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ABSTRACT

Pipe rehabilitation liners are often installed in host pipes that lie below the wa-
ter table. As such, they are subjected to external hydrostatic pressure. The external
pressure leads to early deformation in the liners. which could ultimately lead to its
failing or buckling before its expected service lifetime is achieved. Experiments in-
volving long term buckling behavior of liners are typically accelerated lifetime testing
procedures. In an accelerated testing procedure a liner is subjected to a constant ex-
ternal hydrostatic pressure and observed until it fails or for a certain time, ¢ whichever
occurs first. Liners that do not fail at time ¢ are deemed censored observations. While
a constant pressure is convenient to use in experimental situations, in reality pressure
fluctuates under soil conditions over time depending on the water table.

In this study, constant and variable pressures using the Weibull model for
time till buckling under different sample sizes and different levels of censoring were
investigated. Data were generated through computer simulation and estimates of
parameters in the Weibull model were obtained using the Maximum Likelihood and
Newton-Raphson methods.

It was concluded that the maximum likelihood estimates under fixed or variable
pressure, and for different sample sizes with different levels of censoring, are unbiased.
However, the estimates for sample sizes as large as 100 are not normally distributed,

especially when the parameter value being estimated is small. It was seen that the

1l
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lack of normality was manifested in lack of agreement between the observed variance-
covariance matrix and the theoretical variance-covariance matrix. These results cast

doubt on the use of normal theory for inference concerning certain parameters.
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CHAPTER 1

INTRODUCTION AND RESEARCH OBJECTIVES

1.1 Introduction

It is known that the underground infrastructure system in the United States is
in urgent need for repair or upgrade. It has been the practice, whenever there is a
problem with an underground pipeline, to use the open-trench method which includes
digging the ground, removal of the deteriorated pipe(s), and replacement with new
one(s). It is clear that this method is not desirable because of the amount of work
required for the job, the cost associated with it, the time period to finish the work,
and the inconvenience to the businesses and the general public.

Recently, with development of trenchless techniques, it has become possible to
repair underground pipe(s) without excavating the ground. With the new trenchless
methods in effect today, the problems associated with the open-trench method are
slowly disappearing.

A relatively recent approach for pipeline rehabilitation which provides signif-
icant economical, social and environmental benefits involves pipeline repair by in-
sertion of a lining material through existing manholes. Cured-In-Place Plastic Pipe
(CIPP) and Fold-and-Formed Pipe (FFP) are perhaps the most well known of the

relining methods (Guice et al., 1994).
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The Cured-In-Place Plastic Pipe (CIPP) technique is the most important method
in trenchless pipeline rehabilitation. It involves the installation of plastic liners inside
the damaged pipeline through existing manholes or other entry points. The process
inverts a resin-impregnated fabric tube into the damaged pipe using a hydraulic head
or winching it in place. When circulating hot water inside the pipe, the resin will
cure and harden into a continuous, snug-fitting tube inside the original host pipe.
The CIPP technique not only seals the joints and restores the pipeline integrity, but
also increases the strength of the existing pipe and provides improved corrosion re-
sistance for the inner surface of the pipe. This method was introduced by Insituform
in Europe in 1971 and then was brought to the United States in 1977 (Li, 1994).

The exact definition of CIPP according to the American Society for Testing and
Materials (ASTM) is “a hollow cylinder containing a non-woven material surrounded
by the cured thermosetting resin. Plastic coatings may be included. This pipe is
formed within an existing pipe. Therefore, it takes the shape of and fits tightly to
the existing pipe” (ASTM F1216, 1993).

In the Fold and Formed Pipe systems, the cross-sectional area of the new pipe
is temporarily reduced before installation. After installation, it is then expanded to
its original size and shape to provide a close fit with the existing pipe. This fitting
is accomplished by folding the lining pipe into a U-shape, after which it is inserted
inside the old pipe and reverted by heat and pressure (Li, 1994).

Liners are often installed in host pipes that lie below the water table, and
as such they are subjected to external hydrostatic pressure. The external pressure

leads to early deformation in the liners which could ultimately lead to its failing or
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buckling before their expected service life is achieved. Insufficient understanding of
this buckling phenomenon is a limiting factor in the CIPP liner industry. To design
a dependable liner, one needs to have a good knowledge about the long-term buck-
ling behavior of a pipe under external pressure and models to predict such behavior.
Many studies exist on predicting short-term buckling behavior of a free or confined
pipe (Timoshenko and Gere, 1961; Aggarval and Cooper, 1984; Glock, 1977; Guice
and Li, 1994; Omara et al., 1996; Falter, 1996; Welch, 1989, Boot and Welch, 1996;
Boot, 1998; Boot and Javadi, 1998; and Hall and Zhu, 2000).

On the other hand, the long-term buckling behavior of a pipe liner under pres-
sure has been under study for a relatively short period of time. Only few models
exist for predicting the long-time behavior (Welsh, 1989; Guice et al., 1994; Straughn
et al., 1995; Boot and Welch, 1996; Moore, 1998; and Zhao, 1999). There is a need
for models to predict the time until failure of a pipe liner system under a hydrostatic
pressure load.

Experiments involving long-term buckling behavior of liners are typically ac-
celerated lifetime testing procedures. In an accelerated testing procedure a liner is
subjected to a constant external hydrostatic pressure and observed until it fails, or for
a certain time, ¢ whichever occurs first. Liners that do not fail at time ¢ are deemed
censored observations. While a constant pressure is convenient to use in experimental
situations, in reality pressure fluctuates under soil conditions over time depending on
the water table. It is desirable then to have accelerated lifetime models to predict

time until buckling under constant as well as variable external hydrostatic pressure.
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1.2 Objectives

The objectives of this study are

1. to examine accelerated lifetime models for constant and variable pressure for
the Weibull lifetime distribution and show how to obtain maximum likelihood

estimates (MLE) of model parameters.

o

to study through simulation the statistical properties of the MLE as a function
of sample size and percent censoring and compare results for the constant and

variable pressure situations.

1.3 Organization of the Dissertation

This dissertation is organized as follows:
In chapter 2, a review of literature is presented. In chapter 3, the maximum likelihood
method and the Newton-Raphson technique are discussed. In chapter 4, theory and
simulation results for accelerated lifetime testing under constant pressure are pre-
sented. In chapter 3, theory and results from simulation for the accelerated lifetime
testing under variable pressure are discussed. In chapter 6, a conclusion and future

work are provided.
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CHAPTER 2

RELATED RESEARCH

2.1 Reliability

The Statistical analysis of lifetime data is of interest to statisticians, engineers,
physicians, and researchers in biological sciences.

Applications of lifetime distributions range from investigations into the en-
durance of items to research involving human diseases. Lifetime distribution method-
ology has its most frequent application in engineering, and biomedical sciences.

Let T be a nonnegative random variable representing the failure time of an
individual from some population. Let f(¢) denote the probability density function

(p-d.f) of T and let the distribution function be

F(t)=Pr(T<t)= [  f(z) da. 2.1)

The survivor function is defined as the probability that T is at least as great

as t; that is,

St)y=Pr(T 2t)= /t " f(=) da. (2.2)

In cases involving lifetimes of manufactured items, S(t) is referred to as the

5
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reliability function. S(t) is a monotone decreasing continuous function with S(0) =1
and S(o0) = lim; oo S(t) =0.

From Egs. (2.1) and (2.2), we see that the survivor function or the reliability

function is given by

S(t) = R(t) = 1 — F(t). (2.3)

Another important concept dealing with a lifetime distribution is the hazard

function h(t), defined as

Prt<T <t+At|T>%)
m
At—0 JANA
f(t) ’ (2.4)

S(t)

h(t) =

The hazard function specifies the instantaneous rate of failure at time T = ¢,
given that the individual will survive until time T' = ¢.

Now, since f(t) = —S'(t), it is seen from Eq. (2.4) that

N
Ut
~

h(t) = 2 10g S(¢). e

Hence,

log S(z)[h = —/Och(:z:)da:, (2.6)

and since S(0) =1, it seen that
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S(t) = exp(~ [ " h(z)dz). @2.7)

The cumulative hazard function is defined as

H(e) = [ “h(z)dz. (2.8)

Hence, from Eq. (2.6), we have

S(t) = exp[—H(t)]- (2.9)

Now, since S(o0) =0, then H(oo) = lim; o H(t) = co. Therefore, the hazard

function A(t) for a continuous lifetime distribution has the following properties:
1. h(t) 20
2. [ h(t)dt =00

2.2 Some Important Lifetime Models

Throughout the literature on failure time data, numerous parametric models
are used to analyze problems related to aging or a failure process. Among these
models, few are frequently used because of their demonstrated usefulness in a wide
range of situations. The exponential and Weibull models, for example, are often em-
ployed. These distributions admit closed-form expressions for tail area probabilities
and hence simple formulas for survivor and hazard functions. Also, the lognormal
and gamma distributions are frequently used despite the fact that they are gener-

ally less convenient computationally. Another important distribution is the extreme
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value distribution which describes certain extreme phenomena like electrical strength
of materials and certain types of lifetime data (Kalbfeisah and Prentice, 1980; Law-

less, 1982; Nelson, 1990; and Collett 1999).

2.2.1 The Exponential Distribution

Suppose that the hazard function is constant. Then, the hazard function

can be written as

h(t)y =X for 0 <t < oo. (2.10)

The parameter )\ is a positive constant estimated by fitting the model to ob-

served data. From Eq. (2.7), we have that

S(t) =exp(— [ Adz) = (2.11)

Hence, the probability density function (p.d.f) of survival times is given by

f(t) =Xe™ for 0 <t < oo. (2.12)

Equation (2.12) represents the probability density function of a random vari-
able T that has an exponential distribution. It can be easily verified that the mean
is  and the variance is 35 (Ross, 1997).

A very important characteristic of the exponential distribution is its lack of

memory. This lack of memory property can be seen as follows:
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For ty > t; > 0,

e—Atz

PT>t|T>t] = e

= e~ AMta—t1) (2.13)

Hence, the survival probability depends on the interval (¢t — ;) and is in-

dependent of what happened before time ¢;.

2.2.2 The Weibull Distribution

The assumption of a constant hazard function is rather restrictive. A more

general form of a hazard function is such that

h(t) = Myt™™t  for t > 0. (2.14)

Here, the hazard function depends on two parameters, A and =, both greater
than zero. In the special case when v = 1, the hazard function takes the constant
value A, and hence the survival times have the exponential distribution. If v # 1, the
hazard function increases or decreases monotonically. The parameter - is known as
the shape parameter. Hence, the shape of the hazard function depends on v. The
parameter A\ is known as the scale parameter. From Eq. (2.7), it is seen that the

survivor function is given by
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S(t) = exp(— /o t Myz "t dx)

= exp(—At"). (2.15)

Hence, the probability density function is given by

f(t) = Myt Lexp(—At") for t>0. (2.16)

The function in Eq. (2.16) is the density of a random variable that has the

Weibull distribution with shape parameter v and scale parameter A.

2.2.3 Extreme Value Distribution

This distribution is also known as the Gumbel distribution (Gumbel, 1958).

The p.d.f for the extreme value distribution is given by

z—u T—u
3 — exp( 5 )] for —oo <z < oo, (2.17)

£(@) =y expl

where b > 0 and —00 < u < oo are parameters. It can be seen that if T
is a random variable with a Weibull distribution, then X = log7 has an extreme
value distribution with b = %1 and ©u = —log A7. Also, the survivor function of the

extreme value distribution is given by

r—Uu

S(z) = exp[—exp(——)I- (2.18)
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2.2.4 The Gamma Distribution
Another distribution for survival data is the gamma distribution which is
defined for a random variable that takes positive values. The hazard function for the
gamma distribution is given by

/\ktk—le_'\t

hu)lekXI—[Xdk»’

(2.19)

where ['(k) is a gamma function and [').(k) is the incomplete gamma function and

is given by

1 At k—1_—zx
) = = : 2.2
Cae(k) N0 /0 " e Fdx (2.20)

The gamma distribution has a probability density function of the form

/\(/\t)k_le-’\t
t)=——=—— for £t >0, 2.2
) == — for ¢>0 (2:21)
where A > O is called the scale parameter, and k& > 0 is the index or shape

parameter.
For £ = 1, the gamma distribution reduces to the exponential distribution.

Integrating Eq. (2.21), one obtains the survival function for the gamma as

S(t) = 1 — Tae(k), (2.

)
[V]
W]
o —

where I'y;(k) is given in Eq. (2.20).
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2.2.5 The Lognormal Distribution

Another important distribution for lifetime data is the lognormal distribu-

tion. This distribution has been widely used in engineering and biomedical science.
A random variable T is said to have a lognormal distribution with parameters
p and ¢? if y = logT has a normal distribution with mean p and variance o%. The

probability density function of Y is given by

1 —1
f(y) = cr\/§7_r eXp[20’2 (y - Au')z] for —oo <y <oco. (2-23)

From Eq. (2.23), it is seen that the p.d.f for T is given by

= l,_. X ! 2 2.2
= —_——— o —_— - _‘--‘4
f(®) o pl 3 s(logt — p)l; ¢t >0. (2.24)

The survivor and hazard functions for the lognormal distribution involve the stan-

dard normal distribution function

®(z) =/_; ! e~ T du. (2.23)

The lognormal survival function is given by

U

logt —
S(t) =1 - o(E—), (2.26)
and the hazard function is given by
h(t) = M (2.27)

S(t)”
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2.3 Accelerated Life Testing

The lifetime of a high-reliability device is usually very long. Thus, it is pro-
hibitive time-wise to test such a device under normal conditions. Accelerated lifetime
testing (ALT) is a method that exposes devices to higher stress levels than they expect
to receive under normal use to induce early failures, and obtain information quickly
on their lifetime distribution.

Schabe and Viertl (1995) presented an axiomatic approach to accelerated life-
time testing. Clark, Garganese, and Swarz (1997) presented an approach to designing
accelerated-lifetime testing experiments. The basis of their approach is a destructive
evaluation performed on a small number of test items to measure the design limits.
As such, environmental stress levels can be tailored to achieve the objectives of the
accelerated lifetime test.

Accelerated test conditions involve-higher-than usual load or stress (such as
temperature, voltage, pressure, etc., or some combination of them) on the device.
Accelerated lifetime testing is a common method for assessing the reliability of an
item because, for practical reasons, lifetime testing is performed in a relatively short
time interval. Two types of accelerated testing exist in the literature, constant-stress

testing and step-stress testing.

2.3.1 Constant-Stress Accelerated Test

One way of applying stress to a test device is a constant-stress. Each device

is assigned only one stress level in a completely random manner. Regression meth-
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ods are used to estimate lifetime until failure at a given design stress. A functional
relationship between constant-stress and lifetime until failure is assumed. The test
data are then used to estimate the parameters of the distribution of time until fail-
ure. Estimates of the parameters in the model can be obtained by maximizing the
log-likelihood function using the Newton-Raphson Technique.

