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ABSTRACT

In order to achieve high performance, processor architecture has become more and 

more complicated. As a result, compiler-time optimizations have become more and more 

important for the effective use of a complex processor. One of the promising compiler- 

time optimizations is the integration of register allocation and instruction scheduling 

based on register-reuse chains. In the previous approach, however, the generation of 

register-reuse chains was not completely systematic and consequently created many 

unnecessary dependencies that restrict instruction scheduling.

This research proposes a new register allocation technique based on a systematic 

generation of register-reuse chains. The first phase of the proposed technique is to 

generate register-reuse chains that are optimal in the sense that no additional 

dependencies are created. Thus, register allocation can be done without restricting 

instruction scheduling. For the case when the optimal register-reuse chains require more 

than available registers, the second phase reduces the number of required registers by 

merging the register-reuse chains. A heuristic is developed for the second phase in order 

to reduce the additional dependencies created by merging chains. The first step of the 

second phase is to derive a conflict graph in which each node corresponds to a register- 

reuse chain, while an edge represents where the corresponding two chains cannot be 

merged. Applying a graph-coloring algorithm to the conflict graph, the number of chains 

can be effectively reduced. The final step of the second phase is to run the 0-1 knapsack

iii
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algorithm to make the number of chains exactly the same as the number of available 

registers. The proposed register allocation is implemented in LCC (Local C Compiler). 

An instruction scheduler is also implemented in LCC and then integrated with the 

proposed register allocator. Evaluation results show that the proposed algorithm and 

heuristic effectively reduce the number of necessary registers.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

ABSTRACT________________________________________________________ iii

LIST  OF FIGURES________________________________________________ vii

ACKNOW LEDGMENTS____________________________________________ ix

CHAPTER ONE______________________________________________________
INTRODUCTION............................................................................................................1

1.1 Statement of Problem..............................................................................................1
1.2 Research Objectives............................................................................................... 4
1.3 Research Methodology.......................................................................................... 5
1.4 Outline of the Dissertation......................................................................................6

CHAPTER TWO______________________________________________________
BACKGROUND............................................................................................................. 7

2.1 Compiler Optimization Techniques.......................................................................7
2.1.1 Data Dependence Analysis............................................................................7
2.1.2 Instruction Scheduling.................................................................................. 9
2.1.3 Register Allocation.................................................................................... 10
2.1.4 Live Range Analysis.................................................................................. 11

2.2 ARM7T (Advanced RISC Machines) Processor................................................. 16
2.3 Local C Compiler (LCC)..................................................................................... 16

CHAPTER THREE___________________________________________________
DEPENDENCE ANALYSIS AND INSTRUCTION SCHEDULING......................... 19

3.1 Structure of Optimizing LCC Compiler.................................................................19
3.2 Dependence Analysis............................................................................................21

3.2.1 True Dependence........................................................................................21
3.2.2 And-Dependence........................................................................................22
3.2.3 Output Dependence ................................................................................... 25
3.2.4 Adjustment of Dependencies........................................................................ 27

3.3 Instruction Scheduling..........................................................................................31

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH A PTER FOUR____________________________________________________
REGISTER ALLOCATION........................................................................................46

4.1 Background........................................................................   46
4.2 Register Allocation Based on Register-Reuse Chains.......................................... 49

4.2.1 Definitions.................................................................................................49
4.2.2 Previous Approach..................................................................................... 51
4.2.3 Possible Improvements...............................................................................55

4.3 Register-Reuse Chain and Dependence Analysis..................................................57
4.3.1 Generation of Dependence Due to Register Allocation................................58
4.3.2 Generation of Register-Reuse Chains without Additional Dependencies 62

4.4 Register-Reuse Chain Merging............................................................................68
4.4.1 Criterion of Chain Merging........................................................................69
4.4.2 Heuristics for Chain Merging..................................................................... 76

CH A PTER FIVE_____________________________________________________
SYSTEMATIC MERGE OF REGISTER-REUSE CHAINS......................................80

5.1 The Conflict Graph.............................................................................................80
5.2 Merging Algorithm............................................................................................ 95
5.3 Register Allocation Algorithm Based on Coloring of Conflict Graph..................107

CH A PTER SIX_______________________________________________________
CONCLUSIONS.........................................................................................................112

REFERENCES____________________________________________________114

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figures Page

2.1 An example data dependence graph..........................................................................8
2.2 An example of paralleled code................................................................................ 10
2.3 Example for register allocation............................................................................... 11
?.4 Live range analysis of variables.............................................................................. 13
2.5 Effect of instruction scheduling on register allocation............................................. 14
2.6 Data dependence graph...........................................................................................14
2.7 Structure of Local C Compiler (LCC)..................................................................... 18
3.1 The structure of the new optimizing compiler........................................................ 20
3.2 A single AST and the corresponding dependence graph.......................................... 21
3.3 Multiple ASTs and the dependence graph...............................................................23
3.4 Multiple ASTs and the anti-dependence graph....................................................... 24
3.5 Multiple ASTs and the output dependence graph....................................................26
3.6 Adjustment of anti-dependence after register allocation.......................................... 29
3.7 Adjustment of output dependence after register allocation...................................... 30
3.8 Procedure for adjustments of dependence...............................................................31
3.9 A schedule example for nodes shown in Figure 3.3.................................................32
3.10 Structure of the instruction scheduler......................................................................33
3.11 An example of scheduled nodes..............................................................................35
3.12 A basic structure of the scheduler...........................................................................39
3.13 Function for including dependent nodes in the queue..............................................40
3.14 Function for including false dependent nodes in the queue..................................... 41
3.15 Function for inserting a node in the queue..............................................................42
3.16 Function for inserting Xnode in the queue..............................................................43
3.17 Function for putting a node in the queue.................................................................43
3.18 Function for selecting a node from a queue............................................................ 44
3.19 Function for calling VLIW scheduling...................................................................45
4.1 Examples of partial ordering and linear partial ordering.......................................... 50
4.2 Register allocation example given in [8]................................................................52
4.3 Creation of dependencies for register allocation.................................................... 55
4.4 Example of dependence graph.................................................................................56
4.5 Example C code and corresponding assembly code................................................59
4.6 C code and assembly code after rescheduling........................................................ 59
4.7 Data dependence graph........................................................................................... 60
4.8 An example for additional dependence forcing simultaneous execution of c and d  62
4.9 Resulting register reuse chains................................................................................66
4.10 Register reuse chain generation algorithm.............................................................. 67

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.11 Algorithm for calculation of the number of schedules.............................................71
4.12 An example of calculation of the number of schedules...........................................72
4.13 Register-reuse chain merge algorithm.....................................................................78
5.1 Dependence graph and conflict graph.....................................................................82
5.2 No dependence between register-reuse chains........................................................ 85
5.3 Unidirectional path from chain a to chain b ............................................................ 86
5.4 Chain b is adjacent to chain a................................................................................. 88
5.5 Bidirectional path from chain a to chain b ............................................................. 90
5.6 A path from chain a crosses a successor of chain b ................................................91
5.7 A path from chain a crosses a successor of an intermediate node of chain b ..........92
5.8 Various cases for paths between chain a and chain b .............................................93
5.9 Conflict graph after chain merge.............................................................................97
5.10 Merged conflict graph............................................................................................98
5.11 Generation of merged conflict graph..................................................................... 100
5.12 Dependence-conservative register-reuse chains.....................................................101
5.13 Chain merge based on Theorem 5.1 and Corollary 5.1...........................................103
5.14 Generation of the merged conflict graph................................................................104
5.15 Avoidance of the case as shown in Figure 5.9.......................................................106
5.16 Conversion of a directed conflict graph into an undirected conflict graph............. 108
5.17 Complete procedure for register allocation........................................................... I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

At this moment, the author wishes to express his gratitude to all the people who 

contributed to the completion of this dissertation.

First of all, I would like to express my deepest appreciation and thanks to Dr. 

Hyuk Jae Lee, my research advisor, for his numerous hours helping me to condense my 

thoughts and for his invaluable guidance to carry me through difficult times throughout 

my dissertation research at Louisiana Tech University.

I would like to thank Dr. Richard Greechie, Dr. Barry Kurtz, Dr. Weizhong Dai, 

and Dr. Raja Nassar for taking time to read my dissertation and providing me with very 

helpful suggestions.

I also owe a special thank to Dr. Greechie for his countless assistance throughout 

my study in ACAM program at Louisiana Tech University.

I wish to thank Ms. Frances Welch at College of Engineering and Science for her 

kindness and assistance whenever needed during my graduate study at Louisiana Tech 

University.

Many thanks go to my fellow students, Sanqiang Li, Xiaorong Ma, and Danny 

Parker for their helpful suggestions to this research and friendship.

Finally, special thanks go to my wife Xiaochun and my daughter Geran whose 

understanding, support, and love encourage me to complete this dissertation.

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER ONE

INTRODUCTION

1.1 Statement o f Problem

Embedded systems are application-specific systems that are designed with 

microprocessors. These systems are employed for applications other than general-purpose 

computing. Examples of these systems include cellular phones, automobile engine- 

control units, printers, fax machines, and set top-boxes etc. The major components of a 

typical embedded system are a programmable processor, a program ROM on which 

software is stored, and optionally application-specific hardware. A key characteristic of 

an embedded system is that the software is part of the system components. The software 

component of these systems is referred to as the embedded software, while the 

microprocessor is referred to as the embedded processor on which the software is 

executed.

Embedded systems have some unique characteristics compared to general- 

purpose computing systems. Due to their high-volume market demand, the manufacturing 

of embedded systems is very cost-sensitive. Due to time-to-market requirements, a short 

design cycle is desirable. In addition, many applications such as cellular phones are 

battery-driven, so the low power consumption requirement must be met.

With recent advancements in semiconductor processing techniques, the 

integration of all the system components on a single chip has become possible. For a

1
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system that is composed of hardware and software, a hardware-software co-design 

approach has been used by the designers of the systems [20, 40, 44], With this design 

methodology, the designers first determine which part of the functionality of the systems 

will be implemented in hardware and which part in software. Then the designed system 

will be simulated and evaluated with a co-design simulator. If the simulation results do 

not satisfy the design requirements — such as power consumption, cost, and real-time 

constraints, etc. — the designers may repartition the hardware and software of the system 

and then repeat simulation and evaluation of the new design until the design requirements 

and specifications are satisfied.

Given a fixed size of die on which all the components of a system are integrated, 

a certain amount of silicon area is dedicated to the program ROM, which is used to store 

the embedded software. Thus the program ROM area becomes limited. It is the designer's 

goal to generate high-density software code in order to fit the software code within the 

program ROM and to reduce software code size as much as possible, because the cost of 

a system increases non-linearly with the die size. In addition, many applications have 

strict real-time performance requirements. Producing high-performance code for 

embedded systems is a necessity.

In addition to code size and performance, there is another important constraint for 

embedded systems: power consumption. Generally, there are two main factors affecting 

the power consumption of embedded systems. The first factor is performance of the 

system. It is observed that the code that is executed faster consumes less power. The 

other factor is related to the instruction execution order of a given application code. An
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optimal schedule of a sequence of instructions may reduce power consumption 

significantly.

Traditionally, in order to guarantee that the code size and performance 

requirements of embedded systems are satisfied, the software code usually is written 

manually in assembly languages. Although the assembly programming of small 

applications may be not relatively complicated, as the complexity of applications grows, 

manually program m ing in assembly languages becomes impractical, tedious, and error- 

prone. In addition, in order to meet short time-to-market cycle requirements, more 

efficient methods are desirable. Recently, most embedded software codes are written in a 

high-level language, such as C or C++, and use compiler technology to translate the high- 

level languages into assembly code. This is because programming in the high-level 

languages significantly reduces the cost and time of the software development. 

Furthermore, relatively less effort is required to maintain the code written in high-level 

languages. However, the code generated by traditional compiler techniques generally 

cannot satisfy the code size, performance, and power consumption requirements of 

embedded systems at the same time. The major reason is that traditional compiler 

optimization techniques classically focus on the code execution speed rather than code 

density and power consumption. Thus the new compiler-time optimization techniques 

become very important for code size, performance, and power consumption of embedded 

systems, although the traditional compiler optimization techniques are still effective for 

embedded systems.

Basically, the fundam ental structure of a compiler can be classified into two parts:
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• The front-end, which takes as input a code written in high-level languages and 

generates an intermediate representation of the input code, which is independent of 

the target machine.

• The back-end, which generates target-machine-dependent assembly code based on the 

intermediate representation. In particular, two important phases are performed in the 

back-end: instruction scheduling and register allocation. The phase of instruction 

scheduling determines instruction execution order and the register allocation phase 

determines the registers that will be used by each instruction.

To generate high-quality code for embedded systems in terms of code density, 

performance, and power consumption, this research will focus on these two compiler 

optimization techniques: instruction scheduling and register allocation.

1.2 Research Objectives

As mentioned in the previous section, instruction scheduling determines the 

execution order of each of the instructions of an application code. The instructions can be 

scheduled in favor of our optimization goals, such as efficient use of registers and power 

consumption, without affecting the correctness of the code execution. Register allocation 

determines which registers are used for each of the instructions. Since registers are the 

limited temporary storage resource in a processor, which is used to store the values of 

variables and temporary variables of instructions, efficient use of registers is of vital 

importance for high-quality code generation. These two compiler optimization 

techniques often affect each other. If register allocation is performed first, additional 

dependencies between instructions are introduced due to temporary sharing of registers. It 

limits the flexibility of the scheduling of instructions. If instruction scheduling is
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performed first, it may create a schedule that demands more registers than available. 

Consequently, the benefit from instruction scheduling will be limited. The objectives of 

this thesis can be summarized as follows:

• Design an algorithm/heuristic to integrate instruction scheduling and register 

allocation. This algorithm/heuristic will minimize the number of needed registers and 

additional constraints for instruction scheduler due to register allocation.

• Apply the algorithm/heuristic to compiler code generation for embedded systems 

aiming to meet requirements for code size, high performance, and power reduction.

• Evaluate the effectiveness of the proposed algorithm.

13 Research Methodology

In this research, ARM7T (Advanced RISC Machines), one of the ARM series of 

processors, has been chosen as the target processor. The characteristics of ARM 

processors are high performance, low cost, and low power consumption. Each ARM7T 

instruction is 32-bit long. The Local C Compiler (LCC), originally developed by Fraser 

and Hanson [15], is used as the compiler frame work tool with which the compiler 

optimization techniques developed in this research will be incorporated. To achieve the 

objectives of this research, a data dependence analyzer and an instruction scheduler are 

developed first. A new register allocator is developed based on a systematic generation of 

register-reuse chains. Based on the analysis of the interaction between instruction 

scheduling and register allocation, an algorithm/heuristic that integrates instruction 

scheduling and register allocation is developed.
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1.4 Ontline o f the Dissertation

This dissertation is divided into six chapters. Chapter 1 explains the research 

objectives and the methodology used to achieve these objectives. Chapter 2 gives the 

background related to this research including previous research on instruction scheduling 

and register allocation. This chapter also briefly describes ARM series architecture and 

LCC structure.

Chapter 3 presents the development of the data dependence analysis and 

instruction scheduler. Chapter 4 describes the integration algorithms of instruction 

scheduling and register allocation. It includes register-reuse chain generation, register- 

reuse chain merging, and merging criteria.

Chapter 5 presents a systematic approach to merge register-reuse chains that 

generated by the algorithms described in Chapter 4 when the number of chains is greater 

than the number of available registers.

