
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 1999

A systematic integration of register allocation and
instruction scheduling
Yukong Zhang
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Other Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Zhang, Yukong, "" (1999). Dissertation. 705.
https://digitalcommons.latech.edu/dissertations/705

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/705?utm_source=digitalcommons.latech.edu%2Fdissertations%2F705&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zeefo Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A SYSTEMATIC INTEGRATION OF REGISTER
ALLOCATION AND INSTRUCTION

SCHEDULING

Yukong Zhang, M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

May 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9926395

UMI Microform 9926395
Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

Mav 17. 1999
Date

We hereby recommend that the dissertation prepared under our supervision

by Yukong Zhang___

entitled A Systematic Integration of Register Allocation and Instruction Scheduling

be accepted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy__

/heslsSupervisor of/hesis Research

Head o f Dep;

Applied Computational Analysis and Modeling
(ACAM)__________________________________
Department

% J*d /$

Advisory Committee

Approved: Approved:

Studii

if the College

Director of Graduate School |

GS Fonn 13
2/97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

In order to achieve high performance, processor architecture has become more and

more complicated. As a result, compiler-time optimizations have become more and more

important for the effective use of a complex processor. One of the promising compiler-

time optimizations is the integration of register allocation and instruction scheduling

based on register-reuse chains. In the previous approach, however, the generation of

register-reuse chains was not completely systematic and consequently created many

unnecessary dependencies that restrict instruction scheduling.

This research proposes a new register allocation technique based on a systematic

generation of register-reuse chains. The first phase of the proposed technique is to

generate register-reuse chains that are optimal in the sense that no additional

dependencies are created. Thus, register allocation can be done without restricting

instruction scheduling. For the case when the optimal register-reuse chains require more

than available registers, the second phase reduces the number of required registers by

merging the register-reuse chains. A heuristic is developed for the second phase in order

to reduce the additional dependencies created by merging chains. The first step of the

second phase is to derive a conflict graph in which each node corresponds to a register-

reuse chain, while an edge represents where the corresponding two chains cannot be

merged. Applying a graph-coloring algorithm to the conflict graph, the number of chains

can be effectively reduced. The final step of the second phase is to run the 0-1 knapsack

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

algorithm to make the number of chains exactly the same as the number of available

registers. The proposed register allocation is implemented in LCC (Local C Compiler).

An instruction scheduler is also implemented in LCC and then integrated with the

proposed register allocator. Evaluation results show that the proposed algorithm and

heuristic effectively reduce the number of necessary registers.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT__ iii

LIST OF FIGURES__ vii

ACKNOW LEDGMENTS__ ix

CHAPTER ONE__
INTRODUCTION..1

1.1 Statement of Problem..1
1.2 Research Objectives... 4
1.3 Research Methodology.. 5
1.4 Outline of the Dissertation..6

CHAPTER TWO__
BACKGROUND... 7

2.1 Compiler Optimization Techniques...7
2.1.1 Data Dependence Analysis..7
2.1.2 Instruction Scheduling.. 9
2.1.3 Register Allocation.. 10
2.1.4 Live Range Analysis.. 11

2.2 ARM7T (Advanced RISC Machines) Processor... 16
2.3 Local C Compiler (LCC)... 16

CHAPTER THREE___
DEPENDENCE ANALYSIS AND INSTRUCTION SCHEDULING......................... 19

3.1 Structure of Optimizing LCC Compiler...19
3.2 Dependence Analysis..21

3.2.1 True Dependence..21
3.2.2 And-Dependence..22
3.2.3 Output Dependence ... 25
3.2.4 Adjustment of Dependencies.. 27

3.3 Instruction Scheduling..31

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER FOUR__
REGISTER ALLOCATION..46

4.1 Background.. 46
4.2 Register Allocation Based on Register-Reuse Chains.. 49

4.2.1 Definitions...49
4.2.2 Previous Approach... 51
4.2.3 Possible Improvements...55

4.3 Register-Reuse Chain and Dependence Analysis..57
4.3.1 Generation of Dependence Due to Register Allocation................................58
4.3.2 Generation of Register-Reuse Chains without Additional Dependencies 62

4.4 Register-Reuse Chain Merging..68
4.4.1 Criterion of Chain Merging..69
4.4.2 Heuristics for Chain Merging... 76

CH A PTER FIVE___
SYSTEMATIC MERGE OF REGISTER-REUSE CHAINS......................................80

5.1 The Conflict Graph...80
5.2 Merging Algorithm.. 95
5.3 Register Allocation Algorithm Based on Coloring of Conflict Graph..................107

CH A PTER SIX___
CONCLUSIONS...112

REFERENCES__114

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figures Page

2.1 An example data dependence graph..8
2.2 An example of paralleled code.. 10
2.3 Example for register allocation... 11
?.4 Live range analysis of variables.. 13
2.5 Effect of instruction scheduling on register allocation... 14
2.6 Data dependence graph...14
2.7 Structure of Local C Compiler (LCC)... 18
3.1 The structure of the new optimizing compiler.. 20
3.2 A single AST and the corresponding dependence graph.. 21
3.3 Multiple ASTs and the dependence graph...23
3.4 Multiple ASTs and the anti-dependence graph... 24
3.5 Multiple ASTs and the output dependence graph..26
3.6 Adjustment of anti-dependence after register allocation.. 29
3.7 Adjustment of output dependence after register allocation...................................... 30
3.8 Procedure for adjustments of dependence...31
3.9 A schedule example for nodes shown in Figure 3.3...32
3.10 Structure of the instruction scheduler..33
3.11 An example of scheduled nodes..35
3.12 A basic structure of the scheduler...39
3.13 Function for including dependent nodes in the queue..40
3.14 Function for including false dependent nodes in the queue..................................... 41
3.15 Function for inserting a node in the queue..42
3.16 Function for inserting Xnode in the queue..43
3.17 Function for putting a node in the queue...43
3.18 Function for selecting a node from a queue.. 44
3.19 Function for calling VLIW scheduling...45
4.1 Examples of partial ordering and linear partial ordering.. 50
4.2 Register allocation example given in [8]..52
4.3 Creation of dependencies for register allocation.. 55
4.4 Example of dependence graph...56
4.5 Example C code and corresponding assembly code..59
4.6 C code and assembly code after rescheduling.. 59
4.7 Data dependence graph... 60
4.8 An example for additional dependence forcing simultaneous execution of c and d 62
4.9 Resulting register reuse chains..66
4.10 Register reuse chain generation algorithm.. 67

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.11 Algorithm for calculation of the number of schedules...71
4.12 An example of calculation of the number of schedules...72
4.13 Register-reuse chain merge algorithm...78
5.1 Dependence graph and conflict graph...82
5.2 No dependence between register-reuse chains.. 85
5.3 Unidirectional path from chain a to chain b .. 86
5.4 Chain b is adjacent to chain a... 88
5.5 Bidirectional path from chain a to chain b ... 90
5.6 A path from chain a crosses a successor of chain b ..91
5.7 A path from chain a crosses a successor of an intermediate node of chain b92
5.8 Various cases for paths between chain a and chain b ...93
5.9 Conflict graph after chain merge...97
5.10 Merged conflict graph..98
5.11 Generation of merged conflict graph... 100
5.12 Dependence-conservative register-reuse chains...101
5.13 Chain merge based on Theorem 5.1 and Corollary 5.1...103
5.14 Generation of the merged conflict graph..104
5.15 Avoidance of the case as shown in Figure 5.9...106
5.16 Conversion of a directed conflict graph into an undirected conflict graph............. 108
5.17 Complete procedure for register allocation... I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

At this moment, the author wishes to express his gratitude to all the people who

contributed to the completion of this dissertation.

First of all, I would like to express my deepest appreciation and thanks to Dr.

Hyuk Jae Lee, my research advisor, for his numerous hours helping me to condense my

thoughts and for his invaluable guidance to carry me through difficult times throughout

my dissertation research at Louisiana Tech University.

I would like to thank Dr. Richard Greechie, Dr. Barry Kurtz, Dr. Weizhong Dai,

and Dr. Raja Nassar for taking time to read my dissertation and providing me with very

helpful suggestions.

I also owe a special thank to Dr. Greechie for his countless assistance throughout

my study in ACAM program at Louisiana Tech University.

I wish to thank Ms. Frances Welch at College of Engineering and Science for her

kindness and assistance whenever needed during my graduate study at Louisiana Tech

University.

Many thanks go to my fellow students, Sanqiang Li, Xiaorong Ma, and Danny

Parker for their helpful suggestions to this research and friendship.

Finally, special thanks go to my wife Xiaochun and my daughter Geran whose

understanding, support, and love encourage me to complete this dissertation.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER ONE

INTRODUCTION

1.1 Statement o f Problem

Embedded systems are application-specific systems that are designed with

microprocessors. These systems are employed for applications other than general-purpose

computing. Examples of these systems include cellular phones, automobile engine-

control units, printers, fax machines, and set top-boxes etc. The major components of a

typical embedded system are a programmable processor, a program ROM on which

software is stored, and optionally application-specific hardware. A key characteristic of

an embedded system is that the software is part of the system components. The software

component of these systems is referred to as the embedded software, while the

microprocessor is referred to as the embedded processor on which the software is

executed.

Embedded systems have some unique characteristics compared to general-

purpose computing systems. Due to their high-volume market demand, the manufacturing

of embedded systems is very cost-sensitive. Due to time-to-market requirements, a short

design cycle is desirable. In addition, many applications such as cellular phones are

battery-driven, so the low power consumption requirement must be met.

With recent advancements in semiconductor processing techniques, the

integration of all the system components on a single chip has become possible. For a

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

system that is composed of hardware and software, a hardware-software co-design

approach has been used by the designers of the systems [20, 40, 44], With this design

methodology, the designers first determine which part of the functionality of the systems

will be implemented in hardware and which part in software. Then the designed system

will be simulated and evaluated with a co-design simulator. If the simulation results do

not satisfy the design requirements — such as power consumption, cost, and real-time

constraints, etc. — the designers may repartition the hardware and software of the system

and then repeat simulation and evaluation of the new design until the design requirements

and specifications are satisfied.

Given a fixed size of die on which all the components of a system are integrated,

a certain amount of silicon area is dedicated to the program ROM, which is used to store

the embedded software. Thus the program ROM area becomes limited. It is the designer's

goal to generate high-density software code in order to fit the software code within the

program ROM and to reduce software code size as much as possible, because the cost of

a system increases non-linearly with the die size. In addition, many applications have

strict real-time performance requirements. Producing high-performance code for

embedded systems is a necessity.

In addition to code size and performance, there is another important constraint for

embedded systems: power consumption. Generally, there are two main factors affecting

the power consumption of embedded systems. The first factor is performance of the

system. It is observed that the code that is executed faster consumes less power. The

other factor is related to the instruction execution order of a given application code. An

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

optimal schedule of a sequence of instructions may reduce power consumption

significantly.

Traditionally, in order to guarantee that the code size and performance

requirements of embedded systems are satisfied, the software code usually is written

manually in assembly languages. Although the assembly programming of small

applications may be not relatively complicated, as the complexity of applications grows,

manually program m ing in assembly languages becomes impractical, tedious, and error-

prone. In addition, in order to meet short time-to-market cycle requirements, more

efficient methods are desirable. Recently, most embedded software codes are written in a

high-level language, such as C or C++, and use compiler technology to translate the high-

level languages into assembly code. This is because programming in the high-level

languages significantly reduces the cost and time of the software development.

Furthermore, relatively less effort is required to maintain the code written in high-level

languages. However, the code generated by traditional compiler techniques generally

cannot satisfy the code size, performance, and power consumption requirements of

embedded systems at the same time. The major reason is that traditional compiler

optimization techniques classically focus on the code execution speed rather than code

density and power consumption. Thus the new compiler-time optimization techniques

become very important for code size, performance, and power consumption of embedded

systems, although the traditional compiler optimization techniques are still effective for

embedded systems.

Basically, the fundam ental structure of a compiler can be classified into two parts:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

• The front-end, which takes as input a code written in high-level languages and

generates an intermediate representation of the input code, which is independent of

the target machine.

• The back-end, which generates target-machine-dependent assembly code based on the

intermediate representation. In particular, two important phases are performed in the

back-end: instruction scheduling and register allocation. The phase of instruction

scheduling determines instruction execution order and the register allocation phase

determines the registers that will be used by each instruction.

To generate high-quality code for embedded systems in terms of code density,

performance, and power consumption, this research will focus on these two compiler

optimization techniques: instruction scheduling and register allocation.

1.2 Research Objectives

As mentioned in the previous section, instruction scheduling determines the

execution order of each of the instructions of an application code. The instructions can be

scheduled in favor of our optimization goals, such as efficient use of registers and power

consumption, without affecting the correctness of the code execution. Register allocation

determines which registers are used for each of the instructions. Since registers are the

limited temporary storage resource in a processor, which is used to store the values of

variables and temporary variables of instructions, efficient use of registers is of vital

importance for high-quality code generation. These two compiler optimization

techniques often affect each other. If register allocation is performed first, additional

dependencies between instructions are introduced due to temporary sharing of registers. It

limits the flexibility of the scheduling of instructions. If instruction scheduling is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

performed first, it may create a schedule that demands more registers than available.

Consequently, the benefit from instruction scheduling will be limited. The objectives of

this thesis can be summarized as follows:

• Design an algorithm/heuristic to integrate instruction scheduling and register

allocation. This algorithm/heuristic will minimize the number of needed registers and

additional constraints for instruction scheduler due to register allocation.

• Apply the algorithm/heuristic to compiler code generation for embedded systems

aiming to meet requirements for code size, high performance, and power reduction.

• Evaluate the effectiveness of the proposed algorithm.

13 Research Methodology

In this research, ARM7T (Advanced RISC Machines), one of the ARM series of

processors, has been chosen as the target processor. The characteristics of ARM

processors are high performance, low cost, and low power consumption. Each ARM7T

instruction is 32-bit long. The Local C Compiler (LCC), originally developed by Fraser

and Hanson [15], is used as the compiler frame work tool with which the compiler

optimization techniques developed in this research will be incorporated. To achieve the

objectives of this research, a data dependence analyzer and an instruction scheduler are

developed first. A new register allocator is developed based on a systematic generation of

register-reuse chains. Based on the analysis of the interaction between instruction

scheduling and register allocation, an algorithm/heuristic that integrates instruction

scheduling and register allocation is developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

1.4 Ontline o f the Dissertation

This dissertation is divided into six chapters. Chapter 1 explains the research

objectives and the methodology used to achieve these objectives. Chapter 2 gives the

background related to this research including previous research on instruction scheduling

and register allocation. This chapter also briefly describes ARM series architecture and

LCC structure.

Chapter 3 presents the development of the data dependence analysis and

instruction scheduler. Chapter 4 describes the integration algorithms of instruction

scheduling and register allocation. It includes register-reuse chain generation, register-

reuse chain merging, and merging criteria.

Chapter 5 presents a systematic approach to merge register-reuse chains that

generated by the algorithms described in Chapter 4 when the number of chains is greater

than the number of available registers.

Chapter 6 summarizes the research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER TWO

BACKGROUND

Chapter 2 provides the background on instruction scheduling and register

allocation as well as the integration of both techniques. This chapter also gives a brief

description of ARM architecture and Local C Compiler (LCC) structure.

2.1 Compiler Optimization Techniques

Instruction scheduling and register allocation are very important compiler

optimization techniques for embedded systems. This section is intended to give

background descriptions on these techniques through some simple examples. Also it will

explain how we can benefit from instruction scheduling. Before going through instruction

scheduling, we first describe data dependence analysis, upon which the instruction

scheduling is based.

2.1.1 Data Dependence Analysis

Data dependence analysis identifies the data dependence relationship between

instructions and the constraints with which instruction scheduling must comply. The data

dependencies between instructions fall into three categories: true dependence, anti­

dependence, and output dependence. The alternative terminologies for these three types

of data dependencies are called read-after-write (RAW), write-after-read (WAR), and

write-after-write (WAW), respectively. The data dependencies between instructions can

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

be visually expressed in directed acyclic graphs (DAGs), commonly called data

dependence graphs. The following example in Figure 2.1 shows a piece of C code and its

corresponding data dependence graph.

