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ABSTRACT

Wavelets are signal-processing tools that have been o f interest due to their 

characteristics and properties. Clear understanding o f wavelets and their properties are a 

key to successful applications. Many theoretical and application-oriented papers have 

been written. Yet the choice o f a right wavelet for a given application is an ongoing quest 

that has not been satisfactorily answered. This research has successfully identified certain 

issues, and an effort has been made to provide an understanding o f  wavelets by studying 

the wavelet filters in terms o f  their pole-zero and magnitude-phase characteristics. The 

magnitude characteristics o f these filters have Hat responses in both the pass band and 

stop band. The phase characteristics are almost linear. It is interesting to observe that 

some wavelets have the exact same magnitude characteristics but their phase responses 

vary in the linear slopes. An application o f wavelets for fast detection o f the fault current 

in a transformer and distinguishing from the inrush current clearly shows the advantages 

o f  the lower slope and fewer coefficients - Daubechies wavelet D4 over D20. This 

research has been published in the IEEE transactions on Power systems and is also 

proposed as an innovative method for protective relaying techniques.

iii
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For detecting the frequency composition o f the signal being analyzed, an 

understanding o f  the energy distribution in tKe output wavelet decompositions is 

presented for different wavelet families. The wavelets with fewer coefficients in their 

filters have more energy leakage into adjacent bands. The frequency bandwidth 

characteristics display flatness in the middle o f  the pass band confirming that the 

frequency o f  interest should be in the middle o f the frequency band when performing a 

wavelet transform. Symlets exhibit good flatness with minimum ripple but the transition 

regions do not have sharper cut off. The number o f  wavelet levels and their frequency 

ranges are dependent on the two parameters -  number o f  data points and the sampling 

frequency -  and the selection o f these is critical to qualitative analysis o f  signals.

A wavelet seismic event detection method is presented which has been 

successfully applied to detect the P phase and the S phase waves o f earthquakes. This 

method uses wavelets to classify the seismic signal to different frequency bands and then 

a simple threshold trigger method is applied to the rms values calculated on one o f  the 

wavelet bands.

Further research on the understanding o f  wavelets is encouraged through this 

research to provide qualified and clearly understood wavelet solutions to real world 

problems. The wavelets are a promising tool that will complement the existing signal 

processing methods and are open for research and exploration.
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CHAPTER 1

INTRODUCTION

On November 25. 1998 moviegoers were treated to wonder with a full-length 

feature film called “A Bug's Life” released by Walt Disney Pictures and Pixar Animation 

Studios. One would have wondered about the computer animation and the mathematical 

modeling required to make such a movie. The movie portrayed a variety o f  characters in 

the animated ants' story -  not to mention their many textures, their myriad expressions, 

and the way they jumped, flitted and buzzed around. In this movie, a particular type o f 

computer animation modeling technique that makes use o f mathematical procedures 

called “wavelets” was making its debut [ 1  ].

Wavelets are finding use in applications like the one described above and is a 

rapidly developing area o f mathematical and application-oriented research in all fields o f 

science and engineering. They have been widely used in image processing, data 

compression, denoising. reconstruction o f high-resolution images and other 

communication areas.

I
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The signal processing and engineering study is full o f  transient phenomena such 

as seismic earthquake signals, musical instrument signals, electrical transformer inrush 

currents, aircraft fault signals, switching transients in optical laser systems and many 

others. Use o f  wavelets for characterizing and analyzing these transient signals in practical 

engineering fields is slowly growing.

An engineer or researcher may be more interested in studying the effects o f  these 

transient signals on signal quality, power and energy variations, frequency and phase 

fluctuations, etc. than the effect o f  steady state signals. The study o f these signals becomes 

more important as they tend to be random, unrepetitive and unpredictable than steady 

state signals. Detection o f  these transients to take remedial measures to prevent damage to 

the system in which they are present is an important aspect o f  science and engineering. 

The real time detection o f  transient signals is significant due to the short, finite duration o f 

the transients and for fast solution and control o f  the system.

One such transient signal o f  importance is a seismic signal. Seismic signals 

obtained from seismometers and accelerometers are continuously being recorded all over 

the world in hope o f  measuring and analyzing them for better understanding o f the ground 

below us. Seismic signals from earthquake events provide us valuable information in 

terms o f  the pre and post event ground motion. The earthquake event generates a transient 

signal that ju st lasts for a short duration and is a good candidate for study by the wavelet 

transform. A frequency spectrum o f the seismic signal is known to have amplitude 

peaking in the 0.05 Hz to 0.3 Hz frequency band, called the microseism band. The 

microseism band 's peak is understood to change in response to events occurring on the 

earth and is explained later in this research. W avelets decompose the signals into
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frequency bands keeping the time information intact, providing a good basis for analyzing 

and obtaining the information o f an event. Microseism effects are considerable for any 

facility or setup that extends to more than a kilometer like water and gas pipelines, large 

research establishments, urban utility facilities, railroads, etc. This lower frequency band 

also poses a challenge for the selection o f an optimum wavelet. Recent earthquakes in the 

U.S. and Japan have shown a need for advanced earthquake disaster mitigation 

management in order to prevent o r minimize damage especially in urban areas [2|. Early 

detection o f  a oncoming event can help us stop gas and water How through pipes, cut off 

electricity, and stop trains to minimize or even prevent major disaster and casualties.

Analysis o f  seismic signals is still being done using conventional techniques 

discovered decades ago [3| -  [5]. Sweldens. W. in his paper "Wavelets: What next?’* 

quotes "problem s not sufficiently explored with wavelets—  Prediction: The stock market, 

earthquakes, weather.*' [6 ). Wavelets have a potential to be an important analysis tool for 

analysis o f  signals in ground-based technologies such as trenchless technology, life 

sciences and geo-sciences.

The Fourier transform has been a very popular signal analysis tool with the 

signal processing community since its introduction. All kinds o f signals have been 

analyzed, forcing a close examination o f the transform method. A drawback was noticed 

in the Fourier transform: they have trouble reproducing abrupt changes and transients in 

signals. A music synthesizer, however good it m ight be. it still can’t match the 

performance o f  an artist in concert. This is because they cannot reproduce the transient 

features—  such as contact o f  the bow on the string o r the snare o f  drum. These short
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duration events are they are poorly represented by combination o f  pure sine waves and 

cannot be reproduced effectively.

The Fourier transform assumes that the signal f ( x )  is periodic, but most transient 

signals are non-stationarv signals. In Fourier transform, we convert the time-based signal 

to a frequency-based signal, and hence the time information is lost. As the transient signal 

is random, unpredictable and unrepetitive. the time o f  occurrence o f  a particular 

disturbance signal is more important. According to Heisenberg Indeterminacy Principle, it 

is not possible to know simultaneously the exact frequency and the exact time of 

occurrence o f this frequency in a signal.

Researchers came up with a somewhat o f a solution where the time o f  occurrence 

can be detected by the windowed Fourier Transform or Short Time Fourier Transform 

(STFT) that has a specific fixed window width o f  measurement. But the fixed window 

means a trade-off between frequency resolution and time resolution. The wide window 

gives a good frequency resolution but a poor time resolution, whereas a narrow window 

gives a good time resolution but a poor frequency resolution. The relationship between the 

resolution in time and the resolution in frequency is a concept commonly referred to as the 

uncertainty principle mentioned above and is given by:

A / x 1J > —— - (  1 )
4/T

where Af is the resolution in time domain and A/  is the resolution in frequency. The 

equation implies that both the time and frequency cannot be made arbitrarily small: one 

must be traded for the other [7],
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Wavelets are the new analysis tools that are widely being used in signal analysis. 

W avelets have been useful in theory for the last two decades but have not been found to 

have a revolutionary impact upon science and engineering like the Fourier transform. 

Wavelet transforms do offer many interesting features that the Fourier transform does not 

posses. The wavelets provide a greater resolution in time for high frequency components 

o f  a  signal and greater resolution in frequency for the low frequency components. In 

wavelet analysis, the transients are decomposed into a series o f  wavelet components, each 

o f  which is a time-domain signal that covers a specific octave band o f  frequency. Hence, 

the wavelet analysis converts the time-based signal to time-scale regions, where scale is 

an octave band o f frequency. These bands o f  frequency are non-overlapping bands with 

constant-Q characteristics. Wavelets do a very good job in detecting the time o f  the signal, 

but they give the frequency information in terms o f  frequency band regions or scales.

The focus o f this research is to present the analysis o f transient signals using 

wavelets with an emphasis on the quality and quantity o f  wavelet decomposition. In some 

applications, wavelets have been successfully used in identifying the system disturbances, 

especially with regards to time localization. Tutorial and theoretical papers have been 

published to address the issue o f  time localization [8 ] - [ l l j .  But just identifying the time 

location o f an event is not sufficient for understanding the event. For quality monitoring 

and analysis, the wavelet transforms must be able to detect, localize, estimate and classify 

disturbances accurately. Wavelet research is progressing slowly towards this area as the 

few papers published indicate [12]-[16j. This research looks at the wavelet analysis from 

an engineer's point o f  view and answers the questions that arise during analysis such as 

the choice o f  wavelets for a particular application, the energy frequency distribution in
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each o f  the wavelet levels, the magnitude and phase o f wavelet filters and the frequency 

bandwidth characteristics o f  the wavelet levels. This research applies wavelets to transient 

signals such as motor inrush and fault currents, and seismic signals, in order to understand 

these characteristics and provides results that are helpful when used for making a selection 

o f  a wavelet for a particular application. Advantages, constraints and limitations that arise 

when applying wavelets to transient seismic and motor current signals, which are relevant 

to trenchless technology, are discussed.

Part o f  the above research studying the mentioned characteristics o f  wavelets was 

published in a paper authored by Dr. Mickey Cox and Chethan Parameswariah. which has 

been accepted for publication without comments by the IEEE [17]. The objective o f this 

research is to further the understanding and application o f wavelets by engineers in the 

analysis o f  transient events. "It is a misunderstanding that any wavelet is suitable for any 

signal and any applications. Choosing or designing the right wavelet is crucial for a 

successful WT application" [18].

The applications o f  wavelets are not limited if  they are understood clearly by 

engineers and researchers. One day. wavelet transforms may be the analysis tool o f  choice 

in science and engineering like Fourier transforms. But till that day. more needs to be 

done to understand them and apply them for practical every day applications.
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CHAPTER 2

WAVELET ANALYSIS -  THE BASICS

For an engineer presented with a signal to analyze for its contents, the first tool 

that probably runs through his mind is the universally accepted Fourier analysis. 

However, as mentioned before, just knowing the frequency content o f  the signal is not the 

complete information, especially if  the signal contains transients. Though wavelet analysis 

cannot completely replace Fourier analysis, it is quickly growing to complement it. But 

with increased wavelet research, there has been a continued motivation to get the best 

bases and functions. Unlike Fourier transform where the basis functions are only a 

combination o f  sines and cosines o f  infinite length, these wavelet basis functions have 

different shapes and finite length. These wavelet bases are mostly grouped according to 

their inventor and more are being developed even today. Some o f the more well-known 

wavelet families are Daubechies. Haar. Coiflets. Symlets. Mexican hat. and Meyer -  to 

name a few.

To understand wavelet analysis, let us consider a signal with 1024 data points per 

second sampled using an A/D converter. A small discontinuity

7
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(break) is introduced into the signal at 800th data point due to a transient intermittent cable 

connection.

os

&«
I -os

-15

400 soo 1000 1200200

Figure 1: Signal With 1024 Data Points.

FOURIER ANALYSIS:

If we perform a Fourier analysis o f the above signal, we transform the time 

domain signal into frequency domain and display the output as a frequency spectrum. The 

signal is seen to be made up o f an infinite set o f sines and cosines which if combined with 

proper amplitude and phase can reproduce the original signal to certain accuracy. The 

frequency spectrum output o f the Fourier analysis for the signal in figure 1 is shown in 

figure 2. The maximum frequency is limited to the half the sampling frequency to satisfy 

Nyquist criteria. The information o f the time o f occurrence o f the break and other 

characteristics are tost in the frequency spectrum.
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Figure 2: Frequency Spectrum O f The Signal In Figure l.

WAVELET ANALYSIS:

Performing the wavelet analysis using MATLAB(R> on the same signal with 

Daubechies D4 wavelet for 10 levels, we get the output as shown in figure 3. Unlike the 

frequency spectrum where the x and y axes are the frequency and the magnitude 

respectively, for the wavelet decomposition, x-axis is the time and y-axis is the amplitude 

o f the decomposed signal. Also, the wavelet analysis output provides us with time domain 

decomposed signals which fall into certain frequency bands or scales. These scales are 

divided into octave bands o f frequency between the ranges: zero on the lower end to half 

the sampling frequency at the higher end. The lowest frequency-band scale is known as 

the “approximation” o f the original signal, and the other scales are known as the “details” 

which are in increasing octave frequency bands. Figure 3 shows 10 scales with the low 

frequency approximation “a9M signal at the top and the details below it. Detail “d9” is the 

next higher frequency octave while the detail “d l” is the last octave band within the 

frequency range and has the highest frequency components.
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The number o f scales or levels a signal can be fully decomposed into is given by N 

= 2", where N is the number o f data points and n the number o f levels. Hence, for a signal 

with N = 1024 data points, we have 2>0 or n =10 levels. Also, as seen from figure 3, 

wavelet analysis clearly picks out the location o f the discontinuity in the signal and can be 

seen pronounced along the time axis in the high frequency details. The time information 

o f the specifics o f the signal is preserved in the wavelet decomposition. However, it is 

also seen that we cannot pick out specific frequencies, and their amplitudes that make up 

the original signal.

A p p i  >) a i l l i . i t  10 ( 1 4  1

u a -
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n 4

o  7

1 ) 4
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Figure 3: Wavelet Decompositions O f The Signal In Figure 1.
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Figure 3 (Continued): Wavelet Decompositions Of The Signal In Figure 1.
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Figure 3 (Continued): Wavelet Decomposition O f The Signal In Figure 1.
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Figure 3 (Continued): Wavelet Decomposition O f The Signal In Figure 1.
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The time-frequency resolution is a limitation of the wavelet analysis as imposed 

by the Heisenberg uncertainty principle which is given by:

A/x \ f  > -j— - ( 2 )

where A/ is the resolution in time domain and A/  is the resolution in frequency. The 

equation implies that both the time and frequency cannot be made arbitrarily small: one 

must be traded for the other [7].

The wavelet decomposition achieves the best trade off by having varying 

resolutions in both the time domain and frequency domain, i.e., the time resolution is very 

small for high frequency details compared to the longer time resolution for the low 

frequency approximations. The Short Time Fourier Transform -  STFT which tries to 

localize time by performing Fourier analysis over a short time window is disadvantaged 

by the time window which is kept constant for all frequencies. Figure 4 shows a pictorial 

representation o f the wavelet time -  scale resolution.

WAVELET ANALYSIS 
TIME • SCALE RESOLUTION

TIrm

Figure 4: Pictorial Representation Of Wavelet Time -  Scale Resolution.
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Referring back to figures, we can compute the frequency ranges for the 10 scales 

o f  wavelet decomposition using the equation (2) given below:

where f  is the higher frequency limit o f  the frequency band represented by the level v . 

The / ,  sampling frequency and .V is the number o f  data points in the original input 

signal [8].

Table 1 shows the frequency to scale (level) relation for the different levels o f 

Daubechies D4 wavelet decomposition shown in figure 3. The signal in figure 1 sampled 

at f\ = 1024 samples/sec and .V = 1024.

Table I : Frequency Band Information For The Daubechies D4 Wavelet
For The Signal In Figure I .

Level Wavelet Scale Frequency 
range (Hz)

Center 
Frequency (Hz)

0 a9 0 - 1 .0 0.5

1 d9 1 .0 -2 .0 1.5
2 d8 2.0 - 4 .0 3.0

d7 4.0 -  8.0 6.0

4 d6 8.0 -  16 12

5 d5 1 6 -3 2 24

6 d4 3 2 - 6 4 48

7 d3 6 4 -1 2 8 96

8 d2 1 2 8 -2 5 6 192

9 dl 2 5 6 -5 1 2 384

i
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Many books and papers have been written that explain and talk about wavelet 

decomposition o f  signals [19] -  [22] and can be read for further understanding o f  the 

basics o f  wavelet theory. A short theory behind the wavelets is presented here for the sake 

o f  completeness.

WAVELET THEORY:

The wavelet transform moves a time domain signal into the wavelet domain. The 

basis functions o f the wavelet transform are short waves o f finite duration. Similar to the 

Fourier transform F(to) which can be represented by:

F ( w ) =  [ f i O e ^ ' d t  - ( 4 )

where / ( / )  is the signal being transformed and the exponential e~""'  can be written in

terms o f  the basis functions -  sines and cosines as: 

e ' ""  = cos<y •/ + y s i n o -t 

the continuous wavelet transform (CW T) can be written as:

£  f ( t ) k hil(t)dt - ( 5 )

where a is the scale variable o f  the wavelet (replaces the frequency variable a  o f the

Fourier transform), b the time shift variable o f  the wavelet (usually the time period 

variable r ). and the expression kh u ( t ) can be written as the basis functions

1
*».-('> = - t=  h-

f t - h '
- ( 6 )

V a

where the right hand side o f  the equation (5) represents a weighted set o f scaled wavelet 

functions o f  the mother wavelet wit)  [7],
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The mother wavelet basis function is a small wave with finite duration between 

time t = 0 and / = V unlike the infinite time sines and cosines used for Fourier transform. 

This locality in time implies that most o f the energy is restricted to a finite interval and 

function is ideally zero outside this interval. In general, we want fast. e.g. inverse 

polynomial or exponential, decay away from the center o f  mass o f  the function [6]. A 

typical wavelet m{/) is compressed j  times and shifted k times which is given by:

= n i l ' t  - k )  - ( 7 )

The remarkable property that is achieved by many wavelets is orthogonality [22]. That 

means the inner products o f the wavelets are zero:

J" n lk(t )wJK(t)dt =0 -(8)

except when j  -  J  and k = K .

In the discrete domain which is usually used in practice since the real world analog 

signals are sampled into discrete signals using an A/D converter and processed using 

computers, the above equation (4) can be for discrete wavelet transform (DWT) written 

as:

D W T [ /7 »  = F. - - W .  ] - ( 9 )
yja n V a ) 

where n  is the number o f samples in the signal. Tt is the sampling interval.

The discrete wavelet transform that is mostly used to reduce the computational 

expenditure is the dyadic wavelet transform which is dilated and scaled functions o f  the 

mother wavelet but uses the scales only in powers o f  two. where scale a  = 2 ' [23].
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Figure 5 shows the wavelets with dyadic shift o f  k /  2 ' which is an integer multiple o f  the

dvadic scale.

<0 ^  V
O

CO

t
I 

I
CM

>e

translations and dilations of the w avelet ► Time

Figure 5: Wavelets At Dyadic Shifts And Scales.