Chapter 6 summarizes the research.
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CHAPTER TWO

BACKGROUND

Chapter 2 provides the background on instruction scheduling and register 

allocation as well as the integration of both techniques. This chapter also gives a brief 

description of ARM architecture and Local C Compiler (LCC) structure.

2.1 Compiler Optimization Techniques

Instruction scheduling and register allocation are very important compiler 

optimization techniques for embedded systems. This section is intended to give 

background descriptions on these techniques through some simple examples. Also it will 

explain how we can benefit from instruction scheduling. Before going through instruction 

scheduling, we first describe data dependence analysis, upon which the instruction 

scheduling is based.

2.1.1 Data Dependence Analysis

Data dependence analysis identifies the data dependence relationship between 

instructions and the constraints with which instruction scheduling must comply. The data 

dependencies between instructions fall into three categories: true dependence, anti­

dependence, and output dependence. The alternative terminologies for these three types 

of data dependencies are called read-after-write (RAW), write-after-read (WAR), and 

write-after-write (WAW), respectively. The data dependencies between instructions can

7
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be visually expressed in directed acyclic graphs (DAGs), commonly called data 

dependence graphs. The following example in Figure 2.1 shows a piece of C code and its 

corresponding data dependence graph.

(1) a = 1;
(2) b = 2;
(3) c = a + b;
(4) a = 5;

(a) Example C code (b) Data dependence graph

Figure 2.1 An example of data dependence graph 

In the data dependence graph shown in Figure 2.1 (b), each vertex or node of the 

graph represents a statement. The number in a vertex represents the statement number. 

Each edge represents a dependence relation between two statements. Each edge could be 

either one of three types of dependencies. For instance, the edge £(1,3) represents a true 

data dependence (RAW) between statements 1 and 3, which indicates that statement 3 

uses as input the value of variable a obtained from statement 1. The edge £(3, 4) 

represents an anti-dependence (WAR) between statements 3 and 4. The value of variable 

a in statement 3 is read as input and updated in the following statement 4. The edge £(1, 

4) represents as an output dependence (WAW) between statements 1 and 4. The value of 

the variable a is obtained to be 1 in statement 1, and then updated to be 3 in statement 4. 

Whenever there is data dependence between two statements, a switch of the execution
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order of these two instructions causes incorrect execution results, hi other words, the 

execution order of two instructions must strictly comply with their data dependence 

relationship. Otherwise, the execution results will be wrong. For example, if we swap the 

execution order of statements 1 and 4, the resulting value of the variable c in statement 3 

will be 7 instead of the correct value of 3.

2.1.2 Instruction Scheduling

Instruction scheduling is a compiler-time process to determine the execution order

of a sequence of instructions, which is performed by a scheduler (part of a compiler) 

based on data dependence analysis. Given a sequence of instructions, the execution order 

does not have to be the same as the order in which the programmer writes instructions 

originally. However, any execution order of instructions scheduled by the scheduler must 

conform to the data dependence between instructions. For example in Figure 2.1, based 

on data dependence analysis, it is found that there are two valid possible execution orders 

of four statements. They may be scheduled either in the order {1, 2, 3,4} or {2, 1, 3, 4}. 

Any other execution orders will violate the data dependence in above example.

A scheduler is usually developed to schedule instructions purposely in support of 

the programmer’s optimization goals. For example, if our optimization goal is to exploit 

instruction parallelism to reduce total instruction execution time, the scheduler identifies 

that statements 1 and 2 can be executed in parallel because there is no data dependence 

between these two statements in the above example. The following execution order is 

scheduled:
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a =  1; b = 2;

c  = a + b;

a = 5;

Figure 2.2 An example of paralleled code

The execution time is reduced to 3 from 4, assuming that the execution time of each 

statement takes one unit.

2.1.3 Register Allocation

Registers are temporary storage elements in a processor. All the operations occur 

in registers. If a variable is not stored in a register, it is loaded from or stored in main 

memory whenever it is accessed. If the number of registers is less than the number of 

variables, the register allocator of a compiler determines which variables are stored in 

registers.

A register allocation example is illustrated in Figure 2.3. Assume that there are 

two registers available, that variables j  and m are allocated in registers, and variables / and 

k are not allocated in registers. The left part of the figure is an example of C code and the 

right part is the corresponding instructions to be executed by the processor. Since variable 

i is not allocated in register, after the assignment instruction i = 1, the value of variable i 

will be stored in main memory, so an extra store instruction is needed. When instruction k 

= i + j is executed, since variable i is not allocated in register, a load instruction is needed 

to load the value of variable i from main memory. For the same reason, the instruction 

store k is needed to store the value of variable k back in main memory.
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If there are three registers available, assuming that only variable k is not allocated 

in register, the corresponding instructions are shown in the lower part of the figure. Since 

variable k is not allocated in register, a memory access instruction is needed to store the 

value of variable k in main memory after instruction k = i + j  is finished. As a result, the 

number of the instructions associated with main memory access in this case is reduced to 

1 from 3 in the previous case. As a result, code size and execution time are reduced.

(1) i = 1; If there are two registers
(2) j = 2; ----------------------------- ►
(3) k = i + j; / and m: allocated
(4) m = I * j; i and kr. not allocated

i = 1; 
store i; 
j = 2; 
load I; 
k = i + j; 
store k; 
m = i *j;

If there are three registers
 ►
i, j y and m: allocated
kr. not allocated

i=  I; 
j = 2; 
k = i + j; 
store k; 
m = i *j;

Figure 2.3 Example for register allocation

2.1.4 Live Ranee Analysis

T .ik-ft Haffi dependence analysis on which instruction scheduling is based, live

range analysis is the basis of register allocation. Each variable in a program has a live 

range. The live range of a variable is the range from its definition to its last use, that is,
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the range from the point where the variable becomes live to its dead point. For example 

in Figure 2.4, the live range of variable h is the range from statement 1 to statement 4, 

which is illustrated with an arrow below the variable name. If two variables have 

nonoverlapped live ranges, then they can share the same register. In other words, the 

second variable can safely reuse the register allocated to the first variable only when two 

variables have nonoverlapped live ranges. This is because a register is required to 

exclusively hold a live variable's value until that variable is "dead" once the register is 

allocated to that variable. Otherwise, the first variable's value stored in the register will be 

garbled by another variable that reuses the register allocated to the first variable. 

Consequently, wrong execution due to improper register allocation will result.

The minimum number of registers necessary can be obtained based on the live 

range analysis of a sequence of instruction. In the above example, variables i and k can 

share the same register because they have nonoverlapped live ranges. Variable j  needs 

another register, and variable h needs another register. Thus at least three registers are 

needed in this example.
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h j k i

(1) h = 5;

(2) j = h * 2;

(3) i = 6; I
(4) k = h + i; i r

1 I
(5) m = j/k;

i and k can share the same register. 
j  needs one register. 
h needs another register.
At least three registers are needed.

Figure 2.4 Live range analysis of variables

Obviously, the live range of a variable depends on the execution order of 

instructions. In other words, instruction scheduling affects register allocation. This is 

illustrated in Figure 2.5, which shows a different schedule for the instructions in Figure 

2.4. It is easy to verify that this scheduling is a legal schedule based on the data 

dependence graph shown in Figure 2.5. With this schedule, variables h and j  have 

nonoverlapped live ranges, so they can share the same register. For the same reason, 

variables k and i can share another register. As a result, two registers are needed, while 

the previous scheduling requires three registers. Thus the latter schedule saves one 

register compared with the original schedule.

From the above analysis, it is seen that instruction scheduling plays a very 

important role in the exploitation of instruction level parallelism and register allocation. 

In addition, instruction scheduling technique is very important to power reduction for 

embedded systems.
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(1) h = 5;

(3) i = 6;

(4) k = h + i;

(2) j = h * 2;

(5) m = j/k; I
I

h and j  can share the same register. 
k and i share another register.
At least two registers are needed.

Figure 2.5 Effect of instruction scheduling on register allocation

A. P
© /

©

Figure 2.6 Data dependence graph

Instruction scheduling and register allocation have been two very important 

optimization phases not only for the compilers targeted on embedded systems but also for 

other modem compilers. Traditionally, one phase is performed before another phase.
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which is called a phase ordering approach. In recent years it has been generally 

recognized that the separation between the instruction scheduling and register allocation 

phases leads to poor optimization for cases that are not suited to the specific phase 

ordering selected by the compiler [1, 31]. For instance, consider the first phase ordering 

approach, that is, instruction scheduling followed by register allocation. This phase 

ordering gives priority to instruction scheduling. It may be good for exploiting 

instruction-level parallelism. However, based on the previous example, it can be seen that 

the first schedule in Figure 2.4 stretches out some variables' live ranges compared to the 

second schedule in Figure 2.5. As a result, the required number of registers in the first 

schedule is 3, while the second schedule requires 2. If there are two registers available, 

one variable's value has to be spilled into main memory. Thus the first schedule relatively 

increases register pressure.

The second ordering approach is to perform register allocation before instruction 

scheduling. This approach gives priority to optimizing usage of registers, especially for 

the processors with a small number of registers. It may cause no spills or minimum spills. 

However, additional dependencies between instructions may be generated due to extra 

register dependencies. As a result, this generates additional constraints for instruction 

scheduling, thus limiting the flexibility of instruction scheduling.

It is desirable to integrate these two phases into a single phase to minimize 

constraints upon each other. Unfortunately, the integration of instruction scheduling and 

register allocation is a NP-Complete problem. Thus this research attempts to develop an 

effective heuristic algorithm for the integration problem. The register-reuse chain
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generation and merging algorithms are developed primarily to minimize the constraints 

for instruction scheduling when optimizing of register allocation.

2.2 ARM7T (Advanced RISC Machines) Processor

This research uses the ARM7T microprocessor, one of a series of ARM 

processors developed by Advanced RISC Machines Ltd., as the target processor. ARM 

designs and licenses high-performance, low-cost, power efficient RISC microprocessors 

and related technology. ARM intends to establish its architecture as the standard for 

embedded RISC processors for use in a wide range of high volume applications in the 

embedded, portable, and consumer multimedia markets. The application examples of 

ARM processors include [41]:

• Portable: digital cellular phones, pagers and personal organizers.

• Embedded: modem, hard disc drivers, printers and automotive applications.

• Consumer multimedia: sound system, games, set-top box.

ARM7T series processors are the company’s most widely licensed processors.

The CPU cores of AMR7T are small, fast, low-power, 32-bit RISC processors that are 

primarily used in portable telecommunications. It has the ability to combine the ARM 

instruction set with the THUMB extension to reduce memory size and system cost. The 

THUMB extension delivers 32-bit RISC performance at a 16-bit system cost.

2 3  Local C Compiler (LCO

Local C Compiler (LCQ is a retargetable compiler for ANSI C, developed by 

Fraser and Hanson [15]. It has been used to compile production programs since 1988. As 

a retargetable compiler, LCC has multiple target machines. The advantages of
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retargetable compilers are that machine-specific compiler parts are isolated in modules 

that are readily applied to the user-desired target machines. For example, during the 

hardware-software co-design stage of an embedded system, the target architecture may be 

changed to achieve a better ratio of performance to cost. There is no need to rewrite the 

software compiler each time when some features are added or removed from the current 

architecture.

To be retargetable, LCC is organized into two major parts shown in Figure 2.7. 

The first part is called the front end that consists of a lexical analyzer and a parser. The 

lexical analyzer reads program source text and produce tokens. The parser takes a stream 

of tokens passed from the lexical analyzer and checks whether they conform to the syntax 

of the language. Then an intermediate representation of the source program, called 

directed acyclic graphs (DAGs), is generated. The intermediate representation generally 

is language-independent and target machine-independent. Within the front end, some 

target-independent optimizations are performed, such as common sub-expression 

elimination. The second part of LCC is called the back end. It takes as input the 

intermediate representation of source program, or DAGs, that are passed from the front 

end and translates them into target-dependent assembly code. When the target 

architecture is changed or a new architecture is considered, only the back end part of the 

compiler needs to be rewritten.

The optimization parts of LCC like instruction scheduling and register allocation 

originally distributed by Fraser and Hanson are primitive and simple. Based on their own 

needs, users can replace them and add their own optimization parts.
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Lexical Analyzer 
(Generate Tokens)

Parser 
(Generate DAGs)

T arget-Independent 
Optimizations I

Instruction Selection and 
Register Management

I
Code Generator 

(Target-Dependent)

)

J
Assembly Code

Figure 2.7 Structure o f Local C Compiler (LCC)

Front End

Back End
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CHAPTER THREE

DEPENDENCE ANALYSIS AND INSTRUCTION

SCHEDULING

This chapter presents the dependence analysis and the instruction scheduler. In 

Section 1, the structure of optimizing Local C Compiler (LCC) is described. In Section 2, 

the data dependence analysis, the basis of the instruction scheduler, is represented. 

Section 3 describes the instruction scheduler developed in this research.

3.1 Structure of Optimizing LCC Compiler

Figure 3.1 shows the overall structure of the optimizing compiler developed in 

this research. It consists of three main phases. In the first phase, registers are allocated to 

variables of a program. This register allocation is optimized by each basic block. The 

next phase performs instruction scheduling. Dependencies between instructions are 

analyzed for the correct and most efficient instruction scheduling. The dependence 

analysis and instruction scheduling are also performed by each basic block. The last 

phase is the allocation of temporary registers. For this phase, the existing LCC variable 

register allocator is used. The variable register allocation is the main subject of Chapter 4 

and Chapter 5. Therefore, detailed explanation is given in those two chapters. In this 

section, the implementation of dependence analysis and instruction scheduling in the 

LCC is explained and issues for the increase of efficiency are discussed.

19
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Figure 3.1 The structure of the new optimizing compiler
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3.2 Dependence Analysis

3.2.1 True Dependence

Dependence represents the relationship in which a correct computation of one 

node depends on the result of the computation of the dependent node. For example 

consider the Abstract Syntax Tree (AST) shown in Figure 3.2 (a). All nodes depend on 

their kids. For example, the ASGN node depends on the computation result of ADD and 

the address node (ADDR a). On the other hand, the node ADD depends on its kids, 

INDIR (ADDR b) and INDIR (ADDR c). Figure 3.2 (b) shows the corresponding 

dependence graph. The arrows in this graph show the dependence relationship. The target 

of the arrow depends on the source of the arrow.

ASGNASGN

ADDR ADDADDR ADD

INDIR INDIRINDIRINDIR

ADDR ADDRADDR ADDR

b C b  C

(a) AST for a = b + c (b) Dependence between nodes

Figure 3.2 A single AST and the corresponding dependence graph

Now that the dependence graph for a single AST is explained, consider the 

dependence graph for multiple ASTs. Consider the ASTs shown in Figure 3.3 (a). There
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are two ASTs, which represent statements a = c + d and e = a + d, respectively. Note 

that the second statement depends on the first statement. In order to represent the 

dependence between two statements, a new edge is created from the ASGN node of the 

first AST to the corresponding ADDR (a) node in the second AST. This edge is 

illustrated with a thick line in Figure 3.3 (b).

3.2.2 Anti-Dependence

Anti-dependence represents the relationship in which one statement depends on 

the other statement because the statement stores a value into the same memory location as 

the dependent statement loading a value. If the storing statement is executed earlier, 

before the loading statement accesses the value, a wrong value can be loaded. 

Consequently, the computation result can be wrong.