(1) a = 1;
(2) b = 2;
(3) c = a + b;
(4) a = 5;

(a) Example C code (b) Data dependence graph

Figure 2.1 An example of data dependence graph

In the data dependence graph shown in Figure 2.1 (b), each vertex or node of the

graph represents a statement. The number in a vertex represents the statement number.

Each edge represents a dependence relation between two statements. Each edge could be

either one of three types of dependencies. For instance, the edge £(1,3) represents a true

data dependence (RAW) between statements 1 and 3, which indicates that statement 3

uses as input the value of variable a obtained from statement 1. The edge £(3, 4)

represents an anti-dependence (WAR) between statements 3 and 4. The value of variable

a in statement 3 is read as input and updated in the following statement 4. The edge £(1,

4) represents as an output dependence (WAW) between statements 1 and 4. The value of

the variable a is obtained to be 1 in statement 1, and then updated to be 3 in statement 4.

Whenever there is data dependence between two statements, a switch of the execution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

order of these two instructions causes incorrect execution results, hi other words, the

execution order of two instructions must strictly comply with their data dependence

relationship. Otherwise, the execution results will be wrong. For example, if we swap the

execution order of statements 1 and 4, the resulting value of the variable c in statement 3

will be 7 instead of the correct value of 3.

2.1.2 Instruction Scheduling

Instruction scheduling is a compiler-time process to determine the execution order

of a sequence of instructions, which is performed by a scheduler (part of a compiler)

based on data dependence analysis. Given a sequence of instructions, the execution order

does not have to be the same as the order in which the programmer writes instructions

originally. However, any execution order of instructions scheduled by the scheduler must

conform to the data dependence between instructions. For example in Figure 2.1, based

on data dependence analysis, it is found that there are two valid possible execution orders

of four statements. They may be scheduled either in the order {1, 2, 3,4} or {2, 1, 3, 4}.

Any other execution orders will violate the data dependence in above example.

A scheduler is usually developed to schedule instructions purposely in support of

the programmer’s optimization goals. For example, if our optimization goal is to exploit

instruction parallelism to reduce total instruction execution time, the scheduler identifies

that statements 1 and 2 can be executed in parallel because there is no data dependence

between these two statements in the above example. The following execution order is

scheduled:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

a = 1; b = 2;

c = a + b;

a = 5;

Figure 2.2 An example of paralleled code

The execution time is reduced to 3 from 4, assuming that the execution time of each

statement takes one unit.

2.1.3 Register Allocation

Registers are temporary storage elements in a processor. All the operations occur

in registers. If a variable is not stored in a register, it is loaded from or stored in main

memory whenever it is accessed. If the number of registers is less than the number of

variables, the register allocator of a compiler determines which variables are stored in

registers.

A register allocation example is illustrated in Figure 2.3. Assume that there are

two registers available, that variables j and m are allocated in registers, and variables / and

k are not allocated in registers. The left part of the figure is an example of C code and the

right part is the corresponding instructions to be executed by the processor. Since variable

i is not allocated in register, after the assignment instruction i = 1, the value of variable i

will be stored in main memory, so an extra store instruction is needed. When instruction k

= i + j is executed, since variable i is not allocated in register, a load instruction is needed

to load the value of variable i from main memory. For the same reason, the instruction

store k is needed to store the value of variable k back in main memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

If there are three registers available, assuming that only variable k is not allocated

in register, the corresponding instructions are shown in the lower part of the figure. Since

variable k is not allocated in register, a memory access instruction is needed to store the

value of variable k in main memory after instruction k = i + j is finished. As a result, the

number of the instructions associated with main memory access in this case is reduced to

1 from 3 in the previous case. As a result, code size and execution time are reduced.

(1) i = 1; If there are two registers
(2) j = 2; ----------------------------- ►
(3) k = i + j; / and m: allocated
(4) m = I * j; i and kr. not allocated

i = 1;
store i;
j = 2;
load I;
k = i + j;
store k;
m = i *j;

If there are three registers
 ►
i, j y and m: allocated
kr. not allocated

i= I;
j = 2;
k = i + j;
store k;
m = i *j;

Figure 2.3 Example for register allocation

2.1.4 Live Ranee Analysis

T .ik-ft Haffi dependence analysis on which instruction scheduling is based, live

range analysis is the basis of register allocation. Each variable in a program has a live

range. The live range of a variable is the range from its definition to its last use, that is,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

the range from the point where the variable becomes live to its dead point. For example

in Figure 2.4, the live range of variable h is the range from statement 1 to statement 4,

which is illustrated with an arrow below the variable name. If two variables have

nonoverlapped live ranges, then they can share the same register. In other words, the

second variable can safely reuse the register allocated to the first variable only when two

variables have nonoverlapped live ranges. This is because a register is required to

exclusively hold a live variable's value until that variable is "dead" once the register is

allocated to that variable. Otherwise, the first variable's value stored in the register will be

garbled by another variable that reuses the register allocated to the first variable.

Consequently, wrong execution due to improper register allocation will result.

The minimum number of registers necessary can be obtained based on the live

range analysis of a sequence of instruction. In the above example, variables i and k can

share the same register because they have nonoverlapped live ranges. Variable j needs

another register, and variable h needs another register. Thus at least three registers are

needed in this example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

h j k i

(1) h = 5;

(2) j = h * 2;

(3) i = 6; I
(4) k = h + i; i r

1 I
(5) m = j/k;

i and k can share the same register.
j needs one register.
h needs another register.
At least three registers are needed.

Figure 2.4 Live range analysis of variables

Obviously, the live range of a variable depends on the execution order of

instructions. In other words, instruction scheduling affects register allocation. This is

illustrated in Figure 2.5, which shows a different schedule for the instructions in Figure

2.4. It is easy to verify that this scheduling is a legal schedule based on the data

dependence graph shown in Figure 2.5. With this schedule, variables h and j have

nonoverlapped live ranges, so they can share the same register. For the same reason,

variables k and i can share another register. As a result, two registers are needed, while

the previous scheduling requires three registers. Thus the latter schedule saves one

register compared with the original schedule.

From the above analysis, it is seen that instruction scheduling plays a very

important role in the exploitation of instruction level parallelism and register allocation.

In addition, instruction scheduling technique is very important to power reduction for

embedded systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

(1) h = 5;

(3) i = 6;

(4) k = h + i;

(2) j = h * 2;

(5) m = j/k; I
I

h and j can share the same register.
k and i share another register.
At least two registers are needed.

Figure 2.5 Effect of instruction scheduling on register allocation

A. P
© /

©

Figure 2.6 Data dependence graph

Instruction scheduling and register allocation have been two very important

optimization phases not only for the compilers targeted on embedded systems but also for

other modem compilers. Traditionally, one phase is performed before another phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is called a phase ordering approach. In recent years it has been generally

recognized that the separation between the instruction scheduling and register allocation

phases leads to poor optimization for cases that are not suited to the specific phase

ordering selected by the compiler [1, 31]. For instance, consider the first phase ordering

approach, that is, instruction scheduling followed by register allocation. This phase

ordering gives priority to instruction scheduling. It may be good for exploiting

instruction-level parallelism. However, based on the previous example, it can be seen that

the first schedule in Figure 2.4 stretches out some variables' live ranges compared to the

second schedule in Figure 2.5. As a result, the required number of registers in the first

schedule is 3, while the second schedule requires 2. If there are two registers available,

one variable's value has to be spilled into main memory. Thus the first schedule relatively

increases register pressure.

The second ordering approach is to perform register allocation before instruction

scheduling. This approach gives priority to optimizing usage of registers, especially for

the processors with a small number of registers. It may cause no spills or minimum spills.

However, additional dependencies between instructions may be generated due to extra

register dependencies. As a result, this generates additional constraints for instruction

scheduling, thus limiting the flexibility of instruction scheduling.

It is desirable to integrate these two phases into a single phase to minimize

constraints upon each other. Unfortunately, the integration of instruction scheduling and

register allocation is a NP-Complete problem. Thus this research attempts to develop an

effective heuristic algorithm for the integration problem. The register-reuse chain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

generation and merging algorithms are developed primarily to minimize the constraints

for instruction scheduling when optimizing of register allocation.

2.2 ARM7T (Advanced RISC Machines) Processor

This research uses the ARM7T microprocessor, one of a series of ARM

processors developed by Advanced RISC Machines Ltd., as the target processor. ARM

designs and licenses high-performance, low-cost, power efficient RISC microprocessors

and related technology. ARM intends to establish its architecture as the standard for

embedded RISC processors for use in a wide range of high volume applications in the

embedded, portable, and consumer multimedia markets. The application examples of

ARM processors include [41]:

• Portable: digital cellular phones, pagers and personal organizers.

• Embedded: modem, hard disc drivers, printers and automotive applications.

• Consumer multimedia: sound system, games, set-top box.

ARM7T series processors are the company’s most widely licensed processors.

The CPU cores of AMR7T are small, fast, low-power, 32-bit RISC processors that are

primarily used in portable telecommunications. It has the ability to combine the ARM

instruction set with the THUMB extension to reduce memory size and system cost. The

THUMB extension delivers 32-bit RISC performance at a 16-bit system cost.

2 3 Local C Compiler (LCO

Local C Compiler (LCQ is a retargetable compiler for ANSI C, developed by

Fraser and Hanson [15]. It has been used to compile production programs since 1988. As

a retargetable compiler, LCC has multiple target machines. The advantages of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

retargetable compilers are that machine-specific compiler parts are isolated in modules

that are readily applied to the user-desired target machines. For example, during the

hardware-software co-design stage of an embedded system, the target architecture may be

changed to achieve a better ratio of performance to cost. There is no need to rewrite the

software compiler each time when some features are added or removed from the current

architecture.

To be retargetable, LCC is organized into two major parts shown in Figure 2.7.

The first part is called the front end that consists of a lexical analyzer and a parser. The

lexical analyzer reads program source text and produce tokens. The parser takes a stream

of tokens passed from the lexical analyzer and checks whether they conform to the syntax

of the language. Then an intermediate representation of the source program, called

directed acyclic graphs (DAGs), is generated. The intermediate representation generally

is language-independent and target machine-independent. Within the front end, some

target-independent optimizations are performed, such as common sub-expression

elimination. The second part of LCC is called the back end. It takes as input the

intermediate representation of source program, or DAGs, that are passed from the front

end and translates them into target-dependent assembly code. When the target

architecture is changed or a new architecture is considered, only the back end part of the

compiler needs to be rewritten.

The optimization parts of LCC like instruction scheduling and register allocation

originally distributed by Fraser and Hanson are primitive and simple. Based on their own

needs, users can replace them and add their own optimization parts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Lexical Analyzer
(Generate Tokens)

Parser
(Generate DAGs)

T arget-Independent
Optimizations I

Instruction Selection and
Register Management

I
Code Generator

(Target-Dependent)

)

J
Assembly Code

Figure 2.7 Structure o f Local C Compiler (LCC)

Front End

Back End

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER THREE

DEPENDENCE ANALYSIS AND INSTRUCTION

SCHEDULING

This chapter presents the dependence analysis and the instruction scheduler. In

Section 1, the structure of optimizing Local C Compiler (LCC) is described. In Section 2,

the data dependence analysis, the basis of the instruction scheduler, is represented.

Section 3 describes the instruction scheduler developed in this research.

3.1 Structure of Optimizing LCC Compiler

Figure 3.1 shows the overall structure of the optimizing compiler developed in

this research. It consists of three main phases. In the first phase, registers are allocated to

variables of a program. This register allocation is optimized by each basic block. The

next phase performs instruction scheduling. Dependencies between instructions are

analyzed for the correct and most efficient instruction scheduling. The dependence

analysis and instruction scheduling are also performed by each basic block. The last

phase is the allocation of temporary registers. For this phase, the existing LCC variable

register allocator is used. The variable register allocation is the main subject of Chapter 4

and Chapter 5. Therefore, detailed explanation is given in those two chapters. In this

section, the implementation of dependence analysis and instruction scheduling in the

LCC is explained and issues for the increase of efficiency are discussed.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LCC Intermediate
Representation

Variable Register
Allocation M ore Basic

B lock?

Dependence
Analysis

M ore Basic
B lock?

Instruction
Scheduling

Temporary
Register

Allocation
M ore Basic

B lo ck ?

*

LCC Intermediate
Representation

Figure 3.1 The structure of the new optimizing compiler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

3.2 Dependence Analysis

3.2.1 True Dependence

Dependence represents the relationship in which a correct computation of one

node depends on the result of the computation of the dependent node. For example

consider the Abstract Syntax Tree (AST) shown in Figure 3.2 (a). All nodes depend on

their kids. For example, the ASGN node depends on the computation result of ADD and

the address node (ADDR a). On the other hand, the node ADD depends on its kids,

INDIR (ADDR b) and INDIR (ADDR c). Figure 3.2 (b) shows the corresponding

dependence graph. The arrows in this graph show the dependence relationship. The target

of the arrow depends on the source of the arrow.

ASGNASGN

ADDR ADDADDR ADD

INDIR INDIRINDIRINDIR

ADDR ADDRADDR ADDR

b C b C

(a) AST for a = b + c (b) Dependence between nodes

Figure 3.2 A single AST and the corresponding dependence graph

Now that the dependence graph for a single AST is explained, consider the

dependence graph for multiple ASTs. Consider the ASTs shown in Figure 3.3 (a). There

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

are two ASTs, which represent statements a = c + d and e = a + d, respectively. Note

that the second statement depends on the first statement. In order to represent the

dependence between two statements, a new edge is created from the ASGN node of the

first AST to the corresponding ADDR (a) node in the second AST. This edge is

illustrated with a thick line in Figure 3.3 (b).

3.2.2 Anti-Dependence

Anti-dependence represents the relationship in which one statement depends on

the other statement because the statement stores a value into the same memory location as

the dependent statement loading a value. If the storing statement is executed earlier,

before the loading statement accesses the value, a wrong value can be loaded.

Consequently, the computation result can be wrong.

Figure 3.4 (a) shows a case when anti-dependence occurs. There are two ASTs

representing two statements, a = b + c and c = a * d, respectively. Note that the second

INDIR node in the first AST reads data from c, while the ASGN node in the second AST

stores data into c. In this case, an edge is created from the INDIR(ADDR c) node in the

first AST to the ASGN(ADDR c) node in the second AST. This edge is shown in the

thick line in Figure 3.4 (b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

ASGNASGN

ADD MULADDRADDR

INDIRINDIRINDIR

i r
ADDRADDRADDR ADDR

b e a d

(a) ASTs for a = b + c and e = a * d

ASGNASGN

MULADDR ADD ADDR

INDIRINDIR INDIRINDIR

ADDRADDRADDR ADDR

b e a d

(b) Dependence graph

Figure 3.3 Multiple ASTs and the dependence graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

ASGNASGN

MULADDRADDR ADD

INDIR INDIRINDIR

ADDR ADDRADDR ADDR

b e a d

(a) ASTs for a = b + c and c = a* d

ASGNASGN

MULADD ADDRADDR

INDIR INDIRINDIRINDIR

ADDR ADDRADDR ADDR

db ac

(b) Anti-dependence graph

Figure 3.4 Multiple ASTs and the anti-dependence graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

3.2.3 Output Dependence

Output dependence represents the dependent relationship in which two statements

store data into the same memory location. In order to store the correct value in the

location, the order of the two stores must be preserved. Figure 3.5 (a) shows the case

when output dependence occurs. There are two statements, a = b + c and a - e * d. Note

that both statements store data into a. In order to prevent the reordering of the two

assignments, an edge is created between the two ASGN nodes. In Figure 3.5 (b), the thick

line corresponds to the output dependence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

ASGNASGN

MULADDRADDR ADD

INDIRINDIR INDIR

ADDRADDR ADDRADDR

b e e d

(a) ASTs for a = b + c and a - e *d

ASGNASGN

ADDRADDADDR MUL

INDIR INDIRINDIRINDIR

ADDR ADDRADDRADDR

b C * d

(b) Output dependence graph

Figure 3.5 Multiple ASTs and the output dependence graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

3.2.4 Adjustment of Dependencies

Register allocation often changes the output assembly code depending on which

variables are assigned to registers. For example, Node (ASGN (ADDR symbol))

generates STORE instruction. However, if a register is allocated to the symbol, a STORE

instruction is not necessary because the value is stored in the register. Therefore, after

register allocation, the code needs to be labeled again so that a new code generation rule

is assigned to each node. The new rule determines whether an ASGN node needs to

generate STORE instruction or not. In addition, the new rule decides whether an INDIR

node needs to generate a LOAD instruction or not.