In the figure (5). for the top most scale i.e.. the approximation scale is only one 

shift and hence one inner product o f the wavelet function with the input signal. As we go 

down the scales, i.e. towards detail level 1. the number o f shifts increases and hence the 

inner products increase. For the scale level at the bottom in the figure, there are 16 shifts 

and hence 16 inner products. For a wavelet level decomposition more than five levels 

shown, the number o f  shifts and inner products are more than 16 and increase in multiples 

o f  2. This method which is still computationally expensive for higher scales o f 

decomposition is replaced by the M allaf s multiresolution analysis algorithm [24] referred 

to as the fast wavelet transform (FWT). For the signals o f length n. the multiresolution
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wavelet analysis has only 2n - 2  calls to memory compared to I n  ■ log , n for a FFT 

computation. The transform is an Ofn) computation [22].

This fast wavelet transform is done through a process called “sub-band 

codification" which is done through digital filter techniques. The sub-band coding is 

achieved by passing the input signal through a filter bank having a low pass filter and a 

high pass filter which divide the whole frequency range (from zero to the Nyquist 

frequency) o f  the signal into half. Further down, the outputs o f  these filters are sampled in 

half to eliminate the even data points. Figure (6) shows the block diagram o f  the fast 

wavelet implementation by sub band coding. The rectangular block HPF represents the 

high pass filter and the LPF is the low pass filter. The circular block with a downward 

arrow and a number "2" next to it is for the down-sampling by 2.

The high pass filter leads to a  wavelet function vr(t) while the low pass filter leads 

to a scaling function ^ (/) [22]. The scaling function can further be scaled down to the 

next level o f  wavelet function and scaling function using the recursive filter bank o f  low 

pass filter - high pass filter and down sampling.

The wavelet wit)  is the output o f  the high pass filtered scaling function. The last 

decomposition level produces a scaling function w ith one coefficient called the 

approximation wavelet level. Referring back to figure 3. it is the wavelet approximation 

level - a9.
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Figure 6: Block Diagram O f The Fast Wavelet Implementation Filter Tree.

The dilation equation for the scaling function and wavelet equation for the 

wavelet function Hit) in terms o f the original filter coefficients [221 are given by:

#{t) = 2 ^ h ( k ) # ( 2 l  -  k) - (  1 0 )
k  = 0

- (  1 1  )
A = ( )

where h(k)  are the low pass filter coefficients. g(k )  are the high pass filter coefficients. 

It is also interesting to note the presence o f  two time scales t and 2t in the above 

equations. The high pass filter coefficients g(k )  are related to the low pass filter 

coefficients h(k)  by:

- (  1 2 )
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where /V is the total number o f coefficients. These filters are known as quadrature mirror 

filters (QM F). Hence, for a given wavelet only the low pass filter coefficients (also known 

as wavelet coefficients) need to be known.

It is ideally required to have the bandwidths o f the two filters in the filter bank to 

have a box function with perfect edges and no over-lap. However, this is not true in 

practice, and the selection o f  the wavelet coefficients that lead to good filters with good 

characteristics is important. The wavelet research community has presented several 

wavelet families with each mother wavelet having different shapes and different finite 

lengths leading to wavelet filter coefficients with different properties.

Though wavelets provide us with good localization o f time, just being able to 

detect and locate an event is not sufficient for a  complete analysis o f a transient. For 

wavelet analysis to fully complement the popular Fourier analysis, it needs to address the 

issue o f qualitatively quantifying the event. This research applies wavelets to identify and 

investigate certain properties o f  wavelets such as magnitude-phase characteristics, 

frequency bandwidth characteristics o f wavelet components, energy distribution and 

leakage in these components, and dependence o f sampling rate and number o f data points 

o f the signal. It is intended to motivate applications o f  wavelets to help in further the 

understanding o f  the wavelets by engineers in analysis o f  transient events. Applications o f 

wavelets to signals obtained from sensors, motors, seismometers, and earthquakes are 

presented w ith detailed discussion o f  each and the effects o f  wavelet properties. Choosing 

the right wavelet for a specific application has been an open question due to lack o f 

complete understanding o f wavelets. Repeating the quotation from the previous chapter. ” 

It is a misunderstanding that any wavelet is suitable for any signal and any applications.
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Choosing or designing the right wavelet is crucial for a successful WT application” [18]. 

With this research we present some results that might help in selecting the right wavelet.
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CHAPTER 3

WAVELET FILTER’S MAGNITUDE -  PHASE 

CHARACTERISTICS

As seen, discrete wavelet transform is equivalent to filtering it by a bank o f 

constant-Q filters o f non-overlapping bandwidths which differ by an octave [11]. The 

coefficients o f  these filter banks determined by the mother wavelet design will directly 

affect the wavelet decomposition outputs obtained. It is. therefore, important to know the 

behavior o f  these filters with these wavelet coefficients.

The normalized wavelet scaling function coefficients c-( Ar) o f the mother wavelet

related to the original low pass filter coefficients, by a factor o f  and are given by

c(k)  = yj lhik)  - ( 13 )

which corrects for the normalization due to losing half o f  the components by down 

sampling at the output o f the filters. Similarly for the high pass filter we can write:

d(k)  = J 2 g ( k )  - ( 14 )

23

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



24
All information about the scaling function 0(t)  and ui t )  - their support interval, their 

orthogonality, their smoothness, and their vanishing moments -  will be determined by 

and from the c 's  and J ' s  [22].

Most wavelets irrespective o f  their families o f origin follow the same filter bank 

multiresolution analysis approach. Some o f  the more popular wavelet families are Haar 

Daubechies. Symlets. Coitlets. Meyer. Mexican hat. Morlet. B-Splines -  to name a few. 

The wavelets are named after their inventor or after the properties and shapes they 

possess. Figure 7 shows some wavelets used in this research with their scaling function.
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Figure 7: Wavelet Families
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WAVELETS TO FILTERS:

The history o f wavelets can be traced to the Haar function in 1910 (even though at 

that time the name wavelets didn’t exist, but the connection of wavelets to filters wasn’t 

recognized for a long time. Wavelets were constructed with great difficulty and were not 

compactly supported; i.e., they oscillated above and below zero along the whole line, 

decaying as / ±0 0 . The Morlet, Meyer and Mexican Hat wavelets created after Haar

were found to show infinite impulse response (OR). Daubechies in 1988 showed wavelets 

which were compactly supported and orthogonal. These wavelets were zero outside a 

bounded interval. Thus, these wavelet functions and their corresponding filters have finite 

impulse response (FIR). The Haar wavelet is a special case o f Daubechies wavelets and is 

compactly supported, symmetric and orthogonal. Table 2 lists the wavelets with their 

filter types and other properties [14].
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Table 2: Main Properties Of Some Popular Wavelet Functions
27

Type Filter Symmetry Orthogonality

Haar FIR Symmetric Orthogonal

Daubechies FIR Asymmetric Orthogonal

Symlets FIR Near Symmetric Orthogonal

Coiflets FIR Near Symmetric Orthogonal

Spline FIR Symmetric Bi-orthogonal

Morlet UR Symmetric No

Mexican Hat HR Symmetric No

Meyer HR Symmetric Orthogonal

Daubechies wavelets are the comer stone of modem wavelets, and their 

development was boosted by Mallat’s pyramid algorithm that allowed for fast 

computation o f wavelet transforms using compactly supported wavelets [9]. The words 

“compact support” mean that this closed set is bounded. The wavelet is zero outside a 

bounded interval: compact support means FIR [22]. The compactly supported 

Daubechies wavelets and their derivatives such as Symlets and Coiflets have coefficients 

that lead to finite impulse response (FIR) o f the filters and are widely used. In practice, 

FIR Filters are simple to design and are guaranteed to be bounded input -  bounded output 

stable. They have also have a very low sensitivity to filter coefficient quantization errors 

[24].
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To understand what distinguishes these wavelet filters from the other FIR and OR 

digital filters, as an engineer, it would be interesting to study the characteristics o f the low 

pass and high pass filters in the wavelet filter bank in terms o f the pole-zero location and 

the magnitude-phase characteristics.

In this study, I have first considered two wavelets D4 and D20 o f the same 

Daubechies family. In MAT LAB, the Daubechies wavelets are represented by dbN with a 

filter length o f 2N, i.e., for Daubechies D4 wavelet is written as db2 with the number of 

filter c oefficients being 4. S ome authors regularly u se db2N  i nstead, i .e., for the same 

Daubechies D4, they write it as db4 with the same 4 filter coefficients. The convention D4 

and D20 are used in this thesis to avoid confusion. Figure 8  shows the scaling function 

coefficients C(k) for the two Daubechies wavelets D4 and D20. Note the length o f the D4 

coefficients is 4 compared to D2o’s 20 coefficients.
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Figure 8 : Daubechies Wavelet Scaling Function Coefficients -  D4 And D20.

The Daubechies wavelet D4 is more localized in time [8 ], [17], The block diagram 

in figure 9 shows the order and the conversion o f the scaling filter coefficients to the low 

pass and high pass filter coefficients for the Daubechies wavelet D4 . In Matlab, the 

scaling function coefficients are divided by their norm and then reversed in order to form 

the low pass decomposition filter coefficients. For the Daubechies D4 wavelet, the scaling 

function coefficients are c(l) = 0.3415, c(2) = 0.5915, c(3) = 0.1585, c(4) = -0.0915. The 

norm o f the four coefficients is calculated as:

Vc( l)2 + c(2)2 + c(3)2 +c(4)2

= V0.34152 + 0.59152 +0.15852 + (-0 .09 l5 )2 = 0.7071
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Therefore, the new normalized low pass filter coefficients are c(l) = 0.4830, c(2) = 

0.8365, c(3) = 0.2241 and c(4) = -0.1294 and are implemented in the reversed order as 

shown in the block diagram.

Low Pass Filter 
c(4), c(3), c(2), c(l) — ►I2

Alternating flip

*
High Pass Filter 

-c(l),e(2),-c0),c(4) — ►I2 - > * ( / )

Figure 9: Block Diagram Of The Analysis Filter Bank For Daubechies Wavelet D4.

The scaling function coefficients and the low pass decomposition filter 

coefficients for both the Daubechies wavelets D4 and D20 are given in table 3. The 

coefficients for both the low pass and high pass filters for the two wavelets are plotted in 

figure 1 0 .
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Table 3: Filter Coefficients For Daubechies Wavelet D4 And D20
31

Dn Scaling function 
coefficients

c(l). c(2).... c(n)

Normalized low pass filter 
coefficients 

reverse(sqrt(2)*(c(l), c(2).... c(n))

d 4 0.3415,0.5915,0.1585, -0.0915 -0.1294, 0.2241,0.8365,0.4830

D20

0.0189,0.1331,0.3728,0.4868, 

0.1988,0.1767, -0.1386, 0.0901, 

0.0658, -0.0505, -0.0208, 0.0235, 

0.0026, -0.0076,0.0010,0.0014, 

-0.0005, -0.0001,0.0001, -0.0000

-0.0000, -0.0001, -0.0001,0.0007, 

0.0020, -0.0014, -0.0107, -0.0036, 

0.0332,0.0295, -0.0714, -0.0931, 

0.1274, 0.1959, -0.2498, -0.2812, 

0.6885, -0.5272,0.1882, -0.0267

DAUBECHIES WAVELET • LOW PASS FILTER COEFFICIENTS
D20

0.51

-OS'-

D4

0.5

-0.5

DAUBECMES WAVELET - HIGH PASS FILTER COEFFICKNTS

04

0.5
0.5
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Figure 10: Plot Of The Low Pass And High Pass Filter Coefficients For Daubechies
Wavelets.
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The Daubechies wavelet filter coefficients have finite impulse response and have 

all zeros and no pole as seen in figure 11. The existence o f only zeros and no pole makes 

the filter very stable. The pole -  zero plot o f the low pass filter for the two Daubechies 

wavelets D4 and D20 filters are given in figure 11. The zeros at it (z = -1 in the figure 11) 

for the low pass decomposition filter are at the heart o f wavelet theory and specify the 

accuracy o f the approximation. For the filter to behave well in practice, when it is 

combined with the sub-sampling and repeated five times, it must have an extra property 

not built into earlier designs. This property expresses itself in the frequency domain by a 

sufficient number o f “zeros at it ” [22]. For Daubechies wavelets with 2p coefficients, we 

have p  zeros at i t . From figure 11, Daubechies D4 wavelet with 4 coefficients has 2 zeros 

at it and Daubechies D20 with 20 coefficients has 10 zeros at i t .

Figure 11: Pole -  Zero Maps For Low Pass Filter -  Daubechies Wavelets D4 And D2 0.
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Equiripple filters are known to have the best practical design in terms having 

smallest maximum error in passband and stopband. Comparing the wavelet filters to the 

design o f a equiripple 4-tap FIR filter with approximately similar magnitude response as 

D4, we find that the equiripple filter has a one less zero at n  than D4 which has 2 zeros at 

i t . Similar case holds for D20 where the equiripple filter comes close with 9 zeros at it 

compared to 10 for D2o- The equiripple filters are optimal in important respects but not 

optimal for iteration. The decimation by 2 sampling operators ( 1 2 )  will mix up the 

frequency bands that an equiripple filter carefully separates [22]. The Daubechies filter 

coefficients have no ripple and maximum flatness at to = it and the iteration is very stable 

even after down sampling. Figure 12 shows the pole -  zero plot and the coefficients o f the 

equiripple low pass filter o f 4 taps. The phase characteristics o f the two filters equiripple 

and D4 low pass were linear but different in terms of the slope o f the phase lines. This is 

not plotted as only the magnitude similarity was considered to provide a comparison.
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D4 Daubechies 
Equiripple 4-tap

Figure 12: Equiripple FIR Low Pass Filter (Order 4) -  Coefficients And The Pole Zero
Map.

The requirement o f sufficient zeros at n , i.e., p  zeros for 2p coefficients o f the 

filter is an important property o f the wavelet filters. The double zero at <o = n  produces 

two vanishing moments for the D4 Daubechies filters. For every pth zero in for the H(ca) 

of the low pass filter there exists a vanishing moment for the orthogonal wavelets. That 

means the high pass filters with regularity p  will produce a zero output when convolved 

with a signal that can be exactly represented by a p-th order polynomial [26]. When this 

happens, the signal is exactly represented by its low pass approximation coefficients and 

hence the wavelet’s order (accuracy) o f approximation is p. The decay towards the low 

frequencies corresponds to the number o f vanishing moments o f the wavelet [22]. This is 

an important quantity for the high pass filter in the wavelet filter bank. There exists also a
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term called the smoothness o f the wavelet and is given by smoothness index o f the 

scaling function <p(t) which is never greater than the number p  o f the vanishing moments. 

The smoothness of the function directly corresponds to the decay towards the high 

frequencies and is important for the low pass filter. The smoothness o f a wavelet is given 

as the maximum 5th derivative (if the s derivatives exist) o f the wavelet equation:

*<’>(/) = 2‘ Y t 2l*(k)*i’' (2 t-k )  - (14)

and s derivatives cannot exceed the order of the polynomial p  -  I.

The Daubechies D4 and D20 wavelets, the high pass filter pole-zero maps are 

shown in figure 13.

Figure 13: Pole -  Zero Maps For High Pass Filter -  Daubechies Wavelets D4 And D2o-

The pole zero location o f the high pass decomposition filter for Daubechies 

wavelets are opposite to the low pass with zeros at <0 — 0 . This filter has a behavior 

opposite to the low pass filter and allows all signals in the upper half band to pass through
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while attenuating the low frequency signals. The high pass filters are also known as 

quadrature mirror filters (QMF) as they are derived from the low pass filter coefficients 

by reversal o f the coefficients and an alternating flip, i.e., negating the odd coefficients.

The magnitude phase plots for the low pass and high pass filters for the two 

Daubechies wavelets D4 and D20 are plotted in the figure 18. The plots are plotted along 

with the magnitude and phase plots of other wavelets for comparison and study.

Two other wavelet families with finite impulse response (FIR) are considered for 

the study of magnitude and phase characteristics. These wavelets are Symlets wavelets 

and Coiflets wavelets.

Symlets wavelets are derived from the Daubechies wavelets and inherit most o f 

their characteristics and properties. The Symlets wavelets Synu and Synuo’s scaling 

function coefficients are plotted in figure 14. The Symlets wavelets are more symmetric 

than the Daubechies wavelets and have the same number o f vanishing moments for the 

given number o f coefficients o f the filters. As seen from figure 14, Synu has 4 

coefficients that are exactly equal to the Daubechies D4 coefficients. Sym2o has 20 

coefficients that are more symmetric than the Daubechies D20 coefficients. Figure 14 

shows the symmetric Symlets wavelet scaling function but as you can see slight 

asymmetricity still exists in the wavelet filter. It is interesting to see the difference in 

magnitude and phase characteristics o f the two wavelets Syni2o and D20 having known 

their differences in terms o f the symmetry o f the scaling function coefficients. So the 

question is, how does having more symmetry affect the characteristics? Figure IS shows 

the low pass and high pass filter coefficients.
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Figure 14: Symlets Wavelets Scaling Function Coefficients.

The low pass filter and high pass filter coefficients o f the Synu wavelet are also 

exactly equal to their Daubechies counterpart D4. So, we can expect the same magnitude 

and phase characteristics for both Synu and D4 wavelets. A scaling function filter 

coefficients for Sym8 is also included in the above figure 14 to show that the Symlets 

wavelets are increasingly symmetric with the increase in filter length. As Symlets 

wavelets are derived from Daubechies wavelets, they inherit most o f its properties like the 

filter length and the number of vanishing moments, i.e., the number o f zeros at it for a 

given wavelet length 2p coefficients.
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Figure 15: Plot Of The Low Pass High Pass Filter Coefficients For Symlets Wavelets.

The pole-zero map for the low pass and high pass filters o f Symlets wavelets are 

shown in figure 16 and figure 17 respectively. The location o f zeros for the Synu wavelet 

is the same as D4, but an interesting observation can be made for the higher order Symlets 

wavelet, Synuo. The number o f zeros at n  “p” for “2p” coefficients o f the Symlets 

wavelet filter is  exactly sam eas for Daubechies wavelets, but the remaining zeros are 

distributed both inside and outside the unit circle. It will be interesting to see how the 

movement o f some o f these remaining zeros towards n  for the low pass filter manifests 

itself in magnitude and phase characteristics of the Symlets wavelet compared to 

Daubechies wavelet. Similarly, the effect o f change in the distribution o f zeros in the high 

pass decomposition filter will be studied.
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Figure 16: Pole -  Zero Maps For Low Pass Filter -  Symlets Wavelets Synu And Synuo*

Sym 20

Figure 17: Pole -  Zero Maps For High Pass Filter -  Symlets Wavelets Synu And Synuo-
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Before we go on to the Bode magnitude and phase characteristics plot to compare 

the FIR filters discussed above, we consider one more FIR wavelet family -  Coiflets 

wavelets, which is related to the Daubechies family. Daubechies designed Coiflets 

wavelets for R. Coifman at his request with almost equally distributed vanishing moments 

for both the scaling and wavelet function. There are only five wavelets in the Coiflets 

family. These wavelets are derived from the Daubechies wavelets and have 3 times more 

coefficients for a given wavelet number than the Daubechies or Symlets. So for Coif2 we 

have the number o f coefficients 3(2p) = 12 coefficients compared to 4 for D2. Coiflets 

wavelets also have "2p” vanishing moments, i.e., “2p" zeros at n  for the wavelet 

function ip compared to “p ” vanishing moments for the Daubechies and Symlets 

wavelets. The special property o f Coiflets wavelets are the “2p -  1” vanishing moments 

for the scaling function ^ which resolve the issue o f good compression property for 

approximation. Daubechies wavelets have a good compression property for wavelet 

coefficients but not for approximation [27]. Figure 18 shows the scaling function 

coefficients for the Coiflets wavelets -  Coifj and Coifs. Comparing the Coiflets wavelet 

scaling function coefficients with the Daubechies and Symlets, the Coiflets scaling 

function is more symmetric and as indicated before, has more number o f coefficients for 

the wavelet o f the same number. The low pass filter and high pass filter decomposition 

filter coefficients are shown in figure 19 followed by their pole zero maps in figure 20 

and figure 21 respectively.
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Figure 18: Coiflets Wavelets Scaling Function Coefficients.
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Figure 19: Plot Of The Low Pass And High Pass Filter Coefficients For Coiflets Wavelets
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Figure 20: Pole -  Zero Maps For Low Pass Filter -  Coiflets Wavelets Coif2 And Coifs.