Figure 3.4 (a) shows a case when anti-dependence occurs. There are two ASTs 

representing two statements, a = b + c and c = a * d, respectively. Note that the second 

INDIR node in the first AST reads data from c, while the ASGN node in the second AST 

stores data into c. In this case, an edge is created from the INDIR(ADDR c) node in the 

first AST to the ASGN(ADDR c) node in the second AST. This edge is shown in the 

thick line in Figure 3.4 (b).
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ASGNASGN

ADD MULADDRADDR

INDIRINDIRINDIR

i r
ADDRADDRADDR ADDR

b e  a d

(a) ASTs for a = b + c and e = a * d

ASGNASGN

MULADDR ADD ADDR

INDIRINDIR INDIRINDIR

ADDRADDRADDR ADDR

b e  a d

(b) Dependence graph 

Figure 3.3 Multiple ASTs and the dependence graph
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ASGNASGN

MULADDRADDR ADD

INDIR INDIRINDIR

ADDR ADDRADDR ADDR

b e  a d

(a) ASTs for a = b + c and c = a*  d

ASGNASGN

MULADD ADDRADDR

INDIR INDIRINDIRINDIR

ADDR ADDRADDR ADDR

db ac

(b) Anti-dependence graph 

Figure 3.4 Multiple ASTs and the anti-dependence graph
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3.2.3 Output Dependence

Output dependence represents the dependent relationship in which two statements 

store data into the same memory location. In order to store the correct value in the 

location, the order of the two stores must be preserved. Figure 3.5 (a) shows the case 

when output dependence occurs. There are two statements, a = b + c and a -  e * d. Note 

that both statements store data into a. In order to prevent the reordering of the two 

assignments, an edge is created between the two ASGN nodes. In Figure 3.5 (b), the thick 

line corresponds to the output dependence.
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ASGNASGN

MULADDRADDR ADD

INDIRINDIR INDIR

ADDRADDR ADDRADDR

b e  e d

(a) ASTs for a = b + c and a - e  *d

ASGNASGN

ADDRADDADDR MUL

INDIR INDIRINDIRINDIR

ADDR ADDRADDRADDR

b  C * d

(b) Output dependence graph 

Figure 3.5 Multiple ASTs and the output dependence graph
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3.2.4 Adjustment of Dependencies

Register allocation often changes the output assembly code depending on which 

variables are assigned to registers. For example, Node (ASGN (ADDR symbol)) 

generates STORE instruction. However, if a register is allocated to the symbol, a STORE 

instruction is not necessary because the value is stored in the register. Therefore, after 

register allocation, the code needs to be labeled again so that a new code generation rule 

is assigned to each node. The new rule determines whether an ASGN node needs to 

generate STORE instruction or not. In addition, the new rule decides whether an INDIR 

node needs to generate a LOAD instruction or not.

Once code generation rule is changed, dependencies need to be adjusted. Consider 

the example of anti-dependence shown in Figure 3.4 again. There is an anti-dependence 

from (INDIR (ADDR c)) in the first tree to (ASGN (ADDR c)) in the second tree. Note 

that node (INDIR (ADDR c)) in the first tree generates assembly instruction LOAD R t, 

a d d r  ( c ) , and node (ASGN (ADDR c)) generates assembly instruction STORE R t, 

a d d r (c ) .  Here, Rt represents a temporary register, and a d d r(c )  represents the 

address of variable c in main memory. The anti-dependence guarantees that instruction 

STORE R t , ad d r (c) is scheduled later than instruction LOAD R t , a d d r  (c ) . 

Therefore, the correct sequence of instructions is generated.

Suppose that variable c is assigned a register. Then, the tree is changed as shown 

in Figure 3.6 (a). Note that node (ADDR c) is changed to (VREG c) that represents a 

register is allocated to c. In this case, node (ASGN (VREG c)) does not generate an 

assembly instruction because variable c is now stored in a register. Its kid, node MUL, 

performs the actual assignment operation. Similarly, node (INDIR (VREG c)) does not 

generate an assembly instruction, and its kid, node ADD, performs the actual loading
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operation. Therefore, an anti-dependence needs to be adjusted such that node MUL is 

scheduled after node (INDIR (VREG c)). The resulting dependence graph is shown in 

Figure 3.6 (b). The new edge from ADD in the first tree to MUL in the second tree is 

created.

Register allocation also requires the adjustment of output dependence. Consider 

the dependence graph shown in Figure 3.5 again. There is output dependence from node 

ASGN in the first tree to node ASGN in the second tree. Suppose that a register is 

assigned to variable so that node (ADDR a) is changed to (VREG a). Then, the two 

ASGN nodes do not generate any assembly instruction. Instead, their kids, ADD and 

MUL, perform the assignments. Note that node MUL can be scheduled as soon as its kids 

are scheduled. Thus it can be scheduled earlier than node ADD in the first tree. If it 

happens, the resulting code stores wrong value in the register. To prevent this, the output 

dependence needs to be adjusted so that node MUL is scheduled later than node ADD. 

The corresponding dependence graph is shown in Figure 3.7.
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ASGNASGN

VREG MULADDR ADD

INDIR INDIRINDIR INDIR

ADDR ADDRADDR VREG

(a) Anti-dependence graph after a register is assigned to variable c

ASGNASGN

VREG MULADDADDR

INDIRINDIRINDIR

I Li L

ADDRADDRVREGADDR

(b) New anti-dependence from ADD in the first tree to to MUL in the second tree

Figure 3.6 Adjustment of anti-dependence after register allocation
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ASGNASGN

VREGVREG ADD MUL

INDIR INDIR

ADDR ADDRADDR ADDR

b c e d

Figure 3.7 Adjustment of output dependence after register allocation

Adjustment of input dependence is similar to that of anti-dependence. For true 

dependence, adjustments are in general not necessary except one comer case. Function 

r e w r ite D e p (  ) is called inside r e w r ite A g a in  ( ) after nodes are labeled again 

based on register allocation. This function takes care of one comer case for the 

adjustment of true dependence. Then, it calls function ad  j u s tF a ls e D e p  ( ) , shown 

in Figure 3.8, for the adjustment of input dependence, output dependence, and anti­

dependence. Function a d j u s  tF a lse D e p  ( ) calls three functions

a d ju s tA n tiD e p (  ) ,  a d ju stO u tp u tD ep  ( ) , and ad ju stR egD ep  ( ), each

of which performs adjustments for anti-dependence, output dependence, and input 

dependence, respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

v o id  adj u s tFalseD ep ( fo r e s t  ) Node fo r e s t ;
{

fo r (  p = fo r e s t ;  p; p = p -> lin k  )
i f  ( g en eric  ( p->op ) == ASGN ) {

i f  ( p->d .antiFrom  ) /*  an ti-d ep en d en ce */
adjustA ntiD ep ( p );  

i f (  p->d.outputFrom  ) /*  output dependence */ 
adjustOutputDep ( p );  

i f  ( p->d.regTo ) /*  input dependence */ 
adjustRegDep ( p );

}
}

Figure 3.8 Procedure for adjustments of dependence

3.3 Instruction Scheduling

Instruction scheduling is a total (or linear) ordering of nodes in ASTs. Consider 

the ASTs shown in Figure 3.3 again. The dependence graph in Figure 3.3 (b) represents 

the partial order of the nodes, but not the total order. So the instruction scheduler 

transforms the dependence graph into a linked list of the nodes. Figure 3.9 shows an 

example of scheduled nodes. In this graph, nodes are linked in a linear order. Note, 

however, that all ADDR nodes are not linked in the linear list, but attached as kids of the 

nodes in the linear list. The reason is because the ADDR nodes do not call the LCC 

emitter to generate an assembly instruction. Thus, only those nodes that call the LCC 

emitter are included in the scheduled linked list. More details on the nodes that call the 

LCC emitter are illustrated in [15]
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INDIR ADDINDIR ASGN INDIR

ADDR ADDR ADDRADDR

MUL ASGNINDIR

ADDRADDR

d e

Figure 3.9 A schedule example for nodes shown in Figure 3.3

Figure 3.10 shows the structure of the instruction scheduler. The input of the 

scheduler is a dependence graph, and the output is the linked list of nodes in the 

scheduled order. The first phase of instruction scheduling is to find a set of nodes that are 

not dependent on any other nodes. A queue is made out of these nodes as the result of the 

first phase. Note that all these nodes in the queue can be scheduled next The next phase 

is to select a node among the nodes in the queue and insert it into a linked list that 

represents the execution order of the nodes. Thus, the earlier a node is selected from the 

queue, the earlier the node is scheduled or executed. Once a node is selected to schedule, 

the next phase checks whether it has dependent nodes. If there is a dependent node, the 

next phase checks whether it can be scheduled next. If the node depends on any other 

nodes that are not scheduled at the moment, the node must be scheduled after the
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dependent node is scheduled. In this case, the node cannot be inserted in the queue. 

Otherwise, the node is inserted in the queue, and waits for the selection phase to be 

inserted into the linked list. The selection and insertion phases repeat until all the nodes in 

the dependence graph are scheduled, and as a result the instruction queue becomes 

empty.

Dependence graph

Instruction Scheduler

Find independent 
nodes

Insert the node 
in the queue

Queue of nodes to 
be scheduled

Empty
Queue

Select a node

.yes Dependent 
nodes

Dependent
nodes

Insert the node in 
the linked list of 
scheduled nodes

Linked list of 
scheduled nodes

Figure 3.10 Structure of the instruction scheduler

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

Figure 3.11 explains the steps for how the instruction scheduler generates the 

scheduled nodes with a given dependence graph. Refer to the dependence graph shown in 

Figure 3.3 (b). The first phase of the instruction scheduler finds the nodes that are 

independent of any other nodes. In this example, nodes (INDIR (ADDR b), (INDIR 

(ADDR c)), and (INDIR (ADDR d)) are independent nodes. Thus, these nodes are 

initially inserted in the queue. The next phase is to select one of the nodes in the queue. 

Depending on the constraints given to the scheduler, there are many different ways to 

select the node. In this example, assume that the node in the top of the queue (located at 

the bottom of the queue in the figure) is selected first. So (INDIR (ADDR b)) is selected 

first, and then inserted in the linked list of the scheduled nodes. At this stage, only one 

node is scheduled. In the next step, the dependent node of (INDIR (ADDR b)) is found. 

Node (ADD) depends on node (INDIR (ADDR b)). Then the scheduler checks whether 

node (ADD) depends on any other node that is not scheduled. Note that node (ADD) 

depends on (INDIR (ADDR c)) that is still not scheduled. This implies that node (ADD) 

cannot be scheduled until (INDIR (ADDR c)) is scheduled. Thus, node (ADD) cannot be 

inserted into the queue. Then, the queue has two nodes (INDIR (ADDR c)) and (INDIR 

(ADDR d)). The next step is to return to select a node from the queue. At the top of the 

queue is node (INDIR (ADDR c)) that is selected to schedule. So, the linked list of the 

scheduled nodes contains two nodes, (INDIR (ADDR b)) and (INDIR (ADDR c)). Now 

that (INDIR (ADDR c)) is scheduled, the scheduler checks whether its dependent node is 

ready to be scheduled. Node (ADD) is the dependent node of (INDIR (ADDR c)). In 

order for node (ADD) to be scheduled, it must be independent of any other unscheduled 

nodes. The only other dependent node is (INDIR (ADDR b)) that is already scheduled.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Thus, node (ADD) can be scheduled, and therefore, is inserted in the queue. Thus, the 

queue now includes two nodes, (INDIR d), and (ADD). The selection and insertion steps 

are repeated until the queue is empty. All the steps are shown in Figure 3.11.

INDIR(ADDR d)

INDIR(ADDR c)

END IR( ADDR b)

ENDIR(ADDR d)

INDER(ADDR c)

ADD

INDIR(ADDR d)

Select
INDER(ADDR b) 
 ►

INDIR

ADDR

Select
INDER(ADDR c)

INDIRINDIR

ADDRADDR

Select
INDER(ADDR d)

INDIR INDIRINDIR

ADDR ADDRADDR

Figure 3.11 An example of scheduled nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Select
ADD

INDIR INDIRINDIR

ADDR ADDRADDR
ADD

ASGN(ADDR a)

INDIR INDIRINDIR

ADDR ADDRADDRSelect
ASGN(ADDR a)

»■( ADD ASGN

ADDR

a

Figure 3.11 Continued
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INDIR(ADDR a)

INDIR INDIRINDIR

ADDRADDR ADDRSelect
INDIR(ADDR a)

ADD ASGN INDIR

ADDR ADDR

MUL

INDIR INDIRINDIR

ADDR ADDRADDRSelect
MUL

ASGN INDIRADD

ADDR ADDR

MUL

Figure 3.11 Continued
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ASGN(ADDR e)

INDIR INDIR INDIR

ADDRADDR ADDRSelect
ASGN(ADDR e) 
 ►

ADD ASGN INDIR

ADDRADDR
aa

+>( MUL ASGN

ADDR
e

Figure 3.11 Continued

The code given in Figure 3.12 shows a rough structure of the instruction 

scheduler. Function i n i t i a l l y I n d e p l n s t r (  ) finds all nodes that are initially 

independent of any other nodes. The found nodes are inserted in the queue. Then, the 

body of while-statement is repeatedly executed until the queue becomes empty. The first 

function in the body, se lec tN o d e ln Q u eu e  ( ) selects a node from the queue.

Depending on various needs, this selected node can be different. In some cases, more 

than one node is selected. For space limitation, detailed explanation of this function is
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omitted. The selected node is removed from the queue by function 

removeFromQueue ( ) ,  and then inserted into the linked list of scheduled nodes. Then, 

function in c lu d e D e p In s tr ln Q u e u e f  ) searches all dependent nodes and insert 

them in the queue if they are not dependent on any other unscheduled nodes. The 

selection (se le c tN o d e ln Q u e u e ) and insertion ( in c lu d e D e p In str ln Q u e u e )  

repeat until the instruction queue is empty, that is, em p ty ln str Q u e u e  ( ) returns

NULL.

m ainScheduler( f o r e s t ,  next ) Node f o r e s t ,  n ex t;
{

/*  i n i t i a l i z a t i o n  * /

/ *  f in d  i n i t i a l l y  independent nodes and in s e r t  them in  the  
queue * /  

in i t ia l ly I n d e p ln s t r  ( f o r e s t  ) ;
w h ile  (! (em ptylnstrQueue ( ) ) )  { /*  rep eat u n t i l  th e  queue

i s  empty * / 
sNodes = selectN odelnQ ueue ( p ) ; 
fo r (  sn  = sNodes; sn; sn  = sn -> next ) {

p = sn->nd;
p->DFScolor = SCHEDULED; 
removeFromQueue( p );
/*  in s e r t  p in to  sch ed u led  node l i s t  * / 
includeD epInstrlnQ ueue ( p ) ;

>
}
/* r e s e t  d a ta  s tr u c tu r e  fo r  opcode g e n e r a tio n  * /

>

Figure 3.12 A basic structure of the scheduler

In the insertion phase, there are three important functions, 

in c lu d e D e p I n s t r ln Q u e u e  ( ) , i n s e r t l n s t r l n Q u e u e  ( ), and
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p u t ln s tr ln Q u e u e  ( ). Function in c lu d e D e p In str ln Q u e u e  ( ) searches all 

the nodes that depend on node p. Then, for each of the dependent nodes, 

in s e r t ln s t r ln Q u e u e l  ) is called. The main functionality of 

in s e r t ln s t r ln Q u e u e  ( ) is to check whether node p depends on any other

unscheduled nodes. If it is false, it calls p u tln s tr ln Q u e u e  ( ) function in order to 

insert the node in the instruction queue. Function p u t ln s  tr ln Q u eu e  ( ) puts the

node in the instruction queue and updates all the data structure correspondingly.

