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ABSTRACT

Some of the common measures of risk used in epidemiology today are the relative risk,
the odds ratio, the attributable risk, and the chi-square goodness of fit test. All of these
measures have their shortcomings. A new approach to measuring risk in case-control studies s
to use the unitless measure of the coefficient of vanation of incidence of disease over the risk
categories, k2, first proposed by Begg et al. (1998). Begg et al. (1998), also showed that the
product of multiple risk factors may be compared to an overall measure of the square of the
coefficient of vaniation of the incidence of disease over all risk categories known and unknown,
S, the standardized incidence ratio. It is shown that § = k7 + 1, where k2 represents the square
of the coefficient of variation of the incidence of disease over all risks. If the risks are

independent, then an estimate of S may be calculated from a case-control study as

3’= ﬁ(/}f + 1) and Ir/1\S= ln(f[(ic,z + 1) ) = Zr:In(l::;’- + 1), The parameter S may be
=1 =1 =1

=

A r ~
available from a source such as a cancer registery. If S= Hln(k,z + 1) is much smaller than S
=1

then 1t may be that not all risks have been considered.
The distribution and statistical properties of 2, ln(lnc,2 +1), and Zln(icf- +1) have
=1

not been investigated. In this study, it is shown that the distribution of k2 for one risk factor

with multiple levels, is Gamma( L2222 ). A simulation study was conducted to
mvestigate the power of this statistic for testing A, : k2 = 0vs H, : k* # 0 for one risk factor
with multiple levels. The simulation study confirmed the power of the test statistic to be very

good as long as the sample size was at least 200 for both cases and controls.

1
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T -~ -
The measure > In(k? + 1) is of interest because it may be used to compare the sum

=1
of the logarithms of risk factors used in a study to the natural log of the overall square of the

coefficient of variation of the incidence of disease over all nisks known and unknown,

4 r -
InS = > In(k? + 1). Also, this study investigates the distribution of the statistic 3 In(k% + 1)
=1 =1
and the power of this statistic when used to test H, : D . In(k?+1) =0 vs. H, :
=l

Siin(k?+1)>0andH, : Y. In(k> + 1) = InSvs. H, : > In(k? + 1) = InS.
=1 =1

=1

v
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CHAPTER 1

INTRODUCTION

An important issue in our society today is health care. Epidemiologists strive to find
what factors are associated with certain diseases. Last, (1988) has defined epidemiology as
“the study of the distribution and determinants of health related states or events in specified
populations, and the application of this study to control health problems.” Because these
measures of risk are used to set health policy and control disease, it is important to understand
their properties and limitations.

Some of the most prevalent measures of nisk used by epidemiologists today include the
relative nisk, odds ratio, chi-square goodness of fit test, and the attributable risk. There are
advantages and disadvantages associated with each of these measures. For example, a
disadvantage associated with the relative risk and the odds ratio is that the prevalence rate of
the risk factor is not accounted for in the target population (Whittmore 1983). Levin (1953)
proposed the attributable risk which was the first measure of risk that took the prevalence rate
of the nisk factor in the target population into consideration. Although the attributable risk
considers more information, it is not without shortcomings. The attributable risk is dependent
on the definition of the base one category of the risk factor; therefore, different researchers can
compute different values of attributable risk for the same data (Begg et al. 1998).

Another measure of association between risk and disease was proposed by Begg, et al.
(1998). He proposed a statistic in which the measure of rnisk was not dependent on the base
line category, but computed by calculating the square of the coefficient of vanation of the

incidence rate over the risk categories. Begg showed that this statistic may be compared to the

1
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2
standardized incidence ratio of second primaries of the disease which is shown to be the square
of the coefficient of varation of the incidence rate over the risk categories for the entire
population and all nsk factors, known and unknown. Begg developed a nonparametric
estimator for the square of the coefficient of vanation of the incidence rate over the risk
categories, icg, for a retrospective model. There has not been any investigation into hypothesis
testing using the ic';’ statistic. A related measure to Begg’s statistic is the square of the sample
coefficient of variation of the incidence rate over the risk categories, =3

A point of interest would be to test whether the square of the coefficient of variation of
the incidence rate over the risk categories is zero. Another point of interest may be whether the
square of the coefficient of variation of the incidence rate over the categories for two
independent risk factors is the same. If there is more than one risk factor, then a test of the sum
of the log of the squares of the coefficient of variation of the incidence rate over the risk
categories is of interest. This sum could be tested against the log of the standardized incidence
ratio of second primaries of the disease.

This study investigates the asymptotic distribution and properties of the square of the

sample coefficient of varation of incidence rate over the risk categones, IAcz, for one risk factor
~ ’. ~ .
with variable levels. Also, the distribution of [n(k2 + 1), > ln(k,2 + 1), and the difference,
=1
k3 — k3, is investigated. A simulation to calculate the size and power of the square of the
sample coefficient of variation of the incidence rate over the risk categories, /}2, for testing a

factor as a significant risk is investigated. The size and power associated with this statistic is

also compared to the well known chi-square test. The size and power of the test statistics

in(k*+1) and S n(k?+1) for testing Ho : In(k>+1) =0 vs. Ha : In(k* +1) # 0 and
=1

Ho:> In(k?+1) =0 vs. Ha: Y In(k?+1) #= 0, respectively, are investigated. The
=l

=1
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3
statistic illn(l}f'- + 1) is of importance because it may be compared with the standardized
incidence ratio of second primaries, S. Therefore, the size and power of this statistic for testing
Ho : }_c;ln(k,-z +1) =InS§ vs. Ha : Zr:In(kf- +1) #InS, is also investigated. The size and

— =1
power of the difference, k? —k%, is investigated for testing Ho : k¥ —k2 =10 vs.

Ha : i3 -k 0.

1.1 Related Research Concerning Study Designs

One of the earliest methods of studying the effect of a risk factor on a disease outcome
1s using a 2 x 2 table where both the nisk factor and the disease outcome are dichotomous. The
data for a 2 x 2 table can be displayed in different ways, depending on the sampling scheme
used. There are three study designs used most often in the literature with respect to the 2 x 2
table. They are the case-control (retrospective), prospective, and cross-sectional study designs.
The study designs differ in the way the population is sampled. For clarity, the following

notations will be used to represent groups of individuals in the tables:

N = number of people in the study population

n = number of cases with no nisk factor present
ny1 = number of cases with the risk factor present
ngo = number of controls with no nisk factor present
no1 = number of controls with the nisk factor present

m total number of cases in the study population

n = total number of controls in the study population

go = conditional probability of no risk given the disease is present
g: = conditional probability of risk given the disease is present
po = conditional probability of no risk given no disease

p1 = conditional probability of risk given no disease

e = total number of people in the study population

with the risk factor
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ne = total number of people in the study population
without the risk factor
do = conditional probability of disease given no risk factor present
d; = conditional probability of disease given the risk factor is present
ndy = conditional probability of no disease given no risk factor present
ndy = conditional probability of no disease given the risk factor is present
DR = probability of disease with risk factor present

DNR = probability of disease with no risk factor present
NDR = probability of no disease with risk factor present
NDNR = probability of no disease with no risk factor present.

Here, controls refer to the individuals in the study without the disease and cases refer to the

individuals in the study with the disease.

1.1.1 Prospective Study

A prospective study design resembles an experiment, therefore making it useful if a
causal inference is desired (Kleinbaum, Kupper, and Morgenstern 1982). This type of study
requires a cohort of individuals to be followed, before the onset of disease, for a set time period
during which the onset of the disease is recorded. One of the major advantages of this type of
study is the ability to calculate the incidence rate of the disease. Using the notation from table

1.1, this may be calculated by f%. The study population may be sampled as stratified

on the nsk factor or unstratified. The sample, if unstratified, is grouped into exposed and
nonexposed to the risk factor (Walter 1976). This type of study may be very costly because of
the time required for the onset of disease and the large amount of individuals that need to be
included in the study if the disease is rare. The following 2 x 2 table reflects the sample

frequency distribution and cell probabilities of such a design using the notations listed above.
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Table 1.1 2 x 2 Table for a Prospective Study Design

; | Disease : Total | Disease i Total

'Risk Factor; Yes | No | ! Yes = No

: Yes { niy ; not ! e §d1=%§nd1=n%é 1
No | nw | nw | ne (do=232 ndy=22 1

‘ Total ny +nyw | Bor + Nao 1[ N ‘ (

Here, the number of individuals with and without the risk factor are fixed. The vaniables n,;
and no are considered to be independent binomial vanables with parameters (e,d;) and
(ne,dy ), respectively. In this model there does not exist a method to calculate the prevalence
of risk in the target population. The relative risk, odds ratio, and attributable risk may be

calculated from this type of study design.

1.1.2 Cross-Sectional Study

In a cross-sectional study, an unstratified sample of size N is collected from the target
population. This sample is then grouped into four categories, which are risk and disease, risk
and no disease, no risk and disease, and no risk and no disease. The 2 x 2 table that would

represent this type of study is given below.

Table 1.2 2 x 2 Table for a Cross-Sectional Study Design

i Disease . . Total ' Disease . Total
! Risk Factor Yes No ! Yes 2 No '
: Yes o ony " ngy nu+ng  DR= =+ : NDR = =%
No = nmw  nw | Mwo+ne DNR=22 NDNR =12
Total . ny +nye  ney + Moo | N : : |

In this type of study the variables n11, 701, 710, and ngo are considered to be multinomial with

parameters (N; DR,NDR,DNR,NDNR).
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6
Thus type of study design is easy and economical to conduct. The prevalence of disease
may be measured from this type of study. Using the notation from table 1.2, the prevalence of

disease may be calculated by n“—;\'{n@— A disadvantage of this type of study is that it is not

possible to tell which occurred first, the risk or the disease. Therefore, the reason for the
association between risk and disease is not easy to assess. However, this type of study may be
useful for investigating factors that are fixed characteristics of individuals, such as race

(Beaglehole, Bonita, and Kjelistrom 1993).

1.1.3 Case-Control Study

In a case-control study (also called a retrospective study) two samples are drawn, one
from a population of cases and another from a population of controls. In this type of study, the
fixed variables will be the total number of controls and the total number of cases, that is # and
m in the notation given above. Because this type of study is like a snapshot in time, there is not
a follow-up period, making the case-control study less expensive and less time consuming than
the prospective study. A disadvantage of the case-control study is that nisk factor data are
collected from the individual after his or her disease status is known. Consequently, the
accuracy of this data is heavily reliant on the individual’s memory or perception. The following

table represents the frequency distribution and cell probabilites of a case-control study.

Table 1.3 2 x 2 Table for a Case-Control Study

; '~ Disease . Total | Disease
'Risk Factor  Yes . No i Yes ’ No
Yes Ponygp Ror  nu+nn q= ,,:.l:,m ‘pr = ,,of+ﬁ,m
No T TR R PR +ngo §QO = ,,‘:'_‘f,,o Po = T:?;T :
| Total Ay + AP Ao+ Agg N ; 1 1

Here, n;; and nip are considered to be multinomial random vanables with parameters
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7
(ny +ny;q1,q0) and ng; and nge are considered to be multinomial random variables with
parameters (no; +#00;P1,P0). Lhe cases and controls are drawn from two populations,
therefore, making the two multinomial distributions independent of one another. The square of
the coefficient of variation of the incidence rate over the risk categories presented in this study

assumes this case-control design.

1.2 Related Research Concerning Measures of Risk

Four common measures of risk used in the literature today include the odds ratio, the
relative nisk, the attributable risk, and the chi-square goodness of fit test. All of these measures
are not without their shortcomings. The relative risk and the odds ratio do not take into account
the prevalence rate of the risk factor. Therefore, if the risk factor is very influential on the
disease, but very rare in the target population, then it may not pose a major health problem. On
the other hand, the attributable risk includes the prevalence rate of the risk factor but is highly
dependent on the base-line category of risk, i.e., the relative risk is one or is minimum (Begg et
al. 1998). Different researchers may perform the same experiment with the exception of the
definition of a base-line category of risk and come up with two different measures for the
attributable risk. For this reason, Begg et al. (1998) proposed an alternative method to
calculate a measure of risk. He proposed using the square of the coefficient of variation of the
incidence rate over the risk categories to measure the degree of a risk factor. Section 1.2.4 will

address this approach.

1.2.1 Relative Risk

The relative risk is an incidence ratio that compares two risks. Using the notation in
Table 1.3 the relative risk of developing a disease, given the risk factor of interest is present,

would be
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relative risk = RR

Incidence of disease in a group with the risk factor

Incidence of disease in a group without the risk factor
hy

= P hot
- 1o : (1.1)

N +Noo
The relative nisk can only be calculated from a prospective study. Miettenan (1972) developed
a procedure to deal with the confounding of factors if the relative risk is calculated using more
than one nisk factor. Comfield (1951) showed that the relative risk can be estimated by the

odds ratio in a retrospective study.

1.2.2 Odds Ratio

P(levent A occurs )

The odds of an event can be descnbed by In terms of

P (event A does not occur) )
our discussion of risk factor vs. disease, the odds an individual has a risk factor given the

disease is

P(iindividual has the factor | disease )
P(individual does not have the factor | disease) )

The odds an individual has the risk factor given no disease may be written as

P(iindividual has the factor | no disease )
P((individual does not have the factor | no disease ) -

The ratio of the odds of an individual having a risk factor given the disease to the odds of an

individual having a risk factor given no disease is called the odds ratio and written as

P (individual has the factor | disease )
P(iindividual does not have the factor | disease )
P(individual has the factor | no disease )

P(individual does not have the factor | no disease )

odds ratio = OR =
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iy
ny +nyo
1o
) + o
Moy
Noy + Ngo
noo
npy + Noo

N

X
S

S
2

=
)
S

— N11700
T Aonoy (1.2)

If the disease is rare, then the odds ratio can be used to estimate the relative nisk in a
retrospective study. For simplicity let D = disease, F = factor, ND = no disease, and

NF = no factor. From the above discussion, it can be shown, that

_ PWDIF) -
RR = peomEy (1.3)

P(EID)
_ _PWNED)
OR = —5EWD)
PNEIND)
_ P(FD)P(NFIND) (1.4)
P(FINDYP(NEID) ‘

Using Bayes’ rule, we may rewrite P(F1D) and P(FIND)as

P(DIF)P(F)

PED) = 5ipRPE) + PIOIVEYP(NE)
- PNDIF)P(F)
PFIND) = P(NDIF)P(F) + P(NDINF)P(NF)
and
P(DIF)

P(FID) _ _ P(DIF)P(F) + P(DINF)P(NF)
P(FIND) P(ND|F)

P(ND|F)P(F) + P(NDINF)P(NF)

In like manner,
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P(NDINF)
P(NFIND) _ P(NDINF)P(NF) + P(NDIF)P(F)
P(NFID) P(DINF)
P(DINF)P(NF) + P(DIF)P(F)

Replacing the terms in the odds ratio with the expressions above, we may rewrite the odds ratio

as,

OR = PUEID)P(NFIND)

~ P(FIND)P(NFID)
POIF) P(NDINF)
P(DIF)P(F) + PDINE)P(NF) _  _P(NDINF)P(NF) + P(NDIF)P(F)
P(ND|F) P(DINF)
P(NDI|F)P(F) + P(NDINF)P(NF) P(DINF)P(NF) + P(DIF)P(F)
_ PDIF)P(NDINF) (L5)
P(ND|F)P(D|NF) '

If the disease is rare then

P(NDINF) = 1
and
PNDIF) = 1
consequently,
_ PR _

1.2.3 Attributable Risk

Attributable risk was first proposed by Levin in 1953. He defined the attributable risk
as a “measure of the proportion of the disease in the population which can be attributed to the
factor” (Levin 1953). The attributable risk has also been called the etiologic fraction
(Miettenan 1974) and is described as the proportion of cases that are attributed to the risk

factor. The etiologic fraction is calculated using incidence rates and only deals with positive
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I1
risk factors, i.e. [ < I. Let / = incidence rate of disease in the population, and /; = incidence
rate of the disease in the population wizhout the risk factor, then

[—1

AR = =20 (L.7)

Because incidence rates are not always available, the above can be rewritten as

-1
I
P(D) — P(DINF)
PD)
_ P(DIFYP(F) + P(DINF)YP(NF) ~ P(DINF)
P(DIF)P(F) + P(DINE)P(NE)
_ P(DIF)P(F) + P(DINF)(P(NF) — 1)
P(DIFYP(E) + P(DINF)P(NE)
_ P(DIFP(F) — PIDINF)(1 — PONFY)
P(DIF)P(F) + P(DINF)P(NF)
_ _P(DIFYP(F) — P(DINF)P(F)
P(DIF)P(F) + P(OINF)P(NE)
_ _ P(F)(P(DIF) — P(DINFY)
P(DIF)P(F) + P(DINF)P(NF)
P(DIF)
P& ( POINEY ! )
POFRPE) , PONRPIVE)
P(DINE) P(DINE)

AR =

o ik P(DIF)
Recall that the relative risk is RR = ———=—, consequently,
P(DINF) quently

R = PEYRR-1)
P(PRR + 1 - P(F)
POYRR-D) +1° :

Written this way, the attributable risk can be calculated from a retrospective study by
estimating the RR with the odds ratio, that is,

P(F)(OR - 1)

AR = B OR=-T) « 1"

(1.9)

The distribution of 1 — AR was derived by Walters (1985). Walters (1976) considered the

effects of a nuisance factor when calculating the attributable risk. He cites an example of three
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nisk factors, hyperlipoproteinaemia, smoking, and high diastolic blood pressure, for ischaemic
heart disease. In this example, age is the nuisance factor. A nuisance factor is one that affects
the disease but is not of interest to the experimenter (Dean and Voss 1999). Walters proposed
a weighted average of the attributable risk over the levels of the nuisance factor, age, where the
weights are calculated as the proportion of cases in each age group /, 1.e.

> wiAR,
ARaverage = El—c'—- (1.10)
> w,
=1
In the same paper, Walters suggested a way to deal with the confounding of multiple factors
which was first used by Meittinen (1972) with respect to the relative risk. Interaction of

multiple factors is addressed by Walters (1983) and by Bruzzi et al. (1985).

1.2.4 Chi-Square Goodness of Fit Test

Pearson (1900) was the first to propose the chi-square goodness of fit test. If in the
case of a case-control study there is a factor with ¢ levels, then the distribution of the cases, .X;
(where X; is the number of cases in the i”* category) and the controls, ¥, (where Y, is the
number of controls in the i category) is multinomial with parameters m,qo,q1, -..,q. and
n,po,p1,---,Pe, respectively. We can use the chi-square goodness of fit test to test the null

hypothesis go = po, 41 = p1,..-,9c = po. The test statistic used for this test is given by
X, —mgq.)* (Y. —np.)*
Z mq; +Z —ap, (1.11)

The distribution of this statistic is z>(2¢ —2). From the case-control study, we can estimate

the parameters p, and q,. Assuming the null hypothesis, H,, is true, p, and ¢, can be estimated

X, +7,

i SO the test statistic may be written as

from the observed frequencies X, and ¥; as
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c L XY, 2 c Y, — Xt 2
Z (X ’"( nrm )) +Z ( R\ )) ) (112)
=l =1 n

() XLy

n—-m

The statistic in Eq. (1.12) is z%(c — 1), ¢ — 1 degrees of freedom are lost because estimates
replaced the actual parameters. Chase (1972) has considered the situation where the estimates
for the parameters are estimated independently of the sample. If H, is accepted, then the risk
factor is not a significant risk for the disease because the distribution of the cases and controls
across each level of the risk factor is the same. Begg et al. (1998) has proposed a statistic
which measures the square of the coefficient of variation of the incidence rates over the risk
categories in a case-control study. This statistic measures the degree of the risk for a given
factor and is similar to the idea of the chi-square test mentioned above. In other words, itis a
measure of the similarity or dissimilarity of the two multinomial distributions of the cases and

controls.

1.2.5 Begg’s Estimate of k2

A new approach to measure the degree of nisk associated with a given factor was
proposed by Begg et al. (1998). He suggested using the square of the coefficient of variation
of the incidence of disease over the categories of risk, k>. The square of the coefficient of

variation is a unitless measure of relative variability (Shafer and Sulivan 1986). It is defined as
the ratio of the standard deviation to the mean of a random variable X, that is, ——“Ey((s To
demonstrate Begg’s proposed estimate, hypothetical data will be used. The data displaved

below is a hypothetical population in which incidence of disease may be calculated over the

categories of risk, unlike a case-control study.
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Table 1.4 Incidence of Disease Over Risk Categories

: Risk Factor Category i ; Cases, X; , Controls, ¥; i q, = —2"% P = ;Tb . Incidence of disease |

g Category 1 . 40 | 80 017 = 033 : 033= %
! Category 2 65 40 027 ¢ 017 | 0.62
Category 3 100 | 60 i 042 | 0325 | 0.63
Category4 @ 20 , 40 | 008 '@ 017 0.33
Category 5 . 1S . 20 006 | 008 0.43

| Total 240 | 240 | 100 ' 100

Calculating k%, the square of the coefficient of variation of the incidence of disease over the

nisk factor categories, gives

(1.13)

where 7 is the overall incidence of the disease and /, is the incidence of the disease in the i
category. If on the other hand, there is a population where the incidence of the disease is more

or less evenly distributed over the risk categories, the hypothetical data may look as follows.

Table 1.5 Incidence of Disease Over Risk Categories

| Risk Factor Category i ! Cases, X; . Controls, ¥, : q; = —2‘{'.7 P = -._,% . Incidence of disease
Category 1 .75 . 80 031 | 033 | 048= %
Category 2 44 40 018 @ 017 0.52

j Category 3 ? 58 60 © 024 025 0.49
Category 4 45 1 40 019 - 017 . 0.53
Category 5 18 20 : 0.08 @ 008 ° 0.47

- Total - 240 - 240 . 100 | 1.00

The square of the coefficient of variation of the incidence of disease over the risk categories, k-,
in this hypothetical population would be 0.04. As can be seen from the two examples above,

the more spread the incidence of disease over the risk categories, the larger is the square of the
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coefficient of varation of the incidence of disease over the risk categories. The larger £°, the
more evidence there is that the risk factor under consideration is truly a risk. Begg has
suggested a non-parametric approach to estimate the square of the coefficient of variation of
the incidence of disease over the nsk categories from a case-control study. His estimate or
statistic will be denoted by I:t% He also proposes a way to compare this statistic to the square
of the overall variation of the incidence of disease over all risk categories, known or unknown,
for the entire population. Begg did not investigate the distribution of l}g nor did he propose a
test statistic for drawing inferences about &*. In the subsequent sections, the distribution and
properties of k* are investigated. The first part of the next chapter will provide background on

Begg’s estimate of k2.
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CHAPTER 2

COEFFICIENT OF VARIATION OF THE INCIDENCE

OF DISEASE OVER THE RISK CATEGORIES

In the retrospective model, the sampling procedure was discussed in Chapter 1 but will
be summarized here for continuity. A random sample of size m is taken from a population of
cases. Another random sample of size n is taken from a population of controls. These samples
are then stratified imnto & risk categories which are determined by the experimenter. The sample
of cases and controls are independent with a multinomial distribution of M(m,q.,q2, ... ,q:)
and M(n,qcon;,qcona, ...qcon.), respectively, where ¢q; = P(category i[disease) and
gcon; = P(category ilno disease) . The accuracy required of the study results usually
determine the sample sizes drawn from the populations above. It is recognized also that cost,
logistics, and amount of disease in the population are also of considerable importance when
selecting a sample. There are no definitive rules in the literature for selecting sample sizes for
a case-control study. From the literature, the range of the proportion of cases to controls is
from 1:1 to 1:4 (Beaglehole, Bonita, and Kjelistrom 1993). For the simple dichotomous case,

factor or no factor, the data would be displayed in a 2 x 2 table as follows:

Table 2.1 Data for a Case-Control Study Displayed in a 2 x 2 Table

Disease i No Disease

Factor : x1 : Y1

i No Factor ; x2 : ya

m=Xx; +XxX2 : n=yy+jy2
16
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where x; is the number of people with the disease that have the factor, y; is the number of
people without the disease that have the factor, x> is the number of people with the disease that
do not have the factor, and y, is the number of people without the disease and without the
factor.

If the factor can be divided into more than two categories, then the general case of ¢

categories or ¢ levels of risk can be displayed in a ¢ x 2 table as follows:

Table 2.2 Data for a Case-Control Study Displayed in a ¢ x 2 Table

Disease § No Disease
Factor Level 1 Xy ¥

: Factor Level 2 x2 Y2

Factor Level ¢ X § Ve

] ! c : < !
i Total m=> x ; n=>Yy, :
: . =1 ; =1

Of interest i1s to compute a statistic u(x,X2, ---X¢,¥1,V2, ---Ye) In order to estimate the square

of the coefficient of variation of the incidence of disease over the risk categories, that is,
k=3 %’f— — 1, from the independent samples. Using the maximum likelihood estimate of &*
=1

is the most desirable approach because of the desirable properties the estimate possesses

(Craig and Hogg 1978).

2.1 The Square of the Coefficient of Variation of the
Incidence of Disease over the Risk Categories
Estimated from a Case-Control Study

For clarty, a list of the variables that will be used throughout the rest of the study is

given.
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D = disease

R, = nisk category i

n = number of controls

m = number of cases

y: = number of observed controls in category i
x; = number of observed cases in category i

¢ = number of categories

q: = P(R/D)

qcon; = P(R,lno D)

p: = P(R:)

I; = incidence of disease 1n category /
= P(DIR.)

ur = mean incidence of disease in the population
=2 lp: = PD)
=1
The expected value of a discrete random variable X, is given by D> xP(X = x) and the
expected value of X2, is given by Y x?P(X =x). The varance of X is by definition

E(X?) —E(X)?. Therefore, in this case, the variance of the incidence of disease over the risk

categories can be written as
S 12, - (2 z,-p,)
=1 r=1
=Y Pp,—p}. @.1)
=1

If both terms above are divided by u?, then the square of the coefficient of variation of the

incidence of disease over the risk factors is obtained as

> p, -}
=1

[+
S I’p, - p}
= =1

7
Hi
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To estimate k* from a case-control study, the following observations were made by

Begg et al. (1998).

q: = P(RJD)
_ PRHPDIR,)
PD)
- _pdi (2.2)

ZP:L‘
=1

Hence,
V. +Xx, X;
~ _ _n¥m n,+m,
;=
i Y+ X X
pr n+m y, +x;
X
— __n+m
[>4
X
n+m
=1l
X
= X (2.3)

Also, the incidence of disease can be written as

[, = P(DlR,)
_ P(D)P(RID)
P(R))

Hig
L (2.4)

If there are multiple risk factors the above may be written as
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[(7) = P(DIT)
= PAD)PCTID)
P(T)
_ #rq1(q2191)(g519291)---(qrlgr19—2---q1) 0s)
pi1(@21p )Y oslp2p1 ) -- @D 1P r—2---P1) 2.

where 7 represents an array of risks. This study will concentrate on the case of only one risk
factor or more than one independent risk factors. The square of the coefficient of variation of

the incidence of disease over the risk categories for one risk category may be written as

ZEP:‘
k==
Hr

replacing /, with the above expression in Eq. (2.4) gives,

k* = o
Hy

-1

= 5 (26)

An assumption that will be made is that the disease is rare in the population; therefore,

p: = qcon,. This assumption can be seen from the following argument.

PR;)
= P(RID)P(D) + P(R,no D) P(no D)
= P(RID) x0+P(Rjno D) x 1
= P(Rino D)
= qecon;
The theory from this point on will assume that p; = gcon,; unless otherwise stated. Begg et al.

(1998) proposes a method to calculate k&* for the entire population by using the standardized

incidence ratio, S, which is the overall incidence rate of second occurences of the disease. In
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the notation above, this would be calculated as

4
quli
S_ =1

Tt
pr[i
=1

Z[EP(R,LD)P(DtR,)
D)

J PR ID)PR, N D)
) ()
PD)
5 PRID)PRID)P(D)
P(R;)
PD)

_ Z P(RD)P(RID)
=1 P(R')

=1

=1

2.7

3 ]
-3 %
et D1
=1
so it can be seen that there is a relationship between S and k3, that is
S=kK+1. (2.8)

S is an estimate that may be available from data bases that record such data for different
diseases such as cancer registries. Using this approach, & for the entire population with
respect to all risk factors, known and unknown, can be calculated. If an estimate of &2 is
calculated from a case-control study in which there are several risk factors, it may be compared
to the overall £* = S — | obtained from an appropriate registry. If the estimated 42 is smaller
than the overall £* this may be an indication that there are more risk factors than the
case-control study considered.
The following assumptions are made in deriving &°:
1. The second occurrence of the cancer is distinguishable from a metastatic spread
of the first cancer under study.

2. The fundamental risk status of a patient does not change due to the diagnosis of
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the first primary.

3. The factors that affect risk of cancer incidence do not affect subsequent survival.

2.2 Begg’s Nonparametric Estimate of k2

Begg et al. (1998) argues that the statistic, k2, is biased and is an inflated estimate of
k?. This is shown to be true from the simulation study provided in this study. In order to
estimate k>, Begg derives an expression for & by first simplifying the problem with the
assumption that cases and controls are distribution free. He divides a continuous risk factor
into risk categories by ranking ¢ controls into ¢ + 1 risk categories according to the rank of the
control’s level of the risk factor. He makes the assumption that the risk categories are
uniformly distributed with respect to the risk factor. Therefore, the probability of an individual

To see this in a more formal way, it can

in risk category i, is P(risk category i) =p; = cil .
be shown that the probability of each risk category can be represented as a length, £(Z,-; — Z;)
on a real line between 0 and 1, where Z,, i = 1,2,... ¢, is a set of ordered statistics from a

uniform distribution on the interval (0,1). The probability density function of the i* ordered

statistic, Z;, i = 1,2,...,¢, 18

8G) = Gy prFE T I - FEn) )
= l)(iéc—i)! [z.]7Y[1 -z 0<z <1 (2.9)
=0 otherwise.

The expected value of Z, may be readily calculated as given below.

1
— 21C! ~ 101 e e . — i
EZ.) —{ ey e =

As can be seen, E(Z,-, —Z,) = &L -~ —— = L Also, E[(Z,-1 — Z;)* ] will be used in the

e-1 c+l o+l

derivation of the estimate of & and is given below.
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(%]

E[(Zin - Z:)*]
= WNZwy —Z) +[E(Z0 - Z)]*
= W(Zs) + W(Zi) = 2COV(Zi1 Z,) + [EZ ey — Z2)]?

Notice that the variance of Z, can be estimated as,

(Z:)
= E(Zz) —E(Z')2

L

i T zic! - Ti- c=t I

I (l—l)l(c l)![zf] l[l _"i] dé:“j (i—l)[c('c—i)![/'i] l[1 —Z;] d.;.:
0

_ i+l p
CcrDC+2)  (e+1)
i(c—i+1)

(c+1)(c+2)
and the COV(Z.,1Z;) 1s

COV(Z.1Z,)
= E(z,.12~) ~ E(Z:1)E(Z)

_ J‘J‘ ziqz ezl (1 =z ) dz.idz, — i(i+1)

(-Dlc—-i-1)! (c+1)?2
— i(c—1i)
(c+1)2(c+2)
Therefore,
E(Zi+l—Zt)2
= WZin)+W(Z))-2CON(Z,-12,) + [EZa1 — Z1)]*
o G lYe—d) | de—itl) e~ L1
Cc+1)3c+2)  (c+1)3(c+2) (c+1)2c+2) (c+1)°
2 (2.10)

T rD(c+2)

From the above discussion, the average “length” of a risk category corresponds to the expected

-
-

(e=1)(e=2)

value of an individual belonging to category i, that is E(p;) = —— and E(p*) =

c-1
Begg makes the assumption that within each risk category the ratio of ¢, to p, remains constant,

that is, r; = %. The distribution of the cases are assumed to be multinomial, with parameters
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M@m;q1,q2,...,9:). Similar to a Baysian approach, Begg treats gq,, i = 1,2,...,c, the

parameters of the multinomial distribution, as a random variable. The first two moments of ¢,

are given below.

E(q:)
= E(rp:)
_ 1
= r, — (2.11)
and
E(g?)
= E(rip?)
- 2E(?)
2 (2.12)

e+ D(c+2)
Again with a Baysian approach, the distribution of the cases is now dependent on the
distribution of the parameters ¢,. To calculate the expected value of the cases, X, the

expectation must be conditioned on the parameters, that is,

ECX))

= E[E(Xq.)]

= E(mq,)

=mkE(q,)

= mr,—— (2.13)

and
EX?)
= E[E(X7lq.)]

= E[V(X,Iq,) + [E(-Xr[qi)]2]

= E[mq.(1 —q.) + m*q;]

= mE(q:) —mE(q?) + m*E(q})
= mE(q:) + mE(g})(m - 1)

+m(m —1)r? (C+1)2(c+2). (2.14)

— 1
=M
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Notice, that
k2
N9
=27 1
=1
=D pri-1 (2.15)
=1
and

Solving Eq. (2.14) for r? and substituting it in Eq. (2.15) gives,

_(c+1)(c+2) ony  (c+2) )
P = 2m(m — 1) EQ) - m—1) (2.16)

and

k* = Zc:pir,z -1
=1

N, [+ 1)(e+2) forn e+,
- lei 2Zm(m —1) EX) - 2m—-1) ) -1

%, (c+1)(c+2) 2\ (c+2)

- Zp' 2m(m —1) EXD) Zp,r, 2(m - 1) -1

- (62:;181(64-2) Zp L) —Z m 2(((:,:-7) - L (2.17)

Begg replaces E(X?) with x2 in order to apply a “shrinkage” factor to the estimate. Also, Begg

replaces p, with its empirical estimator to give the statistic,
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72 _ (c+1)(c+2) (e+2)
ke = 2m(m —1) Z-‘lc+1 Z”’ 2m—1) -1

_(e+2) Zr,(x, 1)-1. (2.18)

T 2m(m - 2m(m —1)

If there is more than one control per risk category, which is the case in an actual study, then the
controls within each risk category are assumed to be uniformly distributed. Again, within each
risk category, the controls are assumed to be a set of ordered statistics, Z, j = 1,2,...,y;,
i=1,2,...c. The same argument as above may be used here to derive the estimate for £(p,).
Now the average “length™ of the i interval will be as large as the number of controls in that

;ih

interval, or the expected value of the y? ordered statistic in the i* category, that is

Vi 2y = _ Vil +y:)
E(p:) = and E(p;) = Gt Dm<2) Now we have for the expected value of g,
N = N\ = Fi _ 2 - Yi(l+y:) :
E(q:) = E(rp:) = r Py and E(q?) = E(r’p?) = r? CEDCIDR Replacing these

expected values in the expected value for X7, gives

EX?) = mE(q:) + m(m — 1)E(q7)

Y yi(l +y.)
7 tmim =1y (n+1)(n1-2) (2.19)

= Mr;
n

and solving this equation for r* gives,

2 (n+1)(n+2) o
T yi(l+y)ym(m—1) [E(X",) mreo ] (2.20)

Begg’s estimate for k* then becomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

TR (n+)(n+2) [
ks “Zpi yi(l +y,)n’:(m—1) I:x - 1 ]}—1

=l

- (n+1)n+2) Z _ X yi{n+2) —1
m(m —1) y,(l +y ) - m y,(l+y)m-1)

(n+1)n+2) 2 yi(n+2)
m(m—1) Zy,(l-!—y,)(n+1) ' Z”’}(1~i—)«',)()71—-1) -1

(n+2) Zc: xx-1) (2.21)

T m(m—1) — 1+y;

2.3 Maximum Likelihood Estimate of k2, k2

The maximum likelihood estimate of the parameter & can be calculated from the
likelihood function associated with 2. The probability distribution of the cases is, as stated

above, multinomial M(in;q,,q>,...,q.) i.e,.

|
PXi =xi,....Xc=x]= _"‘1‘7‘11 g5 ... (L—q1 —q2--- —qea)™

xl'Y.‘"....

and the probability distribution of the controls is also multinomial M(n;p1,p2, ...,pe), L€,

P[Yl =y1,---. 1c =}’c] = IW—P‘V ..-(1 —p1—p2 - —Pc—l)‘v‘-

The hkelihood function is then

L{g1,q2,---,qc,P1,D2,y - s Pel¥1,X2, o0, X0, V1, V2s - s Ve )

m! N
= —— (1 - e — (g )RR R
xilxal... x. Iql q" - ( q1 —q:z gc 1)

S PUPE - (L=pr—paes = pen) s

and the log likelihood is

]‘nL(qlquy "',QCyPl:pzr"' ’pcl-xly‘rZ, "'7nyy11y27 v >yC)

= mﬁ!—rr +x1lngy +--+(m—x; —x2--- —xec1 )In(1 —q1 —q2-+- —Ge-1) +
Al 4yilnpy + -+ (M =y1 —ya- — Yo ) In(l = p1 = p2-- —pot).

yibalooye!