A very important problem in constant-stress testing is determining the number
of devices to be allocated to each stress. Inferential procedures for the constant stress
test have been given by Nelson (1980), when lifetime follows a Weibull distribution
and by Nelson and Hahn (1972), when the lifetime of an item follows a Lognormal
or a Weibull distribution. Kielpinski and Nelson (1973) and Nelson and Kielpinski
(1976) presented optimum plans and the theory of optimum plans in the case of ALT
for estimating a simple linear relationship between stress and the lifetime of an item,
which has a Normal or Lognorma.l distribution, when the data are to be analyzed be-
fore all test devices fail. Their mxodel assumes that the normal distribution location
parameter p (mean) is a linear function of the stress and that the scale parameter
o (standard deviation) does not depend on stress. Nelson (1975) presented simple
least-squares methods for analyzing accelerated lifetime test data with the inverse
power law model, when all test d-evices are run to failure. Nelson and Meeker (1978)
presented the theory of maximumn likelihood for large-sample optimum ALT plans.
They showed how the plans can be used to estimate a simple linear relationship be-
tween stress and product lifetime in the case of a Weibull or Smallest Extreme Value
distribution. They assumed that the smallest extreme-value location parameter p

is a linear function of stress and. that the scale parameter is constant. Aitkin and
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Calyton (1980) showed how regression models can be fitted to censored survival data
by the use of the exponential, Weibull, and extreme value distributions in generalized
linear interactive modeling (GLIM). Bugaighis (1990) presented results showing that
exchange of censorship types resulted in minor reduction in the efficiency of various
estimators. Meeter and Meeker (1994) extended the maximum likelihood theory for
test planning to a nonconstant scale parameter o. They also presented test plans
for a large range of practical testing situations. Thiagarajah (1995) considered tests
on time-censored data for the equality of several exponential scale parameters in the
presence of unspecified location parameters. He derived 3 statistics for testing the
homogeneity of M (M > 2) exponential scale parameters. He also compared, through

a simulation study, the size and power for the 3 developed statistics.

2.3.2 Step-Stress Accelerated Test

Another way of applying stress to a device is a step-stress scheme which
allows the stress setting of a device to be changed at prespecified times or upon the
occurrence of a fixed number of failures.

Step-stress testing reduces time and assures that failures occur very quickly. A
test device starts at a specified low stress. If the device does not fail in a specified
time, the stress on it is raised and held at that level for a specified time. If the device
does not fail at this stress, its stress is increased and held, and the process continues
in the same fashion until all devices fail.

The design problem in step-stress testing is to determine the time to change

stresses, provided that a fixed number of stress levels has been selected. The choice of
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these times will determine how many devices fail at each stress. Constant-stress and
step-stress have the same optimality criterion; i.e., they choose the times to change
stress that minimize the variance of some estimator of a parameter.

As is the case with constant-stress test, one needs to estimate the parameters
of the lifetime model under step-stress. Parameter estimates are then used to de-
termine within reason the lifetime of an item at a constant design stress. As such,
one needs a model that relates the lifetime distribution under constant-stress to that
under step-stress.

Nelson (1980) presented statistical models and methods for analyzing accel-
erated lifetime test data from step-stress tests. He used the maximum likelihood
estimation technique to estimate the parameters of such models. He applied his
method to the Weibull distribution and the Inverse Power Law. Miller and Nelson
(1983) obtained optimum plans for two stresses where all devices are run to failure.
They obtained an optimal stress test that minimizes the asymptotic variance of the
maximum likelihood estimate (MLE) of mean lifetime for an exponential model where
the mean lifetime is a log-linear function of stress. Bai, Kim, and Lee (1989) derived
an optimum simple (two stresses) stress ALTs for the case where censoring was in-
volved. They obtained an optimum test plan that minimizes the asymptotic variance
of the MILLE of the mean lifetime at a design stress with censored observations. Bai
and Chun (1991) obtained optimum simple step-stress ALT with competing causes of
failure. Tyoskin and Krivolapov (1996) developed a nonparametric model for interval
estimation, based on results from step-stress ALT. They presented, through simula-

tion, a numerical example to verify their approach.
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Optimum simple (two stresses) step-stress ALT plans have some limitations
because they depend on the assumption of a linear relationship between stress and
time-until failure. Khamis and Higgins (1996) presented 3-step stress plans for ALT.
They derived an optimum quadratic plan and evaluated a 3-step stress test plan (the
compound linear plan) in lieu of the optimum simple-stress plan. Khamis (1997)
obtained optimum M-step, step-stress designs with k-stress variables. Xiong and Mil-
liken (1999) studied statistical models in step stress ALT when the stress-change times
are random. They presented the marginal lifetime distribution of a device under a
step-stress test plan when the stress-change times are random variables. They also,
presented an optimum ALT for simple step-stress (two stresses) when the lifetime
under any constant-stress follows the exponential distribution.

The main goal of using step-stress testing is to avoid censoring. One knows
that the device may have high reliability and not fail within a reasonable time. By

increasing the stress on the device the problem of censoring could be avoided.

2.3.3 Cumulative Exposure Model (CEM)

To analyze data from a step-stress scheme, one needs a model that relates
the lifetime distribution of the step-stress to that of the constant-stress. One such
model is the Cumulative Exposure Model (CEM) by Nelson (1980).

Suppose there are n increasing levels of stresses z; < T3 < z3 < :-+ < z,. Let
Fy(t) denote the failure distribution under z; with a constant-stress testing. Let ¢; be
the time it takes to change a stress from z; to z;4;; 2 = 1,2,---,n — 1. Then, the

CEM is given by
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Fi(t) fo<t<t
Fo(t — ty + s1) ift; <t <ts
F(t) =1 F(t—ts+s5) iftg <t <ty

Fn(t - tn—l + Sn—l) if tn—l S t < oo,

where s; is the solution of Fa(s1) = Fi(t1)-
Here, Fp(t) = Fi(t), 0<t<t;.
Hence, Fop = Fo[(t —t1) +s1] t1<t<ts
Also, s; is the solution of F3(ss) = Fa(ta — t1 + 51)-
Hence, Fo(t) = F3[(t —t2) +s2], t2<t <lts.
If we continue in this manner, we see that s; is the solution of
Fi(sic1) = Fioitic1 — tig + 5422
and, Fy = Fi[(t — tim1) +sim1],  tic1 <t <ty

This model assumes the following:

1. The remaining lifetime of a device depends on

(a) the current cumulative fraction failed, and

(b) the current stress.

2. If held at the current stress, survivors fail according to the cumulative distrib-

ution for that stress, but starting at the previously accumulated fraction failed.

3. The change in stress has no effect on lifetime, but the stress level has an effect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

on lifetime.

2.3.4 The Khamis-Higgins Model (KHM)

From Eq. (2.16), it is seen that the cumulative distribution function for the

Weibull distribution is given by

Fw) =1—exp(—Auw"); w>0.

~~

2.29)

Using the transformation ¢ = w7, it is seen that

F(t)=1—exp(—At); t>0. (2.30)

The above transformation from W to T transforms the Weibull into an ex-
ponential distribution and facilitates many of the inferential results. However, such
property does not carry over to step-stress testing for the Weibull CEMj i.e., the
above transformation does not result in the exponential exposure model. To over
come this difficulty, Khamis and Higgins (1998) obtained a new model for step-stress
testing, the Khamis-Higgins Model(KHM). The KHM is based on a time transforma-
tion of the exponential. The time transformation enables the user to know results for
multiple-step, multiple-stress models developed for the exponential step-stress model.

The KHM is given by
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exp(—Aw7) fo<w<t,
exp(—Aa(w” — t]) — A1t]) ift;<w<ty
Fw)=1-/
exp(—An(w? —tI_) —--- = Xa(t3 —t]) — Mt]) iftn1 <w < oo,
\
(2.31)
and
exp(—A1t) if0<t<t]
exp(—A2(t — £3) — Art]) iftr<t<t;
F(t)=1-4 ! ' '
exp(—An(t — t5_1) — - — A2(t3 —t7) — Ait7) if ¢, <t <oo.
(2.32)
The KHM hazard function is given by
4
Ay’yuﬂ“ fo<S<w<i
/\2"/1117—1 it <w <ty
h(w) = 3
(2.33)
Anyw? L ifth,_ <w < oo.
\

The KHM assumes the following:

1. Wi; = Ty, where T;; follows the exponential CEM.

%,71
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2. The X; is related to the stress level z; by

In (/\1.) = /\0 + ’\lxiy (234)

where )\, A\;, and ~ are constants, independent of time and stress, and are

determined from the test data.

3. All the n devices are initially placed on test at stress level z; and run until time
71 when the stress is changed to the stress level 5. At stress level zj, testing
continues until time 75 when stress is changed to the stress level z3, and so on,
until stress level z,. At stress level z,, testing continues until all remaining
devices fail or until time 7., whichever occurs first, where 7, is the censoring

time at stress level xg.

The KHM has a very interesting proportional hazard property. It is also as flexible
as the Weibull CEM for data fitting, and its mathematical form makes it easy to

obtain parameter estimates and standard deviations of estimates.
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CHAPTER 3

METHODOLOGY

In this study, we will

1. Investigate constant and variable pressures using the Weibull model for time

until buckling.

o

Use computer simulation to generate data from the Weibull distribution for
constant and variable pressures. Apply the maximum likelihood and Newton
Raphson methods on the generated data to estimate the parameters of the

Weibull distribution under censored observations.

3. Study the effects of

(a) Sample Size

and

(b) percent censorship

on the statistical properties of the estimates. These include

(a) Bias associated with an estimate,

(b) The variance of an estimate and the covariance between two estimates as

compared to those estimated from the Fisher information matrix, and

[N
[RV]
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(c) The empirical distribution of an estimate as compared to the asymptotic

normal distribution of an ML estimate.

4. Compare results for constant-stress vs variable-stress.

3.1 The Maximum Likelihood Method

For a given base line distribution, the log-likelihood function can be established
based on the observations of time until failure. Given n observations, r of which are
uncensored and n—r censored (for instance, time until failure exceeded 10,000 hours),

the log-likelihood function is given by:

L(to,0) ——-‘élnf(to,-,@) + Zn:lln(l— F(to:,©)), (3.1)
i= i=r+
where
f(to, ©)= the probability density function of time until failure.
F(¢ty,0)= cumulative distribution function of time until failure.
Suppose the above model has k& parameters, say 61,602, - -,0;. The maximum
likelihood estimates of the £ unknown parameters are the values 91, 9;, e ,ék which
maximize the log-likelihood function L, which are the same values that maximize the

likelihood function itself. These estimates are found by solving the k& equations.

8L (to, ©)

= 0 =1,2,3,---,k. 2
sel=0 =123, (3:2)

U:i(t(h @) =

The U;(©)’s are called efficient scores, and the k& x 1 vector

U(0) = [U1(©),Us(O),---,Ux(8)] is called the efficient score vector.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The efficient score vector is a sum of .z.d random variables, because

™ n
L(t0,©) =Y In f(te:,©) + »_ In(1 — F(te:;, ©))- (3.3)
i=1 i=r+1
Under mild conditions (Cox and Hinkley, 1974) it is asymptotically normally dis-
tributed.
Now, let H(©) be the £ x k matrix of first partial derivatives of the efficient
scores, U;(to, @), or equivalently the second partial derivatives of the log-likelihood

function, L(©,tg). H(O) is expressed as

dui(to,®) dui(te,®) .. 0Oui(te.®)
LN 88, 96,
8ua(t0,©) Jua(to,®) .. Ju2(ta,O)
a0, 86, a6,
H(©) = -
Bue(t0,0) Duc(te,©) . Ous(t.®) (34)
a6, a2 a0,
Which is the same as
( 92L(t0,0) 9°L(t0,0) .. 92L(t0,©)
526, 56,964 96,065
azL(tOve) azL(t(lve) e aZL(tOve)
80,00 3%8» 86,356,
I(@) —_ _ 1 2UVL
92L(t0,0) 8°L(t0,®) . 9°L(t0.0) (3.5)
826,.061 826,86, 920,

The (%, j)th element of H(©) is given by
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i,7=1,2,---,k, (3-6)

and the (z,7)th element of I(©) is given by

_ 82 L(to, ©)

2,7 =1,2,--- k. 3.7
aeiaej 2,] 3 = H (3 ()

The matrix H(©) is called the Hessian matrix, and

I(©) = —H(©), (3.8)

where I(©) is called the Fisher information matrix.

The (7, 7)th element of the corresponding expected information matrix is given

—8%L(to, ©)

E(—5.00,

) ’i,j=1,2,"°,k. (3-9)

When the expression in Eq. (3.9) cannot be calculated analytically, a numerical

solution is obtained using the Newton Raphson Method.

3.2 Newton Raphson Method

Let f(to; ©) be the £ x 1 vector of first derivatives of the log-likelihood function

in Eq. (3.1) with respect to the ©-parameters, that is,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£(t0; ©) =

A L(ty, Q)
e

26

(3.10)

Letting f(t9,©) = 0 in Eq. (3.10), leads to n non-linear equations. To solve the

above equations, define a matrix I(©) by

1(©) = —

which is the same as

I(6) = —

In other words,

1(©) =

9f1(t0,0) 3f1(t0,O) 9f1(t0,9)
a61 36» 9%
9f2(t0,©) 8f2(t0,9) 3f2(ta,9)
30, 302 505
3 fi(t0,0)  3fi(t0,0) 3 fi(t0,0)
a6y 362 36,
92L(t0,0) 82L(t,O) 92 L(t0.0)
926, 060100~ 896100,
32L(t0,8) 82L(t,9) 92 L(t0,0)
30208, 8265 368,38,
92L(t0.0) 82L(to,0) 32 L(to.0)
520,96, 326,062 320,
Of (o, ©) . 82L(to, 0)
00 002

(3.11)

(3.12)

(3.13)

is the observed information matrix. According to the Newton-Raphson method,

an estimate of the ©-parameters at the (n+1)th cycle of the iterative procedure, ©n1,

is given by
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Oni1 =6, + I“l(én)f(én) for n=0,1,2,---, (3.14)

where I-1(6y) is the inverse of the information matrix evaluated at ©;. The
iteration in Eq. (3.14) can be started at an initial guess ©p. The process is terminated
when the change in the log-likelihood function is a small number, say ¢, or when the
largest of the relative changes in the values of the parameter estimates is sufficiently
small. In other words, the iterative method is continued until convergence is achieved
ie, | 6, — 6,41 |<0.00001.

Once convergence is achieved, the variance-covariance matrix of the parameter
estimates can be approximated by the inverse of the observed information matrix

I(©), evaluated at ©, i.e., I"1(®), so that the variance-covariance matrix of O is

> (@) =I7'(O). (3.15)

The square root of the ith element of this matrix can be taken to be the
standard error of §;, for i=1,2,---,k. For a complete discussion of the maximum
likelihood estimation technique, one may refer to (Mood, Graybill, and Boes, 1963;
Lindgren, 1968; Rao, 1973; Serfling, 1980; and Hogg and Craig, 1995) and for the
Newton-Raphson technique, to (Ortega, 1972; Johnson and Riess, 1982; Maron and

Lopez, 1991; Burden and Faires, 1997; Gautschi, 1997; and Kress, 1998).
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3.3 Simulation

In this dissertation, we use the following technique to generate data through

simulation. Let U be a uniform (0, 1) random variable, i.e.