COIF5

Figure 21: Pole -  Zero Maps For High Pass Filter -  Coiflets Wavelets Coif2 And Coifs.
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The low pass and high pass filter coefficients are also more symmetric than 

Daubechies and Symlets wavelets. The pole zero maps show 4 zeros at n  for the Coif2 

wavelet and 10 zeros at Jt for the Coifs wavelet.

The Bode plot -  magnitude and phase characteristics o f both the low pass filters 

and the high pass filters used in the above three wavelet families -  Daubechies, Symlets 

and Coiflets are plotted. Figure 22 shows the magnitude characteristics in linear units and 

figure 23 has dB magnitude for the low pass decomposition filters. Phase characteristics 

for the same filters are plotted in figure 24.
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Figure 22: Linear Magnitude Plot -  Low Pass Decomposition Filter -  Daubechies,
Symlets And Coiflets.
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Figure 23: Db Magnitude Plot -  Low Pass Decomposition Filter -  Daubechies, Symlets
And Coiflets.

The magnitude characteristics for the low pass decomposition Alter in the two 

figures 22 and 23 exhibit exactly the same characteristics for some wavelets. As seen, 

Daubechies D20, Symlets SYM20 and Coiflets COIFS have same magnitude 

characteristics with a steeper drop at the cut-off frequency than the wavelets Daubechies 

D4 and Symlets SYM4 which are both similar and have wider characteristics at the cut

off. COIF2 with 10 coefficients has a magnitude characteristic which falls between the 

above two. It was expected that the magnitude characteristics o f D4 and SYM20 will be 

exactly same since their scaling function coefficients are also same; however, it is 

interesting that D20, SYM20 and COIFS all have the same magnitude characteristics even 

though their scaling function coefficients and their filter coefficients were totally 

different.
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Figure 24: Phase Plot -  Low Pass Decomposition Filter -  Daubechies, Symlets And
Coiflets.

The phase plot o f the above wavelets is more interesting. The D4 and SYM4 have 

exact similar phase characteristics. Their phase change is linear but much smaller than the 

remaining wavelets. The phase characteristics for the D20, SYM20 and COIF5, which 

had the same magnitude characteristics, are different from each other. The phase 

characteristic o f D20 has a slight non-linearity compared to both Symlets SYM20 and 

Coiflets COIFS. This can be attributed to the symmetry o f the coefficients in the scaling 

function or the low pass filter. The slopes of the phase characteristics with respect to 

frequency are at varied steepness for the three wavelets. A variety o f wavelets have the 

same magnitude spectrum but different phase spectrum [18]. This interesting property of 

wavelets can be used to  choose wavelets for applications where the phase is  a critical 

factor while still having the same magnitude response.
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Figure 25 and figure 26 show the linear magnitude and dB magnitude 

characteristics for the high pass decomposition FIR filters of the three wavelet families.
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Figure 25: Linear Magnitude Plot -  High Pass Decomposition Filter -  Daubechies,
Symlets And Coiflets.

The magnitude characteristics of the high pass filters for different wavelets behave 

as they did for the low pass filter. The wavelets with a higher number o f coefficients 

decay faster and their slope approaches the vertical. The scaling function o f these filters 

with more coefficients is smooth and has higher vanishing moments. The decay for the 

high pass filter is governed by the number o f vanishing moments and hence D20, SYM20 

and COIF5 decay faster. It is also seen that the decay is different for both the low pass 

filter and the high pass filter. The number for smoothness o f the scaling function governs 

the decay for the low pass filter. The number for smoothness is never greater than the
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number for the vanishing moments [14] and hence the difference in the decay o f the low 

pass and high pass filters.
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Figure 26: Db Magnitude Plot -  High Pass Decomposition Filter -  Daubechies, Symlets
And Coiflets.

This difference in decay can be clearly seen by comparing the dB magnitude plots 

for both the low pass and high pass filters. Figure 27 shows the phase plot o f the high 

pass decomposition filters for the three wavelet families. The phase characteristics o f both 

the SYM20 and COEFS are exactly similar and can be seen lying on top o f each other in 

the figure.
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Figure 27: Phase Plot -  High Pass Decomposition Filter -  Daubechies, Symlets And
Coiflets.

This is in contrast to the phase c haracteristics o f the low pass filters. The non- 

linearity of the D20 wavelet phase is more pronounced in the high pass filter. The 

steepness o f the slopes is more for the low pass filters than the high pass filters. The phase 

characteristics o f SYM20, COIFS and COIF2 are exactly linear which can be attributed to 

the symmetricity o f the filter coefficients.

It is observed that the for the low pass wavelets filters, movement o f zeros 

towards n for the Symlets and Coiflets wavelets compared to the Daubechies wavelets 

does not affect the magnitude characteristics but changes the phase characteristics by 

increasing the slope. Note that equally there are 10 zeros at it for all the three wavelets - 

Daubechies D20, Symlets SYM20 and COIF5.
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For the use o f wavelets in signal processing, knowledge o f magnitude and phase 

characteristics o f  t he w avelet filters are i mportant. T he a hove i nformation o btained b y 

comparing the three FIR wavelets is one of the properties which might be useful in 

choosing the right wavelet. So, it is just not enough to know the wavelet’s scaling 

function coefficients or its filter coefficients but the actual magnitude and phase response. 

Two wavelet filters have the same magnitude response, but one has a much greater slope 

in its phase response than the other. If both have essentially a linear phase response, then 

you would choose the filter having a lesser slope in phase response because it would have 

a smaller time delay for time critical applications.

In the next chapter, an application o f wavelets to fast detection o f fault current in a 

transformer is shown which clearly shows the advantages o f D4 over Daubechies D20.
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CHAPTER 4

INNOVATIVE METHODS OF INRUSH AND 

FAULT CURRENT IDENTIFICATION/

PROTECTION USING WAVELETS

Transformers are used in every aspects o f everyday life from households to 

industries, from low power lighting to power large refineries, in equipments from 

electrical engineering to trenchless technology, etc. Research is being carried out in the 

area of detection and identification o f inrush current and distinguishing it from the fault 

current.

Let us consider an application and use wavelets for analyzing and identifying o f 

the inrush current and the fault current o f a transformer. The inrush current is a transient 

signal in the transformer which occurs when the input to the transformer is turned on. The 

amplitude o f this inrush current is often much higher than the rated full load current [28], 

[29] and is one o f the grave concerns for engineers. The transient magnetizing inrush 

current causes false tripping o f differential relays used for transformer protection [30].
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The inrush current obtained from a single-phase 5 KVA transformer is shown in figure 28. 

Only 2 048 d ata p oints o f  t he i nrush c urrent a re shown a nd c onsidered f  or o ur w avelet 

analysis. The inrush current waveform shape is easily distinguished by the human eye 

when compared to the fault current shown in figure 29. The fault is generated by sudden 

short at the output o f the secondary o f the transformer.
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Figure 28: Transformer Inrush Current
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Figure 29: Transformer Fault Current

The fault current also has 2048 data points chosen to show the occurrence o f fault. 

The inrush current has intermittent peaks with valleys in between them. The fault current.
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on the other hand, is  perfectly symmetric (assuming the dc o ffset i s removed) and has 

equal positive and negative half cycles.

Applying Daubechies D4 and D20 wavelets to the two signals, the wavelet 

decomposition signals are shown in figures 30 through 33. For 2048 data points, there are 

11 levels o f full wavelet decomposition. The figures 30 and 31 show the original signal 

and the 11 level wavelet decomposition of the transformer inrush current for Daubechies 

D4 and D20 respectively.

Figure 30 (a): Original Input Signal - Transformer inrush current.

Figure 30(b): Approximation alO (Level 0)
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Figure 30(c): Detail d 10 (Level 1)

Figure 30(d): Detail d 9 (Level 2)

Figure 30(e): Detail d 8 (Level 3)
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Figure 30(0: Detail d 7 (Level 4)

Figure 30(g): Detail d 6 (Level 3)

Figure 30(h): Detail d S (Level 6)
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Figure 30(i): Detail d 4 (Level 7)

Figure 30(j): Detail d 3 (Level 8)

Figure 30(k): Detail d 2 (Level 9)
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Figure 30(1): Detail d 1 (Level 10)

Figure 30: Wavelet Decomposition Of The Signal Using Daubechies D4 Wavelet
Function
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Figure 31 (a): Original Input Signal - Transformer inrush current.

Figure 31 (b): Approximation a 10 (Level 0)
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Figure 31 (c): Detail d 10 (Level 1)
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Figure 31 (d): Detail d 9 (Level 2)

Figure 31 (e): Detail d 8 (Level 3)
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Figure 31 (f): Detail d 7 (Level 4)

Figure 31 (g): Detail d 6 (Level S)

Figure 31 (h): Detail d S (Level 6)
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Figure 31 (i): Detail d 4 (Level 7)

Figure 31 (j): Detail d 3 (Level 8)

Figure 31 (k): Detail d 2 (Level 9)

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



60

Figure 31 (1): Detail d 1 (Level 10)

Figure 31: Wavelet Decomposition o f the signal using Daubechies D20 wavelet function.

The wavelet decompositions o f the transformer inrush current using Daubechies 

D4 in figure 30 are compared with those obtained using Daubechies D20 in figure 31. For 

the Daubechies D4 wavelet, detail output d 4 (level 7) (See figure 30(i)) has an output that 

has large amplitude peaks corresponding to the peaks o f the inrush current and smaller 

amplitude signal almost closer to a value of zero corresponding to the valleys (null period) 

in between the peaks. For the same transformer inrush signal, the Daubechies D20 wavelet 

decomposition doesn’t have any clearly distinguishable characteristics for any output 

decomposition level as in Daubechies D4. The Daubechies D20 wavelet’s detail output d 

4 (level 7) (See figure 3 l(i)) has an output that appears to be more averaged from the 

longer scaling function with more coefficients. The higher the number o f coefficients of 

the wavelet, it tends to smooth out the output decomposition. So for a transient signal with 

varying amplitudes and short duration, Daubechies D4, a wavelet with fewer coefficients 

is a good choice.
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Similarly, to compare with the decomposition o f the fault current, its wavelet 

decompositions using both the Daubechies D4 and D20 are plotted in figures 32 and 33 

respectively. The fault current signal shows the fault occurs at the 450th data point in the 

time period considered. For the transformer short fault, the signal saturates at both positive 

and negative peaks at the time o f the fault. Circuit breakers are used to detect this sudden 

increase in current due to fault and turn off the input to the transformer thereby reducing 

the damage. Clearly distinguishing this fault current from the inrush current is critical in 

ensuring the circuit breaker doesn't fail for the inrush current. This transient magnetizing 

inrush current causes false tripping of the differential relay and hence shutting the power 

circuit o ff [30].

10: •

i

x •

’X •

Figure 32 (a): Transformer fault current signal
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Figure 32 (b): Approximation a 10 (Level 0)

Figure 32 (c): Detail d 10 (Level 1)

Figure 32 (d): Detail d 9 (Level 2)
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Figure 32 (e): Detail d 8 (Level 3)

Figure 32 (0: Detail d 7 (Level 4)

Figure 32 (g): Detail d 6 (Level S)
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Figure 32 (h): Detail d 5 (Level 6)

Figure 32 (i): Detail d 4 (Level 7)

Figure 32 (j): Detail d 3 (Level 8)
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Figure 32 (k): Detail d 2 (Level 9)

Figure 32 (1): Detail d I (Level 10)

Figure 32: Wavelet Decomposition Of The Fault Current Signal Using Daubechies
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Figure 33 (a): Transformer fault current signal

Figure 33 (b): Approximation a 10 (Level 0)

Figure 33 (c): Detail d 10 (Level 1)
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Figure 33 (d): Detail d 9 (Level 2)

Figure 33 (e): Detail d 8 (Level 3)

Figure 33 (f): Detail d 7 (Level 4)
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Figure 33 (g): Detail d 6 (Level 5)

Figure 33 (h): Detail d 5 (Level 6)

Figure 33 (i): Detail d 4 (Level 7)
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Figure 33 (j): Detail d 3 (Level 8)

Figure 33 (k): Detail d 2 (Level 9)

Figure 33 (1): Detail d 1 (Level 10)

Figure 33: Wavelet Decomposition Of The Fault Current Signal Using Daubechies D20.
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The D aubechies w avelet d ecomposition f  or t he f  ault c urrent d oesn’l d isplay t he 

same kind o f behavior the wavelet decomposition o f the magnetizing current shows. As 

seen in the wavelet decompositions for both the D4 and D20 o f the fault current, they do 

not show any distinctive behavior except for a few large spikes at the state o f transition 

from t he n ormal c urrent t o t he fault c urrent. T he o utput d ecomposition after t he i nitial 

spurt decays and remains the same for all periods o f time. This method o f discriminating 

the magnetizing inrush current from the transformer fault current is better than the existing 

second harmonic component method used for most o f the differential protective schemes 

[28], [29]. In the wavelet transform, the detection principle is based on the null period that 

exists in the inrush current. A paper describing the above research for identification of 

inrush current along with other research done, authored by Dr. Mickey Cox and me, has 

been accepted for publication in the IEEE transaction for Power Systems [17]. A copy of 

the paper is attached in Appendix B.

Hence, for applications where the information at a specific instance o f time or for a 

very short period o f time is to be retrieved the wavelets with less number o f coefficients is 

a better choice. In our application to distinguish between inrush and fault currents, 

Daubechies D4 is a better choice. D4 wavelet’s detail d4 (level 7) for the inrush current 

and D4 wavelet’s detail d4 (level 7) for the fault current show how clearly the inrush and 

fault current are distinguished.

For information spread over long period o f time or for signals with constant 

behavior over time, wavelet decomposition with D20, a wavelet with more number of 

coefficients is a good choice, as it tends to give a smoother output. The wavelet 

decomposition can be used to identify the frequencies (though not exactly, but within
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specific frequency bands) o f the event. Compare the D4 and D20 output wavelet 

decompositions o f the fault current. The D20 wavelet decompositions are smoother than 

the D4 wavelet decompositions. The 04  wavelet with 4 coefficients tends to introduce 

discontinuities and breaks due to its wavelet function characteristic shape. For the D4 

wavelet decomposition o f the fault signal, the output amplitude is maximum in the detail 

d6 (level S) with the detail dS (level 6) having approximately 1/2 the maximum amplitude 

in the region after the transition from normal to fault state. For the D20 wavelet 

decomposition o f the same fault signal, the output amplitude is maximum in the detail d6 

(level 5) with the detail d5 (level 6) having less than 1/5,h o f the maximum amplitude. For 

the above wavelet decomposition, detail d6 and detail d5 correspond to two different 

frequency bands separated by an octave. This shows that for the same fault signal, the 

amplitude in the detail d5 is different for different wavelets D4 and D20. The energy of 

the output wavelet decomposition using D4 is more spread out between two frequency 

bands compared to output wavelet decomposition using D20. So if  we assume that D20 

with more number o f coefficients identifies the signal lies in one frequency band, D4 with 

less number o f coefficients has very bad frequency localization. D4 shows the signal has 

frequencies with higher amplitudes in the next octave band.

The number of coefficients in the wavelet is shown to affect both the time 

localization and the frequency localization. Wavelets with fewer coefficients are better in 

detecting localized events but are not better tool for qualitatively quantifying the energy 

and frequency o f wavelet decomposition. The next chapter is dedicated to the research 

done on quantifying the energy distribution and leakage in wavelet decompositions.

R ep ro d u ced  with p erm iss io n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



72

PROTECTIVE RELAYING TECHNIQUES FOR FAULTS:

The phase difference in the wavelet filter characteristics is a very important feature 

when used for applications with time as the critical factor. Identification o f the fault 

current in the power system and shutting down the power to the system immediately is 

one o f the important research studies in power system protection. The proper use o f 

protective relay devices can substantially reduce the impact o f faults and other 

disturbances on the operation o f the power system [48].

Fuses w ere t he e arliest power p rotection d evices w hich, though s till b eing u sed 

widely, have been replaced in major circuits by circuit breakers to protect motors, 

generators, transformers etc. The circuit breaker’s trip coils were controlled originally by 

electromechanical relays. Attempts to replace these by electronic solid state relays were 

hard at the beginning due to failures and bad designs, but with the advancement o f digital 

technology and modifications to designs, they are being used in most circuit breakers and 

have found wide-spread acceptance. Current developments in micro-controller based 

electronics and miniaturization, these microprocessor based relays [49] are now 

incorporated with intelligence to be able to identify and classify faults in a timely manner 

before shutting down the circuit or raising alarms as appropriate depending on the type o f 

fault.

The new microprocessor based relaying techniques call for improved software 

algorithms that are competent to perform different functions based on the outcome o f  

detecting varying parameters o f  fault such as the type o f  fault, the fault location, fault 

impedance and the fault incident time that determine the corresponding transient current 

and voltage waveforms [SO]. The new detection and classification approach has to reliably
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conclude, in a very short time ( 1 - 2  cycles), whether and which type o f fault occurs under 

a variety o f time-changing operating conditions [SI]. Several new methods and algorithms 

such as neural networks, fuzzy logic, and wavelet transforms for detecting o f fault 

parameters are being researched.

One o f  t he i mportant c haracteristics o f  a good r elaying s ystem i s i ts s hort t ime 

response. This has been given utmost importance in terms o f being able to detect the fault 

early and provide a response within the least amount o f time possible. Design 

optimization and performance evaluation of relaying algorithms, relays and protective 

systems is ongoing research [52]. For a good algorithm, it should trace the feature of the 

signal (for example, the amplitude after the occurrence of fault), reflecting the changes 

instantaneously. Due to well know trade-off between speed and accuracy, the time 

responses between the ideal and practical measuring algorithms differ [52].

Choosing the best algorithm to minimize this trade-off is an important part o f the 

protective relaying research. Wavelets have very interesting characteristics that can 

provide answers to the time response o f the relay algorithm. In the last example, we 

clearly saw the advantages of using the wavelets to identify and classify the inrush and 

fault currents. Once this classification has been done and the fault current identified, the 

wavelet algorithm can be used to shutdown power circuits or raise alarms for action. The 

wavelets’ phase characteristics seen in the previous chapter can be used as an important 

tool in choosing the appropriate wavelet that will help in designing faster response relays.