Taking derivatives of the above expression with respect to p; and g; for i = 1,2...,¢, and
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setting them equal to zero, in order to solve for the maximum likelihood estimators, gives the
following,
6;1 [nL(ql:([-ly"'qu:plvpz’"'apcl'tlv'tzy"'"r67y1:y27"’7y6‘)
= X1 + m—Xy —Xo2--- — X1 ,_1)
9 l—gi—qa2- —qe1
=0
and
X1 _ Mmoo Xp X — Xed
v l1—q1—q2 —qea
_x(l—-g1—ga---—qc)
A = =X =xXa2 - =X -
Likewise,
a;” lnL(qI’qza'“aq::’phPZ;---,pclxl,x'ly---,xc,})l,yz,---,yc = 0
ga—lnL(qx,qz,.--,qc,pl,pz,.-.,chrl,xz,-..,xc,yx,yz,---,yc) =0
q2
6(1‘:_1 IRL(G1,G2, e, §erP1: P2 - P 1, X2, oo, X, V1o V2, - s V) = O
6;1 InL{gi.q2,---.9c,P1. 02, --- . PelX1, X2, ..., X, Y1, )2, ..., ¥c) = O
api—l INL(G1,G2, oo, Gor D1, P2s s Dl 15 X2, oy X, V1,V 25 oo, Vo) = 0
and
_xa(l—qg1—q3--- —qec-1)
92 = m—X;y —X3--- — Xe-1
_x2(l—gq1—g2--- —gc2)
9e-l = T —X| =Xz —Xez
_{d=pa—-p3--- —Pe1)
P n—yr—ys- —Ye-l
2 =—p1—p2---—pc2)
Pe-1 n=yr—yz-- —Yez
Now

there are c¢—1 equations and ¢-1 unknowns.
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q1,92,---,4c-1,P1,P2.-..,Pe—1 We get the following,

Qr
—
|

X
N

|
3)

Vel
7

ﬁc—l =
Therefore, the maximum likelihood estimates are the sample estimates.

likelihood estimate for &° is

2
i

-1

£

e}

(o3
;}2_2:
=1

The maximum

(2.22)

Another important aspect about our estimate i1s to determune if it is unbiased. If it is an

unbiased estimator, then we know it has minimum variance for all unbiased estimators. The

asymptotic expectation of I“czlql, 2,---2qc,P1,P2.--- D Will be denived in the next section.

2.4 Expected Value of k2

Begg’s estimate, lhcg relies on assumptions that may not be realistic.

Also, the

statistical properties of 1},3, are not known. A simpler and more useful approach is to use the

~

q:

maximum likelihood estimator k* = > =t —1 where g, and p, are the maximum likelihood

=1 P7

estimates of g, and p,. In this section, the expected value of the maximum likelihood estimator

(i) =E(Zg_f_1)
=1

will be derived for the asymptotic case (i.e., assuming that » and m are large).
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52 -2
Let v, = g—‘ then E(¥,) =E(-§—’) =E(§1§)E(#) because ¢, and p, are

t

independent. The exact distribution of £ (ﬁ—l—) is given by Stephen (1945), but an asymptotic

approach similar to that used by Gupta (1975) will be used here.

()
rEn

~ -~

where, p, =p\ +pa+ - +py + D1 + - +Pe =1 =P,

E(—l - )
I —p,
- i
= > =5 )
-VJ=0 l-‘pl

=ZP(YJ=)"I)(1_I&)

¥=0 n
Since there is a positive probability that 3 can equal 1, therefore, making the
denominator zero, a small arbitrary constant e will be added to the total number of controls, n.

This gives

L )-% _ . 1
E(l-ﬁ,) =§P(Y1—y,)(T—_—yJ—).

n+e

Expanding the denominator in Eq. (2.23), the expression may be rewritten as
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ZP(Y = y)—5—

}/-0 n+e
) }"2 y3 yl
= PY, =y)| 1+ + L+ L L ...
24 ¥ ”)( (n+e) * (n+e)’  (n+e) <n+e>' )

—ZP(Y J’;)‘*‘ZP(Y }'y)(nJ_e)—ZP(/ ¥ (——;—)7‘!'

yi=0

¥
(n+e)

i
“rer(te) oG ) el )+

E(Y,) +E(1ﬂ) .. .+_E_(Zf_+

(n+e) (n+e)? (n+e)

If n > ¢, the moments of ¥, , are given in general by,

E(Y}) =(n+e)(n+e-1)—-(n+e—t+1)p'+
A+2+--+t=1)n+eX(n+e—1)--(n+e—t+2)p ' +O((n +e)2).

Dividing the above expression by (n + ) gives

E(YY)  (n+e)(n+te—1)--(n+e—t=1)

(n+e)f N (n+e)t P+
A+2+---+r-1)n+e)n+ e—~1)--(n+e—1+2) ,_14_ PR
nte) O((n+e)™)
_(n+e) (n+e—1) (n+e— (t—1))
T (nte) (n+te) we BT
t(t-1) (n+e) (n+e—-1) h+e—(0-2)) -
2(n+e) (n+e) (n+e) (n+e) pf[ O((n+e)™)

- (1— (”'}'e) )(1 B (nf—e) )-“(1 - (rIt:—le) )p
;E;;‘*'le))(l—(”}“e))(l—a%a)m(l (n ))p/l*‘O((Hﬂ—e) )

neglecting the terms which have a power of n greater than two in the denominator gives,

E(Y)) _ 1 2 —
(n+je)’ :pj—(n+e Taret o F n+e)p1
(t—1) 1
2(n+e)/
t_ t(t—l) L, [([—1) z_—-l_ (2.24)

=4 2n+e) 7/ 2(n+e)p/
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If n < ¢, all of the terms are excluded because they are either zero or have a term with a power
of n greater than 2 in the denominator. The expected value, £ (#) , can be written as
%
(15)
1 —p,

Eyy  E(T) . EX)

EE T nve)r T (n+e)

=1l+p,+p?~ (mzm)p} + (ﬁ)p,

e~ (e Joi+ (g Jort -

S (o (s

An approximation sign is used in Eq. (2.25) because the terms in which the denominator has a

=1+

1

power of n that is greater than or equal to two are assumed to be close enough to zero to be

ignored. Calculating the sum above, one obtains
i’:; > (545 )+ (55 )er
" Z(z(nw) p;) +Z(7(,f—ie)op "’f)

t=0
— 1 _p2 62 ( 1 ) 5 ( 1 [)
T—p, 2 gp? e\ 2m+e)t’) "Pgpr “p; = 2n+e) s

52
G'P

i (seraa=ay ) s (eraa=ay)
p; D epr \2mre)d-p) ) P pZ \ 2+ e)(d-p))

= 1 — —p_] A
-1 _ pj - P, _
l=pj (m+e)-p) (n+e)(1-p)°
=1 i : (2.26)

l—p;  (n+e)l-p)*
Since p; = 1 — p,, Eq. 2.26 may be rewritten as

1, (d=p)
Pi (n+e)p}’
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For large n, the small constant ¢ may be ignored. From the above, it is evident that the

maximum likelithood estimate is bias, that is,
E( q: )
D
= E(G? E(—}—)
@:) 2
- E@G? E(—l—)
@OE 15
= (V@) +(E(21,>)2)E(—-%—,)

- (qx'(ln-l-‘h) quz)( )
i
N7

- 2(-9) g q)(l—p) q(l—p)
mp: mnp; np;
Therefore, the asymptotic expectation of ks
- = g2
E(k*) =E 4
=t P
[
(Eals)
S(a(-g)  a(-g)0=p) g , gi(l- )
= —1. 22
Z( mp: mnp? v np; @27

If this estimate were unbiased, then the expectation of the estimator would equal the

parameter it estimates. In the case of &* this would be £(k?) = (Z Z_: - 1). From the

above expression 1t is possible to show that the bias 1s

Z”:(q(l q:) , @:(1=g)(1=p) q,app)) (2.272)

nt 2
e Pi mnp:- n

and an estimate of the bias 1s

i(c}a 4 , 401 =3)(1-p) , gl p))
mp, mnp? np?

=1

The simulation study shows that this is a very good approximation of the bias of K.
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The asymptotic variance is developed in Section 2.5 using both the 2-D Taylor series
approximation and the delta method. The next section investigates the asymptotic expectation

of Begg’s estimate.

2.5 Expected Value of k2

Begg did not develop an expected value for his statistic, so an approximate expectation

is derived below. Begg’s statistic 1s,

'1::2 __n+2 Zc: Xi(x;—1) —1 (2.28)

&7 m(m —1) — 1+y

Therefore, the expected value of ITcZ; may be written as,
72\ _ n+2 XX — _
E(kb) - (m(m—l)z 1+Y 1)
_ _n+2 XX —1)
_m(m—l) (Z T1+7Y, -1

= %ZE(X,—(X, - 1))E( - J:Y ) -1, (2.29)
=1 i

m(m

where X, and Y, are independent binomually distributed random variables with parameters
m,q; and n,p,, respectively. The last line in Eq. (2.29) may be written in such a way because

of the independence of X, and ¥,. The following is an approximate expression for

1

(5

Expanding the term, ] 41—y~ , the above can be rewritten as,

L) =S ey, = py—L
Y‘)"VZA;P(Y' YTy,
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w

1

- 1
= P(Y: =y:)
; 1+y,
=D P =y )(A =y +yi =y + )
y=0
=D P =y:) = D_pP(Y: = y) + 3 yPP(¥, = y;) — -
v=0 yi=0 =0

= 1 —E(¥:) + E(7?) - -~

Since, ¥, has a binomial distribution, with paramters », p,, the moments may be written in

general as,
E(Y;) = np;
E(YY) = n(n~1)--(n -+ 1)p!
+(A+2+--+t-Dn(r—-1)--(n—t+2)p" +O®n"?2).
Hence,

1
E( 1+7Y, )
= 1-E(V) + E(r}) — £ )+
=1l-np,+n(n—1)p? +np,—(n(n—-1)(n-2)p> +(1 +2)n(n - 1)p2) + ---

After some cancellation of terms and ignoring any term of order (#°*), the above can be

rewritten as,

1
=1-2n(n—1)p>+5n(n—1)(n-2)p¥ —9n(n-1)(n—-2)(n-3)p}---
~1 +Z{(@— 1)(—1)"l(n(n 1) (n—t+ 1))pf}. (2.30)

If the numerator and denominator are multiplied by n‘ then Eq. (2.30) can be simplified

further. As such,
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- Z(t(tH) 1)( D*Y(nn - 1)-- (n—z+1))z_ip5

=1+Z(t(t«~1) 1) yert (= 1)- ”(n 1)

1+Z(t(tr1) 1)( etan=l  n=ttl i,
)

1+Z(’(’*1) Hen=(i-H)(1-2)- ( ))(np)

=2

(-1

The above can be written as

2(+3,)
(e (- - R - ) e

=1+i(——’(“2’1) )0 (1- L ) oyt

=2

— —1 2 2,2 2,3 3,3 3,4 4 5,5
=1+ ————(2np? +2n~p; + Sn*p; + Sn°p; +n’p? +4n’ .
(l-i—np,)s( D 14 14 P )4 n'p; +n’p;)

Therefore, the approximate expected value for the statistic proposed by Begg is,

E(k3)
_ _n+2 N 1
- m(’:n—l) ;E(X'(Xi—l))E(l+Y,- ) -1

= 222N L(FX) + (B(X))? - E(X))
=1

m(m—1)

1+ ——=L _ (“2np? +2n2p2 + 5n3p3 + 5n°p3 + n3p* + 4n*p? + nip’ )}-—1
( (1+np-)5( I P P; p; +n°p; p; +n°p7)

= n](’1m+71) Z{(mq,(l q: ) +m q, mq; )

(1 + a—;‘r}I)T(—znp}' +2n%p? +5n%p? + 5n3p3 +n3p} +4nip} + ndp? ))} -1. (231
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2.6 Asymptotic Variance of k?

In order to develop the two dimensional Taylor series approximation for the variance of

ol 8

k2, each term in the expression for k2 will be approximated separately, that is, let g; = z

t

then,
ogiu) (U) og(1)
8 =gi(p) + 54 —=2=(: —q.) + b —=2==(p,; —p.)
where g(u) = : . If we take the variance of the above expression, we obtain

" i)sV(gl(#H g'(‘,” G —q:)+ g'(“) —====(p, - pf))

e + V| Efl .- qa) . V( %) 5, - p)y)
+2( 2 ) (2841 Yoy, p)

oq; i

=(5_ng‘).)2{/@, q,)+(%p@”) V(p: —p:)

I

- z( "%;f” ) (2848 ) com.. b
(B (392 core

Since g, and p, are independent, the last term is equal to zero. Hence,

g = () v + () v (232)

Each term in the above expression can now be calculated.
o i 1 —Hi

Py = 2L bl )
- (1 —q;

ZCORE =D

og _ 20
69, b

og. - -4
0q; P
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Therefore,
c ce-l1 ¢
e ) -3 rer+23 3 coag)
=1 =t =-1

where,

COV(g.ig;) = E(g.g;) — E(8:)E(g))
EE{(gi(#) + %8G =q.) | 38u)(Pi —p.) ) g

aq; ap:
(8w + B a) . gf(”g{;j{ =20 )} - EgoGe)
_ ( 98:1) )(coj(#) ) vn a (ag,-(#) )(ng(u) ) .
(g ) cortga)+ (P58 ) (2L ) cor.i).
Since,
covg. f],) = —q CI,
and
covp.p,) = -2,
then

V(i) =p(2g,) -3 (4Gd -9 | 5ie0-p))

= pim pin
c-1 L e
4q9.9,(-q.q;) . 49:9; (-p:p;)
+2 S i -+ {, = R 233
ZZ( oo e (233)
=l =~1 e

2.7 Asymptotic Variance of k2

An asymptotic variance for Begg’s estimate may be derived in a similar way. Recall

Begg’s estimate is

fr 2 N XX -1)
kb—m(m—l)gl: 1+7, L

Xi(Xl -

Letg:, = ¥ +11) , then
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VX:) = m(g:(1 —q.))

V(Y:) = n(p.(1 —p:))
COVX.X)) = -m(q.q;)
COV(Y.Y;) = —n(p.py)

and
og: _ 2X:—-1
alYi - Y,+1
o8 _ X%"'/Yt
5Y, - (Y,-i-],)“
Now,
326.) = 523t ) et e+
=1 =i '
Z(-(’f—;%) 1 -p) +
c-1 c ZXi—l __X
2;;(( Y, +1 ) Y, +1 )( m(qij)))
c-1 ¢ XI_X )
2;,_12_( (Y +1) )( (Y +1) )( (PIPJ))) (2.34)
Therefore,

XX, —-1)
V(kb) V(m(m—l) 1+7, —1)
_ 2 XX —-1)
-(m(',',f-l) (Z T1+Y )
2 -
_ (mg:_ 1)) V(; g,) (2.35)

where F(g;) is given in Eq. (2.34).

2.8 Variance of k? Using the Delta Method

The delta method, as outlined by Bishop, (1975) can be used to develop an expression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40
for the variance of k>. The method uses the first two terms of the Taylor series expansion to

approximate the function f(.X) of the random variable X with mean p, that s,
0 = o)
— + A~ T~ X_' -

Taking the variance of the above expansion gives an approximate expression for the variance of

S0,

rge0) = V(s + L oc- )

This idea can be expanded to a function # with multiple random variables in the following way.

5_1{ )

5 3 A YY)  COVXY) COV(XZ) o)

V(X Y.Z)) =[ ({((5)) ‘;/((}‘f)) ‘g((.lzl)) } cCovrx) KY)  COI(YZ) ‘:3(;‘7)
cowzy) Conzy) WZ) )

ETA)

For k? there are ¢ categories, so there are 2¢ random variables. The asymptotic variance can

then be calculated by multiplying the approprate matrices, that is
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6(q1) 8(gz) T 8qc) o) G(p2) T 6(Pe)

q)  COV(q1gz) -.- COV(:1qc) 0 0 0 Y
COV(G2qn1)  W@G:)  -.. COM(G2dc) 0 0 0 0

W) = | 0B _gE ok*_ gkt _Ok° ak? ]x

COV(Gequ) COV(3eqz) -  ¥(ge) 0 0 0 0
0 0 0 0 Ygr) COV(pipz) ... COV(pipe)
0 0 0 0 COV(ppr)  Vipz) .- COV(pzpc)

0 0 0 0 CO¥(pepr) CO¥(pcp2) ... V(be)

Substituting the appropriate expressions in the matrix above gives

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




v(i:)=| 24v 24: | 23 -3 & cE |«
L 2t P2 Pe o P2 Pe
[ $(1-q) -4132 ~§19c ]
= g2 | 0 0 0 0
—q2q1 q:2(1 —g2) 724
SIS U~ S o o o
=G —gcq2 ge(1-4c)
m mo o om0 0 0 g
pi(l—p1) =pp2 —p1p
0 0 0 0 n n —En&
—pap pal —p2) —~pept
0 o o o BUZEY  é
—pepi —pep2 Pl —pe)
B o o o BE opo) |
- 2._‘ —
yA
272
22
29
Pe
3
21
-2
¥ 23
i
pe |

and

V(;}z)=2{( 1-g. )Zi q,(l—p)}
23 3 (45t - S50

=l =+l

which is the same as the expression for the variance in Eq. (2.33).

2.9 Expected Value and Asymptotic Variance of In (I::z + 1)

The expected value of ln(lﬁc2 + 1) may be approximated by a Taylor series expansion

about the mean, k3.
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f(&) = (& +1)

\ oRk3) /74 of(k3 2
.z_ln(k5+1)+-a—'g%§—)(k~—k%) 7"({2 "))2 (B -13)" (2.36)

Taking the expectation of both sides of Eq. (2.36), gives the expected value of ln(l:'2 + 1) as

follows,

E(n(l2+1)) = E(ln(ko "f( °) (-13) + 2"({2"")) (k2 -12)? )
2(k2 (( _‘I‘O))

=InZ+1)-—L1 (k). 237
Y PuTe: (k) (2.37)

_m(k0+1)f E(2 k) - ———
0

The asymptotic variance of In(fc2 + 1) may also be approximated by the first two terms in a

Taylor series expansion about the mean, k3.

f(2) =m(k2+1)
L2
= In(k2 +1) +%"j’—)(é2—k§). (2.38)
pYE

Taking the vanance of both sides of Eq. (2.38) gives

V(n(k*+1)) = V(ln(k%+l)+@(icz—k§))
(k). (2.39)

(k2 +1)°

2.10 Asymptotic Expectation and
Variance of ln(ir,z +1)
=1

The underlying assumption in the sum, }:111(!},2 + 1), is that the IAC,Z, i=1,2,...,care
=1

independent of one another. The expectation of 1n(1::,2 + l) is the sum of the expectations
=1

of In(k? +1) fori = 1,2,...,r, thatis,
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E(g n(&2 + 1)) = gE(m(&}+ 1))

Z(m(kz +1)- 2T V(i )) (2.40)

=1
Similarly, the variance of > In(kZ+1) is the sum of the variances of In(k?+1) for
=l

=12 .. r,

p(gm(ic,zﬂ)) =iV(ln(icf+l))

Z( G (& )) (2.41)
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CHAPTER 3
ASYMPTOTIC DISTRIBUTION OF &2

The distribution of k2 is different depending on whether or not the cases and controls
are distributed the same throughout the categories of the nisk factor. There are two possible
situations. First, the risk factor under consideration is not truly a risk, that is, the cases and
controls have the same distribution and second, the risk factor under consideration is a risk,
meaning the cases and controls are distributed differently. These two cases will be treated

separately in the following sections.

3.1 Asymptotic Distribution of k2 given the Factor under
Consideration is not a Risk Factor

The distribution of ;:2, if the nsk factor under consideration is truly not a risk, can be

. -1 2(m+ . -
shown to be asymptotically Gamma( € 5 1 , (”m 7 ") ) where ¢ is the number of categories

in the case-control study.
A case-control study is represented as in the table below, where x,,y,,¢,, and p,
represent the cases, controls, percent of cases, and percent of controls in category i

respectively.

45
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Table 3.1 Data Representation of a Case-Control Study

, Category,7 | Cases, x, ; Controls, y, | Percent Cases, 7, : Percent Controls, p, !
1 x ! i Q=3 b1 =% |
: 2 X2 f Y2 L G = P2 =% |
h : : i : ; : :

l ¢ | e | Ye ‘ ge = 5 pe = %

' Total ; m ; n 1 1

oS EE
=1 p:
= Zc: (é! tﬁt)z
=1 pi
— i ”lz(qr Pr)2
p)
=1 m:p
- Z (mgi —mp.)~ —mP )®
mip
= ._1_2 (I, —MPi)" (3 1)
m mp, : :
Theorem 3.1 k2 has a Gamma( = === ==
‘_(m r!)
parameter =
Proof:
From statistical theory, it is well known that for large m and n, Z"’i 7% (c—1),

=1

Z Lo’ 2 - 1), and 3 S +Z e’ 22(2¢ - 2) (Bishop 1975). If ¢, and p:

np;

=1

Vi

are estimated by §; = p, = ==, i = 1,2,...,c, then,
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(x: 1(}!)~ 67 ‘1)2
2 g, +Z T

Xity: T 0 S
- Z ( r'l:l_;-ln ) Z (y, L _*z_;’n ) 1. 3.2)
mersn =1 nyrFn

, implying that (2% )k'- has a
chi-square distribution with ¢ —1 degrees of freedom , multiplied by (Z2), which is

c=1 Unrm)

equivalent to a Gamma( >

) . From Eq. 3.2 it is seen that

(ommiesht)’ g O mn3i)”

Z mJ-n _LZ Vi m+n
x, Xi Ve X: Xty
m+n P ervn

x(m+n)—m(x;+y,) yim +n) —n(x, +y;) )2

=ril( m+n ) +ZC:( m+n

X; +y; X+,
= m+n m+n
¢ (xn my,)~ (y, nx,)

- 2 m+n +Z m+n

Xty x: X +Yi
=1 m+n m+n
m 2 m 2
X~ g Y 2 F = n Y
. m+n m+n
= + E
2. IR 73 P73
=1 m+n m+n
~ nd
of Xi—mp, \~ of X, —mp; \*
=, nn ( m+n ) +mn ( n+n
- X;+Y;i
=L e R
x, —mp; \*
oem (e
= x - =

\
c n- & 2
— Z T R 4
X; +Y;
M +n

= n(rf _mp )b ~ A
Z m(\:, +yi) G.3)
Under the assumption that the cases and controls have the same distribution, x, = ",’1—’}%, and

Eq. (3.3) can be expressed as
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3 nG—mp.)?
pr m(x; +y;)

n(x, —mp;)*>
m .
=1 ”l( nJst +}")

n(x, —mp,)*
-3

= m(Fyi+y0)

Z n(x, —mp,)*
my,(””'”)

=1

_ zc: n(x; —mp;)*

m(m +n)p,;

n Zc: (x,—mﬁ,)z
(m+n) & mp,

= n 72 2
CEY)) mk=-. (34)

2(m—~n)

Therefore, k2 is Gamma ( <=L
2 2 bl mn

To show that 220 1) is a Gamma( et 2('"—'")) the transformation of

variable technique may be used. Let 7 be a chi-square with ¢ — 1 degrees of freedom, that is,

T~%*(c — 1). The probability distribution of T is given by

where, ¢ = <5~ and B =2 Let = —Mmn__j2 and dr = . , so the probability

distribution of &2 is

a—l ——_—--—
( mn /}2) e B
22y _ (m +n) 25
1) = TP RN

mn /‘cz
(m +n)

(l}z)a—le- ﬁ 72
(m+n)\*© k=
r@) (52 )
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This distribution is Gamma(a, B* ), where @ = <5 and = )l
The simulation study confirms the above theorem. Table 3.2 presents comparisons of the mean
and variance of &* from theory and simulation. A full explanation of the simulation study is

given in Chapter 4.

Table 3.2 Comparison between Theory and Simulation Concerning the Mean and Variance of &°

, k*=0 : . Simulation | Simulation - Theoretical Theoretical

! Sample | Sample  Sample | Sample = Average Variance

. Sizem | Sizen ! Average | Variance :

100 100 ;008203 . 0003963 ' 008 |  0.0032

500 500 . 001574 . 0000123 @  0.016 ~  0.000128

' 1000 ' 1000 | 0.00855 ' 0.000037 | 0008 . 0000032

3 3000 . 3000 . 0.00257 : 0.000003 |  0.0026 0.000003 !

5000 . 5000 | 000156 ! 0000001 | 0.0016 0.000001

50 100 | 012351 | 0008968 ! 0120 @  0.007200

; 300 § 500 . 0.02152  0.000225 . 0.021 |  0.000227
500 ; 800 | 001351 | 0000101 : 0013 .  0.00008
1000 | 3000 ©0.00532 | 0.000014 | 00053 0.000014
5000 © 7000 0.00137 0.000GOT ~  0.0013 0.000001

It is seen from the table that there is good agreement between theory and simulation. As the

sample size increases, the difference between the theoretical and simulated values decreases.

3.2 Asymptotic Distribution of k2 given the Factor under
Consideration is a Risk Factor

In the case where a rnsk factor is considered a risk, the distribution of

(x: —m‘}l)z the

-, 1 e (xi"mﬁi)z ) ) i R L <
k* = -3 £ s different because in the chi-square statistic, .
m m mgq,

= 1 =1

expected value of the cases in each category is not equal to the observed value, (i.e. since the

cases and controls are distributed differently, mp is different than mqg). The distribution of i
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is dependent on the degree of this difference. If the difference between observed and expected

1s very small, then k2 can be seen to have a noncentral chi-square limiting distnbution.

mn
(m+n)
However, if the difference is not very small, then the limiting distribution is N(u:, 02 )
(Bishop 1975). Considering the first case, ¢, is close to p;, a derivation of the noncentral

chi-square can be found as follows: It is seen from Eq. (3.4), (assuming x, = Z-y; or ¢, = p,)

that

< ~ -
2 = __nhm E : e —mp.)”

(m +n) p mp,

c - - A (2
_ nm (x.—mqg; +mgq, —mp;)
(m +n) Z mp;

(n—m )

Now k2 has a noncentral chi-square distribution multiplied by with a noncentrality

parameter of 22 Z (mq,mpmp ) , and ¢ — 1 degrees of freedom,

I}Z"“ZZ(C—I (”,+n) Z (”“L"’"p ) ) (3’5)

The difference between the p;, g, i = 1,2, ...,¢, must be small enough to keep the power of

the test statistic k®~y2 (c N Z (mq,mprtzp ‘)b) bounded away from one as n
increases (Kendall and Stuart 1979). The simulation study shows if there is an absolute
difference, |p, — q,|, greater than 0.025 for any one category of nisk, then the power is not

bounded away from one. This corresponds to a value for &% of approximately 0.006. Table

. 72 o (mq; —mp;)*
3.3 compares the power of the test statistic, A°~y% (c L, o2 Z 7 ,

simulated from the indicated populations of &, with five categories of risk when the size of the
test is @ = 0.05. Setting the noncentrality parameter equal to zero gives the size of the test.

The table gives the maximum difference between the parameters p, and g, fori = 1,2,... ,c.
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Table 3.3 Comparison of the Power of the Test Statistic k> for Various
Populations with Different Sample Sizes from Simulation

i ‘ !n=m=5000§ﬂ=m=7000§n=m=90005

1 Absolute | | :
ke Vaueofthe . 505 1 g_005  a=005 |
; . Maximum i i ;
| Difference ,
i —q.| : :
10.00000f 0000 0047 0051 . 0046
10.00100; 0010 | 0200 0270 | 0340 |
10.00196, 0014 | 0393 . 0524 | 0624
10.00324, 0018 ; 0622 . 0776 . 0856
/000400, 0020 | 0736 | 0870 . 0936
0.00506! 0023 | 0814 | 0945 0969
10.00625; 0025 | 0912 | 0982 | 0995
10.00702! 0027 | 0937 | 098 ' 0.999
.0.008121 0029 | 0969 . 0994 . 1.000
10.01600/ 0040 | 1000 : 1.000 ;  1.000
10.05000/ 0050 i 1000 . 1.000 .  1.000

From Table 3.3, it is apparent that the difference between p; and q,, i = 1,2,...,¢, must be
very small in order to keep the power bounded away from one. Therefore, unless k? calculated
from the sample is very small, it may be best to consider k2 to be asymptotically normally
distributed. If the number of risk categories, ¢, is increased given the same value of k°, the
power is reduced (Kendall and Stuart 1976). Table 3.4 gives a brief summary comparing the
sample mean and variance from the simulation study to the mean and variance of the
noncentral chi-square for the indicated populations with five categories of risk, sample size

m = n = 5000 and 1000 replications.
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Table 3.4 Comparisons of Mean and Variance from the Noncentral Chi-Square
in Eq. (3.5) and from Simulation

m =n = 5000 |Simulation i Simulation ' Theoretical | Theoretical

; | Sample | Sample . Average | Variance

P | Average | Variance - :

: 0.00025 . 0.0018 | 0.000002 : 0.00185 | 0.000002
0.00100 . 0.0026 | 0.000003 '  0.00260 . 0.000003

0.00196 © 0.0035 | 0.000004 i 000356 | 0.000004

: 0.00324 | 0.0048 | 0.000006 0.00484 ' 0.000006
0.00400 | 0.0056 | 0.000007 ° 0.00560 : 0.000007
0.00506 ' 0.0066 | 0.000009 . 0.00666 ' 0.000009

0.00625 : 0.0079 | 0.000011 : 0.00785 - 0.000011

| 0.00702 . 0.0085 | 0.000012 | 000862 : 0.000013

0.00812 . 0.0099 | 0.000014 i 0.00972  0.000014 |

5 0.01600 . 0.0174 ' 0.000026 | 0.01760 | 0.000027
0.05000 . 0.0505 {0.000100 .  0.05065  0.0000797

As can be seen from Table 3.4, the simulated variance starts to deviate from the variance of the
theoretical noncentral chi-square distribution when &2 is as large as 0.05.

Whenp, #¢q,i=1,2,...,c, and the difference is not very small, the distribution of k2
has a normal limiting probability distribution, N pi:, 0% ). Here, g3 is the expected value of

k2 that was derived in section 2.4, Eq. (2.27), that is,

2\ ~ q.(1 - q,(l _q:)(l —Pi) ﬁ . q?(l —P:) _
£(E) 32( o mn+ep: | P (n+e>@,)2) b

and 6. is given in Eq. (2.33) by

(i) 52(44?(%(1—%)) . 4.1 p)))
=1

p:Ncases plNcontrols
+2i Z 4q9.9,(-9.9;) - 4‘17‘1}'(‘1’:‘%)
e p.p;Ncases — pip?Neonrtrols )

From the simulation study, a bref summary is given below using the parameters
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p=1(0.2,0.2,0.2,0.2,0.2) for the controls, and q = (0.5,0.2,0.15,0.1,0.05) for the cases,

with &% = 0.625. Again, there are five risk categories and 1000 replications.

Table 3.5 Comparisons of Mean and Variance from the N (,u%;, 0'3_.,)

Distribution and from Simulation for Different Sample Sizes

. Simulation ' Simulation | Theoretical = Theoretical -

Sample Sample ‘ Sample | Average - Variance

'Size,m =n. Average ; Variance . '

: 100 . 0742 01283 | 0.725  0.1258
500 ! 0.647 | 00197 ' 0645 i 00185
1000 | 0634 | 00089 . 0635 . 0.0089
3000 ¢ 0629 . 00029 | 0628 ' 0.0029
5000 | 0626 | 00017 . 0627 @ 0.0017

The following table uses the same parameters as those for Table 3.5 with the exception of the

sample size of the cases and controls.

Table 3.6 Comparisons of Mean and Variance from the N ( [, 0% )

Distribution and from Simulation for Different Sample Sizes

 Simulation - Simulation : Theoretical . Theoretical

- Sample | Sample - Sample | Sample | Average ' Variance

. Sizem : Sizen | Average ! Variance ' : '

100 | 200 | 069442 - 0.0683 . 0.6952 = 0.0696
300 © 500 . 0.6546 . 00237 . 0.6498  0.0232

1000 : 3000 = 06306 = 0.0051 '@ 0.6309 - 0.0051
3000 | 5000 ' 06258 . 0.0020  0.6274 0.0021
5000 | 7000 | 0.6269 | 0.0015 © 0.6266 0.0014
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3.3 Asymptotic Distribution of In (I’Z'2 +1) and XIn (l?f +1)
=1

The distribution of ln(!tr2 + 1) is of importance if more than one risk factor is

investigated. As Begg et al. (1998) pointed out, the standardized incidence ratio, S = &= + 1,
is a measure of the square of the overall coefficient of variation of the incidence of disease over
all risk categories known and unknown for the entire population. If &2 is the square of the

coefficient of variation of the incidence of disease over risk 7, for i = 1,2...,f, where ¢
r
represents all of the risks and they are all independent of one another, then S = [ [(47 + 1).

=1

Taking the log of both sides gives

InS = M(ﬁ(kf+l))

=1

= zt:ln(lf:,2 +1).

=1
4
Notice, that the value of ¢ is unknown in practice, but an estimate of Y In(k? + 1) may be

=1

calculated from a case-control study by
Y (k2 +1), (3.6)
=l
where r is the number of independent risk factors included in the study. If the null hypothesis
is rejected in a test such as A, : Y In(Ak? +1) =InS vs. H, : 2 In(k2 +1) # InS, then
=1 =1

there is evidence that not all of the nisk factors associated with the disease are included in the

case-control study. In order to conduct such a test, the distribution of ln(lhc,2 + 1) and

> ln(l::,2 +1 ) must be known. Here, two cases will be considered. The first case will address
=1

the distribution of 3" In(k2 + 1) under the null hypothesis that all the risk factors are not risks,
=1
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thatis, H, : ) In(k? +1) =0 vs. H, : > In(k2 + 1) # 0. The second case will address the
=1

=1

distribution of 3" In(k2 + 1) under the null hypothesis that the sum of all the risk factors is
=1

equal to the parameter, InS, calculated from an appropriate registry, that

is,Ho : D In(k? +1) =InSvs. H, : Y In(k? + 1) # InS. For the first case, the distribution
=1

=1

of Zln(l},z +1), under the assumption that the null hypothesis is true, (i.e., % is not a risk
=1

for all i=1,2,...,r or alternatively, Zln(l??-f— 1) =0) may be found by making the
=1

following transformation of variables. As stated in section 3.1, ic," has the following distnibution

under the null hypothesis of no risk,

72 c—1 2(m+n)
s ~Gamma( 5 mn -

If Y=k%+1, then k2 =Y—1 and dk? =dy. Let the distribution of k2 under the null

4

hypothesis be represented by

5
. (&2)'e B .
k?) = dk;
&) = Ty

k> o.

where 8’ = 2—@—1”:;1—"). Making the transformation of ¥ = k2 + 1, gives
-1
—-1 tz—le ﬁ/
f0) = LRy, y> L

Now, let Z=In¥ = ln(l:'2+1), so that Y =e" and dy = e°dz. Making another
transformation of variables gives

(eF-1)

(e -1)*le B A

fz) = T B° e’dz, z > 0. 3.7
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Since we are considering the null hypothesis of no risk, l}f will be small and Z = ln(/‘;r,2 + 1)
will also be small. Consequently, we may approximate e~ with the first two terms of the Taylor

series about Z = 0, that is, e = 1 + Z. Substituting this in Eq. (3.7) gives

=
L@ B
.f(z) = F(a)(ﬂ')“ (‘-"i'l)d-, z>0
(z) (=)

_@e B @ B

dz
C(a)(B')* C(a)(B')*

= _Z_
_ L@+ 1) ()% B @)te B,
P | Taeng) = || T@@) =

N

From the above it can be seen that f(z) is approximately the sum of a

Gamma (a +1,(8")*Heh ) and a Gamma(a,B'). The goal is to sum the r terms that make

[(a)

up Y In(k2+1). If the risks all have the same number of risk categories, then an
=1
approximate distribution of ln(l;,2 +1) is given by
=1

Gamma(r(a +1),(8 )2%) + Gamma(ra, ). (3.8)

If the nisk categories differ for each risk factor, then the approximate distribution is given by

Gamma(Z(a, +1), (ﬁ/)zf(lg(—jz-)l)) + Gamma (Z a;, B ) ) (3.9)
=1

=1

Another approach is to use the moment generating function to derive the distribution of

-
Z:ln(lwr,2 + 1) under the assumption of no risk. The moment generating function for the

=1

random variable Z = In¥ = In{(k? + 1) is given, by definition, to be
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(et -1)
o oz _[efE—D*e B
Mz(t) = Migge.y ) = E) “OI T(@)(BN" T
_ (e —1)
) NCNCD)

Since the null hypothesis of no risk is assumed to be true, In(ic2 + 1) may be approximated

with the first two terms of the Taylor series about zero, that is, ln(/Ac2 +1 ) = /2 and

Mo Y B £ RN efc:(t,—l)(q)a—le ﬂ' 1d‘1}2
way @ =M = E(F) = [l
]

-t

@ 7

= dk*
;.: T(a)(B)*
e 1-B
— T (1}2) “'le B, dk?
. T@@)*
a1 - Bt

( 1 )“w (’A“q')a—lek, 'Bla e
1-p't F(a)( I _ﬂﬁ,[)

()

This is the moment generating function of that of a Gamma(a,B'). To obtain the moment

generating function of Zln(lﬂf,Z +1), the moment generating function for each k2,

=1
i =1,2,...,r, may be multiplied together since each of the i’f i=1,2,...,r,are independent.