7’

0 fu<O

G(U)=J w if0<u<l

(3.16)
1 fu>1l

\

Let F(t) be a strictly increasing continuous distribution function on the interval
(0,1), and let T be a random variable that satisfies the relationship U = F(T'). Now,
if0 < F(t) <1, then T < t and F(T) < F(t) are equivalent. Therefore, when

0 < F(t) < 1, the distribution of T is given by

Pr(T < t) = Pr[F(T) < F(t)] = Pr[U < F(t)]. (3-17)

However, since

Pr(U < u) = G(u), (3-18)

we have that

Pr(T <t)=G[F@#)]=F(), 0<F(t)<1 (3.19)
Hence, T has a distribution function F'(t).

Now, to generate a random value ¢, we use the computer to generate a random

number from a uniform distribution U(0, 1) and let
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F) =u (3-20)

After solving the above equation, either explicitly or by numerical techniques, one

obtains

t = Fl(w) (3.21)

By the above argument, it is seen that ¢ is a randomly observed value of T that
has a distribution function F'(t). The above method of simulation is called the inverse

transformation method (Ross, 1997).
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CHAPTER 4

ACCELERATED LIFETIME UNDER CONSTANT
PRESSURE

4.1 Theory

We know from Eq. (3.1) that the log-likelihood function is

L=Slnfu+ 3 In(l— Fe).

=1 t=r+1
But, since the distribution used in this study is the Weibull, one has

f(to) =7~ e™5,

and

1— Fy =e o,

Now, let

t = toe’.

Solving for tg, one sees that

30
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(4.3)

(4.4)



to = te =,

To obtain the new distribution for ¢, one needs the Jacobian of the transformation

dt e o
| 22 | which is given as

dto e_ bz )
dt

Hence, the log-likelihood function is

L = Y o[yt le &+ 3 Ine™
=1

i=r-+1

n
= Zr:hl[”//\(tie"’“‘)""le‘*“"e'”)”e"”]+ 3 Ine AT

1=1 i=r+1

- i[lm oA+ (7 = D(la(t) ~ bz) — A(te=*)7 — ba

— zn: A(tie—bz)n'.

i=r+1

Simplifying Eq. (4.7), it is seen that

L = Z[in”/+ln/\+'ylnti—mti_ vbx — Al e 77

i=1

- b
— > AtleTrE

i=r+l

From Eq. (4.8), one obtains

oL 1 Y o—vbx A\bztle— bz
Fo = Z[;—{-lnti—bzz:—/\tie Int; + \bzt]e 7]
=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4.6)

(4.7)

(4-8)



n

+ 3 [Abztlem™ — AtJe "™ Inty, (4.9)
i=r+1
oL .1 -
=2 [ e = > tleT, (4.10)
and
aL r ¥ —"/b.’t = s —"[b:l:
=1 t=r+1

Now, let f; = g—f‘,, 2= %ﬁ-, and f3 = aa—%, and set f; = fo = f3 = 0. Equations
(4.9), (4.10), and (4.11) can be solved using the Newton-Raphson method discussed

in chapter 3. The Jacobian matrix is

85 L 9N
3y OA b

I(ta"/:)‘: b) = - % aail\i’ %@_
ofs 8fs 3fs (4.12)

XY ar ab

where,
o _ 0f: (413
A\ O’
0fi 0Ofs
ab - 8’7’ (4:.14)
and
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9fe _9fs (4.15)
ob  OX

From Eq. (4.9), it is seen that

Oh SN TE - AT (Int)? + Abotle " Int;
O =
4+ Abztle 7T Int; — APt e
n
+ > [=atle™™ (Int;)? + Abztle " Int;
=r+1
+  Abztle " Int; — AbPzit e 7] (4.16)

Upon simplification, one has that

%fl = _21 + Z (A7 e " Int;(bx — lnt;) — Abzt]e "% (bz — Int;)].
’Y =1 / =1
(4.17)
Also, from Eq. (4.9)
0N _ S patle ™ — e Int]
a)\ t=1
+ 3 [atie™™ — e~ Int,], (4.18)
t=r+1

or
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afl = “ r
—BT = Z ti{e—.qb (b:II — I_nti),

=1
Likewise,
afl r Y —"[b:L’ 2,7 —’Yb:II ~ —"/bx
b = Z[_I +yAxt;e Int; —vAbz“t]e + Azt]e ]
t=1
+ 3 [yAztle ™ Int; — yAbTt]e T + Axt]e T,
i=r+1
or
8f1_ T n A 'y—'/ba:b Int Apt? —bz
%_Z(—x)-FZ[—'y :rtie (:z:— i)'*‘ ztle ]
i=1 i=1
Also,

of = Y [batle™ T e " Inty
v i=1
n

+ > [bztle™ " — t7e” % Int,],

i=r+1

which reduces to

869]:; =y te 7% (bz — Int;).

=1

From Egs. (4.23) and (4.19) one sees that
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(4.19)

(4.21)

(4.23)



Of _oh (4.24)
Oy 2N

For the rest of the derivatives in the Jacobian matrix (4.12), it is seen that

and

Finally,

o
v

which reduces to

0fs
O

dfa2 . -1
22 (4.25)
ox ~ 2

af? . d ¥ _—vbx = Y —vbx

=7 = Z7$tie + Z YTt e

ab i=1 i=r+1

n
= S qztle ™ (4.26)

=1

r

> [z + yAzt]e % Int; — yAbzPt]e T + Axt] e 77|

=1
n
> Azt e~ ™% In t; — vAbz’t]e T + Axtle 707, (4.27)
i=r+1
=S "(=z) + Y _[-vAzt]e " (bz — Int;) + Azt]e "] (4.28)

Hence, from Egs. (4.28) and (4.21) it is seen that
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9fs _ o1 (4.29)
O~ b~
Also,
Ofs = Z"/xt;-’e"qbz + Z yzt]e =
oA i=1 i=r+1
= Z'ya:t;'e"ybx. (4.30)

=1

Hence, from Egs. (4.30) and (4.26) one sees that

Ofs 0fs
ox _ @b (4.31)
Finally,
af T n
=3 = - ATt ]e T + > [—4PAL’t] e
ab i=1 i=r+1
= Syt (452)

=1

4.2 Choices for «, A, b, and pressure, =

It is seen from Eq. (4.4) that

t = toe™. (4.33)

Taking the expectation of both sides, one obtains
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E(t) = E(to)e™. (4.34)

If one assumes that the liner survives on the average up to 50 years with an

external hydrostatic pressure of 10 psi, then from Eq. (4.34)

50 = E(to)e'®. (4.35)

Since tp has the Weibuli distribution with parameters -y, and A, it is seen that

1.1
E(t) = I'l+-—-)—
(t0) = T+
= 50e71%. (4.36)
Based on estimates from accelerated lifetime data (Guice et al. 1994), one may take

~ to be 1.5 and b = —0.253. Hence, from Eq. (4.36)

1,1
to) = Ml+—
1
= I'(1.67)—. (4.37)
AT
From Egs. (4.37) and (4.35), it is seen that
50 = 22 =25, (4.38)

Solving Eq. (4.38) for A, one obtains
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0.9e—% )1_5
50
= 5.7x107°. (4.39)

A=

In the simulation study the pressure z in psi was calculated for 10%, 20%, 30%,
and 40% censoring. Based on the values of v, A and b and Eq. (4.3) with the

transformation to = te~*%, one has for 10% censoring

e—5-Tx1075(L14e =)L _ 1 1 (4.40)

Solving Eq. (4.40), one obtains

In (— In (0.1)) — In (0.000057) — 1.5In (1.14)
1.0 x 0.25

= 27.8 psi. (4.41)
Likewise, the values for pressure z for 20%, 30%, and 40% censoring are 26.8, 26.0,

and 25.3 psi, respectively.

4.3 Results From Simulation

It is seen from Tables 4.1 to 4.3 for 10% censoring, fixed pressure of 27.8 psi,
and sample sizes 25, 50, and 100, that the maximum likelihood (ML) estimate of the
parameter v = 1.5 is approximately normally distributed for sample size as small as
25. This result is shown by the D’Agostino Omnibus test and is as expected from as-
ymptotic theory of maximum likelihood estimation. Normality implies that inference
about the parameter such as confidence intervals and test of hypothesis can be used

based on normal theory. Also, the mean of 1000 estimates is close to the expected

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39
value of 1.5 indicating no significant bias in estimation. Figures 4.1 and 4.2 presents
histograms of the gamma estimates for sample sizes of 25 and 100. These figures
show the approximate normality of the distribution as determined by the D’Agostino
Omnibus test for normality. Results in Tables 4.4 to 4.9 for 10% censoring show, on
the other hand, that the estimates for lambda and b are not normally distributed.
This lack of normality is demonstrated also by the histogram plots in Figs. 4.3 to 4.6.
However the means of the 1000 estimates for both lambda and b are close to their
respective parameter values of 5.7 x 107° and —0.25 indicating no bias in estimation.
The lack of normality of the ML estimates even for a sample of size 100 may be due
to the small parameter values for lambda and b. These values were chosen because
they were close to a real situation as far as a pipe liner lifetime is concerned. The
parameter values (v = 1.5, A = 5.7 x 107>, and b = —0.25) correspond to a mean
lifetime of 30 years under a fixed pressure of 10 psi. The lack of normality implies
that inferences based on normal theory for ML estimates cannot be used in this case.
For the normality assumption to hold the sample size needs in all likelihood to be
larger than is practically feasible.

Results in Tables 4.10 to 4.12 for 20% censored observations show that esti-
mates for gamma are still approximately normally distributed, but as expected for a
larger sample size of 50 and 100. However, the ML estimate as shown by the mean
of the 1000 estimates does not show any serious bias. Estimates for lambda and b,
as shown in Tables 4.13 to 4.18 for 20% censoring, while not biased do not show
normality.

Estimates of gamma for 30% censoring, Tables 4.19 to 4.21, show a more pro-
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nounces bias (mean=1.41) and a complete lack of normality for sample size 25. Nor-
mality is achieved for larger samples of 50 and 100. Estimates for lambda and b are
not normally distributed as seen from Tables 4.22 to 4.27. However, it is seen that
these estimates are not biased.

Increasing censoring to 40% (Tables 4.28 to 4.30) seems to increase bias by
reducing the mean estimate to a value of about 1.36 but has no effect on the normal-
ity of estimates. Figures 4.7 and 4.8 show the empirical distribution of the gamma
estimates which appears to be normal in agreement with the D’Agostino tests for
normality. Tables 4.31 to 4.36 show that in the case of 40% censoring the ML esti-
mates for lambda and b are not biased. However, these estimates are not normally
distributed. Figures 4.9 to 4.12 demonstrate graphically the deviation from normality
encountered in the estimates.

Tables 4.37 to 4.48 present the empirical variance-covariance matrices from the
1000 replications from simulation for different pressures, censoring, and sample sizes.
These are to be compared with the corresponding theoretical variance-covariance ma-
trices in Tables 4.49 to 4.60 obtained from the Fisher information matrix Eq. (3.8).
In each matrix, element a;; = V(¥), a1z = Cou(y,A), a1z = Cou(7,b), aze = V(A\),
as3 = Cou(A,b), and azs = V(b). It is clear from these results that the empirical
variances of the estimates and covariances between two estimates are larger in value
than what one expects from theory using the Fisher matrix. This result is especially
true for the lambda and b estimates which deviates significantly from normality. The
variance for the gamma estimates which tends to be normal is more in agreement

with the theoretical variance than the other estimates.
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Table 4.1 Statistiical properties of the ML estimate for v = 1.5 over 1000

replications. PPressure =27.8 psi, censoring =10%, sample size=23.

Mean 1.556891
Variance 1.976661x 1073
Minimum 1.353129
Maximum 1.677138
Skewness -2.096338x 1072
Kurtosis 3.196979

D’Agostino Skewness

Accept Normality with prob. level 0.79

D’Agostino Kurtosis

Accept Normality with prob. level 0.20

D’Agostino ®mnibus

Accept Normality with prob. level 0.42

replications. FPressure =27.8 psi, censoring =10%, sample size=30.

Table 4.2 Statisti:cal properties of the ML estimate for v = 1.5 over 1000

Mean 1.558169
Variance 8.55301x10~*
Minimum 1.400797
Maximum 1.644582
Skewness -8.590256x 102
Kurtosis 3.354546

D’Agostino Skewness

Accept Normality with prob. level 0.27

D’Agostino Kurtosis

Reject Normality with prob. level 0.04

D’Agostino @mnibus

Accept Normality with prob. level 0.06
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Table 4.3 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=100.

Mean 1.555082

Variance 4.66491x10~*

Minimum 1.468154

Maximum 1.640457

Skewness 9.118701x 102

Kurtosis 3.355797

D’Agostino Skewness | Accept Normality with prob. level 0.24
D’Agostino Kurtosis | Reject Normality with prob. level 0.04
D’Agostino Omnibus | Accept Normality with prob. level 0.06

Table 4.4 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=25.

Mean 5.70274x 1073

Variance 4.116008x 10713

Minimum 0.000057

Maximum 0.0000761

Skewness 27.49277

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.5 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=>50.

Mean 5.7017x107°

Variance 1.651361x 10~

Minimum 0.000057

Maximum 0.000069

Skewness 27.1163

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.6 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=100.

Mean 5.70073%x107°

Variance 1.965637x 10~1*

Minimum 0.000057

Maximum 0.0000604

Skewness 0

Kurtosis 0

D’Agostino Skewness | Accept Normality with prob. level 1.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.7 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=25.

Mean -0.2500423

Variance 1.457117x 107

Minimum -0.2880698

Maximum -0.2499851

Skewness -31.32375

Kurtosis 986.9233

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D*Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.8 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=50.

Mean -0.2500286

Variance 6.444887x 1077

Minimum -0.2753152

Maximum -0.2499778

Skewness -31.31042

Kurtosis 986.3148

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.9 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=100.

Mean -0.2500164
Variance 1.789051x 107
Minimum -0.2633221
Maximum -0.2499969
Skewness -31.19939
Kurtosis 981.3035

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Pressure =26.8 psi, censoring =20%, sample size=23.

Table 4.10 Statistical properties of the ML estimate for v = 1.5 over 1000

Mean 1.482563
Variance 1.770836x 1073
Minimum 1.355556
Maximum 1.627106
Skewness 0.1470829
Kurtosis 3.271482

D’Agostino Skewness

Accept Normality with prob. level 0.06

D’Agostino Kurtosis

Accept Normality with prob. level 0.09

D’Agostino Omnibus

Reject Normality with prob. level 0.04
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Table 4.11 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=350.

Mean 1.480374
Variance 9.344896x 10~
Minimum 1.378263
Maximum 1.575105
Skewness -3.742477x 1072
Kurtosis 2.947649

D’Agostino Skewness

Accept Normality with prob. level 0.63

D’Agostino Kurtosis

Accept Normality with prob. level 0.81

D’Agostino Omnibus

Accept Normality with prob. level 0.86

replications. Pressure =26.8 psi, censoring =20%, sample size=100.

Table 4.12 Statistical properties of the ML estimate for v = 1.5 over 1000

Mean 1.479459
Variance 4.626646x10~*
Minimum 1.385224
Maximum 1.545953
Skewness 9.868777x 1072
Kurtosis 3.160574

D*Agostino Skewness

Accept Normality with prob. level 0.20

D*Agostino Kurtosis

Accept Normality with prob. level 0.28

D’Agostino Omnibus

Accept Normality with prob. level 0.24
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Table 4.13 Statistical properties of the ML estimate for A = 5.7 x 107° over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=25.