From the phase characteristics o f the wavelet filters, the D4 and D20 Daubechies 

wavelets have varying slopes o f the phase response. D4 with a few coefficients has a 

smaller slope compared to the D20 with a greater number o f coefficients. D4 was found
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suitable for discriminating between the inrush and fault currents o f the previous example. 

Applying the same two Daubechies wavelet decompositions to the fault currents, we 

obtain the wavelet decompositions shown in figures 32 and 33. The wavelet level d6 has 

the frequency band o f 40 to 80 Hz, which is the frequency o f our interest.

Figure 34 shows the 2048 data points o f the transformer fault signal obtained in 

the lab. Figures 33 and 36 show the wavelet level d6 o f the Daubechies decompositions of 

the fault signal for the two wavelets D4 and D20 respectively.

Figure 34: Transformer fault current signal
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Figure 33: Wavelet level d6 -  Daubechies D4 decomposition o f the fault signal.
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Figure 36: Wavelet level d6 -  Daubechies D4 decomposition o f the fault signal 

The above plots are plotted with the fault current threshold cut-off lines at ISO. 

The higher thresholds are to avoid false triggers by high amplitude inrush currents or 

transients. It can be seen that the D4 with a smaller phase slope has a smaller delay and 

follows the fault current signal. The D20 on the other hand, has more delay for the same 

60 Hz signal due to the higher slope phase characteristics. The wavelet level d6 for the 

Daubechies D4 crosses the threshold value at around the 500th data point about 100 points 

earlier than D20’s 600th point.

D4 with fewer number o f coefficients which was found suitable for clearly 

classifying the inrush and fault currents can be further used as a trip algorithm to identify 

the fault incident time early and to shutdown the circuit breakers with in the first two 

cycles. A paper outlining the phase characteristics of wavelets and its applications as a 

tool for protective relaying techniques is in progress for publishing in the IEEE journal.

Wavelets as seen in the above research, show potential as a promising tool for 

further study towards applying them to the area o f protective power systems. Practical
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applications such as the ones mentioned above will aid in popularizing the wavelet tool 

for signal processing applications.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER 5

ENERGY DISTRIBUTION OF WAVELET 

DECOMPOSITIONS

As seen in the previous chapter, for detecting the frequency composition of the 

signal being analyzed, we get different results with energy distributed in the wavelet 

decompositions o f the same signal using D4 and D20. To further analyze this, we consider 

a sinusoidal signal simulated with MATLAB<R> having the fundamental frequency 

combined with its seventh harmonic frequency component at half amplitude. This signal is 

given by:

f i t )  = V2 sin(2;r60/) + 0.5 x -Jl sin(2;r420f) - ( 16 )

Three cycles o f the signal at 60 Hz with 512 data points and sampled at a 10,240 

Hz are considered as shown in figure 37. The fundamental frequency 60 Hz and the 

seventh harmonic 420 Hz are considered for our example. This signal is wavelet 

transformed to obtain the approximation and the details o f the signal. For this signal with 

N  = 512 data points, there are 9 wavelet levels, i.e., 8 detail levels and 1 approximation 

level.

77
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The octave bands o f frequency range from DC to 5120 Hz, half sampling frequency 

10,240 Hz. The rms value o f the signal decomposition in each level is calculated and 

studied to understand the wavelet energy distribution and leakage. Daubechies D20 

wavelet decomposition o f the above signal is shown in figure 38.

L oad<*<l S ig n a l

Figure 37: Simulated Signal Using Matlab.
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Figure 38(a): Approximation a8 (Level 0)
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Figure 38(b): Detail d8 (Level 1)
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Figure 38(c): Detail d7 (Level 2)
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Figure 38(d): Detail d6 (Level 3)
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Figure 38(0: Detail d4 (Level 5)
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Figure 38(g): Detail d3 (Level 6)
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Figure 38(h): Detail d2 (Level 7)
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Figure 38(i): Detail dl (Level 8)

Figure 38: Wavelet Decomposition Of Simulated Signal Using Daubechies D20 Wavelet
Function.

The rms amplitude value and the energy o f the simulated signal is calculated as: 

f ( t )  = V2sin(2;r6Qr) + 0.5x V2 sin(2;r42Qf)

m w (/(/)) = V 0)2 + ( 0.5)2

rms(f(t)) = VL25 =1.118 - ( 1 7 )

Energy o f the signal = (m ts(/(/)))2 = 1.25 

The rms amplitude value and energy o f the individual wavelet decompositions is 

calculated. The “energy” mentioned above is based on the Parseval’s theorem: “the 

energy that a time domain function contains is equal to the sum o f all energy concentrated 

in t he d ifferent r esolution I evels o f  t he c orresponding w avelet t ransformed s ignal”[31 ]. 

The rms value and energy o f the individual wavelet level L is given by:

rms(levelL) = sq r tij^ ^ *  sum(A(L,:)2) - ( 18)

where A(L,:) is the coefficients o f the wavelet decomposition level L signal.

The total energy o f the signal can be mathematically expressed as [32], [33]:
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i i / W  = £ h W + £  £ p m  -<19 >
■■I »>l jm  I *>|

where N  is the number of data points, / is the total number o f wavelet decomposition 

levels. The above expression shows that the total signal energy is the sum o f the j"1 level 

approximation signal and the sum o f all the detail level signals from 1st detail to j* detail.

Table 4 shows the details o f the wavelet decomposition in terms o f frequency 

bands, center frequency, rms and energy values o f the individual levels for wavelet 

transform o f the simulated signal using Daubechies D20.

Table 4: Rms Value Of The Daubechies D20 Wavelet Levels For The Simulated Signal.

Wavelet
Level Frequency band Center

frequency Rms value Energy

0(a8) 0-20 Hz 10 Hz 0.1981 0.0392

l(d8) 20 H z-4 0  Hz 30 Hz 0.2827 0.0799

2(d7) 40 Hz -  80 Hz 60 Hz 0.8779 0.7706

3(d6) 80 H z-1 6 0  Hz 120 Hz 0.1777 0.0316

4(d5) 160 H z-320  Hz 240 Hz 0.0775 0.0060

5(d4) 320 H z-640  Hz 480 Hz 0.4831 0.2334

6(d3) 640 H z-1280 Hz 960 Hz 0.0596 0.0035

7(d2) 1280 Hz -2 5 6 0  Hz 1920 Hz 0.0074 0.0001

8(dl) 2560 Hz -5 1 2 0  Hz 3840 Hz 0.0021 0.0000
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The square root o f the sum total o f all the rms values is

Rms value = Square Root [(square o f rms value o f approximation level) + (sum o f 

squares o f rms values o f all detail levels)].

^jj'(rm svalue)2 =
(0.1981)2 + (0.2827)2 +(0.8779)2 + (0.1777)2 
+ (0.0775)2 +(0.4831)2 +(0.0596)2 +(0.0074)2 

1+(0.0021)2

rm s(f (0) = -J\A6 = 1.08

Energy = energy o f approximation level + sum o f energies o fa ll details

Energy =
0.0392 + 0.0799 + 0.7706  ̂
+ 0.0316 + 0.0060 + 0.2334 

^+ 0.0035 + 0.0001 + 0.0000 J

Energy = 1.16

This value determined by the wavelet decomposition is approximately in good 

agreement with the rms value o f the simulated signal calculated earlier in equation 16. 

This shows that the total energy o f the signal is distributed among the wavelet levels and 

no energy or very little energy is lost in the decomposition. Figure 39 shows the histogram 

of the rms and the energy values in table 4. It can be seen from the histogram plots, the 

energy is concentrated in a few wavelet decomposition levels, i.e., wavelet level 2 (d7), 

wavelet level 5 (d4). These levels correspond to frequency bands -  40 Hz to 80 Hz and 

320 Hz to 640 Hz respectively. The signal is made o f 60 Hz and 420 Hz frequencies 

which should lie only in level d7 and d4. The wavelet decomposition o f the signal shows 

the signal has some frequency components lying in the bands around these two bands but 

with smaller amplitude. Since the total energy calculated is shown to be the same, then 

there exists energy leakage between the bands.
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Figure 39: Histogram of the Daubechies D20 wavelet decomposition o f the simulated
signal.

To understand the energy leakage further, let us consider the Daubechies wavelet 

D4 wavelet decomposition of the same simulated signal / ( / )  and calculate the rms and 

energy values o f the decomposition. Figure 40 shows the 9 level wavelet decomposition 

of the simulated signal using Daubechies D4 wavelet. The rms and energy values o f the 

wavelet levels are calculated using the same method described earlier and are tabulated in 

table S. These values o f Daubechies wavelet in table S are compared to values o f 

Daubechies wavelet D20 in table 4.
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Figure 40(d): Detail d6 (Level 3)

Figure 40(e): Detail dS (Level 4)

Figure 40(0: Detail d4 (Level 5)
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Figure 40: Wavelet Decomposition O f Simulated Signal Using Daubechies D4 Wavelet
Function
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Table S: Rms Value Of The Daubechies D4 Wavelet Levels For The Simulated Signal.

Wavelet
Level Frequency band Center

frequency Rms value Energy

0(a8) 0-20 Hz 10 Hz 0.2704 0.0731

1 (d8) 20 H z-4 0  Hz 30 Hz 0.2909 0.0846

2(d7) 40 Hz -  80 Hz 60 Hz 0.7603 0.5780

3(d6) 80 H z-160  Hz 120 Hz 0.4817 0.2320

4(d5) 160 H z-320  Hz 240 Hz 0.2342 0.0548

5(d4) 320 H z-640  Hz 480 Hz 0.4111 0.1690

6(d3) 640 H z- 1280 Hz 960 Hz 0.1890 0.0357

7(d2) 1280 Hz -  2560 Hz 1920 Hz 0.0562 0.0032

8(dl) 2560 H z-5 12 0  Hz 3840 Hz 0.0156 0.0002

The total rms value and the energy o f D4 output calculated from the above table is:

Rms value -  Square Root [(square o f rms value o f approximation level) + (sum o f  

squares o f rms values o f all detail levels)].

yj^(rm svalue)2 =
(0.2704)2 + (0.2909)2 + (0.7603)2 + (0 .4817)2 
+ (0.2342)2 +(0.41 l l ) 2 +(0.1890)2 +(0.0562)2 

} +(0.0156)2

rm s(/(0) = VL23 =1.11

Energy -  energy ofapproximation level + sum o f energies o fa ll details

Energy =
f0.0731 + 0.0846 + 0.5780 '  
+ 0.2320 + 0.0548 + 0.1690 
+ 0.0357 + 0.0032 + 0.0002

= 1.23
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The histogram o f the rms and energy values for Daubechies D4 wavelet 

decomposition for the simulated signal is shown in figure 41. Comparing the histograms 

of the two wavelet decompositions o f D4 and D20, we see the total energy is the same for 

both cases, but an interesting observation can be made with regards to the energy 

distribution.
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Figure 41: Histogram Of The Daubechies D4 Wavelet Decomposition Of The Simulated
Signal.

For the ideal decomposition of our simulated signal, the energy should be 

concentrated only in the two wavelet levels -  d7 (40 Hz to 80 Hz) and d4 (320 Hz to 640 

Hz). However, for the Daubechies wavelet, we see the energy is still concentrated in 

levels 2 (d7) and 5 (d4), but there exists energies at other levels too. For Daubechies D4, 

the energy is also considerably high in level 3 (d6: 80 Hz to 160 Hz), while for both the 

Daubechies D4 and D20, it can be seen there is also more leakage into level 0 (a8:0 Hz to
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20 Hz), level 1 (d8: 20 Hz to 40 Hz), level 4 (d5: 160 Hz to 320 Hz) and level 6 (d2: 640 

Hz to 1280 Hz). This leakage is significantly larger than that o f the Daubechies D20 

wavelet decomposition.

This analysis shows that even when the total energy is the same in both cases, the 

energy distribution varies within wavelet levels. This brings us to the next question, what 

are the frequency bandwidth characteristics o f the wavelet levels. The above research was 

published in the paper authored by Dr. Cox and myself in the IEEE transactions of Power 

Systems [17].

Before we go on to the next chapter, let us study the energy distribution behavior 

for the wavelet decomposition o f same signal using Symlets wavelet SYM20 and Coiflets 

wavelets COIF2 and COIFS. The procedure used above is repeated, and the rms values 

calculated. Only the final histogram plots o f the rms and energy o f the wavelet 

decompositions are plotted for clarity. The Symlets SYM4 wavelet with the exact same 

coefficients and magnitude phase response as Daubechies D4 has an energy distribution 

which matches to the D4 characteristics described earlier. Figure 42 shows the histogram 

o f the energy distribution for SYM20 wavelet decomposition. It is appropriate to again 

mention that the Symlets and Coiflets wavelets are more symmetric than the Daubechies 

wavelets.

Seen from figure 42, the Symlets SYM20 when compared to its Daubechies 

counterpart D20, show a small increase in the rms and the energy for the levels other than 

the main frequency bands of 40 Hz to 80 Hz and 320 Hz to 640 Hz. The energy increase 

in some o f the levels is significant. The rms value o f the level 0 is 0.3027 for SYM20 but 

only 0.1981 for D20. This shows an increase o f at least 50 % more in the SYM20 wavelet
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decomposition in the 0 Hz to 20 Hz band. With the improvement in the symmetricity o f 

the SYM20 wavelet coefficients, an increase in this level is usually not expected. Instead, 

we would have thought to see a decrease.
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Figure 42: Histogram O f The Symlets SYM20 Wavelet Decomposition O f The Simulated
Signal

Even though this increase is very small, it is clear that the energy distribution is 

affected by the difference in phase characteristics even though the magnitude 

characteristics were the same as discussed in chapter 3. The histogram plot o f the wavelet 

decomposition of the simulated signal using Coiflets COEF2 is shown in figure 43.
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Figure 43: Histogram of the Coiflets COIF2 wavelet decomposition o f the simulated
signal.

The Coiflets COIF2 wavelet has only 12 coefficients compared to 20 coefficients 

for SYM20 or D20. As seen for Daubechies D4, the energy leakage is more for the COIF2 

wavelet decomposition than the Daubechies 20 or SYM20, but it is still better than D4. 

The histogram plot o f the wavelet decomposition using Coiflets COIFS wavelet with 30 

coefficients is shown in figure 44. The COEF5 wavelet exhibits exactly same magnitude 

characteristics as the D20 or SYM20 wavelets, but its phase characteristics are different 

for both low pass and high pass filters. Just looking at the histogram plots o f the SYM20 

and COIFS wavelet decompositions, they seem to possess similar characteristics. It is 

interesting to compare them in detail and to see the change the in the energy distribution.
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Figure 44: Histogram of the Symlets COIFS wavelet decomposition o f the simulated
signal.

Even though the differences are not very large, for the COIFS wavelet the energy 

level is less than the SYM20 wavelet for all levels below the 40 to 60 Hz band but the 

energy level is more than the SYM20 above this band with an exception o f the second 

frequency band 320 Hz to 640 Hz. Looking back at the phase characteristics for the 

SYM20 and COIF5, the high pass decomposition phase plot shows the two wavelets have 

the same phase slope. For the low pass the slope o f SYM20 is less than the slope of 

COIFS and the difference is significant. This manifests itself in the energy distribution of 

the wavelet decomposition with SYMO having higher energy leakage for the higher 

frequencies than the COIFS wavelet decomposition.

Figure 4S shows the comparison o f the rms value distributions o f all the wavelet 

decompositions described above.
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Figure 45: Comparison Of Energy Distributions Between Wavelet Decompositions

This shows the energy distributions are almost similar with minute differences for 

the Daubechies D20, Symlets SYM20 and Coiflets COIF5. Daubechies D4 is the worst 

with more energy in the adjacent bands. Also interestingly for the SYM20 and COEF5 

wavelets, the lower level’s energies are higher and some o f them are comparable to the 

Daubechies D4.

To understand the distribution further, a signal with single frequency is wavelet 

transformed. The next few plots are the histograms o f the rms values for decomposition o f 

a simulated signal with single frequency 240 Hz which is in the middle o f the nine 

frequency bands. Figure 46 shows the rms distribution histograms for the four wavelet 

decompositions D4, D20, SYM20 and COIF5.
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Figure 46: Histogram Of Rms Distributions For D4, D20, SYM20 And COIFS Wavelets.

The above figures show that for wavelets with higher coefficients, the energy is 

concentrated in the frequency band 160 Hz to 320 Hz., i.e., it has slightly higher energy 

compared to D4. Away from this center frequency, the energy distribution is different for 

different wavelets. The comparisons o f the above wavelet decomposition distributions for 

different wavelets can be clearly seen in the 3D histogram plots o f figures 47 and 48. The
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plots show the differences in height for the rms values o f the different wavelet 

decompositions.
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Figure 47: Comparison Of Wavelet Decompositions -  Looking From The Right.
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Figure 48: Comparison O f Wavelet Decompositions -  Looking From The Left.

The study o f frequency bandwidth characteristics in the next chapter might throw 

some light into the behavior o f the wavelet decompositions and energy distributions.
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CHAPTER 6

FREQUENCY BANDWIDTH CHARACTERISTICS

To find the frequency bandwidth characteristics o f the wavelet decomposition, a 

sinusoidal signal is chosen and its frequency is swept between the minimum and 

maximum frequency o f the chosen wavelet level. With the amplitude o f the selected 

frequency component kept constant over the entire sweep range, the energy distributed in 

the wavelet level under consideration must remain constant with sharp edges. This is true 

in ideal conditions, but for the non-ideal filters used for wavelet decomposition, the 

energy distribution amplitude doesn’t remain constant and at the edges rolls over to the 

next frequency level.

Let us select a sinusoidal signal o f 512 data points which provides us with 9 

wavelet levels as in the previous chapter. Selecting wavelet level 2 (d7: 40 Hz to 80 Hz) 

we can sweep the sinusoidal signal’s frequency from 40 Hz to 80 Hz and calculate the rms 

value o f the wavelet level at different frequency points along the sweep. This can be 

graphically represented as in figure 49.

98
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The block diagram shows the input signal is applied at the left most filter bank and the 

multiresolution wavelet analysis continues using similar low pass and high pass filter 

banks. The output o f the high pass filter is the details and the level 2 (d7) is shown where 

the output is measured. So, before the signal is measured at the output level 2 (d7), it 

passes through a few low pass filters and one high pass filter with down-sampling in 

between each filter.
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Figure 49: Block Diagram Of Wavelet Decomposition

Figure SO shows the sinusoidal signal with 512 data points at frequency 60 Hz, the 

center frequency between the 40 Hz and 80 Hz. This sinusoidal signal’s frequency is 

swept from 20 Hz to 100 Hz in steps, and then at each step it is decomposed into different 

levels by wavelet transform. The rms value o f the wavelet decomposition level 2 is 

calculated for each step of the frequency sweep. The frequency characteristics are plotted 

with the rms value in dB on the y-axis and the frequency on the x-axis.
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Figure SO: 60 Hz sinusoidal signal -  512 data points.