When a node in an instruction queue is selected and scheduled, its dependent 

nodes are searched. If a dependent node does not depend on any other nodes that are not 

scheduled, the node can be inserted in the queue. Function 

in c lu d e D e p I n s tr ln Q u e u e  ( ) , shown in Figure 3.13, performs the search of

dependent nodes. The first phase of the function is to check whether its parent node is 

prevented from being included in the instruction queue. In the second phase, it searches 

true dependent nodes that are stored in the linked list pointed by dDependent. In the next 

phase, it searches false dependent nodes by calling function, 

in c lu d e F a ls e D e p I n s tr ln Q u e u e  ( ) .

includeD epInstrlnQ ueue ( p ) Node p;
{

/*  p reven t i t s  p a ren t from being in clu d ed  in  the  
in s tr u c t io n  queue * / 

fo r  ( dn = p->dDependent; dn; dn = dn->next ) 
in se r t ln s tr ln Q u e u e  ( dn->nd, p );

in clu d eF alseD ep In strln Q u eu e ( p ) ;
}

Figure 3.13 Function for including dependent nodes in the queue
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Function includeFalseDepInstrlnQueue ( ) shown in Figure 3.14 

searches false dependent nodes. Note that there are three different types of false 

dependencies: anti-dependence, output dependence, and true dependence. These 

dependent nodes are pointed by the fields, d.cmtiTo, cLoutputTo, and (LregTo, 

respectively. Function insertASGNnodelnQueue ( ) checks whether the dependent 

node is also dependent on any other unscheduled nodes. If it is false, then the dependent 

node is inserted in the instruction queue.

v o id  includeF alseD epInstrlnQ ueue ( p ) Node p;
{

Node q;
i f (  q = p->d.outputT o ) insertASGNnodelnQueue! q, p );
i f (  q = p -> d .a n tiT o  ) insertASGNnodelnQueue! q, p );
i f (  q = p ->d .regT o ) insertASGNnodelnQueue! q, p ) ;

}

Figure 3.14 Function for including false dependent nodes in the queue

When in c lu d eD ep In srln Q u eu e  ( ) finds a node to be inserted in the

instruction queue, it calls function in s e r t ln s t r ln Q u e u e  ( ) shown in Figure 3.15. 

First, this function checks whether it is an instruction node or not by evaluating x.inst 

field. If the node is an instruction node, it can be inserted in the queue. So function 

in sertX N odelnQ ueue ( ) is called. If the node is not an instruction node, check 

whether the node is an ADDR node or a VREG node. If it is true, the conditions specific 

to the ADDR/VREG node are checked, and insert the node in the queue if the conditions 

are satisfied. If the node is not an ADDR/VREG node, function 

in c lu d eD ep In srln Q u eu e !  ) is recursively called to search its dependent nodes.
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v o id  in ser tln str ln Q u eu e  ( nd, depNode )
Node nd;
Node depNode; /*  nd i s  dependent upon depNode */
{

i f ( n d -> x .in s t  )
insertXNodelnQueue ( nd, depNode ) ;

e l s e  i f (  ! isAddrOpOrVreg ( nd->op )) 
includeD epInstrlnQ ueue ( nd ) ;

e l s e
/*  i f  ( AddrOp or VREG ) , in s e r t  th e  node w ith  s p e c ia l  

co n d itio n  */
}

Figure 3.15 Function for inserting a node in the queue

Function insertXNodelnQueue ( ) , shown in Figure 3.16, checks whether 

a node depends on any other nodes that are not scheduled yet. If it is not true, it calls 

function putlns trlnQueue ( ) to insert the node in the instruction queue. This

check is performed by function isAnyOtherXKids ( ) . If there is such a node, it is 

necessary to check whether it is scheduled, that is, DFScolor = SCHEDULED. It is also 

necessary to check whether the node falsely depends on any other nodes that are not 

scheduled yet. The examination for false dependence is performed by function 

isFalseDepOnNotScheduledNode ( ). This function checks anti-dependence,

output dependence, and input dependence through register reuse. Once all these 

examinations are passed, function putlns trlnQueue ( ) is called. If function

isAnyOtherXKids ( ) returns NULL (that is, there is no other kids that are

instruction nodes), the false dependence is the only necessary check. Thus, function 

isFalseDepOnNotScheduledNode ( ) is called for the examination.
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v o id  insertXNodelnQ ueue ( nd, depNode )
Node nd;
Node depNode; /*  nd i s  dependent upon depNode */
{

Node q;
i f  ( ( q = isAnyOtherXKids ( nd, depNode ) ) )

i f  ( q - > x .in s t  && g e t0 p ln d ex ( q, q -> x .in s t  )
&& q->DFScolor == SCHEDULED )

i f  ( ! isFalseDepOnNotScheduledNode ( nd ) )
p u t ln s  trlnQueue ( nd );  

e l s e  i f (  ! isFalseDepOnNotScheduledNode ( nd )) 
p u tln str ln Q u eu e( nd );

}

Figure 3.16 Function for inserting Xnode in the queue

When function p u t ln s  tr ln Q u eu e  ( ) , shown in Figure 3.17, is called, the 

first step is to check whether the node is already scheduled, or inserted in the queue. This 

check prevents a node from being inserted twice in the instruction queue. The second step 

inserts the node in the instruction queue. This step includes the establishment of new 

links after the insertion as well as the update of data structure. The final step checks 

whether it is an assembly-generating node or not. If it is true, it searches its dependent 

nodes by calling in c lu d e D e p In s tr ln Q u e u e  ( ). In this way, the search and

insertion process repeats until an assembly-generating node is inserted in the queue.

v o id  p u t In s trlnQueue I p ) Node p;
{

i f ( p->DFScolor == QUEUED | |  p->D FScolor == SCHEDULED) 
return;

/*  in s e r t  Node p in  th e  in s tr u c t io n  queue */ 
i f (  IgetOpIndex( p , p -> x .in s t  ) ) 

includeD epInstrlnQ ueue ( p ) ;
}

Figure 3.17 Function for putting a node in the queue
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Function selectNodelnQueue ( ) , shown in Figure 3.18, is able to choose 

various scheduling techniques based on variable scheduleOption. Currently, three 

different scheduling techniques are implemented. The first one is to select the instruction 

that minimizes the ham m ing distance of opcode between consecutive instructions. This 

technique is useful for reducing power consumption due to frequent change between 

consecutive opcode values. The second scheduling technique is designed for VLIW 

architecture that can execute multiple instructions simultaneously. The third scheduling is 

to simply select the first instruction node in the queue.

v o id  SelectedN ode selectN odelnQ ueue ( )
{

s w itc h ( scheduleO ption  )
{

c a se  BIT_CHANGE_REDUCTION:
sn = callMinBitChangeOpInQueue ( sn ) ; 
break; 

ca se  VLIW:
sn = c a llV liw S c h e d u le ( sn  );  
break; 

d e fa u lt:
sn = firstN odeInQ ueue( );  
break;

}
}

Figure 3.18 Function for selecting a node from a queue

Various instruction scheduling techniques can be combined together and executed 

simultaneously In order to support the combination of multiple instruction scheduling 

techniques, callMinBitChangeOpInQueue or callVliwSchedule ( ) shown

in Figure 3.19 supports the case when there are some nodes selected by the previous
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scheduler. For example, see function c a llV liw S c h e d u le !  ). When there is a 

previously selected node (that isT sn is not NULL), the function attaches the selected node 

by calling v liw S ch e d u le  ( ) to the tail of the selected node list.

SelectedN ode ca llV liw S ch ed u le! sn. ) SelectedN ode sn; 
{

i f !  sn  ) {
SelectedN ode lsn ;
l s n  = la s tS e le c te d N o d e ( sn  );
lsn -> n e x t  = v liw S ch ed u le  ( ) ;

}
e l s e

sn  = v liw S ch ed u le ( ) ;  
retu rn  sn;

}

Figure 3.19 Function for calling VLIW scheduling
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CHAPTER FOUR

REGISTER ALLOCATION

This chapter presents an improved register allocation algorithm developed in this 

research. The major algorithms include register-reuse chain generation, chain merging, 

and the merging criteria. A discussion of the previous research on register-reuse chain in 

[7, 8] is also provided. For convenience of descriptions, some formal definitions related 

to those algorithms are given.

4.1 Background

As mentioned in Chapter 2, instruction scheduling and register allocation are the 

two major compiler optimization techniques. In most research efforts, these two 

techniques are studied separately [7, 8, 30, 31]. One phase is performed before the other. 

The resulting approaches are called phase ordering solutions. However, these two 

optimizations often significantly influence each other. Optimization in one phase 

adversely affects the optimization in the other phase. The first phase ordering approach 

(that is, instruction scheduling followed by register allocation) gives priority to instruction 

scheduling. An instruction scheduler decides the live range of a variable and consequently 

places significant constraints on register allocation. Therefore, even efficient instruction 

scheduling can degrade the overall optimization if the scheduler places too many 

constraints on register allocation, resulting in poor register allocation. Some variables’

46
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values may spill in main memory. As a result, performance is lowered due to main 

memory access latency, and code size increases correspondingly due to extra memory 

access instructions generated.

On the other hand, the second approach, register allocation followed by 

instruction scheduling, gives priority to register allocation. Register allocation affects 

instruction scheduling because it often creates additional dependencies that add 

constraints to the scheduler. A common approach to register allocation is graph-coloring. 

The graph-coloring approach formulates a register allocation problem as a graph-coloring 

problem. Each vertex of the graph represents a variable in the program. If two variables’ 

live ranges are overlapped, an edge exists between two vertices. The graph-coloring 

approach attempts to assign a color to each vertex in the graph with a minimum number 

of colors used, such that no two vertices between which there is an edge has the same 

colors. The variables with the same color can share a register.

In order to develop an optimizing compiler that would be efficient for both a 

scheduler and a register allocator, recent research has been focused on the integration of 

these two techniques [7, 8]. Berson, Gupta, and Soffa make a promising contribution by 

proposing register allocation based on register-reuse chains [8]. A register-reuse chain is 

defined as an ordered set of instructions that use the same destination registers. Thus, 

register allocation in [8] is a procedure for decomposing a dependence graph into register- 

reuse chains. Each reuse chain requires a register so that the number of necessary registers 

is the same as the number of register-reuse chains. If the number of chains is greater than 

the number of registers, dependencies are added to the dependence graph that leads to the 

reduction of the number of register-reuse chains (see details in later sections). Since the
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addition of dependencies generates additional restrictions for an instruction scheduler, 

efficient heuristics are proposed in [8] to reduce unnecessary restriction.

Although the main idea of the register-reuse chain approach is promising, the 

method proposed by [8] can still be improved. This is because it does not have a 

systematic approach to derive the best register-reuse chains and consequently it can result 

in an inappropriate selection of register-reuse chains. Another improvement is needed 

because the efficiency of the previous heuristic can be lowered when statements have 

various execution times. The previous method is optimized assuming that every statement 

in a program has the same execution time. However, it is often the case that different 

statements can have different execution times, because different statements can have 

different types of operations as well as different number of operations.

The register allocation technique proposed in this research follows the framework 

in [7,8], and improves the efficiency of the technique. The first step is to find a register 

allocation that is optimal in the sense that no additional dependencies are created. This 

optimal register allocation sometimes requires a large number of registers that is greater 

than the numbe r of available registers. For this case, a heuristic is proposed to reduce the 

number of necessary registers while attempting to minimize the additional dependencies.
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4.2 Register Allocation Based on Register-Reuse Chains

4.2.1 Definitions

For convenience of description, some definitions that are used in the algorithms 

are introduced as follows:

Definition: A partial ordering relation P on a set 5 is a relation on S such that

(1) (x, x) is GP for any x in S,

(2) if (x, y) g  P, and x #  y  then (y, x) is GP,

(3) if (x, y) and (y, z) g  P, then (jc , z) g  P.

Condition 3 says P is a transitive relation. Condition 1 is called the irreflective law, and

Condition 2 is called the antisymmetry law. Thus, a partial ordering is an irreflective,

antisymmetric, and transitive relation [10].

According to the above definition, a data dependence graph is a partially ordered 

set whose elements are the nodes of the data dependent graph. The relation between the 

nodes in a data dependence graph can be described as “ancestor” or “descendant” 

relations. It is easily seen that a data dependence graph satisfies the three conditions of a 

partial ordering relation. For the example shown in 4.1 (a), there is a relation of 

“ancestor'’ between nodes a and e; that is, node a is the ancestor of node e. This relation 

can be obtained by applying the transitive condition (Condition 3), because the node a is 

the ancestor of node c and node c is the ancestor of node e.
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©
(a) Data dependent graph (partial ordering) (b) Linear partial ordering

Figure 4.1 Examples of partial ordering and linear partial ordering.

Definition: A partial ordering P of a set X  is linear if for each two elements x and y in a 

set X, either (x, y) e P, or (y, x) e  P.

An example of linear partial ordering is shown in 4.1 (b) in which set [a, b, c, d } 

forms a linear ordered set because there exists a relation “ancestor” between any two 

nodes in the set.

Definition: In a partially ordered set, a subset whose elements are linearly ordered 

(relative to each other) is called a chain.

In other words, a chain is a subset of a partially ordered set and its elements are 

linearly ordered. Since a data dependence graph is a partially ordered set, it could be 

decomposed into distinct chains. For example, subsets [a, e, f]  and {b} are two distinct 

chains in the dependence graph in Figure 4.1(a).
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Definition: A register-reuse chain is a chain in a data dependence graph in which all the 

nodes share the same register.

For example, by definition, chains {a, e,f] and [b] can be two different register- 

reuse chains in Figure 4.1 (a), respectively, if nodes a, e, and /share the same register and 

node b uses another register.

4.2.2 Previous Approach

In [8], the source code shown in Figure 4.2 (a) is used to explain the register 

allocation based on register-reuse chains. Figure 4.2 (b) shows the corresponding 

dependence graph in which each node corresponds to a statement in the source code. The 

character in the node represents the name of the variable assigned in the statement. Figure

4.2 (c) shows the register-reuse graph derived from the dependence graph. In this graph, 

the nodes are the same as those in the dependence graph and an edge shows the 

possibility of the register-reuse; that is, the successor (destination of the edge) can reuse 

the register of the predecessor (source of the edge). Let E(a, b) denote the edge from node 

a to b. This edge represents that b can kill a; that is, b can reuse the register assigned to a. 

Similarly, E(c, f)  represents that /  can reuse the register for c. Note that /  has another 

incoming edge from d. This means that /can  reuse both registers for d  and c. However,/ 

can reuse only one register. Thus, it is necessary to decide which register /  reuses. 