Assuming each risk has the same number of risk categories,

Mzr: m(l}i-l)(t) N ( 1 —1,3[[ )m'
=1
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Alternately, if each of the risk factors has a different number of risk categories, say a,,

i =1,2,...,r, then

M ® ( ! ) ="
r L) = 7 -
3 (1) 1-Bt

=l
Therefore, if l},z i=1,2,...,r, al contain the same number of controls, #, and the same

number of cases, m, then the only change necessary is to sum the r parameters, a;,

i=1,2,...,r. Eventhough an approximation of ln(l::z + 1) was made in order to get a closed

form expression for the moment generating function of ) ln(l},2 + 1), the exact distribution
=l

may be used with parameters @ = Y a; and 8,

=1

3 (e -1)

a-1 _

/(iln(ff%l)) By S G R (3.11)
=1 r a,
(L )om

The simulation study shows Eq. (3.11) to be a very good approximation of the distribution of

> ln(l‘.c,2 + 1). Table 3.7 below i1s a comparison of the theoretical mean and variance to the
=1
simulated mean and variance of ln(lhc,2 + 1). Tables 3.8 and 3.9 compare the theoretical mean

and vanance to the simulated mean and varance of zb:ln(lzf +1) and zln(fc%'- 1),
=1 =i

respectively.
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Table 3.7 Comparison between Theory and Simulation Concerning the
Mean and Variance of ln(l‘é2 +1 )

k* =0 | Simulation ! Simulation ' Theoretical | Theoretical
Sample ' Sample Sample Average | Varance

| Size,m =n | Average ' Variance | .

; 100 | 0.0773 ' 0.003033 1 0.0757 : 0.002573
500 | 0.0156 | 0.000118 | 0.0158 . 0.001221
1000 | 0.0084 : 0.000036 | 0.0080 | 0.000031
3000 0.0026 | 0.000003 : 0.0026 ' 0.000003
5000 0.0016 ‘ 0.000001 0.0016 : 0.000001

Table 3.8 Comparison between Theory and Simulation Concerning the

Mean and Variance of ‘Z n(k*+1)
=1

k¥ = k% = 0! Simulation = Simulation | Theoretical | Theoretical

. Sample Sample Sample | Average Variance

Size,m =n| Average Variance |

. 100 ! 0.1611 0.008029 : 0.1461 0.004502

' 500 ¢ 00314  0.000266 0.0314 0.000236

' 1000 . 00159 | 0.000067 @ 0.0158 0.000062

3000 | 0.0053 0.000007 0.0053 0.000007
5000 . 0.0031 0.000002 - 0.0031 0.000002
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Table 3.9 Comparison between Theory and Simulation Concerning the Mean

and Variance ofi In(k*+1)
=1

k% = k3 = k3 = 0| Simulation | Simulation ' Theoretical | Theoretical ,

, Sample | Sample | Sample : Average . Variance
Size,m =n | Average . Variance ;
100 | 02404 | 0012319 | 0.2121 | 0.005955
500 . 0.0478 | 0.000407 , 0.0467 : 0.000345
1000 . 0.0248 | 0.000107 . 0.0237 | 0.000091
3000 ~0.0080 - 0.000011 -~ 0.0079 : 0.000010 .
5000 ' 0.0048 | 0.000004 ~ 0.0048 | 0.000004 .

From the tables it can be seen that the agreement is stronger the larger the sample size, as

would be expected.

Under the null hypothesis, > In(k* + 1) = 0, the distribution in Eq. (3.8), (3.9), or
=1
(3.11) may be used to determine the crtical region of rejection for the test statistic

Zln(l?c‘z + 1). The simulation study shows Eq. (3.11) to be the best choice. If the null
=1

hypothesis is rejected, then the next step would be to perform multiple comparisons among the

risk factors. The next section derives the asymptotic distribution of the difference of two
independent risk factors, k% — k3.

Under the null hypothesis, H, : > In(ki + 1) = InS, the simulation study shows that
=1
ln(lhc,2 + 1) has an asymptotic normal distribution with mean

In(u, +1) - —L— o2 3.12
(o + 1) 2(‘““)_0’ (3.12)

and variance
c? .
G -
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Here, p, is the mean associated with Iﬂc,2 and given by Eq. (2.27). Likewise, o7 is the variance
associated with I},Z and 1s given by Eq. (2.33). Eq. (3.12) and (3.13) may be derived as follows.

Using the Taylor series expansion about y;, ln(l::‘2 + l) may be approximated as

fid ~ , , 1 ) 1 72 _ 2
ln(k,+1)=1n(,u,+1)—.-‘ui+1(lx, 1) _—2(y,+1)2(1“ pe)

The mean of this may be calculated as

L2 = R 1 k2 - S SE 2 — =
E(n(k?+1)) _E(m(u, D)+ o (k2 =) TP (k2 - p.) )

1 72 2
=ln(#:+1)—m5((k: — ) )
- _ 1 72
= In(u, + 1) 1) v(k?)
=m<#i+1)—mﬁ?

and the variance as

V(n(&2 +1)) = V(ln(.u‘+1)+ u’1+1 (I},’f—p,))
=—1 _p(i2

i+ 1)° (‘)

1 o

i+ 1)* "

The distribution of Y In(/Ac;’- + l) is the sum of r asymptotically normal random variables and,
=1

therefore, is asymptotically normal with mean

1n(y,+1)-+203) (3.13)
2 Ty
and variance
> (3.13a)
=1 (‘ul'{—l)“

The test statistic for the hypothesis test Ho : In(kZ +1) =In(y; +1) =InS vs.

Ha :In(k> +1) = In(u, + 1) = InS'is
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(k2 +1) - (Ins- e a?)
O

and has a standard normal distribution. In most situations, £, and ¢? will not be available, only
the parameter S is obtainable from an appropriate registry. Therefore, an alternative to this test

statistic for large sample sizes is to estimate ; and o> from the sample to give

in(k+1) - (ms-"’—f)

202-1)°

5 (3.14)
(k2 +1)
Table 3.10 compares the average over 1000 replications of the theoretical mean and the
average over 1000 replications of the theoretical variance given m Eq. (3.12) and Eq. (3.12a),
respectively, to the simulated sample mean and sample variance of ln(l}f- + 1) under the null
hypothesis, In(k2 +1) = In(u; +1) = InS. Here, the parameter value is &% = 0.625 and
m = n = 5000 with five categories of risk. It can be seen from the table that there is good

agreement between the simulated and theoretical values.
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Table 3.10 Comparisons of the Mean and Variance from the Simulation to that of Eq. (3.12)
and Eq. (3.12a), Respectively

t i
{ i
I !

Average of the Average of the

. ) P i Sample ﬁ Sample
| | Stmulanon - Simulation Mean from ; Variance from .
n= 5000, m = 5000 . Sample Sample | :
-, i | . + Eq.(3.12) . Eq.(3.123)
Average | Vanance !
: .+ over 1000 - over 1000
Replications Replications
{ 5 ; , . | \
0.000 i 0.0016 : 0.000001 0.0016 0.000002 ;
0.109 . 01053 | 0000189 | 01053 |  0.000195
0.201 . 01852 : 0000147 :  0.1852 '  0.00153
0.308 . 02710 | 0.000413 | 0.2708 . 0.000448
§ 0.399 . 03375 : 0.000577 | 03372 . 0000559
0.504 . 04088 | 0000565 | 04085 |  0.000610
r 0.625 | 04873 | 0000624 |  0.4869  0.000655
| 0.745 . 05883 | 0000503 | 05881 |  0.000503
§ 0.900 06424 | 0000984 | 06419 | 0000995

Table 3.10a gives the power of this test statistic at the a level of 0.05. Although the

distribution is a bit skewed, it is conservative.
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, JERR
m(k;’-l}-klns— =
2B ¢

, where i, = 0.625,

Table 3.10a. Power of the Test Statistic 5
(1},2 +1)

In§ = In1.625 =0.485508 and m = n = 5000 with Five Categories of Risk

n = 5000,m = 5000 j a =0.05
 Zoozs =-1.96 Zgoas = 1.96
K2 ‘ 1
0.000 % 1.000 : 0.000
0.109 : 1.000 ] 0.000
0.201 { 1.000 0.000
0.308 : 1.000 ; 0000 :
0.399 : 1.000 s 0.000 '
0.504 j 0.871 i 0.000
0.625 0.016 5 0.024
0.799 : 0.000 J 0.998
0.900 0.000 : 1.000

The test statistic for the hypothesis test, Ho : D In(ki +1) =InS vs.
=l

Ha : Y In(k? + 1) # InSis given by
=1

)

;m(l}} +1) —g(ln(y, - o?)

S

= (o +1)°

- 72 - 1 2
leln(k, +1) —1nS+§I T

r U,Z

= (ue+1)°
Again, in most situations, y; and o> will not be available, only the parameter S is obtainable
from an appropriate registry. Therefore, an alternative to this test statistic is to estimate z, and

o? from the sample to give
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=1 =l

S7iz N2
251,

(3.14a)

~
<

7
o—l

Z —_— %
=1 (kf' + 1) -
Table 3.11 compares the average over 1000 replications of the theoretical mean and the

average over 1000 replications of the theoretical variance given in Eq. (3.13) and Eq. (3.13a),

respectively, to the simulated sample mean and sample variance of 2111(7{,2 + 1) under the

=l

null hypothesis, Eln(k% +1) =InS. Here, the parameter values are k7 = u; = 0.625,
=1

k2 = uz = 0.799, and InS = 3 In(k? + 1) =1.0727 with sample sizes of m = n = 5000 and
=1

[ 18]

five categories of risk. Again, it can be seen from the table that there is good agreement

between the simulated and theoretical values.
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Table 3.11 Comparisons of the Mean and Vanance from the Simulation to that of Eq.

Eq. (3.13) and Eq. (3.13a), Respectively

Average of the Average of the
. L . Sample Sample
Simulation | Simulation ]
n = 5000 i Mean from Variance from
Sample Sample
m = 5000 . Eq. (3.13) Eq. (3.133)
Average Variance :
over 1000 over 1000 ;
Replications Replications
ki k3
0.000 0.625 : 0.48 0.00646 0.48 0.00656
0.109 0625  0.59 0.00082 0.59 0.00084
0.201 0.625: 0.67 0.00077 0.67 . 0.00080
0.308 0.625 0.75 0.00108 0.75 | 0.00100
0.399 0.625 . 0.82 0.00121 0.82 0.00121
0.504 0.625 0.89 0.00122 0.89 0.00126
0.625 0.625 0.97 0.00128 0.97 0.00129
0.799 0.625 1.07 0.00114 1.07 0.00115
0.900 0.625 1.12 0.00154 1.12 0.00160

Tables 3.11a and 3.11b give the power of this test statistic at the a level of 0.05 for the

indicated parameters.
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Table 3.11a. Power of the Test Statistic = =L , where k7 = 0.625,

K =0.799, InS = > In(k + 1) =1.0727 and m = n = 5000

=1

with Five Categories of Risk

‘n = 5000,m = 5000 ' a =0.05
: | —Zogas = —1.96 . Zogas = 1.96
k3 ? 3 . ;
0.000 5 0.625 ; 1.000 | 0.000
0.050 0.625 1.000 : 0.000
! 0.109 f 0.625 1.000 5 0.000
i 0.201 0.625 .? 1.000 : 0.000
| 0.308 | 0.625 f 1.000 0.000
; 0.399 f 0.625 : 1.000 0.000
0.504 0.625 1.000 ; 0.000
0.625 0.625 0.778 0.000 :
0.799 0.625 0.024 ; 0.026
0.900 0.625 : 0.001 0.310 |
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3 w(E1)-ns- 3 s
2212
Table 3.11b. Power of the Test Statistic = =

, where k7 = 0.625,

2
k3 = 0.000, InS = D In(k? + 1) =0.485508 and m = n = 5000

=1

with Five Categonies of Risk

 n=5000,m = 5000 | . a=005

i | | ~Zoozs = =1.96 . Zoos = 1.96

k3t : k3 Power : Power

0.000 | 0.625 i 0.017 ;' 0.026

0.109 0.625 : 0.000 | 0.969

0.201 0.625 g 0.000 ; 1.000 j

: 0.308 ; 0.625 0.000 : 1.000 ;

| 0.399 g 0.625 0.000 i 1.000

? 0.504 0.625 0.000 1.000 »
0.625 } 0.625 | 0.000 1.000 g
0.799 | 0.625 0.000 1.000 i
0.900 0.625 0.000 i 1.000

It can be seen from Table 3.11b, that the distribution becomes a bit skewed if one of the
parameters, k>, in the sum is zero. However, this is not serious, especially in the case of a

two-tailed test.

Tables 3.12, 3.12a, and 3.12b are similar to 3.11, 3.11a, and 3.11b for the test statistic

= =L with the indicated parameters.
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Table 3.12 Comparisons of the Mean and Vanance from the Simulation to that of Eq. (3.13)
and Eq. (3.13a), Respectively

T

1 ; i Average of the Average of the !

: L o o Sample | Sample ?

! ! ; . Simulation | Simulation i f

i n=5000 ! : : ; © Mean from Variance from

: ; ; i Sample @ Sample ; :

i m = 5000 ; : i ) i Eq. (3.13) i Eq.(3.13a) |

: : . Average | Vamance : ;

; ! § i over 1000 over 1000 ;

' : ‘ . Replications Replications

K2 LR R |

' 0.000 :0.625.0.799° 108 | 000114 1.08 0.00115

0109  :0625°0799' 1.18 i 0.00126 1.18 0.00130

0201 ;06250799 126 | 000127 1.26 0.00131
0308  10.6250.799 1.35 ©0.00150 1.35 0.00160
0399 106250799 141 | 0.00165 1.41 ' 0.00170

' 0.504  0.625:0.799 148 | 0.00171 1.48 . 0.00175

| 0625 1062500799 156 : 0.00150 1.56 . 0.00161

1 0799 10.625;0.799 166 | 0.00163 | 1.66 . 0.00166

. 0900 06250799, 172 | 000206 | 1.72 ' 0.00210

Tables 3.12a and 3.12b give the power of this test statistic at the a level of 0.05 for the

indicated parameters.
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Table 3.12a. Power of the Test Statistic = , where k7 = 0.625,

k3 =0.799, &2 = 0.201, InS = 3 In(k> + 1) =1.25589, andm = n = 5000
=1

with Five Categories of Risk
- n = 5000,m = 5000 . : a=0.05
: ~Zowoas = —1.96 | Zggas = 1.9
ki | k3 | |

0.000 0625 0.799 | 0.998 ; 0.000
0.109 L 0.625 0.799 0.538 0.000
0.201 . 0.625 0.799 0.021 0.024
0.308 b 0.625 0.799 | 0.000 0.627
0.399 0625 0.799 0.000 ; 1.000
0.504 . 0.625 0.799 . 0.000 1.000
0.625 . 0.625 0.799 0.000 1.000
0.799 . 0625 0.799 0.000 | 1.000
0.900 L 0.625 0.799 0.000 1.000
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Table 3.12b. Power of the Test Statistic =" =1 , where &7 = 0.625,

k% = 0.000, k2 = 0.799, InS =1.07273, and m = n = 5000
with Five Categories of Risk
‘'n = 5000,m = 5000 - | a =0.05
L ’ " ~Zoozs =-1.96 | Zggzs = 1.96
k3 3 LA Power ' Power
0.000 ; 0.625 0.799 : 0.021 : 0.028
0.109 | 0.625 0.799 0.000 : 0.849
0.201 0.625 0.799 0.000 f 1.000
0.308 0.625 0.799 . 0.000 i 1.000 _
0.399 0.625 0.799 | 0.000 é 1.000 ;
0.504 0.625 0.799 : 0.000 : 1.000 !
0.625 0.625 0.799 . 0.000 1.000
: 0.799 ! 0.625 0.799 : 0.000 i 1.000 :
0.900 0.625 0.799 . 0.000 | 1.000 !

3.4 Asymptotic Distribution of D = k2 — k2
Assuming the Risk Factors are Equal

The distribution of k7 —k% is of interest in order to compare the degree of risk of

different risk factors. The hypothesis test to be conducted is

H,  ki-k3=0
vs.

Hy: k3 —k3 +0.

A test statistic for this hypothesis test may be given by
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where /1; is the mean associated with l::;" and given by Eq. (2.27). It may be worth noting here
that the mean, Hiz — Miz, under the null hypothesis may be rewritten as
Hig2
= piz — Wz = (ki +biasy) — (k3 + biasz)

= bias; — bias,.

Notice that the expected value, ;. of I:t,z given by Eq. (2.27) is dependent on p,,q-,

72
<

r=1,2,...,c. There may be two distinct sets of p,,q,, r=1,2,... ¢, that give the same

value of the parameter k>. For a simple example, consider the following,

k? = 0.17522 with g1 = 0.147826,¢2 = 0.252174,q5 = 0.6
p1 =0.1,p2 = 0.13,p3 = 0.77

and

N

2 =0.17522 withg; = 0.2,g2 = 0.2,q5 = 0.6

-

pr =0.1,p» =0.13,p: = 0.77.

Even though the parameter values of k7 and 43 are the same, the associated expected value
given by Eq. (2.27) of each of these parameters is different. The difference is due to the bias,
which is also dependent on p,,q., r=1,2,...,c. For this simple illustration with

m = n = 5000,

bias; = 0.00168126
bias, = 0.00178917.

In most situations, bias, — bias» will not be available from the sample but for large sample

sizes may be estimated by
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bla.s:‘- n= Zc:( (}“(1._&“) + gu(1-41)(A —p1:) ‘1%;(1 —Dui) ) _
=1

mp, m(n)pi, ) (Pu)*
i(zh,a Ga) | qu(l =321 -p) , G301 —im)) (3.16)
&\ mpu m(n)p3, @) )

which 1s the difference between two estimates of the bias given by Eq. (2.27a).

An estimate of O’Z‘_,_‘;:: in Eq.(3.15), may be obtamed by a weighted average of the
172

estimates of the variance (given by Eq. (2.33)) from both samples, that is,
6 = v{2(o:k} + (1 - o,)k3) ¥
= 4(ov(i3) +a3v(k3)), (3.17)

S

where @, is given by

S
V{(k:
d)lz 1 <l)1 E

= + =
v(kt)  v(k)

and V(k?),i = 1,2, is estimated from the sample, that is,

e ~( 44%(g.(1 - p 1-p,
V(k-)EZ( 4@ —4:)) , @b p)))
=1

pim pin
c-1 »2»2 A A
+2ZZ(4qzq;(—qxq,) L 3499, pipy) )
=l =1 p.pm FP]”

(3.18)

N

where bzask_ i and 6'; ., are given by Eq. (3.16) and (3.17), respectively
1

JL

. The simulation
study shows that the test statistic in Eq. (3.18) has an asymptotic standard normal distribution.

Tables 3.13 and 3.13a give the power of this test statistic at the « level of 0.05 for the
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indicated parameters.

Table 3.13 Power of the Test Statistic

-2
12 where k¥ = 0.625,

k3 = 0.625 and m = n = 5000 with Five Categories of Risk

. n = 5000,m = 5000 | a = 0.05

] Zoozs =1.96 | Zogs = 1.96

: k? , 3 Power Power f

; 0.000 . 0.625 1.000 0.000 ;

0.109 . 0.625 1.000 0.000 '

; 0.201 ' 0.625 1.000 0.000

| 0.308 L 0.625 1.000 0.000
0.399 . 0.625 0.992 0.000

; 0.504 i 0.625 0.597 ‘ 0.000

: 0.625 . 0.625 0.022 g 0.023 |

| 0.799 | 0.625 0.000 | 0.849 :
0.900 L 0.625 0.000 0.973 ;
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.. Kkt —k3 -biasp
Table 3.13a. Power_of the Test Statistic - !
&

rite

, where k7 = 0. 0000,

;Tu' tJ

|~rrl.

k3 = 0.000 and m = n = 5000 with Five Categories of Risk

.1 = 5000,m = 5000 ! a =0.05 |
5 f . Zooes =1.96 | Zogs =1.96
k? KB Power Power ;
| 0.000 ' 0.000 | 0.021 ‘ 0.022 1
0.109 . 0.000 0.000 ; 0.000
0.201 ©0.000 0.000 ! 1.000 :
0.308 . 0.000 . 0.000 : 1.000
0.399 . 0.000 0.000 : 1.000
0.504 : 0.000 | 0.000 J 1.000
0.625 . 0.000 0.000 ; 1.000
| 0.799 . 0.000 0.000 | 1.000
0.900 | 0.000 ; 0.000 1.000
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CHAPTER 4

SIMULATION

4.1 Simulation Procedure

For studying the size and power of the test statistic k2, 1000 random samples from
different populations were generated using the RNMTN Fortran routine in IMSL (IMSL
1987). Each sample constituted two independent multinomials M(m;q.,q>,...,4.) and
M(n;p1,p2,--.,p.) for cases and controls, respectively. Two, four, five, six, and eight
categories of risk, ¢, were simulated. For the two, four, six, and eight category cases, four
different populations with four sample sizes were simulated, and from the 5 category cases, 11
different populations and 26 sample sizes were simulated. A summary of the simulation
parameters used are given below.

For the 5 category case, different sample sizes of (n,m), as shown in tables 4.6-4.19,

were used in the simulation with population parameters given in Table 4.1.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77
Table 4.1 Population Parameters used for Simulating Five Categories of Risk

| Population q (Cases) j' p (Controls)

L K=0 | 0.2,0.2,0.2,0.2,0.2 ©0.2,02,0.2,02,0.2
k2 =0.049: 0.1,016,031,027,0.16 :0.07,0.11,0.33,0.28,0.21 |
k> =0.109 0.21,0.16,0.17,0.34,0.12  :0.22,0.22, 0.22,0.21, 0.13 :
‘ k* =0.201;0.062,0.222, 0.242, 0.352, 0.122 : 0.23, 0.23, 0.22, 0.23, 0.09

 k* =0.308! 0.14,0.21,0.29,0.16,02 | 02,03,0.15,0.25,0.1
k2 =0.399! 0.27,0.18,0.35,0.15,0.05 ; 0.5,02,0.15,0.1,0.05
k% =0.504 i 0.2,0.3,0.25,0.15, 0.1 ' 0.4,0.15,0.1,0.2,0.15
k2 =0.625" 0.5,0.2,0.15,0.1, 0.05 ©02,02,0.2,02,02

Lk =0.746 | 0.2,02,0.2,0.2,02 ©0.5,0.2,0.15,0.1,0.05
k*=0.799:  0.02,0.13,05,00503 : 0202020202

k2 = 0.901 ; 0.13,0.22,0.3,0.15, 0.2 ©0.5,02,0.15,0.1,0.05

The parameters were chosen to reflect data similar to that found in the literature. From each of

the 1000 samples within a given population, the following statistics were computed:

a k2=3 41

c
=1 P

2
~

P2 _ _n+2 c X (e —-1)
b. T m(m-1) E"‘-“ 1 +y; L

o

Ty, = ¢ ‘}i(l "ér) + ‘}r(l —C},)(l -.5:) 21;1'(1 —ﬁt) )
biast E=‘( mip, mpl (MG’

A n
d Vv (k"-) , the estimate of #(k*) defined in Section 2.6, Eq. (2.33).

V(k%) , the estimate of V(l%ﬁ) defined in Section 2.7, Eq. (2.35).

)

A -~
g V(in(k* +1)), the estimate of ¥(In(4* + 1) ) defined in Section 2.9, Eq.
(2.39).

@

™

52
q:
=
i

(& +1) = m(g 5

h g(m(z}3+1)) andg(ln(fc%+1)).
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A

i(ln(/;f’ +1)) ) and V(Z (In(k“ +1)) ) the corresponding estimates
of P(Z(ln(kz +1)) ) and V(§ (n(k2+1)) ) given in Eq. (2.41), where k2

is independent of &7 for all 7,/ i + j.

j. k3 — k3, where k2 is independent of &3
A
k. (k3 —k}), the estimate of V(k3 —k}) defined by Eq. (3.14).

Additionally, the statistics computed over the 1000 replications are

a. &+., the sample variance of k* from the 1000 replications or samples.

TJ ‘J

b. &

PE

, the sample variance of kb from the 1000 replications or samples.

~

c. 6. (1) the sample variance of (ln(k~ + 1) ) from the 1000 replications or
samples.

d. the sample vanance from the 1000 replications of 2(1n (l::,2 +1 ) ) and the
=1

sample variance from the 1000 replications of ¥~ (In (/::,3 +1)).
=1

e. 62.. ..., the sample variance of k2 — k2 from the 1000 replications or samples.
(L k1) “

The average of k2 over the 1000 replications was calculated and compared to
1. its parameter value &* = 3 %'- -1.
=1
2. the expected value defined in Section 2.4, Eq. (2.27), that is,

E(2)-S (4l =90 [ (=) =p) 4 . 4i(l=p) ) _
( ) le( ”Ip[ ,n(n)p;: + Pl (n)(pt)..

3. the theoretical expected value based on the Gamma( C:‘ (L B)) distribution
(or equivalently, ’;',;,” zen (e — 1) d1$tr1butxon Lf the parameter value for k* is zero, or
to the noncentral ¢ oy L e’y if g2 > 0).

78

The average of l}g- over 1000 replications is calculated and compared with its parameter value

c.o2
of k? = 3 4~ — 1 and its expected value given in Section 2.5, Eq. (2.31). The average of the
=1
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1000 replications of bias;., is compared to the parameter value of

(s -q) | q(l-q)(-p) . q*(1—p:)
bias,: Z( P, + m(n-{—e)pf +(n+e)(p,)2)'

=1

A A
The averages of V1 (kz) and V(kg) over the 1000 replications are compared to their
corresponding parameter values of V(l:rz) and V' (/::%) defined in Section 2.6, Eq. (2.33) and
Section 2.7, Eq. (2.35), respectively. These averages are also compared to their corresponding

2

A
% Additionally, the average of V(kz) and the variance (6'%_,) are

variances, 6%, and &

B2

compared to the theoretical variance based on the associated Gamma(%, mn8)) (or

equivalently, Z=%~+2(c —1) distribution if the parameter value for k% is zero, or to the
: istributi ~n_,,2 @=r)® e

noncentral chi-square distribution 2= 72(c — 1, .22 3 4220 ) if k2 > 0).

The average of ln(l::2 + 1) 1s calculated over the 1000 replications and compared with

the corresponding expected value given in Section 2.9, Eq. (2.37),

E(n(2+1)) =n(EE) +1) -

().

] %
2(E(k?) +1)°

I
The average of V' (ln(k2 + 1)) over the 1000 replications is calculated and compared to its

parameter value V(ln (IAc2 i 1) ) defined in Section 2.9, Eq. (2.39),

Vin(k*+1)) = 1 (k)

CRED

,
. . . ~A .. - T
and to its corresponding variance, 6 ;. - Similar comparisons are made for Sin(k2+1),

=1

A A
Zln(/::%-l), V(iln(ic%’-l)), and V(Zln(l??«-l)); that is, the average of
=1 =1 =1
2 “ 3 .
> ln(k,2 +1) and the average of 3, ln(lc,2 +1) over 1000 replications are compared with the
=1 =1

corresponding expected values given in Section 2.10, Eq. (2.40). The averages of
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A A
2 , 3 -
V(Z ln(k,z +1) ) and P(Z In(k?+1) ) over the 1000 replications are compared with the
=1 =1

respective parameter values given by Eq. (2.41) in Section 2.10 and compared with their
respective sample variances.

The average of k2 —k?, where k3 and k% are simulated from two independent
populations and, therefore, are independent random variables. The average of k%2 —k? is

compared with its corresponding expected value given by Eq. (3.13a). Additionally, the

average of V| (17:%’\— l}%) over the 1000 replications is compared with Eq. (3.14).

The power associated with a test of the null hypothesis, Ho: the factor is not a risk, vs.
the alternative hypothesis, Ha: the factor is a risk, is also considered in the simulation study.
The null hypothesis for no risk is &> = 0 and the altemative hypothesis is k* = 0. The power
of the test [calculated as the percent of the 1000 k*s that exceeded the critical value of
rejection for a given a obtained from the Gamma(‘—;‘-, (Z=2B)) distribution (or equivalently,
m=n o 2(c —1))] is then reported for a particular population and sample size. The power is
calculated at @=0.01, 0.025, 0.05 and 0.10 levels.

For the two, four, six, and eight category cases, sample sizes of (n,m) = (50,50),
(100,100), (500,500), (1000,1000), (3000,3000), and (5000,5000) were used in the

simulation with parameters given in tables 4.2-4.5.

Table 4.2 Population Parameters used for Simulating Two Categories of Risk

i Two Category

Population q (Cases) p (Controls)
k* =0.000 | 0.500,0.500 0.500,0.500
k? =0.048 | 0.375,0.625 0.485,0.515
k* =0.100 0.555,0.445 0.400, 0.600
[ k*=0.496 0.745,0.255 0.400,0.600
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Table 4.3 Population Parameters used for Simulating Four Categories of Risk

t Four Category ;

| Population q (Cases) p (Controls)

- k% =0.000 0.250,0.250,0.250,0.250 .  0.250,0.250,0.250,0.250
k? =0.050 | 0.289,0.211,0.319,0.181 ° 0.25,0.25,0.25,0.25

, k* =0.102 ‘ 0.310,0.190,0.310,0.190 0.200,0.300,0.300,0.200

. k2 =0.503 ! 0. 200,0.200,0.480,0.120 .  0.250,0.300,0.200,0.250

Table 4.4 Population Parameters used for Simulating Six Categories of Risk

Six Category
. Population | q (Cases) I p (Controls)

* k* =0.000 | 0.200,0. 100,0.200,0.200,0. 200,0. 100 ; 0.200,0. 100,0. 200,0.200,0. 200,0. 100 |

| K* =0.048 | 0.200,0.150,0.210,0.210,0.130,0.100 - 0.200,0. 100,0.200,0.200,0.200,0. 100 '

t9

| & = 0.100 |0.300,0.100,0.210,0.210,0. 130,0.050 . 0.200,0. 100,0. 200,0. 200,0. 200,0. 100 -

9

k* = 0.496 0.210,0.300,0. 100,0. 100,0.220,0.070 , 0. 100,0.200,0. 200,0.200,0. 100,0.200 :

Table 4.5 Population Parameters used for Simulating Cases for Eight
Categories of Risk

. Eight Category
Population q (Cases)
k* =0.000 . o 100,0. 100,0.200,0. 100,0. 100,0. 100,0.200,0. 100
. k*=0.050 ©  0.1000.127.0.195,0.105,0.073,0.148,0.152,0.100 ;
k*=0.104 = o.1 15,0.095,0.175,0.110,0.095,0.155,0.155,0.100
k* =0.502 0.05,0.100,0.100,0.070,0.200.0. 150,0.105,0.225

Table 4.5a. Population Parameters used for Simulating Controls forEight

Categories of Risk
Eight Category -
. Population p (Controls)
. k*=0.000 0.100,0. 100,0.200,0. 100, 0. 100, 0. 100,0. 200,0. 100
. k*=0.050 |  0.100,0.100,0.200,0. 100,0. 100,0. 100,0. 200,0. 100
. k*=0.104 |  0.150,0.050,0.150,0. 150,0. 100,0. 100,0.200,0. 100
. k*=0.502 |  0.150,0.050,0.150,0.150,0. 100,0. 100,0.200,0. 100
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Parameters were chosen to reflect data similar to that found in the literature. From each of the

1000 samples within a given population, the following statistics were computed:

a k2=2€1‘> -1

b. bias: = 3°° (fh(l -4 . 30 -g)(1-p) , @1 -p) )
=t mp, m(n)p? (n)(p:)?

c. Vi (122) , an estimate of V1 (,‘;z) defined in Section 2.6, Eq. (2.33).

Simular comparisons were made as that for the five category simulation.

4.2 Simulation Results

Convergence of the estimates to their expected values begins to occur at a sample size
of (n,m) = (500, 500) but for brevity, only the comparison at a sample size of n = m = 5000

for the simulation study with five categories of risk will be shown.

4.2.1 Results Regarding Measures of Mean
and Variance for k* and k2

Table 4.6 shows agreement between the theoretical expected value of the chi-square
distribution given in Chapter 3, £(k?) in Eq. (2.27), and the simulation average. Table 4.6a

compares the simulation average of ic% to the expected value, £ (/Acg) , given by Eq. (2.31).
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Table 4.6 Comparison of Theory and Simulation Concerning the Mean of k?