The above signal is decomposed using Daubechies wavelet D4 at each frequency 

step o f the sweep range and at each step the rms value o f detail level 2 is calculated. The 

results obtained are shown in table 6 along with the calculated dB values.
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Table 6: Frequency Sweep And Its Corresponding Energy Amplitudes Both In Rms 

And In Decibel Values For The Wavelet Level D2 
Of The Daubechies D4 Decomposition

Freq 
in Hz

RMS
value

decibel value 
(dB)

20 0.2489 -26.7633
21 0.2609 -25.8221
22 0.2671 -25.3493
23 0.2709 -25.0644
24 0.2779 -24.5555
25 0.2939 -23.4407
26 0.3214 -21.6459
27 0.3583 -19.4763
28 0.3979 -17.3782
29 0.4324 -15.7179
30 0.4540 -14.7393
31 0.4570 -14.6103
32 0.4377 -15.4715
33 0.3966 -17.4463
34 0.3400 -20.5223
35 0.2866 -23.9441
36 0.2727 -24.9346
37 0.3276 -21.2649
38 0.4341 -15.6374
39 0.5605 -10.5261
40 0.6852 -6.5088
41 0.7941 -3.5593
42 0.8776 -1.5595
43 0.9298 -0.4028
44 0.9487 0
45 0.9364 -0.2624
46 0.8992 -1.0716
47 0.8484 -2.2355
48 0.7986 -3.4452
49 0.7654 -4.2948
50 0.7592 •4.4564
51 0.7799 -3.9182
52 0.8170 -2.9896
53 0.8558 -2.0616
54 0.8837 -1.4192
55 0.8933 -1.2044
56 0.8829 -1.4390
57 0.8567 -2.0403
58 0.8240 -2.8189
59 0.7967 -3.4926

60 0.7855 -3.7757
61 0.7948 -3.5414
62 0.8200 -2.9166
63 0.8504 -2.1894
64 0.8738 -1.6459
65 0.8811 -1.4788
66 0.8683 -1.7716
67 0.8375 -2.4952
68 0.7970 -3.4868
69 0.7606 -4.4218
70 0.7437 -4.8708
71 0.7561 -4.5386
72 0.7957 -3.5176
73 0.8493 -2.2153
74 0.8994 -1.0676
75 0.9307 -0.3845
76 0.9319 -0.3587
77 0.8969 -1.1236
78 0.8246 -2.8044
79 0.7186 -5.5576
80 0.5871 -9.5972
81 0.4448 -15.1489
82 0.3180 -21.8644
83 0.2572 -26.1025
84 0.2984 -23.1321
85 0.3902 -17.7685
86 0.480S -13.6079
87 0.5476 -10.9917
88 0.5842 -9.6967
89 0.5900 -9.4985
90 0.5698 -10.1972
91 0.5324 -11.5540
92 0.4903 -13.2042
93 0.4568 -14.6163
94 0.4422 -15.2676
95 0.4473 -15.0380
96 0.4638 -14.3151
97 0.4798 -13.6351
98 0.4859 -13.3815
99 0.4772 -13.7455
100 0.4533 -14.7734
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Figure 51 shows the plot o f frequency bandwidth characteristics. The plot o f the 

frequency bandwidth characteristics in dB for level 2 (40 Hz to 80 Hz) o f the Daubechies 

EM shows a clear good roll off at both the end frequencies 40 Hz and 80 Hz. The two 

vertical lines indicate the boundary for the wavelet level d2.
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Figure 51: Frequency Bandwidth Characteristics For Daubechies D4 - Wavelet Level d2.

The passband for D4 is not flat but has significant ripple as seen in the plot. This 

ripple has an average variation o f more than 3 dB, as opposed to the flat magnitude 

characteristics o f the individual low pass and high pass filter seen earlier. The first side 

lobes that are on either side in the stop bands are significantly high, especially the one 

towards the higher frequency. Table 7 shows the frequency bandwidth values for the 

Daubechies D20 for the same wavelet level.
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The frequency bandwidth characteristics for the same wavelet level using Daubechies 

D20 decomposition is plotted in figure 52.
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Figure 52: Frequency Bandwidth Characteristics For Daubechies D20 -
Wavelet Level D2.

Daubechies D20 wavelet decomposition is more flat in the passband compared to 

the D aubechies D 4 d ecomposition. T he 1 ower f  requency s ide 1 obe i s b etter i n t he D 20 

compared to the D4, but the higher frequency side lobe has the same magnitude. This 

shows Daubechies D20 with higher number of coefficients is a better wavelet for 

quantifying the signal frequencies in the passband. We can make the filter’s transition 

region more narrow using additional h(k) filter coefficients, but we cannot eliminate the 

passband ripple [33]. This ripple known as Gibbs’ phenomenon, is due to the 

instantaneous discontinuities demanded by the wavelet decomposition at the edges and no 

matter how wide we make this window, we will always have ripples. Hence, both
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Daubechies D4 and dD20 have a poor rollover and adjacent frequency rejections but the 

transition region for the D20 with 20 coefficients is slightly better by an Hz compared to 

the D4 with 4 coefficients. The next two figures show the energy o f the next wavelet level 

-  level 3 (d6) for the same frequency sweep o f 20 Hz to 100 Hz. These two figures show 

how the energy shows up in the next level for the signal that has frequencies pertaining to 

the p revious 1 evel. Figure 5 3 i s t he frequency b andwidth c haracteristics o f  t he w aveiet 

level 3 (d6) for the Daubechies D4 wavelet decomposition o f the signal whose frequency 

is swept between 20 Hz to 100 Hz.
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Figure 53: Frequency Bandwidth Characteristics Of Wavelet Level 3 (D6) For 
Daubechies D4 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
It can be seen that the signal with a frequency very close to the end regions but 

lying in the next frequency band or level will show up with a considerable amplitude in 

the current frequency band under consideration. Say for example, as seen in figure 53 and 

54, a signal with frequency 90 Hz shows up with an amplitude o f approximately negative
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10 dB in the detail level 2 (d7). The same holds for a signal with frequency o f 70 Hz 

which not only shows up in the level 2 (d7) but also has significant negative IS dB 

amplitude in the next level 3 (d6).

Figure 55 and figure 56 show the lower frequency level 1 (d8)’s bandwidth 

characteristics for the same frequency sweep of 20 Hz to 100 Hz for the D4 and D20.
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Figure 54: Frequency Bandwidth Characteristics O f Wavelet Level 1 (D8) For 
Daubechies D4 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
D20 characteristics in figure 56 show a sharper cut o ff at the higher frequency 40 

Hz o f wavelet level I. However, the side lobes for both D4 and D20 are at the same slope 

unlike the characteristics we saw for wavelet level 3.
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Figure 55: Frequency Bandwidth Characteristics Of Wavelet Level 1 (D8) For 
Daubechies D4 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.

The above frequency band characteristics are repeated for the next level with the 

frequency swept from 80 Hz to 160 Hz. The results o f this experiment are presented in the 

next six figures.

Figure 57 and figure 58 show the frequency wavelet characteristics for the wavelet 

level d3 for the D4 and D20 respectively for the frequency sweep from 60 to 180 Hz. 

Figures 5 9 and 60  s how the corresponding frequency b andwidth c haracteristics for t he 

wavelet decomposition level 2 (d7).
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Figure 56: Frequency Bandwidth Characteristics For Daubechies D4 -
Wavelet Level D3.

Figure 56 again confirms D20 has more flat passband characteristics with lesser 

amplitude ripples than D4. Also seen is an increase in amplitude in the regions near the 

edges due to the characteristics of the filters which is more prominent in the D4 

decomposition.
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Figure 57: Frequency Bandwidth Characteristics For Daubechies D20 -
Wavelet Level D3.

The figure 59 and 60 show the higher frequency energies that present in the 

current band are almost similar for both the Daubechies D4 and D20 wavelet 

decomposition. This higher frequency component in the current band is due to the non

ideal characteristics of the low pass filter. An ideal low pass filter would have cut off any 

frequencies above 80 Hz for this wavelet level 2 (d7). This type of behavior may be 

attributed to the presence o f vanishing moments only for the high pass wavelet function 

and not for the low pass filter scaling function as seen earlier. There is only one high pass 

wavelet function filter in the decomposition o f each wavelet level but more number of low 

pass filters in the chain. This high pass filter with a greater number o f coefficients for D20 

has more vanishing moments which are responsible for the better slope in the lower 

frequency end as seen in figure 54.
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Figure 58: Frequency Bandwidth Characteristics Of Wavelet Level 2 (D7) For 
Daubechies D4 Wavelet Decomposition -  

Frequency Sweep 60 Hz To 180 Hz.

On the other hand, the low pass filters o f both the Daubechies D4 and D20 behave 

similarly as seen in figures 59 and 60 without any vanishing moments for the Daubechies 

scaling functions. The low pass filter also known as the “averaging filter” averages the 

frequency components o f the signal and finally displays this low frequency average at the 

approximation level. Figure 60 shows the ripple in the stop band for Daubechies D20 is 

better than for the D4 decomposition in figure 59.

R ep ro d u ced  with p erm iss io n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



I l l

FREQUENCY BANOWAOTH CHARACTERISTICS • O aubacN as 0 2 0  <Ma> tovat 2 |d 7)

-5 -

-10

-15

-25

•30

•35

-40

-45,
160 160100 140

Figure 59: Frequency Bandwidth Characteristics Of Wavelet Level 2 (D7) For 
Daubechies D20 Wavelet Decomposition -  Frequency 

Sweep 60 Hz To 180 Hz.

Figures 61 and 62 show the frequency bandwidth characteristics for the higher 

frequency wavelet level 4 (d5: 160 Hz to 320 Hz) for a frequency sweep o f the signal in 

the range 80 Hz to 160 Hz. These figures show the response for the high pass filter for the 

next band which has a cut-off frequency at 160 Hz. The slope o f D20 wavelet in figure 62 

is better than the D4 of figure 61, for frequencies below the high frequency cut-off o f the 

wavelet level 4.

The above study shows the that D20 is a better wavelet in terms o f the passband 

flatness, and it also has a good high pass filter characteristics that has low energy leakage 

to the next lower frequency level.
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Figure 60: Frequency bandwidth characteristics of wavelet level 4 (d5) for Daubechies D4 
wavelet decomposition -  Frequency sweep 20 Hz to 100 Hz.
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Figure 61: Frequency bandwidth characteristics of wavelet level 4 (dS) for Daubechies
D20 wavelet decomposition -  Frequency 

sweep 20 Hz to 100 Hz.
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The frequency bandwidth characteristics are further studied for the Symlets and 

Coiflets wavelets for comparison. Figures 63 through 65 show the Symlets wavelet 

SYM20 wavelet decomposition o f the signal whose frequency sweep range is between 20 

Hz to 100 Hz.
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Figure 62: Frequency bandwidth characteristics o f wavelet level 2 (d7) for Symlets 
SYM20 wavelet decomposition -  Frequency 

sweep 20 Hz to 100 Hz.

Symlets wavelets have more symmetric coefficients than Daubechies wavelets 

which manifest in the good Harness with minimum ripple at a very narrow set o f 

frequencies near the center o f the wavelet level. But this symmetry o f the Symlets 

coefficients affects the transition region near the ends by not having sharper cut-offs.
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Figure 63: Frequency Bandwidth Characteristics Of Wavelet Level 1 (D8) For Symlets 
SYM20 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
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Figure 64: Frequency Bandwidth Characteristics Of Wavelet Level 3 (D6) For Symlets 
SYM20 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
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Similarly for COIFS, the frequency bandwidth characteristics are plotted in figures 

66 through 68.
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Figure 65: Frequency Bandwidth Characteristics Of Wavelet Level 2 (D7) For Coiflets
Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.

Coiflets also have symmetric coefficients and display similar frequency bandwidth 

characteristics as Symlets wavelets. The end regions near the transition band are worse as 

in the Symlets characteristics with significant ripple. Figure 67 and 68 of the Coiflets 

show comparable characteristics with figures 64 and 65 o f the Symlets.

Both Symlets and Coiflets have similar flat amplitude characteristics in the middle 

o f the wavelet band which make them suitable for analyzing a signal with frequencies in 

the center o f the band.
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Figure 66: Frequency Bandwidth Characteristics Of Wavelet Level 1 (D8) For Coiflets 
COIF5 Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
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Figure 67: Frequency Bandwidth Characteristics Of Wavelet Level 3 (D6) For Coiflets 
COIFS Wavelet Decomposition -  Frequency 

Sweep 20 Hz To 100 Hz.
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In conclusion, the above frequency bandwidth characteristics show wavelets do 

not exhibit t he i deal non-overlapping b andwidths b ut have a small rollover to t he next 

band. For the Daubechies D4 wavelet, the bandwidth characteristics are poorer, and hence 

a lot o f leakage can be seen between the bands. The characteristics o f Daubechies D20 

wavelet is better than D4 and also has sharper cut off with narrower transition regions. 

D20 still has ripples in both the pass band and the stop band due to the sharp 

discontinuities o f the rectangular window o f the wavelet levels. Symlets and Coiflets have 

maximum Harness for a set o f few frequencies near the middle o f the wavelet level. 

However, the end transition region is very poor with wider transition regions, even when 

compared with the Daubechies wavelets.

These results indicate that a careful selection o f the number of data points and the 

sampling frequency have to be made to avoid the frequency o f interest from falling on the 

edges o f the band. It is better for the frequency to be at the center o f the band to avoid loss 

o f information.

For example, consider the same simulated signal o f chapter 5 with the fundamental 

frequency of 60 Hz and the seventh harmonic 420 Hz having 512 data points. If the 

fundamental frequency o f interest is 60 Hz and the sampling frequency is 1024 Hz, then 

for the N  =512 we have 9 levels o f wavelet decomposition. Table 8 shows the frequency 

bands for the different levels of the wavelet decomposition. Similarly, the frequency 

bands o f the wavelet levels for the sampling frequency 10240 Hz is also shown in table 8. 

For the 1024 Hz sampling frequency, the d4 wavelet level has a frequency range from 32 

Hz to 64 Hz as seen in the center column o f the table 8.
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Table 8: Wavelet Decomposition Frequency Bands.
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Wavelet
level

Frequency bands for sampling 
frequency 1024 Hz

Frequency bands for sampling 
frequency 10240 Hz

dl 512 Hz to 256 Hz 5120 Hz to 2560 Hz

d2 256 Hz to 128 Hz 2560 Hz to 1280 Hz

d3 128 Hz to 64 Hz 1280 Hz to 640 Hz

d4 64 Hz to 32 Hz 640 Hz to 320 Hz

d 5 32 Hz to 16 Hz 160 Hz to 80 Hz

d6 16 Hz to 8 Hz 80 Hz to 40 Hz

d7 8 Hz to 4 Hz 40 Hz to 20 Hz

d8 4 Hz to 2 Hz 20 Hz to 10 Hz

a8 DC to 2 Hz DC to 10 Hz

But for the 10240 Hz sampling frequency, 60 Hz lies in the d6 wavelet level which 

has a frequency range o f 40 Hz to 80 Hz. The frequency o f interest 60 Hz is very close to 

the 64 Hz edge o f the wavelet level frequency band for the 1024 Hz sampling frequency 

case while for the 10240 Hz sampling frequency case, it is at the center o f the 40 Hz to 80 

Hz band. Hence, from the above research, we know the measurements made may not be 

accurate using the former sampling frequency due to the frequency characteristics o f the 

wavelet. Since the number o f wavelet levels and their frequency band ranges are 

dependent on the two parameters (number o f data points and the sampling frequency), the 

selection o f these is critical in qualitative and quantitative analysis o f signals. If the 

frequency o f interest, 60 Hz in this case, lies at the center o f the bandwidth, the amplitude
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is maximum at the center as seen in the frequency characteristic plots, and hence the 

accuracy is improved.

For some applications, the sampling frequency is decided by the hardware, i.e., the 

A/D converter or by the frequency o f interest. If the frequency we are interested in a 

signal is 1000 Hz, then the minimum sampling frequency given by the Nyquist frequency 

is 2 KHz. So, we are left to carefully select the number o f data points N considering the 

component o f the signal we are interested in analyzing.

A similar argument holds good for the selection o f sampling frequency when the 

number o f data points are fixed due to the time period o f the events in the signal. In this 

case, the sampling frequency is carefully chosen to obtain the right frequency ranges for 

the wavelet levels.
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CHAPTER 7

WAVELET SEISMIC EVENT DETECTION

Seismic data is being collected all around the world to study the behavior o f the 

earth and to better understand the natural events that occur frequently. The data monitored 

these days, thanks to technology, is collected in large volumes and stored digitally on 

computers. These current advances in technology have made it impractical to parse 

through this data manually and analyze them effectively in a cost-worthy and timely 

manner by human analysts. Automation o f  analyzing these large volumes o f data and 

detection o f  important and critical events is very important. Research in this field o f  

automatic seismic event identification and detection is o f greatest interest in the seismic 

community.

Several automatic seismic event detection methods have been proposed 

based on various methods o f  analysis and events o f interest that need to be identified and 

detected. Some o f these methods have made a profound impact among analysts and are 

being used for routine monitoring.
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Some o f  the automatic seismic event detection techniques that have been proposed 

are based on an off-line analysis method. The STA/LTA (Short Time Average/Long Time 

Average) phase picker method [34. 35] is one o f the commonly used methods for marking 

the occurrence o f  a seismic event. Once the occurrence o f the event is marked, human 

analysts are called in to classify the event or off-line softwares are used to identify the 

event. This method o f  identification and reporting o f the seismic event is time efficient 

and has implicit latency problems. As the data becomes extensive with numerous events 

that constantly occur at a more frequent rate, it becomes unwieldy to use to detect the 

events manually from data obtained at seismic stations all over the world.

Some innovative approaches that address the issue o f automatic detection are also 

proposed. For example, a method that uses the time-frequency bases o f Walsh transform 

to detect the seismic event automatically was proposed in 1981 [36|. A new event detector 

by Murdock and Hutt was designed to use with the Seismic Research Observatories [53]. 

These tested and tried methods that have already been used for decades are harder to 

replace or complement with other methods unless the new method does prove that the 

change is worth the effort. A human seismic analyst with routine monitoring is more 

proficient and reliable in identifying seismic events and becomes indispensable, as it is 

easier to recognize patterns in different events by human eye. These reasons have always 

posed a challenge to new methods being developed.

To develop automated event identification and detection methods, there have also 

been efforts to understand the seismic event by looking at signals and characterizing them 

for different behaviors before, during and after the event. Pattern recognition techniques 

[37] have also been considered to detect and classify seismic events such as earthquakes.
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Neural network algorithms [38] are also being studied for detecting the P and S waves o f  

an earthquake. In short, there is ongoing research to successfully automate the role o f  

human analysts [39], The idea o f using wavelets to identify and classify the seismic events 

has been floated around and has caused interest among the seismic community. The 

properties o f wavelet transforms and their promising potential for use in signal processing 

o f short time transient events is driving the research towards using then for automated 

real-time detection and reporting o f  seismic events.