Once code generation rule is changed, dependencies need to be adjusted. Consider

the example of anti-dependence shown in Figure 3.4 again. There is an anti-dependence

from (INDIR (ADDR c)) in the first tree to (ASGN (ADDR c)) in the second tree. Note

that node (INDIR (ADDR c)) in the first tree generates assembly instruction LOAD R t,

a d d r (c) , and node (ASGN (ADDR c)) generates assembly instruction STORE R t,

a d d r (c) . Here, Rt represents a temporary register, and a d d r(c) represents the

address of variable c in main memory. The anti-dependence guarantees that instruction

STORE R t , ad d r (c) is scheduled later than instruction LOAD R t , a d d r (c) .

Therefore, the correct sequence of instructions is generated.

Suppose that variable c is assigned a register. Then, the tree is changed as shown

in Figure 3.6 (a). Note that node (ADDR c) is changed to (VREG c) that represents a

register is allocated to c. In this case, node (ASGN (VREG c)) does not generate an

assembly instruction because variable c is now stored in a register. Its kid, node MUL,

performs the actual assignment operation. Similarly, node (INDIR (VREG c)) does not

generate an assembly instruction, and its kid, node ADD, performs the actual loading

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

operation. Therefore, an anti-dependence needs to be adjusted such that node MUL is

scheduled after node (INDIR (VREG c)). The resulting dependence graph is shown in

Figure 3.6 (b). The new edge from ADD in the first tree to MUL in the second tree is

created.

Register allocation also requires the adjustment of output dependence. Consider

the dependence graph shown in Figure 3.5 again. There is output dependence from node

ASGN in the first tree to node ASGN in the second tree. Suppose that a register is

assigned to variable so that node (ADDR a) is changed to (VREG a). Then, the two

ASGN nodes do not generate any assembly instruction. Instead, their kids, ADD and

MUL, perform the assignments. Note that node MUL can be scheduled as soon as its kids

are scheduled. Thus it can be scheduled earlier than node ADD in the first tree. If it

happens, the resulting code stores wrong value in the register. To prevent this, the output

dependence needs to be adjusted so that node MUL is scheduled later than node ADD.

The corresponding dependence graph is shown in Figure 3.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

ASGNASGN

VREG MULADDR ADD

INDIR INDIRINDIR INDIR

ADDR ADDRADDR VREG

(a) Anti-dependence graph after a register is assigned to variable c

ASGNASGN

VREG MULADDADDR

INDIRINDIRINDIR

I Li L

ADDRADDRVREGADDR

(b) New anti-dependence from ADD in the first tree to to MUL in the second tree

Figure 3.6 Adjustment of anti-dependence after register allocation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

ASGNASGN

VREGVREG ADD MUL

INDIR INDIR

ADDR ADDRADDR ADDR

b c e d

Figure 3.7 Adjustment of output dependence after register allocation

Adjustment of input dependence is similar to that of anti-dependence. For true

dependence, adjustments are in general not necessary except one comer case. Function

r e w r ite D e p () is called inside r e w r ite A g a in () after nodes are labeled again

based on register allocation. This function takes care of one comer case for the

adjustment of true dependence. Then, it calls function ad j u s tF a ls e D e p () , shown

in Figure 3.8, for the adjustment of input dependence, output dependence, and anti­

dependence. Function a d j u s tF a lse D e p () calls three functions

a d ju s tA n tiD e p () , a d ju stO u tp u tD ep () , and ad ju stR egD ep (), each

of which performs adjustments for anti-dependence, output dependence, and input

dependence, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

v o id adj u s tFalseD ep (fo r e s t) Node fo r e s t ;
{

fo r (p = fo r e s t ; p; p = p -> lin k)
i f (g en eric (p->op) == ASGN) {

i f (p->d .antiFrom) /* an ti-d ep en d en ce */
adjustA ntiD ep (p);

i f (p->d.outputFrom) /* output dependence */
adjustOutputDep (p);

i f (p->d.regTo) /* input dependence */
adjustRegDep (p);

}
}

Figure 3.8 Procedure for adjustments of dependence

3.3 Instruction Scheduling

Instruction scheduling is a total (or linear) ordering of nodes in ASTs. Consider

the ASTs shown in Figure 3.3 again. The dependence graph in Figure 3.3 (b) represents

the partial order of the nodes, but not the total order. So the instruction scheduler

transforms the dependence graph into a linked list of the nodes. Figure 3.9 shows an

example of scheduled nodes. In this graph, nodes are linked in a linear order. Note,

however, that all ADDR nodes are not linked in the linear list, but attached as kids of the

nodes in the linear list. The reason is because the ADDR nodes do not call the LCC

emitter to generate an assembly instruction. Thus, only those nodes that call the LCC

emitter are included in the scheduled linked list. More details on the nodes that call the

LCC emitter are illustrated in [15]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

INDIR ADDINDIR ASGN INDIR

ADDR ADDR ADDRADDR

MUL ASGNINDIR

ADDRADDR

d e

Figure 3.9 A schedule example for nodes shown in Figure 3.3

Figure 3.10 shows the structure of the instruction scheduler. The input of the

scheduler is a dependence graph, and the output is the linked list of nodes in the

scheduled order. The first phase of instruction scheduling is to find a set of nodes that are

not dependent on any other nodes. A queue is made out of these nodes as the result of the

first phase. Note that all these nodes in the queue can be scheduled next The next phase

is to select a node among the nodes in the queue and insert it into a linked list that

represents the execution order of the nodes. Thus, the earlier a node is selected from the

queue, the earlier the node is scheduled or executed. Once a node is selected to schedule,

the next phase checks whether it has dependent nodes. If there is a dependent node, the

next phase checks whether it can be scheduled next. If the node depends on any other

nodes that are not scheduled at the moment, the node must be scheduled after the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

dependent node is scheduled. In this case, the node cannot be inserted in the queue.

Otherwise, the node is inserted in the queue, and waits for the selection phase to be

inserted into the linked list. The selection and insertion phases repeat until all the nodes in

the dependence graph are scheduled, and as a result the instruction queue becomes

empty.

Dependence graph

Instruction Scheduler

Find independent
nodes

Insert the node
in the queue

Queue of nodes to
be scheduled

Empty
Queue

Select a node

.yes Dependent
nodes

Dependent
nodes

Insert the node in
the linked list of
scheduled nodes

Linked list of
scheduled nodes

Figure 3.10 Structure of the instruction scheduler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

Figure 3.11 explains the steps for how the instruction scheduler generates the

scheduled nodes with a given dependence graph. Refer to the dependence graph shown in

Figure 3.3 (b). The first phase of the instruction scheduler finds the nodes that are

independent of any other nodes. In this example, nodes (INDIR (ADDR b), (INDIR

(ADDR c)), and (INDIR (ADDR d)) are independent nodes. Thus, these nodes are

initially inserted in the queue. The next phase is to select one of the nodes in the queue.

Depending on the constraints given to the scheduler, there are many different ways to

select the node. In this example, assume that the node in the top of the queue (located at

the bottom of the queue in the figure) is selected first. So (INDIR (ADDR b)) is selected

first, and then inserted in the linked list of the scheduled nodes. At this stage, only one

node is scheduled. In the next step, the dependent node of (INDIR (ADDR b)) is found.

Node (ADD) depends on node (INDIR (ADDR b)). Then the scheduler checks whether

node (ADD) depends on any other node that is not scheduled. Note that node (ADD)

depends on (INDIR (ADDR c)) that is still not scheduled. This implies that node (ADD)

cannot be scheduled until (INDIR (ADDR c)) is scheduled. Thus, node (ADD) cannot be

inserted into the queue. Then, the queue has two nodes (INDIR (ADDR c)) and (INDIR

(ADDR d)). The next step is to return to select a node from the queue. At the top of the

queue is node (INDIR (ADDR c)) that is selected to schedule. So, the linked list of the

scheduled nodes contains two nodes, (INDIR (ADDR b)) and (INDIR (ADDR c)). Now

that (INDIR (ADDR c)) is scheduled, the scheduler checks whether its dependent node is

ready to be scheduled. Node (ADD) is the dependent node of (INDIR (ADDR c)). In

order for node (ADD) to be scheduled, it must be independent of any other unscheduled

nodes. The only other dependent node is (INDIR (ADDR b)) that is already scheduled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

Thus, node (ADD) can be scheduled, and therefore, is inserted in the queue. Thus, the

queue now includes two nodes, (INDIR d), and (ADD). The selection and insertion steps

are repeated until the queue is empty. All the steps are shown in Figure 3.11.

INDIR(ADDR d)

INDIR(ADDR c)

END IR(ADDR b)

ENDIR(ADDR d)

INDER(ADDR c)

ADD

INDIR(ADDR d)

Select
INDER(ADDR b)
 ►

INDIR

ADDR

Select
INDER(ADDR c)

INDIRINDIR

ADDRADDR

Select
INDER(ADDR d)

INDIR INDIRINDIR

ADDR ADDRADDR

Figure 3.11 An example of scheduled nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Select
ADD

INDIR INDIRINDIR

ADDR ADDRADDR
ADD

ASGN(ADDR a)

INDIR INDIRINDIR

ADDR ADDRADDRSelect
ASGN(ADDR a)

»■(ADD ASGN

ADDR

a

Figure 3.11 Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

INDIR(ADDR a)

INDIR INDIRINDIR

ADDRADDR ADDRSelect
INDIR(ADDR a)

ADD ASGN INDIR

ADDR ADDR

MUL

INDIR INDIRINDIR

ADDR ADDRADDRSelect
MUL

ASGN INDIRADD

ADDR ADDR

MUL

Figure 3.11 Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

ASGN(ADDR e)

INDIR INDIR INDIR

ADDRADDR ADDRSelect
ASGN(ADDR e)
 ►

ADD ASGN INDIR

ADDRADDR
aa

+>(MUL ASGN

ADDR
e

Figure 3.11 Continued

The code given in Figure 3.12 shows a rough structure of the instruction

scheduler. Function i n i t i a l l y I n d e p l n s t r () finds all nodes that are initially

independent of any other nodes. The found nodes are inserted in the queue. Then, the

body of while-statement is repeatedly executed until the queue becomes empty. The first

function in the body, se lec tN o d e ln Q u eu e () selects a node from the queue.

Depending on various needs, this selected node can be different. In some cases, more

than one node is selected. For space limitation, detailed explanation of this function is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

omitted. The selected node is removed from the queue by function

removeFromQueue () , and then inserted into the linked list of scheduled nodes. Then,

function in c lu d e D e p In s tr ln Q u e u e f) searches all dependent nodes and insert

them in the queue if they are not dependent on any other unscheduled nodes. The

selection (se le c tN o d e ln Q u e u e) and insertion (in c lu d e D e p In str ln Q u e u e)

repeat until the instruction queue is empty, that is, em p ty ln str Q u e u e () returns

NULL.

m ainScheduler(f o r e s t , next) Node f o r e s t , n ex t;
{

/* i n i t i a l i z a t i o n * /

/ * f in d i n i t i a l l y independent nodes and in s e r t them in the
queue * /

in i t ia l ly I n d e p ln s t r (f o r e s t) ;
w h ile (! (em ptylnstrQueue ())) { /* rep eat u n t i l th e queue

i s empty * /
sNodes = selectN odelnQ ueue (p) ;
fo r (sn = sNodes; sn; sn = sn -> next) {

p = sn->nd;
p->DFScolor = SCHEDULED;
removeFromQueue(p);
/* in s e r t p in to sch ed u led node l i s t * /
includeD epInstrlnQ ueue (p) ;

>
}
/* r e s e t d a ta s tr u c tu r e fo r opcode g e n e r a tio n * /

>

Figure 3.12 A basic structure of the scheduler

In the insertion phase, there are three important functions,

in c lu d e D e p I n s t r ln Q u e u e () , i n s e r t l n s t r l n Q u e u e (), and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

p u t ln s tr ln Q u e u e (). Function in c lu d e D e p In str ln Q u e u e () searches all

the nodes that depend on node p. Then, for each of the dependent nodes,

in s e r t ln s t r ln Q u e u e l) is called. The main functionality of

in s e r t ln s t r ln Q u e u e () is to check whether node p depends on any other

unscheduled nodes. If it is false, it calls p u tln s tr ln Q u e u e () function in order to

insert the node in the instruction queue. Function p u t ln s tr ln Q u eu e () puts the

node in the instruction queue and updates all the data structure correspondingly.

When a node in an instruction queue is selected and scheduled, its dependent

nodes are searched. If a dependent node does not depend on any other nodes that are not

scheduled, the node can be inserted in the queue. Function

in c lu d e D e p I n s tr ln Q u e u e () , shown in Figure 3.13, performs the search of

dependent nodes. The first phase of the function is to check whether its parent node is

prevented from being included in the instruction queue. In the second phase, it searches

true dependent nodes that are stored in the linked list pointed by dDependent. In the next

phase, it searches false dependent nodes by calling function,

in c lu d e F a ls e D e p I n s tr ln Q u e u e () .

includeD epInstrlnQ ueue (p) Node p;
{

/* p reven t i t s p a ren t from being in clu d ed in the
in s tr u c t io n queue * /

fo r (dn = p->dDependent; dn; dn = dn->next)
in se r t ln s tr ln Q u e u e (dn->nd, p);

in clu d eF alseD ep In strln Q u eu e (p) ;
}

Figure 3.13 Function for including dependent nodes in the queue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Function includeFalseDepInstrlnQueue () shown in Figure 3.14

searches false dependent nodes. Note that there are three different types of false

dependencies: anti-dependence, output dependence, and true dependence. These

dependent nodes are pointed by the fields, d.cmtiTo, cLoutputTo, and (LregTo,

respectively. Function insertASGNnodelnQueue () checks whether the dependent

node is also dependent on any other unscheduled nodes. If it is false, then the dependent

node is inserted in the instruction queue.

v o id includeF alseD epInstrlnQ ueue (p) Node p;
{

Node q;
i f (q = p->d.outputT o) insertASGNnodelnQueue! q, p);
i f (q = p -> d .a n tiT o) insertASGNnodelnQueue! q, p);
i f (q = p ->d .regT o) insertASGNnodelnQueue! q, p) ;

}

Figure 3.14 Function for including false dependent nodes in the queue

When in c lu d eD ep In srln Q u eu e () finds a node to be inserted in the

instruction queue, it calls function in s e r t ln s t r ln Q u e u e () shown in Figure 3.15.