!

| n=5000 | |

. m=5000 :

' Risk i Aver?ge of Bias £ (lAcz) " Average Chi-Square

‘ Categories ‘ Bias Eq Eq from Mean

5 I over 1000 2.27a) 2 ’7;/') Simulation Central (* = 0)
! . Replications ( A : Noncental (k> > 0)
: bias;- . biasi: f | value
B | | 4

. 0000 ! 0001604 0.001600: 0.001600 0001555 0.00160
0.049 . 0.002004 | 0.002001 : 0.051001 : 0.050507 0.05173
0109 | 0.001661 {0.001658{0.110660 | 0.111196 0.11119
0201 | -0.001849  0.001843 |0.202840  0.203571 0.20418

| 0308 | 0002511 | 0.002498  0.310500 | 0311583 . 031165

. 0399 0002665 . 0.002655,;0.401660 0401869 . 0.40257

; 0.504 ©0.002989 | 0.002984 0.506980 : 0.505457 0.50713

. 0625 | 0001978 |0.001975 0626980 & 0626550 0.62715

| 0746 . 0005678 |0.005638 | 0.751640 ' 0751454 0.75256
0799 | 0.002085 0.002079 0.801080 ' 0.801460 0.80190
0901 | 00005736  0.005720 ' 0.906720 ; 0.901945 0.90674
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Table 4.6a. Comparison of Theory and Simulation Concerning the Mean of k%

rn = 5000,m = 5000 :

Risk Categories = 5 E(k%) r Average from

: : Eq.(2.31) 3 Simulation

k2 |

f 0.000 ? 0.00020 : 0.000153

0.049 0.04926 'j 0.048717

{ 0.109 0.10965 , 0.109759

: 0.201 : 0.20152 | 0.201966 :
0.308 ! 0.30832 : 0.309339 :

! 0.399 0.39974 f 0.399490 5

0.504 : 0.504438 0.502774
0.625 | 0.62532 ; 0.624899

: 0.746 0.74699 ; 0.746145

| 0.799 0.79936 : 0.799737

0.901 | 0.90115 : 0.896608

Table 4.7 shows agreement between the variance in Eq. (2.33), the theoretical variance
from the chi-square distribution, and the sample variance. As expected, the noncentral
chi-square variance is only a good estimate if p; i = 1,2,...,¢, and ¢, i = 1,2, ...,c are “not
very different” from each other. Table 3.4 in Section 3.2 compares the mean and variance of
k> when p:—q.| for all i = 1,2,...,c, 1s very small. In the later case, there is very good

agreement between the theoretical and simulated variances.
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Table 4.7 Comparison of Theory and Simulation Concerning the Variance of K

'n = 5000,m = 5000 | |

Chi-Square

Risk ‘ Average of } Variance over
. 1000 Sample ;. Central(k> =0) | 1000 Samples
Categories . :‘ ” :
| s Estimates from Noncental (k© > 0) from
‘ ; . Simulation Simulation
é A :
g k? f V(fc2 ) v(k) | Variance Variance
Eq. (2.33)
i 0.000 £ 0.000002 :  0.000000 0.000001 0.000001
: 0.049 : 0.000102 : 0.0000983 0.000079 0.000100
f 0.109 © 0.000242 | 0.0002379 0.000180 0.000235
! 0.201 © 0.000222 0.0002168 0.000323 0.000214
. 0.308 1 0.000772 l 0.0007572 ; 0.000494 0.000712
0.399 1 0.001103 . 0.0010908 . 0.000810 0.001135
0.504 1 0.001387 | 0.0013753 | 0.001523 0.001717
} 0.625 1 0.001735 ¢ 0.0017271 0.001000 0.001717
0.746 1 0.003731 |  0.0036365 0.001195 0.003778
{ 0.799 10001638 :  0.0016225 | 0.001279 0.001639
’ 0.901 1 0.003647 : 0.0035972 0.001443 0.003575

4.2.2 Results for In (I';:2 + 1) Regarding Mean and

Variance with Five Categories of Risk

Table 4.8 shows good agreement among £(In(k* + 1)) from Eq. (2.37), the mean of

the theoretical distribution of In(l‘;t2 + 1) from Eq. (3.7), and the average or mean from

simulation under the null hypothesis H, : In(k*+1) = 0. The mean of the theoretical

distribution only applies under the null hypothesis and is calculated as

E(n(k? +1)) = E2)

= [ Ayt
0
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where f(z) from Eq. (3.7) is given as
(e —1)

-1l B

= edz, z > 0.
C(a)(B")

fz) =

Table 4.8 Comparison of Theory and Simulation Concerning the Mean of In(fc2 +1 )

'n = 5000,m = 5000 :

Expected
. ‘ Average
Risk Categories = 5 from Value
: i . . for Null
; i :  Simulation .
: J ' Hypothesis
| 5 ' Eq.(237) & Eq. (4.2)
K In(k2+1) ‘E(ln(k~+1)) E(ln(k+1))
0.000 1 0.000000 | 0.001553 ; 0.001552 '  0.001598
: 0.049 10.047893 | 0049228 |  0.049186 ~
0.109 1 0.103844 ' 0.105343 |  0.105264 -
0.201 1 0.183389 | 0.185220 '  0.185167 -
0.308 1 0.268550 i 0271029 ' 0270898 | -
: 0.399 ; 0.336091 | 0337518 0337375 -
0.504 1 0.408239 | 0408814 . 0408679 -
0.625 1 0.485508 . 0486138 .  0.486014 -
0.746 1 0.557709 - 0.559835 .  0.559638 -
0.799 10587231 © 0.588346  0.588268 ~
0.901 10642275 1 0.642385 | 0642246 | -

Table 4.9 presents the different measures of the vanance of the data when ln(/::l +1)
was simulated for a sample size of (m,n) = (5000, 5000) and five categories of risk. Resuilts

show good agreement between the variance over 1000 replications, V(ln(l:rz + 1) ) from Eq.
(2.39), the average of the estimates of ¥ (ln(lﬁc2 + 1)) from the 1000 replications, and -the

variance of the theoretical distribution of In(k* + 1) from Eq. (3.7) under the null hypothesis
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H, : ln(icz + 1) = 0. The variance of the theoretical distribution only applies under the null

hypothesis and is calculated as
V(n(k*+1)) = "2)

= jZZf(z)d: —(E@)> (4.3)
0

Table 4.9 Comparison of Theory and Simulation Concerning the Variance of Inl\ l?-i-l}

= 5000
m = 5000
5 Variance over . Average of Variance
Risk 1000 Samples - 1000 Sample ~ forNull
; Categories=5 | ‘ from 5 1 Estimates from = Hypothesis |
; Simulation . i Simulation ln(/:': -~ l) =0 |
Eq. (2.39) § Eq. (4.3)
F lmEEeny (1)) mE-1D)) | AmE-1)
: 0.000 1 0.000000 | 0.000001 i 0.000000 '  0.000002  0.00000127 |
: 0.049 £ 0.047893 . 0.000090 | 0.000089 0.000092 ! - :
i 0.109 £ 0.103844 | 0.000189 | 0.000193 0.000195 -
i 0.201 10.183389 ¢ 0000147 0000150 0.000153 -
0.308 | 0.268550 | 0.000413 | 0.000443 :  0.000448 -
0.399 1 0.336091 © 0.000577 °  0.000557 . 0.000559 -
0.504 0.408239 :  0.000565 . 0.000608 -  0.000610 -
0.625 1 0.485508 °  0.000647 | 0.000654 ;  0.000653 -
0.746 10557709 ;  0.001219 : 0001192 -  0.001204 -
0.799 . 0.587231 ¢  0.000503 . 0.000501 .  0.000503 | -
0.901 - 0.642275 . 0.000984 ©  0.000996 .  0.001000 - -

4.2.3 Results Regarding Mean and Variance
2 - 3 .

of In(k? +1) and 3_mm(k? +1)
=1 =1

Table 4.10 shows good agreement between different measures of the mean of
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2 ln(l::,2 + l) for a sample size of (im,n) = (5000,5000) and five categories of risk under the
=1

null hypothesis H, : Z-: ln(,’Ac2 +1) = 0. Parameters used for each of k7 and 3 are as follows.
=l

Forki =0,

q=p=(00.2,0.2,02,0.20.2),

q=p =(0.5,0.2,0.15,0.1,0.05).

Parameters for &> = 0 are the same as those in Table 4.1. The sample average, the expected

value, £ (2 ln(l::,2 + 1) ) given by Eq. (2.40), and the mean of the theoretical distribution of
=1

i 11’1(1’},2 + 1) under the null hypothesis, given by Eq. (3.11), are compared in Table 4.10. The
=1

theoretical mean is calculated as

E(Z in(k2 + 1)) = E(2)

= [ zg2)dz (4.4)
0

where g(z) is given by Eq. (3.11) as
e -1
!
_E-n= e P

EJor

e“dz.

Results in Table 4.10 show good agreement between theory and simulation.
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Table 4.10 Comparison of Theory and Simulation Concerning the Mean

2 raa N
of ;lﬂkl’{ 1—1}!
n = 5000
© m = 3000
f
! ; ; : EXpCCI‘d ;
Risk . . . Average © ‘
. : : N . Value ;
Categories v . from ‘ ‘ |
- ' . CL . : for Null :
5 : : * Simulation .
‘ : Hypothesis
Eq. (2.40) : Eq. (4.4)
2 L2 P O : Sz .- R
B B TheEi-l) £ ZmE-1) e T
i L=l . ! ~1 /: =1 / :
©0.000 0000 ‘ 0000000 = 0.003192 0.003206 © 0.0031936 %
‘0000 0.103844 0.103844 - 0.106981 0.106867 i -
' 0000 ;0.183389 0.183389 ° 0.186858 0.186770 : -
0000 :0.268550; 0.268550 = 0.272668 | 0.272502 ‘ -
. 0.000 :0.336091' 0.336091 0.339157 | 0.338978 5 -
. 0.000 0.408239 0408239 : 0410453 | 0.410282 ; -
;0000 0485508 0.485508 : 0487777 | 0.487617 : -
. 0000 .0.557709 . 0.557709 ° 0.561474 - 0.561241 : - :
. 0.000 -0.5872311 0.587231 - 0.589985 0.589871 ; - ;
0.000  0.642275° 0642275 ~ 0644024 | 0.6438497 | -

Table 4.11 presents different measures of the variance of 2 ln(lhc,2 + I) for a sample

=1

size of (m,n) = (5000,5000) and five categories of risk under the null hypothesis

H, : 5_: ln(lAc2 + I) = 0. Results show good agreement among the variance from simulation,
=1

A
iln(l},z + 1)) from Eq. (2.41), average of Em(/}} + l)) over 1000 replications
=1 =1

and variance of the theoretical distribution of 2 ln(l'é,2 + l) from Eq. (3.11). The variance of
=I

the theoretical distribution under the null hypothesis is calculated as
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Table 4.11 Comparison of Theory and Simulation Concerning the Variance of Zln'\ k+1 }
~1

. nm=35000 :
¢ m = 3000
' . : Variance over Average of .

Risk ; i Varnance
: L . 1000 Samples 1000 Sample i
i Categories - A for Null !
: - ' from Estimates from )
: 5 R . | N Hypothesis
! Simulaton Simulation
. : . IS : :
: P N o2 - L A S N2 L oo 2 . A
C (1) n{B 1) TS 1) ArnE-0) A EnE-0) 1 SniEa0) )
L el R -1 HEE L ERE - SR
: i : : ! Eq. (2441) Eq. (4.5) \

0.000  : 0.000000 @ 0.000000 ;  0.000002 0.000005 % 0.000000 0.000002
©0.000 {0.1038449 ' 0.10384< 0.000190 0.000198 i 0.000193 i - :
;0000 | 0183389 . 0.183389 0.000149 0.000155 0.00015 : - :
{0000 i 0268550 ; 0268550 0.000417 0.000450 0.000443 -
©0.000 ! 0336091 : 0.336091 0.000578 0.000561 0.000557 -
{0000 i 0408239 | 0.408239 0.000565 0.000613 0.000608 ; -
i 0.000 | 0485508 ; 0.485508 0.000647 0.000656 0.000654 ‘ -
{0000 0557709 . 0.557709 0.001219 | 0.001207 0.001192 -

0.000 © 0.587231 | 0.387231 0.000504 0.000306 0.000301 -

0.000 | 0.642275 | 0.642275 0.000986 0.001003 ! 0.000996 -

3 ~
.. . - .
Similar comparisons are made for Y In(k?+1) under null hypothesis
=1

H, : Zln(l}2 +1) = 0. The parameters used for each of k7, k3 and k% are as follows. For
=1

i-o,

for k3 = 0,
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q = p =(0.102,0.192,0.338,0.315,0.053).

Parameters in the case of k%, i = 1,2,3, in which &7 # 0 are the same as those in Table 4.1.

Comparisons concerning the mean of the data when ) m(ic,l + 1) is simulated are shown in

=1
Table 4.12, and comparisons conceming the variance are shown in Table 4.13. Results show

good agreement between theory and simulation.

Table 4.12 Comparison of Theory and Simulation Concerning the Mean of ZlnLl:',:—‘—l)
=t

- n = 5000 ; : :
| m =5000 § ;
: : i ‘: E ted
§ Risk ' : ' ! Average ¥pecte
i ) : ; j : ) Value
¢ Categories | ! : : from
; R : : ; Lo . for Null
; 5 : : f ¢ Simulation .
i : X ; , : Hypothests
} | 5 : Eq. (2.40) Eq. (4.4)
I . o S L3 » = RN \! SRR
Dk} 1) @3+ 1) ¢k < 1) 3 IngkT < 1) .EkZm'&k;— 1)/ sEkZm'kk,—+ )
: : ‘ gl : =i i =l !
© 0000 | 0000 : 0000 . 0.000000 - 0.004778 0.004810 0.004786 :
. 0000 : 0.000 0.103844 0.103844 = 0.108567 0.108471 ; -
' 0000 i 0000 0.183389 0.183389 . 0.188444 0.188374 : -~
' 0000 ° 0000 ;0268550 0.268550 . 0.274253 0.274105 % -
0000 | 0000 0336091 0.336091 = 0.340743 0.340582 : -
. 0000 | 0000 0408239 0.408239 . 0.412038 0.411886 ‘. -
0.000  0.000 :0485508 0.485508 ' 0.489362 0.489221 : -
0000 | 0.000 0.587231  0.587231 0.591571 0.391475 : -
0.000 - 0000 0642275 0.642275 - 0.645609 0.645453 -
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3 ~ ~
Table 4.13 Comparison of Theory and Simulation Concerning the Variance of Zhl(kf+1 /
=l

n=35000 ! ‘ l
m=5000 | !
. ; i , i Vardance over ! Average of ' .
Risk : . ; | Varince
: o ' : i 1000 Samples 1000 Sample : )
i Categories i : ) R A for Null
: i ] : i ' from *  Esumates from . i
3 : ] . . ; N i R ' Hypothesis
: ; : Simuiation Simulation : :
i : } X » S :
In(k? = 1) In }[nk" L 'im’i () v S in(i "\"r'ff_jm'/l‘ \\‘V’il o))
(kT + In(kZ + 1) ; In(k3 = 1) | (k7-1: MR S GRAVEE n{k? -1} |}
! ! . ¢ ); s ):Pl \ / T S ' \& \ I/"k:-t \ j/;
: i : . Eq.(241) Eq. (4.5)
0000  0.000 - 0.000000 . 0.000000 :  0.000004 0.000008 0000000 °  0.000002
©0.000 | 0.000 ;0.1038449° 0.10384 0.000192 0.000200 ©  0.000193 -
0.000 | 0000 . 0.183389 | 0.183389 ~  0.000150 0.000158 0.00015 -
0.000 | 0000 & 0268550 ; 0268550 :  0.000420 0.000453  ©  0.000443 -
0000 i 0000 ' 0336091 ; 0336091 =  0.000580 - 0.000564 0.000357 -
. 0000 : 0000 | 0408239 | 0408239 &  0.000569 0.000615 - 0.000608 -
! 0000 | 0000 | 0485508 ' 0485508 '  0.000650 :  0.000659 0.000654 -
. 0000 ! 0000 @ 0.587231 : 0.587231 @ 0.000504 . 0000509 :  0.000501 -
{0000 : 0000 . 0.642275 ' 0642275 |  0.000983 : 0.001005 :  0.000996 -

The results for the null hypothesis H, : 2 ln(l“c2 + 1) = In§ were presented in Table 3.11 and
=1

the results for the null hypothesis A, : Y, ln(lAc2 +1) = InS were presented in Table 3.12
=1

4.2.4 Results Regarding Mean and Variance of I‘Ei - I:'§

Table 4.14 presents different measures of the mean of k?— k3 for sample size of
(m,n) = (5000,5000) and five categories of risk. The parameters used for each of the k7 and
k3 are as follows. For k} = k3 = 0.625,

q=(0.50,0.20,0.15,0.10,0.05)
p=(0.20,0.20,0.20,0.20,0. 20).

Although, the random variables were generated from the same population, the simulation
procedure used different seeds to randomly generate the samples; therefore, they are

independent of one another. The parameters for the simulated k7, i = 1,2, in which
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k7 + 0.625 are the same as those in Table 4.1.
The sample average of k¥ —k2 and the £ (l}% —ic%) =FE (icf) -E (l‘c%_) from Eq.
(2.27) are compared in Table 4.14 as well as the simulated and theoretical bias for &7 and &3.

As can be seen, there is good agreement between the two measures of the mean.

Table 4.14 Comparison of Theory and Simulation Concerning the Mean of l‘c%-l.cZ;

| n=35000 : ;

' om=5000 ' ; : -

: . ! Average of Average of | i . . :

i Risk ; ! . - -, Average : Theontical ' Theontical

; A : . Biasofki - Biasofk: . N R . .

i Categones j - tfrom . Biasof Bias of

; _ R i over 100C , over 1000 . . . : R : N

! 5 ; : o X o . Simulation kt . k3

: ! i Replications | Replications : '

; £ . k2 1 biasy | biasi ' biasg  biasg ERF R

z ; ; : . Eq.(227a) . Eq.(227a) . Eq.(227) !

;0625 0.000; 0.001993 : 0001604 . 0.626694 : 0.001987 = 0.001600 . 0.6254

. 0.625 10.109° 0.001993 : 0001661 : 0.517053 0.001987 0.001658  0.5163

P 0625 :0201: 0001993 ~ 0000849 ' 0424678 | 0001987 : 0001843 04241

[ 0625 :0308] 0001993 ' 0002511 ' 0316666 | 0.001987 ' 0002498 03165
0.625 10399 0.001993 ' 0.002665 : 0226380 , 0.001987 . 0.002656 = 0225
0.625 }0.504, 0.001993 ; 0.002989 . 0.122792 @ 0.001987 ° 0.002984 ~ 0.120
0.625 10.625! 0001993 : 0001989 ' 0.001699 0.001987 0.001987 0.000
0.746  :0.625: 0.005678 . 0001993 - 0.123200 0.005639 . 0.001987 0.1246
0.799  :0.625 0.002085 . 0.001993  0.173211 ~ 0.002080 0.001987 . 0.1740
0.901 ,0.625. 0.005736 0.001993 - 0273696 0.005721 0.001987 0.2797

4.2.5 Results Regarding 2, 4, 6,and 8
Categories of Risk

The average of k2 over 1000 replications was calculated and compared to its parameter value

k* = 21 % — 1, to the expected value defined in Section 2.4, Eq. (2.27), that is,

< 2 2
E(i)= (q.-a —q) , 9:(1=q)(A=p.) , 47  4i(L =p) ) 1
() ; mp m(n)p; P (m@)*

m-=n

and to the theoretical expected value based on the associated Gamma(ﬁz—‘,( ==1B)) (or

equivalently, 2= v2(c —1) distribution if the parameter value for &% is zero, or to the

mn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

noncentral chi-square distribution 22 72(c — 1, 22> 2P0 (a"v‘) “22P2 ) if k* > 0). The average of the

1000 replications of bias;- is compared to the parameter value of

L 0:.(1-q) , ¢ =gy ~p) _¢i(1-p:) )
biasy: Z( mp, m(n--i-e)p,2 . (nq'-e)(p:)z i

The average of VCIP) over the 1000 replications is compared to its corresponding

parameter value of V/ (1}2) defined in Section 2.6, Eq. (2.33). The average of the estimate,
i\
vV (kz), is also compared to its corresponding sample variance of 67,. Additionally, the

A
average of V(kz) is compared to the theoretical variance based on the associated

Gamma ( ‘;‘ ,(Z2B)) (or equivalently, 22 72(c — 1) distribution if the parameter value for

k? is zero, or to the noncentral chi-square distribution 222 72(c — 1, 24 (""p ) 227y if k2 > 0).

’ m-n

It 1s seen from Tables 4.15 to 4.22 that there is good agreement between theory and simulation
with regard to the mean and variance of k*. The variance under the alternative hypothesis
differs from the noncentral chi-square variance because in the populations simulated, the p, and
q:, i =1,2,...,¢c, are too far apart to be distntbuted as noncentral chi-square; rather, they are

better modeled as asymptotically normal.
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Table 4.15 Companson of Theory and Simulation Concerning the Mean of i with

Two Categories

] : i
A !
H 1

n = 5000 : , 5
m = 5000 : i
] Average of - : j Chi-Square
j ! . ; ) Average
Buasover Bias , ' : Mean
i ; from , -
1000 . Eq.(2.27a) o . Central (k- = 0)
: o i : * Simulation - :
¢ Replications . ‘ ; Noncental (k- > 0)
i D biasp 0 biase | E(R)
: 0.000 ©0.000400 °  0.000400 10.000400  0.000375 0.000400
j 0.048 +0.000392 | 0.000392 10.048835; 0.048785 0.048843
: 0.100 ! 0.000431 | 0.000481 0.100585: 0.099740 0.100504
0.495 i 0.000589  0.000589 :0.496527: 0.495018 0.496337

Table 4.16 Comparison of Theory and Simulation Concerning the Variance of k2 with

Two Categories

. n=5000
" m =5000 ‘
Average of Chi-Square Varnance over
‘ 1000 Sample Variance . 1000 Samples
Estimates from Central (k* = 0) from
| . Simulation : Noncental (¥* >0)  Simulation
' Eq. (2.33) !
: * A
B ) o ()
0.000 | 0.000000 :  0.000001 0.000000 0.000000
0.048 0.000075 : 0.000070 0.000077 0.000075
0.100 - 0.000173 - 0.000173 : 0.000160 : 0.000173
0.495 © 0.000833 ° 0.000814 é 0.000793 ' 0.000832
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Table 4.17 Comparison of Theory and Simulation Concerning the Mean of K with

Four Categories

n=5000 | |
m = 5000 i :
Average of Chi-Square
. . . Average
Bias over Bias j N Mean
i ; : : from .
' 1000 : Eq.(2.27a3) . o . Central (k- = 0)
; i o : : . Simulation - .‘
" . Replications : g . Noncental (k= > 0) ;
&2 bias;. bias;» E {Z’l ) L
0.000 ©0.001200 0.001200 '0.001200° 0.001215 . 0.001200
i 0.050 . 0.001220 0.001220 :0.051476: 0051101 | 0.051456
; 0.102 . 0.001346 0.001347 '0.103015  0.103001 | 0.102867
i 0.502 i 0.001683 0.001683 0.504617: 0.504485 0.504133

Table 4.18 Comparison of Theory and Simulation Concerning the Variance of k2 with

Four Categories

' n=5000 |

§m=mm5

Average of Chi-Square Variance over
1000 Sample Variance 1000 Samples
Estimates from Central (k> = 0) from

, , ' Simulaton  Noncental (,* > 0) Simulation

: A

k2 - r(Ee) v(i*)

§ "Eq. (2.33) !

0.000 ' 0.000000 - 0.000002 0.000001 0.000001
©0.048 | 0.000079 = 0.000080 0.000081 0.000072

; 0.100 i 0.000187 0.000178 0.000177 0.000175
0495 0001511  0.001519 0.000805 0.001444
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Table 4.19 Comparison of Theory and Simulation Concerning the Mean of E with

Six Categories

n=35000 . ;
I m = 5000 ; :
; Average of ‘ Chi-Square
; . : R Average
: Bias over Bias Mean
: . ﬁ'Om -
; 1000 Eq. (2.27a) | - ! Central (5° = 0)
: ; L Z ¢ Simulation ! \
! - Replications - ‘ . Noncental (k- > 0)
: i bias;: bias,i: - E K/Il ) average
, 0.000 0.002001 0.002001 :0.002001 © 0.001969 0.0020Q00
i 0.051 0.002206 0.002207 0.052706° 0.051302 0.052500
: 0.101 0.001936 0.001936 0.102436 0.102666 0.102500
' 0.500 0.0032353 0.003256 | 0.502756 ' 0.502531 0.501500

Table 4.20 Comparison of Theory and Simulation Concerning the Variance of k* with

Six Categories

| n = 5000

' m = 5000

Average of Chi-Square Variance over
; 1000 Sample Vaniance 1000 Samples
Estimates from Central (k* = 0) from

: ‘ *  Simulation Noncental (k* > 0) Simulation

f Eq. (2.33)

! . B

B ) V(&)

0.000 0.000000 0.000003 0.000001 0.000001
0.048 £ 0.000086 : 0.000094 0.000082 0.000092
0.100 :0.000161 5  0.000166 0.000162 0.000166

. 0.495  10.000997 |  0.000954 0.000800 0.001012
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Table 4.21 Comparison of Theory and Simulation Concerning the Mean of £ with
Eight Categories

i

i n = 5000

; m = 5000

E Average of Chi-Square

i N : : Average

: Bias over | Bias R Mean

; . : from o

' 1000 i Eq (2.27a) ) ) . Central (k- = 0)

: ; L : - Simulation - .

' ' Replications . Noncental (k- > Q) .

bias;. bias;= E ’(1:': ) average
i . .

0.000 0.002801 : 0.002802 ~0.002802: 0.002823 0.002800
0.050 0.003028 0.003028 :0.052543: 0.052164 0.052315
0.104 0.003529 0.003530  0.107655 i 0.106304 0.106925
0.502 0.004621 0.004623 ;0.506998 : 0.508477 0505175

Table 4.22 Comparnson of Theory and Simulation Concerning the Variance of k? with

Eight Categories
. n=5000 . g
| m = 5000
Average of Chi-Square Variance over
| 1000 Sample Variance 1000 Samples
i Estimates from Central (k* = 0) from
- Simulation Noncental (k> > 0) Simulation
' Eq. (2.33)
o () v (i)
0.000 ' 0.000000 . 0.000005 0.000002 0.000002
0.050 ; 0.000091 0.000097 1 0.000081 0.000092
0.104 : 0.000239 . 0.000250 0.000168 0.000256
0.502 0.001064 0.001095 0.000806 0.001120
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4.2.6 Simulation Results Regarding the Power of the Two

Test Statistics k2 and 2 for Five Categories of Risk

The following tables present the powers of the test statistics, 2= > %5— —~1 and z2,
=1

for the null hypothesis (k> = 0, or the factor is not a risk) vs. the altemative hypothesis

(k? # 0) from simulation at the 0.01, 0.025, 0.050, and 0.100 «a levels. The critical values for

2(m-n)

each a level were calculated for &2 from the Gamma( =i T) distribution and for z-

1
]

from the chi-square distribution with ¢ — 1 degrees of freedom. As can be seen, the power is
quite high for sample size 200 and over. For small &* values of 0.049 the power becomes good
for sample size over 400. This is similar to the power found in the 72 test given in Eq. (1.12).
As expected, the power of the test is better as the sample size gets larger. The power of the test

for k2 is slightly better than that for the 2 statistic.

Table 4.23 Power of the Two Test Statistics k2 Eq. (2.21a), and the > Goodness of
Fit Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 50, n = 50

n=50,m=50 E Test Statistics

k> f 7 ,

; k? 10.010 0.025 : 0.050 :0.100 : 0.010 - 0.025 ' 0.050 .0.100 '
0.000 | 0.026 1 0.051 | 0.074 | 0.144 = .009 | .026 . .047 _ .103 '
0.049 1 0.102 : 0.148 ' 0.199 ; 0.277 , 0.015 : 0.035 . 0.082 ' .154 .
0109 1 0.127 . 0.186 ' 0.246 . 0.339  0.062 ! 0.125 : 0.194 .295
: 0.201 . 0.222 , 0336 . 0.451 ; 0.573 ; 0.234 : 0.386 . 0.515 . .649 .
0.308 £ 0.364 1 0.458 | 0.554 : 0.660 ' 0.203 ; 0.320 .0436 . .571
0.399 1 0.519 : 0.608 - 0.706 . 0.790 0.324 . 0.470 | 0.594 - 711
0.504 . 0.641 - 0.731 - 0.802 | 0.873  0.456 ' 0.606 : 0.722  .828
0.625 1 0.684 1 0.792  0.864 0.929 | 0.669 . 0.791 : 0.871 = .938

0.746 £ 0.800  0.867 ' 0.904 . 0.945 ' 0.604 - 0.729 0828 911 :

0.799 . 0.876 : 0.928 : 0.968 - 0.987  0.931 0.972 . 0.987 .997
: 0.901 £ 0.904 | 0.946 : 0.961 0.974 | 0.851 ' 0.915 0.945 . .975 ,
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Table 4.24 Power of the Two Test Statistics k> Eq.(2.21a), and the 7> Goodness of Fit
Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 100, n = 100

\n=100,m = 100 Test Statistics

; i | z*

k* /0.010 . 0.025 ' 0.050 ' 0.100 0.010 '0.025 0.050 0.100

0.000 1 0.015 | 0.027 © 0.051 : 0.099  0.011 . 0.021 - 0.033 * 0.085 -

: 0.049 | 0.130 ! 0.191 ' 0.276 | 0.367 1 0.042 : 0.086 0.172  0.274

0.109 1 0.240 | 0.330 : 0.406 0.532 1 0.180 ' 0.269 ' 0.372  0.496 .

: 0.201 £ 0.533 | 0.685 | 0.786 : 0.881 . 0.678 0.782 - 0.856 : 0.924
0.308 1 0.715 ¢ 0.793 = 0.852  0.905 ' 0.605 ' 0.725 | 0.809 ‘ 0.882 -
0.399 1 0.850 | 0.896 | 0.935 | 0.956 ' 0.778 | 0.853 ; 0.913  0.951
0.504 £ 0.929 | 0.960 : 0.982  0.990 0.888 | 0.938 * 0.970 = 0.985 -
0.625 1 0.978 | 0.989 : 0.997 | 0.999 - 0.973  0.993 ' 0.997 : 0.999 |
0.746 1 0.981 1 0.993 | 0.997 © 0.999 : 0.964 | 0.985 : 0.995 - 0.998 .
0.799 1 0.999 | 0.999 . 0.999 ;| 1.000 ' 0.999 | 1.000 ' 1.000 ' 1.000 °

0.901 1 0.999 i 1.000 | 1.000 ; 1.000 ' 0.999 i 1.000 - 1.000 : 1.000 -

Table 4.25 Power of the Two Test Statistics k2 Eq. (2.21a), and the 72 Goodness of Fit
Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 200, n = 200

in =1200,m =200 Test Statistics

| ke | z ,
| k* 10.010 ; 0.025 ; 0.050 : 0.100 '0.010 : 0.025 : 0.050 0.100
| 0.000 1 0.015 1 0.037 | 0.059 . 0.098  0.011 : 0.027 : 0.052 ' 0.091
0.049 1 0.241 1 0.342 | 0.440  0.539 : 0.149 ' 0.239 ; 0.333 | 0.473 -
0.109 ' 0.510 | 0.633 © 0.728 : 0.814 0449 | 0.587 . 0.694 ' 0.798
0.201 £ 0.945 . 0.983 © 0.992 1 0.999 . 0.983  0.992 ' 0.997 | 1.000 :
0.308 1 0.971 ; 0.990 | 0.994 ;. 0.998 0.962 | 0.981 ' 0.992 . 1.000 -
f_ 0.399 1 0.996 - 0.996 + 0.999 | 1.000 0.992 | 0.996 0.999  1.000 :
: 0.504 ©1.000 © 1.000 : 1.000 - 1.000 : 1.000 ‘' 1.000 1.000 1.000 .
0.625 | 1.000 | 1.000 | 1.000 : 1.000 1.000 1.000 1.000 1.000
0.746 1 1.000  1.000 = 1.000 | 1.000 ; 1.000 ; 1.000 ' 1.000 . 1.000 .
0.799 : 1.000 | 1.000 | 1.000 | 1.000 | 1.000 : 1.000 | 1.000 ' 1.000
0.901 ' 1.000 | 1.000 : 1.000 ' 1.000 : 1.000 ; 1.000 ' 1.000 : 1.000 '
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Table 4.26 Power of the Two Test Statistics &2 Eq. (2.21a), and the > Goodness of Fit
Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 300, n = 300

‘n = 300,m =300 Test Statistics
| k= 5 % |
k2 10.010 , 0.025 ; 0.050 : 0.100 '0.010 | 0.025 ;0.050 - 0.100
0.000 | 0.014 | 0.028 | 0.052 | 0.103 : 0.009 | 0.026 . 0.046 . 0.093
0.049 1 0.352  0.472 | 0.565  0.659 | 0.241 . 0.393 ' 0.498 | 0.618 |
0.109 1 0.747 | 0.826 | 0.881 | 0.928 ' 0.699 = 0.802 : 0.872 0.925 :
0.201 1 0.998 | 1.000 | 1.000 | 1.000 ; 1.000 - 1.000 . 1.000 . 1.000
0.308 £ 0.998  1.000 | 1.000 . 1.000 . 1.000 : 1.000 : 1.000 - 1.000 -
] 0.399 : 1.000 ; 1.000 | 1.000 - 1.000 : 1.000 : 1.000 : 1.000 . 1.000 '
0.504 1 1.000 | 1.000 | 1.000 | 1.000 ' 1.000 ' 1.000 ' 1.000 | 1.000 °
! 0.625 : 1.000 ; 1.000 | 1.000 | 1.000 i 1.000 : 1.000 : 1.000 & 1.000 :
0.746 - 1.000 | 1.000 i 1.000 | 1.000  1.000 | 1.000 . 1.000 . 1.000 |

i |
0.799 1 1.000 1.000 | 1.000 | 1.000 : 1.000 : 1.000 * 1.000 | 1.000 |
' * 1.000 : 1.000 : 1.000

0.901 | 1.000 | 1.000 | 1.000 : 1.000 | 1.000

Table 4.27 Power of the Two Test Statistics k2 Eq. (2.21a), and the 72 Goodness of Fit
Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 400, n = 400

n = 400,m = 400 Test Statistics
| ’ i z _
K 10.010 . 0.025 | 0.050 ©0.100 ' 0.010 | 0.025 0.050 0.100
5 0.000 1 0.010 ; 0.024 ; 0.048 ' 0.091 | 0.008 , 0.021 ~ 0.038 0.088 .
0.049 £ 0.490 , 0.611 | 0.707 : 0.801 ' 0.408 : 0.529 . 0.646 | 0.767
0.109 £ 0.903 ' 0.941 | 0.961 ; 0.981 : 0.882 : 0.936 0.958 ' 0.979
0.201 : 1.000 | 1.000 : 1.000 | 1.000 ' 1.000 * 1.000 = 1.000 : 1.000
: 0.308 ' 1.000 . 1.000 | 1.000 | 1.000 : 1.000 1.000 : 1.000 . 1.000
0.399 | 1.000 © 1.000 | 1.000 : 1.000 : 1.000 , 1.000 . 1.000 . 1.000 -
' 0.504 1 1.000 - 1.000 | 1.000 : 1.000 : 1.000  1.000 ' 1.000 - 1.000 :
0.625 . 1.000 ' 1.000 | 1.000 . 1.000 ' 1.000 : 1.000 = 1.000 . 1.000 :
j 0.746 . 1.000 © 1.000 | 1.000 : 1.000 , 1.000 | 1.000 : 1.000 | 1.000
0.799 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 : 1.000 | 1.000 : 1.000 .
0.901 - 1.000 . 1.000 | 1.000 | 1.000 ; 1.000 ; 1.000 ' 1.000 | 1.000 :
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Table 4.28 Power of the Two Test Statistics k2 Eq. (2.21a), and the > Goodness of Fft

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 500, n = 500

n = 500,m = 500 | Test Statistics

] K | 7 ;
k2 10.010 | 0.025 : 0.050 ,0.100 | 0.010 ; 0.025 0.050 . 0.100 |

5 0.000 10.012 | 0.026 : 0.050 | 0.094 | 0.006 ; 0.022 | 0.046 : 0.096
| 0.049 1 0.622 | 0.739 ; 0.802 | 0.876 ; 0.552 | 0.682 . 0.784 | 0.970 |
0.109 10.95310.971 1 0.979 | 0.991 : 0.941 | 0.966 | 0.976 = 0.999 '

| 0.201 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 : 1.000 ' 1.000 :
0.308 | 1.000 | 1.000 : 1.000  1.000 | 1.000 . 1.000 . 1.000 . 1.000 :
‘ 0.399 1.000 | 1.000 | 1.000 | 1.000 i 1.000 ; 1.000 | 1.000 " 1.000 :
0.504 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 :

, 0.625 1.000 | 1.000 : 1.000 ; 1.000 ' 1.000 | 1.000 ;| 1.000 : 1.000 :
0.746 1.000 | 1.000 : 1.000 | 1.000 - 1.000 ; 1.000 ; 1.000 : 1.000 :
. .0.799 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 ' 1.000 : 1.000 :
| 0.901 1 1.000 | 1.000 | 1.000 { 1.000 ! 1.000 | 1.000 | 1.000 | 1.000 |

Table 4.29 Power of the Two Test Statistics k2 Eq. (2.21a), and the 72 Goodness of Fit

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 600, n = 600

n = 600,m = 600

Test Statistics

| K* 72 :

| K2 10.010 10.025 0.050 | 0.100 : 0.010 ;0.025 : 0.050 ' 0.100 :
0.000 1 0.013 1 0.027 | 0.049 |0.131} 0.120  0.240 ' 0.050 . 0.094 '
| 0.049 1 0.729 | 0.825 | 0.875 | 0.939 . 0.673 | 0.785 ' 0.854 | 0.912
0.109 £ 0.988 1 0.993 | 0.996 1 0.999  0.986 : 0.992  0.995 ' 0.999

| 0.201 | 1.000 | 1.000 ; 1.000 :1.000: 1.000 1.000 : 1.000 ' 1.000 '
! 0.308 1 1.000 | 1.000 ; 1.000 | 1.000 ! 1.000 : 1.000 i 1.000 ' 1.000 :
| 0.399 | 1.000 ; 1.000 : 1.000 | 1.000 : 1.000 : 1.000 : 1.000 - 1.000 |
0.504 1.000 | 1.000  1.000 ; 1.000 , 1.000 | 1.000 | 1.000 :1.000 |
: 0.625 1 1.000 | 1.000 - 1.000 | 1.000 | 1.000 : 1.000 : 1.000 1.000 -
; 0.746 | 1.000 | 1.000 | 1.000 {1.000 | 1.000 | 1.000 ; 1.000 - 1.000 :
0.799 | 1.000 | 1.000 ! 1.000 | 1.000 | 1.000 | 1.000 | 1.000 ; 1.000 :
0.901 | 1.000 | 1.000 ; 1.000 | 1.000 : 1.000 : 1.000 ; 1.000 " 1.000
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Table 4.30 Power of the Two Test Statistics &2 Eq. (2.21a), and the 7> Goodness of Fit

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m =800, n = 800

1
i
7

'n =800,m =800

Test Statistics

| K | z? |

K? 10.010 | 0.025 :0.050 ' 0.100 ; 0.010 | 0.025 ' 0.050 : 0.100 .