Mean 5.70212x107°

Variance 2.44415x 10713

Minimum 0.000057

Maximum 0.0000716

Skewness 27.05519

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.14 Statistical properties of the ML estimate for A = 5.7 x 10> over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=350.

Mean 5.70067x107°

Variance 1.516027x 10~

Minimum 0.000057

Maximum 0.0000601

Skewness 0

Kurtosis 0

D’Agostino Skewness | Accept Normality with prob. level 1.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.15 Statistical properties of the ML estimate for A = 5.7 x 10> over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=100.

Mean 5.70117x107°
Variance 6.189501x 10~
Minimum 0.000057
Maximum 0.0000638
Skewness 24.18933
Kurtosis 0

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level G.0

Table 4.16 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=25.
p ps, g

Mean -0.2499968
Variance 5.994215% 1078
Minimum -0.2523384
Maximum -0.2426388
Skewness 26.30138
Kurtosis 825.8197

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 4.17 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=350.

Mean -0.2499951

Variance 6.621553x 1078

Minimum -0.2507939

Maximum -0.2419311

Skewness 30.77648

Kurtosis 966.5384

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.18 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=100.

Mean -0.2500237

Variance 3.977499x 1077

Minimum -0.2698731

Maximum -0.2499991

Skewness -31.24174

Kurtosis 983.235

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.19 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=25.

Mean 1.41782
Variance 2.626594x 103
Minimum 1.229722
Maximum 1.80538
Skewness 0.4435235
Kurtosis 5.831409

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Pressure =26.0 psi, censoring =30%, sample size=50.

Table 4.20 Statistical properties of the ML estimate for v+ = 1.5 over 1000

Mean 1.414278
Variance 1.177458 %1073
Minimum 1.296862
Maximum 1.516428
Skewness 2.046373x 1072
Kurtosis 3.007486

D’Agostino Skewness

Accept Normality with prob. level 0.79

D’Agostino Kurtosis

Accept Normality with prob. level 0.87

D’Agostino Omunibus

Accept Normality with prob. level 0.95
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Table 4.21 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=100.

Mean 1.413975

Variance 5.686668x 10~*

Minimum 1.345811

Maximum 1.490464

Skewness -4.843413x1072

Kurtosis 3.01112

D’Agostino Skewness | Accept Normality with prob. level 0.53
D’Agostino Kurtosis | Accept Normality with prob. level 0.85
D’Agostino Omnibus | Accept Normality with prob. level 0.81

Table 4.22 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=23.

Mean 5.70465x107°
Variance 2.116004x 10712
Minimum 0.000057
Maximum 0.000103
Skewness 31.57421
Kurtosis 0

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 4.23 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=50.

Mean 5.70131x10°°

Variance 8.418257x 10714

Minimum 0.000057

Maximum 0.0000657

Skewness 27.86605

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.24 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=100.

Mean 5.7018x 107

Variance 2.658018x 10~

Minimum 0.000057

Maximum 0.0000733

Skewness 31.54358

Kurtosis 0

D’A gostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.25 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=25.

Mean -0.2499399
Variance 3.841903x10~¢
Minimum -0.2500303
Maximum -0.1880189
Skewness 31.57522
Kurtosis 997.9966

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

Table 4.26 Statistical properties of the ML estimate for b

0.25 over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=50.

Mean -0.2499906
Variance 1.782981x 107
Minimum -0.2513529
Maximum -0.2367204
Skewness 31.05284
Kurtosis 977.5618

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 4.27 Statistical properties of the ML estimate for &6 = —0.25 over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=100.

Mean -0.2499906

Variance 1.46998x 10~

Minimum -0.2500373

Maximum -0.2378791

Skewness 31.57

Kurtosis 997.7775

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.28 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=235.

Mean 1.360228

Variance 2.520586x 1073

Minimum 1.179837

Maximum 1.498348

Skewness -4.401014x 1072

Kurtosis 3.054044

D’Agostino Skewness | Accept Normality with prob. level 0.57
D’Agostino Kurtosis | Accept Normality with prob. level 0.65
D’Agostino Omnibus | Accept Normality with prob. level 0.77
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Table 4.29 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=30.

(S]]
ot

Mean 1.355946
Variance 1.177019x 1073
Minimum 1.247187
Maximum 1.462618
Skewness -7.620224x 1074
Kurtosis 2.969444

D’Agostino Skewness

Accept Normality with prob. level 0.99

D’Agostino Kurtosis

Accept Normality with prob. level 0.93

D’Agostino Omnibus

Accept Normality with prob. level 1.0

Table 4.30 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Pressure =23.3 psi, censoring =40%, sample size=100.

Mean 1.356143
Variance 5.586523x 10~*
Minimum 1.273957
Maximum 1.42983
Skewness -5.645929% 102
Kurtosis 3.153582

D’Agostino Skewness

Accept Normality with prob. level 0.46

D’Agostino Kurtosis

Accept Normality with prob. level 0.30

D’Agostino Omnibus

Accept Normality with prob. level 0.44
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Table 4.31 Statistical properties of the ML estimate for A = 5.7 x 10~% over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=25.

Mean 5.70147x10~°
Variance 4.005397x 1014
Minimum 0.000057
Maximum 0.0000618
Skewness 18.73638
Kurtosis 0

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Pressure =25.3 psi, censoring =40%, sample size=30.

Mean 5.70296x 1072
Variance 6.144583x 1071
Minimum 0.000057
Maximum 0.0000817
Skewness 31.23557
Kurtosis 0

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 4.33 Statistical properties of the ML estimate for A = 5.7 x 10™> over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=100.

Mean 5.70373x107°

Variance 1.110569x 1012

Minimum 0.000057

Maximum 0.0000903

Skewness 31.49409

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.34 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=25.

Mean -0.2499959

Variance 1.059915x10~7

Minimum -0.251498

Maximum -0.2398885

Skewness 29.84311

Kurtosis 931.4003

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 4.35 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=50.

Mean -0.2499985

Variance 3.063113x 1078

Minimum -0.2508691

Maximum -0.2445563

Skewness 29.97229

Kurtosis 937.4537

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 4.36 Statistical properties of the ML estimate for b6 = —0.25 over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=100.

Mean -0.2499993

Variance 1.788854x 1078

Minimum -0.2503954

Maximum -0.2458177

Skewness 30.5179

Kurtosis 957.7864

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59
Table 4.37 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=25.

1.98 x10~® —4.30 x 1079 7.96 x 10~¢
—430x 1079 4.12x1078¥ —7.00x 10~10
7.96 x 10~¢ —7.00 x 10719 1.46 x 10~¢

Table 4.38 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=25.

1.77x 1072 —140x10"% —-6.81 x 1077
~1.40x10~% 244 x 10~ 1.00x 10~10
—6.81 x10~7 1.00x 1071° 599 x 10°%

Table 4.49 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=25.

263 x 1073 1.78 x 107 241 x 105
1.78 x 1078 2.12x 10~'2 290 x 1079
241 x 107% 290 x 1072 3.84 x 10~€
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Table 4.40 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=25.

2.52 x 1073 —6.00 x 1071 —4.29 x 10~7
—6.00x 10719 401 x 107 232x10°4
—429 x 1077 232x 107" 1.06 x 1077

Table 4.41 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=350.

8.55x 10~%* —220x10~% 4.13 x 10°¢
—220x10~° 165 x 10718 —3.00x 10~
4.13x10°% —3.00x 1019 6.45 x 1077

Table 4.42 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=30.

935 x 107* 1.00x 10~ 1.06 x 1077
1.00 x 10~!% 152 x 10~1* 203 x 10711
1.06 x 10-7 2.03 x 10~!! 6.62 x 10-8
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Table 4.43 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=350.

1.18 x 10~3 5.00x 10719 136 x 10~¢
5.00 x 10710 842 x 10~ 1.00 x L0~10
1.36 x 107 1.00x 10719 1.78 x 10~7

Table 4.44 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=50.

2.52 x 10~% —6.00x 10~ —4929 x 10~7
—6.00x 10710 6.15x 10713 1.08 x 101!
—4.29 x 1007 1.08x 10"  3.06 x 10°7

Table 4.45 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=100.

467 x10™* —400x 107 1.23x 10"
—400x 10710 197x107* —6.153x 10~
1.23x107% —6.15x 1071 1.79 x 10~7
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Table 4.46 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=100.

463 x10* —7.00x10719 193x10°¢
—700x 10719 6.19x 107" —1.00x 10710
1.93x 10 —1.00x10"% 398 x 107

Table 4.47 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=100.

5.69 x 10~* 7.00 x 10710 571 x 1077
7.00 x 10710 266 x 1071* 2.00 x 10~10
5.71 x 1077 2.00x 1070 1.47x 1077

Table 4.48 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=100.

559 x 107* —2.00x 10™° —2.31x 1077
—2.00 x 10~% 1.11x 10" 1.00x 10™1©
—2.31x 1077 1.00x 1071 179 x 108
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Table 4.49 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=25.

1.08 x 1073 —299x 1010 1927x10°7
—299 x 10719 461 x 10°® —479x 10~
1.27 x 1077 —4.79 x 10~ 1.51 x 1012

Table 4.50 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=25.

1.15 x 107® —3.36 x 10719 —1.50 x 107
—3.36x 10710 497x 107¥® 583 x 101
—1.30x 1077 5.83x 107! 1.96 x 10712

Table 4.51 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=25.

1.27 x 1072 276 x 10719 1.29 x 10~7
2.76 x 101 299 x 10~1® 5.12 x 10~
1.29 x 1077 5.12x 10~ 1.45 x 1012
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Table 4.52 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=25.

1.43 x 1073 —2093x10"1° —1.43x 1077
—293x 1071 932x 10" 585x 1074
—1.43x 1077 5.835x 1071* 421 x 10712

Table 4.53 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=50.

533 x10™* —1.71x10"0 728 x 10
—1.71 x 10710 309 x 1071 _—2.74x 10°!!
728 x 1078 —2.74 x 101 9.11x 108

Table 4.534 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.8 psi, censoring =20%, sample size=350.

5.69 x 10~* 2.03x 107 9.10 x 10~
2.03 x 10710 482 x 10~1® 3.534 x 10~11
9.10 x 10~® 3.54 x 10~1! 1.78 x 10~!2
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Table 4.55 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=50.

6.32x 10~* 1.3539x 10710 744 x 10°8
1.59 x 10710 2.71 x 10~® 298 x 10~11
744 x 1078 298 x 101! 1.44 x 1012

Table 4.56 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=30.

T12x10™* —1.34x 10719 —-6.53 x 108
—1.34x 10719 207 x 1078 268 x 10~
—6.53 x10~% 268 x 107 1.18 x 10712

Table 4.537 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =27.8 psi, censoring =10%, sample size=100.

267 x 10* —960 x 107 4.09 x 10°®
—960x 1071 233 x 107¥® —154 x 10~
4.09 x 10~% —1.34 x 10~'1 8.5 x 10~18
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Table 4.58 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure=26.8 psi, censoring =20%, sample size=100.

[ 283 x10™* —1.07x107° 48)x10°®
—1.07x 1071 3.10x 10718 —1.88x 10~
480 x 108 —1.88x10~1 1.16x10"12

Table 4.539 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =26.0 psi, censoring =30%, sample size=100.

3.14x 107+ 8.48 x 10~ 3.98 x 10~8
8.48 x 10~ 1.66 x 10~1® 1.539 x 10—t
3.98 x 10~% 1.539 x 10~ 8.64 x 10713

Table 4.60 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Pressure =25.3 psi, censoring =40%, sample size=100.

352 % 100 —6.69 x 10711 —3.27 x 10~8
—6.69 x 10~  1.07x 10~ 1.35x 1071
—327%x107% 135x 10~ 6.37Tx 1013
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13500 1.4887 " 15833 " 1.7000

Fig. 4.1 Relative frequency histogram of the ML estimate for
gamma=1.5, pressure=27.8, censoring=10%, sample size=25.

14500 15187 1.5833 " 1.5500

Fig. 4.2 Relative frequency histogram of the ML estimate for
gamma=1.5, pressure=27.8, censcring=10%, sample size=100.
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0.060050 _ 0.000060 0.000070 0.000080

Fig. 4.3 Relative frequency histogram of the ML estimate for

lambda=0.000057, pressure=27.8, censoring=10%, sample size=25.

- —

02500 | w2750 -02800  -3.2450

Fig. 4.4 Relative frequency histogram of the ML estimate for
b=-0.25, pressure=27.8, censoring=10%, sample size=25.
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0000056  0.000057 0000063 0.00007C

Fig. 4.5 Relative frequency histogram of the ML estimate for
lambda=0.000057, pressure=27.8, censoring=10%, sample size=100.

-0.2540 .0.2587 .0.2480

Fig. 4.6 Relative frequency histogram of the ML estimate for
£=-0.25, pressure=27.8, censoring=10%, sample size=100.
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11500 " 1.2687 ' 1.3833 1.5000

Fig. 4.7 Relative frequency histogram of the ML estimate for

gamma=1.5, pressure=25.3, censoring=40%, sample size=25.

;‘Q
T —

12500 13167 13833 1.4500

Fig. 4.8 Relative frequency histogram of the ML estimate for

gamma=1.5, pressure=25.3, censoring=40%, sample size=100.
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0.000050  0.00c0s7  0.000663  0.00067C

Fig. 4.9 Relative frequency histogram of the ML estimate for
lambda=0.000057, pressure=25.3, censoring=40%, sample size=25.

\

02473  -02427 .0.2380

0.2520

Fig. 4.10 Relative frequency histogram of the ML estimate for
b=-0.25, pressure=25.3, censoring=40%, sample size=25.
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0.006040  o0000C8C  0.000080 0.000100

Fig. 4.11 Relative frequency histogram of the ML estimate for
lambda=0.000057, pressure=25.3, censoring=40%, sample size=100.

-C.2510 '.0.2490 02470 -0.2450

Fig. 4.12 Relative frequency histogram of the ML estimate for
b=-0.25, pressure=25.3, censoring=40%, sample size=100.
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CHAPTER 5

ACCELERATED LIFETIME UNDER VARIABLE
PRESSURE

5.1 Theory

It is well known that the external hydrostatic pressure acting on a liner is not
constant. In this chapter, variable pressure is considered.