First, this function checks whether it is an instruction node or not by evaluating x.inst

field. If the node is an instruction node, it can be inserted in the queue. So function

in sertX N odelnQ ueue () is called. If the node is not an instruction node, check

whether the node is an ADDR node or a VREG node. If it is true, the conditions specific

to the ADDR/VREG node are checked, and insert the node in the queue if the conditions

are satisfied. If the node is not an ADDR/VREG node, function

in c lu d eD ep In srln Q u eu e !) is recursively called to search its dependent nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

v o id in ser tln str ln Q u eu e (nd, depNode)
Node nd;
Node depNode; /* nd i s dependent upon depNode */
{

i f (n d -> x .in s t)
insertXNodelnQueue (nd, depNode) ;

e l s e i f (! isAddrOpOrVreg (nd->op))
includeD epInstrlnQ ueue (nd) ;

e l s e
/* i f (AddrOp or VREG) , in s e r t th e node w ith s p e c ia l

co n d itio n */
}

Figure 3.15 Function for inserting a node in the queue

Function insertXNodelnQueue () , shown in Figure 3.16, checks whether

a node depends on any other nodes that are not scheduled yet. If it is not true, it calls

function putlns trlnQueue () to insert the node in the instruction queue. This

check is performed by function isAnyOtherXKids () . If there is such a node, it is

necessary to check whether it is scheduled, that is, DFScolor = SCHEDULED. It is also

necessary to check whether the node falsely depends on any other nodes that are not

scheduled yet. The examination for false dependence is performed by function

isFalseDepOnNotScheduledNode (). This function checks anti-dependence,

output dependence, and input dependence through register reuse. Once all these

examinations are passed, function putlns trlnQueue () is called. If function

isAnyOtherXKids () returns NULL (that is, there is no other kids that are

instruction nodes), the false dependence is the only necessary check. Thus, function

isFalseDepOnNotScheduledNode () is called for the examination.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

v o id insertXNodelnQ ueue (nd, depNode)
Node nd;
Node depNode; /* nd i s dependent upon depNode */
{

Node q;
i f ((q = isAnyOtherXKids (nd, depNode)))

i f (q - > x .in s t && g e t0 p ln d ex (q, q -> x .in s t)
&& q->DFScolor == SCHEDULED)

i f (! isFalseDepOnNotScheduledNode (nd))
p u t ln s trlnQueue (nd);

e l s e i f (! isFalseDepOnNotScheduledNode (nd))
p u tln str ln Q u eu e(nd);

}

Figure 3.16 Function for inserting Xnode in the queue

When function p u t ln s tr ln Q u eu e () , shown in Figure 3.17, is called, the

first step is to check whether the node is already scheduled, or inserted in the queue. This

check prevents a node from being inserted twice in the instruction queue. The second step

inserts the node in the instruction queue. This step includes the establishment of new

links after the insertion as well as the update of data structure. The final step checks

whether it is an assembly-generating node or not. If it is true, it searches its dependent

nodes by calling in c lu d e D e p In s tr ln Q u e u e (). In this way, the search and

insertion process repeats until an assembly-generating node is inserted in the queue.

v o id p u t In s trlnQueue I p) Node p;
{

i f (p->DFScolor == QUEUED | | p->D FScolor == SCHEDULED)
return;

/* in s e r t Node p in th e in s tr u c t io n queue */
i f (IgetOpIndex(p , p -> x .in s t))

includeD epInstrlnQ ueue (p) ;
}

Figure 3.17 Function for putting a node in the queue

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function selectNodelnQueue () , shown in Figure 3.18, is able to choose

various scheduling techniques based on variable scheduleOption. Currently, three

different scheduling techniques are implemented. The first one is to select the instruction

that minimizes the ham m ing distance of opcode between consecutive instructions. This

technique is useful for reducing power consumption due to frequent change between

consecutive opcode values. The second scheduling technique is designed for VLIW

architecture that can execute multiple instructions simultaneously. The third scheduling is

to simply select the first instruction node in the queue.

v o id SelectedN ode selectN odelnQ ueue ()
{

s w itc h (scheduleO ption)
{

c a se BIT_CHANGE_REDUCTION:
sn = callMinBitChangeOpInQueue (sn) ;
break;

ca se VLIW:
sn = c a llV liw S c h e d u le (sn);
break;

d e fa u lt:
sn = firstN odeInQ ueue();
break;

}
}

Figure 3.18 Function for selecting a node from a queue

Various instruction scheduling techniques can be combined together and executed

simultaneously In order to support the combination of multiple instruction scheduling

techniques, callMinBitChangeOpInQueue or callVliwSchedule () shown

in Figure 3.19 supports the case when there are some nodes selected by the previous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

scheduler. For example, see function c a llV liw S c h e d u le !). When there is a

previously selected node (that isT sn is not NULL), the function attaches the selected node

by calling v liw S ch e d u le () to the tail of the selected node list.

SelectedN ode ca llV liw S ch ed u le! sn.) SelectedN ode sn;
{

i f ! sn) {
SelectedN ode lsn ;
l s n = la s tS e le c te d N o d e (sn);
lsn -> n e x t = v liw S ch ed u le () ;

}
e l s e

sn = v liw S ch ed u le () ;
retu rn sn;

}

Figure 3.19 Function for calling VLIW scheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FOUR

REGISTER ALLOCATION

This chapter presents an improved register allocation algorithm developed in this

research. The major algorithms include register-reuse chain generation, chain merging,

and the merging criteria. A discussion of the previous research on register-reuse chain in

[7, 8] is also provided. For convenience of descriptions, some formal definitions related

to those algorithms are given.

4.1 Background

As mentioned in Chapter 2, instruction scheduling and register allocation are the

two major compiler optimization techniques. In most research efforts, these two

techniques are studied separately [7, 8, 30, 31]. One phase is performed before the other.

The resulting approaches are called phase ordering solutions. However, these two

optimizations often significantly influence each other. Optimization in one phase

adversely affects the optimization in the other phase. The first phase ordering approach

(that is, instruction scheduling followed by register allocation) gives priority to instruction

scheduling. An instruction scheduler decides the live range of a variable and consequently

places significant constraints on register allocation. Therefore, even efficient instruction

scheduling can degrade the overall optimization if the scheduler places too many

constraints on register allocation, resulting in poor register allocation. Some variables’

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

values may spill in main memory. As a result, performance is lowered due to main

memory access latency, and code size increases correspondingly due to extra memory

access instructions generated.

On the other hand, the second approach, register allocation followed by

instruction scheduling, gives priority to register allocation. Register allocation affects

instruction scheduling because it often creates additional dependencies that add

constraints to the scheduler. A common approach to register allocation is graph-coloring.

The graph-coloring approach formulates a register allocation problem as a graph-coloring

problem. Each vertex of the graph represents a variable in the program. If two variables’

live ranges are overlapped, an edge exists between two vertices. The graph-coloring

approach attempts to assign a color to each vertex in the graph with a minimum number

of colors used, such that no two vertices between which there is an edge has the same

colors. The variables with the same color can share a register.

In order to develop an optimizing compiler that would be efficient for both a

scheduler and a register allocator, recent research has been focused on the integration of

these two techniques [7, 8]. Berson, Gupta, and Soffa make a promising contribution by

proposing register allocation based on register-reuse chains [8]. A register-reuse chain is

defined as an ordered set of instructions that use the same destination registers. Thus,

register allocation in [8] is a procedure for decomposing a dependence graph into register-

reuse chains. Each reuse chain requires a register so that the number of necessary registers

is the same as the number of register-reuse chains. If the number of chains is greater than

the number of registers, dependencies are added to the dependence graph that leads to the

reduction of the number of register-reuse chains (see details in later sections). Since the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

addition of dependencies generates additional restrictions for an instruction scheduler,

efficient heuristics are proposed in [8] to reduce unnecessary restriction.

Although the main idea of the register-reuse chain approach is promising, the

method proposed by [8] can still be improved. This is because it does not have a

systematic approach to derive the best register-reuse chains and consequently it can result

in an inappropriate selection of register-reuse chains. Another improvement is needed

because the efficiency of the previous heuristic can be lowered when statements have

various execution times. The previous method is optimized assuming that every statement

in a program has the same execution time. However, it is often the case that different

statements can have different execution times, because different statements can have

different types of operations as well as different number of operations.

The register allocation technique proposed in this research follows the framework

in [7,8], and improves the efficiency of the technique. The first step is to find a register

allocation that is optimal in the sense that no additional dependencies are created. This

optimal register allocation sometimes requires a large number of registers that is greater

than the numbe r of available registers. For this case, a heuristic is proposed to reduce the

number of necessary registers while attempting to minimize the additional dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

4.2 Register Allocation Based on Register-Reuse Chains

4.2.1 Definitions

For convenience of description, some definitions that are used in the algorithms

are introduced as follows:

Definition: A partial ordering relation P on a set 5 is a relation on S such that

(1) (x, x) is GP for any x in S,

(2) if (x, y) g P, and x # y then (y, x) is GP,

(3) if (x, y) and (y, z) g P, then (jc , z) g P.

Condition 3 says P is a transitive relation. Condition 1 is called the irreflective law, and

Condition 2 is called the antisymmetry law. Thus, a partial ordering is an irreflective,

antisymmetric, and transitive relation [10].

According to the above definition, a data dependence graph is a partially ordered

set whose elements are the nodes of the data dependent graph. The relation between the

nodes in a data dependence graph can be described as “ancestor” or “descendant”

relations. It is easily seen that a data dependence graph satisfies the three conditions of a

partial ordering relation. For the example shown in 4.1 (a), there is a relation of

“ancestor'’ between nodes a and e; that is, node a is the ancestor of node e. This relation

can be obtained by applying the transitive condition (Condition 3), because the node a is

the ancestor of node c and node c is the ancestor of node e.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

©
(a) Data dependent graph (partial ordering) (b) Linear partial ordering

Figure 4.1 Examples of partial ordering and linear partial ordering.

Definition: A partial ordering P of a set X is linear if for each two elements x and y in a

set X, either (x, y) e P, or (y, x) e P.

An example of linear partial ordering is shown in 4.1 (b) in which set [a, b, c, d }

forms a linear ordered set because there exists a relation “ancestor” between any two

nodes in the set.

Definition: In a partially ordered set, a subset whose elements are linearly ordered

(relative to each other) is called a chain.

In other words, a chain is a subset of a partially ordered set and its elements are

linearly ordered. Since a data dependence graph is a partially ordered set, it could be

decomposed into distinct chains. For example, subsets [a, e, f] and {b} are two distinct

chains in the dependence graph in Figure 4.1(a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

Definition: A register-reuse chain is a chain in a data dependence graph in which all the

nodes share the same register.

For example, by definition, chains {a, e,f] and [b] can be two different register-

reuse chains in Figure 4.1 (a), respectively, if nodes a, e, and /share the same register and

node b uses another register.

4.2.2 Previous Approach

In [8], the source code shown in Figure 4.2 (a) is used to explain the register

allocation based on register-reuse chains. Figure 4.2 (b) shows the corresponding

dependence graph in which each node corresponds to a statement in the source code. The

character in the node represents the name of the variable assigned in the statement. Figure

4.2 (c) shows the register-reuse graph derived from the dependence graph. In this graph,

the nodes are the same as those in the dependence graph and an edge shows the

possibility of the register-reuse; that is, the successor (destination of the edge) can reuse

the register of the predecessor (source of the edge). Let E(a, b) denote the edge from node

a to b. This edge represents that b can kill a; that is, b can reuse the register assigned to a.

Similarly, E(c, f) represents that / can reuse the register for c. Note that / has another

incoming edge from d. This means that /can reuse both registers for d and c. However,/

can reuse only one register. Thus, it is necessary to decide which register / reuses.

Removing one of the edges coming into/can represent this decision. For example, if c is

chosen to be reused by/, then removing edge E(d, f) can represent this decision.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a = 5;
b = 2 * a;

c = a +1;

d = a - 3;

e = c * d;

f = c - d;

g = e / f;

h = g + 5;
i = h * 2;
j = h + 4;

k = i / j;
I = b + k;

(a) Source code (b) Dependence graph

Figure 4.2 Register allocation example given in [8]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

Start

© ©

(d) Register-reuse chains

Start

© ©

(c) Register-reuse graph

Figure 4.2 Continued

In general, in order to use the register-reuse graph for register allocation, a

register-reuse graph needs to be transformed into another graph in which each node has at

most one predecessor and one successor. Figure 4.2 (d) shows such a graph transformed

from Figure 4.2 (c). By removing edges E(d, f), E(e, g), E(j, k) and EQc, Z), this graph

forms a set of chains in which all nodes have one predecessor and one successor at most.

This graph can be used for register allocation in such a way that each chain is mapped to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

register. Thus, all statements in a chain are assigned to the same register. In this figure, a,

b, and / are assigned to the same register, while c ,f,g ,h , i, and k are assigned to the same

register. These chains in this graph are called register-reuse chains in [7, 8].

Since each chain is mapped to one register, the number of chains corresponds to

the number of necessary registers. For example, the graph in Figure 4.2 (d) requires four

registers. If the number of chains is greater than the number of registers, it is necessary to

reduce the number of chains. In order to reduce the number of chains, [8] proposes to add

dependencies in the dependence graph. For example, consider a new dependence graph as

shown in Figure 4.3 (a). Five register-reuse chains are derived in [8]. Suppose that there

are only four available registers. Then, [8] suggests to add dependencies from i to g and i

to h as shown in Figure 4.3 (b). With the new dependencies, [8] can derive four new reuse

chains. More details on the addition of dependencies can be found in [8].

There are many different ways to add dependencies. So optimization is necessary

to select which additional dependencies need to be added. In [8], the criterion for the

addition of new dependencies is the length of the critical path in the dependence graph.

For example, the added dependencies in Figure 4.3 (b) increase the length of the critical

path by one. hi [8], a method is developed to add dependencies that attempt to minimize

the increase of the critical path length. In addition, further optimizations are developed in

[8] for the integration of instruction scheduling with the register allocation, the generation

of register spill/reload instructions, and the optimization across basic blocks. Since the

additional optimizations are not the interest of this research, detailed explanation is

omitted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

(a) Dependence graph (b) Additional dependencies shown in dotted lines

Figure 4.3 Creation of dependencies for register allocation

4 .23 Possible Improvements

This chapter concentrates on the generation of the register-reuse graph, reuse

chains, and the reduction of reuse chains. Improvements are attempted based on the

following observations. In the generation of the register-reuse graph, the selection of a

possible killing node can affect the efficiency of a scheduler. Recall that the killing node

is the node that can reuse the register assigned to its predecessor. The previous research

does not have a systematic approach to select the killing node, and consequently can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

degrade the efficiency of a compiler. For example, consider the following dependence

graph shown in Figure 4.4.

Figure 4.4 Example of dependence graph

Suppose that b is selected to reuse the register for a. This forces that c and d must

be computed no later than b. Otherwise, a is not available for the computation of c and d

because a is already replaced by b. Assume that there are only two functional units. Since

c and d cannot be executed later than b, a scheduler must force c and d to be executed

immediately after the execution of a. Then, node b, e, and/must be executed sequentially

due to dependencies between them. This requires 5 steps to complete the computation.

Suppose that c is selected to reuse the register of a. Then, b and d need to be scheduled

right after a. In the next step, c and e can be scheduled simultaneously. Finally, f is

scheduled. This requires four steps to complete the computation. This example shows the

importance of the selection of the initial reuse graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

In [8], dependencies are added for reducing the number of register reuse chains, hi

this phase, it is often the case that there is more than one choice in the selection of

dependencies. [8] uses the criterion based on the increase of the length of the critical path

in the dependence graph. This criterion is useful when each statement requires the same

execution time. However, each statement computes different operations and therefore can

have different execution times. In addition, each statement can have a different number of

operations that can further differentiate the execution time of a statement. This research

proposes a new criterion for the reduction of register-reuse chains. Based on the new

criterion, a heuristic is proposed to reduce the register-reuse chains. The new heuristic is

designed to be used efficiently for the general case when each statement can have

different execution time.