Wavelets provide a good time-frequency localization o f  seismic signals. Hence, 

the time o f  occurrence o f an event is not lost in the analysis and can complement or 

augment other methods presently in use. Seismic signals for earthquake events have two 

important properties, the P phase (wave) and the S phase (wave). Figure 69 shows a 

typical seismic signal with an earthquake event. The P and the S phases along with their 

arrival times are marked.
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Figure 68: Seismic Signal With An Earthquake Event.

The occurrence o f these waves and their time o f arrival in the seismic signals are 

important for classifying earthquakes. For example, the ability to detect the arrival time o f 

P phase and S phase and their amplitudes correctly is one of the key factors in 

determining the distance and magnitude o f earthquakes. The wavelets, which have good 

time localization, possess the ability to detect the time o f arrival correctly compared to 

other methods that rely on various statistical trigger processes or the human eye. The 

frequency bands o f the wavelet decompositions provide the frequency information of 

these components o f the event. Research to understand the time-frequency decomposition 

of the wavelets when applied to seismic signals has been in the forefront in the last few 

years [40].

This research is to study how effectively the wavelet transform can be used to 

detect the important features o fth e  earthquake in  a seismic signal and classify it. One
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important feature is to detect the arrival time o f the first wave -  the P phase. The 

commonly used STA/LTA method mentioned earlier is a continuous comparison of 

‘rectified* or RMS trace power in two windows o f short (STA) and long (LTA) durations 

[35]. This method has an inherent delay due to the averaging method used for signal 

analysis. The benefits o f using the wavelet transform can be seen in early detection o f this 

P phase arrival. This is possible due to the characteristics o f the wavelets which help us to 

look for amplitudes o f predominant frequency components o f the P wave in the seismic 

signal. Ability to identify this P phase early and fast gives us a little extra time to take 

remedial measures to prevent damage to life and property. Any amount o f time gained is a 

valuable asset to disaster management and emergency response teams. Identification and 

classification o f earthquakes with an ability to pinpoint the magnitude and location o f the 

origin o f the earthquake is important in taking remedial measures and resource 

management. Wavelets have a potential to be used in analysis o f events in seismic signals 

that pose a threat to our resources like gas and water pipelines, roads, electric networks, 

buildings and infrastructure. For example, the recent earthquake in the western United 

States with a magnitude o f 7.9 cracked highways, damaged supports to the Trans-Alaska 

pipeline and sent ripples throughout the country [41]. The possibility o f saving money and 

life during unpredictable natural events is driving the research on using various techniques 

for detection o f seismic signal events including wavelets.

Signals obtained from various sensors or instruments always have two components 

into which they can be divided -  one, the noise and the other, the actual information. Each 

sensor or instrument has its own noise floor that is not a just a constant but a randomly 

varying component. This noise is sometimes modeled by statistical methods to a Gaussian
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noise, white noise, colored noise etc., The ability to be able to separate out this noise 

component is important in positive detection o f the disturbance or information caused by 

an event. The signal s(t) can be represented as:

*(/>=/!(/)+ e(/) - ( 2 0 )

The noise n(t) is sometimes similar but mostly different between different sensors 

and also at different times due to various circumstances. This changing noise has to be 

modeled correctly in order to avoid confusion and false identification. In this research, a 

seismic signal obtained from a seismometer, the noise is modeled during the quiet time 

continuously till an event is detected. Thus discriminating the noise and the event is 

simplified to a hypothesis test between the two models based on multiscale threshold test. 

The seismic signal can be represented in its wavelet bases as [42]:

j(r) = Y*d>■* (0  for j  > 0 and n e  /  - ( 2 1 )
jj>

where d jJt (s) = d jjt (n) + d jJt (e) and ^ ;jt(r) is the dilated and translated bases o f the 

mother wavelet.

The noise n(t) or d jJt(n) is modeled as for each wavelet level as a Gaussian noise

with a mean o f zero and a standard deviation o f a )  and can be written as:

< / , ,»  = - ( 2 2 )

The figure 67 below shows the empirical pdf histogram o f noise for the quiet period for 

the decomposed signals o f two wavelet levels 2 and 3 [42]. A Gaussian approximation is 

superimposed on the histogram plot to emphasize the Gaussian nature o f the decomposed 

signals for the quiet period.
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Figure 69: The pdf Of The Decomposition Signals Of The Wavelet Levels 2
And 3 For The Quiet Period.

For the multiscale threshold test we hypothesize that for any event to be detected 

in the seismic signal s(t) ,

i.e., the occurrence o f an event in the signal is true if any o f the wavelet level amplitude 

falls outside the 4a  boundary o f the noise model.

In this research we considered a few prominent earthquakes that occurred within 

the last year both in the U S and around the world. The data for these earthquakes are 

available from the IRIS Consortium [43], a seismic database center which catalogs and 

makes data available for researchers through its web site. The data is stored in full 

sampling rate o f 40 samples/sec obtained from seismometers at different seismic 

monitoring stations around the world. Data from the IRIS consortium can be obtained 

with the P phase arrival time as the reference point, and going up to 5 minutes before P 

and up to more than 50 minutes after P.

* ( 2 2 )
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This method o f data retrieval is good for our research as we propose to apply 

wavelets to detect the P phase arrival much before the arrival time specified by the current 

methods.

The earthquake events whose data are used in this research are listed below in 

table 9 below. The magnitude, time and date o f occurrence o f the events are also shown.

Table 9: Earthquake Events

Earthquake Event Magnitude Time in UTC Date
Central Alaska 7.9 22:12:40 Nov 3,2002

Southern Indiana 5.0 17:37:13 Jun 18,2002

New York 5.1 10:50:44 Apr 20,2002

Washington 6.8 18:54:32 Feb 28,2001

South India 7.7 03:16:40 Jan 26,2001

Starting off with the New York earthquake in April 2002 since it caused much concern 

around the northeast due to the density o f population in the area, the seismic plot for the 

earthquake event is shown in figure 71. The data for this earthquake were obtained from 

two seismic stations with Streckeisen seismometers having 40 Hz sampling rate. The plot 

shows 55 minutes o f seismic data with 127050 data points for the earthquake event seen at 

the Oxford, Mississippi seismic station.
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Figure 70: New York Earthquake Event Seismic Signal.

This data shows the quiet period at the beginning o f the plot, the P phase, the S 

phase and the final ring down o f the sensor signal after the earthquake. This data is 

downloaded as indicated earlier with S minutes before P and SO minutes after P. Therefore 

at 40 samples/sec, the P phase arrival time according to the method used by the seismic 

station is:

sample rate x time till P phase in seconds = 40 x 5 x 60 = 12000. - ( 23 )

Wavelet analysis is applied to this seismic signal for every 1024 data points, i.e, a non 

overlapping moving window of 1024 points, from the beginning o f the signal as shown in 

figure 72. The wavelet analysis is continued with time along the length o f the signal.
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Figure 71: Wavelet Analysis Of The Seismic Signal For First 4096 Data Points.

The DC offset of the signal is approximately reduced to zero to avoid large DC 

signals in the wavelet decomposition which tend to shadow the other frequency bands. 

This can be achieved in practice by sending the signal from the seismometer through a 

pre-amp or zeroing this offset digitally before performing a wavelet analysis. This offset 

may be different for each seismometer and hence reducing this offset helps to compare 

wavelet decompositions o f seismic signals from two or more stations by eliminating the 

differences in analysis due to DC offsets.

Given the sampling rate o f the seismometer signal, it is important, as seen in the 

previous chapter, to select the number o f data points for the wavelet decomposition and 

the level o f wavelet decomposition. The maximum frequency o f the wavelet 

decomposition is given by the Nyquist frequency o f 20 Hz.
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Considering a Fourier transform o f a seismic signal at quiet time, we can observe 

that the seismic signal peaks at a frequency between 0.1 to 0.3 Hz. This frequency band is 

called the microseism band and is due to the effects o f motion o f the earth due to ocean 

tides [44]. Figure 73 shows the Fourier transform o f the seismic signal during quiet period 

(period where no significant earthquake was recorded).

i
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F r e q u e n c y  (H z)

Figure 72: Fourier Transform Of The Seismic Signal Showing The Microseism Peak.

To contain most o f this frequency range to a single wavelet level and also to meet 

the criteria for number o f data points to be in powers of two, we select N  = 1024 data 

points with 10 levels o f wavelet decomposition as shown in table 10. This provides us 

with two wavelet levels 2 and 3, whose frequency ranges from 0.07S to 0.31 Hz, which is 

where mostly the microseism peak lies. The above selection helps to notice any 

microseism changes in the wavelet levels 2 and 3, and also to eliminate the microseism 

changes from appearing in any other bands used for earthquake analysis, thus preventing 

false alarms.
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Table 10: Wavelet Decomposition Frequency Bands O f The Seismic Signal 

N = 1024 Data Points, Fm*x = 20 Hz

Level Wavelet Scale Frequency range (Hz) Center Frequency 
(Hz)

0 a9 0 -0 .0 3 7 0.018

1 d9 0.037 -  0.075 0.058

2 d8 0.075-0.15 0.117

3 d7 0.15-0 .31 0.234

4 d6 0 .31-0 .62 0.468

5 d5 0.625- 1.25 0.937

6 d4 1.25-2.50 1.875

7 d3 2.5 -  5.0 3.75

8 d2 5 - 1 0 7.5

9 dl 10-20 15

Each 1024 data point’s section o f the seismic signal, which corresponds to 25.6 

seconds in length o f time, is processed by wavelet analysis and the corresponding 

decompositions are obtained. The rms values o f the decomposed wavelet decompositions 

are calculated. Appendix A has the Matlab program “seisrmscalc.m” which was written to 

automate this process o f performing the wavelet analysis to obtain wavelet 

decompositions and calculating the rms and energy values o f each level the wavelet 

decomposition. The rms values obtained are then compared with the threshold level set by 

the quiet (only noise) part o f the signal.

For the seismic signal o f the New York earthquake obtained from the Oxford, MS 

seismic station, the wavelet decomposition o f the first 1024 data points o f the signal using 

the Daubechies D20 wavelet is shown in figure 74.
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Figure 73: D20 Wavelet Decomposition Of The First 1024 Data Points O f The New York
Earthquake Seismic Signal.
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Figure 74 (Continued): D20 Wavelet Decomposition O f The First 1024 Data Points Of
The New York Earthquake Seismic Signal.
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Figure 74 (Continued): D20 Wavelet Decomposition O f The First 1024 Data Points Of
The New York Earthquake Seismic Signal.

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



135

0
1U

.'0

111

o
t o

•>0

in

?o
n
m
s
i)
s 

10 
1 *,

d 3

d,9

Figure 74 (Continued): D20 Wavelet Decomposition O f The First 1024 Data Points Of 
The New York Earthquake Seismic Signal Recorded At

Oxford, MS.

Therms and energy values calculated for the above wavelet decomposition are 

shown in the histogram plot o f figure 75. Note the signal's dc offset has been reduced to 

near zero, and hence a small rms value is seen in the level 0 o f the plot. As expected the 

wavelet level 2 shows higher rms value due to the microseism peak present in the seismic 

signal. This microseism peak is around 0.15 Hz during quiet times, and the peak tends to 

shift right towards 0.3 Hz with increase in storm activity.
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Figure 74: Histogram Plot Of The Rms And Energy Values For The 1* 1024 
Data Points’ Wavelet Decomposition In Figure 71.

The wavelet decomposition is  repeated continuously for every 1024 data points 

using the non-overlapping moving window and the rms values calculated. The histograms 

of the next few windows are shown in the following figures which are named accordingly. 

Only the rms values histogram is plotted for clarity and convenience. Figure 76 shows the 

histogram plot o f the rms values for the wavelet decompositions o f the seismic signal 

from 1024 to 5120 data points in steps o f 1024 data points. Continuing for the next four 

windows o f wavelet decomposition, figure 77 shows the histogram plots.
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Figure 75: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earthquake Seismic Signal 

Recorded At Oxford, MS.
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Figure 76: Histogram Plots O f Rms Values For D20 Wavelet Decompositions O f The
New York Earthquake Seismic Signal 

Recorded At Oxford, MS.
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We can clearly see that there is a sudden change in the histogram plot of S120 -  

6144 points compared to its predecessors. Plotting the time series between the points S120 

to 6144 in figure 78, we clearly see that the wavelet decomposition has clearly identified 

the arrival o f the P phase o f the earthquake event.

Figure 77: Time Series Plot Of The New York Earthquake Between
5120 And 6144 Points.

The quiet period (the only noise period) o f the seismic signal’s histogram plots in 

figure 76 show that the maximum rms value is less than 200 counts for any wavelet level. 

The wavelet level 2 and wavelet level 3 are the only two wavelet levels that have 

considerable amplitude due to the microseism.

A simple amplitude threshold trigger which simply detects any wavelet level 

amplitude o f the decomposed seismic signal exceeding the pre-set threshold can be 

employed for detection. The amplitude threshold can be pre-set to a fixed value or can be
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adaptive by looking at a set past windows and obtaining an optimum threshold. If we 

select a pre-set threshold o f 200 counts, we see from figure 77, the wavelet level S (0.62 

Hz to 1.25 Hz) shoots up very high, clearly exceeding the threshold value. Also seen is 

that some o f the other wavelet levels have also exceeded the 200 count threshold. This 

event when detected can be flagged as true for detection o f the event, in this case a P 

phase. Once the event is detected, the wavelet decomposition o f the seismic is continued 

to check for the existence o f S phase whose amplitude is much more than the P phase. The 

rms values are calculated, and the values are compared with the new amplitude threshold 

set after the detection o f the first event.

For our test with the New York earthquake, the P phase was detected at the sixth 

wavelet d ecomposition o f  t he s eismic s ignal w hich g ives u s a t ime o f  arrival o f  153.6 

seconds. This is much earlier than 5 minutes or 300 seconds as detected by the algorithm 

used by the seismic station. This is a good 150 seconds earlier time o f detection, a long 

time in terms o f time gained for emergency response.

The STA/LTA trigger method which is the most broadly used algorithm in weak- 

motion seismology, calculates the average values o f the absolute amplitude of the seismic 

signal in two consecutive moving-time windows. The short time window (STA) is 

sensitive to seismic events while the long time window (LTA) provides information about 

the temporal amplitude o f seismic noise at the site. When the ratio o f both exceeds a pre

set value, an event is declared and the data starts being recorded to a file [45]. The 

STA/LTA ratio trigger method’s successful detection o f seismic events depends on the 

proper settings o f the trigger parameters such as the length o f the windows and the 

threshold values used. Reference 45 clearly shows the effects o f the variations in the
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window length and threshold parameters on the detection o f  seismic events. Figure 79 

shows how the reduction in the length o f the LTA window from 100 seconds to 45 

seconds misses the P phase wave while detecting the S phase. Once the event is detected, 

a length o f the pre-event and post-event signal is also recorded along with the triggered 

time for retrospective analysis and correction by seismologists.
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Figure 78: Influence O f LTA Duration On The Trigger Algorithm 
Sensitivity To Earthquakes.

Similar observations can be made for changes in the STA time window and also

the threshold levels used to trigger active and inactive levels. More sophisticated
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algorithms are known from literature, but they are rarely used in seismic data loggers 

currently in the market. However, the sophisticated adjustments o f operational parameters 

to actual signals and seismic noise conditions at each seismic site that these triggers 

require has proven unwieldy and subject to error in practice. This is probably the main 

reason why the STA/LTA trigger algorithm still remains the most popular [45].

The wavelet method above uses a fixed non-overlapping moving window which is 

1024 data points o f a seismic signal sampled at 40 samples/second. There is an inherent 

25.6 seconds delay due to the windowing nature. This can be drastically reduced by using 

over-lapping windows with a shift o f 256 points (6.4 seconds delay) or, even better, 128 

points (3.2 seconds delay) but with a computational overload.

Figures 80, 81 and 82 show the histogram plots o f  the rms values for the next 

eleven windows. We can observe as we move along the signal, the amplitude o f the 

wavelet level 5 increases sharply to 15000 counts at the 17th wavelet decomposition from 

the beginning, i.e., the lowest plot in figure 81. The next plot (first in figure 82) of the 18th 

wavelet decomposition shows almost similar amplitude at 15000 compared to the current 

plot, but it is still less than the current plot's wavelet level 5 amplitude. This maximum at 

the 17th wavelet decomposition corresponds to the S phase o f the earthquake. The plot of 

the time series for the period between 16384 to 17408 points is shown in figure 83. The 

maximum amplitude o f the time series is at 35000 counts at a few points in the signal 

where the S phase is maximum.
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Figure 79: Histogram plots o f rms values for D20 wavelet decompositions o f the 
New York earth quake seismic signal.
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Figure 80: Histogram plots o f rms values for D20 wavelet decompositions o f the 
New York earth quake seismic signal.
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Figure 81: Histogram plots o f rms values for D20 wavelet decompositions o f the 
New York earth quake seismic signal.

The time series shows the occurrence o f the peak o f the waveform at around 

167501*1 data point, which can be more accurately detected with the over-lapping moving 

window.
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Figure 82: Time series plot o f the New York earthquake between 
16384 and 17408 points.

As explained earlier, the time o f arrival o f the S phase can be calculated using the 

length o f wavelet decomposition window. For the S phase detected in the 17>b wavelet 

decomposition window, the time o f arrival is 435.2 seconds. This measurement can be 

made more accurate using the overlapping moving window as explained previously. The 

difference between the S phase arrival time and the P phase arrival time is:

435.2 (7.25 min) -  153.6 (2.56 min) = 281.6 seconds (4.69 min)

From the P and S phase arrival time diagram [46] shown in figure 84 below, the distance 

o f the earthquake epicenter can be calculated. From the figure, the relation between the 

arrival time difference S-P and the distance in kilometers is a factor o f 10.
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Figure 83: P And S Phase Arrival Time Diagram.

The epicenter o f the earthquake is approximately calculated by multiplying the 

difference o f S phase and P phase arrival time in seconds by 10 km/sec, giving us 2816 

kms (1748 miles). This is approximately equal to the distance between the actual 

epicenter o f the earthquake at Plattsburg, New York and the Oxford, Mississippi seismic 

station which is 1583 miles. However, for accurate measurement o f the distance, the use 

of an overlapping window is suggested with optimized lower threshold trigger levels.

The wavelet transform method can be successfully applied to the analysis of 

seismic signals for identification and classification o f the earthquake features. This 

method finally reduces to a simple amplitude threshold trigger mechanism similar to the 

simple STA/LTA trigger method commonly used. This provides the wavelet method an
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upper hand as a potential future tool to replace or augment the existing techniques for 

better performance.

Continuing our study o f the New York earthquake, we apply the above wavelet 

amplitude trigger mechanism to a signal recorded at the Junction City, Texas seismic 

station (JCT). Figure 85 shows the 55 minutes o f New York earthquake event recorded at 

the above station.
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Figure 84: New York earthquake event seismic signal recorded at
seismic station JCT.

The wavelet transform o f the seismic signal is performed for every 1024 data 

points and the rms values calculated as in our previous example. The histograms o f the 

rms values for the windows o f wavelet decomposition o f the signal in figure 85 are shown 

in figure 86. The data point numbers o f the window are indicated on top o f each histogram 

plot.
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Figure 85: Histogram Plots O f Rms Values For D20 Wavelet Decompositions Of The
New York Earth Quake Seismic Signal.
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Figure 86: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earth Quake Seismic Signal.
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Figure 87: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earthquake Seismic Signal.