From Eq. (3.1), the log-likelihood function is

L=Slnjut+ 3 In(l— Fo). (5.1)
i=1

i=r+1

Using the Weibull distribution, and the transformation

= o (5.2)
one obtains
il ty r _ )iy = .
L = Zln[e—b:z(f-i)/\"/(e—bz(tr:)ti)"l—le_j;) e ~52(Te) Ay(e —b=(Ti) )Y 141,‘]
=1
+ i ln[e—fot{ e_bz(?‘.)'\'7(8-62("'1)71')’7—%1'%']
i=r+1

= i[—bm(ti) +Iny+InA+ (y—1)(—bz(t;) +Int;)

=1

73
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/ti ,Y/\e—b:z:('r;) (e—ba:(-rg)ri)fy—ldﬁ]

_ Z / e~be(m) (e=b=(r) )11 (5.3)

i=r+l1

Upon simplifying Eq. (5.3), one obtains that

r

L = Y [-bz(t) +ny+InA+ (v —1)(—bz(t:;) + Int,)

=1

- /t‘ 7/\757"13”’”("")d7;-]

_ Z / v /\TF’ -1 —f/b:l:(“':) dr;. (54)
i=r+1

Replace z(t) by ¢ + asin Z gives

r

Tty
L = Z[—b(c+asin—é—) +Iny+InA+ (v

=1
L .~ . wT;
_ / ,Y/\T:i/-—le—bf/(C+asm T)dTil

_ Z / "/—]. —bﬂy(c-{-asm——l)d,_] ( A

t=r+1

Tt'
kL Int;
=) +1Inty)

[@]]
n
[y

From Eq. (5.3), one obtains

g_i _ i[i /Oti /\Ti"/—le—b'/(ci-asin %i)d,ri
=1

_ f )\,YT! -1 In (T ) —b'y(c+a.sm )d'r

+ 6 ) 7—le—b7(c+a.sm 5 )d’f’]
+ Z [_/ /\nf!—le—b"/(c+asin zl'—(;--1‘-)617.1.
0
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t: . TTg
_ / )\77_:;7—1 In (Ti)e—-b"/(c-*-asm -—g—)d,ri
(V]

t: nTs - TG -
+ / Avb(c + asin %)T”_le""”’(””m & )dr], (5.6)
0

a—L _ i[i _ /‘ti 7Tj{—le—b»/(c+asin %)dﬂ_]
0

ax . &0 :
n t; e
— Z [./0 ,/ﬁ!—le—b‘/(c-i»asm T)dTi], (5—7)
=r+1
and
oL T . Tt . Tt
F > [—(c+asin 5 )—(r—1)(c+asin -6-)
t=1
& TTiy - i =0
+ / 73/\(c+asin1€:—)7—g le=br(ctasin g) g
0
= i i . TT; _
+ Z [/ ’}'2/\(6 + asin 76’77;)7_?—16—?77(6-*-05111 T)d'ri]. (0.8)
i=r+170

Now, let f; = %’, fo = %f\—’, and f3 = %—Ig and set fi1 = fo = f3 = 0. Equations
(5.6), (5.7), and (3.8) can be solved using the Newton-Raphson technique discussed

in chapter 3. The Jacobian matrix is

3y Ox ob
I(t, 7, A\b)=—| 282 22 25

) (5.9)
3fs 8fs 8fa
oy ar ab

where
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of _0f
N O’
Oh _0h
ab oy’
and
o _0fs
Ob N’
From Eq. (5.6), it is seen that
afl ~ -1 —by(c+asin T
% = ,_.Zl v / AT n (1y)ebr(eF ddr;

+ / Ab(c + asin 2 5 ) T~ te=br(etasin T g
o
_ /t,- )\7_;,_1 In (Ti)e—bfy(c+asin .'r—;i)dri
0
& . x
— [T i (et g,
0

A

t TTiy A—1 —b(c si
+ / /\b(c-i-asinT)Ti’ lg—br(c+asin
0

t:
+/”/
0

— A 7/\[b(c+a5m = )]27."/ -1 —b7(6+a51n—1)dT|

6 ) I—*ll_n(,rz)e—(r/(c+asm—4)d,r

TTg

6 )d’l'i

TTiy e _ S
61)7—12, 1111(7'}')8 by(c+asin — )dT,;

£ 3 = [Ta T n (m)e et Flgr,

z-'r+l
+ / )\b(c-i-asm i ) T tembr(ctasinZgh) g
0

TT:

_ /ti ,\T7—1 In (Ti)e—lr‘/(c-{-asin =
%
0

)d'ﬁi
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(5.10)
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+

+

+

/ 7/\ ln(’r)]z —-Ery(c-*-asm )d"'

/ -"/x\b(c +asin = ) Yl In (1) e—br(etasin ) g
0

6
/tﬁ Ab(c + asin %E)nﬁ’-le"h(c*'“in%‘)dn
0
& TNy in T
/ ~Ab(c + asin 7r_6'r_)7_;, Mn () ebr(etasin T gr
0

& iNi2 q— in TH
/ ~A[b(c + asin -’%T—)]?r; Lgbrletasia ) gt
0

Upon simplification, one has that

oh
v

™ _1 n
>~

i=1 i=1
&
/ 2Xb(c + asin —6—) 7~ lg~b(etasin ) g
0

t; . xT;
[/ 2AT{’—1 In (Ti)e—bﬂf(c+asxn —sl)dﬁ
0

/0 r)ﬁ//\b(c-i—asm ) 77 n (1)~ tr(etrasin ) g

6
t: - oxTT;
[ in () et S,
0

TT;

t: . v
/0 ~Alb(e + asin 5 )]2T{’—Ie‘b"(c+asm_6£)dn].

Also, from Eq. (5.6)

05
2

t: —~—— - TT;
= > [- / T lem e g
(4]

=1
t w
_ / '77_;7—1 m(ﬁ)e—bﬁ/(c«l-a.sm _GL)dﬂ

+ / ’Yb(C+as1n 5 )7"—1 -b"f(6+asm—k)d7_]
0

n t; P
—1_—b jn X
+ § [___A 7-1'7 e t{c+asin = )dTi

1=r-+1

t: -
= [T i (m)ertreres g,
4]
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+ / ~b(c + asimn g) ) lembr(etasin Ty gy

or

% _ Z"':[_ /tt 7—17—16-67(6+05in T_;l)dﬂ
0

=1

_ /t-; 77{,—1 In (ﬁ)e—h(c+a sin T5) dr;
¢

T ~— ol |
+ /0 vb(c + asin 5 ) tegmbr(etasin g g

Likewise,

-aaf—bl = Z[ (C +asin —) + / 7/\(C + a sin -—)7‘7—1 —bv(ctasin ——L)dT
=1

1 —.L
+ / /2/\(c+a,sm g)T]_lm(T)e“b”{(C+asm )dT
0
+ / //\(c—{—asm g-).r"l—l- —bf-/(c-f-a;m——‘-)d,r
0
e 9 . 7r7-1: 2 -1 —b'Y(C+a.sin1§-)
- / 7-,\b(c+asm—6—) . e 5 ) dr;]
0
; ) 7-1 —b'y(c-i-a.sxn LArg)
+ [/ +A(c + asin &) ) dr,
i=r+1 0 6
N TN in 7T
-+ / 72,\(c+asin 7_67—1)7-111—[111(7‘1-)6—6’7(6*-&5111 = )d’}"i
0
" TTiy, =L - sin ZH
+ f TA(e + asin )7 Eemnterasn g,
0
- / ~+*Xb(c + asin —~)'1—“’"1 “”7(°+asm—‘)d,,.]
0

6

Combing terms and simplifying, one sees that
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t;
6

En * iy 71 in =T
N+20 / 29X(c + asin ?)1-17 e=br(etasin ) g
0

i=1

Ofi I~ .
55 = ;[ (c+asin

t: .
+ / 7*Mc + asin LXK
0 6

)7_17—1 In (n)e—b'y(c+asin %’i)d,ri

t: TT; -1 - asin ZH 3
— ] ﬁ/2/\b(c+asinz6—)27'{' te~tr(etasing) gr . (5.18)
0
Also,
? - i[‘ /ti T~ Le—brletasin T g
a4 i=1 Y

te I
= / 77_;_7-1 In (Ti)e—b"((c+asm TL)dTi
0

ti TT: T
+ ["apc +asin TE)rremreresia g
0

= % =1 —by(ctasin ZX)
+ Z [_/ 7.1:f e c+asin —g dT.‘
t=r+1 0

T

te . -
_ / 77_;{—1 In (Ti)e—lr‘{(cﬁ—asm 5 )d’ﬁ
0

TT:

6

)7_?_18_54—,(c+a.sin ﬁTi)dTi], (519)

2
+ /0 ~b(c + asin

which reduces to

6f2 n b v—1_—by(c+asin 21)
—Z< S — " e asm g dT;
By 2 /0 t :

=1
t: —— _ . TTE
_ / ’YTL‘/ 1 In (7'.,,)6 by(c+asin —g‘)d,ri
0

T

c“:
+ / ~b(c + asin
0 6

yri T lemresin g, (5.20)

From Egs. (5.20) and (5.16) one sees that
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0f _ 0N (5.21)
gy OX

For the rest of the derivatives in the Jacobian matrix (5.9), it is seen that

Loy (5.22)
=1 A
and,
r t:
%% = ;[/0 2(c + asin 161)71_1 e~ br(ctasin _)d'r]
n t:
+ Z [A 2(c +asin E;-)'r“"1 e~ t1(ctasin _L)dT]
i=r+1
- " : o X7 = s
= Z[/ 7*(c + asin %E)n7—le—b”’(°+“$m &) dr. (5.23)
0

i=1

Finally, one needs to calculate the partial derivatives of f; with respect to v, A,

and b. These derivatives are given below

’f—le—b"/(c+a sin —L)d,r

0fs &
2, = 20

i=1
+/’7

- / 72 Ab(c + asin :)21”{"16"’7(““5“‘ Iéﬁ)dr,—]
0

77/\(c + asin ﬂ—6 )T

6 ) ’7-—1 In (T) ~by(c+asin %—L)dﬁ

n

t" _.L
+ > [/(; 7’7/\(c+asm 5 ) I le=br(ctasinTh) g

t=r+1

c‘ - ﬁ{
+ / ~v*A(c + asin 67-) 77 n (r)ebYetesin T g
0

7-’7—1 —bv(c+asn —J-)d,r ] (5 24.)
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which reduces to

%% = g[ 1—1 77/\(c+asm 5 ) T le—tr(ctasin ) g
+ / 72/\(c+asm 5 ) ’—1In(7')(3“’7(”"‘5“‘_‘)d'r2
L nilq —1_—b~y(c+asin =1 3925
— /0 ¥?Ab(c + asin %)2ﬂ7 lgbrlerasin ) gt (5.25)
Hence, from Egs. (5.23) and (5.18) it is seen that
9fs _0f (5.26)
O~ ob
Also,
% = ;[/ ~ (c+asm 5 ) 1-1o—by(etasin ')dT]
My 71 —b"/(c+asm—‘-)d
+ z—;—l[‘/ (c+a5m 5 )'r e ]
n i . xXT; -
_ Z[/ 2(C+asm_7’)7_17—1e_bq(c+asm = dr). (5.27)
i=1 /0 6
Hence, from Egs. (5.27) and (5.23) one sees that
2% _os -

Finally,
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Z & T - i X5

=1
n

=3 T: - T
+ > [——/(; 73/\(c-i-asin%)27{"13“"7@“31“—5‘)(17-1.]

i=r+1

n Ly TTz - in 25E 3¢
— Z[_/ '73/\(c+asin %)27_17 le—b*/(c-i-a.sm 3 )d’f}]. (329)

i=1 0

5.2 Results From Simulation

Results in Tables 5.1, 5.2, and 5.3 for variable pressure (where pressure was
expressed as a sine function z(t) = ¢+ asin & with ¢ = 27.8 and a = 5) and 10%
censoring show that the ML estimate underestimates the parameter value of v = 1.5.
This bias, while significant, is not substantial (Mean estimate=1.34). It is clear how-
ever that unlike the constant pressure case the ML estimate does not have a normal
distribution even for sample size 100. The estimates for lambda and b from Tables
5.4 to 5.9 are not biased in the sense that the mean estimate over 1000 replications
is close to its parameter value. However, the ML estimates are not normally distrib-
uted. Figures 5.1 to 5.6 show the shape of the empirical distributions for the gamma,
lambda, and b ML estimates and their deviations from normality for sample sizes 25
and 100.

For 20%, 30% and 40% censoring, it is clear from results in Tables 5.10 to 5.36
that the ML estimates for gamma, lambda and b are not normally distributed as
assumed from theory. Also, it is seen that a sample size of even 100 is not sufficient
for the asymptotic normal distribution of an ML estimate to hold. Figures 5.7 to 5.12
present the empirical distributions of these ML estimates which also show substantial

deviations from normality. On the other hand, the ML estimate of gamma is slightly
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biased downward while the ML estimates of lambda and b are not biased.

Tables 5.37 to 5.48 present the variance-covariance matrices for different vari-
able pressures, censoring, and sample sizes. These are to be compared with their
corresponding theoretical variance-covariance (Tables 5.49 to 5.60) from the Fisher
information matrix. As for the fixed pressure case, the empirical variances and co-
variances are larger than their theoretical expected values. The discrepancy between
theory and observed is striking for lambda and b where the estimates are not nor-
mally distributed. The variance for the gamma estimate is in closer agreement with

the theoretical variance than that for the lambda and b estimates.
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Table 5.1 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =10%, sample size=25.

Mean 1.341455

Variance 1.287964x 10

Minimum 1.288587

Maximum 1.35703

Skewness -2.311752

Kurtosis 7.535272

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.2 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =10%, sample size=30.

Mean 1.343592

Variance 5.626559x107°

Minimum 1.318285

Maximum 1.472254

Skewness 3.791434

Kurtosis 89.94577

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.3 Statistical properties of the ML estimate for v+ = 1.5 over 1000

replications. Variable pressure, censoring =10%, sample size=100.

Mean 1.344324

Variance 3.117618x107°

Minimum 1.332165

Maxdimum 1.472254

Skewness 11.53155

Kurtosis 277.0562

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.4 Statistical properties of the ML estimate for A = 3.7 x 10~° over 1000

replications. Variable pressure, censoring =10%, sample size=25.

Mean 5.69743x107°

Variance 5.743639x 1071

Minimum 0.0000331

Maximum 0.000057

Skewness -31.32137

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.5 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Variable pressure, censoring =10%, sample size=350.

Mean 5.69878x 1075

Variance 1.4884x 10713

Minimum 0.0000448

Maximum 0.000057

Skewness -31.57532

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

replications. Variable pressure, censoring =10%, sample size=100.

Mean 5.69878x107°

Variance 1.4884x 10713

Minimum 0.0000448

Maximum 0.000057

Skewness -31.57532

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.7 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Variable pressure, censoring =10%, sample size=25.

Mean -0.2500117
Variance 1.315455x 10~7
Minimum -0.2613897
Maximum -0.2488243
Skewness -30.88592
Kurtosis 970.5985

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

Table 5.8 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Variable pressure, censoring =10%, sample size=30.

Mean -0.2499827
Variance 2.651471x 1077
Minimum -0.2501051
Maximum -0.2337181
Skewness 31.56132
Kurtosis 997.413

D’Agostino Skewness | Reject Normality with prob. level 0.0

D’Agostino Kurtosis | Reject Normality with prob. level 0.0

D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.9 Statistical properties of the ML estimate for b = —0.25 over 1000

replications. Variable pressure, censoring =10%, sample size=100.

Mean -0.249982

Variance 2.650804x 10~7

Minimum -0.2500404

Maximum -0.2337181

Skewness 31.5692

Kurtosis 997.7438

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.10 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =20%, sample size=23.
b o

Mean 1.380845

Variance 4.338712x 10~

Minimum 1.292952

Maximum 1.522883

Skewness -1.203707

Kurtosis 6.453557

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.11 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =20%), sample size=50.