4.3 Register-Reuse Chain and Dependence Analysis

Register allocation is a procedure to decide which variables are stored in registers

and which of them share the registers. If two variables are assigned to the same register,

their live ranges must not be overlapped. If registers are allocated before instructions are

scheduled, register allocation, in general, forces an ordering in the live ranges of

variables, resulting in the creation of additional dependencies between instructions that

access the variables. However, these additional dependencies can be avoided if the forced

ordering complies with existing dependence relationship. This section investigates

register allocation that does not create any additional dependencies. First, the creation of

dependencies due to register allocation is studied and then an algorithm is proposed to

allocate registers without the creation of additional dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

43.1 Generation o f Dependence Dne
to Register Allocation

The execution results of a given C code do not change with the schedules that

comply with the data dependencies. However, when a C code is translated into assembly

code, register allocation for each variable is involved and additional dependencies may be

introduced by register allocation. Therefore, when instructions are scheduled, these extra

dependencies due to register allocation should be taken into consideration in addition to

normal data dependencies.

Consider the example shown in Figure 4.5. The left column in the figure shows a

segment of C code. The corresponding data dependence graph is given in Figure 4.7.

Assume that variables a, b, e, and/are allocated to register R3, variable c to register R4,

and variable d to register R5. The corresponding assembly code is shown in the middle

column in Figure 4.5. The execution results based on the assembly code are shown in the

right column. Note that the computation result o f /is 80, which is incorrect. The reason is

that when instruction (1) is finished, variable b reuses register R3 originally allocated to

variable a. When variables c and d use of the value of variable a, it is already replaced

with the value of variable b and no longer available. In order to correctly execute the

code, instructions (3) and (4) must be executed before instruction (2). To force the

execution ordering, it is necessary to create additional dependencies from instruction (3)

to (2) and from (4) to (2). The new dependencies are shown with dashed arrows in the

data dependence graph (see Figure 4.7). The additional dependencies force instruction

(2) moved behind both instructions (3) and (4), which is shown in Figure 4.6. The correct

execution results are shown in the right column of the figure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

(1) a = 5; R3 = 5 (5)

(2) b = a + 1; R3 = R3 + 1 (6)

(3) c = 2 * a; R4 = 2 * R3 (12)

(4) d = a / 3; R5 = R3 / 3 (2)

(5) e = b + c + d; R3 = R3 + R4 + R5 (20)

(6) f = 4 * e;

«IICOGC R3 (80)

Figure 4.5 Example C code and corresponding assembly code

(1) a = 5; R3 = 5 (5)

(3) c = 2 * a; R4 = 2 * R3 (10)

(4) d = a / 3; R5 = R3 / 3 (1.67)

(2) b = a + 1; R3 = R3 + 1 (6)

(5) e = b + c + d; R3 = R3 + R4 + R5 (17.67)

(6) f = 4 * e;

•*llCOCC R3 (70.68)

Figure 4.6 C code and assembly code after rescheduling

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Figure 4.7 Data dependence graph

In general, if a node in a dependence graph has multiple successors, additional

dependencies need to be created when one of its successors reuse the same register

assigned to its predecessor. In Figure 4.7, node a has multiple successors: b, c, and d. If b

is selected to reuse a, additional dependencies need to be created from c to b and from d

to b. Since the new dependence is necessary to guarantee the values of predecessors are

available as an input to successors, it is called an input dependence in this research. The

new dependence is different from a normal dependence in the sense that it requires the

dependent node to be executed no earlier than the node, but does not require the

dependent node to be executed strictly later. If there are multiple functional units, a node

can be executed simultaneously with its dependent node. The following proposition

summarizes the discussion on the creation of input dependence by register allocation.

Proposition 4.1 If a node in a dependence graph has multiple successors and one of the

registers assigned to the node is reused by one of its successors, then an input dependence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

is created from the other successors to the successor that reuses the register. The input

dependence forces the scheduler to order the execution of other successors no later than

the execution of the node that reuses the register.

Consider the dependence graph shown in Figure 4.7 again. If the variables a, e,

and / are allocated in the register R3, and the variables b, c, and d in three different

registers, say, R4, R5, and R6, variable e reuses the register of variable a. Based on the

data dependence analysis, instruction (5) will be executed behind instructions (2), (3), and

(4) which use the value of the variable a. This implies that at the point where the

instruction (5) is executed variable a is guaranteed to be dead, so the register allocated to

variable a can be reused safely by variable e regardless of the execution order among the

three instructions (2), (3), and (4). In this way no additional dependence is generated.

Suppose that three functional units are available. Then, b, c, and d can be executed

simultaneously. When b reuses the register assigned to a, variables c and d have already

accessed the value of a. Therefore, the computation for c and d can generate the correct

result. However, if there is only one functional unit, the input dependence behaves exactly

the same as a normal dependence. Therefore, instruction (2) has to be moved behind

instructions (3) and (4) as shown in Figure 4.6.

Consider another dependence graph shown in Figure 4.8. Suppose that a register

allocator assigns the same register to a and c. In addition, b and d share the same register.

Since c reuses a, an input dependence from d to c is generated. Similarly, another input

dependence from c to d is generated because d reuses b. The generated dependencies are

shown as dotted lines in Figure 4.8. With the two input dependencies between c and d,

these two nodes must be executed simultaneously. If there is only one functional unit, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

simultaneous execution is impossible. Then, register allocation needs to be changed

because either the register of a cannot be reused by c or b cannot be reused by d. If c (or

d) does not reuse the register of a (or b) but is assigned to a new register, the input

dependence from d to c (or from c to d) is removed. Therefore, by computing in the order

of a, b, d and c (or b, a, d and c), the correct result is obtained. In this case, however, note

that three registers are necessary because b and d share one register while a and c need

different registers.

© ©

Figure 4.8 An example for additional dependence forcing simultaneous
execution of c and d

4 3 .2 Generation of Register-Reuse
Chains without Additional
Dependencies

An input dependence is generated because a register is reused by another variable

even though the variable is still alive. Therefore, in order to prevent additional

dependence, the end of the live range needs to be found. However, when an instruction

scheduling is not fixed, it is impossible to find the exact end. However, it is often

possible to derive the latest possible end at which the variable is guaranteed to be dead.

The first phase of register allocation is to find the latest possible end of a live range.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Definition Let a be a node in a dependence graph. An ultimate killing node of a is a node

through which all paths starting from a pass.

In Figure 4.7 e is an ultimate killing node of a because all paths starting from a

path through e. Similarly,/is also an ultimately killing node of a. In general, there may be

more than one ultimate killing nodes.

Definition The earliest ultimate killing (EUK) node of node a is the ultimate killing node

that is the ancestor of all other ultimate killing nodes of a. The EUK node of a is denoted

by EUK (a).

In Figure 4.7 nodes b, c, and d have two ultimate killing nodes, e and/. Node e is

the EUK node because the node e is the ancestor off. For example, e is the first node that

guarantees that a is dead. In fact, a is dead earlier than e because a is dead when b, c, and

d are executed. However, it is not decided which one among b, c, and d are executed later

before the instruction scheduling is fixed. Thus, no node among b, c, and d guarantees

that a is dead. Only e guarantees that a is dead because b, c, and d are already executed

when e is executing. In general, the EUK node is the first node that guarantees the end of

the live range. The starting nodes in a data dependence graph are the nodes without any

ancestor.

Register allocation without the generation of additional dependence is possible by

taking advantage of the property of an EUK node. Since a variable is guaranteed to be

dead at EUK, registers can be reused at its EUK without additional dependencies. In

addition, any node succeeding the EUK node also can reuse the register. Therefore, the

register allocation algorithm proposed in this section recursively finds its EUK node and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

assigns the same register to the EUK node. If the EUK node is already visited from

another node and assigned to a register, a successor of EUK is chosen.

A data dependence graph from [8] shown in Figure 4.2 (b) is an example that

demonstrates the register allocation algorithm. Initially, the register-reuse chain

generation is started with the root of the input DAG. When there is only one starting node

in the DAG, the starting node is chosen as the root. If there are multiple starting nodes in

the DAG, a “virtual root”, whose kids or dependent nodes are those starting nodes, is

created. But the “virtual root” is not included in any chain and just functions as the

beginning node in Breadth First Search (BFS) order. The algorithm starts with root node

a and searches its EUK node. Note that a has three edges incident into nodes, b, c, and d.

The three paths merge at node /, that is, I is the EUK of a. This means that I is the first

node that guarantees a is dead so that I can reuse the register assigned to a without

additional dependencies. The register allocation algorithm assigns the same register to

both a and I. Since the node I does not have any dependent node, the recursive search of

EUK node stops, and the algorithm starts with another node.

For the selection of the next node, nodes are visited in BFS order. Therefore, node

b is visited next. Then node I is found as its EUK because the node I is the only dependent

node of b. However, node I is already visited and assigned to a register, so it cannot reuse

the register of b. Since node I does not have any dependent node, the search procedure

stops. Thus b is the only variable that is assigned to the second register.

Now another new search for the third register is initiated starting with node c, the

next visited node based on BFS. The EUK searching finds g as the EUK node of c and it

is not visited. Thus, g is selected to share a register with c. Then, recursively finding the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

EUK of node g, h is found. Thus, h is selected to reuse the register of g. Then k is found

as the EUK node of h, and k reuses the register of h. Finally, node I is found as the EUK

of k, but it is already assigned to the first register. So, the searching stops, and c, h, g, and

k are selected to share the third register.

The forth search starts with d and finds g as its EUK node. However, g is assigned

to the previous register. In this case, searching finds the first unvisited successor of g is /

and then i is selected to reuse the register of d. Then, searching begins with node i and

finds A: as its EUK node. However, it is already assigned. The searching finds its

successors. All successors are already assigned to registers. So the searching stops, and d

and i are selected to share the same register. By visiting all the nodes that are not assigned

and recursively searching its EUK, e and j are selected to share a register, and f is

assigned to a new register. Figure 4.9 (a) shows the result of the register allocation

algorithm. A chain is used to collect all the nodes that share the same register. Then each

chain is mapped to an available register. These chains are called register-reuse chains.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

Chain [0] = {a, b, 1}

Chain [1] = {c, f, g, h, k}

Chain [2] = {d, i}

Chain [3] = {e, j}

(b) After merge

Figure 4.9 Resulting register reuse chains

Figure 4.10 shows the algorithm for the generation of the register-reuse chains.

The algorithm consists of two main functions, a driver function and a work horse

function. The driver function B u ild _ R e g is te r _ R e u se _ C h a in s (DAG) takes data

dependence graphs or DAGs as input. It visits each node in the DAGs in BFS order. If a

node named p in the DAGs is not visited yet, it creates a new chain with p as the head

node of the chain. Then the work horse function

B u ild _ A _ R e g is ter _ R eu se _ C h a in (p) is called by the driver function whenever

a new chain is initiated. The functionality of B u ild _ A _ R e g is te r _ R e u se _ C h a in

(p) is to find the EUK node of p and returns it. If the EUK node exists and not visited

yet, it is attached to the chain. If the EUK node is already visited (that is, included in the

other chain), the first unvisited successor of the EUK node is found in BFS order. If such

a node exists, it is attached to the chain. Repeat this search-and-attach process recursively

Chain [0] = (a, 1}

Chain [1] = {b}

Chain [2] = {c, g, h, k}
Chain [3] = (d, i}

Chain [4] = {e, j)

Chain [5] = {f}

(a) Before merge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

until no more nodes can be attached to the current chain. The driver function stops when

all the nodes in DAGs are visited.

B uild_R egister_R euse_C hains (DAG)
C

Node p = v i s i t DAG in Breadth F ir s t Search (BFS) order;
i f p i s not v i s i t e d

attachNodeToChain (p);
Build_A _R egister_R euse_C hain (p) ;
ch a in ln d ex ++; /* increm ent ch a in index */

}
ch a in Bui 1 d_A_Regi s ter_Reuse_C hain (Node p)
C

/* T his fu n c tio n i s u sed to b u ild a chain */
i f (Node q = findEar 1 ie s tU ltim a te K i 11 ingNode (p))

i f (q i s n ot v i s i t e d) {
/* a tta c h node q to cu rren t r e g is t e r reu se ch a in */

attachNodeToChain (q) ;
Build_A _Register_Reuse_Chain (q) ;

}
e l s e /* q i s v i s i t e d * /

i f (q = firstU nvisited D escen dan tN ode (q)) {
attachNodeToChain (q);
Build_A _Register_Reuse_Chain (q) ;

}
}

Figure 4.10 Register reuse chain generation algorithm.

The reuse chains created by this algorithm do not create any additional

dependencies. Therefore, these chains are called independent register-reuse chains. The

number of chains corresponds to the necessary number of registers. This algorithm always

generates the minimum number of chains. However, there may be a different set of chains

that have the same minimal number of chains for a given dependence graph. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

complexity of this algorithm is 0(IVl3), where IVI is the number of nodes in the

dependence graph.

4.4 Reeister-Reuse Chain Merging

The number of independent register-reuse chains derived in the previous section

can often exceed the number of available registers. For this case, it is necessary to

develop an algorithm to reduce the number of register-reuse chains. Recall that the

independent register-reuse chains are the minimal chains that do not create any

dependencies. Thus, the reduction of the number of chains always creates new

dependencies, resulting in additional constraints to an instruction scheduler. This section

develops an algorithm that aims to reduce the number of chains while minimizing

additional constraints to an instruction scheduler.

To reduce the number of register-reuse chains, we need to combine the chains.

This process is called chain merging. For example, in the previous section, there are six

chains generated. If there are five registers in a processor, we combine two of the six

chains into a single chain such that the number of chains after combining becomes five,

which is equal to the number of registers available in the processor. Recall that

independent register-reuse chains are generated without introducing any additional

dependency, and the number of chains generated is minimized. Thus the merging of any

such two chains must create additional dependence, which in turn adds extra constraints

for instruction scheduling. The merge problem becomes another optimization problem in

minimizing additional constraints for instruction scheduling. In this section, an optimal

chain merge algorithm and merging criterion are presented.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

The chain merge problem can be formulated as:

INPUT: independent register reuse chains.

OUTPUT: merged chains.

CONSTRAINTS:

• The number of merged chains is less than or equal to the number of

registers available.

• The merging complies with the existing data dependencies.

OBJECTIVE: minimize additional constraints for instruction scheduling.

4.4.1 Criterion of Chain Merging

One way to reduce the number of chains is to merge chains. When selecting the

chains to be merged, many different combinations of chains are possible. The selection of

chains affects an instruction scheduler because different merging chains result in different

additional dependencies. If a preferred scheduling criterion is available at the register

allocation phase, the best possible chains can be chosen based on the criterion. However,

it is often the case that a desirable scheduling scheme is not available. For this case, this

section proposes a generic criterion that can be applicable to any scheduler.

Definition 4.1 Given a dependence graph, the number of schedules is the number of

possible orderings of the nodes.

Consider the dependence graph shown in Figure 4.12 (a). Dependencies between

nodes force only parts of the order of nodes, but not the total order. So many different

orderings of nodes are possible. For example, the following orders all comply with the

dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

a W C ' ^ d ' ^ e ' ^ f ' ^ g - ^ H k

a - ^ c ~^b e -> /-> g -> /r^fc

a d ->c b e -> /- ^ g -> hr^k

However, the following order is not possible because it violates the dependence from a to

b.

b a h -^k

In this dependence graph, there are 30 different possible orderings of the nodes.

Among the possible schedules (or orders of nodes), an instruction scheduler

selects the order that best suits the target architecture. The addition of dependencies by

register allocation reduces the number of schedules, and consequently reduces the choices

that can be made by the instruction scheduler. The more schedules a dependence graph

has, the more choices the instruction scheduler has, so it is desirable to avoid the

reduction of the number of schedules due to register allocation. Thus, the number of

schedules should be used as the criterion to decide the efficiency of a register allocator.