The P phase o f the New York earthquake is detected in the range o f 8192 -  9216

points o f the wavelet decomposition o f the seismic signal obtained at the Junction City,

Texas location, when it crosses the 200 count amplitude in the level S o f the histogram
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plot o f rms values. This point o f detection is much later than the similar detection by 

wavelet decomposition at Oxford, MS. This was expected and now confirmed, due to the 

extra distance the P phase wave has to travel from the point o f origin o f the earthquake - 

New York. Continuing the analysis to detect the S phase signal, the plots o f histograms o f 

rms values are plotted in the following figures 89 through 92.

The P phase is detected in the 9th wavelet decomposition window giving us a time 

of arrival o f 230.4 seconds. The S phase is detected in the 25* wavelet decomposition 

window and the time of arrival is 640 seconds. This measurement can be made more 

accurate using the overlapping moving window as explained previously. The difference 

between the S phase arrival time and the P phase arrival time is:

640 (10.67 min) -  230.4 (3.84 min) = 409.6 seconds (6.83 min)

The epicenter o f the earthquake is approximately calculated by multiplying the 

difference o f S phase and P phase arrival time in seconds by 10 km/sec, giving us 4096 

kms (2545 miles). This is approximately equal to the distance between the actual 

epicenter o f the earthquake at Plattsburg, New York and the Junction City, Texas, seismic 

station which is 2142 miles.

This is one more example o f the wavelet transform method which can be 

successfully applied to the analysis o f seismic signals for identification and classification 

of the earthquake features.
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Figure 88: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earth Quake Seismic Signal.
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Figure 89: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earth Quake Seismic Signal.
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Figure 90: Histogram Plots O f Rms Values For D20 Wavelet Decompositions O f The
New York Earth Quake Seismic Signal.
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Figure 91: Histogram Plots Of Rms Values For D20 Wavelet Decompositions Of The
New York Earth Quake Seismic Signal.

The inherent known margin o f error in measurement is the time o f detection o f the 

P phase and the S phase wave which is 25.6 seconds, i.e., the window length o f the
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wavelet transform. Hence, a total o f 51.2 seconds or 500 kms (310.7 miles) measurement 

error due to the window length of the measurement technique can be reduced by 

overlapping windows, enhancing resolution and accuracy.

Using a moving window o f length 1024 data points and sliding it by 128 data 

points each time, we can compute the wavelet transform o f the signal. Plot 93 shows the 

output o f the Daubechies D20 wavelet level 5 for the New York seismic signal for both 

fixed non-overlapping window and the 128-point shift over-lapping window o f length 

1024.

Figure 92: Daubechies D20 Wavelet Level 5 For The New York Seismic Signal For Both 
Fixed Non-Overlapping Window And The 128- Point Shift 

Over-Lapping Window Of Length 1024.

In figure 93 the overlapping window plot shows a few more fine features than the fixed

non-overlapping window. Zooming in on the P phase section o f the plots, we can clearly
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see as shown in Figure 94, the output signal crosses the 200 counts amplitude threshold 

much earlier for the former.

Figure 93: Zoomed In Plot Of Figure 89 Showing The P-Phase Section.

As shown earlier in the discussion o f the New York earthquake signal measured at 

Oxford, MS, for the non-overlapping window the P-phase wave is detected at the 6th 

window for a threshold o f200 counts amplitude, corresponding to an arrival time o f 153.6 

seconds. For the 128-point shift over-lapping window, the P-phase wave is detected at the 

39th window, corresponding to a time o f 124.8 seconds. The change in time of the 

measurement can be attributed to the better measurement accuracy o f the overlapping 

window technique.

Applying the above wavelet method to other earthquake signals recorded at different 

stations, we can show that the wavelet method has a promising potential in detecting the P
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phase and S phase waves o f earthquakes accurately. Table 11 shows the times o f

detection o f both the P phase and S phase waves and the estimated distance for the

respective earthquakes.

Table 11: Earthquake phase detection times and calculated distance using wavelets for
various earthquakes at different stations.

Earthquakes recorded 
at given stations

P Phase 
arrival time 
(seconds)

S Phase 
arrival time 
(seconds)

Estimated time difference 
seconds (distance in kms)

New Y ork
(20 Apr 2002 - rUttsbnrg. NY)

- Oxford, MS
- Junction, TX

124.8
156.8

422.4
614.4

297.6 (2976)
457.6 (4576)

Southern Indiana
(10 Jmm 2002 - EvauviUc, IN)

- Oxford, MS 
• Junction, TX

153.6
192.0

220.8
428.8

67.2 (672) 
236.8 (2368)

W ashington
(20 F tb 2001 - NiaqaaJly. WA)

- Pine, OR 
• Longmire, WA

60.8
3.2

192
38.2

131.2(1312) 
35.2 (352)

South India
(26 Jm 2001 - Gajarat India)

- Kislovodsk, Ru
- Ala Archa, Ky

230.4
204.8

723.2
556.8

492.8 (4928) 
352 (3520)

C entral A laska
(3 Nav 2002 - CaatwaO, AK)

- Oxford, MS
- Junction, TX

297.6
297.6

1562.4
1562.4

1264(12640)
1264(12640)
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CHAPTER 8

CONCLUSION

This researched reviewed the basics o f wavelet analysis, and an effort was made to 

understand the wavelet filters and characteristics and apply wavelets to real world 

engineering applications. Wavelets are becoming popular and are being used widely, 

generating an interest in the research o f wavelet analysis. Clear understanding o f wavelets 

and their characteristics are a key to successful applications. Many theoretical and 

application-oriented papers have already been written that address the application of 

wavelets to signal processing, data compression, image processing and other applications. 

Yet some fundamental questions such as the wavelet filters and characteristics and the one 

addressed in this research have not been completely answered. The choice o f a right 

wavelet for a given application is an ongoing quest which has not been satisfactorily 

solved. This research has successfully identified certain issues, and an effort has been 

made to provide solutions.

The wavelet transform is a powerful analysis tool used in detection o f localized 

signal disturbances and transient signals. The wavelet family is

160
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exhaustive and the use o f  the right wavelet is important in signal analysis to effectively 

identify, classify and quantify the signal's events. This research looks towards 

understanding wavelet filters which are the basis o f dyadic wavelet transform using 

multiresolution analysis. It is shown that the individual low pass and high pass wavelet 

filters have very good magnitude and almost linear phase characteristics, with maximum 

flatness both in the passband and stop band. This research also compares the magnitude 

and phase characteristics wavelet filters o f  different wavelet families such as Daubechies. 

Coiflets. Symlets and shows how some wavelets have exactly the same magnitude 

characteristics but different phase characteristics that differ in the linear slope o f  the 

response. The pole zero locations o f  these wavelet filters are also studied to understand 

how wavelet filters differ from the usual filter such as an elliptical filter. It is observed 

that for the low pass wavelet filters, movement o f zeros towards n  for the Symlets and 

Coiflets wavelets compared to the Daubechies wavelets does not affect the magnitude 

characteristics but changes the phase characteristics by increasing the slope. The 

difference in decay characteristics o f  the low pass and the high pass filters is observed to 

be due to the difference in the number for smoothness which governs the decay for the 

low pass filter and the number for vanishing moments which governs the decay for the 

high pass filter.

The above information obtained about the magnitude and phase characteristics o f 

the wavelet filters is one o f  the properties which might be useful in choosing the right 

wavelet. So. it is not just enough to know the wavelet's scaling function coefficients or its 

filter coefficients but the actual magnitude and phase response. Two wavelet filters may 

have the same magnitude, but one has a  much greater slope in its phase response than the
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other. If both essentially have a linear phase response, then you would choose the filter 

having a lesser slope in phase response because it would have smaller time delay.

An application o f wavelets to fast detection o f  fault current in a motor is shown 

which clearly shows the advantages o f  Daubechies D4 over Daubechies D20. Chapter 4 

shows some innovative methods o f  inrush and fault current identification/protection using 

wavelets. D4 with fewer coefficients has been shown to clearly distinguish between the 

inrush current and the fault current. In the wavelet transform, the detection principle is 

based on the null period that exists in the inrush current. This part o f  the research has been 

published in a paper accepted by the IEEE transactions for Power Systems. D4 is found to 

be a good choice for applications with short period events.

The wavelets are further studied as an alternative to protective relaying techniques 

in existence at present. For protective relaying, one o f  the important characteristics o f a 

good relaying system is its short time response, i.e.. the fault must be detected early and a 

response provided with the least amount o f time possible, preferably within 1-2 cycles. 

From the phase characteristics o f wavelets with varying phase response slopes. D4 with a 

smaller slope is shown to detect the fault current earlier than D20.

For detecting the frequency composition o f  the signal being analyzed, an 

understanding o f the energy distribution in the output wavelet decompositions is required. 

This research shows how total energy o f the wavelet decompositions between two 

wavelets is the same, but the energy distributed in the individual wavelet levels is 

different. A comparison o f energy distributions for different wavelet families is done and 

tabulated. Wavelets with fewer coefficients are found to have more energy leakage into 

adjacent bands.
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When the filters are used in the wavelet filter bank, the frequency bandwidth 

characteristics o f  the different levels o f  the wavelet transform do not show the same 

flatness both in the passband and the stopband. It is shown that the wavelet levels have 

ripple both in the passband and the stopband. Also, these frequency bands do not have 

sharp cu toff at the ends but some o f  the energy is seen in the adjacent bands. The 

characteristics display flatness at the middle o f the frequency band clearly confirming that 

the frequency o f interest should be in the middle o f the frequency band w hen performing 

a wavelet transform. Symlets wavelets with more symmetric coefficients than Daubechies 

exhibit good flatness with minimum ripple at the very narrow set o f frequencies near the 

center o f  the frequency band, but the transition region near the ends do not have sharper 

cut off.

Since the number o f  wavelet levels and their frequency band ranges are dependent 

on the two parameters (number o f  data points and the sampling frequency), the selection 

o f  these is critical in qualitative and quantitative analysis o f signals. This research shows 

why a careful selection o f the sampling frequency and the number o f  data points for 

analyzing a signal is important. Care has to be taken to ensure the frequency o f  interest is 

in the center o f  the band in the wavelet level.

With more understanding o f wavelet characteristics, a wavelet seismic event 

detection method is proposed. This research shows how wavelets can be applied to detect 

the P phase and S phase waves o f  earthquakes successfully. This wavelet method uses the 

classification o f  the seismic signal into different wavelets each pertaining to a frequency 

band. These individual bands can then be used to separate out the seismic signal and as in 

this research: only one o f the bands (wavelet level 5) containing the information can be

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



1 6 4
used to detect the P phase and the S phase o f  wavelets by a simple amplitude threshold 

trigger method. This method can be a potential tool for detection o f  earthquakes since it 

possesses the same simplicity o f  detection present in the currently used methods but with 

a better performance as shown in this research.

The field o f wavelets is wide open to research and exploration for applications in 

engineering and technology. It is intended that with this research, future research will help 

us to understand the fundamentals o f  wavelet better to make well-qualified decisions in 

choosing a right wavelet for an application. Wavelets are a promising tool that will 

complement the existing signal processing methods available and can be used widely if its 

advantages and limitations are understood.

In summation, the contributions o f  this research can be listed as:

1) Presenting the basics o f  wavelets with an engineering perspective.

2) Understanding o f wavelet filters in terms o f  their pole -  zero locations and their 

magnitude and phase characteristics.

3) Showing that some o f  the wavelet filters have exactly the same magnitude 

characteristics but differ in the phase characteristics by their linear slopes.

4) Presenting innovative methods in identification and detection o f inrush and fault 

currents, and proposing a wavelet method o f  protective relaying technique.

5) Research on energy distribution and leakage in output wavelet decompositions 

among different wavelet families.

6) Presenting the study o f  frequency bandwidth characteristics o f  wavelet levels and 

a comparison between different wavelet families.
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7) Showing the importance o f  careful selection o f  sampling frequency and number o f 

data points to ensure frequency o f  interest lies in the middle o f the band.

8) Proposing a wavelet method for detection o f P-phase and S-phase waves in 

earthquakes and applying it to recent earthquakes in the past to show its better 

performance.
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1) EnergyDistribution.m 

% EnergyDistribution.m
0/o
°o A matlab program that sweeps the frequency between two frequency limits in steps o f  1 Hz and 
°o calculates the wavelet transform at each step. Then it plots the values for two wavelet levels 
° o as frequency bandwith characteristics both in linear magnitude and dB.
°o
Set number o f  data points and time. 
t = 0:0.1 511:0.1 
z = I
°o Set frequency limits and step (lower limit:step:upper limit) 
for f  = 120:1:360 

f
freq(z) = f:
s = sqrt(2)*sin( I *pi*t*f):
% Which wavelet transform 
w = 'db I O';
Ivl = 8;
0,o Perform the wavelet transform 
[C.L1 = WAVEDEC(s.lvl.w): 

for i = I :lv!
A(i.:) = wrcoefr’a'.C.L.w.i);
D(i.:) = wrcoeR’d'.C.L.w.i): 

end
°o Calculate the rms values 
for i = I:lvl

Alvlrms(i) = sqrt((!/5l2)*sum(prod([A(i.:):A(i.:)|)»:
Dlvlrms(i) = sqrt((I 5l2)*sum(prod([D(i.:):D(i.:)|))): 

end
for i = l: lv l- l  

binlvl(i) = i - I: 
end

°o Arrange the rms values and get the last approximation 
rmslvl = [Dlvlrms Alvlrms(lvl)|: 
rmslvl = wrev(rmslvl);
°o Put the rms values for level 5 and 6 into arrays 
rmsvald5(z) = rmsivl(5); 
rmsvald6(z) = rmslvl(6): 
z = z -̂l 

end
rmsvaid5
rmsvald6
°o Plot all figures and name them correctly. 
plot( freq.rmsvaldS)
T1TLE(’FREQUENCY BANDWIDTH CHARACTERISTICS - Daubechies D20 detail level d5') 
XLABEL(’Frequencv in Hz’)
YLABELC Amplitude') 
figure:plot( freq.rmsvald6)
TITLECFREQUENCY BANDWIDTH CHARACTERISTICS - Daubechies D20 detail level d6 ) 
XLABEL('Frequency in Hz’)
YLABEL(’Amplitude')
rmsvaldfdb = 20*log(rmsvald5/max(rmsvald5)) 
tlgure:plot( freq.rmsvald5db)
TITLE( FREQUENCY BANDWIDTH CHARACTERISTICS - Daubechies D20 detail level d5 )
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XLABEL('Frequency in Hz’)
YLABELC Amplitude in dB')
rmsvald6db = 20*log(rmsvald6/max(rmsvald6))
figure:plot(freq.rmsvald6db)
TITLECFREQUENCY BANDWIDTH CHARACTERISTICS - Daubechies D20 detail level d 6) 
XLABELCFrequencv in Hz’)
YLABELC Amplitude in dB’)

2) H is to frm sen erg y .m

% Hist o f  rmsenergy.m
0,o This program calculates the wavelet transform o f  a input signal s and plots the histogram o f  
% the wavelet levels both in rms and energy.
%
° o  load the simulated signal 
load signal60420 
t=0:0.1 '511:0.1: 
s = signal60420:
% Plot the signal time series
plot(s)
figure
° o  Choose the wavelet 
w = ’d b l0’:
Ivl = 8:
° o  Do the wavelet transform 
[C.L1 = WAVEDEC(s.lvl.w): 
for i = I :lvl

A(i.:) = wrcoetCa’.C.L.w.i):
D(i.:) = wrcoefCd’.C.L.w.i): 

end
% Calculate the rms values for each level 
for i = l:lvl

Alvlrms(i) = sqrt((l 5l2)*sum(prod([A(i.:):A(i.:)|)»:
Dlvlrms(i) = sqrt((l 5l2)*sum(prod([D(i.:):D(i.:))))): 

end
for i = l:lvl+ l 

binlvl(i) = i - I: 
end
% Arrange the rms values into an array 
rmslvl = [Dlvlrms Alvlrms(lvl)|: 
rmslvl = wrev( rmslvl)
% Plot the rms values 
subplot(2.!.l) 
bar(binlvl. rmslvl)
% Calculate the Energy values 
rmslvlsq = prod([rmsivl:rmslvl]): 
rmsenergy = sum( rmslvlsq): 
rmstotal=sqrt(rmsenergy);
% Plot the energy values 
subplot(2.1.2) 
bar(binlvl.rmslvlsq)
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3) Seisrmscalc.m

°o seisrmscalc.m  
%
°'o This program reads in the seismic data obtained from iris consortium which is in array 
% o f  5 columns and converts it into a column array. This is then windowed and wavelet “otransformed. 
% The rms and energy values at each window are calulated and plotted. These plots are saved.
°0
° o Load the data
[data| = textread('C: MATLAB6pl chethan\Dissertation seismic ny oxf.txtV'.'delimiter'.’ '):
[m. n) = size(data):
°o set y such that the number o f  rows selected gives us 1024 data points
y = 1; z = y -  205:
% Start loop to conver data to single column array 
while z < 12411 
k = I

for i = y: I :z 
forj = 1:1 :n

fulldata(k) = data(i.j): 
k = k+l: 

end 
end

fulldatal = full data: 
fu lld ata l -  fulldatal-900:
° o Get only 1023 data points 
fulldata 1 = fu lld a ta l! 1:1023): 
length! fulldata I ): 
s = fu lld a ta l:
° o Plot and save the time series 
h = plot(s):
saveas( h.num2str! z ).’fig’) 
saveas(h.num2str!z).'jpg') 
h 1 = figure:
° o Choose the wavelet 
w = ’db I O':
Ivl = 9:
° o Perform wavelet transform 
[C.L| = WAVEDEC!s.lvl.w): 
for i = l:lvl

A(i.:) = wrcoefCa’.C.L.w.i):
D(i.:) -  wrcoefi’d’.C.L.w.i): 

end
°o Calcualte the rms values 
for i = 1 :lvl

Alvlrms(i) = sqrt((1.512)*sum(prod([A(i.:):A(i.:)l))):
Dlvlrms(i) = sqrt(( 15  l2)*sum(prod([D(i.:):Dti.:))))): 

end
% Arrange number o f  bins 
for i = I :IvK I 

binlvl(i) = i - I: 
end
% Arrange the rms values 
rmslvl = [Dlvlrms Alvlrms(lvl)|: 
rmslvl = wrev( rmslvl):
°o Plot rms values
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subplot(2.1.1) 
bar(binlvl. rmslvl)
% Calculate Energy
rmslvlsq = prod([rmslvl:rmslvl]):
rmsenergy -  sum(rmslvlsq):
rmstotal=sqrt(rmsenergy):
% Plot energy 
subplot(2.l.2) 
bar(binlvl.rmslvlsq)
%  Finally save one plot for every window. 
saveas(h 1 ,num2str(z- I ).’fig') 
saveas(h I ,num2str(z~ I ).’jpg’)
% increment both y and z 
v = z: z = z 205: 
figure
% Clear the variables 
clear fulldatal fulldata I: 
end

4) eventdetectm w .m

% eventdetect mw.m 
%
% This program detects the P phase and S phase waves o f the seismic earthquake event. 
%  Load the seismic signal data into an array
[data] = textreadCC: MATLAB6p I chethan\Dissertation seismic ny oxf.txt’.'Vdelimiter’.' 
[m. n| - size(data): 
cnt = I 
k = I:
°o Convert the whole data into a column array 

for i = 1:1:25410 
for j = I: I :n

fulldatalk) -  data(i.j): 
k = k - l :  

end 
k

end
fulldatal = fulldata: 
fulldata I = fulldatal-900:
% set initial window parameters 
r=  I: p = 1023:
° o Start loop 
while p <= k
fulldata_2 = fulldatal(r.p): 
s = fulldata 2:
°'o Choose wavelet 
w = ’dblO’:
Ivl = 9:
% Perform wavelet transform 
[C.L| = WAVEDEC(s.lvl.w): 
for i = I :lvl

A(i.:) = wrcoefi'a'.C.L.w.i):
Dfi.:) = wrcoeR’d’.C.L.w.i): 

end
%  Calculate the rms values
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for i = l:lvl
Alvlrms(i) = sqrt((l 5I2)*sum(prod([A(i.:);A(i.:)]))): 
Dlvlrms(i) = sqrt((l 5l2)*sum(prod([D(i.:):D(i.:)j))); 

end
for i = l:lvl+l 

binlvl(i) = i - 1: 
end
% Arrange the rms values 
rmslvl = [Dlvlrms Alvlrms(lvl)): 
rmslvl = wrev(rmslvl);
% Put the rmsvalues for level 5 into an array 
eventdetectm w(cnt) = rmslvl(5): 
cnt = cnt I:
°o Slide window 
r = r * 128: p = p -  128:
° o Clear variables 
clear s fulldata_2: 
end
% Finally save when done looping over all data, 
save eventdetect mw 
save fulldata
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Abstract: Wavelets detect and locate time o f disturbances 
successfully, but for measurement o f power energy they 
also have to estimate and classify them accurately. This 
paper investigates the factors on choice of a certain 
wavelet function and qualitatively shows how the 
number of coefficients of the wavelets is an important 
number that affects output decomposition and energy 
distribution leakage. Wavelets provide an output in terms 
o f the time -  frequency scale. The frequency bandwidth 
characteristics o f  these individual wavelet levels provide 
better understanding of the wavelets. The sampling 
frequency and the number o f  data points are important 
parameters and must be carefully selected to avoid the 
frequency of interest falling into the end regions.