Mean 1.386477

Variance 1.332621x 10

Minimum 1.332556

Maximum 1.522883

Skewness 0.3944472

Kurtosis 22.92529

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.12 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =20%, sample size=100.

Mean 1.388601

Variance 4.178969x10~°

Minimum 1.364758

Maximum 1.470404

Skewness 1.170251

Kurtosis 27.90537

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.13 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Variable pressure, censoring =20%, sample size=23.
p g

Mean 5.69852x 102

Variance 1.839049x 10713

Minimum 0.0000435

Maximum 0.000057

Skewness -31.16803

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

replications. Variable pressure, censoring =20%, sample size=350.

Mean 5.69864x 1072

Variance 1.822573x 10713

Minimum 0.0000435

Maximum 0.000057

Skewness -31.57273

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.15 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Variable pressure, censoring =20%, sample size=100.

Mean 5.69836x10~°

Variance 2.6896x 10713

Minimum 0.0000406

Maximum 0.000057

Skewness -31.57332

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.16 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Variable pressure, censoring =20%, sample size=25.

Mean -0.2499983

Variance 2.926913%x 107

Minimum -0.257061

Maximum -0.2344469

Skewness 21.55839

Kurtosis 713.2076

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.17 Statistical properties of the ML estimate for & = —0.25 over 1000

replications. Variable pressure, censoring =20%, sample size=30.

Mean -0.2499864

Variance 2.421619%x 107

Minimum -0.2501766

Maximum -0.2344469

Skewness 31.53584

Kurtosis 996.3461

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.18 Statistical properties of the ML estimate for & = —0.25 over 1000

replications. Variable pressure, censoring =20%, sample size=100.

Mean -0.2499931

Variance 4.061849%x 108

Minimum -0.2500975

Maximum -0.2436325

Skewness 31.48286

Kurtosis 994.1259

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.19 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =30%, sample size=25.

Mean 1.414562

Variance 6.638744x107*

Minimum 1.309188

Maximum 1.467707

Skewness -1.250334

Kurtosis 3.400071

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.02
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.20 Statistical properties of the ML estimate for v = 1.3 over 1000

replications. Variable pressure, censoring =30%, sample size=30.

Mean 1.420839

Variance 2.482535x 107

Minimum 1.35258

Maximum 1.558679

Skewness -0.3329671

Kurtosis 8.630065

D’Agostino Skewness | Reject Normality with prob. level 0.000024
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.21 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =30%, sample size=100.

Mean 1.424861

Variance 1.108091x 10~

Minimum 1.38102

Maximum 1.558679

Skewness 1.010989

Kurtosis 29.32565

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.22 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Variable pressure, censoring =30%, sample size=25.

Mean 5.69728x 1075

Variance 4.510112x10™13

Minimum 0.0000362

Maximum 0.000057

Skewness -29.82707

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.23 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Variable pressure, censoring =30%), sample size=>50.

Mean 5.69859%10~°

Variance 1.877189x 1013

Minimum 0.0000433

Maximum 0.000057

Skewness -31.56529

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.24 Statistical properties of the ML estimate for A = 5.7 x 10~° over 1000

replications. Variable pressure, censoring =30%, sample size=100.

Mean 5.69863x 107>

Variance 1.8769x 101

Minimum 0.0000433

Maximum 0.000057

Skewness -31.537532

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.25 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Variable pressure, censoring =30%, sample size=25.

Mean -0.2500268
Variance 1.852176x 1077
Minimum -0.2625799
Maximum -0.2477871
Skewness -25.55183
Kurtosis 732.313

D’*Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Variable pressure, censoring =30%, sample size=30.

Table 5.26 Statistical properties of the ML estimate for & = —0.25 over 1000

Mean -0.2499907
Variance 2.058879x 107
Minimum -0.2505908
Maximum -0.2356774
Skewness 31.4331
Kurtosis 992.128

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 5.27 Statistical properties of the ML estimate for & = —0.25 over 1000

replications. Variable pressure, censoring =30%, sample size=100.

Mean -0.2499869
Variance 2.052673x 10"
Minimum -0.250088
Maximum -0.2356774
Skewness 31.55361
Kurtosis 997.0893

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Variable pressure, censoring =40%, sample size=25.

Table 5.28 Statistical properties of the ML estimate for v = 1.5 over 1000

Mean 1.433256
Variance 2.332259%x 1073
Minimum 0.9271806
Maximum 1.579988
Skewness -2.573467
Kurtosis 19.60515

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 5.29 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =40%, sample size=50.

Mean 1.452074

Variance 5.952188x107*

Minimum 1.263457

Maximum 1.579988

Skewness -2.107651

Kurtosis 12.26067

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.30 Statistical properties of the ML estimate for v = 1.5 over 1000

replications. Variable pressure, censoring =40%, sample size=100.

Mean 1.451247

Variance 3.678135x 10~

Minimum 1.386606

Maximum 1.579988

Skewness -0.6873839

Kurtosis 5.095651

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level G.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0
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Table 5.31 Statistical properties of the ML estimate for A = 5.7 x 10™° over 1000

replications. Variable pressure, censoring =40%, sample size=25.

Mean 5.69835x 1075

Variance 4.545123x10713

Minimum 0.0000464

Maximum 0.0000667

Skewness -7.228319

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus | Reject Normality with prob. level 0.0

Table 5.32 Statistical properties of the ML estimate for A = 5.7 x 10~ over 1000

replications. Variable pressure, censoring =40%, sample size=350.

Mean 5.69926x 107>

Variance 1.164417%x10~13

Minimum 0.0000464

Maximum 0.0000586

Skewness -29.82013

Kurtosis 0

D’Agostino Skewness | Reject Normality with prob. level 0.0
D’Agostino Kurtosis | Reject Normality with prob. level 0.0
D’Agostino Omnibus { Reject Normality with prob. level 0.0
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Table 5.33 Statistical properties of the ML estimate for A = 5.7 x 10~% over 1000

replications. Variable pressure, censoring =40%, sample size=100.

Mean 5.69894x 10~
Variance 1.1236x 10713
Minimum 0.0000464
Maximum 0.000057
Skewness -31.57532
Kurtosis 0

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

replications. Variable pressure, censoring =40%, sample size=25.

Table 5.34 Statistical properties of the ML estimate for b = —0.25 over 1000

Mean -0.2504066
Variance 2.358565x 1073
Minimum -0.3735061
Maximum -0.2368246
Skewness -18.89583
Kurtosis 435.9554

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

Table 5.35 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Variable pressure, censoring =40%, sample size=50.

Mean -0.2500563
Variance 1.149322x 107
Minimum -0.2694506
Maximum -0.2368246
Skewness -12.26173
Kurtosis 266.4028

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0

Table 5.36 Statistical properties of the ML estimate for 6 = —0.25 over 1000

replications. Variable pressure, censoring =40%, sample size=100.

Mean -0.2499968
Variance 1.745895% 10~ "
Minimum -0.2504289
Maximum -0.2368246
Skewness 31.37351
Kurtosis 989.5951

D’Agostino Skewness

Reject Normality with prob. level 0.0

D’Agostino Kurtosis

Reject Normality with prob. level 0.0

D’Agostino Omnibus

Reject Normality with prob. level 0.0
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Table 5.37 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=23.

1.290 x 10~* —2.01 x 10~ 1.60x 10~7
—2.01 x 101 574 x 10" 3.00 x 1010
1.60 x 10~7 3.00x 10710 132x 107

Table 5.38 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=25.

434 x107* —180x10"% 320x10°€
~1.80x10"? 1.84x 107 —200x 10°1°0
3.20x 100 —2.00x 10719 293 x 10~7

Table 5.39 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=235.

6.64 x 10-* —1.00x 10~° 2.02 x 10—¢
~1.00x 1072 431 x10~2 1.00x 10~10
2.02x10°% 1.00x 1079 1.85x 10~7
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Table 5.40 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=25.

233x 108 —7.30x10"% 129 x 10-°¢
—7.30 x 10~% 455 x 101 —1.00 x 10~?
1.29%x 107% —1.00x 10™? 2.36 x 107

Table 5.41 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=50.

563 x10°° —160x10"% 2.14x10°°
—16x10"% 1.49x 1078 —200x 10°10
2.14 x 10~® —2.00x 1071® 265 x 10~7

Table 5.42 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=50.

1.33 x107* —-1.80x 10" 223 x 1078
—180x10"°% 1.82x 10" —2.00x 10™10
223 x 107 —2.00x 10710 242 x 1077
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Table 5.43 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=350.

248 x 107* —1.90 x10™° 2.15x10°%
—190x 10~ 1.88x 10713 200 x 10~10
2.15x 1008 —2.00x 1071 206 x 10~ 7

Table 5.44 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=50.

505 x 107¢ —1.90x10™% 1.21 x10~5
—1.90x 10" 1.16 x 10713 —2.00 x 10~10
1.21 x 1005 —2.00x 10719 1.153 x10~¢

Table 5.45 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=100.

3.12x107° —1.60 x 10™° 2.1 x 10~
—160x 10™% 1.49x 10" —2.00x 10°10
210x 1078 —2.00x 10719 265 x 107
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Table 5.46 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=100.

4.18 x10~®* —130x10"° 5535 x 1077
—1.30x 10~ 269x10°1¥ —1.00x 10710
5.55 x 107 —1.00x 10°® 4.06 x 10~®

Table 5.47 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=100.

1.11 x 10~* —1.80 x 10™® 1.99 x 10~8
—1.80x 10~ 1.88x 10~ —2.00x 1010
1.99 x 107% —2.00x 1071® 205 x 1077

Table 5.48 The Empirical variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=100.

368 x107* —1.40x10"% 2.05x 10~
—1.40x 10" 1.12x 10" —1.00x 10°10
205%x107% —100x 109 1.75x10°7
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Table 5.49 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=25.

6.60x 10~* —131x10"1° 5.36x 10°8
—1.31 x10710 125 x 10" 229 x 10~
5.36 x 108 229 x 10°1 991 x 10713

Table 5.30 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=25.

T44x 107* —1.33x10"19 540x 108
—133x 10710 716x10"8® —225x%x 1071
5.40 x 10~% —225 x 1071  4.44 x 10713

Table 5.51 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=25.

8.14x 10~ —142x10710 584 x 108
—1.42%x 10710 909 x 1078 235 x10°1
5.84 x 10~8 235 x 1071 6.99 x 101
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Table 5.52 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=25.

9.75 x 107* =249 x10° 1.03x 1077
—2.49 x 107190 182x 107" —4.08 x 10~
1.03 x 1077 —4.08 x 101 7.70x 10~

Table 5.53 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=30.

3.25 x107* —5.95x101 240 x 108
—595 x 10711 4.17x107¥® _—1.03x 1071
240 x 1078 —103x10°1 331x10°13

Table 5.54 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=50.

3.56 x 107* —7.535 x 10~ 3.05 x 10~®
—755x 10"11 508 x 10718 —1.27 x 10~

3.05x 108 —127x107% 3.96 x10°13
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Table 5.55 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=350.

3.88 x 10~* —6.56 x 101 2.66 x 108
—6.56 x 1071 3.89 x 107® —1.08 x 10~
266 x10"% —1.08x10"1 367x10°13

Table 5.56 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=350.

420%x 10~ —7.79x 10~ 3.17x10°%
—7.79x 10711 6.08 x 1071 —1.26 x 10~!!
3.17x107% —126 x 10711 278 x 10°13

Table 5.57 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =10%, sample size=100.

1.61 x 107t —296 x 10~ 1.20x10°8
—2.96 x 10~ 209 x 1078 —5.15 x 10~12
1.20x 1078 —5.13x 10712 168x 10713
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Table 5.38 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =20%, sample size=100.

1.75 x 10* —4.56 x 10711 1.84 x 10~8
—4.56 x 107 4.80x 1078 767 x 10~12
1.84 x 1078 —767 x 10712 351 x 10"

Table 5.539 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =30%, sample size=100.

1.89 x 10~* —4.36 x 1071 1.76 x 10~8
—4.36 x 10~ 3.07x 10718 _—7.15x 10712
1.76 x 1078 —T7.15x 10712 197 x 10~13

Table 5.60 The Fisher variance-covariance matrix of the ML estimates over 1000

replications. Variable pressure, censoring =40%, sample size=100.

212 x 107* —=5.31 x 10~ 216 x 108
—531 x 107! 381 x 107'® —856x 10°12
2.16 x 1078 —8.56 x 1012 885 x 10~
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1.2800 " 13067 13333 13800

Fig. 5.1 Relative frequency histogram of the ML estimate for
gamma=1.5, variable pressure, censoring=10%, sample size=25.

T

0000020 0.060033 " 0.000047 0.000080

Fig. 5.2 R_elative frequency histogram of the ML estimate for
lambda=0.000057, variable pressure, censornng=10%, sample size=25.
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02620 | -02573 ".0.2527 -0.2430
Fig. 5.3 Relative frequency histogram of the ML estimate for
b=-0.25, variable pressure, censoring=10%, sample size=25.

1.3000 14333 15000

Fig. 5.4 Relative frequency histogram of the ML estimate for
gamma=1.5, variable pressure, censoring=10%, sample size=100.
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0.000040 0.000047 0.000053 0.000060

Fig. 5.5 Relative frequency histogram of the ML estimate for
lambda=0.000057, variable pressure, censoring=10%, sample size=100.

02550 62457  -02383  -0.2300

Fig. 5.6 Relative frequency histogram of the ML estimate for
b=-0.25, variable pressure, censoring=10%, sampie size=100.
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Fig. 5.7 Relative frequency histogram of the ML estimate for
gamma=1.5, variable pressure, censoring=40%, sample size=235.

0.000040 0.000052 " 0000067 0.000080

Fig. 5.8 Relative frequency histogram of the ML estimate for
lambda=0.000057, variable pressure, censoring=40%, sample size=25.
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Fig. 5.9 Relative frequency histogram of the ML estimate for
b=-0.25, variable pressure, censoring=40%, sample size=25.
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Fig. 5.10 Relative frequency histogram of the ML estimate for

gamma=1.5, variable pressure, censoring=40%, sample siz==100.
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0000040 0000047  0.000053 " 0.060060

Fig. 5.11 Relative frequency histogram of the ML estimate for
lambda=0.000057, variable pressure, censoring=40%, sample size=100.
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Fig. 5.12 Relative frequency histogram of the ML estimate for
b=-0.25, variable pressure, censoring=40%, sample size=100.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

The maximum likelihood estimation procedure is to be recommended for pa-
rameter estimation when there are censored observations. From statistical theory,
it is known that a maximum likelihood estimator is asymptotically (large samples)
unbiased and has a normal distribution with a variance-covariance matrix given by
the inverse of the Fisher information matrix. According to the simulation results, it is
clear that the maximum likelihood estimator under fixed or variable pressure, and for
different sample sizes with different levels of censoring, is unbiased or close to being
unbiased. On the other hand, the estimator is not normally distributed especially
when the parameter value being estimated is small (-0.25 for b and 5.7 x 107 for
lambda). This lack of normality is also manifested in lack of agreement between the
observed variance-covariance matrix and the theoretical variance-covariance matrix.
These results imply that for regular sample sizes of 100 or less, one may not use
normal theory and the Fisher variance-covariance matrix to test hypothesis or set
confidence limits for the maximum likelihood estimates. While the maximum likeli-
hood estimates are reliable, statistical inference drawn from hypotheses testing and
confidence intervals using the Fisher variance-covariance matrix can be in serious er-

ror and therefore misleading since the variance-covariance values in the Fisher matrix
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underestimate the observed variance-covariance matrix from simulation, confidence
intervals will tend to be narrower than expected and test statistics larger than ex-
pected. The lack of normality of the maximum likelihood estimator is alleviated for
parameter estimates large in value such as that for v = 1.5, but only under the con-
stant pressure assumption. For estimates of small value parameters, normal theory
seems to require large sample sizes beyond what is normally encountered in practice.