The following algorithm shown in Figure 4.11 computes the number of schedules

for a given dependence graph:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

in t Compute_Num_Schedules (DAG)
{

I f (DAG i s l in e a r ly ordered) return 1;
/* Remove a l l the nodes w ith f ix e d sch ed u les from DAG */
Remaining_DAG = Remove_Nodes (DAG) ;
i f (Remaining_DAG can be d iv id ed in t o two d i s j o in t

subgraphs)
{

D iv id e the Remaining_DAG in to LEFT and RIGHT
subgraphs;
S = C(|LEFT| + |RIGHT|, |LEFT|);
St = Compute_Num_Schedules (LEFT);
Sr = Compute_Num_Schedules (RIGHT) ;
3 = 3 * 3 ^ Sr;

}
e l s e
{

S = 0;
fo r (i = 0; i < num _starting_nodes; i++)
{

/* Suppose th e s t a r t in g node i i s sch ed u led f i r s t
among a l l th e s t a r t in g nodes * /
Temp_DAG = Remove_Starting_Node (Remaining_DAG,
i) ;
S += Compute_Num_Schedules (Ten5 >_DAG) ;

}
}
retu rn S;

}

Figure 4.11 Algorithm for calculation of the number of schedules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b
©

(a) Data dependence graph. (b) Remaining dependence graph

(c) Two cases for RIGHT subgraph
(c is scheduled first vs d is scheduled first)

©
©

© ©
(d) The remaining graphs for the two cases in (c)

Figure 4.12 An example of calculation of the number of schedules

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Suppose that there is only one processor available. To simplify the description of

the algorithm, assume that each node takes one time slot to execute. In Figure 4.12 (a),

there are 8 nodes in the graph. Thus the total execution time required is 8 time slots.

Function Com pute_Num _Schedules () checks whether the input graph is linearly

ordered. If it is true, it returns 1 because one schedule is possible for a linearly ordered

graph. Next, Remove_Nodes () removes the nodes whose orders are fixed. Note that

the removal of the nodes with fixed schedule does not change the number of schedules.

For example, nodes a and k have fixed execution time. In other words, node a must be

executed before all other nodes, that is, at the first time slot; node k must be executed

after all the nodes, that is, it is executed last. Therefore, function Rem ove_Nodes ()

removes these two nodes from the graph. The remaining graph is shown in Figure 4.12

(b). Then, the if-clause checks whether the remaining graph can be divided into two

disjoint subgraphs between which there is no edge. If it is true, the body of the if-

statement is executed. Let the two subgraphs be denoted by LEFT and RIGHT. In the

example, LEFT = {b\ and RIGHT = {c, d, e, f h }. Therefore, the original problem is

reduced into a simpler problem with two smaller sizes of subgraphs LEFT and RIGHT.

Since these two subgraphs are disjoint, the total number of schedules can be formulated

as:

S {GRAPH) = C(l LEFT\M RIGHT],ILEFT)) * S(LEFT) * S (RIGHT) (4.1)

where S denotes the number of possible schedules for a given graph, [LEFT is the number

of nodes in the set or subgraph LEFT, \RIGHT\ is the number of nodes in the set or

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

subgraph RIGHT, and CQLEFTMRIGHTl, ILEFTf) is the number of possibilities in

choosing ILEF71 elements out of \LEFT\+\RIGHT\ elements, that is,

 (I LEFTM RIGHT])!
0(1 LEFTM RIGHT], I LEFT) = I LEFT\! I RIGHT]!

The term C(\LEFT\+\RIGHT\, \LEFTT) can be interpreted as the number of

schedules for a graph without considering how the nodes in subgraphs LEFT and RIGHT

are scheduled individually. In other words, the term represents the number of ways in

which the nodes in LEFT occupy the entire available time slots of \LEFT\ + \RIGHT\. For

example in Figure 4.12 (b), there are six nodes in the remaining graph, one in the LEFT

subgraph, five nodes in the RIGHT graph. Six time slots are needed in total. Ordering of

these nodes can be considered as allocating these nodes in six time slots. When

scheduling these six nodes, the node b in LEFT can be allocated to any time slot from 1 to

6 while the five nodes in RIGHT occupy five remaining time slots. As a result, there are

six ways the nodes in LEFT occupy six available time slots. This can be obtained by

C(l{b}l + \{c,d,e,fh)\, l{b}l) = C(1+5, 1) = C(6,l) = 6

Now, it is necessary to compute S(LEFT) and S(RIGHT) that are the numbers of

schedules of LEFT and RIGHT subgraphs, respectively. Thus, the problem of finding the

number of schedules is decomposed into a smaller problem with two subgraphs. S{LEFT)

and S(RIGHT) can be computed by recursively calling Com pute_Num _Schedules (

) function. Consider S(LEFT), that is, the number of schedules of the left graph. Since

there is only one element, only one schedule is possible (that is, totally ordered). Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Com pute_Num _Schedules () returns 1. Consider the subgraph RIGHT = {c, d, e , f

h}. Node h should be always scheduled last, so Rem ovejNodes () can remove this

node. The resulting graph is shown in Figure 4.12 (c). There are two starting nodes and

therefore their schedules are not fixed. These starting nodes cannot be removed, and the

remaining graph cannot be decomposed into two disjoint subgraphs. So the test of the if-

statement fails and the body of the else-statement is to be executed. In this case, a

straightforward decomposition is impossible. In order to decompose the problem, it is

necessary to arbitrarily fix the schedule of some node. Consider the node that can be

scheduled as the first node. Note that only a starting node can be scheduled as the first

node. Then, a subproblem is defined to calculate the number of schedules for each case

that one of the starting nodes is scheduled first. In each subproblem, the chosen starting

node can be removed because its schedule is fixed. Then,

Com pute_Num _Schedules () function is called again. Once every subproblem is

solved, the total number of the schedules is simply the summation of the numbers of the

schedules for all subproblems.

For this example, there are two starting nodes c and d. So, one of these two nodes

can be chosen as the first node. Suppose that starting node c is scheduled first as shown in

Figure 4.12 (c). Then, this node can be removed from the graph. In addition, node d can

also be removed because its schedule is fixed as the second node. The resulting graph is

shown in Figure 4.12 (d). Now, the graph can be decomposed into two disjoint subgraphs,

and the number of schedules can be computed from Equation (4.1). The other subproblem

addresses the case when starting node d is chosen to be the first node (see Figure 4.12

(c)). Then this node can be removed from the graph and the resulting graph can be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

decomposed into two disjoint subgraphs (see Figure 4.12 (d)). Again, the number of

schedules can be computed from Equation (4.1). The total number of schedules is the

summation of the numbers of the schedules for the two cases:

S(RIGHD = S({c,d,e, /h})

= S({c, d, e,f}\c is scheduled first) + 5({c, d, e , f]I d is scheduled first)

= S({e,/}) + S({c, e . f}) = C(2, 1) * I* 1 + C(3, 1) * I * 1

= 2 + 3 = 5

Since the subgraph LEFT has only one node {&}, the number of schedules is one.

Substituting S(IEFT) and S(RIGHT) into the previous formula gives:

S(GRAPH) = CQLEFIb-UUGHT, \LEFTX) * S(LEFT) * S(RIGHT)

= C(6, 1) * 1 * 5 = 30

In summary, the algorithm of computing the number of schedules follows a

“divide” and “conquer” strategy. In the “divide” phase, all the nodes with fixed schedules

are removed. If the removal leads to disjoint subgraphs, the “conquer” phase computes

the number of schedules for each of the subgraphs. If the graph cannot be divided into

disjoint subgraphs, the problem is decomposed into multiple subproblems, each of which

considers the case when one of the starting nodes is scheduled first. Then, the “conquer”

phase solves the subproblems.

4.4.2 Heuristics for Chain Merging

Merging multiple chains into a single chain can reduce the number of register-

reuse chains. In the merge of chains, optimization is necessary because there are many

possible combinations for selecting the chains to be merged. Thus, this section proposes a

heuristic that reduces the search space for selecting the chains to be merged.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

In order to reduce complexity, the proposed heuristic merges only a pair of chains

at a time. In addition, further reduction is made by additional constraints in the selection

of the chains to be merged. In the proposed heuristic, two chains can be merged only if

the first node of one chain is adjacent to a node in the other chain, that is, there is an edge

incident to the first node of one chain from a node in the other chain. For example, in

Figure 4.9 (a), chairt[0] and chain[\\ can be merged because the first node of chain[Y\ is

b that is adjacent to a in chain\fS\. Similarly, chain[2] can be merged with chain[0].

However, chain[4] cannot be merged with chain[0] because the first node, e, is not

adjacent to any nodes in chain[0].

Visiting nodes in the dependence graph in BFS order can effectively perform the

search for the candidate pairs. When a node is visited, check whether its dependent node

is the first node of a separate chain. If it is true, the two chains that include the two nodes

are merged. If there are more than one such node, the node that results in the greatest

number of schedules is selected. For example, consider the chains in Figure 4.2 (a) again.

The node a has three dependent nodes, b, c, and d, each of which is the first node of a

chain. If the chain with b is merged with a, the resulting graph has 64 schedules. Note

that the additional dependencies from c to b and from d to b need to be counted when the

number of schedules is calculated. Similarly, if chain c is merged, the graph has 8

schedules. If chain d is merged, the graph has 8 schedules. Therefore, chain b is selected

to be merged with chain a. The resulting register-reuse chains are shown in Figure 4.9 (b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

MERGE_CHAINS (independent_chains, DAG)
{

/* i n i t i a l i z a t i o n o f merged_chains * /
m erged_chains = ind ep en dent_chains;
w h ile (nuxnber_of_chains > num ber_of_reg isters or

a l l th e nodes in DAG are v i s i t e d) {
Node p <- v i s i t DAG in BFS order;
number_of_chains = merge (m erged_chains, p);

}
retu rn m erged_chains;

}

in t merge (m erged_chains, Node p)
{

i f (p has m u lt ip le dependent nodes) {
/* choose one dependent node th a t i s the b e s t c h o ic e

* /

chosen_node = s e le c t_ b e s t_ c h o ic e (p);
i f (chosen_node e x is t s)

m erge_two_chains (p, chosen_node, m erged_chains) ;
}
/* count the number o f merged_chains * /
retu rn count_chains (merged__chains) ;

}

Figure 4.13 Register-reuse chain merge algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

Node s e le c t_ b e s t_ c h o ic e (Node p)
{

Compare a l l th e dependent nodes o f th e node p . S e le c t th e
b e s t dependent node d based on th e fo llo w in g c r i t e r ia :
(1) th e node d i s th e head node o f a chain
(2) th e node d can reu se p ' s r e g is t e r w ithou t v io la t in g

d ata dependence
(3) ch oosin g the node d g iv e s maximum number o f sch ed u les
(4) th e ch a in co n ta in in g th e node d i s the s h o r te s t chain
I f th ere are more than, one can d id ate dependent nodes, j u s t
s e le c t one a r b i t r a r i ly .
return d;

>

m erge_two_chains (p, chosen_node, m erged_chains)
{

/* f in d ch a in s c o n ta in in g nodes p and chosen_node */
ref_ ch a in = f ind_chain (m erged_chains, p) ;
dep_chain = fin d _ch a in (m erged_chains, chosen_node) ;
/* f in d th e n ex t node o f p in re f_ ch a in */
next_node = find_next_node (p) ;
/* f in d th e ch a in between p and next_node in dep_chain */
temp_chain = rem ove_chain_between_nodes (p , next_node,

d ep _ch a in);
/* check w hether the merge v i o la t e s data dependence */
i f (merge i s a llow ab le)

merge temp_chain w ith re f_ ch a in ;
g en erate a d d it io n a l d ep en d en cies;

}

Figure 4.13 Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER FIVE

SYSTEMATIC MERGE OF REGISTER-REUSE

CHAINS

Chapter 4 proposes an optimal register allocation that does not create additional

dependencies. The optimal register allocation often requires more registers than those

available in a processor. Thus, a simple and intuitive method is proposed to reduce the

number of required registers. In this chapter, a systematic method is investigated in order

to reduce the resister requirements effectively.

5.1 The Conflict Graph

In order to represent the relationship between register-reuse chains that can be

merged or not, a conflict graph is derived from register-reuse chains. In this graph, each

node corresponds to a register-reuse chain, and an edge represents that two chains

corresponding to the two nodes connected by the edge cannot be merged. The edge has a

direction that represents the direction of the merge in which one chain reuses the other

chain. If two chains can be merged in only one direction, a unidirectional edge is

connected between two nodes. If two nodes cannot be merged in both directions, a

bidirectional edge is connected to the corresponding nodes.

Consider the example shown in Figure 5.1. A dependence graph is shown in

Figure 5.1 (a), and possible register-reuse chains given in Figure 5.1 (b). The input

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

dependencies due to the reuses of registers are shown as dotted lines in Figure 5.1 (a).

Figure 5.1 (c) shows the corresponding conflict graph. (The derivation of this graph is

explained later.) The character in the node is the first node of the corresponding register-

reuse chain. For example, node a in the conflict graph represents the register-reuse chain

starting with node a. A bidirectional edge between a and b represents that chain a and

chain b cannot be merged. In addition, this figure shows that chain b and chain c, chain c

and chain g, and chain a and chain c cannot be merged, respectively. There is a

unidirectional edge from g to a. This represents that the two chains can be merged, but

only in one way: if chain a reuses the register assigned to chain g after all the

computations for chain g is completed. There is no edge between b and g. Thus, b and g

can be merged in both directions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

(a) Dependence graph

Chain[0] = { a, d, h}
Chain[1] = {b, e}
Chain[2] = {c, f, i}
Chain[3] = {g}

i i.

(b) Register-reuse chains (c) Corresponding conflict graph

Figure 5.1 Dependence graph and conflict graph

Once the conflict graph is derived, it is relatively easy to decide the chains to be

merged. In order to draw the conflict graph from given register-reuse chains, it is

necessary to analyze whether the register-reuse chains can be merged or not. For the

analysis, all possible relationships between register-reuse chains are investigated and then

analyzed to determine whether they can be merged or not. For the simplicity of analysis,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

only the merge of two chains is considered first In addition, the merge of compact chains

(defined below) is analyzed. General cases, such as the merge of multiple noncompact

chains, are addressed in the next section.

Definition 5.1 A register-reuse chain is compact if all adjacent nodes in the register-reuse

chain are also adjacent in the dependence graph.

Consider the register-reuse chains of Figure 4.9 (b) again. chain[0] contains nodes

a, b, and I. chain\0\ is compact because b is adjacent to a in the dependence graph and I is

adjacent to b in the dependence graph. chain[1] contains nodes c, / , g, h, and k. chain[\\

is not compact because k is adjacent to h in the chain, but not adjacent in the dependence

graph. chain[2] contains nodes d and i. This chain is not compact because nodes d and i

are not adjacent in the dependence graph. Similarly, chain[3] is not compact because j is

not adjacent to e in the dependence graph.

A compact chain does not contain any dead period. Thus, the register assigned to

the compact chain cannot be reused by other variables until the last nodes in the chain are

computed. However, the register assigned to a noncompact chain can be used by other

variables before the last node in the chain is computed. This is possible because the

noncompact chain has a dead period. For example in Figure 4.9 (b), the register assigned

to chain[3] can be reused by other variables or chains after the completion of e and before

the computation of j.

In Section 5.1, a chain is always assumed to be compact This assumption

simplifies the analysis of the possibility of chain merging. Note that compact chain does

not include any dead period from the first node to the last node. Therefore, it is

impossible to insert any node in the middle of a compact chain. If a new node is included

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

in this chain, it must be included either before the first node of the chain, or after the last

node. Therefore, if two compact chains are merged, the only possibility is that the last

node of one chain is connected to the first node of the other chain. Depending on the

chains to be put first, there are two ways (or directions) to merge two compact chains.

Until explicitly specified in Section 5.2, all chains are assumed to be compact. The merge

of noncompact chains is explained later in Section 5.2.

