 0 .  5 2 3 - 5 . 9 7 7
1 4 2 0 . 3 9 2 - 5 . 9 8 7
1 4 3 0 . 2 6 2 - 5 . 9 9 4
1 4 4 0 . 1 3 1 - 5 . 9 9 9
1 4 5 - 0 . 0 0 0 - 6 . 0 0 0

1 0 0 1 0 . 0 0 0 6 . 1 6 8
1 0 0 2 0 . 1 3 3 6 . 1 6 7
1 0 0 3 0 . 2 6 5 6 . 1 6 2
1 0 0 4 0 . 3 9 8 6 . 1 5 5
1 0 0 5 0 . 5 3 0 6 . 1 4 5
1 0 0 6 0 .  6 62 6 . 1 3 2
1 0 0 7 0 . 7 9 4 6 . 1 1 6
1 0 0 8 0 .  9 2 6 6 . 0 9 7
1 0 0 9 1 . 0 5 6 6 . 0 7 6
1 0 1 0 1 . 1 8 7 6 . 0 5 1
( .  . . . • . )
1 1 4 0 0 . 6 6 2 - 5 . 9 6 4
1 1 4 1 0 . 5 3 0 - 5 . 9 7 7
1 1 4 2 0 . 3 9 8 - 5 . 9 8 7
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1143 0.265 -5.994
1144 0.133 -5.999
1145 -0.000 -6.000

(The liner and its host pipe share the same ovality: OV= (a-b) / 

Fig. B .l Schematic of FEA model for oval pipes
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B.9 ABAQUS INPUT FILE CRPBK L.inp

♦heading
one-lobe circular pipe model —  creep buckling

ic  ic

♦♦ ...(liner node & element definitions, same as B.5)
ic  ic

♦beam sect, elset = TENS, material = LONG_TENS, sect = rect
1., .24

♦material, name = LONG_TENS 
♦no comp 
♦density
0.0361 

♦elastic
740741., .35 

♦plastic
4100.

♦creep, law = strain
0.2825866e-7, 1.15, -.89

ic  ic

♦beam sect, elset = COMP, material = LONG_COMP, sect = rect
1., .24
♦material, name = LONG_COMP
♦no tens
♦elastic
740741., .35 

♦plastic
9116.8 

♦creep, law = strain
1. 00788e-8, 1.14585, -.76

ic  ic

♦♦ ...(mesh definition for host pipe, same as B.5)
ic  ic

♦♦ ...(contact conditions, same as B.5)
ic  ic

♦♦ ...(boundary conditions, same as B.5)
ic ic

** loading
ic  ic

♦step, nlgeom, inc = 30 
♦static
l.e-1, 1., l.e-10 

♦cload 
73, 1, l.e-1 

♦node print, freq = 50 
u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



*el print, elset = TENS, freq = 50 
s
*end step 
*  *

*step, nlgeom, inc = 1000 
*static
l.e-6, 0.05, l.e-10, l.e-2 
*dload 
TENS, p2, -50.
** external pressure should be changed in each 
* *
*node print, freq = 500 
u

*el. print, elset = TENS, freq = 500 
s

*end step
*step, nlgeom, inc = 500 
*visco, cetol=l.e-4
l.e-8, l.e8, l.e-30 

*node print, freq = 500 
u
*el print, elset = TENS, freq = 500 
sll 

*end step
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APPENDIX C

FINITE ELEMENT ANALYSIS RESULTS

C .l Long-Term Buckling Analysis

Table C .l Predicted critical time (hr) for O V  = 0%

OV= 0%
G PR DR = 3 5 DR  = 5 0 DR = 65

0.1%

0.80 1312.27 385.09 216.04
0.75 5117.95 1710.75 1010.67
0.70 16466.93 6046.56 3784.23
0.60 127917.90 53328.06 36841.02
0.50 842452.50 387529.00 286476.40

0.4%

0.80 894.72 231.87 106.15
0.75 4330.37 1370.38 619.09
0.70 14925.18 5492.81 2780.15
0.60 141535.50 62974.71 34507.52
0.50 1026898.00 530857.10 332989.50

0.7%

0.80 589.63 190.51 72.01
0.75 3340.16 1183.06 489.95
0.70 13219.02 5347.22 2412.02
0.60 141164.20 67000.59 34678.23
0.50 1153603.00 636467.80 363311.90
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Table C.2 Predicted critical time (hr) for O V = 3%

OV=  3%
G PR DR  = 35 DR = 50 DR  = 65

0.1%

0.80 1310.10 345.80 183.45
0.75 5190.30 1455.97 941.43
0.70 16915.00 5172.14 3531.65
0.60 126751.00 45835.32 36283.23
0.50 807905.80 338127.90 272725.50

0.4%

0.80 918.88 233.28 102.46
0.75 4197.36 1293.91 602.88
0.70 14764.71 5468.03 2657.95
0.60 133959.70 59489.02 34453.61
0.50 964555.00 508261.90 315772.50

0.7%

0.80 1135.10 221.74 82.26
0.75 5188.14 1405.48 534.43
0.70 20154.41 5979.26 2475.20
0.60 193634.40 73971.81 36367.96
0.50 1432658.00 680662.20 370467.60

Table C.3 Predicted critical time (hr) for OV= 6%

OV= 6%
G PR DR — 35 DR = 50 DR = 65

0.1%

0.80 1150.94 325.59 143.35
0.75 4301.66 1397.92 681.26
0.70 13863.23 5004.20 2622.10
0.60 107887.20 46244.24 28120.72
0.50 703582.10 331255.00 231777.50