Removing one of the edges coming into/can represent this decision. For example, if c is 

chosen to be reused by/, then removing edge E(d, f) can represent this decision.
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a = 5; 
b =  2 * a; 

c = a +1; 

d = a -  3; 

e  = c  * d; 

f = c -  d; 

g = e  /  f; 

h = g + 5; 
i = h * 2; 
j = h + 4; 

k = i /  j;
I = b + k;

(a) Source code (b) Dependence graph

Figure 4.2 Register allocation example given in [8]
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Start

© ©

(d) Register-reuse chains

Start

© ©

(c) Register-reuse graph

Figure 4.2 Continued

In general, in order to use the register-reuse graph for register allocation, a 

register-reuse graph needs to be transformed into another graph in which each node has at 

most one predecessor and one successor. Figure 4.2 (d) shows such a graph transformed 

from Figure 4.2 (c). By removing edges E(d, f), E(e, g), E(j, k) and EQc, Z), this graph 

forms a set of chains in which all nodes have one predecessor and one successor at most. 

This graph can be used for register allocation in such a way that each chain is mapped to a
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register. Thus, all statements in a chain are assigned to the same register. In this figure, a, 

b, and / are assigned to the same register, while c ,f,g ,h , i, and k are assigned to the same 

register. These chains in this graph are called register-reuse chains in [7, 8].

Since each chain is mapped to one register, the number of chains corresponds to 

the number of necessary registers. For example, the graph in Figure 4.2 (d) requires four 

registers. If the number of chains is greater than the number of registers, it is necessary to 

reduce the number of chains. In order to reduce the number of chains, [8] proposes to add 

dependencies in the dependence graph. For example, consider a new dependence graph as 

shown in Figure 4.3 (a). Five register-reuse chains are derived in [8]. Suppose that there 

are only four available registers. Then, [8] suggests to add dependencies from i to g and i 

to h as shown in Figure 4.3 (b). With the new dependencies, [8] can derive four new reuse 

chains. More details on the addition of dependencies can be found in [8].

There are many different ways to add dependencies. So optimization is necessary 

to select which additional dependencies need to be added. In [8], the criterion for the 

addition of new dependencies is the length of the critical path in the dependence graph. 

For example, the added dependencies in Figure 4.3 (b) increase the length of the critical 

path by one. hi [8], a method is developed to add dependencies that attempt to minimize 

the increase of the critical path length. In addition, further optimizations are developed in 

[8] for the integration of instruction scheduling with the register allocation, the generation 

of register spill/reload instructions, and the optimization across basic blocks. Since the 

additional optimizations are not the interest of this research, detailed explanation is 

omitted.
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(a) Dependence graph (b) Additional dependencies shown in dotted lines

Figure 4.3 Creation of dependencies for register allocation

4 .23  Possible Improvements

This chapter concentrates on the generation of the register-reuse graph, reuse 

chains, and the reduction of reuse chains. Improvements are attempted based on the 

following observations. In the generation of the register-reuse graph, the selection of a 

possible killing node can affect the efficiency of a scheduler. Recall that the killing node 

is the node that can reuse the register assigned to its predecessor. The previous research 

does not have a systematic approach to select the killing node, and consequently can
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degrade the efficiency of a compiler. For example, consider the following dependence 

graph shown in Figure 4.4.

Figure 4.4 Example of dependence graph

Suppose that b is selected to reuse the register for a. This forces that c and d must 

be computed no later than b. Otherwise, a is not available for the computation of c and d  

because a is already replaced by b. Assume that there are only two functional units. Since 

c and d  cannot be executed later than b, a scheduler must force c and d to be executed 

immediately after the execution of a. Then, node b, e, and/must be executed sequentially 

due to dependencies between them. This requires 5 steps to complete the computation. 

Suppose that c is selected to reuse the register of a. Then, b and d  need to be scheduled 

right after a. In the next step, c and e can be scheduled simultaneously. Finally, f  is 

scheduled. This requires four steps to complete the computation. This example shows the 

importance of the selection of the initial reuse graph.
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In [8], dependencies are added for reducing the number of register reuse chains, hi 

this phase, it is often the case that there is more than one choice in the selection of 

dependencies. [8] uses the criterion based on the increase of the length of the critical path 

in the dependence graph. This criterion is useful when each statement requires the same 

execution time. However, each statement computes different operations and therefore can 

have different execution times. In addition, each statement can have a different number of 

operations that can further differentiate the execution time of a statement. This research 

proposes a new criterion for the reduction of register-reuse chains. Based on the new 

criterion, a heuristic is proposed to reduce the register-reuse chains. The new heuristic is 

designed to be used efficiently for the general case when each statement can have 

different execution time.

4.3 Register-Reuse Chain and Dependence Analysis

Register allocation is a procedure to decide which variables are stored in registers 

and which of them share the registers. If two variables are assigned to the same register, 

their live ranges must not be overlapped. If registers are allocated before instructions are 

scheduled, register allocation, in general, forces an ordering in the live ranges of 

variables, resulting in the creation of additional dependencies between instructions that 

access the variables. However, these additional dependencies can be avoided if the forced 

ordering complies with existing dependence relationship. This section investigates 

register allocation that does not create any additional dependencies. First, the creation of 

dependencies due to register allocation is studied and then an algorithm is proposed to 

allocate registers without the creation of additional dependencies.
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43.1  Generation o f Dependence Dne 
to Register Allocation

The execution results of a given C code do not change with the schedules that 

comply with the data dependencies. However, when a C code is translated into assembly 

code, register allocation for each variable is involved and additional dependencies may be 

introduced by register allocation. Therefore, when instructions are scheduled, these extra 

dependencies due to register allocation should be taken into consideration in addition to 

normal data dependencies.

Consider the example shown in Figure 4.5. The left column in the figure shows a 

segment of C code. The corresponding data dependence graph is given in Figure 4.7. 

Assume that variables a, b, e, and/are allocated to register R3, variable c to register R4, 

and variable d to register R5. The corresponding assembly code is shown in the middle 

column in Figure 4.5. The execution results based on the assembly code are shown in the 

right column. Note that the computation result o f /is  80, which is incorrect. The reason is 

that when instruction (1) is finished, variable b reuses register R3 originally allocated to 

variable a. When variables c and d use of the value of variable a, it is already replaced 

with the value of variable b and no longer available. In order to correctly execute the 

code, instructions (3) and (4) must be executed before instruction (2). To force the 

execution ordering, it is necessary to create additional dependencies from instruction (3) 

to (2) and from (4) to (2). The new dependencies are shown with dashed arrows in the 

data dependence graph (see Figure 4.7). The additional dependencies force instruction

(2) moved behind both instructions (3) and (4), which is shown in Figure 4.6. The correct 

execution results are shown in the right column of the figure.
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(1) a = 5; R3 = 5 (5)

(2) b = a +  1; R3 = R3 + 1 (6)

(3) c = 2 * a; R4 = 2 * R3 (12)

(4) d = a /  3; R5 = R3 /  3 (2)

(5) e  = b + c + d; R3 = R3 + R4 + R5 (20)

(6) f = 4 * e;

«IICOGC R3 (80)

Figure 4.5 Example C code and corresponding assembly code

(1) a = 5; R3 = 5 (5)

(3) c = 2 * a; R4 =  2 * R3 (10)

(4) d = a /  3; R5 = R3 / 3 (1.67)

(2) b = a +  1; R3 = R3 + 1 (6)

(5) e  = b + c + d; R3 = R3 + R4 + R5 (17.67)

(6) f = 4 * e;

•*llCOCC R3 (70.68)

Figure 4.6 C code and assembly code after rescheduling
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Figure 4.7 Data dependence graph

In general, if a node in a dependence graph has multiple successors, additional 

dependencies need to be created when one of its successors reuse the same register 

assigned to its predecessor. In Figure 4.7, node a has multiple successors: b, c, and d. If b 

is selected to reuse a, additional dependencies need to be created from c to b and from d 

to b. Since the new dependence is necessary to guarantee the values of predecessors are 

available as an input to successors, it is called an input dependence in this research. The 

new dependence is different from a normal dependence in the sense that it requires the 

dependent node to be executed no earlier than the node, but does not require the 

dependent node to be executed strictly later. If there are multiple functional units, a node 

can be executed simultaneously with its dependent node. The following proposition 

summarizes the discussion on the creation of input dependence by register allocation. 

Proposition 4.1 If a node in a dependence graph has multiple successors and one of the 

registers assigned to the node is reused by one of its successors, then an input dependence
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is created from the other successors to the successor that reuses the register. The input 

dependence forces the scheduler to order the execution of other successors no later than 

the execution of the node that reuses the register.

Consider the dependence graph shown in Figure 4.7 again. If the variables a, e, 

and /  are allocated in the register R3, and the variables b, c, and d in three different 

registers, say, R4, R5, and R6, variable e reuses the register of variable a. Based on the 

data dependence analysis, instruction (5) will be executed behind instructions (2), (3), and

(4) which use the value of the variable a. This implies that at the point where the 

instruction (5) is executed variable a is guaranteed to be dead, so the register allocated to 

variable a can be reused safely by variable e regardless of the execution order among the 

three instructions (2), (3), and (4). In this way no additional dependence is generated.

Suppose that three functional units are available. Then, b, c, and d can be executed 

simultaneously. When b reuses the register assigned to a, variables c and d  have already 

accessed the value of a. Therefore, the computation for c and d can generate the correct 

result. However, if there is only one functional unit, the input dependence behaves exactly 

the same as a normal dependence. Therefore, instruction (2) has to be moved behind 

instructions (3) and (4) as shown in Figure 4.6.

Consider another dependence graph shown in Figure 4.8. Suppose that a register 

allocator assigns the same register to a and c. In addition, b and d share the same register. 

Since c reuses a, an input dependence from d  to c is generated. Similarly, another input 

dependence from c to d  is generated because d  reuses b. The generated dependencies are 

shown as dotted lines in Figure 4.8. With the two input dependencies between c and d, 

these two nodes must be executed simultaneously. If there is only one functional unit, the
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simultaneous execution is impossible. Then, register allocation needs to be changed 

because either the register of a cannot be reused by c or b cannot be reused by d. If c (or 

d) does not reuse the register of a (or b) but is assigned to a new register, the input 

dependence from d to c (or from c to d) is removed. Therefore, by computing in the order 

of a, b, d  and c (or b, a, d and c), the correct result is obtained. In this case, however, note 

that three registers are necessary because b and d  share one register while a and c need 

different registers.

© ©

Figure 4.8 An example for additional dependence forcing simultaneous 
execution of c and d

4 3 .2  Generation of Register-Reuse 
Chains without Additional 
Dependencies

An input dependence is generated because a register is reused by another variable 

even though the variable is still alive. Therefore, in order to prevent additional 

dependence, the end of the live range needs to be found. However, when an instruction 

scheduling is not fixed, it is impossible to find the exact end. However, it is often 

possible to derive the latest possible end at which the variable is guaranteed to be dead. 

The first phase of register allocation is to find the latest possible end of a live range.
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Definition Let a be a node in a dependence graph. An ultimate killing node of a is a node 

through which all paths starting from a pass.

In Figure 4.7 e is an ultimate killing node of a because all paths starting from a 

path through e. Similarly,/is also an ultimately killing node of a. In general, there may be 

more than one ultimate killing nodes.

Definition The earliest ultimate killing (EUK) node of node a is the ultimate killing node 

that is the ancestor of all other ultimate killing nodes of a. The EUK node of a is denoted 

by EUK (a).

In Figure 4.7 nodes b, c, and d have two ultimate killing nodes, e and/. Node e is 

the EUK node because the node e is the ancestor off.  For example, e is the first node that 

guarantees that a is dead. In fact, a is dead earlier than e because a is dead when b, c, and 

d  are executed. However, it is not decided which one among b, c, and d are executed later 

before the instruction scheduling is fixed. Thus, no node among b, c, and d  guarantees 

that a is dead. Only e guarantees that a is dead because b, c, and d are already executed 

when e is executing. In general, the EUK node is the first node that guarantees the end of 

the live range. The starting nodes in a data dependence graph are the nodes without any 

ancestor.

Register allocation without the generation of additional dependence is possible by 

taking advantage of the property of an EUK node. Since a variable is guaranteed to be 

dead at EUK, registers can be reused at its EUK without additional dependencies. In 

addition, any node succeeding the EUK node also can reuse the register. Therefore, the 

register allocation algorithm proposed in this section recursively finds its EUK node and
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assigns the same register to the EUK node. If the EUK node is already visited from 

another node and assigned to a register, a successor of EUK is chosen.

A data dependence graph from [8] shown in Figure 4.2 (b) is an example that 

demonstrates the register allocation algorithm. Initially, the register-reuse chain 

generation is started with the root of the input DAG. When there is only one starting node 

in the DAG, the starting node is chosen as the root. If there are multiple starting nodes in 

the DAG, a “virtual root”, whose kids or dependent nodes are those starting nodes, is 

created. But the “virtual root” is not included in any chain and just functions as the 

beginning node in Breadth First Search (BFS) order. The algorithm starts with root node 

a and searches its EUK node. Note that a has three edges incident into nodes, b, c, and d. 

The three paths merge at node /, that is, I is the EUK of a. This means that I is the first 

node that guarantees a is dead so that I can reuse the register assigned to a without 

additional dependencies. The register allocation algorithm assigns the same register to 

both a and I. Since the node I does not have any dependent node, the recursive search of 

EUK node stops, and the algorithm starts with another node.

For the selection of the next node, nodes are visited in BFS order. Therefore, node 

b is visited next. Then node I is found as its EUK because the node I is the only dependent 

node of b. However, node I is already visited and assigned to a register, so it cannot reuse 

the register of b. Since node I does not have any dependent node, the search procedure 

stops. Thus b is the only variable that is assigned to the second register.

Now another new search for the third register is initiated starting with node c, the 

next visited node based on BFS. The EUK searching finds g as the EUK node of c and it 

is not visited. Thus, g is selected to share a register with c. Then, recursively finding the
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EUK of node g, h is found. Thus, h is selected to reuse the register of g. Then k is found 

as the EUK node of h, and k reuses the register of h. Finally, node I is found as the EUK 

of k, but it is already assigned to the first register. So, the searching stops, and c, h, g, and 

k are selected to share the third register.

The forth search starts with d  and finds g as its EUK node. However, g is assigned 

to the previous register. In this case, searching finds the first unvisited successor of g is / 

and then i is selected to reuse the register of d. Then, searching begins with node i and 

finds A: as its EUK node. However, it is already assigned. The searching finds its 

successors. All successors are already assigned to registers. So the searching stops, and d 

and i are selected to share the same register. By visiting all the nodes that are not assigned 

and recursively searching its EUK, e and j  are selected to share a register, and f  is 

assigned to a new register. Figure 4.9 (a) shows the result of the register allocation 

algorithm. A chain is used to collect all the nodes that share the same register. Then each 

chain is mapped to an available register. These chains are called register-reuse chains.
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Chain [0] = {a, b, 1} 

Chain [1] = {c, f, g, h, k} 

Chain [2] = {d, i}

Chain [3] = {e, j}

(b) After merge 

Figure 4.9 Resulting register reuse chains

Figure 4.10 shows the algorithm for the generation of the register-reuse chains. 