Consider the first case as shown in Figure 5.2. There are two register-reuse

chains, each of which starts with nodes a and b, respectively. Only the starting node and

the ending nodes are shown in this register-reuse chain. The dotted line represents a path

between two nodes. This graph shows the case when there is no path connecting these

two chains. In this case, there are two ways to merge these two chains. One way is to

order chain a before chain b as shown in Figure 5.2 (b). The other is to order chain b

before chain a as shown in Figure 5.2 (c). So it is possible to merge the two chains in

both ways. Therefore, there is no hazard in merging these two chains, and the

corresponding conflict graph has no edges between the two chains as shown in Figure 5.2

(d).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

O ©

6 6
(a) Register-reuse chains (b) Chain b is ordered after chain a

© ©

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.2 No dependence between register-reuse chains

Consider the second case as shown in Figure 5.3. This is the case when there is a

path from one chain to another chain. Note that the path is shown in a dashed line that

represents a path on which there are multiple nodes. In this case, the merge as shown in

Figure 5.3 (b) is possible. However, the merge as shown in Figure 5.3 (c) is always

impossible. This is because the created dependency due to merge violates the existing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

dependency. In other words, the dependence graph makes a cycle. In order to represent

the impossibility of chain merging from chain b to chain a, the conflict graph contains

edge from node b to node a. This is shown in Figure 5.3 (d).

r \

©
6

(a) Register-reuse chains (b) Chain b is ordered after chain a

©
0 *—©

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.3 Unidirectional path from chain a to chain b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Consider a special case of the example in the above figure. Suppose that the path

from chain a to chain b is a single edge, that is, the node in chain b is a successor of the

node in chain a. This case is shown in Figure 5.4. Note that the path from chain a to chain

b is drawn in a solid line that represents a single edge. Let c and d denote the two nodes

that are connected by the edge. In this case, there is always a path from chain b to chain

a. This is because whenever the register of c is reused by other nodes, a new dependence

is created from all the successors of c to the node that reuses the register. So the input

dependence is shown in Figure 5.4 (b). This case belongs to the third case when there are

paths in both directions between the two chains. The only exception is the case as shown

in Figure 5.4 (c). In this case, node c is the last node of chain a. Thus, the input

dependence does not go back to chain a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
(a) Register-reuse chains Ch) Input dependence from d to chain a

G>—KD
(d) Conflict graph for (b)

(e) Conflict graph for (c)

(c) The last node of chain a is
adjacent to chain b

Figure 5.4 Chain b is adjacent to chain a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Consider the case when there are paths in both directions between two chains.

This case is shown in Figure 5.5 (a). In this case, chain merging is impossible in both

directions. This is shown in Figure 5.5 (b) and Figure 5.5 (c). In both figures, the chain

merging creates a new dependence that makes a cycle in the graph. Note that the cycle

implies that dependence is violated. Therefore, the corresponding conflict graph needs to

have a bidirectional edge that represents merging as impossible in both directions.

Consider the case when there are paths from two chains crossing later. First,

consider the case shown in Figure 5.6 (a). In this case, a path from chain a crosses to the

adjacent node of the last node of chain b. In this case, the merge of chain a before chain b

is possible (Figure 5.6 (b)), but the merge in the opposite direction violates the existing

dependence (Figure 5.6 (c)). This is due to the created input dependence as a dotted line

in the figure. Note that a cycle in the dependence graph is made due to the input

dependence. The corresponding conflict graph is shown in Figure 5.6 (d).

Consider the other cases for the paths from two chains cross each other. Figure

5.7 (a) shows the case when the path from chain a crosses a successor of chain b. In this

case, however, the successor is not the successor of the last node of chain b. In this case,

merging in both directions is possible. Consider the case when chain a is merged before

chain b. Figure 5.7 (b) shows the created new input dependence. Note that there is no

cycle in this graph. So, the merging is possible. Figure 5.7 (c) shows the corresponding

conflict graph that has no edge between the two nodes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Register-reuse chains (b) Chain b is ordered after chain a

©*—KD

(d) Corresponding conflict graph

(c) Chain a is ordered after chain b

Figure 5.5 Bidirectional path from chain a to chain b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

©
6

©

v>d
t

0

(a) Register-reuse chains (b) Chain b is ordered after chain a

Q« 0

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.6 A path from chain a crosses a successor of chain b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

(a) Register-reuse chains

© © (b) Chain a is ordered after chain b

(c) Corresponding conflict graph

Figure 5.7 A path from chain a crosses a successor of an
intermediate node of chain b

Consider the other cases for the paths from two chains that cross each other.

Figure 5.8 (a) shows the case when the successor of the last node of chain a is also a

successor of the last node of chain b. In this chain, merging is impossible in both

directions. Figure 5.8 (b) shows the corresponding conflict graph. Figure 5.8 (c) shows

the case when a successor of an intermediate node of chain a is the same as a successor of

an intermediate node of chain b. In this case, merging is possible in both directions. So,

the corresponding conflict graph does not have any edge (Figure 5.8 (d)). Figure 5.8 (e)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

shows the case when a path from chain a crosses a path from chain b. Note that this path

is not a single edge. In this case, two chains can be merged in both directions. So, the

corresponding conflict graph is shown in Figure 5.8 (f). The last case is shown in Figure

5.8 (g). Here, there is a node from which two paths go to both chain a and chain b. The

incoming paths do not prevent chain merging. So, the corresponding conflict graph has

no edge between the two nodes (Figure 5.8 (h)).

(b) Conflict graph for (a)

(a) Register-reuse chains

6
o ©
(d) Conflict graph for (c)

(c) Register-reuse chains

Figure 5.8 Various cases for paths between chain a and chain b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e) Register-reuse chains

© ©
© ©

o ©

(f) Conflict graph for (e)

© ©
(h) Conflict graph for (e)

(g) Register-reuse chains

Figure 5.8 Continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Consider the example shown in Figure 5.1 again. Chain a and chain b have paths

in both directions. The edge from a to e forms a path from chain a to chain b, while the

input dependence from e to d forms another path from chain b to chain a. Therefore, the

corresponding nodes in the conflict graph have the bidirectional edge. Chain a and chain

c also have paths in both directions. The path A->i goes from chain a to chain c, while the

path f-^h goes from chain c to chain a. Thus, the corresponding nodes have the

bidirectional edge. Similarly, chain b and chain c have paths in both directions, and chain

g and chain c have paths in both directions. Thus, the corresponding nodes have

bidirectional edges, respectively. From chain g to chain a, there is a path, g-^f-^h.

However, there is no path from chain a to chain g. Thus, the corresponding nodes have a

unidirectional edge from g to a. There is no path between chain b and chain g. Thus,

these two chains can be merged in both directions, and the corresponding nodes do not

have an edge connecting them.

5.2 Merging Algorithm

Two register-reuse chains can be merged if the corresponding nodes in the

conflict graph do not have a bidirectional edge. Once the conflict graph is driven, it is

easy to check whether two chains can be merged or not. However, even with the given

conflict graph, it is not trivial to check whether more than two nodes can be merged or

not. This is because the edges in the conflict graph can be changed when two chains are

merged. So, when two nodes are merged, it is necessary to analyze the relationship

between chains again, and redraw the conflict graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Consider the dependence graph shown in Figure 5.9 (a) and the register-reuse

chains in Figure 5.9 (b). Figure 5.9 (c) shows the corresponding conflict graph. This

figure shows that chain a and chain b as well as chain b and chain c can be merged both

directions. Chain a and chain c can be merged in only one direction. Suppose that chain a

and chain b are merged as shown in Figure 5.9 (d). Then, the new dependencies are

generated as shown in Figure 5.9 (e). Note that the new input dependency from chain c to

chain b is created. So, the new dependency prevents chain c from being merged from

chain b in both directions. Instead, only one direction is possible. Figure 5.9 (f) shows the

corresponding conflict graph. Node a-b represents the chain resulting from the merge of

chain a and chain b. In Figure 5.9 (e), chain a-b and chain c have paths in both directions;

a bidirectional edge is necessary between these two nodes.

Definition 5.2 A merged conflict graph is a graph derived from a conflict graph as

follows:

• Multiple nodes {vi, V2, ... , vra} in the conflict graph can be merged into a single

node in the merged conflict graph.

• Suppose that nodes {vi, v2, vm } are merged into a single node si in the

merged conflict graph, and nodes {ki, m2, . . . , uB } are merged into a single node

S2 in the merged conflict graph. Then, the conflict graph has an edge from St to S2

only if there is an edge from one of {vi, v2, .. . , vm } to one of {mi, m2, ... , ua}. In

addition, the conflict has an edge from s2 to s\ only if there is an edge from one of

{ uu u2, ... , Un } to one of { vi, v2, . . . , vm }.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

0

(a) Dependence graph

Chain a, b: a->------> a* b -------> b’
Chain c. c->------>c’

(d) Merged register-reuse chains

(f) Conflict graph after merge

0

Chain a: a->------> a ’
Chain br. b->------> b’
Chain a c - » - - » c ’

(b) Register-reuse chains

© ©
(c) Conflict graph corresponding to (a)

(g) Merged conflict graph (e) Dependence graph after merge

Figure 5.9 Conflict graph after chain merge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Consider the conflict graph shown in Figure 5.10 (a). Suppose that chain a, chain

b, and chain c are merged as well as chain d and chain e are merged. The resulting

merged conflict graph is shown in Figure 5.10 (b). Node a-b-c results from the merge of

nodes a, b, and c, while node d-e results from the merge of nodes d and e. A bidirectional

edge is necessary between nodes a-b-c and d-e because the original graph has edge from

a to das well as e to c. A unidirectional edge from a-b-c to /is necessary because of the

edge from b to / No edge is necessary between d-e and/because there is no edge

between d and/as well as e and/.

(a) Original conflict graph

d,e

(b) Merged conflict graph

Figure 5.10 Merged conflict graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Figure 5.11 shows two ways to generate the merged conflict graph. In this figure,

RRC, CG, M-RRC, and M-CG represent register-reuse chains, a conflict graph, merged

register-reuse chains, and a merged conflict graph, respectively. There are two paths from

the register-reuse chains to the merged conflict graph. One path goes through M-RRC

while the other goes through CG. The first path via M-RRC represents that the merged

register-reuse chains are generated first, and then the corresponding conflict graph is

generated. The other path represents that the conflict graph of the original reuse chains is

generated first, and then the merged conflict graph is generated. The first path always

generates the right merged conflict graph. However, this path requires additional

computation because the computation for the derivation of the original conflict graph is

wasted for the derivation of M-CG. The second path is more computationally effective.

In addition, there is another advantage that is explained later. Unfortunately, the merged

conflict graph is not always correct. Consider the register-reuse chains shown in Figure

5.9 again. The conflict graph shown in Figure 5.9 (f) is the one following the first path in

Figure 5.11. If the conflict graph is derived following the second path, the resulting

conflict graph is shown in Figure 5.9 (g). Note that there is only unidirectional edge

because the original conflict graph (Figure 5.9 (c)) has an edge neither from c to a nor

from c to b. Note that this merged conflict graph is wrong because it is different from the

one in Figure 5.9 (f).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

RRC CG

Merge Merge

M-CG

Figure 5.11 Generation of merged conflict graph

The above example shows that, in general, the merged conflict graph cannot be

directly driven from the original conflict graph. However, there is a special type of

register-reuse chain (and the corresponding conflict graphs) that allows the direct

derivation of the merged conflict graph. In this research, such register-reuse chains,

called dependence-conservative register-reuse chains, are formally defined as follows:

Definition 53 (Dependence-conservative register-reuse chains) Register-reuse chains are

called dependence-conservative if they satisfy the following:

• when sets of chains are grouped and each set is merged into a single chain, the

corresponding conflict graph can be derived by merging the corresponding

nodes of original conflict graph.

Consider the example in Figure 5.1 again. Suppose that chain b and chain g are

merged. Figure 5.12 (a) shows the corresponding register-reuse chains. The merged

conflict graph based on Definition 5.2 is shown in Figure 5.12 (b). Figure 5.12 (c) shows

the additional dependencies created by the merge. The corresponding conflict graph is

shown in Figure 5.12 (d). Note that this graph is the same as the conflict graph shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

Figure 5.12 (b). This shows that the register-reuse chains are dependence-conservative

register-reuse chains.

Chain a: a->d-^h
Chain b,g: g -»b -»e
Chain cr. c-M->i

(a) Merged register-reuse chains
(b) Merged conflict graph

i L

(c) Dependence graph (d) Corresponding conflict graph

Figure 5.12 Dependence-conservative register-reuse chains

The dependence-conservative register-reuse chains can reduce the complexity of

the derivation of the conflict graph after merging register-reuse chains. Another important

property of the dependence-conservative register-reuse chains is that the merge of more

than two chains can be easily shown in the corresponding conflict graph. The following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

theorem shows how to check whether register-reuse chains can be merged or not from the

conflict graph:

Theorem 5.1 In dependence-conservative register-reuse chains, a set of chains can be

merged if the corresponding nodes in the conflict graph do not have edges making a

cycle.

(Proof by induction) Suppose that a set of nodes {vi, V2, , v„} does not have

edges making a cycle. Then, the first two nodes vi and V2 can be merged because the

connecting edge must be not bidirectional if it exists. Assume that n- 1 nodes vlt V2, ... ,

v„-i can be merged. Consider the new conflict graph resulting from the merge of vi, v2, •

, v„-i . Let s denotes the merged node in the new conflict graph. Then, the edge from s to

v„ must be not bidirectional if it exists. Otherwise, the set of nodes {vi, V2 , . . . , v„} have

edges forming a cycle. Therefore, s and v„ can be merged. Thus, nodes vi, V2 , . . . , v„ can

be merged.

Corollary 5.1 In dependence-conservative register-reuse chains, multiple sets of nodes

can be merged simultaneously if each set does not have edges making a cycle.

(Proof) From Theorem 5.1, one such set can be merged. The merge does not

create any additional dependence. Thus, it does not affect the merge of other sets. Thus,

other sets can also be merged.

Consider the following graph as shown in Figure 5.13 (a). Nodes a and b cannot

be merged because they are connected as a bidirectional edge. Nodes c, d, and e cannot

be merged into a single node because they make a cycle. All the other nodes can be

merged. Figure 5.13 (b) shows an example of possible merges. Nodes a, c, and e are

merged into a single chain, while nodes b and d are merged into another chain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

(a) Directed conflict graph (*>) An example of a merged conflict graph

Figure 5.13 Chain merge based on Theorem 5.1 and Corollary 5.1

In order to use the results of Theorem 5.1 and Collorary 5.1, register-reuse chains

must be dependence-conservative. So, we must consider how to convert register-reuse

chains to be dependence-conservative. First, consider the case when the merge of two

chains changes the resulting conflict graph. In fact, the example shown in Figure 5.9 is

the only possible case, that is, the first node of chain c is adjacent to the last node of chain

a. Suppose it is other than the first node of chain c. This case is shown in Figure 5.14.

Note that an intermediate node of chain c is adjacent to the last node of chain a. The

corresponding conflict graph is shown in Figure 5.14 (b). Note that chain a and chain c

cannot merge so that there is a bidirectional edge between a and c. Figure 5.14 (c) shows

the merge of two chains a and b, and the creation of the new input dependence from

chain c to chain b. The resulting conflict graph is shown in Figure 5.14 (d).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

(a) Dependence graph

P0 ©

(b) Conflict graph

O< w

(c) Dependence graph after merging (d) Conflict graph after merging

Figure 5.14 Generation of the merged conflict graph

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

So far, the merging of compact chains has been the considered case. Noncompact

chains can be considered as merged compact chains. Note that Theorem 5.1 and

Corollary 5.1 are true for the merged compact chains. Therefore, they are applicable to

noncompact chains.

Proposition 5.1 The merge procedure, called in i t_ m e r g e (), discussed in the

previous section, generates dependence-conservative registe-reuse chains.

(Proof) The merge procedure, called in it_ m e r g e (), discussed in the previous

section, removes the case of Figure 5.9. If all the missing parts of dependence graphs are

drawn, there are two possibilities. One case is that c is the only successor of the last node

of chain a, and the other case is that there are successors other than c. The first case is

redrawn in Figure 5.15 (a) while the other case is shown in Figure 5.15 (b). Note that a*

represents the last node in chain a. In the first case, the optimal chain does not allow a*

and c in the different register-reuse chains. Thus, the case shown in Figure 5.9 is

impossible. In the second case as shown in Figure 5.15 (b), in i t _ m e r g e ()

procedure merges either chain c or chain d with chain a. Without loss of generality,

assume that chain d is merged with chain a. Then, again the case is the same as Figure

5.14 (a), but is different from that in Figure 5.9 (a). Therefore, the case like Figure 5.9 (a)

is not allowed after in i t_ m e r g e () procedure is called. Therefore, all register-reuse

chains are dependence-conservative.