Although the error term associated with a maximum likelihood estimate of a
Weibull parameter can be inaccurate (in the sense of underestimation the true error),
one may still use the estimator itself (which is unbiased or close to being unbiased)
in the Weibull distribution to model creep induced failure times of cured-in-place

rehabilitation liners. For instance, from the accelerated lifetime model

t = toe”, (6.1)

where ty has the Weibull distribution and z represents pressure in psi, one may

predict the probability of survival of a liner beyond age ¢ to be

gt (6.2)

Also, the predicted pressure r under which a liner survives for a given time ¢ (say

50 years) with probability 1 — p is given by

_ InA—4lnt—In(—In(l1-p))
= = .

T (6.3)
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Likewise, the predicted probability of survival beyond age ¢ for variable pressure

from the accelerated lifetime model

t = e, (6.4)
is given by
e—J:"/S-r"’“e““."(")dr. (65)

From Eq. (6.5) one can predict the pressure z under which the pipe liner survives

to age t (say 50 years) with probability 1 — p.

6.2 Future Work

Future work could include the following points:

1. Change the pressure function z(t) = ¢ + asin % to z(¢t) = ¢ + acos & in the

accelerated lifetime testing under variable pressure.

o

Change the amplitude "a” for both functions, and study the effect it may have

on the estimates as well as on statistical inference.

3. Consider a constant step-wise function instead of a continuous function for

pressure over time.

4. Consider a variable piecewise seasonal function for pressure over time.

5. Compare the statistical properties of estimates from the various models.
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APPENDIX A

FORTRAN PROGRAM FOR THE NEWTON-RAPHSON
METHOD UNDER CONSTANT PRESSURE

c This program uses the Newton—-Raphson method to find the

c maximum likelihood estimates under constant pressure

Implicit Real*8 (a-h,o-z)
character*80 title
common/in/ gamma, lambda, b, x, m

common/out/ t(500)

11 = 5
12 = 6
13 =7

Call stdio(11,12)
Read (11, (ag80)’) title
write(12,’(a80)’) title

read(1l1,*) gamma

write(1l2,%) ’gamma = ’,gamma
read (11, *) lambda

write(12,*) ’lambda = °’,lambda
read(11,*) b

write(12,*) ’b = ?,b
read(11,*) x

write(l2,*) ’x = °’,x
read(1l1,*) m

write(12,*) ’m = ’,m

if (m .gt. 500) then
write(*,*) ’Error: Sample size (m) must not exceed 500.’

goto 1000

120
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endif
read(11i,*) n

write(12,%) 'n = ’,n

close (11)
write(12,’(8x,at,10x,a3,1x,6(17x,a7))’) ’K’,’ERR’,’x(1)’,
$ 'x(2)°,'x(3)?,%aa(i,1)’,’aadi,2)’,’aa(i,3)"’

open(13,file=’ran.dmp’,status=’unknown’)

do i =1, n
write(*,*) ’Iteration ’,i,’ of ’,n
call consrep(13)
call newtonr(12)

enddo

1000 close(12)
stop

end

subroutine consrep(1l3)

Implicit real*8 (a-h,o0-z)

integer ISEED, M

common/in/ gamma, lambda, b, x, m

common/out/ t(500)

dimension r(500)

external DRNUN, RNSET

ISEED = ITIMEQ)

Call RNSET(ISEED)

write(13,*) °’ iseed = ’, iseed

Call DRNUN(m,R)

write(13,%*) °? Random # T R’

do 6 J=1,M
T(j)=((-dlog(1.0d0-R(j))/LAMBDA)**(1.0d0/GAMMA) ) *dexp (B*X)
write(13,*) j,t(§),r(j)

6 continue

return
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end

Subroutine newtonr(l2)
implicit real*8(a-h,o-z)
dimension aa(3,4),Y(3),X(3),F(12),PSI(500)
common/in/ gamma, lambda, b, z, m
common/out/ t(500)
TOL=0.00001d0
X(1)=gamma
X(2)=lambda
X(@3)=b
do I=1,m
PSI(I)=26.5d0
enddo

K=1

100 SUM1=0.0d0
SUM2=0.0d0
SUM3=0.0d0
SUM11=0.0d0
SUM22=0.04d0
SUM33=0.040

do 105 I=1,M
if (T(I).LE.1.14) then
F1=1.0/X(1)+dlog(T (I))+X(2)*T (I)**X(1)*dexp (-X(1)*X(3)*PSI(I) )
$ * (X (3)*PSI(I)-dlog(T(I)))-X(3)*PSI(I)

SUM1=SUM1+F1

F2=1.0/X(2)-T(I)**X (1) *dexp (-X (1) *X(3) *PSI(I))
SUM2=SUM2+F2

F3=X(1)*X(2)*PSI(I)*T (I)**X (1) *dexp (~-X(1)*X(3)*PSI(I))~-
$ X(1)*PSI(I)
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SUM3=SUM3+F3

else

F11=X(2)*T (I)#**X (1) *dexp (-X (1) *X(3) *PSI(I))*(X(3)*PSI(I) -
$ dlog(T(I)))
SUM11=SUM11+F11

F22=T (I)#**X(1)*dexp(-X(1)*X(3)*PSI(I))
SUM22=SUM22+F22

F33=X(1)*X(2)*PSI(I)*T(I)**X(1)*dexp(-X(1)*X(3)*PSI(I))
SUM33=SUM33+F33

endif

105 continue

F(1)=SUM1+SUM11
F(2)=SUM2-SUM22
F(3)=SUM3+SUM33

DER11=0.0d0
DER111=0.040
DER12=0.04d0
DER112=0.0d0
DER13=0.0d0
DER113=0.0d0O
DER22=0.0d0
DER33=0.0d0
DER333=0.0d0

do 110 I=1,M
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if(T(I).LE.1.14 )then
F111=—1.0/X(1)**2+X(2) *T(I) **X (1) *dexp (-X (1) *X (3) *PSI(I))*

$ dlog(T(I))
$ * (X (3)*PSI(I)-dlog(T(I)))-X(2)*X(3)*PSI(I)*T(I)**X(1)*
$ dexp(—X(l)*X(S)*PSI(I))*(X(B)*PSI(I)—dlog(T(I)))

DER11=DER11+F111

F112=T(I)**X (1) *dexp (X (1) *X(3) *PSI(I))*(X(3)*PSI(I)-
$ dlog(T(I)))
DER12=DER12+F112

F113=-X(1) *X(2)*PSI(I)*T (I)**X (1) *dexp (-X (1) *X(3) *PSI(I))*
$ X(3)*PSI(I)-dlog(T(I)))+X(2)*PSI(I)*T(I)**X(1)*dexp(-X(1)*
$ X(3)*PSI(I))~PSI(I)
DER13=DER13+F113

F222=-1_.0/X(2) **2
DER22=DER22+F222

F223=X (1) *PSI(I)*T (I)**X (1) *dexp (-X(1)*X(3)*PSI(I))
DER23=DER23+F223

F333=—X (1) #%2%X (2) *PST (I)**2*T (L) **X (1) *dexp (-X (1) *X(3) *PSI(I))
DER33=DER33+F333

else
F1111=X(2)*T (I) **X (1) *dexp (-X (1) *X (3) *PSI{I)) *dlog(T(I)) *
$ (X(3)*PSI(I)~dlog(T(I)))~X(2)*X(3)*PSL(I)*T(I)**X(1)*
$ dexp (-X (1) *X(3) *PSI(I))*(X(3)*PSI(I)~dlog(T(I)))

DER111=DER111+F1111

F1112=T(I)#**X(1)*dexp (-X(1)*X(3)*PSI(I))*(X(3)*PSI(I)-
$ dlog(T(I)))
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DER112=DER112+F1112

F1113=-X(1) *X(2)*PSI(I)*T(I)**X (1) *dexp (X (1) *X(3) *PSI(I))*
$ (X(3)*PSI(I)-dlog(T(I)))+X(2)*PSI(I)*T (I)**xX(1)*

$ dexp (X (1) *X(3)*PSI(I))

DER113=DER113+F1113

F2223=X (1) *PSI (I)*T(I)**X(1)*dexp (-X (1) *X(3)*PSI(I))
DER223=DER223+F2223

F3333=-X (1) #*2*X (2) *PST (I) *%2%T (I) #*X (1) *dexp (-X (1) *X (3) *
$ PSI(I))
DER333=DER333+F3333

endif

110 continue

F(4)=DER11+DER111
F(5)=DER12+DER112
F(6)=DER13+DER113
F(7)=F(5)
F(8)=DER22

F (9)=DER23+DER223
F(10)=F(6)
F(11)=F(9)
F(12)=DER33+DER333

c Compute the Jacobian matrix

aa(1,1)=F(4)
aa(1,2)=F(5)
aa(1,3)=F(6)
aa(2,1)=F(7)
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aa(2,2)=F(8)
aa(2,3)=F(9)
aa(3,1)=F(10)
aa(3,2)=F(11)
aa(3,3)=F(12)

c Compute -F(X)

aa(1,4)=-F(1)
aa(2,4)=-F(2)
aa(3,4)=-F(3)

c Solves the n X n linear system J(X) Y = -F(X)

det=aa(l, 1)*(aa(2,2)*aa(3,3)-aa(2,3)*aa(3,2))-
$ aa(l,2)*(aa(2,1)*aa(3,3)-aa(2,3)*aa(3,1))+
$ aa(l,3)*(aa(2,1)*aa(3,2)-aa(2,2)*aa(3,1))

detl=aa(1,4)*(aa(2,2)*aa(3,3)-aa(2,3)*aa(3,2))~
$ aa(1,2)*(aa(2,4)*aa(3,3)-aa(2,3)*aa(3,4))+
$ aa(l,3)*(aa(2,4)*aa(3,2)-aa(2,2)*aa(3,4))

det2=aa(1,1)*(aa(2,4)*aa(3,3)-aa(2,3)*aa(3,4))-
$ aa(l,4)*(aa(2,1)*aa(3,3)-aa(2,3)*aa(3,1))+
3 aa(1,3)*x(aa(2,1)*aa(3,4)-aa(2,4)*aa(3,1))

det3=aa(1,1)*(aa(2,2)*aa(3,4)-aa(2,4)*aa(2,3))-
$ aa(2,1)*(aa(2,1)*aa(3,4)-aa(2,4)*aa(3,1) )+
$ aa(l,4)*(aa(2,1)*xaa(2,3)-aa(2,2)*aa(3,1))
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Y(1)=deti/det
Y(2)=det2/det
Y(3)=det3/det

ERR=0.0
do 9 I=1,3
if (abs(Y(I)).GT.ERR) ERR=abs(Y(I))
9 continue
if (ERR.LE.0.00001) goto 11
do 10 I=1,3
X(D=X(D+Y(D)
10 continue
K=K+1
goto 100
11 continue
Write(12,’(i10,4(ix,1pg23.16),1x,3(1x,1pg23.16))?)
$ K,ERR, (x(i),i=1,3),(aa(1,j),j=1,3)
Write(12,’ (106x,1x,1pg23.16,1x,1pg23.16, 1x,1pg23.16)’)
$ ((aa(i,j),j=1,3),1i=2,3)
Return

end
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APPENDIX B

FORTRAN PROGRAM FOR THE NEWTON-RAPHSON
METHOD UNDER VARIABLE PRESSURE

c This program uses the Newton-Raphson method to find the maximum

c likelihood estimates under variable pressure

Implicit real*8 (a-h,o-z)
dimension aa(3,4),Y(3),F(12),T(500)
common /one/ a,b,c,ab,pi,x(3),n

external z1, z2, z3 ,z4,z5,z6,z7,28,

$ z9,z10,z11,2z12,=z13,z14,2z15,z16
integer N, J, M
M=3
N=20
TOL=.00001
PI = 4*atan(1.0)
1l1 =5
12 =6

Call stdio(11,12)
Read(11,’(a80)’) title
write(12,’(a80)’) title
read(l1l,*) alpha

write(12,*) ’alpha = ’,alpha
read(1l1,*) beta
write(1l2,%*) ’beta = ’,beta

read(1l1,*) gamma

write(l2,*) ’gamma = ’,gamma
read(1l1,*) nel
write(12,*) ’nel = ’,nel
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read(l1,*) a
write(12,%) 'a = ’,a
read(1l1,*) c
write(12,%*) ‘c = ’,c
read(11,%*) ab
write(12,%) ’ab = ’,ab
read(11,*) nsim

write(12,*) ’nsim = ’,nsim

close (11)
Write(l2,’(8x,a1,10x,a3,1x,6(17x,a7))’) ’K? ,’ERR’, 'x(1) 7,
$ 'x(2)?,’x(3)?,%aa(i,1)’,’aa(i,2)?,’aa(i,3)’

do 1000 ij = 1, nsim

write(*,*) ’Iteration ’,ij,’ of ’,nsim

call gnerate(alpha,beta,gamma,a,ab,c,nel,n,t)

K=1
x(1) = alpha
x(2) = beta
x(3) = gamma
100 SUM1=0.0
SUM2=0.0
SUM3=0.0
SUM11=0.0
SUM22=0.0
SUM33=0.0

do 105 I=1,NEL
B=T(I)
if(T(I).LE.1.14)then
wj = anteg(zl)
F1=1.0/X(1)-X(3)*(C+AB*dsin (PI*T(I)/6.0))+dlog(T(I))+WJ
SUM1=SUM1+F1

wj = anteg(z2)
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F2=1.0/X(2)+WJ
SUM2=SUM2+F2
wj = anteg(z3)

F3=-(C+AB*dsin (PI*T (I)/6.0))—(X(1)-1)*(C+AB*dsin(PI*T(I)/6.0))+WJ
SUM3=SUM3+F3

else
wj = anteg(z4)
F11=WJ
SUM11=SUM11+F11

wj = anteg(z5)
F22=WJ

SUM22=SUM22+F22

wj = anteg(z6)

F33=WJ
SUM33=SUM33+F33

endif

105 continue

F(1)=SUM1+SUM11
F(2)=SUM2-SUM22
F(3)=SUM3+SUM33

DER11=0.0
DER111=0.0
DER12=0.0
DER112=0.0
DER13=0.0
DER113=0.0
DER22=0.0
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DER33=0.0
DER333=0.0

do 110 I=1,NEL

if(T(I).LE.1.14 )then
wj = anteg(z7)
F111=-1.0/X(1) **¥2+WJ
DER11=DER11+F111

wj = anteg(z8)
F112=WJ
DER12=DER12+F112

wj = anteg(z9)
F113=WJ
DER13=DER13+F113

F222=—1.0/X(2) *%2
DER22=DER22+F222

wj = anteg(z10)
F223=WJ
DER23=DER23+F223
wj = anteg(zll)