0.4%

0.80 900.59 281.38 70.76
0.75 4410.87 1383.63 446.12
0.70 15767.19 5935.69 2028.87
0.60 139603.30 62039.01 28500.49
0.50 1033571.00 528886.40 262040.40

0.7%

0.80 1193.41 345.64 80.99
0.75 6041.72 1835.17 543.95
0.70 23219.09 7934.70 2541.46
0.60 223674.20 92041.01 35482.11
0.50 1699721.00 770561.90 372676.80
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C.2. Results of Mesh Refinement Study 

Table C.4 Predicted critical tim e for different mesh densities

Number of 
elements

Case 1 Case 2 Case 3 Case 4

36 2942 5555 267 17493
72 2668 5292 230 16102
144 2462 5187 221 15354
288 2429 5117 216 14925

Table C.5 Relative critical tim e for different mesh densities

Number of 
elements

Case 1 Case 2 Case 3 Case 4

36 100.0 100.0 100.0 100.0
72 90.7 95.3 86.1 92.1
144 83.7 93.4 82.6 87.8
288 82.6 92.1 80.8 85.2

100

98 --

96 -

94 --
• X ------

9 2 -

90 --

88  - -

86 - e a se l ' o
— X - - c a s e 2  
* - . o- - - case3

84 -

82 -
-  - o  - -  case4

150 200 250 300500 100

Number of Elements

Fig. C .l Relative critical tim e versus number of elements
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APPENDIX D

SOURCE CODES

D.l The Critical Time Fitting Program

program fit
c
c This program is designed to fit critical time predicted by 
c FEA to the proposed empirical model, Eqn. (7.6). 
c
c A standard least-square fitting algorithm is employed to 
c determine the exponent (n) and the time coefficient (TO) 
c in Eqn. (7.6) for a given adjustment factor (b). The main 
c program loops by utilizing a bisection algorithm until the 
c best fit is achieved at a optimum value of b. 
c

implicit real*8 (a-h, o-z)
dimension pin(20), tin(20), pu(20), pb(20), tfit(20) 
open (5, file=Ifit.inn’) 
open (6, file='fit.out')

c
c Input number of p-tcr pairs, critical pressure, and upper 
c and bottom bounds for b, followed by the p-tcr. 
c The pressure (p) values will be normalized to pressure 
c ratio (PR) by dividing per. 
c

read(5, *) n, per, bottom, upper 
if (upper.le.5.d-l) upper = l.dO 
if (bottom.le.5.d-1) bottom = .90d0 
do i=l, n

read(5, *) pin(i), tin(i) 
end do 
do i = 1, n

if (pin(i).gt.l.dO) then 
pu(i) = per/pin(i) 
pb(i) = pu(i)*bottom 

else
pu(i) = upper/pin(i)
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pb(i) = bottom/pin(i) 
end if 

end do
call lstsq(n, upper, pu, tin, uerr, expou, tOu) 
call lstsq(n, bottom, pb, tin, berr, expob, tOb)

10 continue
c
c Fitting errors w.r.t. upper and lower bounds of b are 
c calculated and compared. Either upper or lower bound of 
c will be updated by the bisection point accordingly. The 
c calculation will be repeated until the upper and lower 
c bounds coincide, 
c

if (uerr.It.berr.or.(upper-bottom).It.(2.d-4)) then 
bottom = (bottom + upper)/2.d0 
do i = 1, n

pb(i) = (pb(i) +pu(i))/2.d0 
end do
call lstsq(n, bottom, pb, tin, berr, expob, tOb) 

else
upper = (bottom + upper)/2.dO 
do i = 1, n

pu(i) = (pb(i) + pu(i))/2.d0 
end do
call lstsq(n, upper, pu, tin, uerr, expou, tOu) 

end if
if ( (upper-bottom) .ge.~( 1.d-4) ) then 

goto 10 
end if
write (6, *) expob, tOb, bottom, berr 
do i = 1, n

tfit(i) = tOb * (pb(i) - l.d0)**expob 
write (6,20) pin(i), tin(i), tfit(i) 

end do
20 format (f7.2, Ix, el4.7, lx, el4.7) 

close (5) 
close (6) 
stop 
end

cc
cc

subroutine lstsq(n, pO, x, y, err, expo, tO)
implicit real*8 (a-h, o-z)
dimension x(20), y(20), fx(20), fy(20)

c
c Initialize loop variables.
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c
err = O.dO 
sumx = O.dO 
sumy = O.dO 
sumxy = O.dO 
sumxx = O.dO 
write (6, *) pO

c
c Map variables to the logarithm scale.
c

do i = 1, n
fx (i) = x (i) - 1. dO 
fx(i) = dloglO(fx(i)) 
fy (i) = dloglO(y(i)) 

end do 
do i = 1, n

sumx = sumx + fx(i) 
sumy = sumy + fy(i) 
sumxy = sumxy + fx(i)*fy(i) 
sumxx = sumxx + fx(i)**2 

end do
rr = (n*sumxx - sumx*sumx) 
expo = (n*sumxy - sumx*sumy)/rr 
tO = (sumxx*sumy - sumxy*sumx)/rr

c
c Relative errors are used and accumulated.
c

do i = 1, n
yi = tO + expo * fx(i) 
write (6, *) fx(i), fy(i), yi
err = dabs((10.d0**fy(i)-10.d0**yi)/10.d0**fy(i)) 

1 + err
end do
tO = 10.d0**t0
write (6, *) expo, tO, err
return
end
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