The algorithm consists of two main functions, a driver function and a work horse 

function. The driver function B u ild _ R e g is te r _ R e u se _ C h a in s  (DAG) takes data 

dependence graphs or DAGs as input. It visits each node in the DAGs in BFS order. If a 

node named p in the DAGs is not visited yet, it creates a new chain with p as the head 

node of the chain. Then the work horse function 

B u ild _ A _ R e g is ter _ R eu se _ C h a in  (p) is called by the driver function whenever 

a new chain is initiated. The functionality of B u ild _ A _ R e g is te r _ R e u se _ C h a in  

(p) is to find the EUK node of p and returns it. If the EUK node exists and not visited 

yet, it is attached to the chain. If the EUK node is already visited (that is, included in the 

other chain), the first unvisited successor of the EUK node is found in BFS order. If such 

a node exists, it is attached to the chain. Repeat this search-and-attach process recursively

Chain [0] = (a, 1} 

Chain [1] = {b}

Chain [2] = {c, g, h, k} 
Chain [3] = (d, i} 

Chain [4] = {e, j) 

Chain [5] = {f}

(a) Before merge
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until no more nodes can be attached to the current chain. The driver function stops when 

all the nodes in DAGs are visited.

B uild_R egister_R euse_C hains ( DAG )
C

Node p = v i s i t  DAG in  Breadth F ir s t  Search ( BFS ) order; 
i f  p i s  not v i s i t e d

attachNodeToChain ( p );
Build_A _R egister_R euse_C hain ( p ) ;
ch a in ln d ex  ++; /*  increm ent ch a in  index */

}
ch a in  Bui 1 d_A_Regi s  ter_Reuse_C hain ( Node p )
C

/*  T his fu n c tio n  i s  u sed  to  b u ild  a chain  */ 
i f  (Node q = findEar 1 ie s tU ltim a te K i 11 ingNode ( p ) ) 

i f ( q i s  n ot v i s i t e d  ) {
/*  a tta c h  node q to  cu rren t r e g is t e r  reu se  ch a in  */ 

attachNodeToChain ( q ) ; 
Build_A _Register_Reuse_Chain ( q ) ;

}
e l s e  /*  q i s  v i s i t e d  * /

i f  ( q = firstU nvisited D escen dan tN ode ( q ) ) {
attachNodeToChain ( q ); 
Build_A _Register_Reuse_Chain ( q ) ;

}
}

Figure 4.10 Register reuse chain generation algorithm.

The reuse chains created by this algorithm do not create any additional 

dependencies. Therefore, these chains are called independent register-reuse chains. The 

number of chains corresponds to the necessary number of registers. This algorithm always 

generates the minimum number of chains. However, there may be a different set of chains 

that have the same minimal number of chains for a given dependence graph. The

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



68

complexity of this algorithm is 0(IVl3), where IVI is the number of nodes in the 

dependence graph.

4.4 Reeister-Reuse Chain Merging

The number of independent register-reuse chains derived in the previous section 

can often exceed the number of available registers. For this case, it is necessary to 

develop an algorithm to reduce the number of register-reuse chains. Recall that the 

independent register-reuse chains are the minimal chains that do not create any 

dependencies. Thus, the reduction of the number of chains always creates new 

dependencies, resulting in additional constraints to an instruction scheduler. This section 

develops an algorithm that aims to reduce the number of chains while minimizing 

additional constraints to an instruction scheduler.

To reduce the number of register-reuse chains, we need to combine the chains. 

This process is called chain merging. For example, in the previous section, there are six 

chains generated. If there are five registers in a processor, we combine two of the six 

chains into a single chain such that the number of chains after combining becomes five, 

which is equal to the number of registers available in the processor. Recall that 

independent register-reuse chains are generated without introducing any additional 

dependency, and the number of chains generated is minimized. Thus the merging of any 

such two chains must create additional dependence, which in turn adds extra constraints 

for instruction scheduling. The merge problem becomes another optimization problem in 

minimizing additional constraints for instruction scheduling. In this section, an optimal 

chain merge algorithm and merging criterion are presented.
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The chain merge problem can be formulated as:

INPUT: independent register reuse chains.

OUTPUT: merged chains.

CONSTRAINTS:

• The number of merged chains is less than or equal to the number of 

registers available.

• The merging complies with the existing data dependencies.

OBJECTIVE: minimize additional constraints for instruction scheduling.

4.4.1 Criterion of Chain Merging

One way to reduce the number of chains is to merge chains. When selecting the 

chains to be merged, many different combinations of chains are possible. The selection of 

chains affects an instruction scheduler because different merging chains result in different 

additional dependencies. If a preferred scheduling criterion is available at the register 

allocation phase, the best possible chains can be chosen based on the criterion. However, 

it is often the case that a desirable scheduling scheme is not available. For this case, this 

section proposes a generic criterion that can be applicable to any scheduler.

Definition 4.1 Given a dependence graph, the number of schedules is the number of 

possible orderings of the nodes.

Consider the dependence graph shown in Figure 4.12 (a). Dependencies between 

nodes force only parts of the order of nodes, but not the total order. So many different 

orderings of nodes are possible. For example, the following orders all comply with the 

dependencies.
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a W  C ' ^ d ' ^ e ' ^ f ' ^ g - ^  H  k 

a - ^  c ~^b e -> /->  g -> /r^fc

a d  ->c b e -> /- ^  g -> hr^k

However, the following order is not possible because it violates the dependence from a to 

b.

b a h -^k

In this dependence graph, there are 30 different possible orderings of the nodes.

Among the possible schedules (or orders of nodes), an instruction scheduler 

selects the order that best suits the target architecture. The addition of dependencies by

register allocation reduces the number of schedules, and consequently reduces the choices

that can be made by the instruction scheduler. The more schedules a dependence graph 

has, the more choices the instruction scheduler has, so it is desirable to avoid the 

reduction of the number of schedules due to register allocation. Thus, the number of 

schedules should be used as the criterion to decide the efficiency of a register allocator.

The following algorithm shown in Figure 4.11 computes the number of schedules 

for a given dependence graph:
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in t  Compute_Num_Schedules ( DAG )
{

I f  ( DAG i s  l in e a r ly  ordered  ) return  1;
/*  Remove a l l  the nodes w ith  f ix e d  sch ed u les from DAG */ 
Remaining_DAG = Remove_Nodes ( DAG ) ;
i f  ( Remaining_DAG can be d iv id ed  in t o  two d i s j o in t  

subgraphs )
{

D iv id e  the Remaining_DAG in to  LEFT and RIGHT 
subgraphs;
S = C( |LEFT| + |RIGHT|, |LEFT|);
St = Compute_Num_Schedules ( LEFT );
Sr = Compute_Num_Schedules ( RIGHT ) ;
3 = 3 * 3 ^  Sr;

}
e l s e
{

S = 0;
fo r  ( i  = 0; i  < num _starting_nodes; i++)
{

/*  Suppose th e  s t a r t in g  node i  i s  sch ed u led  f i r s t  
among a l l  th e  s t a r t in g  nodes * /
Temp_DAG = Remove_Starting_Node ( Remaining_DAG, 
i  ) ;
S += Compute_Num_Schedules ( Ten5 >_DAG ) ;

}
}
retu rn  S;

}

Figure 4.11 Algorithm for calculation of the number of schedules
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(a) Data dependence graph. (b) Remaining dependence graph

(c) Two cases for RIGHT subgraph
(c is scheduled first vs d  is scheduled first)

©
©

© ©
(d) The remaining graphs for the two cases in (c)

Figure 4.12 An example of calculation of the number of schedules
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Suppose that there is only one processor available. To simplify the description of 

the algorithm, assume that each node takes one time slot to execute. In Figure 4.12 (a), 

there are 8 nodes in the graph. Thus the total execution time required is 8 time slots. 

Function Com pute_Num _Schedules ( ) checks whether the input graph is linearly 

ordered. If it is true, it returns 1 because one schedule is possible for a linearly ordered 

graph. Next, Remove_Nodes ( ) removes the nodes whose orders are fixed. Note that 

the removal of the nodes with fixed schedule does not change the number of schedules. 

For example, nodes a and k have fixed execution time. In other words, node a must be 

executed before all other nodes, that is, at the first time slot; node k must be executed 

after all the nodes, that is, it is executed last. Therefore, function Rem ove_Nodes ( ) 

removes these two nodes from the graph. The remaining graph is shown in Figure 4.12

(b). Then, the if-clause checks whether the remaining graph can be divided into two 

disjoint subgraphs between which there is no edge. If it is true, the body of the if- 

statement is executed. Let the two subgraphs be denoted by LEFT and RIGHT. In the 

example, LEFT = {b\ and RIGHT = {c, d, e, f  h }. Therefore, the original problem is 

reduced into a simpler problem with two smaller sizes of subgraphs LEFT and RIGHT. 

Since these two subgraphs are disjoint, the total number of schedules can be formulated 

as:

S {GRAPH) = C(l LEFT\M RIGHT],ILEFT)) * S(LEFT) * S (RIGHT) (4.1)

where S denotes the number of possible schedules for a given graph, [LEFT is the number 

of nodes in the set or subgraph LEFT, \RIGHT\ is the number of nodes in the set or
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subgraph RIGHT, and CQLEFTMRIGHTl, ILEFTf) is the number of possibilities in 

choosing ILEF71 elements out of \LEFT\+\RIGHT\ elements, that is,

  (I LEFTM RIGHT])!
0(1 LEFTM RIGHT], I LEFT) = I LEFT\! I RIGHT]!

The term C(\LEFT\+\RIGHT\, \LEFTT) can be interpreted as the number of 

schedules for a graph without considering how the nodes in subgraphs LEFT and RIGHT 

are scheduled individually. In other words, the term represents the number of ways in 

which the nodes in LEFT occupy the entire available time slots of \LEFT\ + \RIGHT\. For 

example in Figure 4.12 (b), there are six nodes in the remaining graph, one in the LEFT 

subgraph, five nodes in the RIGHT graph. Six time slots are needed in total. Ordering of 

these nodes can be considered as allocating these nodes in six time slots. When 

scheduling these six nodes, the node b in LEFT can be allocated to any time slot from 1 to 

6 while the five nodes in RIGHT occupy five remaining time slots. As a result, there are 

six ways the nodes in LEFT occupy six available time slots. This can be obtained by

C(l{b}l + \{c,d,e,fh)\,  l{b}l) = C( 1+5, 1) = C(6,l) = 6

Now, it is necessary to compute S(LEFT) and S(RIGHT) that are the numbers of 

schedules of LEFT and RIGHT subgraphs, respectively. Thus, the problem of finding the 

number of schedules is decomposed into a smaller problem with two subgraphs. S{LEFT) 

and S(RIGHT) can be computed by recursively calling Com pute_Num _Schedules (

) function. Consider S(LEFT), that is, the number of schedules of the left graph. Since 

there is only one element, only one schedule is possible (that is, totally ordered). Thus,
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Com pute_Num _Schedules ( ) returns 1. Consider the subgraph RIGHT = {c, d, e , f  

h}. Node h should be always scheduled last, so Rem ovejNodes ( ) can remove this 

node. The resulting graph is shown in Figure 4.12 (c). There are two starting nodes and 

therefore their schedules are not fixed. These starting nodes cannot be removed, and the 

remaining graph cannot be decomposed into two disjoint subgraphs. So the test of the if- 

statement fails and the body of the else-statement is to be executed. In this case, a 

straightforward decomposition is impossible. In order to decompose the problem, it is 

necessary to arbitrarily fix the schedule of some node. Consider the node that can be 

scheduled as the first node. Note that only a starting node can be scheduled as the first 

node. Then, a subproblem is defined to calculate the number of schedules for each case 

that one of the starting nodes is scheduled first. In each subproblem, the chosen starting 

node can be removed because its schedule is fixed. Then, 

Com pute_Num _Schedules () function is called again. Once every subproblem is 

solved, the total number of the schedules is simply the summation of the numbers of the 

schedules for all subproblems.

For this example, there are two starting nodes c and d. So, one of these two nodes 

can be chosen as the first node. Suppose that starting node c is scheduled first as shown in 

Figure 4.12 (c). Then, this node can be removed from the graph. In addition, node d  can 

also be removed because its schedule is fixed as the second node. The resulting graph is 

shown in Figure 4.12 (d). Now, the graph can be decomposed into two disjoint subgraphs, 

and the number of schedules can be computed from Equation (4.1). The other subproblem 

addresses the case when starting node d  is chosen to be the first node (see Figure 4.12 

(c)). Then this node can be removed from the graph and the resulting graph can be
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decomposed into two disjoint subgraphs (see Figure 4.12 (d)). Again, the number of 

schedules can be computed from Equation (4.1). The total number of schedules is the 

summation of the numbers of the schedules for the two cases:

S(RIGHD = S({c,d,e, /h})

= S({c, d, e,f}\c is scheduled first) + 5({c, d, e , f ]I d  is scheduled first)

= S({e,/}) + S({c, e . f}) = C(2, 1) * I* 1 + C(3, 1) * I * 1 

= 2 + 3 = 5

Since the subgraph LEFT has only one node {&}, the number of schedules is one. 

Substituting S(IEFT) and S(RIGHT) into the previous formula gives:

S(GRAPH) = CQLEFIb-UUGHT, \LEFTX) * S(LEFT) * S(RIGHT)

= C(6, 1) * 1 * 5 = 30

In summary, the algorithm of computing the number of schedules follows a 

“divide” and “conquer” strategy. In the “divide” phase, all the nodes with fixed schedules 

are removed. If the removal leads to disjoint subgraphs, the “conquer” phase computes 

the number of schedules for each of the subgraphs. If the graph cannot be divided into 

disjoint subgraphs, the problem is decomposed into multiple subproblems, each of which 

considers the case when one of the starting nodes is scheduled first. Then, the “conquer” 

phase solves the subproblems.

4.4.2 Heuristics for Chain Merging

Merging multiple chains into a single chain can reduce the number of register- 

reuse chains. In the merge of chains, optimization is necessary because there are many 

possible combinations for selecting the chains to be merged. Thus, this section proposes a 

heuristic that reduces the search space for selecting the chains to be merged.
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In order to reduce complexity, the proposed heuristic merges only a pair of chains 

at a time. In addition, further reduction is made by additional constraints in the selection 

of the chains to be merged. In the proposed heuristic, two chains can be merged only if 

the first node of one chain is adjacent to a node in the other chain, that is, there is an edge 

incident to the first node of one chain from a node in the other chain. For example, in 

Figure 4.9 (a), chairt[0] and chain[\\ can be merged because the first node of chain[Y\ is 

b that is adjacent to a in chain\fS\. Similarly, chain[2] can be merged with chain[0]. 

However, chain[4] cannot be merged with chain[0] because the first node, e, is not 

adjacent to any nodes in chain[0].

Visiting nodes in the dependence graph in BFS order can effectively perform the 

search for the candidate pairs. When a node is visited, check whether its dependent node 

is the first node of a separate chain. If it is true, the two chains that include the two nodes 

are merged. If there are more than one such node, the node that results in the greatest 

number of schedules is selected. For example, consider the chains in Figure 4.2 (a) again. 