The analysis for compact chains can be easily generalized for noncompact chains.

A noncompact chain can be made by merging compact chains. In order to draw the

conflict graph for noncompact chains, the compact chains that make the noncompact

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

chains are analyzed. If an edge is needed for any compacting chain, an edge is drawn for

the noncompact chain.

9i

!t

6

(b) Both c and d are successors of a*(a) c is the only successor of a* (b) Both c and d are successors of a*

Figure 5.15 Avoidance of the case as shown in Figure 5.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

5 3 Register Allocation Algorithm Based on Coloring of
Conflict Graph

This section finalizes the register allocation procedure. Given the conflict graph,

register allocation can be formulated as a graph-coloring problem.

Problem 5.1 (Graph coloring problem formulation for register allocation over

directed conflict graph) Given a conflict graph, colors are assigned to all the nodes such

that:

• Constraints: Nodes cannot have the same color if they have connecting edges that

make a cycle.

• Objective: Minimize the number of colors.

After the graph-coloring problem is solved, colors are assigned to each node.

Register-reuse chains whose corresponding nodes are assigned to the same color are to be

merged.

The above graph coloring problem is formulated on the conflict graph that is a

directed graph. In order to reduce the search space, the directed graph is converted into an

undirected graph. In this conversion, a bidirectional edge in the original directed conflict

graph is converted to an edge in the new undirected conflict graph, and a unidirectional

edge is removed in the undirected graph. However, if a unidirectional edge is a part of a

cycle, one of the unidirectional edges needs to be changed to a bidirectional edge. In this

selection, the number of schedules is used as the criterion.

Consider the conflict graph shown in 5.13 (a). Nodes c, d, and e make a cycle.

Therefore, these nodes cannot be merged into a single node. Among the three edges

making the cycle, one needs to be chosen and converted to a bidirectional edge. In this

selection, it is necessary to compute the number of schedules when the corresponding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

chains are merged. Then, the chain that maximizes the number of schedules is selected.

Ia this example, assume that the edge between c and d is chosen and converted to a

bidirectional edge (see Figure 15.6 (a)). Now that there is no cycle made only by

unidirectional edges, the conflict graph is converted into an undirected graph. All

unidirectional edges are removed while bidirectional edges remain as undirected edges.

The resulting graph is shown in Figure 5.16 (b).

Figure 5.16 Conversion of a directed conflict graph into an undirected conflict graph

Now that an undirected conflict graph is derived, register allocation is formulated

as graph coloring problem over the undirected conflict graph:

Problem 5.2 (Graph coloring problem formulation for register allocation over

(a) Edge (c,d) is converted to a
bidirectional edge

(b) Converted undirected
conflict graph

undirected conflict graph) Given a conflict graph, colors assigned to all the nodes such

that:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

• Constraints: Two nodes cannot have the same color if there is an edge connecting

them.

• Objective: Minimize the number of colors.

Although graph coloring is a NP-Complete problem, there are many efficient

heuristics. The number of colors corresponds to the number of required registers. If the

number of colors is less than the number of registers available in a target processor, not

all of the chain mergings are necessary. For this case, some of the merged chains can be

decomposed into the original separate chains. Recall that chain merging always reduces

the number of schedules. Therefore, decomposition of merged chains can increase the

number of schedules.

Problem 53 (Decomposition of merged chains) Decompose merged chains into the

original separate chains.

• Constraint: the number of chains is less than or equal to the number of available

registers.

• Objective: maximize the number of schedules after chain merging.

This problem can be converted into a 0-1 knapsack problem. First, define V\ as

follows:

Vi = the number of schedules without merging any chains - the number of

schedules after merging the chains assigned to the ith color.

W\ = the number of register-reuse chains assigned to the ith color — 1.

The decomposition problem can be formulated as the following problem:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Problem 5.4 (0-1 knapsack problem formulation for the decomposition of merged

chains) Decompose merged chains into the original separate chains.

• Constraint: Summation of Wx is less than or equal to the number of available

registers.

• Objective: M inim ize the summation of Vx

The above problem is exactly the same as a 0-1 knapsack problem, and a dynamic

programming can be used to solve the problem.

Figure 5.17 summarizes the overall register allocation procedures proposed in this

research. Given a dependence graph, the first step is to generate register-reuse chains that

are optimal in the sense that no additional dependencies are created. The next step is the

initial merge algorithm that combines the optimal register-reuse chains by visiting the

nodes in the dependence graph in BFS order. This procedure effectively reduces the

number of chains without a significant increase of dependencies. In addition, the resulting

reuse chains become dependence-conservative. The next step is to generate a conflict

graph that is a directed graph. In order to use the graph-coloring problem, the directed

graph is converted into a undirected graph in the next procedure. Once the undirected

conflict graph is obtained, the graph-coloring algorithm is performed to assign colors to

each chain. The chains that are assigned to the same color are merged into a single chain,

and consequently allocated to the same registers. For the case when the number of colors

is less than the number available registers, the next procedure is called in order to

decompose the merged chains into the original separate chains. For this procedure, the

dynamic pro g ram m ing algorithm for solving the 0-1 knapsack problem is used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dependence Graph

1
Optimal Register-reuse

Chain Generation

 1 ---------------

Optimal Register-
reuse Chains

i
Initial Merge

4
Dependence-

conservative Register-

1

Conflict Graph
Generation

I
Dependence-

Conservative Conflict

Modification of
Conflict Graph

Undirected
Conflict Graph

Graph Coloring

Colored Conflict
Graph

0-1 knapsack
Algorithm

Register
Allocation

Figure 5.17 Complete procedure for register allocation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER SIX

CONCLUSIONS

This research develops a register allocation technique that can be integrated into

instruction scheduling. The result of this form of register allocation is more efficient than

the traditional register allocation based on the graph-coloring algorithm. The main reason

for this is that the proposed technique is performed before instruction scheduling, while

the traditional register allocation is performed after instruction scheduling that gives

additional constraints to the selection of registers. On the other hand, the proposed

technique can add constraints to instruction scheduling when there are not enough

registers. As a result, the efficiency of the scheduler can be degraded. The optimal register

allocation algorithm developed in Chapter 4 does not create additional dependencies, and

consequently, no additional constraints are added to instruction scheduling. Although the

number of the registers required resulting from the optimal register allocation is large, it

fits into the available registers for most cases. When a processor does not have enough

registers, the register allocation algorithm needs to reduce the number of required

registers. The heuristic proposed in this research attempts to prevent unnecessary

constraints to instruction scheduling while reducing the number of necessary registers. As

a result, the proposed heuristic adds fewer constraints than previous approaches. The

proposed register allocation analyzes the dependence generated by the register allocation

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

and attempts to minimize the generated dependencies. Note that instruction scheduling

can be considered as a sequence of generation of dependences until all instructions have

strictly ordered by the dependencies. The main job of a scheduler is to choose the

dependencies that are preferred by a target processor. Thus, the proposed register

allocation can be easily integrated with instruction scheduling with a minor modification

such that the register allocation attempts to minimize generated dependencies that are not

preferred.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] Alfred V. Aho and Jeffrey D. Ullman, Principles o f Compiler Design, Addison-
Wesley, 1977.

[2] J. Allen. Computer Architecture for Digital Signal Processing. Proceedings o f
the IEEE, 73(5): 852-873, May 1985.

[3] ARM Architecture Reference Manual. Document Number ARM DDI 0100B.
Advanced RISC Machines Ltd (ARM), 1996.

[4] Guido Araujo and Sharad Malik. Optimal Code Generation for Embedded
Memory Non-homogeneous Register Architectures. In Proceedings of
International Symposium on Systems Synthesis, pp. 36-41, 1995.

[5] Guido Araujo, Srinivas Devadas, Kurt Keutzer, Stan Liao, Sharad Malik, Ashok
Sudarsanam, Steve Tjiang, and Albert Wang. Challenges in Code Generation for
Embedded Processors. Chapter 3, pp. 48-64, in P. Marwedel and G. Goossens,
editors, Code Generation for Embedded Processors. Boston, Mass.: Kluwer
Academic Publishers, ISBN 0-7923-9577-8, 1995.

[6] Steve Beaty. Instruction Scheduling Using Genetic Algorithms. Ph.D. Thesis.
Colorado State University, 1991.

[7] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. Resource Spackling: A
Frame Work for Integrating Register Allocation in Local And Global
Schedulers. In proc. o f IFIP WG 10.3 Working Conference on Parallel
Architectures and Compilation Techniques, papers 135-146, 1994.

[8] David A. Berson, Rajiv Gupta, and Mary Lou Soffa. URSA: A Unified
ReSource Allocator for Registers and Functional Units in VLIW Architectures.
In proc. o f IFIP WG 10.3 Working Conference on Architectures and
Compilation Techniques for Fine and Medium Grain Parallelism, pages 243-
254,1993.

[9] D. G. Bradles, S. J. Eggers and R. R. Henry, Integrating Register Allocation and
Instruction Scheduling for RISCs, Proc. Fourth International Conf. On ASPLOS,
Santa Clara, CA, April 8-11, pp.122-131,1991.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

[10] Thomas H. Cormen, Charles E. Lerserson, and Ronald L. Rivest. Introduction to
Algorithms. The MTT press, 1989.

[11] Tai Myoung Chung. CHARTS: Compiler for Hard Real-Time Systems, Ph.D.
Thesis. Purdue University, 1995.

[12] G. T. Chatin. Register Allocation and Spilling via Graph Coloring. In
Proceedings o f the SIGPLAN 82 Symposium on Compiler Construction. Vol. 17,
No. 6, pp 98-105, June, 1982.

[13] Kevin Dowd. High Performance Computing. O’Reilly & Associates, Inc.
ISBN 1-56592-032-5, 1993.

[14] J. R. Ellis, A Compiler for VUW Architectures, MIT Press, 1985.

[15] Christopher W. Fraser and David R. Hanson. A Retargetable C Compiler:
Design and Implementation. The Benjamin/Cummings Publishing Company,
Inc., ISBN 0-8053-1670-1,1995.

[16] Jack G. Ganssle. The Art of Programming Embedded Systems. San Diego, CA,
Academic Press, Inc., 1992.

[17] Lai George and Andrew W. Appel. Iterated register coalescing, hi ACM
Transactions on Programming Languages and Systems. Vol. 18, No. 3, pp 300-
324, May 1996.

[18] J. R. Goodman and W. Hsu, Code Scheduling and Register Allocation in Large
Basic Blocks, Proc. o f the ACM Supercomputing Conference, pp.442-452, 1998.

[19] Rajiv Gupta, Mary Lou Soffa, and Denise Ombres. Efficient Register Allocation
via Coloring Using Clique Separators. In ACM Transactions on Programming
Languages and Systems. Vol. 16, No. 3, pp 370-386, May 1994.

[20] R. Gupta, Co-synthesis of Hardware and Software for Digital Embedded
Systems. Ph.D. Thesis, Stanford University, December 1993.

[21] John L. Hennessy and David A. Patterson. Computer Architecture A
Quantitative Approach. Morgan Kaufmann Publishers, Inc. ISBN 1-55860-329-
8,1996.

[22] Wei-Chung Hsu, Charles N. Fischer, and James R. Goodman. On the
minimization of Loads/Stores in Local Register Allocation. In IEEE
Transactions on Software Engineering. Vol. 15, No. 10, pp 1252-1260, Oct.,
1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

[23] K. Kissel. MIPS 16: High-density MIPS for the Embedded Market, Silicon
Graphics MIPS Group, 1997.

[24] Mika Kuulusa, Jari Nurmi, Janne Takala, Pasi Ojala, and Henrik Herranen. A
Flexible DSP Core for Embedded Systems. In IEEE Design & Test of
Computers. October-December, pp. 60-68, 1997.

[25] Jooho Lee, Dae Hwan Kim, Hyuk Jae Lee and Chinhyuan Kim. Advanced
Compiler Optimizations for the ARM-7 Processor. In preparation for
publication.

[26] Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge. Improving Code
Density using Compression Techniques, hi Proceedings o f the 3Cfh International
symposium on Microarchitecture, pp. 234-251, December, 1997.

[27] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjaing, and Albert Wang.
Storage Assignment to Decrease Code Size. In ACM Transactions on
Programming Languages and Systems. Vol. 18, No. 3, pp. 235-253, May 1996.

[28] Stan Y. Liao. Code Generation and Optimization for Embedded Digital Signal
Processors. PhD Thesis, MTT Department of EECS, January 22, 1996.

[29] Minjoong Lim. Variable Length-RISC Architecture for the Design of Embedded
Systems, technical documents, Samsung Electronics, 1997.

[30] Xiaorong Ma. Nonhomogeneous Register Allocation for Embedded Processors.
M.S. Thesis. Louisiana Tech University, 1998.

[31] Rajeev Motwani, Krishna V. Palem, Vivek Sarkar, and Salem Reyen.
Combining Register Allocation and Instruction Scheduling. Technical Report,
Courant Institute, TR 698, July 1996.

[32] Steven S. Muchnick. Advanced Compiler Design Implementation. Morgan
Kaufmann Publishers, Inc., 1997.

[33] Cindy Norris and Lori L. Pollock. Register allocation over the program
dependence graph. In Proc. o f the SIGPLAN’94 Conference on Programming
Language Design and Implementation, pp. 106-117, June 1994.

[34] David A. Pattemson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann, San Francisco,
1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

[35] P.G. Paulin et al. Trends in Embedded Systems Technology in
Hardware/Software Co-Design. Kluwer Academic, Norwell, Mass., pp. 311-
337, 1996.

[36] S. S. Pinter, Register Allocation with Instruction Scheduling: A New Approach,
Proc. SIGPLAN ’93 Conf. On Programming Language Design and
Implementation, Albuquerque, NM, June 23-25, pp. 248-257,1993.

[37] Todd A. Proebsting and Charles N. Fischer. Demand-Driven Register Allocator.
In ACM Transactions on Programming Languages and Systems. Vol. 18, No. 6,
pp. 683-710, Nov., 1996.

[38] Simon Segars. ARM7TDMI Power Consumption. In IEEE MICRO. Vol. 17, No.
4, pp. 12-19, July/August 1997.

[39] Robin Saxby. ARM moves forward with multimedia. Multimedia Silicon.
Volume 1, Issue 7. June 11, 1997.

[40] K. L. Short, Embedded Microprocessor Systems Design, Prentice-Hall, 1998.

[41] Alex van Someren and Carol Atack. The ARM RISC Chip: A Programmer’s
Guide. The University Press, Cambridge, UK, 1993

[42] Ashok Sudarsanam, Code Optimization Libraries for Retargetable Compilation
for Embedded Digital Signal Processors. Ph.D. Thesis, Princeton University,
Nov. 1998.

[43] A. Wolfe and A. Chanin, Executing Compressed Programs on an Embedded
RISC Architecture. In Proceedings o f the 25th Annual International Symposium
on Microarchitecture, December, 1992.

[44] Jorg Wilberg, Codesign fo r Real-Time Video Applications. Kluwer Academic
Publishers, Dordrecht, Netherlands, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

% .
.b,„
5 ^

IMAGE EVALUATION
TEST TARGET (Q A -3)

/ .

/

< < •% A<T «€ ̂ V
<5>

150mm

IM /1G E . In c
1653 E ast Main S treet
Rochester. NY 14609 USA
Phone: 716/482-0300
Fax: 716/288-5989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 1999

	A systematic integration of register allocation and instruction scheduling
	Yukong Zhang
	Recommended Citation

	tmp.1563984304.pdf.xP4uO