0.000 | 0.011 | 0.027 | 0.045 . 0.093 | 0.010 ' 0.025 ' 0.049  0.096 '

0.049 0.844 : 0.913 | 0.951 ; 0.973 | 0.806 | 0.887 - 0.936 0.970 !

0.109 1 0.997 { 0.998 | 0.998  0.999! 0.995 | 0.998 : 0.998 : 0.999 .

: 0.201 , 1.000 | 1.000 | 1.000 ' 1.000 : 1.000 | 1.000 1.000 : 1.000 '
| 0.308 1 1.000 : 1.000 | 1.000 ; 1.000  1.000 | 1.000 : 1.000 | 1.000 '
0.399 1 1.000 : 1.000 | 1.000 | 1.000 ' 1.000 ; 1.000 . 1.000 . 1.000 :
: 0.504 { 1.000 : 1.000 | 1.000 ! 1.000  1.000 ' 1.000 | 1.000 ; 1.000 '
0.625 1 1.000 | 1.000 | 1.000 : 1.000 : 1.000 : 1.000 : 1.000 : 1.000 .

0.746 1.000 | 1.000 | 1.000 : 1.000 ' 1.000 : 1.000 i .000 ; 1.000 '

0.799 | 1.000 | 1.000 | 1.000 - 1.000 : 1.000 ; 1.000 | 1.000 ; 1.000 '

0.901 | 1.000 | 1.000 | 1.000 | 1.000 ' 1.000 ; 1.000 | 1.000 : 1.000 |

'

Table 4.31 Power of the Two Test Statistics k2 Eq. (2.21a), and the > Goodness of Fit

Test, Eq. (1.12), for Five Categones of Risk for Sample Sizes of m = 1000, n = 1000

= 1000,m = 1000 : Test Statistics
| k2 7 :
_f K 10.010 ' 0.025 0.050 : 0.100 0.010 : 0.025 :0.050 , 0.100
0.000 | 0.015 * 0.037 ; 0.068 - 0.116 0.015 ' 0.034 ' 0.062 0.113
; 0.049 1 0.945 | 0.974 | 0.990 | 0.993 0.927 . 0.969 : 0.985 ' 0.993 .
0.109 1 1.000 : 1.000 : 1.000 = 1.000 1.000 : 1.000 ; 1.000 : 1.000
0.201 £ 1.000 * 1.000 ‘ 1.000 ' 1.000 ' 1.000 : 1.000 | 1.000  1.000
0.308 + 1.000 | 1.000 : 1.000 = 1.000 * 1.000 : 1.000 : 1.000 : 1.000 -
0.399 1 1.000 ; 1.000  1.000 ‘ 1.000, 1.000 | 1.000 . 1.000 1.000 :
0.504 1 1.020 . 1.000 ' 1.000 ' 1.000° 1.000 1.000 . 1.000 1.000
0.625 1 1.000 ' 1.000 | 1.000 ' 1.000 1.000 1.000 : 1.000 ' 1.000
_ 0.746 | 1.000 | 1.000 * 1.000 ' 1.000 ' 1.000 ‘ 1.000 | 1.000 1.000 '
E 0.799 ! 1.000 | 1.000 | 1.000 : 1.000 ' 1.000 | 1.000 = 1.000 : 1.000 |
0.901 . 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 . 1.000 1.000 :
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Table 4.32 Power of the Two Test Statistics &° Eq. (2.21a), and the 7*> Goodness of Fit

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 3000, » = 3000

"1 = 3000,m = 3000 ! Test Statistics
I | z |
K 10.010 0.025 | 0.050 | 0.100 0.010 0.025  0.050 0.100
0.000 £ 0.008 ; 0.020 | 0.035 | 0.086 | 0.007 : 0.021 ; 0.036 . 0.087 |
0.049 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 :
0.109 : 1.000 | 1.000 | 1.000 | 1.000 i 1.000 : 1.000 ' 1.000 | 1.000 |
0.201 | 1.000 { 1.000 ! 1.000 | 1.000 | 1.000 ; 1.000 | 1.000 1.000
0.308 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 . 1.000 | 1.000 : 1.000
: 0.399 1 1.000 | 1.000 | 1.000 ! 1.000 i 1.000 : 1.000 1.000 : 1.000 .
0.504 | 1.000 ; 1.000 | 1.000 . 1.000 | 1.000 . 1.000 | 1.000 {1.000:
| 0.625 1 1.000 | 1.000 | 1.000 { 1.000 | 1.000 ' 1.000 ' 1.000 . 1.000
i 0.746 ' 1.000 | 1.000 ; 1.000 | 1.000 ; 1.000 | 1.000 : 1.000 ' 1.000 :
’ 0.799 1 1.000 | 1.000 | 1.000 | 1.000 ; 1.000 | 1.000 ; 1.000 | 1.000 |
0.901 ' 1.000 | 1.000 { 1.000 | 1.000 | 1.000 : 1.000 : 1.000 ; 1.000 !

Table 4.33 Power of the Two Test Statistics k2 Eq. (2.21a), and the 7? Goodness of Fit
Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 5000, n = 5000

Test Statistics

' n = 5000,m = 5000

~

| K | z !

k* 10.010 {0.025 ; 0.050 | 0.100 | 0.010 , 0.025 1 0.050 ' 0.100

0.000 1 0.008 : 0.016 | 0.035 | 0.080; 0.008 | 0.017 ' 0.032 . 0.081 :

0.049 + 1.000 | 1.000 ; 1.000 | 1.000 | 1.000 i 1.000 ; 1.000 ; 1.000 ;

0.109 ' 1.000 | 1.000 | 1.000 ; 1.000 | 1.000 i 1.000 ' 1.000 ‘ 1.000 '

0.201 : 1.000 ; 1.000 | 1.000 { 1.000 | 1.000 | 1.000 ; 1.000 - 1.000 .

0.308 - 1.000  1.000 ; 1.000 | 1.000 | 1.000 ' 1.000 : 1.000 = 1.000

0.399 1 1.000 | 1.000 | 1.000 | 1.000 ' 1.000 : 1.000  1.000 = 1.000

0.504 - 1.000  1.000 | 1.000 | 1.000 | 1.000 ; 1.000 : 1.000 : 1.000 '

‘ 0.625 - 1.000 ; 1.000 : 1.000 : 1.000 : 1.000 ' 1.000 . 1.000 ' 1.000
: 0.746 . 1.000 : 1.000 | 1.000 : 1.000 * 1.000 | 1.000 | 1.000 ; 1.000
! 0.799 ' 1.000 ! 1.000 | 1.000 | 1.000 : 1.000 | 1.000 | 1.000 | 1.000 '
| 0.901 . 1.000 | 1.000 | 1.000 | 1.000 | 1.000 : 1.000 | 1.000 | 1.000 '
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Table 4.34 Power of the Two Test Statistics k% Eq. (2.21a), and the 72 Goodness of Fit

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 7000, » = 7000

| n = 7000,m = 7000 | Test Statistics |
E k | i |
> 10.010 ;| 0.025 | 0.050 | 0.100 ; 0.010 . 0.025 | 0.050 . 0.100

0.000 1 0.012 ' 0.031  0.056 | 0.105 ! 0.010 ; 0.030 : 0.058  0.108

0.049 - 1.000 | 1.000 ; 1.000 ' 1.000 | 1.000 ! 1.000 : 1.000 ; 1.000 '

0.109 1 1.000 : 1.000 ' 1.000 | 1.000 | 1.000 | 1.000 ; 1.000 = 1.000

0.201 ' 1.000 | 1.000 { 1.000 ; 1.000 { 1.000 | 1.000 i 1.000 : 1.000 :

0.308 | 1.000 | 1.000 | 1.000 ' 1.000 | 1.000 ;| 1.000 : 1.000 . 1.000 :

0.399 £ 1.000 | 1.000 : 1.000 : 1.000 | 1.000 ; 1.000 : 1.000 = 1.000 .

0.504 © 1.000 ' 1.000 ' 1.000 | 1.000 | 1.000 : 1.000 ; 1.000 | 1.000

0.625 ' 1.000 | 1.000 : 1.000 { 1.000 | 1.000 - 1.000 | 1.000 ; 1.000 '

0.746 - 1.000  1.000 ; 1.000 ! 1.000 | 1.000 | 1.000 | 1.000  1.000

| 0.799 ' 1.000 | 1.000 | 1.000 : 1.000 i 1.000 . 1.000 | 1.000 ; 1.000 :
5 0.901 . 1.000 | 1.000 ; 1.000 ! 1.000 : 1.000 | 1.000 | 1.000 | 1.000 .

Table 4.35 Power of the Two Test Statistics k2 Eq. (2.21a), and the #2 Goodness of Fit

Test, Eq. (1.12), for Five Categories of Risk for Sample Sizes of m = 9000, n = 9000

n = 9000,m = 9000 . Test Statistics
' i 7
k2 10.010 | 0.025 0.050 | 0.100 ; 0.010 ; 0.025 : 0.050 0.100 '
0.000 0.011 | 0.026 : 0.046 0.095 | 0.012 | 0.027 . 0.045 0.095 '
0.049 - 1.000 : 1.000 - 1.000 | 1.000 | 1.000 | 1.000 | 1.000 ; 1.000 |
0.109 ' 1.000  1.000 : 1.000 | 1.000 | 1.000 ' 1.000 ' 1.000 ' 1.000 |
0.201 - 1.000 . 1.000  1.000 : 1.000 | 1.000 - 1.000 . 1.000 ' 1.000 :
‘ 0.308 ©1.000 ‘ 1.000 ' 1.000 : 1.000 | 1.000 . 1.000 ' 1.000 : 1.000 !
; 0.399 . 1.000 . 1.000 - 1.000  1.000 | 1.000 | 1.000 | 1.000 : 1.000 |
0.504 - 1.000 { 1.000 . 1.000 | 1.000 : 1.000 ! 1.000 = 1.000 . 1.000
: 0.625 - 1.000 : 1.000 ;| 1.000 | 1.000 ' 1.000 | 1.000 ; 1.000 : 1.000
f 0.746 - 1.000 ! 1.000 i 1.000 | 1.000 | 1.000 | 1.000 | 1.000 . 1.000
, 0.799 ' 1.000 , 1.000 ; 1.000 {1.000 | 1.000 '~ 1.000 | 1.000 ' 1.000 |
§ 0.901 ' 1.000 ¢ 1.000 | 1.000 ; 1.000 | 1.000 ; 1.000 | 1.000 : 1.000
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4.2.7 Results Regarding the Power at the @ = 0.05 Level of the

Test forln(l‘;:z + 1), iln(ic} + 1),Zs:ln(ic§ +1), and
=1 =1

k% — k2 for Five Categories of Risk

The power of the test statistic, ln(l:'?- + 1), for the null hypothesis ln(fc2 + 1) =0, at
the @ = 0.05 level was calculated for the sample sizes given in Tables 4.36 through 4.40. The
parameters used to simulate the &> are the same as those specified in Section 4.1, and the
parameters used to simulate the test statistic are indicated in the tables. The crtical value of

the test is determined by the distribution of the test statistic. For m(lzz + 1), the distribution
was derived in Section 3.3, and given by Eq. (3.7), that is,

(e -1

e’ — 1)“'le_ B

e“dz, z> 0.
T@)(B)" g

fizy = &

The critical value Z, for this test at the ¢ = 0.05 level i1s found by integrating over the
distribution from zero to Z,, where Z, is the upper limit of the integral that gives an area under
the curve of 1 — a,

Za

[ fizydz = 0.95.
0

For thln(icf + 1) and f:ln(/‘c,2 + 1), under the null hypothesis, iln(l},z + 1) =0, the
=l =1 =1
distribution 1s given by Eq. (3.11),

; a,~t _@
- <e-‘—1)§ e F

e“dz.

A=)

The critical value is again found by determining the value of the upper limit that makes the area

under the curve equal to 1 —a. The tables show that the powers of the test statistics
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~ 2 ~
In(k>+1) and 3 In(k* + 1) are quite high for sample size 500 and larger.
=1

-~ 2 ~
Table 4.36 Power forIn(k*+1) and 3" In(k? + 1) ata Sample
=1

Size of (m,n) = (100, 100) for Five Risk Categories

'n =100,m = 100 Critical Value
. @=0.05 0.17375  0.48261
G : w1 D)
; P =t :
0.000 0.000 . 0.052 0.080
, 0.109 0000 0407 0.388
é 0.201 0.000 : 0.786 0.686
0.308 . 0000 | 0853 0.795
0.399 ' 0000 | 0935 0.900
0.504 0000 | 00982 0.965
0.625 0000 | 0997 . 0985
0.746 . 0000 | 0997 0.993
| 0.799 0000 | 0999 1.000
0.901 ©0.000  1.000 1.000
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Table 4.37 Power for ln(/‘é2 +1) and 2 ln(ic,2 +1 )} ata Sample
=1

Size of (m,n) = (500, 500) for Five Risk Catregories

'n = 500,m = 500" Criticall Value
. @=005 ©0.03725 . 0.06019
i ém(k§+1)§z"lln(1},2+1)§
0.000 0.000 . 0.050 0.063
0.109 0.000 0.979 0.965
0.201 0.000 1.000 1.000
0.308 0.000 1.000 1.000
0.399 0.000 . 1.000 1.000
0.504 0.000 . 1.000 1.000
0.625 0.000 1.000 1.000
0.746 0.000 0.997 1.000
0.799 0.000 1.000 1.000
0.901 0.000 1.000 1.000
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Table 4.38 Power for In (%% + 1) and 2 In(k2 + 1) ata Sample
=l

Size of (m,n) = (1000, 1000) for Five Risk Categories

'n = 1000,m = 1000 Critical Value
' =0.05 : 0.018799 | 0.030545
i B m(B+1) (1)
* o=l

0.000 0.000 | 0060 |  0.062
0.109 0.000 1.000 1.000
0.201 0.000 1.000 1.000
0.308 0.000 1.000 1.000
0.399 0.000 1.000 | 1.000
0.504 0.000 1.000 ;|  1.000
0.625 0.000 1.000 1.000
0.746 0.000 0.997 1.000
0.799 0.000 1.000 1.000
0.901 0.000 1.000 1.000
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Table 4.39 Power for In(k% + 1) and 2 In(kZ +1) ata Sample
=1

Size of (m,n) = (3000,3000) for Five Risk Categories

_n = 3000,m = 3000 | Critical Value
a =0.05 ; £ 0.006306 : 0.010285
k3 B (& +1) giln(ic,zu)
: ; U=l
0.000 . 0.000 0.045 0048 |
0.109 . 0.000 1.000 1.000
0.201 . 0.000 1.000 1.000
0.308 0.000 1.000 1.000
0.399 0.000 : 1.000 1.000
: 0.504 . 0000 ' 1.000 1.000
i 0.625 | 0.000 - 1.000 1.000
| 0.746 0000 - 0997 1.000
0.799 0.000 |  1.000 1.000
0.901 0.000 | 1.000 1.000
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Table 4.40 Power for In(k* +1) and i ln(k2 + 1) ata Sample
=1

Size of (m,n) = (5000, 5000) for Five Risk Categories

in = 5000,m = 5000 Critical Value
: a = 0.05 : . 0.0037885 ' 0.0061845
i3 B n(E+1) ThEer)
! : , v o=l '
0.000 0000 | 0045 ©  0.047
0.109 0000 1000 -  1.000
0.201 . 0000 - 1.000 ; 1000 |
0.308 . 0000 - 1000 © 1000 @
0.399 0000 ! 1.000 1.000 |
0.504 0000 | 1000 | 1000
: 0.625 0000 1000 :  1.000
| 0.746 0000 | 0997 | 1000
: 0.799 . 0000 | 1.000 . 1000 |
0.901 0000 ' 1000 | 1000

Tables 4.41 to 4.45 show the power of the test statistic Zln(l?? + 1) under the null
=l

hypothesis Zln(l}f + 1) = 0, for different sample sizes. The parameters used in simulating
=1

the test statistic are indicated in the tables. As is seen from these tables, the power is high for

sample size 500 or larger.
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Table 4.41 Power for 3 In(k? + 1) at a Sample Size of
=1

(m,n) = (100, 100) for Five Risk Categories

‘n = 100,m = 100 i Cntical Value
. a@=0.05 0.61035
Q3 2 B nX(E+1)
: ! =1

0.000 0.000 : 0.000 | 0.085

0.109 £0.000 : 0.000 . 0.397

0.201 £0.000  0.000 0.651

0.308 £ 0.000 : 0.000 - 0.771
; 0.399 £0.000 : 0.000 ! 0.870
| 0.504 £0.000 - 0.000 ; 0.952
0.625 - 0.000 : 0.000 : 0.979 :
: 0.799 10.000  0.000 1.000 ';
0.901 . 0.000 - 0.000 | 1.000 :

Table 4.42 Power for 3 In(42 + 1) ata Sample Size
=l

of (m,n) = (500, 500) for Five Risk Categories

'n = 500,m = 500 Critical Value
. a=0.05 0.080760
= BB, Sn(cl)
. ’ =1
0.000 10.000 0.000 . 0.072
0.109 . 0.000 0.000 ° 0.949
0.201 1 0.000 0.000: 1.000
0.308 - 0.000 0.000 1.000
0.399 0.000  0.000 1.000
0.504 £ 0.000 ' 0.000 - 1.000
: 0.625 - 0.000 0.000 1.000
0.799 10.000 0.000 1.000
' 0.901 .0.000 . 0.000 . 1.000
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Table 4.43 Power for Z ln(l:;-’ +1) ata Sample Size
=1

of (m,n) = (1000, 1000) for Five Risk Categories

n = 1000,m = 1000 - |  Critical Value

| a = 0.05 : | ©0.041192

¥ K3 KK im(ic,zﬂ) :

: : Lot

\ 0.000 10.000'0.000°  0.072

' 0.109 10.000° 0.000 1.000
0.201 £ 0.000 . 0.000 1.000
0.308 10.000 1 0.000 - 1.000
0.399 10.000°0.000  1.000
0.504 £0.000 * 0.000 . 1.000
0.625 . 0.000 ; 0.000 1.000
0.799 10.000,0.000 1000
0.901 . 0.000 . 0.000 - 1.000

Table 4.44 Power for > In(k2 + 1) at a Sample Size
=1

of (;m,n) = (3000,3000) for Five Risk Categories

~n =3000,m = 3000 ﬁ - Critical Value
: a = 0.05 : i ©0.013921
% Bk Tn(+r)
o=l
0.000 £0.000 | 0.000 0.050
0.109 . 0.000 + 0.000 1.000
0.201 - 0.000 | 0.000 1.000
0.308 - 0.000  0.000 1.000
0.399 10.000 : 0.000 . 1.000
0.504 . 0.000 . 0.000 1.000
0.625 1 0.000 ' 0.000 1.000
0.799 1 0.000 ; 0.000 1.000
0.901 - 0.000 0.000 1.000
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Table 4.45 Power for D ln(/:c;’- +1) ara Sample Size
=l

of (m,n) = (5000, 5000) for Five Risk Categories

. n = 5000,m = 5000 ' Critical Value
| a = 0.05 § : 0.008376
i BB Y1)
: : D=l .
0.000 10.000;0.000° 0052
0.109 £0.000 . 0.000 1.000
0.201 £0.000 : 0.000 1.000
0.308 10.00010.000°  1.000 |
0.399 10.000:0.000°  1.000 !
0.504 £ 0.000 ; 0.000  1.000 ‘
0.625 10.000:0.000.  1.000
0.799 10.000 1 0.000°  1.000
) 0.901 10.0000.000  1.000

Tables 4.46 through 4.69 give the power of the test statistics,

2 2 3 3
{i21)-tns——t 52 D {ii-1)-lns-) prTaadl D m{E=1)-tas=y" gl
Wit 2 = =1 2L - = 2 k- ) .
= , = , and S—— = , derived in
g; = oy N o
= 3 27 2 27 2
(k;‘+l) =t (k;‘+1) =1 (k;+1)

Section 3.3 for testing

H,: Y In(k*+1) =S

=1

Vs.

H, :fr_‘:ln(ic,ﬁﬂ) = In§,

where r = 1,2, or 3. From simulation, the distribution for each of the three test statistics was

shown to be approximately standard normal. As expected, this normal approximation becomes
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better for large sample sizes. The power for the test statistics becomes good for all alternative
hypotheses when the sample size is m = n = 1000 or greater. This may be seen from the

tables below. The parameters used for each null hypothesis are given in the tables.

Table 4.46 Power for the Null Hypothesis In(k* + 1) = InS at a Sample
Size of (m,n) = (200,200) and Five Categories of Risk

. k?=0.625
 om=200 @ =0.05
‘ m = 200 ‘
:  —Zogs =-1.96 | Zoozs = 1.96
; e 5
f 0.000 1.000 : 0.000 ;
0.109 0.937 ; 0.000 ;
| 0.201 ; 0.882 ; 0.000 |
0308 0.380 .. 0.002
| 0.399 0.270 | 0.002 i
| 0.504 | 0.100 0.014 ;
; 0.625 ; 0.030 : 0.045

0.799 ; 0.002 | 0.207

0.900 0.000 0.270
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Table 4.47 Power for the Null Hypothesis In(k* + 1) = In.S at a Sample
Size of (m,n) = (400,400) and Five Categories of Risk

. kK =0.625

' n =400 ’ a =005

! m = 400

f —~Zoo2s = —1.96 : Zoos = 1.96

k2 ; i

0.000 f 1.000 ; 0.000
0.109 0.999 » 0.000

| 0.201 ? 0.996 ; 0.000

: 0.308 : 0.685 f 0.000

| 0.399 0.369 - 0.000
0.504 0.141 j 0.000
0.625 0.028 1 0.033
0.799 0.001 0.313
0.900 ' 0.001 | 0.396

Table 4.48 Power for the Null Hypothesis In(k®> + 1) = InS at a Sample
Size of tn,n) = (500, 500) and Five Categories of Risk

kK =0625
n = 500 : 2 = 0.05
m = 500
~Zoozs = —-1.96 Zoors = 1.96
k2 f

0.000 1.000 0.000
0.109 : 0.998 , 0.000
0.201 ; 0.999 T 0.000
0.308 | 0.783 : 0.000
0.399 . 0.445 | 0.000
0.504 : 0.132 0.004
0.625 ; 0.030 : 0.036
0.799 : 0.000 * 0.372
0.900 , 0.000 0.443
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Table 4.49 Power for the Null Hypothesis In(k* + 1) = InS at a Sample
Size of (m,n) = (1000, 1000) and Five Categories of Risk

. K =0.625 |
 m=1000 a =0.05
m = 1000
L —Zogas = —-1.96 Zog2s = 1.96
k* ; :

0.000 ! 1.000 j 0.000

0.109 : 1.000 j 0.000
: 0.201 ‘ 1.000 ‘ 0.000
% 0.308 ‘ 0.971 ; 0.000
| 0.399 ; 0.735 » 0.000

0.504 : 0.281 , 0.001

0.625 0.027 : 0.030
| 0.799 | 0.000 - 0.590
0.900 0.000 ; 0.713 -

Table 4.50 Power for the Null Hypothesis In(k* + 1) = InS at a Sample
Size of (m,n) = (3000,3000) and Five Categories of Risk

k* =0.625 |
n=3000 2 = 0.05
m = 3000
~Zyo2s = —1.96 ' Zoo2s = 1.96
ki ,
0.000 | 1.000 0.000
0.109 : 1.000 0.000
0.201 ; 1.000 0.000
: 0.308 : 1.000 | 0.000
: 0.399 ? 0.997 : 0.000
: 0.504 ; 0.614 ‘ 0.000
0.625 | 0.022 ; 0.030
| 0.799 0.000 : 0.968
| 0.900 0.000 i 0.992
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Table 4.51 Power for the Null Hypothesis In(k* + 1) = In.S at a Sample

Size of (im,n) = (7000,7000) and Five Categories of Risk

L K2 =0.625 |

~ n=7000 o = 0.05

- m=7000 ;

L - —Zogas = —1.96 Zooxs = 1.96

.f Kt :

. 0.000 1.000 0.000

0.109 ! 1.000 0.000

0.201 1.000 0.000

0.308 1.000 0.000

'i 0.399 : 1.000 0.000
0.504 0.950 0.000
0.625 0.023 0.027

: 0.799 0.000 1.000

| 0.900 0.000 1.000

Table 4.52 Power for the Null Hypothesis i: In(k? + 1) = InS at a Sample
=1

Size of (m,n) = (200,200) and Five Categories of Risk

Lk} = 0.799,k% = 0.625

a =0.05

. n=200,m = 200

- —~Zoozs = —1.96: Zygas = 1.96

‘ ki k3
0.000 0.625 0.922 0.000
§ 0.109 0.625 0.744 0.000
0.201 0.625 0.609 0.000
0.308 0.625 0.337 0.000
: 0.399 0.625 0.203 0.001
0.504 0.625 0.131 0.005
§ 0.625 0.625 ‘ 0.071 0.010
: 0.799 0.625 ? 0.019 0.040
: 0.900 0.625 0.100 0.049
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Table 4.53 Power for the Null Hypothesis i In(k? +1) = InS at a Sample
=1

Size of (n,n) = (400,400) and Five Categories of Risk

A} = 0.799,k3 = 0.625 |
. n=400,m =400 g a =0.05
‘ ~Zooas = —1.96  Zogos = 1.96 |

ki 3 | .

0.000 . 0625 0.998 . 0.000
| 0.109 L0625 | 0.968 ©0.000
0.201 . 0625 | 0.920 . 0.000
.‘ 0.308 0625 1 0669 . 0.000
0.399 . 0625 0430 |  0.000
0.504 b0625 0.251 . 0.000
| 0.625 0625 0.112 ~ 0.001

0.799 . 0625 0.019 L 0.032

0.900 i 0625 0.008 i 0.068

Table 4.54 Power for the Null Hypothesis i In(k? + 1) = InS at a Sample
=1

Size of (m,n) = (500,500) and Five Categories of Risk

k2 = 0.799,k% = 0.625 ;
= 500,m = 500 | : a=0.05
: ' —Zoo2s = —1.96 1 Zogos = 1.96 .

ki : 3 : :
0.000 . 0625 1.000 - 0.000
0.109 0625 | 0.987 ~0.000
0.201 0625 0.966 . 0.000
; 0.308 . 0625 0.754 0.000
0.399 . 0625 0.524 . 0.000
0.504 . 0625 0.278 ~0.000
| 0.625 L0625 ! 0.113 ~0.002
; 0.799 0625 0.022 . 0.032
: 0.900 0625 0.006 ~ 0.065
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Table 4.55 Power for the Null Hypothesis 2 In(kZ +1) = InS at a Sample
=1

Size of (m,n) = (1000,1000) and Five Categories of Risk

|k} = 0.799,k3 = 0.625 . ,
| n=1000,m = 1000 ; a=0.05
: | ' —Zoors = —1.96 Zogas = 1.96°

ki } : |

0.000 L0625 1.000 . 0.000

F 0.109 0625 1.000 ©0.000
; 0.201 0625 1.000 . 0.000
: 0.308 L0625 0.967 . 0.000

: 0.399 . 0625 ©  0.827 . 0.000

| 0.504 0625 | 0.533 . 0.000
0.625 . 0625 0204 000l
0.799 . 0625 i 0019 :  0.037

J 0.900 . 0625 | 0.007 . 0.098

Table 4.56 Power for the Null Hypothesis 3" In(k? + 1) = InS at a Sample
=1

Size of (m,n) = (3000,3000) and Five Categories of Risk

k2 =0.799,k3 = 0.625 _
n = 3000,m = 3000 . : a =0.05 :
: -ZO.OZS =-1.96. Zo_025 = 1.96

ki : i
0.000 L0625 i 1.000 ~0.000
0.109 © 0625 1.000 ~0.000
0.201 0625 1.000 . 0.000
0.308 © 0625 1.000 0.000
0.399 . 0.625 0.999 . 0.000
0.504 0625 0.954 ~0.000
0.625 ' 0625 0.559 ~0.000
: 0.799 | 0625 - 0021 0.025
| 0.900 . 0625 | 0.000 i 0.200
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Table 4.57 Power for the Null Hypothesis i In(k? + 1) = InS at a Sample
=1

Size of (;m,n) = (7000,7000) and Five Categories of Risk

kY =0.799,k% = 0.625 |
' n = 7000,m = 7000 - i a =0.05 1
; . _ZO.O?_S = -1.96 : ZQ‘Q'_v_j =1.96

i® B |
| 0.000 . 0625 1.000 0000 |
0.109 © 0625 1.000 . 0.000
0.201 L0625 1.000 . 0.000
0.308 L0625 1.000 ' 0.000
0.399 L0625 . 1.000 ~0.000
| 0.504 C 0625 1.000 . 0.000
| 0.625 . 0.625 0.896 . 0.000
0.799 | 0.625 0.027 F 0025
0.900 L 0.625 0.000 i 0355

Table 4.58 Power for the Null Hypothesis 2 In(k? +1) = InS at a Sample
=1

Size of (m,n) = (1000, 1000) and Five Categones of Risk

&} = 0.000,k3 = 0.625 : ;
 n =1000,m = 1000 ; a = 0.05 _
: —Zoo2s = —1.96 : Zgo2s = 1.96 »

k3 : 5

0.000 . 0625 | 0.013 . 0.036
0.109 . 0.625 . 0.000 . 0412
0.201 . 0625 0.000 0897
0.308 L 0.625 0.000 . 0.985
0.399 . 0625 0.000 1.000
| 0.504 0625 0.000 ~ 1.000
: 0.625 L0625 0.000 - 1.000
| 0.799 0625 0.000 . 1.000
0.900 0625 0000 1.000
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Table 4.59 Power for the Null Hypothesis i In(k? + 1) = InS at a Sample
=1l

Size of (m,n) = (3000,3000) and Five Categories of Risk

&} = 0.000,k3 = 0.625 . _
n = 3000,m = 3000 ; a =0.05 ,
| —Zooas = —1.96 1 Zogas = 1.96

ki : ;
0.000 L0625 0.020 i 0.033
0.109 L0625 0.000 ©0.840
; 0.201 0625 . 0000 | 1.000
0.308 0625 0.000 ©0.985
0.399 0625 0.000 ©1.000
0.504 0625 | 0.000  1.000
| 0.625 0625 | 0000 . 1000
' 0.799 0625 | 0.000 ©1.000
0.900 0625 0.000 . 1.000 |

Table 4.60 Power for the Null Hypothesis 2 In(k? +1) = InS at a Sample
=1

Size of (m,n) = (7000, 7000) and Five Categories of Risk

k¥ =0.000,k3 = 0.625
. n = 7000,m = 7000 a =0.05 ‘
‘ " ~Zoozs = —1.96  Zogzs = 1.96

; ki | , e
0.000 . 0625 | 0017 ; 0026
: 0.109 0625 0.000 0969
0.201 0625 0.000 . 1.000 !
0.308 0625 0.000 ' 1.000
: 0.399 . 0.625 0.000 ©1.000
0.504 L0625 0.000 i 1.000
0.625 0625 . 0000 |  1.000
0.799 L0625 0.000 . 1.000
0.900 . 0625 | 0000 |  1.000
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Table 4.61 Power for the Null Hypothesis 3 In(A? + 1) = InS at a Sample
=1

Size of (m,n) = (200,200) and Five Categories of Risk

k} =0.201 |
K =0625 !
k3 =0.799

a =0.05

‘n =200,m = 200 :

—Zyoas = ~1.96 ' Zoo2s = 1.96 ¢

i ‘
0.000 0.625 = 0.799 0.100 0.012
0.109 0.625 : 0.799 0.032 0.026 |
0.201 0.625 | 0.799 0.005 0.053 |
0.308 0.625 | 0.799 0.003 0.123
] 0.399 0.625 | 0.799 0.001 0.187
0.504 0.625 | 0.799 0.000 0.290
‘ 0.625 0.625 0.799 0.000 0.437
0.799 0.625 | 0.799 0.000 0.658
0.900 0.625 . 0.799 0.000 0.692
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Table 4.62 Power for the Null Hypothesis Y In(k7 + 1) = InS at a Sample
=1

Size of (m,n) = (400,400) and Five Categories of Risk

.k} =0.201

K =0625 ,

k2 =0.799

‘n = 400,m = 400 | j a =0.05 :

‘ i : ' —Zoozs = —1.96 Zpoas = 1.96
ki B B ‘

, 0.000 0625 0799 0.237 0.001

; 0.109 L0625 0799 | 0.056 . 0.007

: 0.201 0625 : 0799 | 0.012 ©0.035

; 0.308 | 0.625 | 0.799 0.002 . 0.121

0.399 . 0625 | 0.799 . 0.000 0.246

1 0.504 I 0.625 « 0.799 0.000 C o 0.411

0.625 i 0.625 1 0.799 - 0.000 L 0.596

‘ 0.799 1 0.625 @ 0.799 | 0.000 -~ 0.841
0.900 0625 : 0.799 0.000 0913
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Table 4.63 Power for the Null Hypothesis >_ In(k7 + 1) = InS at a Sample
=1

Size of (m,n) = (500,500) and Five Categories of Risk

K} = 0.201
K3 =0625
 B=079 | |
'n =500,m = 500 . _? = 0.05 :
: - —Zooas = —1.96 . Zogas = 1.96 |
ki . '
0.000 0625 0.799 0.313 ~0.000
_ 0.109 0625 0799 0072 . 0.007
f 0.201 0625 0799 @ 0015 . 0.043
0.308 0625 © 0.799 | 0000 . 0.160
0.399 . 0.625 i 0.799 | 0.000 . 0.302
0.504 | 0.625 i 0.799 | 0000 0509
| 0.625 . 0625 : 0.799 | 0.000 . 0658
? 0.799 . 0.625 | 0.799 | 0.000 . 0.898
0.900 0625 ' 0799 0.000  ©  0.959
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Table 4.64 Power for the Null Hypothesis D _ In(k? +1) = InS at a Sample
=l

Size of (m,n) = (1000, 1000) and Five Categories of Risk

. K=o0201 |

. KB=o0625 | ,

k=079

n = 1000,m = 1000 ! ; ? a = 0.05

1 i ~Zoo2s = —1.96 | Zogas = 1.96 .
0.000 | 0.625 | 0.799 0.579 . 0.000

: 0.109 £ 0.625 - 0.799 0.136 - 0.009

! 0.201 L 0.625  0.799 | 0.009 0043

0.308 L 0.625 . 0.799 0.000 0.206

: 0.399 : 0.625 | 0.799 0.000 0451

0.504 | 0.625 | 0.799 0.000 L 0.743

: 0.625 | 0.625 | 0.799 - 0.000 . 0.866
0.799 | 0.625 | 0.799 : 0.000 L 0.994
0.900 | 0.625 « 0.799 ° 0.000 . 0.999
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Table 4.65 Power for the Null Hypothesis Y _ In(k7 + 1) = InS at a Sample
=1

Size of (m,n) = (3000,3000) and Five Categories of Risk

B =0201 |
K =0625
k=079 _
7 = 3000,m = 3000 : : a =0.05 1
i | ~Zoozs = ~1.96  Zogzs = 1.96
i BB |
: 0.000 0625 0 0799 ¢ 0973 . 0.000
0.109 . 0625 ' 0799 - 0349 |  0.000
0.201 | 0.625 | 0.799 0.021 . 0.026
0.308 . 0.625 1 0.799 ° 0.000 | 0414
0.399 L 0.625 | 0.799 : 0.000 L 0.864
0.504 1 0.625 | 0.799 0.000 L0992
‘ 0.625 | 0.625 | 0.799 . 0.000 :  1.000
{ 0.799 0625 ' 0799 - 0000 | 1.000
| 0.900 0625 | 0799 . 0.000 |  1.000
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Table 4.66 Power for the Null Hypothesis D _ In(k? + 1) = InS at 2 Sample
=1