The node a has three dependent nodes, b, c, and d, each of which is the first node of a 

chain. If the chain with b is merged with a, the resulting graph has 64 schedules. Note 

that the additional dependencies from c to b and from d to b need to be counted when the 

number of schedules is calculated. Similarly, if chain c is merged, the graph has 8 

schedules. If chain d  is merged, the graph has 8 schedules. Therefore, chain b is selected 

to be merged with chain a. The resulting register-reuse chains are shown in Figure 4.9 (b).
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MERGE_CHAINS ( independent_chains, DAG )
{

/*  i n i t i a l i z a t i o n  o f  merged_chains * / 
m erged_chains = ind ep en dent_chains; 
w h ile  ( nuxnber_of_chains > num ber_of_reg isters or 

a l l  th e  nodes in  DAG are  v i s i t e d  ) {
Node p <- v i s i t  DAG in  BFS order;  
number_of_chains = merge ( m erged_chains, p );

}
retu rn  m erged_chains;

}

in t  merge ( m erged_chains, Node p )
{

i f  ( p has m u lt ip le  dependent nodes ) {
/*  choose one dependent node th a t i s  the b e s t  c h o ic e

* /

chosen_node = s e le c t_ b e s t_ c h o ic e  ( p ); 
i f  (chosen_node e x is t s )

m erge_two_chains (p, chosen_node, m erged_chains) ;
}
/*  count the number o f  merged_chains * / 
retu rn  count_chains ( merged__chains ) ;

}

Figure 4.13 Register-reuse chain merge algorithm
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Node s e le c t_ b e s t_ c h o ic e  ( Node p )
{

Compare a l l  th e  dependent nodes o f th e  node p . S e le c t  th e  
b e s t  dependent node d based  on th e  fo llo w in g  c r i t e r ia :
(1) th e  node d i s  th e  head node o f a chain
(2) th e  node d can reu se  p ' s  r e g is t e r  w ithou t v io la t in g

d ata  dependence
(3) ch oosin g  the node d g iv e s  maximum number o f  sch ed u les
(4) th e  ch a in  co n ta in in g  th e  node d i s  the s h o r te s t  chain
I f  th ere  are  more than, one can d id ate  dependent nodes, j u s t  
s e le c t  one a r b i t r a r i ly .
return  d;

>

m erge_two_chains (p, chosen_node, m erged_chains)
{

/*  f in d  ch a in s  c o n ta in in g  nodes p and chosen_node */ 
ref_ ch a in  = f  ind_chain  ( m erged_chains, p ) ; 
dep_chain = fin d _ch a in  (m erged_chains, chosen_node) ;
/*  f in d  th e  n ex t node o f  p in  re f_ ch a in  */ 
next_node = find_next_node ( p ) ;
/*  f in d  th e  ch a in  between p and next_node in  dep_chain */ 
temp_chain = rem ove_chain_between_nodes ( p , next_node,

d ep _ch a in );
/*  check w hether the merge v i o la t e s  data  dependence */ 
i f  (merge i s  a llow ab le)

merge temp_chain w ith  re f_ ch a in ;  
g en erate  a d d it io n a l d ep en d en cies;

}

Figure 4.13 Continued
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CHAPTER FIVE

SYSTEMATIC MERGE OF REGISTER-REUSE

CHAINS

Chapter 4 proposes an optimal register allocation that does not create additional 

dependencies. The optimal register allocation often requires more registers than those 

available in a processor. Thus, a simple and intuitive method is proposed to reduce the 

number of required registers. In this chapter, a systematic method is investigated in order 

to reduce the resister requirements effectively.

5.1 The Conflict Graph

In order to represent the relationship between register-reuse chains that can be 

merged or not, a conflict graph is derived from register-reuse chains. In this graph, each 

node corresponds to a register-reuse chain, and an edge represents that two chains 

corresponding to the two nodes connected by the edge cannot be merged. The edge has a 

direction that represents the direction of the merge in which one chain reuses the other 

chain. If two chains can be merged in only one direction, a unidirectional edge is 

connected between two nodes. If two nodes cannot be merged in both directions, a 

bidirectional edge is connected to the corresponding nodes.

Consider the example shown in Figure 5.1. A dependence graph is shown in 

Figure 5.1 (a), and possible register-reuse chains given in Figure 5.1 (b). The input

80
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dependencies due to the reuses of registers are shown as dotted lines in Figure 5.1 (a). 

Figure 5.1 (c) shows the corresponding conflict graph. (The derivation of this graph is 

explained later.) The character in the node is the first node of the corresponding register- 

reuse chain. For example, node a in the conflict graph represents the register-reuse chain 

starting with node a. A bidirectional edge between a and b represents that chain a and 

chain b cannot be merged. In addition, this figure shows that chain b and chain c, chain c 

and chain g, and chain a and chain c cannot be merged, respectively. There is a 

unidirectional edge from g to a. This represents that the two chains can be merged, but 

only in one way: if chain a reuses the register assigned to chain g after all the

computations for chain g is completed. There is no edge between b and g. Thus, b and g 

can be merged in both directions.
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(a) Dependence graph

Chain[0] = { a, d, h} 
Chain[1] = {b, e} 
Chain[2] = {c, f, i} 
Chain[3] = {g}

i  i.

(b) Register-reuse chains (c) Corresponding conflict graph

Figure 5.1 Dependence graph and conflict graph

Once the conflict graph is derived, it is relatively easy to decide the chains to be 

merged. In order to draw the conflict graph from given register-reuse chains, it is 

necessary to analyze whether the register-reuse chains can be merged or not. For the 

analysis, all possible relationships between register-reuse chains are investigated and then 

analyzed to determine whether they can be merged or not. For the simplicity of analysis,
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only the merge of two chains is considered first In addition, the merge of compact chains 

(defined below) is analyzed. General cases, such as the merge of multiple noncompact 

chains, are addressed in the next section.

Definition 5.1 A register-reuse chain is compact if all adjacent nodes in the register-reuse 

chain are also adjacent in the dependence graph.

Consider the register-reuse chains of Figure 4.9 (b) again. chain[0] contains nodes 

a, b, and I. chain\0\ is compact because b is adjacent to a in the dependence graph and I is 

adjacent to b in the dependence graph. chain[ 1] contains nodes c, / , g, h, and k. chain[\\ 

is not compact because k is adjacent to h in the chain, but not adjacent in the dependence 

graph. chain[2] contains nodes d and i. This chain is not compact because nodes d  and i 

are not adjacent in the dependence graph. Similarly, chain[3] is not compact because j  is 

not adjacent to e in the dependence graph.

A compact chain does not contain any dead period. Thus, the register assigned to 

the compact chain cannot be reused by other variables until the last nodes in the chain are 

computed. However, the register assigned to a noncompact chain can be used by other 

variables before the last node in the chain is computed. This is possible because the 

noncompact chain has a dead period. For example in Figure 4.9 (b), the register assigned 

to chain[3] can be reused by other variables or chains after the completion of e and before 

the computation of j.

In Section 5.1, a chain is always assumed to be compact This assumption 

simplifies the analysis of the possibility of chain merging. Note that compact chain does 

not include any dead period from the first node to the last node. Therefore, it is 

impossible to insert any node in the middle of a compact chain. If a new node is included
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in this chain, it must be included either before the first node of the chain, or after the last 

node. Therefore, if two compact chains are merged, the only possibility is that the last 

node of one chain is connected to the first node of the other chain. Depending on the 

chains to be put first, there are two ways (or directions) to merge two compact chains. 

Until explicitly specified in Section 5.2, all chains are assumed to be compact. The merge 

of noncompact chains is explained later in Section 5.2.

Consider the first case as shown in Figure 5.2. There are two register-reuse 

chains, each of which starts with nodes a and b, respectively. Only the starting node and 

the ending nodes are shown in this register-reuse chain. The dotted line represents a path 

between two nodes. This graph shows the case when there is no path connecting these 

two chains. In this case, there are two ways to merge these two chains. One way is to 

order chain a before chain b as shown in Figure 5.2 (b). The other is to order chain b 

before chain a as shown in Figure 5.2 (c). So it is possible to merge the two chains in 

both ways. Therefore, there is no hazard in merging these two chains, and the 

corresponding conflict graph has no edges between the two chains as shown in Figure 5.2

(d).
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O ©

6 6
(a) Register-reuse chains (b) Chain b is ordered after chain a

© ©

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.2 No dependence between register-reuse chains

Consider the second case as shown in Figure 5.3. This is the case when there is a 

path from one chain to another chain. Note that the path is shown in a dashed line that 

represents a path on which there are multiple nodes. In this case, the merge as shown in 

Figure 5.3 (b) is possible. However, the merge as shown in Figure 5.3 (c) is always 

impossible. This is because the created dependency due to merge violates the existing
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dependency. In other words, the dependence graph makes a cycle. In order to represent 

the impossibility of chain merging from chain b to chain a, the conflict graph contains 

edge from node b to node a. This is shown in Figure 5.3 (d).

r \

©  
6

(a) Register-reuse chains (b) Chain b is ordered after chain a

©
0 *—©

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.3 Unidirectional path from chain a to chain b

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

Consider a special case of the example in the above figure. Suppose that the path 

from chain a to chain b is a single edge, that is, the node in chain b is a successor of the 

node in chain a. This case is shown in Figure 5.4. Note that the path from chain a to chain 

b is drawn in a solid line that represents a single edge. Let c and d denote the two nodes 

that are connected by the edge. In this case, there is always a path from chain b to chain 

a. This is because whenever the register of c is reused by other nodes, a new dependence 

is created from all the successors of c to the node that reuses the register. So the input 

dependence is shown in Figure 5.4 (b). This case belongs to the third case when there are 

paths in both directions between the two chains. The only exception is the case as shown 

in Figure 5.4 (c). In this case, node c is the last node of chain a. Thus, the input 

dependence does not go back to chain a.
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(a) Register-reuse chains Ch) Input dependence from d to chain a

G>—KD
(d) Conflict graph for (b)

(e) Conflict graph for (c)

(c) The last node of chain a is 
adjacent to chain b

Figure 5.4 Chain b is adjacent to chain a
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Consider the case when there are paths in both directions between two chains. 

This case is shown in Figure 5.5 (a). In this case, chain merging is impossible in both 

directions. This is shown in Figure 5.5 (b) and Figure 5.5 (c). In both figures, the chain 

merging creates a new dependence that makes a cycle in the graph. Note that the cycle 

implies that dependence is violated. Therefore, the corresponding conflict graph needs to 

have a bidirectional edge that represents merging as impossible in both directions.

Consider the case when there are paths from two chains crossing later. First, 

consider the case shown in Figure 5.6 (a). In this case, a path from chain a crosses to the 

adjacent node of the last node of chain b. In this case, the merge of chain a before chain b 

is possible (Figure 5.6 (b)), but the merge in the opposite direction violates the existing 

dependence (Figure 5.6 (c)). This is due to the created input dependence as a dotted line 

in the figure. Note that a cycle in the dependence graph is made due to the input 

dependence. The corresponding conflict graph is shown in Figure 5.6 (d).

Consider the other cases for the paths from two chains cross each other. Figure

5.7 (a) shows the case when the path from chain a crosses a successor of chain b. In this 

case, however, the successor is not the successor of the last node of chain b. In this case, 

merging in both directions is possible. Consider the case when chain a is merged before 

chain b. Figure 5.7 (b) shows the created new input dependence. Note that there is no 

cycle in this graph. So, the merging is possible. Figure 5.7 (c) shows the corresponding 

conflict graph that has no edge between the two nodes.
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(a) Register-reuse chains (b) Chain b is ordered after chain a

©*—KD

(d) Corresponding conflict graph

(c) Chain a is ordered after chain b

Figure 5.5 Bidirectional path from chain a to chain b
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v>d
t

0

(a) Register-reuse chains (b) Chain b is ordered after chain a

Q« 0

(c) Chain a is ordered after chain b (d) Corresponding conflict graph

Figure 5.6 A path from chain a crosses a successor of chain b
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(a) Register-reuse chains

© © (b) Chain a is ordered after chain b

(c) Corresponding conflict graph

Figure 5.7 A path from chain a crosses a successor of an 
intermediate node of chain b

Consider the other cases for the paths from two chains that cross each other. 

Figure 5.8 (a) shows the case when the successor of the last node of chain a is also a 

successor of the last node of chain b. In this chain, merging is impossible in both 

directions. Figure 5.8 (b) shows the corresponding conflict graph. Figure 5.8 (c) shows 

the case when a successor of an intermediate node of chain a is the same as a successor of 

an intermediate node of chain b. In this case, merging is possible in both directions. So, 

the corresponding conflict graph does not have any edge (Figure 5.8 (d)). Figure 5.8 (e)
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shows the case when a path from chain a crosses a path from chain b. Note that this path 

is not a single edge. In this case, two chains can be merged in both directions. So, the 

corresponding conflict graph is shown in Figure 5.8 (f). The last case is shown in Figure

5.8 (g). Here, there is a node from which two paths go to both chain a and chain b. The 

incoming paths do not prevent chain merging. So, the corresponding conflict graph has 

no edge between the two nodes (Figure 5.8 (h)).

(b) Conflict graph for (a)

(a) Register-reuse chains

6
o  ©
(d) Conflict graph for (c)

(c) Register-reuse chains 

Figure 5.8 Various cases for paths between chain a and chain b
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(f) Conflict graph for (e)

© ©
(h) Conflict graph for (e)

(g) Register-reuse chains

Figure 5.8 Continued
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Consider the example shown in Figure 5.1 again. Chain a and chain b have paths 

in both directions. The edge from a to e forms a path from chain a to chain b, while the 

input dependence from e to d  forms another path from chain b to chain a. Therefore, the 

corresponding nodes in the conflict graph have the bidirectional edge. Chain a and chain 

c also have paths in both directions. The path A->i goes from chain a to chain c, while the 

path f-^h  goes from chain c to chain a. Thus, the corresponding nodes have the 

bidirectional edge. Similarly, chain b and chain c have paths in both directions, and chain 

g and chain c have paths in both directions. Thus, the corresponding nodes have 

bidirectional edges, respectively. From chain g to chain a, there is a path, g-^f-^h. 

However, there is no path from chain a to chain g. Thus, the corresponding nodes have a 

unidirectional edge from g to a. There is no path between chain b and chain g. Thus, 

these two chains can be merged in both directions, and the corresponding nodes do not 

have an edge connecting them.

5.2 Merging Algorithm

Two register-reuse chains can be merged if the corresponding nodes in the 

conflict graph do not have a bidirectional edge. Once the conflict graph is driven, it is 

easy to check whether two chains can be merged or not. However, even with the given 

conflict graph, it is not trivial to check whether more than two nodes can be merged or 

not. This is because the edges in the conflict graph can be changed when two chains are 

merged. So, when two nodes are merged, it is necessary to analyze the relationship 

between chains again, and redraw the conflict graph.
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Consider the dependence graph shown in Figure 5.9 (a) and the register-reuse 

chains in Figure 5.9 (b). Figure 5.9 (c) shows the corresponding conflict graph. This 

figure shows that chain a and chain b as well as chain b and chain c can be merged both 

directions. Chain a and chain c can be merged in only one direction. Suppose that chain a 

and chain b are merged as shown in Figure 5.9 (d). Then, the new dependencies are 

generated as shown in Figure 5.9 (e). Note that the new input dependency from chain c to 

chain b is created. So, the new dependency prevents chain c from being merged from 

chain b in both directions. Instead, only one direction is possible. Figure 5.9 (f) shows the 

corresponding conflict graph. Node a-b represents the chain resulting from the merge of 

chain a and chain b. In Figure 5.9 (e), chain a-b and chain c have paths in both directions; 

a bidirectional edge is necessary between these two nodes.

Definition 5.2 A merged conflict graph is a graph derived from a conflict graph as 

follows:

• Multiple nodes {vi, V2, ... , vra} in the conflict graph can be merged into a single 

node in the merged conflict graph.