F333=WJ
DER33=DER33+F333

else
wj = anteg(z12)

F1111=WJ
DER111=DER111+F1111
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wj = anteg(z13)
F1112=WJ
DER112=DER112+F1112

wj = anteg(z14)
F1113=WJ
DER113=DER113+F1113

wj = anteg(zlb)
F2223=WJ
DER223=DER223+F2223

wj = anteg(z16)
F3333=WJ
DER333=DER333+F3333

endif

110 continue

F(4)=DER11+DER111
F(8)=DER12+DER112
F(6)=DER13+DER113
F(7)=F(5)
F(8)=DER22
F(9)=DER23+DER223
F(10)=F(6)
F(11)=F(9)

F (12)=DER33+DER333

c Compute the Jacobian matrix

aa(l,1)=F(4)
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aa(1,2)=F(5)
aa(1,3)=F(6)
aa(2,1)=F(7)
aa(2,2)=F(8)
aa(2,3)=F(9)
aa(3,1)=F(10)
aa(3,2)=F(11)
aa(3,3)=F(12)

c Compute -F(X)

aa(1,4)=-F(1)
aa(2,4)=-F(2)
aa(3,4)=-F(3)

c Solves the n X n linear system J(X) Y = -F(X)

det=aa(l,1)*(aa(2,2)*aa(3,3)-aa(2,3)*aa(3,2))-
$ aa(1,2)*(aa(2,1)*aa(3,3)-aa(2,3)*aa(3,1))+
3 aa(l,3)*(aa(2,1)*aa(3,2)-aa(2,2)*aa(3,1))

detl=aa(1,4)*(aa(2,2)*aa(3,3)-aa(2,3)*aa(3,2))-
3 aa(1,2)*(aa(2,4)*aa(3,3)-aa(2,3)*aa(3,4))+
$ aa(l,3)*(aa(2,4)*aa(3,2)-aa(2,2)*aa(3,4))

det2=aa(1,1)*(aa(2,4)*aa(3,3)-aa(2,3)*aa(3,4))-
$ aa(l,4)*(aa(2,1)*aa(3,3)-aa(2,3)*aa(3,1))+
$ aa(l,3)*(aa(2,1)*aa(3,4)-aa(2,4)*aa(3,1))

det3=aa(1l,1)*(aa(2,2)*aa(3,4)~aa(2,4)*aa(2,3))-
$ aa(2, 1) *(aa(2,1)*aa(3,4)-aa(2,4)*aa(3,1))+
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$ aa(l,4)*(aa(2,1)*aa(2,3)-aa(2,2)*aa(3,1))

Y(1)=det1/det
Y(2)=det2/det
Y(3)=det3/det

ERR=0.0

do 9 I=1,M

if (abs(Y(I)) .LE.ERR) goto 9
ERR=abs (Y(I))

9 continue

if (ERR.LE.0.00001) goto 11
do 10 I=1, M
X(D=XDM+Y(D

10 continue
K=K+1
goto 100
11 continue
Write(12,’(i10,4(1x,1pg23.16),1x,3(1x,1pg23.16))°)
$ K,ERR, (x(i),i=1,3),(aa(1,j),j=1,3)
Write(12,’ (106x, 1x, 1pg23.16, 1x,1pg23.16, 1x, 1pg23.16) ’)
$ ((aa(di,j),j=1,3),1=2,3)
1000 continue
stop
end

function z1(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z1=-X(2) *Wx* (X (1) ~1) *dexp (-X (1) *X (3) * (C+AB*dsin (PI*W/6.0)))
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—X (1) #*X(2) *Wak (X (1) —1) *dlog (W) *dexp (=X (1) *X(3) *
(C+AB*dsin(PI*W/6.0)))
+X (1) *X(2)*X(3) * (C+AB*dsin (PI*W/6.0)) *Wx*x (X (1) -1) *
dexp (X (1) *X(3)*(C+AB*dsin(PI*W/6.0)))

return

© H hH &N

end

function z2(w)

implicit real*8 (a-h,o0-z)

common /one/ a,b,c,ab,pi,x(3),n

Z2=—X (1) *WH* (X (1) -1) *dexp (-X (1) *X (3) * (C+AB*dsin (PI*W/6.0)))
return

end

function z3(w)

implicit real*8 (a-h,o0-2z)

common /one/ a,b,c,ab,pi,x(3),n

Z3=X (1) **2*X(2) * (C+AB*dsin(PI*W/6.0) ) *Wk* (X (1) -1) *
$ dexp (-X(1)*X(3)*(C+AB*dsin (PI*W/6.0)))

return

end

function z4(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z4=-X (2) *Wx* (X (1) -1) *dexp (-X (1) *X (3) * (C+AB*dsin(PI*W/6.0)))
—X (1) *X(2) *W+* (X (1) -1) *dlog (W) *dexp (-X (1) *X(3) *
(C+AB*dsin(PI*W/6.0)))
+X (1) *X(2) *X (3) * (C+AB*dsin (PI*W/6.0) ) xWk* (X (1) -1) *

dexp (-X (1) *X(3)*(C+AB*dsin(PI*W/6.0)))

return

€ NH B &

end

function z5(w)
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implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z5=-X (1) #W** (X (1) -1) *dexp (-X (1) *X (3) * (C+AB*dsin (PI*W/6.0)))
return

end

function z6(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z6=X (1) **2%X (2) * (C+AB*dsin(PI*W/6.0) ) *Wk* (X (1) -1) *
$ dexp(~X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

return

end

function z7(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z7=-2%X (2) *W** (X (1) -1) *dlog (W) *
$ dexp(~-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ +2%X (2) *X (3) * (C+AB*dsin (PI*W/6.0) ) *Wx*x (X (1) -1) *
$ dexp(~X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ +2%X (1) *X (2) *X(3) * (C+AB*dsin (PI*W/6.0) ) *Wk* (X (1) -1) *
$ dlog(W)*dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

$ -X(1)*X(2)*Wxx(X(1)-1)*(dlog (W) ) **2%

$ dexp(~X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ —X(1)*X(2)*X(3) **2% (C+AB*dsin (PI*W/6.0) ) **2%

$ Wex(X(1)-1)*dexp (-X(1)*X(3) *(C+AB*dsin(PI*W/6.0)))
return

end

function z8(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z8=-Wk* (X (1) -1) *dexp (~X (1) *X (3) * (C+AB*dsin (PI*W/6.0)))
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$ —X(L)*Wh*x(X(1)-1)*dlog(W)=*

$ dexp (X (1) *X(3) *(C+AB*dsin(PI*W/6.0)))

$ +X (1) *X(3) * (C+AB*dsin (PI*W/6.0) ) *Wk* (X (1) -1) *
$ dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

return

end

function z9(w)

implicit real*8 (a—h,o0-2z)

common /one/ a,b,c,ab,pi,x(3),n

Z29=2%X (1) *X (2) * (C+AB*dsin (PI*W/6.0) ) *Wx*x (X(1)-1)*
$ dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

$ +X (1) #%2%X (2) * (C+AB*dsin (PI*W/6.0) ) *Waxk (X (1) -1) *
$ dlog(W)*dexp(-X(1)*X(3)*(C+AB*dsin (PI*W/5.0)))
$ —X(1)#+%x2xX(2)*X(3) *(C+AB*dsin (PI*W/6.0) ) **2*
$ Wex(X(1)-1)*dexp (=X (1)*X(3)*(C+AB*dsin(PI*W/6.0)))
return

end

function z10(w)

implicit real*8 (a—h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z10=X (1) #*2% (C+AB*dsin (PI*W/6.0) ) *W** (X(1)-1)*
$ dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

return

end

function zi1i(w)
implicit real*8 (a—h,o0-z)
common /one/ a,b,c,ab,pi,x(3),n
Z11=—X(1)**3*X (2) * (C+AB*dsin(PI*W/6.0) ) **2%

$ Wxx(X(1)-1)*dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
return

end
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function z12(w)
implicit real*8 (a-h,o0-z)
common /one/ a,b,c,ab,pi,x(3),n
Z12=-2%X (2) *W#x (X (1> ~1) *d1log (W) *
$ dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ +2%X (2) *X (3) * (C+AB*dsin (PI*W/6.0) ) *Wx*x (X (1) -1) *
$ dexp(-X(1)*X(3)* (C+AB*dsin(PI*W/6.0)))
$ +2%X (1) *X (2) *X(3) *(C+AB*dsin (PI*W/6.0) ) *Wk* (X (1) -1) *
$ dlog(W)*dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ —X(L)*X(2)*Wk (X (12 —1) *(dlog (W) ) #%2%
$ dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
$ -X(1)*X(2)*X(3)**2# (C+AB*dsin (PI*W/6.0) ) **2*
$ Wk (X(1)-1)*dexp (-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
return

end

function z13(w)

implicit real*8 (a—h,o0-z)

common /one/ a,b,c,ab,pi,x(3),n

Z13=-Wx* (X (1) -1) *dexp (X (1) *X(3) * (C+AB*dsin (PI*W/6.0)))
=X (1) *Wek (X (1) -1)*=dlog (W) *
dexp (-X (1) *X (3) * (C+AB*dsin (PI*W/6.0)))

+X (1) *X(3) * (C+AB*dsin (PI*W/6.0) ) *Wa*k (X (1) -1)*

dexp (X (1) *X(3) *(C+AB*dsin (PI*W/6.0)))

return

& N B &

end

function z14(w)

implicit real*8 (a—h,o0-z)

common /one/ a,b,c,ab,pi,x(3),n

Z14=2%X (1) *X(2) * (C+AB*dsin(PI*W/6.0) ) *Wx*x (X (1) -1) *

$ dexp(-X(1)*X(3)* (C#+AB*dsin(PI*W/6.0)))
$ +X (1) #%2%X (2) ¥ (C+AB*dsin(PI*W/6.0) ) *W+* (X(1)-1) *
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$ diog(W)*dexp(—X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))

$ —X(1)*%2%X(2)*X(3)*(C+AB*dsin (PI*W/6.0)) **2%

$ Wax (X (1)-1)*dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
return

end

function z15(w)

implicit real*8 (a-h,o0-z)

common /one/ a,b,c,ab,pi,x(3),n

Z15=X (1) *%2% (C+AB*dsin (PI*W/6.0)) *Wk* (X (1) ~1)*
$ dexp(—X(1)*X(3)*(C+AB*dsin (PI*W/6.0)))
return

end

function z16(w)

implicit real*8 (a-h,o-z)

common /one/ a,b,c,ab,pi,x(3),n

Z16=-X (1) **3*X (2) * (C+AB*dsin (PT*W/6.0) ) **2*
$  Wex(X(1)-1)*dexp(-X(1)*X(3)*(C+AB*dsin(PI*W/6.0)))
return

end

function anteg(z)
implicit real*8 (a-h,o-2z)
common /one/ a,b,c,ab,pi,x(3),n
external z
H = (B-A)/N
WJ0 = Z(A) + Z(B)
Wil = 0.0
Wi2 = 0.0
MM=N-1
do 20 J=1,MM
W = A+J*H
if (J.EQ.2%x(J/2)) then
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WI2 = WI2+Z (W)
else
wWJ1

endif

WIL+Z (W)

20 continue
WI = WJO+2%WJI2+4%WJ1
anteg = WJxH/3
return

end

subroutine gnerate(alpha,beta,gamma,a,ab,c,nn,n,tj)
implicit real*8 (a-h,o-z)
external RNSET,DRNUN
dimension tj(nn)
F(X,c,ab,d,bb)=DEXP (~bb*d* (c+ab*SIN(PI*X/6.0))) *X**(d-1)
HT=.01
k=1
100 continue
ISEED = ITIME(Q)
Call RNSET(ISEED)
Call DRNUN(1,R)
R1=-dlog(1-R)/(BETA*ALPHA)
T0=0.0
do 4 AJJ=1,NN,HT
TJJ=TO+AJJ
H=(TJJ-A)/N
XIO=F(A,c,ab,alpha,gamma)+F(TJJ, c,ab, alpha, gamma)
XI1=0.0
XI2=0.0
MM=N-1
do 20 I=1, MM
X=A+I*H
if (I.EQ.2%(I/2)) then
XI2=XI2+F(X,c,ab,alpha, gamma)
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else
XI1=XI1+F(X,c,ab,alpha, gamma)
endif
20 continue
XI=XI0+2*XI2+4*XI1
XI=XI*H/3.0
if (XI.Gt.R1) goto 5
4 continue
goto 100
5 tjk) = tjj
k=k+1
6 if (k .le. nn) goto 100
return
end
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APPENDIX C

FORTRAN PROGRAM FOR FINDING THE INVERSE
OF A MATRIX

c This program finds the inverse of a matrix

double precision A(3,3),AINV(3,3),DET
integer IPASS

ND=3
open(UNIT=4,FILE="matrix.txt’,STATUS=’0LD’)
do IT=1, 334

read (4, *)A(1,1),A(1,2),A(1,3),

$ A(2,1),A(2,2),A(2,3),
$ A(3,1),A(3,2),A(3,3)
FACTOR=0.0
DET=1.0
do 1 I=1,ND
do 1 J=1,ND

if(I.EQ.J)then

AINV(I,I)=1.0
else

AINV(I,J)=0.0

endif

1 continue
do 9 IPASS=1,ND
IMX=TPASS
do 2 IROW=IPASS,ND
if (dabs (A (IROW,IPASS)).GT.dabs (A(IMX,IPASS)))then
IMX=TROW
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endif
2 continue
if (IMX.NE. IPASS) then
do 3 ICOL=1,ND
TEMP=AINV (IPASS,ICOL)
AINV(IPASS,ICOL)=AINV(IMX,ICOL)
AINV(IMX,ICOL)=TEMP
if (ICOL.GE.IPASS)then
TEMP=A (IPASS,ICOL)
A(IPASS,ICOL)=A(IMX,ICOL)
A (IMX, ICOL)=TEMP
endif
3 continue
endif
PIVOT=A (IPASS,IPASS)
DET=DET*PIVQOT
if (DET.EQ.0.0) then
write(*,10)
stop
endif
do 6 ICOL=1,ND
AINV(IPASS,ICOL)=AINV(IPASS,ICOL)/PIVOT
if (ICOL.GE.IPASS) then
A (IPASS,ICOL)=A(IPASS,ICOL)/PIVOT
endif
6 continue
do 8 IROW=1,ND
if (TROW.NE.IPASS) then
FACTOR=A (IROW, IPASS)
endif
do 7 ICOL=1,ND
if (IROW.NE.IPASS)then
AINV(TROW, ICOL)=AINV(IROW, ICOL)-FACTOR*AINV(IPASS,ICOL)
A (TROW,ICOL)=A(IROW,ICOL)-FACTOR*A(IPASS,ICOL)
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endif

7 continue
continue
) continue

open(UNIT=5,FILE="matrix_inverse.txt’,STATUS=’new’)

write(5,*)AINV(1,1) ,ATNV(1,2),AINV(1,3),
AINV(2,1),AINV(2,2) ,AINV(2,3),
AINV(3,1),AINV(3,2),AINV(3,3)

enddo

close (4)

close(5)

10 format(5X, ’-—ERROR IN INVERSE--THE MATRIX IS SINGULAR’)

stop

end
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