Size of (m,n) = (7000, 7000) and Five Categories of Risk

K = 0.201 |
K =0625 ; f
 KB=0799 | | |
. n = 7000,m = 7000 ' j a = 0.05 ;
‘ f _, | —Zoozs = —1.96 | Zgoas = 1.96
kt B 8
0.000 ©0.625 ¢ 0.799 1.000 ©0.000
0.109 . 0.625 | 0.799 | 0.669 . 0.000
0.201 . 0625 ¢ 0.799 0.026 ©0.028
0.308 . 0.625 © 0799 | 0.000 0745
0.399 0625 | 0799 ©  0.000 . 09%
0.504 £ 0.625 | 0.799 :  0.000 . 1.000
0.625 0625 0799 . 0000 1000
0.799 | 0.625 @ 0.799 ! 0.000 . 1.000
0.900 | 0.625 | 0.799 0.000 ' 1.000
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Table 4.67 Power for the Null Hypothesis Y In(k> + 1) = InS at a Sample
=1

Size of (m,n) = (1000, 1000) and Five Categories of Risk

ki =0.000 | j
i =0625 | e'
, k% = 0.799 | | |
' n = 1000, m = 1000 | | a=0.05
: —Zoozs = —1.96 | Zogas = 1.96
ki B B ‘ |
0.000 10625 0799 , 0011 | 0046
0.109 | 0.625 ' 0.799 0.000 i 0.999
| 0.201 06251 0799 : 0000 | 0314
| 0.308 L 06251 0799 . 0000 | 0696
| 0.399 | 0.625 | 0.799 0.000 0929
0.504 1 0625 | 0799 | 0000 | 0985
| 0.625 1 06251 0799 | 0000 | 0998
| 0.799 106251 0799 | 0000  1.000
0.900 1 0625 | 0799 0000 |  1.000
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Table 4.68 Power for the Null Hypothesis Y _ In(k7 + 1) = InS at a Sample
=1

Size of (m,n) = (3000,3000) and Five Categories of Risk

i

. KB =0000 | |
K =0.625
k3 = 0.799
.n = 3000,m = 3000 : ! a =0.05 |
' : { —Zoozs = ~1.96 1 Zogos = 1.96 -

k2 B &

0.000 £ 0.625 1 0.799 | 0.018 . 0.032
: 0.109 1 0.625 1 0.799 ! 0.000 . 0651
| 0.201 | 0.625 . 0.799 : 0.000 ' 0988
0.308 | 0.625 1 0.799 | 0.000 L 1.000
0.399 | 0.625  0.799 : 0.000 |  1.000
0.504 1 0.625 1 0.799 0.000 |  1.000
0.625 £ 0.625 | 0.799 | 0.000 1000
0.799 ' 0.625 1 0.799 ! 0.000 . 1.000
0.900 : 0.625 @ 0.799 | 0.000 . 1.000
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Table 4.69 Power for the Null Hypothesis > In(k? + 1) = InS at a Sample
=1

Size of (;m,n) = (7000,7000) and Five Categories of Risk

. ki=0000 |
. B=0625 i |
k3 = 0.799 :

'n = 7000,m = 7000 a =0.05 ;
E ' —Zo_o;r_5 = —1.96 [ Zo_ozs = 1.96 ‘

i

% ki kB B |
| 0.000 . 0625 1 0799 | 0024 | 0030 |
; 0.109 . 0.625 | 0.799 | 0.000 0940 |
! 0.201 0.625 i 0.799 0.000 1000
0.308 L 0625 1 0799 | 0000 |  1.000
| 0.399 . 0.625 | 0.799 | 0.000 . L000 .
0.504 ' 0.625 | 0.799 | 0.000 :1.000
0.625 ' 0.625 | 0.799 | 0.000 . 1000
0.799 ' 0.625 | 0.799 | 0.000 . 1.000 |
: 0.900 | 0.625 | 0.799 | 0.000 . 1000 |
- - A
, . ki —k3 -biasp_p
Tables 4.70 through 4.78 give the power of the test statistics, — L=
6% s

1

>

W3

derived in Section 3 .4 for testing

Ha : k] —-kz =0
AN

H, : ki —k; 0.
The parameter values used to simulate the test statistics are indicated in the tables along with
the sample size. The critical values are found by using the values of the standard normal
distribution that gives an area under the curve equal to 1 — 5-.
For five categories of nsk, the results show high power at sample sizes as small as

m = n = 200 if both risk factors are not risks, that is, k& = k3 = 0. If k7 = k3 +# O, the
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sample sizes must be as large as n = m = 1000 before the test shows high power. The power
of the test statistic is also dependent on the parameters p;, g,, i = 1,2, ..., ¢, that make up &*.
In fact, if p, for some i is small and the corresponding g, is large, then the variance of k% will be
much larger than the variance of some other k* in which the p,, i = 1,2,...c, are equally
distributed. For example, in the simulation study, test statistics are generated from two
different populations with parameters &> = 0. 625 and &% = 0.746 with corresponding values

of p and q given by

q=0.5,020.15 0.1, 0.05
p=020202 0202

and

q = 0,2, 0.2, 0,2’ 0‘2’ 0_2
p=0.50.20.150.1,0.05

respectively. The associated variance, V' (/:z) of k* = 0.625 with m = n = 5000 (also given

in Table 4.7) is 0.001735 and the V(k?) of k% =0.746 with m = n = 5000 is 0.003731.

ay ma A A
k'f‘ki"[ bias—biasy

)
L J

Notice that even though the variance in the test statistic, is pooled, the

~

variance associated with the null hypothesisis of k7 = &3 = 0.625 is smaller than the variance
associated with the alternative hypothesis, making the test statistic associated with the
alternative hypothesis smaller than that of the null hypothesis. Therefore, the power for the
alternative hypothesis drops below the power of the null hypothesis for small sample sizes.
The recommendation is to use this test only when the p; i = 1,2,...,¢c, are fairly equally

spaced for both k3 and k3, if both are assumed to be risks.
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Table 4.70 Power for the Null Hypothesis &7 — k2 = 0 at a Sample
Size of (m,n) = (200,200) and Five Categories of Risk

k% =0.625,k3 = 0.625
L n=200,m =200 : a = 0.05
| |  ~Zooos = —1.96 Zogas = 1.96

k% i k:}

0.000 1 0.625 | 0.988 i 0.000
0.109 10625, 0809 0.000
0.201 10.625. 0672  0.000
: 0.308 10.625 0.290 . 0.001 |
0.399 0625, 0180 . 000l |
% 0.504 - 0.625 0.096 . 0.015
0.625 10.625: 0033 | 0026
0.799 10625 0008 | 0.099
0.900 . 0.625 0.002 L 0.113

Table 4.71 Power for the Null Hypothesis k# — k3 = 0 at a Sample
Size of (m,n) = (400,400) and Five Categories of Risk

k2 =0.625,k3 = 0.625 |
. n=400,m =400 | a = 0.05 |
| -Zogzs = —1.96  Zppas = 1.96

kt k3 |
0.000 . 0.625 1.000 0.000
0.109 0625, 0960 0000
‘ 0.201 1 0.625 - 0.908 ©0.000
0.308 . 0.625 . 0.468 . 0.000 .
0.399 10625 0222 ~0.001
0.504 - 0.625 0.104 . 0.001
0.625 1 0.625° 0.034 0020
0.799 1 0.625 0.008 ©0.161
0.900 1 0.625 - 0.002 0213 |
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Table 4.72 Power for the Null Hypothesis &7 — k3 = 0 at a Sample
Size of (m,n) = (500, 500) and Five Categories of Risk

k7 = 0.625,k3 = 0.625

n = 500,m = 500 |

—_

= 0.05

!
i
3
|
!

| -Zoozs = =1.96 Zogas = 1.96

o] 2
kl ' kz

0.000 10.625 1.000 0.000
0.109 10.625 0.976 0.000
0.201 £ 0.625 0.962 0.000
0.308 10.625 0.557 0.000
0.399 1 0.625 0.291 0.001
, 0.504 : 0.625 ; 0.109 0.004
| 0.625 10.625,  0.033 0.032
0.799 10625 0.002 0.179
3 0.900 1 0.625 0.002 0.250

Table 4.73 Power for the Null Hypothesis k7 — k3 = 0 at a Sample

Size of (m,n) = (1000, 1000) and Five Categones of Risk

Kk} = 0.625,k3 = 0.625 .

n = 1000, m = 1000 ‘'

a=0.05

Zoozs = —1.96 Zygas = 1.96

K kB
0.000 10.625 . 1.000 0.000
0.109 10.625 1.000 0.000
0.201 10.625 1.000 0.000
0.308 1 0.625 0.829 0.000
0.399 10.625 0.497 0.000
0.504 .0.625 | 0.178 0.003
0.625 10.625 - 0.032 0.034
0.799 10.625 0.000 0.276
0.900 10.625 - 0.000 0.402
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Table 4.74 Power for the Null Hypothesis k7 — 43 = 0 at a Sample
Size of (m,n) = (3000,3000) and Five Categories of Risk

k2 = 0.625,k3 = 0.625
. n=3000,m = 3000 : a = 0.05
' -Zooas = —1.96 | Zogas = 1.96

| ki LK :
: 0.000 10625:  1.000  :  0.000
; 0.109 10.625 | 1.000 ' 0.000
0.201 1 0.625 | 1.000 . 0.000
0.308 1 0.625 0.998 . 0.000
} 0.399 106251 0925 . 0.000
E 0.504 10.625 | 0.404 . 0.000
: 0.625 1 0.625 . 0.033 ©0.028
0.799 10.625 ! 0.000 © 0621
0.900 10625 0.000 : 0.850

Table 4.75 Power for the Null Hypothesis &7 — k3 = 0 at a Sample
Size of (m,n) = (7000, 7000) and Five Categories of Risk

kT =0.625,k3 =0.625 ,
. n =7000,m = 7000 ; a = 0.05 ‘
; | ~Zooas = —1.96 . Zogs = 1.96

kt KB 4
, 0.000 £ 0.625 ! 1.000 ~0.000
i 0.109 10.625 | 1.000 ~0.000
0.201 10.625 . 1.000 ~0.000
0.308 £ 0.625 ! 1.000 - 0.000
0.399 10.625 1.000 ~0.000
0.504 £ 0.625 | 0.737 . 0.000
0.625 10625 0027 | 0025
0.799 10.625 ! 0.000 0 0.948
0.900 10.625 . 0.000 . 0.99
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Table 4.76 Power for the Null Hypothesis &7 — k3 = 0 at a Sample
Size of (m,n) = (200,200) and Five Categories of Risk

| k¥ = 0.000,43 = 0.000 |
. n=200,m =200 § a =0.05 ,
-Zoozs = =1.96 " Zggas = 1.96

ki Lk |
! 0.000 .0.000° 0024 0023
0.109 10000! 0001 [ 0383
0.201 10.000. 0000 .  0.751
0.308 10.000° 0000 | 0858
| 0.399 10.000!  0.000 . 0.928
0.504 10.000;  0.000 | 0970
: 0.625 10.000  0.000 |  0.990
0.799 10.000  0.000 1.000
0.900 10000, 0000 i 1000

Table 4.77 Power for the Null Hypothesis k7 — k3 = 0 at a Sample
Size of (m,n) = (500,500) and Five Categories of Risk

k3 = 0.000,k2 = 0.000 ! ;
n = 500,m = 500 | a =0.05
' ' Zoozs = —1.96 Zogos = 1.96

i ki KB i
0.000 10.000° 0020 . 0.023
0.109 100000 0000 0835
: 0.201 1 0.000 ; 0.000 L 0.997
ﬂ 0.308 10.0000 0000 . 0.998
f 0.399 0000 0.000 0999
’ 0.504 1 0.000 : 0.000 1000
0.625 10.0000  0.000 :  1.000
0.799 -0.000 0.000  1.000
0.900 0000, 0000 ' 1.000
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Table 4.78 Power for the Null Hypothesis k¥ — &3 = 0 at a Sample
Size of (m,n) = (1000, 1000) and Five Categories of Risk

K} = 0.000,k% = 0.000 !
n = 1000,m = 1000 | a =0.05

i

: | Zogas = —1.96  Zogzs = 1.96°

i B |
i 0.000 10.0001  0.021 0.026
§ 0.109 10.000; 0000 ' 0.991
0.201 10000 0000 |  1.000
0.308 10000 0000 |  1.000
'3 0.399 10.000: 0000 |  1.000
: 0.504 10.000 0.000 . 1.000
0.625 10.000: 0000 , 1.000
| 0.799 10.000 : 0.000 . 1.000
| 0.900 10.000: 0000 '  1.000

4.2.8 Results for the Power of the Test Statistic
k?* with 2, 4, 6, and 8 Categories of Risk

Tables 4.79 through 4.76 show the power of the test for the null hypothesis, k> =0,
(the factor is not a risk) vs. the alternative hypothisis £* # O (the factor is a risk) at the 0.01,
0.025, 0.050, and 0.100 a levels. As is seen from the tables, the power of the test statistic
increases as the risk categories decrease, so that when the risk factor has only two categories,
the power of the test statistic is very good at a sample size m = n = 500. As can be seen, the
test has high power for k2 > 0.1 for sample size of m = n = 100. The power of the test
increases as the sample size increases, which is to be expected because the distribution of K is

an asymptotic distribution.
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Table 4.79 Power of the Test Statistic 2 for the Null Hypothesis
Ho : k* = 0 for Two Categories of Risk for
Sample Sizes of m = 100, n = 100

n =100,m = 100 '

t k2 ;
E k2 | 0.010 | 0.025 ' 0.050  0.100
f 0.000 . 0.015 | 0.025 ! 0.052 ; 0.103 |
; 0.048 | 0.134 | 0.260 : 0352 ! 0453 |
0.100 | 0.372 | 0.499 ; 0.603 ' 0.699 |
| 0.496 1 0.991 | 0.997 | 1.000 , 1.000 :

Table 4.80 Power of the Test Statistic k2 for the Null Hypothesis
Ho : k* = 0 for Two Categories of Risk for
Sample Sizes of m = 500, n = 500

n = 500,m = 500 g

| | 2 i
| P2 | 0.010 | 0.025 | 0.050 . 0.100
| 0.000 | 0.008 | 0.020 | 0.043 | 0.094 |
§ 0.048 | 0.824 | 0.883 | 0.943 | 0.971 |
: 0.100 1 0.986 : 0.991 : 0.994 : 1.000 :
] 0.496 | 1.000 | 1.000 ; 1.000 | 1.000 :

Table 4.81 Power of the Test Statistic &2 for the Null Hypothesis
Ho : k* = 0 for Two Categories of Risk for
Sample Sizes of m = 1000, » = 1000

= 1000,m = 1000

| K
e | 0.010 | 0.025  0.050 ; 0.100
0.000 | 0.011 | 0.024 = 0.052 - 0.109
; 0.048 1 0.987 | 0.994 = 0.995 : 0.999
0.100 £ 1.000 | 1.000 ' 1.000 | 1.000
| 0.496 | 1.000 | 1.000 ' 1.000 = 1.000 :
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Table 4.82 Power of the Test Statistic 42 for the Null Hypothesis
Ho : k* = 0 for Two Categories of Risk for
Sample Sizes of m = 5000, n = 5000

i n=5000,m = 5000

~

' i |
| K | 0.010 | 0.025 | 0.050 ' 0.100 ;
0.000 | 0.012 | 0.022 | 0.044 | 0.093 '
0.048 ' 1.000 | 1.000 | 1.000 | 1.000 |
: 0.100 ' 1.000 | 1.000 | 1.000 ~ 1.000 |

0.496 . 1.000 : 1.000 : 1.000 1.000 .

Table 4.83 Power of the Test Statistic & for the Null Hypothesis
Ho : k* = 0 for Four Categories of Risk for
Sample Sizes of m = 100, n = 100

n = 100,m = 100

~

2 %

K2 0.010 | 0.025 : 0.050 ; 0.100

0.000 0.012 | 0.030 | 0.055 ! 0.108

0.048 | 0.136 ; 0.201 : 0.273 , 0.382 |

; 0.100 0.250 | 0.350 ' 0.453 | 0.568 |
‘ 0.496 | 0.940 | 0.899 | 0.945 0977

Table 4.84 Power of the Test Statistic k* for the Null Hypothesis
Ho : k* = 0 for Four Categories of Risk for
Sample Sizes of m = 500, n = 500

v
1
'

2 n = 500,m = 500

~

. ' i

§ k2 ' 0.010 | 0.025 | 0.050 = 0.100

0.000 0013 | 0.030 | 0.056 : 0.098 .

| 0.048 £ 0.684 . 0.813 | 0.878 | 0.889 .

1 0.100 | 0.955 | 0.973 | 0.989 : 0.997 :
0.496 | 1.000 | 1.000 | 1.000 : 1.000 .
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Table 4.85 Power of the Test Statistic £ for the Null Hypothesis

Ho : k* = 0 for Four Categories of Risk for
Sample Sizes of m = 1000, n = 1000

n = 1000,m = 1000

i

~

i i |

K> | 0.010 | 0.025 ' 0.050 ' 0.100 |
: 0.000 . 0.010 ! 0.025 © 0.050 : 0.109 :
| 0.048 1 0.974 | 0.990 | 0.996 : 0.998 .
| 0.100 1 0.999 | 1.000 | 1.000 : 1.000
0.496 . 1.000 | 1.000 : 1.000 : 1.000 :

i

Table 4.86 Power of the Test Statistic &2 for the Null Hypothesis

Ho : k* = 0 for Four Categories of Risk for
Sample Sizes of m = 5000, n = 5000

n = 5000,m = 5000

|

]
|

S
kl

kZ

'

| 0.010 | 0.025 : 0.050 | 0.100

0.000

0.008 ! 0.024 : 0.052 . 0.096

| 0.048

1.000 | 1.000 | 1.000 | 1.000 .

0.100

1.000 : 1.000 ; 1.000 | 1.000 :

0.496

1.000 ; 1.000 @ 1.000 : 1.000 :

Table 4.87 Power of the Test Statistic k> for the Null Hypothesis

Ho : k* = 0 for Six Categories of Risk for
Sample Sizes of m = 100, n = 100

n = 100,m = 100

=
-
k..

k‘.’

0.010 | 0.025 ' 0.050 ' 0.100 -

0.000

0.019 « 0.044 ; 0.070 : 0.116 :

; 0.048

0.107 : 0.169 ' 0.230 | 0.330

0.100

|

| 0.166 | 0.262 | 0.361 | 0.482 |

| 0.496

i

0.936 ' 0.962 | 0.978 | 0.988 |
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Table 4.88 Power of the Test Statistic 42 for the Null Hypothesis
Ho : k* = 0 for Six Categories of Risk for
Sample Sizes of m = 500, n = 500

n = 500,m = 500

. 2 ;

K | 0.010 | 0.025 ' 0.050 ' 0.100

: 0.000 | 0.009 ; 0.030 | 0.056 : 0.110 :
0.048 | 0.586 | 0.702 : 0.782 : 0851 ;
0.100 £ 0.947 © 0.975 | 0.989 | 0.995
0.496 } 1.000 | 1.000 = 1.000 ; 1.000 °

Table 4.89 Power of the Test Statistic &2 for the Null Hypothesis
Ho : k? = 0 for Six Categories of Risk for
Sample Sizes of m = 1000, n = 1000

= 1000,m = 1000 !

r T ~

| k2 |

; = | 0.010 | 0.025 : 0.050 ' 0.100 |
0.000 | 0.008 | 0.027 | 0.046 | 0.085 |
0.048 1 0.950 | 0.971 | 0.987 | 0.994
0.100 | 1.000 | 1.000 ' 1.000 | 1.000
0.496 . 1.000 | 1.000 | 1.000 | 1.000

Table 4.90 Power of the Test Statistic &2 for the Null Hypothesis
Ho : k* = 0 for Six Categories of Risk for
Sample Sizes of m = 5000, n = 5000

n = 5000,m = 5000

| i
K> | 0.010 ; 0.025 ' 0.050 = 0.100
0.000 1 0.007 | 0.023 ' 0.045  0.095
| 0.048 ' 1.000 : 1.000 ; 1.000 , 1.000
0.100 | 1.000 | 1.000 | 1.000 | 1.000
0.496 | 1.000 | 1.000 | 1.000 ; 1.000 :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

Table 4.91 Power of the Test Statistic & for the Null Hypothesis
Ho : k* = 0 for Eight Categories of Risk for
Sample Sizes of m = 100, n = 100

i

g n=100,m = 100

| | e |
k2 | 0.010 | 0.025 . 0.050 | 0.100 |
! 0.000 | 0.021 : 0.034 | 0.080 | 0.156 ;
0.048 1 0.102 | 0.150 ' 0.212 | 0.297 .
0.100 10212 1 0.291 | 0.375 | 0.482
0.496 | 0323 | 0.333 | 0.450 0.540 '

Table 4.92 Power of the Test Statistic &2 for the Null Hypothesis
Ho : k* = 0 for Eight Categories of Risk for
Sample Sizes of m = 500, n = 500

n = 500,m = 500

; k2

k2 1 0.010 | 0.025 | 0.050 | 0.100 ;
0.000 £0.015 | 0.035 | 0.063 : 0.116
j 0.048 £ 0.509 | 0.618 : 0.720 | 0.817 |
0.100 10922 1 0952 0.974 0984
0.496 . 1.000 | 1.000 | 1.000 ' 1.000 '

Table 4.93 Power of the Test Statistic & for the Null Hypothesis
Ho : k* = 0 for Eight Categories of Risk for
Sample Sizes of m = 1000, n = 1000

n = 1000,m = 1000

~

: K ‘

k? £ 0.010 ; 0.025 ; 0.050 0.100 '

| 0.000 1 0.008 ; 0.025 ' 0.060 0.121 :
; 0.048 £ 0.904 | 0.939 . 0.968 = 0.985
0.100 . 1.000 | 1.000 | 1.000 ; 1.000 :
§ 0.496 . 1.000 | 1.000 ' 1.000 ;| 1.000 :
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Table 4.94 Power of the Test Statistic &2 for the Null Hypothesis

Ho : k* = 0 for Eight Categories of Risk for
Sample Sizes of m = 5000, » = 5000

n = 5000,m = 5000

k2 .
; k2 £ 0.010 ; 0.025 : 0.050 | 0.100 .
0.000 | 0.012 | 0.030 . 0.047 | 0.102 !
’ 0.048 | 1.000 | 1.000 ; 1.000 i 1.000 |
0.100 - 1.000 "~ 1.000 | 1.000 | 1.000
0.496 - 1.000 ;| 1.000 ! 1.000 : 1.000 :
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CHAPTERSS
APPLICATIONS TO REAL DATA

The examples in this chapter are from data in the literature. The focus of this chapter is
to apply the statistics, &% and functions of k2, developed in this study, to real data. Also, a

comparison of k2 and the odds ratio applied to data with two levels of risk is provided.

5.1 An Example Using k? and the Odds
Ratio to Test for an Association
Between Risk and Disease

The example in this section uses data from a case-control study in which the objective
is to determine if there is an association between cleft lip and or cleft palate in infants and first
trimester maternal smoking (Christensen et al. 1999). The 2 x 2 table presenting data for a

case-control study with two categories of risk was given in Chapter 1 but is repeated here for

continuity.
Table 5.1 2 x 2 Table Representing Data in a Case-Control Study

Disease : Total : Disease ;
' Risk Factor : Yes i No ~ Yes  No

; Yes nyy : noy 1 ny+nor =€ . q1 S 2t

f ; : ' :

: No ! Rio , Noo it +neo =ne.  qo . Po

Total %nu-{—n[o =m5n01+noo =n5 N f 1 ) 1

The odds ratio calculated from this table is

nuyn
OR = 11

noinio °

144
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The null hypothesis of no risk from a case-control study with two categories of risk using the

odds ratio is

vs. the alternative hypothesis of

ny1Moo
NnoiM10

> 1.

Another way to state the null hypothesis is

. _ Nor
H, : m - n -

Here, n(, and ny; are considered to be independent binomial random variables with parameters
(m,q1) and (n,p1). For large sample size, the test statistic for testing the null hypothesis is

given by

nyt not
o~ —0

ail—qn) . pd-pL)
J m + n

Under the null hypothesis, ¢, and p; may be estimated by %. So the test statistic

becomes
nit not
7 =S —0
e =) e — )
m + n
o _ a0
= m n (5.1)

fnn-nm (1 . n-nor )(L_ + L) ’
If both sides of Eq. (5.1) are squared, then the test statistic becomes that with a chi-square

distribution with one degree of freedeom, that is,
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ny _ no )2
Zl _ m n
T ny-nq1 1 1
m~n (1 — Tm-n )(7 + T)
( i _ __nho )2
Ay rnio oL ~"00

(1~ B+ 5)

m=+n

( ny(ne1+noo }—not(ni1—-nio)
(n111~r110 )01 ~n100)

n11+701 ni-noi 1 1

w0 — —5=n ) + )

( nyreL—N117100--N01 111 =101 10 )2
(n11+n10 )(1101+"100 )

(L= S + )

__Mminoo—notni0 2

— (n11—r10 X(Mo1+no0 )

ny1-ngy nii-not 1

m-n (1 m-n )(m + n )
___nunoo—noinio 2
_ (n1=m10)(Fo1~noo)
n11-71o1 (1 _ n11-101 ) ( + 1 )
nyy=nig=rgL+oo n{1+r119~noL 100 A+ noy+nog

1111700101110 2

(r111+n10 )(no1+n00)

ny1-not ( ni-no )( )
N N (ny~mo )("01 +ngo)
2

__nune—noinio
(nu-n10)(Moi—100)

N—(ni11+701 ) ( 1
(n11+n01 ) ( N ) (ny1+ni0)(no1~no0)
2

ny1n00—no1n10
(711~n10 )(7101+700 )

(r100-710) 1
(n“’nm)( N ) ( (mu+mo)(n01+noo) )

N _ 2
(ny1+n10 Y01 +n00) (nunoo nmnm)

(’111—”01)("00—’110)
(n11700 — No1n10)°

_ o
(e)(ne)

_ N(nufloo "nOlnlO)2 — 2 2

- mn(ne)e = X ¢-2)

Here, the marginal totals are all considered to be “fixed.” The reason this assumption may be
used is that the marginals do not provide information about the association between the risk and
the disease. The only information that may be obtained from the marginals in a 2 x 2 table is
the amount of data for quantifying the association between the risk and disease. Therefore, no
bias is introduced by treating all of the marginals as “fixed” (Kleinbaum, Kupper, and

Morgenstern 1982).
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For the data in table 5.2, the test statistic for the null hypothesis H, : OR =1 vs.

Hg : OR > 1 can be calculated using Eq. (5.2) as

N(nung —noini)*
mn(ne)e

_ 47475 x 193 — 139 x 67)2

- 142 % 332 % 260 x 214

= 4 8150.

7 =

Table 5.2 Table Representing Data from a Case-Control Study Investigating the
Association between Cleft Lip/Palate and Maternal Smoking

| Cases ! Controls =~ Total | Odds Ratio |
Smoker : (Cleft lip and/or Cleft palate) | i :

. yes | 75 | 139 1 214 | 155
no | 67 ! 193 |, 260 i 1.00
Total | 142 332 | 474 ‘

Since the test statistic has a chi-square distribution with one degree of freedom, it may be
compared with the value from the chi-square distribution, y3, that gives an area under the
curve of 0.95, providing a level of significance of 0.05. This value is y%g4s = 3.841.
Therefore, at the @ = 0.05 level, the null hypothesis may be rejected, and smoking may be
considered to be associated with cleft lip and/or palate. If a more conservative test were
desired, then a = 0.0l may be considered. In this case, 7740, = 6.635 and the null
hypothesis would not be rejected. If k2 is calculated from the data in Table 5.2, one obtains
(2, (2

= +
(2 (%

= 0.0492.

i =

From Chapter 3, it is known that &2 has a Gamma (+,2(12332 ) ) distribution under the nuil

hypothesis &* = 0. The hypothesis test to be conducted is H,, : k2 =0 vs. H, : k2 > 0. The
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value that gives an area under the curve of the Gamma( 522

0.0386. Therefore, the null hypothesis would be rejected at the @ = 0.05 level.

148

‘1?2?33;’ ) ) distribution of 0.95 is

Agan, if a

more conservative test were desired, then the value that gives an area under the curve of the

Gamma(L+,2 (HE332) ) distribution equal to 0.99 is 0.0667, and like the situation with the

142352

odds ratio, the null hypothesis would not be rejected at the a =

0.01 level. Table 5.3 gives

data pertaining to the cases that only had an isolated cleft palate without the cleft lip.

Table 5.3 Data from a Case-Control Study Investigating the
Association between Cleft Palate and Matemal Smoking

| § Cases Controls Total | Odds Ratio |
Smoker (Cleft palate) | E |
yes 19 ' 139 ¢ 158 | 100 !
; mo |29 | 193 | 222 | 091 |
. Total | 48 | 332 ! 380 |

Conducting the hypothesis test, H, : OR = 1 vs. H, : OR > 1 at the a = 0.05 level gives a

test statistic of Z* = 0.090 and x}g0s = 3.841. Therefore, the null hypothesis may not be

rejected at the a = 0.05 level. If the hypothesis test, H, - k2=0vs. H,: k2> 0 is

conducted at the a = 0.05 level, the test statistic is k* =0.002144 with a critical value for

2( 48321 ), of 0.0916. Therefore, in both tests the null

rejection, from the Gamma(+,2 (432

hypothesis is not rejected.

5.2 An Example Using Z(ln (k? +1) ) as a Test Statistic for r

Independent Risk Factors

The example in this section will use data from a case-control study in which the
objective i1s to determine if there is an association between very preterm births and social

differences (Ancel et al. 1999). Very preterm births are defined as birth before 22 to 32 weeks
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of gestation. The factors considered are obstetric history, marital status, and maternal age.

These factors are treated as independent factors. The statistic, Z(In (k2 +1)), is calculated
=1
for the three factors and a hypothesis test of H, : > (ln(k2+1)) =0 vs
=1

H, : Z(ln(/::,2 + 1)) > 0 is conducted. The data from the study are given in tables 5.4
=l
through 5.6.

Table 5.4 Data from a Case-Control Study Investigating the Association between Obstetric
History and Very Preterm Births

. Cases : Controls ; Total* ¢q. . p:
Obstetric history - (Very Preterm Birth) | ; : ;
Primigravid women ; 562 g 2970 1353210.35010.382
Previous first-trimester abortion - 375 | 1827 2202 0.234/0.235:
' Previous second-trimester abortion ! 100 i 233 | 333 /0.062:0.030
' Previous preterm birth ‘ 282 | 513 | 795 [0.176 0.066 |
Multigravidae withoutany 286 2231 2517.0.178 0.287
of the above outcomes ‘ ’

Total : 1605 f7774 09379 1 1

For this risk factor, k% = 0.261549 and the distribution of k7 under the null hypothesis is the

Gamma(2,2489527714 y  The statistic In(k}+1) =0.23234 and the distribution of

=T 1605-7774

tn(k} + 1), under the null hypothesis that &7 is not a risk, is that derived in Section 3.3, Eq.

(3.7), with @ = 2, B’ = 218931 that s,
(et -1)
_ -t B
j'(Z) I‘(a)(ﬂ’)“ € dz., z>0
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(e —1)
; Ny 5 16057774
_ (ef - 1)>le “Tl60s7Tme

= ~ 3 e-dz
re) (g
(e —1)
_ (e=1)'e 0.0015 oidde
(0.0015)2 T

Data for marital status and very preterm births is given in table 5.5.

Table 5.5 Data from a Case-Control Study Investigating the Association between
Martal Status and Very Preterm Births

3 Cases 'Controls ' Total . g, . p.
Marital Status | (Very Preterm Birth) - | : z ‘
Married | 1149 . 6123 7272 0.733|0.797
Unmarried cohabiting | 287 . 1168 '1455:0.183:0.152
. Unmarried, not cohabiting | 132 392 524 10.084!0.051 .
| Total 1568 . 7683 9251 1 | 1

For this nisk factor, lﬂcg = 0.0328146. The distribution for ic% under the null hypothesis

of no risk is the Gamma(1,2433168 ) The statistic In(k3+1) = 0.032288 and its

distribution under the null hypothesis of no risk is again that derived in Eq. (3.7), with @ = 1,

B' = 23578 Table 5.6 gives the data for the matemnal age.
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Table 5.6 Data from a Case-Control Study Investigating the Association
between Marital Status and Very Preterm Births

; Cases éControlsi Total | ¢, P
. Maternal age | (Very Preterm Birth) | | i
. <0 99 . 350 | 449 '0.061' 0.045 |
. 2024 298 . 1780 | 2078 '0.184 ' 0.229
25-29 486 ! 2565 | 3051 :0.300i 0.333
30-34 407 . 2130 | 2537 .0251' 0.274 :
35-39 254 . 785 1039 .0.157: 0.101 .
>40 76 163 | 239 10.047: 0.021 |
Total 1621 777319394 1 1

From the table 5.6, &2 is calculated to be 0.08243. The distribution of k% under the
null hypothesis of no risk is the Gamma(3,248=08) The statistic
ln(/?% + 1) = 0.079208. Again, the distribution of ln(l:"} + 1) under the null hypothesis is
that given by Eq. (3.7) with @ = £, B’ = 284115

For the three independent risk factors,

> (k2 +1) =0.23234 +0.032288 +0.079208

=1

= 0.34384.

2

The distribution of Zm(l}f + 1) under the null hypothesis that none of the &7, i = 1,2,3 are
=1
risks was derived in Section 3.3 and is given by Eq. (3.11), that 1s,

o le== e P,

r(fja,)(ﬂ’)m i
=l

with 3@, = 4 and B’ = 0.0015. Here, the sample sizes for the cases and controls are not
=1
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exactly the same, but they are approximately the same and B' = 0.0015 for all three risk

factors.

From the distnbution, f(z), above, the cntical value for rejecting
H, : X In(k?+1) = 0 in favor of #, : > In(k?+1) > 0 at @ = 0.05 is ©.01465. Since
=1 =1

0.34384 1s larger than 0.01465, the null hypothesis would then be rejected.
Now, if there were an available registry that kept data on very pzxeterm births, a

standardized incidence ratio, S, may be calculated and InS may be compared to

3 ~
> ln(kf" + 1). For demonstration purposes, assume there were such a registry, and a value of

=1

S was found to be 1.78. Then the hypothesis test H, : 3 ln(ki?+1) =In1.78 vs
=]

H,: > in(k2+ 1) # In1.78 may be conducted, where the distribution of the est statistic,
=1

=1 = 2(ki-1)7

3 5',2
E? (127,24—1)2

was discussed in Section 3.3 and has a standard normal distribution. Recall that if all of the

risk factors have been considered in the study then § = [J(1 +4?). ForInS = 1.78, the value
=1

of the test statistic is
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tJ

an(k~+1) Inl. 78+Z —L S

=] =\

J —1 G 51)

_ 0.343836 —-0.576613 +0.0007618
0.039034

= —-5.94384

and the null hypothesis would be rejected. This would indicate that not all of the risks have
been mcluded in the study and that more risk factors may be associated with the disease. On

the other hand, if the standardized incidence ratio, S, were calculated to be 1.44, a value close

[T(1+&2) = 1.41035), then our test statistic would be
1

=

to the actual sample estimate of (

equal to

Zln(k*—r—l) Inl. 44+Z———‘ &2

GO

3 5.,2
Jg% (1:—,?4-1)2

_ 0.343836 —0.364643 +0.0007618
0.039034

—0.51333

and the null hypothesis would not be rejected.

5.3 An Example Using D = k2 — I}jz as a Test Statistic for Comparison
of Two Independent Risk Factors

The next step may be to decide which risk factors are different in the case-control.

Using the same data as that in Section 5.2, hypothesis tests of H, :lzf—/Ac; =0 vs.

H.: k? —/}} + 0, i,j =1,2,3, i # may be conducted. The test statistic for this test was

and has a standard normal distribution.

given in section 3.4 by Eq. (3.18),
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The following estimates may be made from the above data.

biasé%_-% = 0.0055720
6’,;_3_;‘,% = 0.0230393

bias;: 3z = 0.0011214
1773
= 0.

5 i 0361101
bias; ;: = 0.0044506

6’,};_& = 0.0206312.

3

154

The results of hypothesis tests, H, : k} —k7 = 0 vs Hy : kj —k} # 0 fori,j = 1,2,3, i #,

conducted at the ¢ = 0.05 level are summarized in table 5.7.