• Suppose that nodes {vi, v2, . . . .  vm } are merged into a single node si in the 

merged conflict graph, and nodes {ki, m2, . . . ,  uB } are merged into a single node 

S2  in the merged conflict graph. Then, the conflict graph has an edge from St to S2  

only if there is an edge from one of {vi, v2, .. . ,  vm } to one of {mi, m2, ... ,  ua}. In 

addition, the conflict has an edge from s2 to s\ only if there is an edge from one of 

{ uu u2, ... , Un } to one of { vi, v2, . . . ,  vm }.
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0

(a) Dependence graph

Chain a, b: a->------> a* b -------> b’
Chain c. c->------>c’

(d) Merged register-reuse chains

(f) Conflict graph after merge

0

Chain a: a->------> a ’
Chain br. b->------> b’
Chain a  c - » - - » c ’

(b) Register-reuse chains

© ©
(c) Conflict graph corresponding to (a)

(g) Merged conflict graph (e) Dependence graph after merge

Figure 5.9 Conflict graph after chain merge
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Consider the conflict graph shown in Figure 5.10 (a). Suppose that chain a, chain 

b, and chain c are merged as well as chain d  and chain e are merged. The resulting 

merged conflict graph is shown in Figure 5.10 (b). Node a-b-c results from the merge of 

nodes a, b, and c, while node d-e results from the merge of nodes d and e. A bidirectional 

edge is necessary between nodes a-b-c and d-e because the original graph has edge from 

a to das well as e to c. A unidirectional edge from a-b-c to /is  necessary because of the 

edge from b to /  No edge is necessary between d-e and/because there is no edge 

between d  and/as well as e and/.

(a) Original conflict graph

d,e

(b) Merged conflict graph 

Figure 5.10 Merged conflict graph
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Figure 5.11 shows two ways to generate the merged conflict graph. In this figure, 

RRC, CG, M-RRC, and M-CG represent register-reuse chains, a conflict graph, merged 

register-reuse chains, and a merged conflict graph, respectively. There are two paths from 

the register-reuse chains to the merged conflict graph. One path goes through M-RRC 

while the other goes through CG. The first path via M-RRC represents that the merged 

register-reuse chains are generated first, and then the corresponding conflict graph is 

generated. The other path represents that the conflict graph of the original reuse chains is 

generated first, and then the merged conflict graph is generated. The first path always 

generates the right merged conflict graph. However, this path requires additional 

computation because the computation for the derivation of the original conflict graph is 

wasted for the derivation of M-CG. The second path is more computationally effective. 

In addition, there is another advantage that is explained later. Unfortunately, the merged 

conflict graph is not always correct. Consider the register-reuse chains shown in Figure

5.9 again. The conflict graph shown in Figure 5.9 (f) is the one following the first path in 

Figure 5.11. If the conflict graph is derived following the second path, the resulting 

conflict graph is shown in Figure 5.9 (g). Note that there is only unidirectional edge 

because the original conflict graph (Figure 5.9 (c)) has an edge neither from c to a nor 

from c to b. Note that this merged conflict graph is wrong because it is different from the 

one in Figure 5.9 (f).
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RRC CG

Merge Merge

M-CG

Figure 5.11 Generation of merged conflict graph 

The above example shows that, in general, the merged conflict graph cannot be 

directly driven from the original conflict graph. However, there is a special type of 

register-reuse chain (and the corresponding conflict graphs) that allows the direct 

derivation of the merged conflict graph. In this research, such register-reuse chains, 

called dependence-conservative register-reuse chains, are formally defined as follows: 

Definition 53  (Dependence-conservative register-reuse chains) Register-reuse chains are 

called dependence-conservative if they satisfy the following:

• when sets of chains are grouped and each set is merged into a single chain, the 

corresponding conflict graph can be derived by merging the corresponding 

nodes of original conflict graph.

Consider the example in Figure 5.1 again. Suppose that chain b and chain g are 

merged. Figure 5.12 (a) shows the corresponding register-reuse chains. The merged 

conflict graph based on Definition 5.2 is shown in Figure 5.12 (b). Figure 5.12 (c) shows 

the additional dependencies created by the merge. The corresponding conflict graph is 

shown in Figure 5.12 (d). Note that this graph is the same as the conflict graph shown in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

Figure 5.12 (b). This shows that the register-reuse chains are dependence-conservative 

register-reuse chains.

Chain a: a->d-^h 
Chain b,g: g -»b -»e  
Chain cr. c-M->i

(a) Merged register-reuse chains
(b) Merged conflict graph

i L

(c) Dependence graph (d) Corresponding conflict graph

Figure 5.12 Dependence-conservative register-reuse chains

The dependence-conservative register-reuse chains can reduce the complexity of 

the derivation of the conflict graph after merging register-reuse chains. Another important 

property of the dependence-conservative register-reuse chains is that the merge of more 

than two chains can be easily shown in the corresponding conflict graph. The following
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theorem shows how to check whether register-reuse chains can be merged or not from the 

conflict graph:

Theorem 5.1 In dependence-conservative register-reuse chains, a set of chains can be 

merged if the corresponding nodes in the conflict graph do not have edges making a 

cycle.

(Proof by induction) Suppose that a set of nodes {vi, V2, , v„} does not have

edges making a cycle. Then, the first two nodes vi and V2 can be merged because the 

connecting edge must be not bidirectional if it exists. Assume that n- 1 nodes vlt V2, ... , 

v„-i can be merged. Consider the new conflict graph resulting from the merge of vi, v2, •

, v„-i . Let s denotes the merged node in the new conflict graph. Then, the edge from s to 

v„ must be not bidirectional if it exists. Otherwise, the set of nodes {vi, V2 , . . . ,  v„} have 

edges forming a cycle. Therefore, s and v„ can be merged. Thus, nodes vi, V2 , . . . ,  v„ can 

be merged.

Corollary 5.1 In dependence-conservative register-reuse chains, multiple sets of nodes 

can be merged simultaneously if each set does not have edges making a cycle.

(Proof) From Theorem 5.1, one such set can be merged. The merge does not 

create any additional dependence. Thus, it does not affect the merge of other sets. Thus, 

other sets can also be merged.

Consider the following graph as shown in Figure 5.13 (a). Nodes a and b cannot 

be merged because they are connected as a bidirectional edge. Nodes c, d, and e cannot 

be merged into a single node because they make a cycle. All the other nodes can be 

merged. Figure 5.13 (b) shows an example of possible merges. Nodes a, c, and e are 

merged into a single chain, while nodes b and d  are merged into another chain.
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(a) Directed conflict graph (*>) An example of a merged conflict graph

Figure 5.13 Chain merge based on Theorem 5.1 and Corollary 5.1

In order to use the results of Theorem 5.1 and Collorary 5.1, register-reuse chains 

must be dependence-conservative. So, we must consider how to convert register-reuse 

chains to be dependence-conservative. First, consider the case when the merge of two 

chains changes the resulting conflict graph. In fact, the example shown in Figure 5.9 is 

the only possible case, that is, the first node of chain c is adjacent to the last node of chain 

a. Suppose it is other than the first node of chain c. This case is shown in Figure 5.14. 

Note that an intermediate node of chain c is adjacent to the last node of chain a. The 

corresponding conflict graph is shown in Figure 5.14 (b). Note that chain a and chain c 

cannot merge so that there is a bidirectional edge between a and c. Figure 5.14 (c) shows 

the merge of two chains a and b, and the creation of the new input dependence from 

chain c to chain b. The resulting conflict graph is shown in Figure 5.14 (d).
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(a) Dependence graph

P0 ©

(b) Conflict graph

O< w

(c) Dependence graph after merging (d) Conflict graph after merging

Figure 5.14 Generation of the merged conflict graph
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So far, the merging of compact chains has been the considered case. Noncompact 

chains can be considered as merged compact chains. Note that Theorem 5.1 and 

Corollary 5.1 are true for the merged compact chains. Therefore, they are applicable to 

noncompact chains.

Proposition 5.1 The merge procedure, called in i t_ m e r g e  ( ), discussed in the

previous section, generates dependence-conservative registe-reuse chains.

(Proof) The merge procedure, called in it_ m e r g e  ( ), discussed in the previous

section, removes the case of Figure 5.9. If all the missing parts of dependence graphs are 

drawn, there are two possibilities. One case is that c is the only successor of the last node 

of chain a, and the other case is that there are successors other than c. The first case is 

redrawn in Figure 5.15 (a) while the other case is shown in Figure 5.15 (b). Note that a* 

represents the last node in chain a. In the first case, the optimal chain does not allow a* 

and c in the different register-reuse chains. Thus, the case shown in Figure 5.9 is 

impossible. In the second case as shown in Figure 5.15 (b), in i t _ m e r g e  ( )

procedure merges either chain c or chain d  with chain a. Without loss of generality, 

assume that chain d is merged with chain a. Then, again the case is the same as Figure 

5.14 (a), but is different from that in Figure 5.9 (a). Therefore, the case like Figure 5.9 (a) 

is not allowed after in i t_ m e r g e  ( ) procedure is called. Therefore, all register-reuse 

chains are dependence-conservative.

The analysis for compact chains can be easily generalized for noncompact chains. 

A noncompact chain can be made by merging compact chains. In order to draw the 

conflict graph for noncompact chains, the compact chains that make the noncompact
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chains are analyzed. If an edge is needed for any compacting chain, an edge is drawn for 

the noncompact chain.

9i

!t

6

(b) Both c and d are successors of a*(a) c is the only successor of a* (b) Both c and d are successors of a* 

Figure 5.15 Avoidance of the case as shown in Figure 5.9
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5 3  Register Allocation Algorithm Based on Coloring of
Conflict Graph

This section finalizes the register allocation procedure. Given the conflict graph, 

register allocation can be formulated as a graph-coloring problem.

Problem 5.1 (Graph coloring problem formulation for register allocation over 

directed conflict graph) Given a conflict graph, colors are assigned to all the nodes such 

that:

• Constraints: Nodes cannot have the same color if they have connecting edges that

make a cycle.

• Objective: Minimize the number of colors.

After the graph-coloring problem is solved, colors are assigned to each node. 

Register-reuse chains whose corresponding nodes are assigned to the same color are to be 

merged.

The above graph coloring problem is formulated on the conflict graph that is a 

directed graph. In order to reduce the search space, the directed graph is converted into an 

undirected graph. In this conversion, a bidirectional edge in the original directed conflict 

graph is converted to an edge in the new undirected conflict graph, and a unidirectional 

edge is removed in the undirected graph. However, if a unidirectional edge is a part of a 

cycle, one of the unidirectional edges needs to be changed to a bidirectional edge. In this 

selection, the number of schedules is used as the criterion.

Consider the conflict graph shown in 5.13 (a). Nodes c, d, and e make a cycle. 

Therefore, these nodes cannot be merged into a single node. Among the three edges 

making the cycle, one needs to be chosen and converted to a bidirectional edge. In this 

selection, it is necessary to compute the number of schedules when the corresponding
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chains are merged. Then, the chain that maximizes the number of schedules is selected. 

Ia this example, assume that the edge between c and d  is chosen and converted to a 

bidirectional edge (see Figure 15.6 (a)). Now that there is no cycle made only by 

unidirectional edges, the conflict graph is converted into an undirected graph. All 

unidirectional edges are removed while bidirectional edges remain as undirected edges. 

The resulting graph is shown in Figure 5.16 (b).

Figure 5.16 Conversion of a directed conflict graph into an undirected conflict graph

Now that an undirected conflict graph is derived, register allocation is formulated 

as graph coloring problem over the undirected conflict graph:

Problem 5.2 (Graph coloring problem formulation for register allocation over

(a) Edge (c,d) is converted to a 
bidirectional edge

(b) Converted undirected 
conflict graph

undirected conflict graph) Given a conflict graph, colors assigned to all the nodes such

that:
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• Constraints: Two nodes cannot have the same color if there is an edge connecting 

them.

• Objective: Minimize the number of colors.

Although graph coloring is a NP-Complete problem, there are many efficient 

heuristics. The number of colors corresponds to the number of required registers. If the 

number of colors is less than the number of registers available in a target processor, not 

all of the chain mergings are necessary. For this case, some of the merged chains can be 

decomposed into the original separate chains. Recall that chain merging always reduces 

the number of schedules. Therefore, decomposition of merged chains can increase the 

number of schedules.

Problem 53  (Decomposition of merged chains) Decompose merged chains into the 

original separate chains.

• Constraint: the number of chains is less than or equal to the number of available 

registers.

• Objective: maximize the number of schedules after chain merging.

This problem can be converted into a 0-1 knapsack problem. First, define V\ as 

follows:

Vi = the number of schedules without merging any chains - the number of 

schedules after merging the chains assigned to the ith color.

W\ = the number of register-reuse chains assigned to the ith color — 1.

The decomposition problem can be formulated as the following problem:
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Problem 5.4 (0-1 knapsack problem formulation for the decomposition of merged 

chains) Decompose merged chains into the original separate chains.

• Constraint: Summation of Wx is less than or equal to the number of available 

registers.

• Objective: M inim ize the summation of Vx

The above problem is exactly the same as a 0-1 knapsack problem, and a dynamic 

programming can be used to solve the problem.

Figure 5.17 summarizes the overall register allocation procedures proposed in this 

research. Given a dependence graph, the first step is to generate register-reuse chains that 

are optimal in the sense that no additional dependencies are created. The next step is the 

initial merge algorithm that combines the optimal register-reuse chains by visiting the 

nodes in the dependence graph in BFS order. This procedure effectively reduces the 

number of chains without a significant increase of dependencies. In addition, the resulting 

reuse chains become dependence-conservative. The next step is to generate a conflict 

graph that is a directed graph. In order to use the graph-coloring problem, the directed 

graph is converted into a undirected graph in the next procedure. Once the undirected 

conflict graph is obtained, the graph-coloring algorithm is performed to assign colors to 

each chain. The chains that are assigned to the same color are merged into a single chain, 

and consequently allocated to the same registers. For the case when the number of colors 

is less than the number available registers, the next procedure is called in order to 

decompose the merged chains into the original separate chains. For this procedure, the 

dynamic pro g ram m ing algorithm for solving the 0-1 knapsack problem is used.
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Figure 5.17 Complete procedure for register allocation
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CHAPTER SIX

CONCLUSIONS

This research develops a register allocation technique that can be integrated into 

instruction scheduling. The result of this form of register allocation is more efficient than 

the traditional register allocation based on the graph-coloring algorithm. The main reason 

for this is that the proposed technique is performed before instruction scheduling, while 

the traditional register allocation is performed after instruction scheduling that gives 

additional constraints to the selection of registers. On the other hand, the proposed 

technique can add constraints to instruction scheduling when there are not enough 

registers. As a result, the efficiency of the scheduler can be degraded. The optimal register 

allocation algorithm developed in Chapter 4 does not create additional dependencies, and 

consequently, no additional constraints are added to instruction scheduling. Although the 

number of the registers required resulting from the optimal register allocation is large, it 

fits into the available registers for most cases. When a processor does not have enough 

registers, the register allocation algorithm needs to reduce the number of required 

registers. The heuristic proposed in this research attempts to prevent unnecessary 

constraints to instruction scheduling while reducing the number of necessary registers. As 

a result, the proposed heuristic adds fewer constraints than previous approaches. The 

proposed register allocation analyzes the dependence generated by the register allocation
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and attempts to minimize the generated dependencies. Note that instruction scheduling 

can be considered as a sequence of generation of dependences until all instructions have 

strictly ordered by the dependencies. The main job of a scheduler is to choose the 

dependencies that are preferred by a target processor. Thus, the proposed register 

allocation can be easily integrated with instruction scheduling with a minor modification 

such that the register allocation attempts to minimize generated dependencies that are not 

preferred.
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