Keyword: wavelet transforms, transforms, frequency 
response, power quality, frequency.

I. INTRODUCTION

The Fourier transform (FFT) and the 
Short Time Fourier transform (STFT) have been 
often used to measure transient phenomena. These 
techniques yield good information on the 
frequency content o f  the transient, but the time at 
which a particular disturbance in the signal 
occurred is lost [5 |.[I2 |.

Wavelets are relatively new analysis tools 
that are widely being used in signal analysis. In 
wavelet analysis, the transients are decomposed 
into a series o f  wavelet components, each o f  which 
is a time-domain signal that covers a specific 
octave band o f  frequency. These bands o f  
frequency are non-overlapping bands with 
constant-Q characteristics [13). Wavelets do a very 
good job in detecting the time o f  the signal, but 
they give the frequency information in terms o f  
frequency band regions or scales.

Tutorial and theoretical papers have been 
published that address the issue o f  time localization 
[I)-[4 |. This paper primarily focuses on the 
frequency characteristics o f  wavelets.

II. REVIEW OF WAVELET ANALYSIS

A typical transformer inrush current and 
several o f  its decomposed components are shown 
in figure I. The MATLAB* wavelet toolbox was 
used in this study to generate the Daubechies D4 
wavelet components for the inrush current 
waveform [6 |,[7],[I4). To conserve space, only 
three o f  the eleven wavelet components are shown 
in figure I. The x axis for each waveform in figure 
I represents time, whereas the y axis in each case is 
a linear amplitude scale.

Figure I la): O riginal inpul signal - transform er inrush current.

Figure 1(b): A pproxim ation a lt)  (Level 0)

Figure 1(c): Detail d 10 (Level I)
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Figure 1(1): Detail d I (Level 10)

Figure I W avelet decom position o f  the signal using 
Daubechies db 4 w avelet function

A signal can be fully decomposed into n

levels, given by V = 2n . where N is the total 
number o f  data points. Since the inrush current 
waveform has 2048 data points.

.V = 2048 = 2 11. (I)
there are 11 dyadic wavelet levels the signal can 
be fully decomposed to [ l | .  Each o f these wavelet 
levels correspond to a frequency band given by the 
equation:

/' = 2V( ' / v ) (2)
where /  is the higher frequency limit o f  the

frequency band represented by the level v .  / ,  is 
the sampling frequency and N is the number o f  
data points in the original input signal [ l | .  The 
maximum frequency that can be measured is given 
by the Nyquist theory as:

/ .n a ,  =  f / 2  < 3 >

where /  is the sampling frequency.
Table I gives the frequency band

information for the different levels o f  the wavelet 
analysis shown in figure I. where the sampling 
frequency J s =10.240 Hz.

Tabic I
Wavelet

level
Frequencv Band Center

Frcquencv
1 » (alO) DC - 5 Hz 2 5 Hz
•» 1 (dIO) 5 - 10 Hz 7 5 Hz
3 2 (d9) 10 - 2 0  Hz 15 Hz
4 3 <d8) 20 - 4 0  Hz 30 Hz
5 4 (d7) 40 - 8 0  Hz 60 Hz
6 5 (d6) 80 - 160 Hz 120 Hz
7 6 (d5) 160 -3 2 0  Hz 240 Hz
8 7 (d4) 320 -6 4 0  Hz 480 Hz
9 8 (tl3) 6 4 0 -  1280 Hz 960 Hz
10 9 ((12) 1 2 8 0 -2 5 6 0  Hz 1920 Hz
II 1 0 (d )) 2 5 6 0 -5 1 2 0  Hz 384011/

Thus, it can be seen that the wavelet decomposition 
agrees with the Nyquist criteria and. hence has a

maximum measurable frequency o f one half o f  the 
sampling frequency.

This is in contrast to the usually used 
Fourier Transform or the windowed Fourier 
Transform - the Short Time Fourier Transform 
(STFT). In the Fourier Transform, the time-based 
signal is completely transformed into a frequency- 
based signal. Figure 2 shows a FFT analysis o f  the 
input signal.
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Figure 2: FFT analvsis o t the transform er inrush current 
waveform  in figure I

The maximum frequency o f  measurement 
using the FFT analysis is also equal to

/max = • where _/, is the sampling frequency.

The frequency composition is continuos and the 
exact reproduction o f  the signal requires all these 
frequency components.

The wavelet transform has been seen as a 
great tool that overcomes this problem o f time 
location detection, which is not possible using the 
FFT transform. However in achieving a good 
location in time, it loses the frequency location but 
provides it in terms o f  frequency bands. As 
explained above, equation (3) gives the maximum 
frequency o f  a wavelet level instead o f  the center 
frequency stated in some papers [l].[8 ].[9 |. To an 
engineer common questions that arise concern 
frequency bandwidth and the response 
characteristics at or near the "cut-off' frequencies. 
The authors have observed that this aspect o f  
wavelets has not been discussed in an engineering 
point o f  view by researchers o f  wavelets. This 
paper explains the frequency characteristics o f  the 
filters used in wavelet decompositions and the 
energy distribution in each o f  the different levels. 
This paper is written in an electrical engineer’s 
perspective and offers insight to the problems 
encountered.
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III. QUESTIONS ENCOUNTERED IN 
WAVELET ANALYSIS

The inrush current signal (tig la) is a 
transient signal in the transformer and it has been a 
great concern for electrical engineers, as its 
amplitude is very much higher at higher percentage 
o f  remnant flux on the transformer core [10], [II].  
This is sometimes very much higher than the full 
load current o f  the transformer. This transient 
magnetizing inrush current causes false tripping o f  
the differential relay and hence shuning the power 
circuit o ff  [9]. Wavelet analysis is being sought 
after, as it seems to offer a good solution to this 
problem. One o f  the areas o f  research being carried 
out in the area o f  power systems is the detection 
and identification o f inrush current and 
distinguishing it from the fault current. The figure 
3 shows a typical fault current measured.

Figure 3 Transformer I'ault current

The inrush current and the fault current 
can be distinguished from each other by the shape 
o f  their waveforms. The inrush current has 
intermittent peaks with valleys in between them. 
The inrush current is not symmetric in both the half 
cycles o f  the waveform. The fault current on the 
other hand is perfectly symmetric and has equal 
positive and negative half cycles.

The wavelet transform can be used to 
distinguish between the inrush current and the fault 
current. Applying db 4 and db 20 Daubechies 
wavelet transform to the original transformer 
inrush signal and the fault current signal, we get 
the following outputs as shown in figures 4 through 
7.

Figure 4. W avelet decom position Detail d 4 (Level 7) o f  the 
inrush current using D aubechies db 4 wavelet function

Figure 4 has an output that has large 
amplitude peaks corresponding to the peaks o f  the 
inrush current and smaller amplitude peaks 
corresponding to the valleys (null period) in 
between the peaks. These are clearly 
distinguishable and unique to the inrush current 
helping the engineer to distinctly discriminate the 
null period.

Figure 5 W avelet decom position Detail d 4 (Level 7) o f  the 
inrush current using D aubechies db 20 w avelet function

It can be clearly seen that the db 20 
decomposition that has higher number o f  
coefficients has averaged out the detail d 4 (level 7) 
(fig 6) output for the transformer inrush current. 
The output appears to have a uniform amplitude 
and hence using the wavelet having a large number 
o f  coefficients such as a db 20 is not a good choice 
for this application.

Figure h W avelet decom position Detail d  4 (Level 7) o f  the 
fault current signal using Daubechies db 4 w avelet function

Figure 7 W avelet decom position Detail d 4 (l evel 7) o f  the 
fault current signal using  Daubechies db 20 w avelet function

Outputs for a fault current (fig 6 and fig 7) 
do not show the kind o f  behavior the 
decomposition o f  the magnetizing inrush current 
shows. It doesn't show any distinctive behavior 
except for a few large spikes at the state o f
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transition from the normal current to the fault 
current. The waveform after the initial spurt decays 
and remains same for all periods o f  time. This 
method o f  discriminating the magnetizing inrush 
current from the transformer fault current is better 
than the existing second harmonic components 
method used for most o f  the differential protective 
schemes. In the wavelet transform, the detection 
principle is based on the null period that exists in 
the inrush current.

Hence for applications where the 
information at a specific instance o f  time or for a 
very short period o f  time is to be retrieved, then the 
lower db 4 wavelets with less number o f  
coefficients is a better option to use than wavelets 
with more number o f  coefficients such as db 20. 
Hence db 4 wavelets are a good choice for 
accurately detecting fast transients and short time 
infonnation signals.

For an information spread over a long 
period o f  time such as a signal constituent o f  its 
fundamental frequency and its harmonics, the 
wavelet decomposition can be used to identify 
these frequencies (though not exactly but can be 
identified as to lie within the specific frequency 
bands). Here the db 20 with more number o f  
coefficients is a good choice, as it tends to give us 
a smoother output than the output obtained by the 
use o f  a db 4 decomposition.

To analyze the db20 and db4. we shall 
consider a known signal simulated using Matlab. 
having a fundamental frequency combined with its 
fifth and eleventh harmonic frequency components 
given by:

t (I ) = v 2 siiK 2 t 60r * 60*) + v 2 sin< I t  300/ ) i- v 2 sirrt 2r 660/)

( 4  )
Let us consider the signal for 3 cycles o f  

60 Hz having 512 data points with a sampling 
frequency o f  10.240 Hz. The wavelet 
decomposition using the Daubechies wavelet 
function db 20 o f  the above signal gives us 9 
levels.
Calculating the rms value o f  the signal / ( / ) :

/ ( / ) =  v 2 sin< 2*60/ -  60")- v2 sin( I t 300/1 * \  2 sin( 1*660/1

rm s( f ( t ) )  = 1.7326

The rms value for each o f  the individual 
wavelet levels o f  the above wavelet decomposition 
using Daubechies db 20 wavelet function is given 
by table 3.

Table 3
W avelet level Frequency band Rm s value

0 (a 8 ) 0-20 Hz 0.0086
1 <d8) 20 - 40 Hz 0.0062
2 (d7) 40 - 80 Hz 0»7<W
3 (il6) 80 - 160 Hz 0  1984
4 (dS) 1 6 0 -3 2 0  Hz 0.8171
5 <d4> 320 - 640 Hz 0 8637
6 (il3) 6 4 0 -  1280 Hz 0 7653
7(d2> 1 2 8 0 -2 5 6 0  Hz 0 0139
8 < d l) 2 5 6 0 -5 1 2 0  Hz 3 44 \  10-‘

The square root o f  the sum total o f  all the 
rms values is

(0.0086r  -(0.0062)“ - <0.9“99)“ -(0.1984)“ 

^ {rm s  valuer -  j-(O il'll*  -(0.863')* - (0.~653)“ -(0.0139)“

| -(5.449x !0~?)

rms( / ( / ) )  = = 1.7318

The value got by the wavelet
decomposition is in good agreement with the rms 
value o f  the function / ( / ) .

The Daubechies db 4 wavelet
decomposition for the same signal / ( / ) .  also gives 
the total rms value as 1. 7318.

This shows that the energy is distributed 
among the different wavelet levels with the total 
energy being the same in both the cases o f  wavelet 
decomposition. However. an interesting
observation can be done on how the energy is 
distributed in the wavelet decomposition db 4 and 
db 20

In the case o f  db 20 wavelet
decomposition o f  the signal having 60 Hz. 300 Hz 
and 660 Hz frequency components, the energy can 
be seen to be concentrated in level 2 (40 Hz to 80 
Hz), level 4 (160 Hz to 320 Hz), level 6 (640 Hz to 
1280 Hz) and level 5 (320 Hz to 640 Hz) o f  the 
wavelet decomposition.

Thus it can be seen that the db 20 wavelet 
decomposition o f  the original signal into different 
wavelet levels using filters is not ideal but has a 
frequency characteristics that are important for the 
knowledge o f  an engineer. The bandwidth cut-off 
points and the roll over characteristics o f  the filters 
used in wavelet decomposition are essential for 
using the wavelet in signal analysis.

For Daubechies db 4 wavelet 
decomposition, the leakage is more compared to 
the db 20 wavelet decomposition.
This shows that even when the total energy is same 
in both the db 4 and db 20 case, the energy 
distribution varies within the wavelet levels.
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To find the bandwidth characteristics o f  a 
db 4 wavelet level and db 20 wavelet level, lets 
consider a sinusoidal signal:

/ ( / )  = -Jl  sin(2T/r) ( 5 )
and sweep its frequency between the minimum and 
maximum frequency o f  the wavelet level frequency 
band. The energy o f  the wavelet level 4 is 
calculated for each step and the amplitude in dB vs 
frequency in Hz characteristics plotted. This 
amplitude level at extreme end frequencies gives 
the cut-off level.

Table 4 below gives the frequency sweep 
and its corresponding energy amplitudes both in 
rms and in decibel (db) values for the wavelet level 
4 o f  the wavelet decomposition db 20.

Tabic 4
Frequency

(Hz)
Rm s value Decibel value 

Idb)

1 120 0 1018 -1434
140 0 4368 -7 104

3 160 0 2 2 1 1 -13 II
4 180 0 8005 -0 020
5 200 0 0787 -0 187
6 220 0 0018 -0 0715
7 240 0 0805 -0 1710
8 260 0 0520 -0.4272
o 280 0 0000 -0 0151
10 300 0 8200 -1 724
i t 320 1 000 0 00
12 340 0  5726 -4 843
13 360 0 4363 -7 204

Figure 8 below gives frequency 
characteristics plot o f  the above data and shows the 
cut o ff  frequency and its amplitude level.

4B
FREQUENCY a  H i

Figure 8: Frequcnc> characteristics db 20 Detail 5 (Level 41

Figure 9 below shows a frequency 
characteristics plot o f  detail 6 (level 5). The 
frequency range o f  this level is from 320 Hz to 640 
Hz.
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Figure 4  Frequcncv characteristics db 20 Detail 6 (Level 5)

Let us now decompose the signal using 
wavelet db 4 and the energy distribution is 
calculated and the frequency characteristics 
plotted.

Figure 10 below gives frequency 
characteristics plot db 4 Detail 5 (level 4) and 
shows the cut o ff  frequency and its amplitude level.
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Figure 10: Frequency C haracteristics db 4 Detail 5 (level 4)

Figure 11 shows the frequency 
characteristics for the wavelet decomposition 
Daubechies db 4 for detail 6 (Level 5).

FRIQ IEHO  a  M*

Figure 11: Frcquenc> characteristics db 4 Detail 6 (level 5)

Comparing the above results, we find that 
the frequency characteristics o f  the db 4 and the db 
20 decompositions are different. The frequency

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



1 8 3

characteristic plots o f  both the wavelet levels in db 
20 resemble each other. As it can be seen, the 
lower end frequency slope is steeper and at the cut
o ff  frequency, the amplitude is more than 10 db 
below the maximum db value. However on the 
higher frequency end. the curve rises up to a 
maximum value and then drops steeply after the 
cut-off frequency. Overlapping both the plots, it 
can be seen that the db 20 wavelet function exhibits 
the non-overlapping bandwidths with a very small 
roll over to the next band. But for a db 4 wavelet, 
the bandwidth characteristics are poorer and hence 
a lot o f  leakage can be seen between the bands. 
This indicates that a careful selection o f  the 
number o f  data points and the sampling frequency 
have to be made to avoid the frequency o f  interest 
falling on the edges o f  the band. It is better for the 
frequency to be at the center o f the band to avoid 
loss o f information.

For example, if a signal with its frequency 
o f  interest 60 Hz is sampled at a sampling 
frequency f  = 7680 Hz and the number o f  data

points .V = 512. the wavelet level 2 (detail 7) would 
have a frequency bandwidth 30 Hz to 60 Hz. The 
frequency o f  interest 60 Hz is the cut-off frequency 
for the band and hence, the measurements made 
may not be accurate due to the frequency 
characteristics o f  the wavelet level. A sampling 
frequency /  = 10240 and the number o f data
points V = 512. will make the wavelet level 2 
(detail 7) have a frequency bandwidth 40 Hz to 80 
Hz. The frequency o f  interest 60 Hz now lies at 
the center o f  the bandwidth and as seen in the 
frequency characteristic plots, the amplitude is near 
the maximum level and hence accuracy is 
improved.

IV. CONCLUSION

The use o f  wavelets in signal 
measurement, detection and analysis has been 
increasing and yet a few fundamental questions 
still need to be answered. This paper has identified 
certain issues regarding the frequency 
characteristics o f  wavelets.

Quantitative analysis o f  wavelet signals 
show that the db 20 wavelet has less leakage 
compared to the db 4. The selection o f  sampling 
frequency and the number o f  data points are 
important. Energy distributions in wavelet levels 
decomposed were studied and it was found that the 
total energy was the same but it was interesting to 
observe the energy distribution between energy 
levels.
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