Table 5.7 Summary of Results from Hypothesis Test A,: kf—lc}= bias,—bias-
vs. Ha: ki-ig= bias,-bias- for i,j = 1,2,3, i =j, Conducted at @ = 0.05

{ ; i :
oo : t ; Test Statistic 1 : ;
! ! - i 2 ; 7 E £ ) ; - - SN A ‘ Critical Al t/ :
s BB BB Bk (bias - biay) L S
[ i i f \ J ! Values | RejectH, |
R a f | G- |

| 112]0.26154910.0328146 | 0.228734 : 9.68614 =1.96 reject
113 10.261549 | 0.0824296 0179119 | 4.92930 =1.96 reject
312 :0.082429 | 0.0328146 | 0.049615 2.18913 =1.96 reject

Therefore, none of the above risk factors may be considered to be the same level of risk.
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CHAPTER 6

SUMMARY

The asymptotic distribution of 42 under the null hypothesis, k* = 0, for one risk factor

with ¢ levels, is Gamma($-,242 ). Under the alternative hypothesis,. &% = 0, k* has a

noncentral 7?2 (c— 1, 223 (mq,-’;pr:zp ) ) distribution  If the parameters p. q.,
=L

i=1,2,...c, are different, then k>~N (,uk_,a ) Here, p% is the expected value of k? that

was derived in section 2.4, Eq. (2.27) that is,

2y =S 9l-9) , a(1-g)A-p) , 47 . q,(l—p))
E(k)'zp;( mp, + mn+epr | Pr (n+e)pi)? b

and ¢, is given in Eq. (2.33) by

v(i2) = Z( 4971 -q))) , 4! @:(1=p.)) )

p2Ncases piNcontrols
. 4‘1:‘1;(—(1 q_]) q: qj (_plpj)
+2 + .
; ; ( pipNeases — pipZNcontrols

The power of the test statistic under the null hypothesis is shown to be high for sample sizes of

200 and above.

The asymptotic distribution of Z_‘,ln(l:r,2 + 1) under the null hypothesis,
=1

2 lnk*+1)=0, r>1, is shown to have a probability distribution function of
=1

r

$en L1
f(z) - (e-1)=1 e ﬂ

F(Za,}(ﬁ’)‘

=1

e‘dz z > 0,r > 1. The simulation study shows this to be a very
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good approximation of the distribution of Z:ln(lhc,2 + 1), r > 1 under the null hypothesis
=1

Zln(ic,z + 1) =0, r>1. The power of this test statistic under the null hypothesis

=1

Y In(k? + 1) = 0 is shown to be high for sample sizes of 500 and above.

=1

Under the null hypothesis, H, : > In(k? + 1) =InSvs. H, : 2 In(k? +1) # InS, the

=1 =1

r r
> w{k-1)-tas-y | =47
- - Z.k'Ol"' R . . .
test statistic = et S has a standard normal distribution, where InS is the

r 6-;.1
\/';1 (/};’.-4.1)2

standardized incidence ratio from an appropriate cancer registry and k2, i = 1,2,...,r, are

independent. The simulation study again shows this to be a good approximation for the
distribution of ln(lhc,2 + 1), r > 1 especially for large sample sizes.
=1

A statistic to test the difference between two independent nsk factors,

H, : k> —k%=0vs. Hy : k*~k3 = 0, is also developed. The test statistic in this case is

~ ~ A
k? — k3 -bias;»_;a
1 2 B-i
= L JV(O, I ).
Oka-iz

The simulation results show high power at sample sizes as small as m = n = 200 if both nisk
factors are not risks, that is, k7 = k3 = 0. Ifk# = k3 # 0 the sample sizes must be as large as
n = m = 1000 before the test shows high power.

This study has assumed all risk factors are independent. Further research is needed to

mvestigate a statistic to estimate S if the risk factors are dependent.
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/fThis program reads in and manipulates data from files produced
/fby the program RNTMN. The program contains a class called appgi,
/Iwhich creates objects that contain the following attributes:

/ 1. the square of the sample coefficient of variation of

1/ incidence of disease over the risk categories (CV) calculated

/I from a case-control study.

2. the square of the coefficient of variation of

/! incidence of disease over the risk categories (CV) calculated

/ from the parameters that generated the sample.

/4 3. the asymptotic variance of the (CV) calculated from the sample.
/! 4. the estimated bias of the (CV) calculated from the sample.

/! 5. the parameter bias of the (CV) calculated from the parameters

/ that generated the sample.

/4 6. the natural log of the (CV) calculated from the sample.

// 7. the natural log of the (CV) calculated from the parameters
I that generated the sample.

/ 8. the asymptotic varance of the natural log of the (CV)

/ calculated from the sample.

I 9. the asymptotic variance of the natural log of the (CV)

1/ calculated from the parameters that generated the sample.
1/ 10. the (CV) calculated from the sample using Begg’s nonparmetric
1/ estimate.

// 11. the asymptotic variance of Begg’s estimate calculated from
1/ the sample.

/ 12.  the chi-square test statistic.

/! 13. the total number of cases and controls in the sample
/f 14. the percent of cases and controls in each category in
/! the sample.

//Other member functions included in the class that

//are used to calculate the asymptotic variance are

/I covgig)
/! covpipj
// covqiqj.

//Also, the class contains member functions called setup_files,
//setup_filesl,... setup_files10 that read from an
/lextemal file called info.txt.

/Mnfo.txt contamns the name of all

//the files that the program needs to open and read. These

/fare files that were created by the Fortran subroutine, RNTMN,
//and contain the random variates for the simulation.

/fThe member function called setup_ksqr reads from the external
/ffiles created by RNTMN which contain the 1000 samples from each population.

/The main program calls a function called WriteTable that creates

//the heading of the tables, instantiates the objects from the
//class appgi, and declares and defines arrays to hold the object’s
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//attributes mentioned above.

/[fWrteTable calls a function called CalcStats that in tum
/[calls the functions trial, powertable, and writetotable.

//The tnal function calculates the sample
/faverages for the statistics gathered from the sample.

//The powertable uses the appropriate critical value (defined at the
/foeginning of the program with a pound define command) to calculate
//the percent of sample statistics that exceed the critical value.

//The writetotable writes the column heads of the table to the
//appropriate files and the statistics calculated by the method, trial.

#include <iostream>
#include <iomanip>
#include <stdlib.h>
#include <fstream.h>
#include <string. h>
#include <ctype.h>
#include <math . h>
#include <numeric>

//Below are the values that will remain constant in the program

#define cat 5 //number of levels in the case control study
#define reps 1000 //number of samples created from the population

#define ksqr0_valHo 0.0
#define ksqr0_InvalHo 0.0
#define ksqr05_valHo 0.05
#define ksqr05_InvalHo 0.049
#define ksqrl_valHo 0.1
#define ksqrl_InvalHo 0.095
#define ksqr2_valHo 0.2
#define ksqr2_InvalHo 0.182
#define ksqr3_valHo 0.3
#define ksqr3_InvalHo 0.262
#define ksqr4_valHo 0.4
#define ksqr4_InvalHo 0.336
#define ksqr5_valHo 0.5
#define ksqr5_InvalHo 0.405
#define ksqr625_valHo 0.625
#define ksqr625_InvalHo 0.486
#define ksqr8 valHo 0.8
#define ksqr8_InvalHo 0.588
#define ksqr75_valHo 0.75
#define ksqr75_InvalHo 0.560
#define ksqr9_valHo 0.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



160
#define ksqr9_InvalHo 0.641

//Below are the critical values used

/Ito determine the power of the test.

/[These values are changed dependent on the
/Itest statistic being used.

#define ksqrho_50 0.739012
#define ksqrho_100 0.369506
#define ksqrho 200 0.0739012
#define ksqrho_300 0.0369506
#define ksqrho_400 0.00739012
#define ksqrho_500 0.0739012
#define ksqrho_600 0.0615844
#define ksqrho_700 0.0527866
#define ksqrho_800 0.0461883
#define ksqrho_900 0.0410562
#define ksqrho_ 1000 0.0369506
#define ksqrho_3000 0.0123169
#define ksqrho_5000 0.00739012
#define ksqrho_7000 0.00527866
#define ksqrho 9000 0.00410562

//Below are the commands to set up the files to read from and to

ofstream outfile;//(“chi.txt”,ios::out);
ofstream outf;//(“normal.txt”, ios::out);

/Here, there are 11 different sample sizes in each run of the program.
/[There is an input file for the controls and one for the cases
/ffor each sample size.

ifstream controls;
ifstream cases;
ifstream controls];
ifstream casesl;
ifstream controls2;
ifstream cases2;
ifstream controls3;
ifstream cases3;
ifstream controls4;
ifstream cases4;
ifstream controls5;
ifstream casesS5;
ifstream controls6;
ifstream cases6;
ifstream controls7;
ifstream cases7;
ifstream controls§;
ifstream casesS8;
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ifstream controls9;
ifstream cases9;
ifstream controls10;
ifstream cases10;

161

ifstream info(“info.txt”,i0s::in);

using namespace std;

class appgi

public:

appgi();

appgi(string p);

double figurechisqr();
double figure Inksqr();
double get_varlnksqr();
double get_Inksqr();
double get_avginksqr();
double covqiqj(int x,int y);

double covqconiqconj(int x,int y);

double covpiqj(int x,int y);
double covpipj(int x,int y);
double covgigj(int x,int y);
void figure_ksqr();

double para_ksqr();
double para_bias();
double calcksqrVAR();
double calchisksqrVAR();

void setup_ksqr();

void setup_ksqrl1();
void setup_ksqr2();
void setup_ksqr3();
void setup_ksqr4();
void setup_ksqr5();
volid setup_ksqr6();
void setup_ksqr7();
void setup_ksqr8();
void setup_ksqr9();
void setup_ksqr10();
void setup_files(int i);

void setup_files1(int i);
void setup_files2(int 1);

//introduces namespace std

//constructor

//alternate constructor

//method to calculate chi-square statistic
//method to calculate In ksqr,variance of Inksqr
//method to return variance of Inksqr

//method to return theoretical In ksqr

/fmethod to return sample In ksqr

//method to calculate covariance qi and qj
//method to calculate covariance of qconi and
/Iqcony

/fmethod of calculate covariance pi and gj
//method of calculate covariance pi and pj
//method of calculate covariance gt and gj
//method to calculate ksqr from sample
//method to calculate ksqr from parameters
//method to calculate the bias from parameters
//method to calculate the variance of ksqr
//method to calculate the variance of ksqrb
//(Begg’s estimate)

//method to set up the files to read in the
/fmultinomial variate that were generated from
//RNTMN

//method to read in the appropriate files to read from
/ffor each population of ksqr
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void setup_files3(int 1);
void setup_files4(int i);
void setup_files5(int 1);
void setup_files6(int 1);
void setup_files7(int i);
void setup_files8(int 1);
void setup_files9(int 1);
void setup_files10(int 1);
void setup_files11(int i);
double getTotalControls();
double getTotalCases();
void Bias();

double get Bias();
double get_ksqr();
double get_hisksqr();
double get_ourksqr();

private:
double NumofCase[cat];

double NumofCon[cat];

2

double NumInCat[cat]
double p{cat];

double q[cat];

double qcon[cat];
double g[cat];

double TotalNumiInStudy;
double paraq[cat];

double parap[cat];

double para_g[cat];
double para_p{cat];
double sumofquotient;

double para_sumofquotient;
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//method to return the total number of controls
//method to return the total number of cases
//method to calculate the bias

//method to retumn the bias

//method to retumn ksqr

//method to return ksqrb

//this 1s an array of random variates
/lgenerated by RNTMN that will be
//read in from a file

/fthis is an array of random vanates
//generated by RNTMN that will be
//read in from a file

/Ithis is calculated from the prior two
//as NumofCase[1]+NumofCon[i]
/fthis is calculated by
//NumInCat[i}/NumInStudy

/fthis 1s calculated by
/MNumofCase[i}/TotalCases

/fthis 1s calculated by
/MumofCon[i}/TotalControl

//this is an array that keeps the
/fterms of ksqr before summing
/fthis s calculated as Total

//Cases + TotalControls

//same as g[cat] but uses
//parameters not sample

//same as p[cat] but uses
//parameters not sample

/same as q[cat] but uses
/lparameters not sample

//same as p[cat] but uses
//parameters not sample

/fthis is the sum of the terms in
//ksqr from sample

//this is the sum of the terms in ksqr
//from parameters
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double varq[cat];

double varp[cat];
double varqcon[cat];

double partialgiwrq[cat];
double partialgiwrp[cat];
double secpartialgiwrp[cat];
double secpartialgiwrq[cat];
double secpartialgiwrpq[cat];
double vargi[cat];

double nvarqfcat];

double rivargcon[cat];
double ksqr;

double hisksqr_;

double ourksqr_;

double hisksqr_sum;
double ourksqr_sum;
double hisksqr[cat];

double ourksqr{cat];

double covgp[cat];

double covqiqgj_;

double covqconiqeonj_;
double covpiqj_;

double covpipj_;

double covgig)_;

double exvarksqr;

double exinvarksqr;

double ex_Inksqr;

double avg_Inksqr;

double var_Inksqr;

double ksqrAVG;
char C[35];

char D[35];
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//the is array that holds the vanance
//of the cases

/fthe is array that holds the variance
/fof the controls

//array of partial deriv w/rto q
//array of partial deniv w/rto p
[larray of partial deriv w/r to p for
/fksqrb

/larray of partial deriv w/r to q for
/fksqrb

//array of variance of ksqrb+1
/farray of vanance of ksqr+1
//holds the varq for ksqrb

//holds the varqcon for ksqrb
/fholds the value for ksqr

//holds the value for ksqrb+1
//holds the value for ksqr+1
//holds the value for ksqrb+1
//holds the value for ksqr+1
//holds the value for ith term in
/fksqrb+1

/fholds the value for ith term in
/fksqr+1

//holds the value for ith covariance
/lof p and q

//holds value for the covariance of
/lqt and qj

//holds value for the covariance of
//qcont and qconj

/fMholds value for the covariance of
/lpt and ¢

//holds value for the covariance of
//p1 and pj

/fholds value for the covanance
of terms 1n ksqr

//holds the vanance of ksqrb
//holds the value for theoretical In
/fksqr

//holds the value for sample In
ffksqr

//holds the value for theoretical
{fvariance of In ksqr

//character array for name of file
/o read from
//character array for name of file
/lto read from
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double TotalControls;
double TotalCases;
double Controls;
double Cases;

double bias[cat];

double biassum;

double samplebias([cat];

double samplebiassum;

double samplebiassum1;

b

appgt::appgi()

{ for(int k=0;k<35;k++)
{Clk]="\0;

D[K="\0';

}//end of for

outfile precision(6);
outf precision(6);

outfile.setf(ios::fixed,i0s::floatfield);
outf setf{ios::fixed,io0s::floatfield);

TotalNumInStudy=0;
TotalControls=0;
TotalCases=0;
sumofquotient=0;
ksqr=0;
hisksqr_=0;
ourksqr_=0;
hisksqr_sum=0;
ourksqr_sum=0;
covqiq_=0;
covqconiqconj_=0;
covpiqj_=0;
covpipj_=0;
covgig)_=0;
exvarksqr=0;
exInvarksqr=0;
biassum=0;
samplebiassum=0;

164

/ftotal controls

/ftotal cases

//controls
/[cases

//array for terms in the
/[calculation of the bias

/fholds the value for the sum of
//the terms in the bias

//this array holds the i category
//computation in order to
[/calculate the sample bias
/fthis value holds the sample bias
//this value holds the parameter
/fbias

//constructor

/fthis is a character array that reads in the name of a file
/Ithis 1s a character array that reads in the name of a file
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samplebiassum1=0;
for(int j=0;j<cat;j++)
{NumofCase[j]=0;
NumofCon[j]=0;
NumInCat[j]=0;
p(]=0;
qb]=0;
qcon[j]=0;
g[j1=0;
para_p[j}=0;
para_q[j]=0;
bias[j]=0;
covqp(j]=0;
varq[j]=0;
varp[j}=0;
varqcon([j]=0;
partialgiwrq[j]=0;
partialgiwrp(j]=0;
secpartialgiwrp[j]=0;
secpartialgiwrq[j}=0;
secpartialgiwrpq([j]=0;
vargi[j]=0;
samplebias[j]=0;
hisksqr[j]=0;
ourksqr[j]=0;

}//end of for
}//end of constructor

double appgi::getTotalControls()
{return TotalControls;

}

double appgi::getTotalCases()
{return TotalCases;

}

double appgi::para_bias()
{double samplebiascat=0;
double samplebiascat1=0;
double firstterm=0;
double secterm=0;
double thirdterm=0;
for(int j=0;j<cat;j++)

firstterm=para_q[j]*(1-para_q[j])/(TotalCases*para_p[j]);

secterm=para_q[j]*(1-para_q[j])*(1-para_p[j])/
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(TotalCases*(TotalControls)*(para_p[j]*para_p[i]));

thirdterm=para_q[j]*para_gq[j]*(1-para_p[j])/
(TotalControls*(para_p[j])*(para_p[i]));

samplebiassum1=samplebiassum]+firstterm+secterm-+thirdterm;
}//end of for

return samplebiassum!;
}//end of para_bias()

double appgi::para_ksqr() //this method calculates the ksqr with the parameters
{double ksqr1=0;

for(int j=0;<cat;j++)

{ksqrl=ksqrl+para_q[j]*para_q[j}/para_p[j];

}

ksqri=ksqrl-1;

return ksqrl;

}/lend para_ksqr()

void appgi::Bias() //this method calculates the bias of ksqr
for(int j=0;j<cat;j++)
samplebias(jl=q[j]*(1-q[j])/(TotalCases*qcon[j])+
ab]*(1-q0])*(1-qcon[j])/
(TotalCases*(TotalControls)*(qcon[j]*qcon[j]))+
qbI*ab]1*(1-gcon(j])/(TotalControls*(qcon[j])*(qeonfj]));

samplebiassum=samplebiassum+samplebias(j];

}//end of for
}//end of Bias()
double appgi::get Bias() //this method returns the bias
{return samplebiassum;
}//end of getBias()
void appgi::setup_files(int b) //This method reads from a file
{ //called info. The info file
chart; /lists the files that contain
mnt k=0; //the random variates from RNTMN.
/The appropriate file is then
int samplenum; /lopened depending on the sample
samplenum=b; /fsample size. There are 11 of
//methods, one for each population
//of ksqr, but only two are listed for
/fbrevity.
info>>t;
while(isspace(t)==false)
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{

Clk]=t;

t=info.get();

k=k+1;

3

k=0;

mfo>>t;
while(isspace(t)==false)
{

D[k]=t;

t=info.get();

k=k+1;

I3
cases.open(C,10s::1n);
controls.open(D,10s::1n);
info>>Cases;
info>>Controls;
for(int =0;1<cat;i++)
{

info>>paraq[i];

R}

s

for(int i=0;i<cat;i++)

{
info>>parap(i];

}/fend of setup files

void appgi:setup_files(int b)
{

char t;

it k=0;

int samplenum;
samplenum=b;

info>>t;
while(isspace(t)=false)

{

Clk]=t;
t=1info.get();
k=k+1;

}

k=0;
info>>t;
while(isspace(t)==false)
{

D(k]=t;
t=info.get();
k=k+1;

}

casesl.open(C,io0s::in);
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controls1.open(D,ios::in);
info>>Cases;
info>>Controls;

for(int 1=0;i<cat;i++)

{

info>>paraq[i];

}

for(int 1=0;i<cat;i++)

{
info>>parap{i];

}
}/lend of setupl files

void appgi::setup_ksqr() /This method reads in the multinomial
{ //variates that were generated by RNTMN
TotalCases=Cases;
TotalControls=Controls;
TotalNumInStudy=TotalCases+TotalControls;

cases>>NumofCase[0];

controls>>NumofCon[0];

for(int j=1j<cat;j++)

{cases>>NumofCase[j];

controls>>NumofCon(j];

}

for(int j=0;j<cat;j++)
{para_p([j]=parap[];
para_q[j}=paraqfj];

NumofCon[j]=NumofCon[j]+.5;

}//end of for

double sum=0;
for(int j=0;j<catyj++)

sum=sum-+NumofCon[j];
}//end of for

TotalControls=sum;
}//end setup_ksqr

double appgi::figurechisqr() /this method calculates the chi-square
{double firstterm=0; //statistic
double firsttermsum=0;
double secondterm=0;
double secondtermsum=0;
double chisqr=0;

for(int k=0;k<cat;k++)
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{
firstterm=
((NumofCase[k]-TotalCases*(NumofCase[k}+NumofCon[k])/
(TotalCases+TotalControls))*
(NumofCase[k]-TotalCases*(NumofCase[k]+NumofCon[k])/
(TotalCases+TotalControls)))/
(TotalCases*(NumofCase[k]+NumofCon[k])/
(TotalCases+TotalControls));

firsttermsum=firsttermsum-+firstterm;
}//end of for

for(int k=0;k<cat;k++)

{

secondterm=((NumofCon[k]}-TotalControls*
(NumofCase[k]+NumofCon[k])/

(TotalCases+TotalControls))*
(NumofCon[k}-TotalControls*(NumofCase[k}+NumofCon[k])/
(TotalCases+TotalControls)))/
(TotalControls*(INumofCase[k]+NumofCon[k])/
(TotalCases+TotalControls));
secondtermsum=secondtermsum-+secondterm;

}//end of for

chisqr=firsttermsum+secondtermsum;

return chisqr;

}//end of figurechisqr

void appgi::figure_ksqr() //This method calculates ksqr, the

{ /fvanance and covariances needed
/fand the ksqr(Begg), called

/Masksqr.

for(int k=0;k<cat;k++)

{
q[k]=NumofCase[k]/TotalCases;
qcon{k]=NumofCon[k]}/TotalControls;

NumlInCat[k]=NumofCase[k]+NumofCon[k];
p[k]=NumInCat[k]/TotalNumInStudy;

glkl=((alk]*(alk]))/(qconlk]);

sumofquotient=sumofquotient+g[k];

for(int 1=0;i<cat;i++)
{iff(NumofCon[k]==0.5)
{NumofCon[k]=0;}//end of if
}//end of for
hisksqr{k]=(TotalControls+2)*NumofCase[k]*(NumofCase[k]-1)/
(TotalCases*(TotalCases-1)*(1+NumofCon[k]));
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/Iput back the .5 num of Controls for rest
for(int i=0;i<cat;i++)
{f{NumofCon[k]==0)
{NumofCon[k]}=0.5;}//end of if
}/lend of for

hisksqr_sum=hisksqr_sum-+hisksqr{k];

covap[k]=(1/(TotalNumInStudy*TotalCases))*(
TotalCases*(q[k])*(1-q[k])+(TotalCases*q[k])
*(TotalCases*q[k])

+(TotalCases*q[k])*

TotalControls*qcon[k]-
(TotalCases*q[k]+TotalControls*qcon[k])
*TotalCases*q[k]);

varq[k]=(q[k]*(1-q[k])/TotalCases);

varp[k]=(1/pow(TotalNumInStudy,2))*(TotalControls*qcon[k]*(1-qcon[k])
+TotalCases*q[k]*(1-q[k]));

varqcon[k]=(qcon[k]*(1-qcon[k])/TotalControls);
partialgiwrq(k}=2.0*q[k]/(qcon[k]);
partialgiwrp[k]=-1.0*q[k}*q[k]/(qcon[k]*qcon[k]);

//put back the 0 num of Controls for his

for(int 1=0;1<cat;i++)

{if(NumofCon[k]==0.5)

{NumofCon[k]=0;}//end of if

}//end of for
secpartialgiwrp[k]=-1.0/(pow(1+NumofCon[k],2))

*(NumofCase[k]*NumofCase[k]-NumofCase[k]);

secpartialgiwrq[k]=1/(1+NumofCon[k])
*(2.0*NumofCase[k]-1);

//the second partial is the first partial of his stat

secpartialgiwrpq[k]=(secpartialgiwrq[k]*secpartialgiwrq[k])
*nvarq[k]+(secpartialgiwrp[k]*secpartialgiwrp(k])*nvarqcon[k];

/fthis thing above is the vargi for his stat

//put back the .5 num of Controls for rest
for(int 1=0;1<cat;1++)
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{tf(NumofCon[k]==0)
{NumofCon[k]=0.5;}//end of if
}//end of for
vargi[k}=(partialgiwrq[k]*partialgiwrq[k])
*varq[k]+(partialgiwrp[k]*partialgiwrp[k])*varqcon[k];

}//end of for

hisksqr_=hisksqr_sum-1;
ksqr=sumofquotient-1;
}/end of figure_ksqr

double appgi::figure Inksqr() /fThis method calculates the variance for ksqr

ex_Inksqr=log(ksqr+1)-.5*(1/((ksqr+1)*(ksqr+1)))*calcksqrVAR();
avg_lnksqr=log(ksqr+1);
var_lnksqr=(1/(ksqr+1))*(1/(ksqr+1))*calcksqrVAR();

}//end of figure_Inksqr()

double appgi::get_Inksqr() /fthis method returns the theoretical In ksqr
{return ex_Inksqr;

}

double appgi::get _avglnksqr() //this method returns the sample In ksqr
{return avg_Inksqr;

3

double appgi::get varlnksqr() /lthis method returns the
{return var_Inksqr; /ltheoretical vaniance In ksqr
}

double appgi::get_ksqr() //this method returns ksqr
{return ksqr;

}//end of get_ksqr

double appgi::get_hisksqr() /fthis method returns ksqrb
{return hisksqr_;
}//end of get_ksqr

double appgi::get_ourksqr()
{return ourksqr_;
}//end of our_ksqr

double appgi::covqiqj(int x,int y) //this method calculates covanance of gi and
g

{

covqiqj_=-q[x]*q[v]*TotalCases;

return covqiqj_;

}//end of covqiqj
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double appgi::covqconiqconj(int x,int y) /fthis method calculates covariance
{ /fof qconi and qconj
covqconiqconj_=-qcon[x]*qcon[y]*TotalControls;

return covqconiqeon)_;

}//end of covqconiqconj

double appgi::covpiqj(int x,int y)

covpiqj_=(1/(TotalNumInStudy*TotalCases))*
((TotalCases*TotalCases)*(covqiqj(x,y)+q[x]*q[y])+TotalControls
*qcon[x]*TotalCases*qfy]-
(TotalCases*qfx]+TotalControls*qcon[x])*TotalCases*q[y]);
return covpiqy_;

}//end of covpiqj

double appgi::covpipj(int x,int y)
{covpipj_=-1.0*secpartiaigiwrq[x]*secpartialgiwrq[y]*(NumofCase[x]*NumofCase[y]/TotalCases
(-1.0)*secpartialgiwrp[x]*secpartialgiwrp[y]*(NumofCon[x]*NumofCon[y]/Total Controls);
//INOTE: the second partial is the first partial of his stat

returmn covpipj_;

}//end of covpipj

double appgi::covgigj(int x,int y)

{ covgigy_=-1.0*partialgiwrq[x] *partialgiwrq[y]*(q[x]*q[y]/TotalCases)+
(-1.0)*partialgiwrp[x]*partialgiwrp[y]*(qcon[x]*qcon[y}/TotalControls);
retum covgigj_;

}//end of covgigy

double appgi::calcksqrVAR() /fthis method calculates the varnance of
/fksqr

{ double exinvarfirst_term=0;

double exInvarsecond_term=0;
for(int x=0;x<cat-1;x++)

{
for(int y=x+1;y<cat;y++)
{exlnvarfirst_term=exlnvarfirst_term+2.0*covgigi(x,y);
}//end of for

}//end of outside for

for(int x=0;x<cat;x++)

{

exInvarsecond_term=exInvarsecond_term-+vargi[x];

}//end of for
exlnvarksqr=exlnvarfirst_term+exinvarsecond_term;
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return exlnvarksqr;

}

double appgi::calchisksqrVAR() //this method calculates the vanance of ksqrb
double exInvarfirst_term=0;
double exinvarsecond term=0;
for(int x=0;x<cat-1;x++)

{

for(int y=x+1;y<cat;y++)
{exlnvarfirst_term=exInvarfirst_term+2.0*covpipj(x,y);
}//end of for

}//end of outside for

for(int x=0;x<cat;x++)

{

exInvarsecond_term=exInvarsecond_term+secpartialgiwrpq[x];

}//end of for
exlnvarksqr=exInvarfirst_term-+exlnvarsecond_term;
exInvarksqr=pow((TotalControls+2)/(TotalCases*(TotalCases+1)),2)*exlInvarksqr;
return exlnvarksqr;
}//end of calchisksqrVAR()

/[This 1s the start of the main program which calls the function write table.
/The function write table creates objects of appgi, the ksqr. The
//appropriate methods are called to calculate the attributes, then written
/fto a table. The write table is called 14 times, once for each sample
/fsize.

void main()

{
void WriteTable(int b);
for(int i=1;i<15;i4++)
{
WriteTable(1);
}//end of for
}//end of main

//The function WriteTable calls the functions calc_stats. The calc_stats
//function calls the functions trial, powertable, and writetotable. The
//trial function calculates the sample averages and the sample variances
//for the 11 populations of ksqr and In ksqr+1. The powertable reads the
//appropriate critical value from the defined values to calculate the
/fpower of the hypothesis test. The writetotable function formats the
/finformation calculated and prints it to the appropriate out file.

void WriteTable(int b);
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void WriteTable(int b)

{
//this section defines the functions WriteTable will call

void calc_stats(double ksqrlist_OBias[],double ksqrlist_0[],doubleksqrvar_0f],.double
&ksqrV AR, double &ksqrAVG,double &ksqrSTD,double &ksqrBiasAVG,do-uble
logksqrlist_0[],double &ksqrEXP,double &betachi_0,double &betahi 0,doublie
&betalo_0,double ksqrinnamel,double ksqrnamel,double hisksqrlist_0[],double
ksqrhisvar_0[],double logavgksqrlist_0[],double ksqrlogvar_O[],int q,double
ksqrvar_ho[],double ksqrlogvar_ho[],double ksqrhisvar_ho[],double ksqrlist_moBias[],double
ksqrhislist_hoBias[],double ksqrloglist_hoBias[],double &ksqrBiasAV Gho,domble
&ksqrVARho,double &ksqrhisAV Gho,double &ksqrhisVARho,double
&ksqriogEXPho,double &ksqrlogV ARho);

void trial(double ksqrlist_0Bias[],double ksqrlist_0[],double ksqrvar_0[],double
&ksqrVAR,double &ksqrAVG,double &ksqrSTD,double &ksqrBiasAVG,domble
logksqrlist_0[],double &ksqrEXP,double &ksqrBiasAVGho,double &ksqrV A_Rho,double
ksqrhisAVGho,double ksqrhisVARho,double ksqrlogEXPho,double ksqriogV _ARho,int q);

void powertable(double ksqrlist_O[],double ksqrvar_0[],double &betachi_0,do-uble
&betahi_0,double &betalo_0,double ksqrlist_hoBtas[],double &ksqrAV Gho,d-ouble
&ksqrVARho);

void writetotable(double &ksqrBiasAVG,double &ksqmamel,double &ksqrA VG,double
&ksqrSTD,double &ksqrVAR,double &betachi_0,double &betahi_0,double &betalo_0);

//the following open the appropriate file depending on the sample size

int sampleno=b;

if(sampleno==1)
{outfile.open(*“chi_50.doc”,10s::0ut);
outf.open(“normal_50.doc”,i0s::0ut);
outfile2.open(*‘chi2_50.doc”,10s::0ut);
outf2.open(*“normal2_50.doc”,i0s::out);
}//end of if==1

if(sampleno==2)
{outfile.open(*“chi_100.doc”,i0s::0ut);
outf.open(“‘normal_100.doc”,10s::0ut);
outfile2.open(“chi2_100.doc”,i0s::0ut);
outf2.open(“normal2_100.doc”,10s::0ut);
}//end of if==2

f(sampleno==3)
{outfile.open(*“chi_200.doc”,i0s::0ut);
outf.open(“normal_200.doc”,ios::out);
outfile2.open(*“chi2_200.doc”,i0s::out);
outf2.open(“normal2_200.doc”,t0s::out);
}//end of 1f==3

if(sampleno==4)
{outfile.open(“chi_300.doc”,i0s::0ut);
outf.open(“normal_300.doc”,10s::0ut);
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outf2.open(“normal2_300.doc”,10s::out);
}//end of if=4

if(sampleno==5)
{outfile.open(*““‘chi_400.doc”,i0s::0ut);
outf.open(“normal_400.doc”,10s::0ut);
outfile2.open(“chi2_400.doc”,i0s::out);
outf2 open(*“normal2_400.doc”,i0s::out);
}//end of if==5

if(sampleno=6)
{outfile.open(“chi_500.doc”,i0s::0ut);
outf.open(“normal_500.doc”,i0s::0ut);
outfile2.open(““chi2_500.doc”,ios::out);
outf2 open(“normal2_500.doc”,10s::0ut);
}//end of if==6

if(sampleno==7)
{outfile.open(“‘chi_600.doc”,i0s::0ut);
outf open(“normal_600.doc”,10s::0ut);
outfile2 open(“chi2_600.doc”,10s::0ut);
outf2.open(“normal2_600.doc”,10s::out);
}//end of if=7

if(sampleno==8)
{outfile.open(*“‘chi_800.doc” 10s::0ut);
outf.open(“normal_800.doc”,10s::0ut);
outfile2.open(““chi2_800.doc”,i0s::0ut);
outf2 open(“normal2 800.doc”,ios:out);
}//end of if=8

f(sampleno==9)
{outfile.open(*““chi_1000.doc”,10s::0ut);
outf.open(“normal_1000.doc”,10s::0ut);
outfile2.open(*“chi2_1000.doc”,i0s::0ut);
outf2.open(“normal2_1000.doc”,ios::out);
}//end of if==9

if(sampleno==10)
{outfile.open(“‘chi_3000.doc”,10s::0ut);
outf.open(“normal_3000.doc”,10s::0ut);
outfile2.open(“chi2_3000.doc”,i0s::0ut);
outf2 open(“normal2_3000.doc”,i0s::0ut);
}//end of if==10

if(sampleno==11)
{outfile.open(“‘chu_5000.doc”,10s::0ut);
outf.open(“normal_5000.doc”,10s::0ut);
outfile2.open(“chi2_5000.doc”,ios::out);
outf2 open(“normal2_5000.doc”,10s::0ut);
}//end of if=11

if(sampleno==12)
{outfile.open(*‘chi_7000.doc”,10s::0ut);
outf open(“normal_7000.doc”,10s::0ut);
outfile2_open(“chi2_7000.doc”,i0s::0ut);
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outf2.open(“normal2_7000.doc”,10s::0ut);
}//end of if=12
if(sampleno=13)
{outfile.open(“chi_9000.doc”,ios::out);
outf.open(“normal_9000.doc”,10s::0ut);
outfile2.open(“chi2_9000.doc”,10s::0ut);
outf2.open(“normal2 9000.doc”,10s::out);
}/fend of if==13
if(sampleno==14)
{outfile.open(*““chi_10000.doc”,10s::0ut);
outf.open(“normal_10000.doc”,10s::0ut);
outfile2. open(“chi2_10000.doc”,10s::0ut);
outf2.open(“normal2_10000.doc”,10s::out);
}/end of if==14

//the following declare the variables to be used throughout the program

double TotControls=0;

double TotCases=0;
double betachi_0=0;
double betahi_0=0;
double betalo_0=0;

double para_ksqr0=0;
double para_ksqr05=0;
double para_ksqrl=0;
double para_ksqr2=0;
double para_ksqr3=0;
double para_ksqr4=0;
double para_ksqr5=0;
double para_ksqr625=0;
double para_ksqr75=0;
double para_ksqr8=0;
double para_ksqr9=0;

//the following declare the arrays to hold the statistics calculated

double ksqrlist_O[reps]; /farray for the ksqr for each rep
double ksqrlist_OBias[reps]; /farray for the bias of ksqr for each rep
double ksqrlist_hoBias[reps]; /farray for the ksqrb for each rep
double hisksqrlist_O[reps]; /farray for the ksqrb for each rep
double ksqgrhislist_hoBias[reps];

double logksqrlist_O[reps]; /larray for the theoretical In ksqr for each rep
double ksqgrloglist_hoBias[reps];

double chisqr_O[reps]; //array for the chi-square stat for each rep
double logavgksqrlist_O[reps]; //array for the sample In ksqr for each rep

{lthe above is repeated for each population of ksqr

double ksgrlist_05[reps];
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double ksqrlist_05Bi1as(reps];
double hisksqrlist_05[reps];
double logksqgrlist_05[reps];
double logavgksqrlist_05[reps];
double chisqr_05{reps];
double ksqrlist_1{reps];
double ksqrlist_1Bias[reps];
double hisksqrlist_1[reps];
double logksqrlist_1[reps];
double logavgksqrlist_1[reps];
double chisqr_1[reps];
double ksqrlist_2[reps];
double ksqrlist_2Bias[reps];
double hisksqrlist_2[reps];
double logksqrlist_2[reps];
double logavgksqrlist 2[reps];
double chisqr_2[reps];
double ksqrlist_3[reps];
double ksqrlist_3Bias[reps];
double hisksqrlist_3[reps];
double logksqrhist_3[reps];
double logavgksqrlist_3[reps];
double chisqr_3[reps];
double ksqrlist_4[reps];
double ksqrlist_4Bias[reps];
double hisksqrlist_4{reps];
double logksgrlist_4[reps];
double logavgksqrlist_4[reps];
double chisqr_4[reps];
double ksqrlist_S[reps];
double ksqrlist_S5Bias[reps];
double hisksqrlist_S[reps];
double logksqrlist_S[reps];
double logavgksqrlist_S5[reps];
double chisqr_5[reps];
double ksqrlist_625[reps];
double ksqrlist_625Bias[reps];
double hisksqrlist_625[reps];
double logksqrlist_625[reps];
double logavgksqrlist_625[reps];
double chisqr_625[reps];
double ksqrlist_8[reps];
double ksqrlist_8Bias[reps];
double hisksqrlist_8[reps];
double logksqriist_8[reps];
double logavgksqrlist_8[reps];
double chisqr_8[reps];
double ksqrlist_75[reps];
double ksqrlist_75Bias[reps];
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double hisksqrlist_75[reps];
double logksqrlist_75[reps}];
double logavgksqrlist_75[reps];
double chisqr_75[reps];
double ksqrlist_9[reps];
double ksqrlist_9Bias[reps];
double hisksqrlist_9[reps];
double logksqrlist_9[reps];
double logavgksqrlist_9[reps];
double chisqr_9{reps];

double ksqgrvar_O[reps]; /{array for variance of ksqr
double ksqrvar_ho[reps];

double ksqrlogvar_O[reps]; /larray for variance of In ksqr
double ksqrlogvar_ho[reps};

double ksqrhisvar_O[reps]; /farray for variance of ksqrb

double ksqrhisvar_ho[reps];
/Ithe above 1s repeated for the 11 populations of ksqr

double ksqrvar_05[reps];
double ksqrlogvar_05[reps];
double ksqrhisvar_05[reps];

double ksqrvar_1[reps]; //these are for the vanance of each from
double ksqrlogvar_1[reps]; //each rep
double ksqrhisvar_1[reps];

double ksqrvar_2[reps]; //these are for the vaniance of each from
double ksqrlogvar 2[reps]; //each rep
double ksqrhisvar_2[reps];

double ksqrvar_3[reps]; //these are for the variance of each from
double ksqrlogvar_3[reps]; //each rep
double ksqrhisvar_3[reps];

double ksqrvar_4[reps]; //these are for the variance of each from
double ksqrlogvar_4[reps]; //each rep
double ksqrhisvar 4[reps];

double ksqrvar_5[reps]; //these are for the variance of each from
double ksqgrlogvar_5[reps]; //each rep
double ksqrhisvar_5[reps];

double ksqrvar_625[reps]; //these are for the variance of each from
double ksqrlogvar_625(reps]; //each rep
double ksqgrhisvar_625[reps];

double ksqrvar_8[reps]; //these are for the variance of each from
double ksqrlogvar_8[reps]; //each rep
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double ksqrhisvar_8[reps];

double ksqrvar_75[reps]; //these are for the variance of each from
double ksqrlogvar_75[reps]; //each rep
double ksqrhisvar_75[reps];

double ksqrvar_9[reps]; //these are for the variance of each from
double ksqrlogvar_9[reps]; //each rep
double. ksqrhisvar_9[reps];

double ksqrEXP=0;

double ksqrAVG=0; /fvalue to hold the average
double ksqrVAR=0; //value to hold the theoretical variance
double ksqrSTD=0; /Ivalue to hold the sample vanance

double ksqrBiasAVG=0; /Ivalue to hold the average bias

double ksqrBiasAV Gho=0;

/fthe following are the critical values needed for each sample
//size for the hypothesis testing

if(sampleno=1)
{ksqrBiasAVGho=ksqrho_50;}
/lend of if 1

if(sampleno==2)
{ksqrBiasAVGho=ksqrho_100;}
/lend of if 2

if(sampleno==3)
{ksqrBiasAVGho=ksqrho_200;}
/lend of if 3

if(sampleno=—4)
{ksqrBiasAVGho=ksqrho_300;}
/fend of if 4

if(sampleno==5)
{ksqrBiasAVGho=ksqrho_400;}
//end of if 5

if(sampleno=="56)
{ksqrBias AV Gho=ksqrho_500;}
/lend of if 6

if(sampleno==7)
{ksqrBiasAVGho=ksqrho_600;}
/fend of if 7

if(sampleno==8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180
{ksqrBiasAVGho=ksqrho_800;}
/fend of if 8

if(sampleno==9)
{ksqrBiasAVGho=ksqrho_1000;}
[fend of if 9

if(sampleno==10)
{ksqrBiasAVGho=ksqrho_3000;}
/fend of if 10

if(sampleno=11)
{ksqrBiasAVGho=ksqrho_5000;}
/fend of if 11

if(sampleno==12)
{ksqrBiasAVGho=ksqrho_7000;}
/lfend of if 12

if(sampleno==13)
{ksqrBiasAVGho=ksqrho_9000;}
/fend of if 13

double ksqrVARho=0; /fvalue to hold the varniance of critical value for ksqr
double ksqrhis AV Gho=0; /fvalue to hold the mean of critical value for ksqr
double ksqrhisVARho=0; /fvalue to hold the variance of critical value for ksqrb
double ksqrlogEXPho=0; /fvalue to hold the mean of critical value for In ksqr
double ksqriogVARho=0; //value to hold the variance of critical value for In ksqr
double ksqrlist_Obias=0; //holds value for the bias of ksqr
double ksqrlist_05bias=0;

double ksqrlist_1bias=0;

double ksqrlist_2bias=0;

double ksqrlist_3bias=0;

double ksqrlist_4bias=0;

double ksqrlist_Sbias=0;

double ksqrlist_625bias=0;

double ksqrlist_75bias=0;

double ksqrlist_8bias=0;

double ksqrlist_9bias=0;

for(int j=0;j<reps;j++)

{

//The 1000 reps to calculate ksqr from 11 different populations
appgi ksqr_0;

appgi ksqr_05;

appgi ksqr_1;

appgi ksqr_2;

appgi ksqr_3;

appgi ksqr_4;

appgi ksqr_5;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



181

appgi ksqr_625;
appgi ksqr_75;
appgi ksqr_8;
appgi ksqr_9;
if(j==0) /lopen files only once for each ksqr

{

ksqr_0O.setup_files(b);
ksqr_05.setup_files1(b);
ksqr_1.setup_files2(b);
ksqr_2.setup_files3(b);
ksqr_3.setup_files4(b);
ksqr_4.setup_files5(b);
ksqr_5.setup_files6(b);
ksqr_625.setup_files7(b);
ksqr_75.setup_files8(b);
ksqr_8.setup_files9(b);
ksqr_9.setup_files10(b);

}
ksqr_O.setup_ksqr(); //sets up the ksqr using the appropriate
ksqr_0S.setup_ksqrl(); /Mfile
ksqr_1.setup_ksqr2();
ksqr_2.setup_ksqr3();
ksqr_3.setup_ksqrd();
ksqr_4.setup_ksqr5();
ksqr_S.setup_ksqr6();
ksqr_625.setup_ksqr7();
ksqr_75.setup_ksqr8();
ksqr_8.setup_ksqr9();
ksqr_9.setup_ksqrl0();
para_ksqrO=ksqr_0.para_ksqr(); //thus calculates each ksqr
para_ksqr05=ksqr_05.para_ksqr();
para_ksqrl=ksqr_1l.para_ksqr();
para_ksqr2=ksqr_2.para_ksqr();
para_ksqr3=ksqr_3.para_ksqr();
para_ksqrd=ksqr_4.para_ksqr();
para_ksqr5=ksqr_5.para_ksqr();
para_ksqr625=ksqr_625.para_ksqr();
para_ksqr75=ksqr_75.para_ksqr();
para_ksqr8=ksqr_8.para_ksqr();
para_ksqr9=ksqr_9.para_ksqr();
ksqrlist_Obias=ksqr_0.para_bias();
ksqrlist_0Sbias=ksqr_05.para_bias();
ksqrlist _1bias=ksqr_1.para_bias();
ksqrlist_2bias=ksqr_2.para_bias();
ksqrlist_3bias=ksqr_3.para_bias();
ksqrlist_4bias=ksqr_4.para_bias();
ksqrlist_Sbias=ksqr_5.para_bias();

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ksqrlist_625bias=ksqr_625.para_bias();
ksqrlist_75bias=ksqr_75.para_bias();
ksqrlist_8bias=ksqr_8.para_bias();
ksqrlist_9bias=ksqr_9.para_bias();
ksqr_0.figure_ksqr(); /fthis calculates each ksqr
ksqr_05.figure_ksqr();

ksqr_1.figure ksqr();
ksqr_2.figure_ksqr();
ksqr_3.figure_ksqr();

ksqr_4 figure_ksqr();
ksqr_5S.figure_ksqr();

ksqr_625 figure ksqr();
ksqr_75.figure_ksqr();
ksqr_8.figure_ksqr();
ksqr_9.figure_ksqr();
ksqr_0.figure_Inksqr(); //this calculates each Inksqr
ksqr_05.figure Inksqr();
ksqr_1.figure_Inksqr();

ksqr_2.figure Inksqr();
ksqr_3.figure_Inksqr();
ksqr_4.figure_Inksqr();

ksqr_S5.figure Inksqr();

ksqr_625 figure_Inksqr();
ksqr_75.figure_Inksqr();
ksqr_8.figure_Inksqr();
ksqr_9.figure_Inksqr();

ksqr_0.Bias(); /Ithis calculates each bias
ksqr_05.Bias();

ksqr_1.Bi1as();

ksqr_2.Bias();

ksqr_3.Bias();

ksqr_4.Bi1as();

ksqr_5.Bias();

ksqr_625 Bias();

ksqr_75.B1as();

ksqr_8.Bias();

ksqr_9.Bias();
TotControls=ksqr_0.getTotalControls();
TotCases=ksqr_0.getTotalCases();
ksqrlist_0[j]=ksqr_0.get_ksqr(); /this retrieves the ksqr’s
ksqrlist_OBias[j]=ksqr_0.get_Bias();
ksqrlist_hoBias[j]=ksqrlist_OBias[j];
hisksqrlist_O[j]=ksqr_0.get_hisksqr();
ksqrhislist_hoBias[j}=0;

logksqrlist_Ofj}=ksqr_0.get_lnksqr(); //this is the Taylor avg
ksqgrloglist_hoBias[j]=logksqrlist_O[j];
logavgksqrlist_0[j]=ksqr_0.get_avglnksqr(); //calc the sample avg
chisqr_O[j]=ksqr_0.figurechisqr();

ksqrlist_05[j]=ksqr_05.get_ksqr(); /fthis retrieves the ksqr’s
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ksqrlist_05Bias[j]=ksqr_05.get Bias();
hisksqrlist_05[j]=ksqr_05.get_hisksqr();
logksqrlist_05[j]=ksqr_05.get_Inksqr(); //this 1s the Taylor avg
logavgksqrlist_05[j]=ksqr_05.get_avglnksqr(); //calc the sample avg
chisqr_05[j]=ksqr_0S figurechisqr();
ksqrlist_1{jl=ksqr_1.get_ksqr();
ksqrlist_1Bias[j]=ksqr_1.get_Bias();
hisksqrlist_1[j]=ksqr_1.get_hisksqr();
logksqrlist_1[j]=ksqr_1.get_Inksqr();
logavgksqrlist_1[j]=ksqr_l.get_avglnksqr();

chisqr_l1[jj=ksqr_1.figurechisqr();
ksqrlist_2[j]=ksqr_2.get ksqr();
ksqrlist_2Bias[jl=ksqr_2.get_Bias();
hisksqrlist_2[j]=ksqr_2.get_hisksqr();
logksqrlist_2[j]=ksqr_2.get_Inksqr();
logavgksqrlist_2[j]=ksqr_2.get avglnksqr();
chisqr_2[j]=ksqr_2.figurechisqr();
ksqrlist_3[jl=ksqr_3.get_ksqr(;
ksqrlist_3Bias[j]=ksqr_3.get_Bias();
hisksqrlist_3[jl=ksqr_3.get_hisksqr();
logksqrlist_3[j]=ksqr_3.get_Inksqr();
logavgksqrlist_3{jl=ksqr_3.get_avglnksqr();
chisqr_3[jl=ksqr_3.figurechisqr();
ksqrlist_4[j]=ksqr_4.get_ksqr();
ksqrlist_4Bias[j]=ksqr_4.get Bias();
hisksqrlist_4{j]=ksqr_4.get_hisksqr();
logksqrlist_4[j]=ksqr_4.get_Inksqr();
logavgksqrlist_4[j]=ksqr_4.get_avglnksqr();
chisqr_4{j]=ksqr_4.figurechisqr();
ksqrlist_5[j]=ksqr_S.get_ksqr();
ksqrlist_5Bias{j}=ksqr_5.get_Bias();
hisksqrlist_S[j]=ksqr_5.get_hisksqr();
logksqrlist_S[j]=ksqr_5.get Inksqr();
logavgksqrlist_S[j]=ksqr_5.get_avglnksqr();
chisqr_5[jl=ksqr_S.figurechisqr();
ksqrlist_625[j]=ksqr_625.get_ksqr();
ksqrlist_625Bias[j]=ksqr_625.get_Bias();
hisksqrlist_625[j]=ksqr_625.get_hisksqr();
logksqrlist_625{j1=ksqr_625.get_Inksqr();
logavgksqrlist_625[j]=ksqr_625.get_avglnksqr();
chisqr_625[j]=ksqr_625.figurechisqr();
ksqrlist_8[j}=ksqr_8.get_ksqr();
ksqrlist_8Bias[j]=ksqr_8.get Bias();
hisksqrlist_8[j]=ksqr_8.get_hisksqr();
logksqrlist_8[j]=ksqr_8.get_Inksqr();
logavgksqrlist_8[j]=ksqr_8.get_avglnksqr();
chisqr_8[j]=ksqr_8.figurechisqr();
ksqrlist_75[j]=ksqr_75.get_ksqr();
ksqrhist_75Bias[jl=ksqr_75.get_Bias();
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hisksqrlist_75[j]=ksqr_75.get_hisksqr();
logksqrlist_75[j]=ksqr_75.get_Inksqr();
logavgksqrlist_75[j}=ksqr_75.get_avglnksqr();

chisqr_75[j]=ksqr_75.figurechisqr();
ksqrlist_9[j]=ksqr_9.get_ksqr();
ksqrlist_9Bias[jj=ksqr_9.get_Bias();
hisksqrlist_9{j]=ksqr_9.get_hisksqr();
logksqrlist_9{j]=ksqr_9.get_Inksqr();
logavgksqrlist_9[j}=ksqr_9.get_avginksqr();
chisqr_9[jl=ksqr_9.figurechisqr();
ksqrvar_0[j]=ksqr_0.calcksqrVAR(); /Icalc and return the var of ksqr
ksqrvar_ho[j]=ksqrvar_O[j];
ksqrhisvar_Ofj]=ksqr_0.calchisksqrVAR();

ksqrhisvar_ho[j]=ksqrhisvar_0[j];

ksqrlogvar_Ofj}=ksqr_0.get varlnksqr();

ksqrlogvar_ho[j]=ksqrlogvar_0[j];

ksqrvar_05[j]=ksqr_05.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_05[j]=ksqr_05.calchisksqrVAR();
ksqrlogvar_05[j]=ksqr_05.get_varlnksqr();

ksqrvar_1{j]=ksqr_1.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_1[jl=ksqr_1.calchisksqrVAR();
ksqrlogvar_1[j]=ksqr_1.get_varlnksqr(};

ksqrvar _2[j]=ksqr_2.calcksqrVAR(); //calc and return the var of ksqr
ksqgrhisvar_2[j]=ksqr_2.calchisksqrVAR();
ksqrlogvar _2[j]=ksqr_2.get_varlnksqr();

ksqrvar_3[j]=ksqr_3.calcksqrVAR(); //calc and return the var of ksqr
ksqrhusvar_3[j]=ksqr_3.calchisksqrVAR();
ksqrlogvar_3[j]=ksqr_3.get varlnksqr();

ksqgrvar_4[j]=ksqr_4.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_4[j]=ksqr_4.calchisksqrVAR();
ksqrlogvar_4[j]=ksqr_4.get_varlnksqr();

ksqrvar_S[j]=ksqr_5.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_S[j]=ksqr_5.calchisksqrVAR();
ksqrlogvar_5[j]=ksqr_5.get_varlnksqr();

ksqrvar_625[j]=ksqr_625.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_625[j]=ksqr_625.calchisksqrVAR();
ksqrlogvar_625[j]=ksqr_625.get_varlnksqr();

ksqgrvar_8[j]=ksqr_8.calcksqrVAR(); //calc and return the var of ksqr

ksqrhisvar_8[j]=ksqr_8.calchisksqrVAR();
ksqrlogvar_8[j]=ksqr_8.get_varlnksqr();
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ksqrvar_75[j]=ksqr_75.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_75[j]=ksqr_75.calchisksqrVAR();
ksqrlogvar_75[j]=ksqr_75.get_varlnksqr();

ksqrvar_9[j]=ksqr_9.calcksqrVAR(); //calc and return the var of ksqr
ksqrhisvar_9[jl=ksqr_9.calchisksqrV AR();
ksqrlogvar_9[j]=ksqr_9.get_varlnksqr();

}//end of for

/Ithis writes to the headings to the table
outfile<<*THIS IS FOR ONE KSQR”<<endl<<endl;
outfile<<“OURS—-Assuming Chi-Square Distribution BOTH distributed

MULTINOMIAL”

<<endl;

outfile<<“HIS—-Assuming Chi-Square Distribution CONTROL distributed

UNIFORM <<end];

outfile<<* trans/CASE MULTINOMIAL <<endl;

outfile<<“LOG-Assuming Chi-Square LOG of KSQR <<endl<<end];

outfile<<“reps= "<<reps<<endl;

outfile<<* n = "<<TotControls<<endl;

outfile<<” m = "<<TotCases<<end];

outfile<<*“Ho: ksqr= "<<ksqr0_valHo<<endl;

outfile<<*Ho: Inksqr=""<<ksqr0_InvalHo<<end];

outfile<<endl;

outf<<*“THIS IS FOR ONE KSQR <<endl<<endl;
outf<<“OURS~Assuming NORMAL Distribution BOTH distributed MULTINOMIAL”

<<endl;

outf<<“HIS—Assuming NORMAL Distribution CONTROL distributed UNIFORM<<endl;

outf<<* trans/CASE MULTINOMIAL "<<end];

outf<<“LOG—Assuming NORMAL- LOG of KSQR"<<endl<<end];

outf<<“reps= "<<reps<<endl;

outf<<* n = "<<TotControls<<endl;

outf<<*“ m = "<<TotCases<<end];

outf<<*“Ho: ksqr= "<<ksqr0_valHo<<endI;

outf<<*“Ho: Inksqr= "<<ksqr0_InvalHo<<endl;

outf<<end];

outfile<<endl;

outfile<<* OURS "<<endl;

outfile<<* sample "<<* sample "<<* taylor “<<endl;
/[ "<<

/I sample "<<* sample "<<

/I taylor << “<<endl;

outfile<<“ksqr bias "<<* avg "<<“ var "<<“ var << power “<<endl<<endl;
/I avg 7<< var <<

/I var "<<* power “<<endl<<end];

outf<<endl;

outf<<*“ QURS "<<endl;
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outf<<* sample "<<* sample <<* taylor <<
“ below ”<<* above "<<endl;//* sample "<<* sample "<<
outf<<“ksqr bias”<<* avg "<<* var "<<* var ”
<<“power ”
<<* power “<<endl;//
double ksqrinnameO=ksqr0_InvalHo;
double ksqmnameO=para_ksqrO;
double ksqrinname05=ksqr05_InvalHo;
double ksqrname05=para_ksqr05;
double ksqrinnamel=ksqrl_InvalHo;
double ksqrnamel=para_ksqrl;
double ksqrinname2=ksqr2 InvalHo;
double ksqmame2=para_ksqr2;
double ksqrinname3=ksqr3_InvalHo;
double ksqrname3=para_ksqr3;
double ksqrlinname4=ksqr4 InvalHo;
double ksqrname4=para_ksqr4;
double ksqrinname5=ksqr5_InvalHo;
double ksqmameS=para_ksqrS5;
double ksqrinname8=ksqr8_InvalHo;
double ksqrname8=para_ksqr8;
double ksqrinname9=ksqr9 InvalHo;
double ksqrname9=para_ksqr9;
double ksqrinname625=ksqr625 InvalHo;
double ksqmame625=para_ksqr625;
double ksqrinname75=ksqr75_InvalHo;
double ksqrname75=para_ksqr75;

int gq=1;

for(q=1,9<25;)

{ //here the function calc_stats is called 11 times for each population
calc_stats(ksqrlist_0Bias, ksqgrlist_0,ksqrvar_0,

ksqrV AR, ksqrAVG,ksqrSTD, ksqrlist_Obias,
logksqrlist_O,

ksqrEXP, betachi_0,
betahi_0,betalo_0,ksqrinname0,ksqrnameO0,
hisksqrlist_0,ksqrhisvar_0,

logavgksqrlist_0,ksqrlogvar 0,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho, ksqrlist_hoBias, ksqrhislist_hoBias, ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,

ksqrlogEXPho,

ksqrlogV ARho);

q=q+l;

calc_stats(ksqrlist_05Bias ksqrlist_05,ksqrvar_05,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_0S5bias,
logksqrlist_05,

ksqrEXP,betachi_0,
betahi_0,betalo_0,ksqrinname05,ksqrname05,
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hisksqrlist_05 ksqrhisvar_03,
logavgksqrlist_05,ksqgrlogvar_05,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias,ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);

=q+1!;
calc_stats(ksqrlist_1Bias,ksqrlist_1 ksqrvar_1,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_1bias,
logksqrlist_1,
ksqrEXP,betachi_O,
betahi_O,betalo_0,ksqrinnamel ksqrnamel,
hisksqrlist_1,ksqrhisvar_1,
logavgksqrlist_1,ksqrlogvar 1,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias, ksqrhislist_hoBias, ksqgrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
q=q+1;
calc_stats(ksqrlisi_2Bias,ksqrlist_2 ksqrvar_2,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_2bias,
logksqrlist_2,
ksqrEXP,betachi_0,
betahi_O,betalo_0 ksqrinname?2,ksqmame?2,
hisksqrlist_2 ksqrhisvar_2,
logavgksqrlist_2 ksqrlogvar_2,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
q=q+1;
calc_stats(ksqrlist_3Bias,ksqrlist_3,ksqrvar_3,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_3bias,
logksqrlist_3,
ksqrEXP,betachi_0,
betahi_0,betalo_0,ksqrlnname3,ksqmame3,
hisksqrlist_3,ksqrhisvar_3,
logavgksqrlist_3,ksqrlogvar_3,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias, ksqrhislist _hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
q=q+1;
calc_stats(ksqrlist_4Bias, ksqrlist_4,ksqrvar_4,
ksqrV AR ksqrAVG ksqrSTD ksqrlist_4bias,
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logksqrlist_4,
ksqrEXP,betachi_0,
betahi_O,betalo_0,ksqrinname4,ksqrmame4,
hisksqrlist_4,ksqrhisvar 4,
logavgksqrlist_4 ksqrlogvar_4,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho, ksqrlist_hoBias, ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
q=q+l;
calc_stats(ksqrlist_SBias, ksqrlist_5,ksqrvar_S,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_Sbias,
logksqrlist_5,
ksqrEXP,betachi_0,
betahi_0,betalo 0 ksqrlnname5,ksqmames5,
hasksqrlist_ S ksqrhisvar_S,
logavgksqrlist_S ksqrlogvar _5,q,ksqrvar_ho,ksqrlogvar_ho,
ksqgrhisvar_ho, ksqrlist_hoBias ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
q=q+1;
calc_stats(ksqrlist_625Bias,ksqrlist_625,ksqrvar_625,
ksqrVAR ksqrAVG ksqrSTD, ksqrlist_625bias,
logksqrlist_625,
ksqrEXP,betachi 0,
betahi_0,betalo_0,ksqrlinname625, ksqmame625,
hisksqrlist_625,ksqrhisvar_625,
logavgksqrlist_625 ksqrlogvar_625,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho, ksqrlist_hoBias, ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
G=q+l1;
calc_stats(ksqrlist_75Bias ksqrlist_75,ksqrvar_75,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_75bias,
logksqrlist_75,
ksqrEXP,betachi_0,
betahi_0,betalo_0,ksqrinname75,ksqrmame75,
hisksqrlist_75,ksqrhisvar_75,
logavgksqrlist_75,ksqrlogvar_75,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias ksqrhislist_hoBias,ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
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q=q+1;
calc_stats(ksqrlist_8Bias, ksqrlist_8 ksqrvar_8,
ksqrVAR ksqrAVG,ksqrSTD, ksqrlist_8bias,
logksqrlist_8,
ksqrEXP,betachi_0,
betahi_0,betalo_0,ksqrinname8 ksqmames,
hisksqrlist_8 ksqrhisvar_8,
logavgksqrlist_8 ksqrlogvar_8,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias,ksqrhislist_hoBias ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrV ARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
g=q+1;
calc_stats(ksqrlist_9Bias, ksqrlist_9,ksqrvar_9,
ksqrVAR ksqrAVG, ksqrSTD, ksqrlist_9bias,
logksqrlist 9,
ksqrEXP, betachi 0,
betahi_O,betalo_0 ksqrinname9 ksqmame9,
hisksqrlist_9,ksqrhisvar_9,
logavgksqrlist_9,ksqrlogvar_9,q,ksqrvar_ho,ksqrlogvar_ho,
ksqrhisvar_ho,ksqrlist_hoBias, ksqrhislist_hoBias, ksqrloglist_hoBias,
ksqrBiasAVGho,ksqrVARho,
ksqrhis AVGho,ksqrhisVARho,
ksqrlogEXPho,
ksqrlogV ARho);
g=q+1;
}//end of for q<25
g=1;

//close the files that were open earlier in the program
outfile_close();
outf.close();
cases.close();
controls.close();
cases1.close();
controls1.close();
cases2.close();
controls2.close();
cases3.close();
controls3.close();
cases4.close();
controls4.close();
casesS.close();
controls5.close();
cases6.close();
controls6.close();
cases7.close();
controls7.close();
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cases8.close();
controls8.close();
cases9.close();
controls9.close();
cases10.close();
controls10.close();
}//end of function

/fthis function calculates the sample average and variance

void trial(double ksqrlist_0Bias[],double ksqrlist_O[],double ksqrvar O[],
double &ksqrV AR, double &ksqrAVG,double &ksqrSTD,double &ksqrBiasAVG,
double logksqrlist_0[],

double &ksqrEXP,double &ksqrBiasAVGho,double &ksqrhisAVGho,
double &ksqrVARho,double &ksqrhisVARho,

double &ksqrlogEXPho,double &ksqrlogVARho, int q);

void trnial(double ksqrlist_0Bias[],double ksqrlist_0(],

double ksqrvar_ O[],

double &ksqrVAR,double &ksqrAVG,double &ksqrSTD,

double &ksqrBiasAVG,

double logksqrlist 0[],

double &ksqrEXP,double &ksqrBiasAVGho,double &ksqrV ARho,
double &ksqrhisAVGho,double &ksqrhisVARho,

double &ksqrlogEXPho,double &ksqrlogVARho,int q)

{

ksqrAVG=0;

ksqrSTD=0;

ksqrVAR=0;

ksqrEXP=0;

/! ksqrBiasAVG=0;

for(int j=0;j<reps;j++)

{

ksqrVAR=ksqrVAR-+ksqrvar_O[j];

}//end of for, list for variances

ksqrVAR=ksqrVAR/reps;

if{qg=1(lq==12)

{

ksqrVARho=ksqrVAR;
ksqrhisVARho=ksqrVAR;
ksqrlogVARho=ksqrVAR;

¥

for(int j=0;j<reps;j++)

{

ksqrAVG=ksqrAVG+ksqrlist_0[j];
ksqrEXP=ksqrEXP-+logksqrlist_0{j];
/fksqrBiasAV G=ksqrBiasAVG+ksqrlist_OBias[j];
}//end of for,
ksqrAVG=ksqrAVG/reps;
ksqrEXP=ksqrEXP/reps;
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/TksqrBiasAVG=ksqrBiasAVG/reps;

%{f(CI=1|lCI=12)
ksqrhisAVGho=ksqrAVG;
ksqrlogEXPho=ksqrEXP;
}

for(int j=0;j<reps;j++)

{

ksqrSTD=ksqrSTD-+(ksqrlist_0[j]-ksqrAVG)*(ksqrlist_O[j]-ksqrAVG);
}//end of for makes numerator for std

ksqrSTD=ksqrSTD/(reps-1);

}//end of trial functon

/fthis function calculates the power of the test using the
/lappropriate critical value defined at the beginning of the
//program

void powertable(double ksqrlist_0[],

double ksqrvar_O[],double &betachi_O,

double &betahi_0,double &betalo_0,double ksqrlist_hoBias[],
double &ksqrAVGho,double &ksqrV ARho);

void powertable(double ksqrlist_0[],

double ksqrvar O[],double &betachi_O,

double &betahi_0,double &betalo_0,double ksqrlist_hoBias(],
double &ksqrAVGho,double &ksqrV ARho)

{betachi_0=0;

betahi_0=0;

betalo_0=0;

for(int j=0;j<repsy++)

{

f(j==0{j=500}{j=999)

{/loutd<<“ksqrAVGho/ksqrV ARho "<<ksqrAVGho<<* “<<ksqrV ARho<<endl;
}//end of j==0

if(ksqrlist_0[j]>ksqrAVGho)

{betachi_O=betachi_0+1;

}//end of if

if(ksqrlist_0[j]<-sqrt(ksqrAVGho))

{betalo_O=betalo_0+1;

}//end of if

if(ksqrlist_0[j]>sqrt(ksqrAVGho))

{betahi_O=betahi_0+1;

}//end of if

}//end of for

betachi_O=betachi_O/reps;

betahi_O=betahi_O/reps;

betalo_O=betalo O/reps;

}//end of function powertable
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/fthis function formats the data for ksqr and writes to the table

void writetotable(double &ksqrBiasAVG,double &ksqmamel,
double &ksqrAVG,double &ksqrSTD,double &ksqrVAR,
double &betachi_0,double &betahi_0,double &betalo_0);

void writetotable(double &ksqrBiasAVG,double &ksqmamel,
double &ksqrAVG,double &ksqrSTD,double &ksqrVAR,
double &betachi_0,double &betahi_0,double &betalo_0)

{

outtest<<“this is ksqrAVG during writtable "<<ksqrAVG<<end];
outfile<<ksqmamel<<* "<<ksqrBiasAVG<<“ ”

<<ksqrAVG

<<setw(12)<<ksqrSTD<<setw(12)<<ksqrV AR<<setw(12)
<<betachi_O<<endl;

outf<<ksqrmamel<<* "<<ksqrBiasAVG<<
<<ksqrAVG
<<setw(12)<<ksqrSTD<<setw(12)<<ksqrVAR<<setw(12)
<<betalo_O<<setw(10)<<betahi_O<<end];

}//end of funtion writetotable

sc 2

/fthis function calls all of the functions above for each population
/lof ksqr

void calc_stats(double ksqrlist_OBias[],double ksqrlist_0[],double ksqrvar_0f],
double &ksqrV AR, double &ksqrAVG,double &ksqrSTD,double &ksqrBiasAVG,
double logksqrlist O[],

double &ksqrEXP,double &betachi_0,

double &betahi_0,double &betalo O,

double ksqrlnnamel,double ksqmamel,

double hisksqgrlist_O[],double ksqrhisvar_Of],

double logavgksqrlist_0[],double ksqrlogvar_0[],int q,

double ksqrvar_ho[],double ksqrlogvar_hof],

double ksqrhisvar_ho[],double ksqrlist_hoBias[],

double ksqrhislist_hoBias{],double ksqrloglist_hoBias(],

double &ksqrBiasAVGho,double &ksqrVARho,

double &ksqrhisAVGho,double &ksqrhisVARho,double &ksqriogEXPho,
double &ksqrlogV ARho);

void calc_stats(double ksqrlist_0Bias[],
double ksqrlist_0[],double ksqrvar_Of],
double &ksqrVAR,double &ksqrAVG,
double &ksqrSTD,double &ksqrBiasAVG,
double logksqrlist_0[],

double &ksqrEXP,double &betachi 0,
double &betahi_0,double &betalo_0,
double ksqrinnamel,

double ksqmamel,double hisksqrlist_0{],
double ksqrhisvar_ 0[],
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double logavgksqrlist_0{],

double ksqrlogvar_Of],int q,

double ksqrvar_ho[],double ksqrlogvar_ho[],
double ksqrhisvar_hof},double ksqrlist_hoBias[],
double ksqrhislist_hoBias[],

double ksqrloglist_hoBias|],

double &ksqrBiasAV Gho,double &ksqrV ARho,
double &ksqrhisAVGho,double &ksqrhisVARho,
double &ksqrlogEXPho,

double &ksqrlogV ARho)

{

void trial(double ksqrlist_OBias[],double ksqrlist_O[],double ksqrvar O[],

double &ksqrVAR,double &ksqrAVG,double &ksqrSTD,double &ksqrBiasAVG,
double logksqrlist_0f],

double &ksqrEXP, double &ksqrBiasAV Gho,double &ksqrVARho,

double &ksqrhisAVGho,double &ksqrhisVARho,

double &ksqrlogEXPho,double &ksqrlogV ARho,int q);

void powertable(double ksqrlist_0f],

double ksqrvar_0[],double &betachi_0,

double &betahi_0,double &betalo_0,double ksqrlist_hoBias[],
double &ksqrAVGho,double &ksqrVARho);

void writetotable(double &ksqrBiasAVG,double &ksqmamel,
double &ksqrAVG,double &ksqrSTD,double &ksqrV AR,
double &betachi_0,double &betahi_0,double &betalo_0);
if(q<12)

{

trial(ksqrlist_OBias, ksqrlist_0,ksqrvar_0,

ksqrVAR, ksqrAVG,ksqrSTD, ksqrBiasAVG,
logksqrlist_0,

ksqrEXP ksqrBiasAVGho,ksqrV ARho,
ksqrhisAVGho,ksqrhisVARho,
ksqrlogEXPho,ksqrlogV ARho,q);

powertable(ksqrlist_0,
ksqrvar_ho,betachi_O,
betahi_0,betalo_0,ksqrlist_hoBias,ksqrBiasAVGho,ksqrV ARho);

writetotable(ksqrBiasAVG,ksqmamel,
ksqrAVG,ksqrSTD ksqrVAR,
betachi_O,betahi_0,betalo_0);

}//end of function calcstats

/[This fortran program generates multinomial random variates using the
//parameter values designated in the program. The subroutine

/lused is RNMTN.

/I EXEC VSF2CLG,PARM.GO="NOXUFLOW’

//FORT.SYSIN DD *
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INTEGER K, LDIR
PARAMETER (K=5, LDIR=1000)
INTEGER I, IR(LDIR,K), ISEED, J, N, NOUT, NR
REAL P(K)
EXTERNAL RNMTN, RNSET, UMACH
CALL UMACH (2, NOUT)
N =50
P(1) =0.1
P(2) =0.16
P(3) =0.31
P(4) =0.27
P(5) =0.16
MR = 1000
ISEED = 234651
CALL RNSET (ISEED)
CALL RNMTN (NR, N, K, P, IR, LDIR)
WRITE (NOUT, 10001) ((IR(LJ),J=1,K),I=1,NR)
10001 FORMAT (’ 50 .05 : °, 517, /, (30X,51I7))
END
//LKED.SYSLIB DD DSN=DA.IMSL.LIBRARY.IMSL20,DISP=SHR
/
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