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ABSTRACT

Heat transport at the microscale is the subject o f  intense investigation due to the 

growing need to fabricate microstructures for applications in nanotechnology. The need 

to control the spread o f  the thermal process zone has led to the development o f  high 

power short-pulse lasers. During thermal processing, impurities m ay form in the material. 

An amplification o f  the thermal energy around the impurities m ay result in severe 

damage occurring or in the failure o f  the thermal process. A thorough analysis o f  the way 

the impurities dissipates the thermal energy is therefore necessary to minimize the 

potential damage and optimize the thermal processing.

The classical theory o f  heat diffusion, which is averaged over m any grains, is 

inadequate in describing the transport phenomenon. Single energy equations developed to 

describe the transport phenomenon include a third-order mixed derivative w ith respect to 

space which makes them numerically inefficient. In this study, we will consider a 

microsphere subjected to an ultrafast laser pulse. The transport phenom enon is modeled 

by the two-step parabolic heat transport equations in three dimensional spherical 

coordinates. W e will develop an energy estimate to establish the well-posedness o f the 

problem, a three-level finite difference scheme to solve the transport equations, and prove 

that the finite difference scheme is unconditionally stable. The scheme will be applied to 

investigate the temperature rise in a gold sphere subjected to a short-pulse laser.

Ill
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thermal conductivity, W I  m K  
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CHAPTER 1 

INTRODUCTION

1.1 Overview

Ultra short-pulsed lasers with pulse durations o f  the order o f  sub-picosecond to 

femtosecond domain possesses exclusive capabilities in limiting the undesirable spread o f 

the thermal process zone in the heated sample [Tzou 2002]. They have been widely 

applied in structural monitoring o f  thin metal films [Opsal 1991], laser micromachining 

[Knapp 1990] and patterning [Elliot 1989], structural tailoring o f  microfilms 

[Grigoropolus 1994], and laser synthesis and processing in thin-film deposition [Narayan 

1991] as well as in physics, chemistry, biology, medicine and optic technology [Hopkins 

2000], [Liu 2000], [Momma 1997], [Shirk 1998], [Tzou 1999, 2000a, 2000b].

For an ultra short-pulsed laser, the heating involves high-rate heat flow from electrons 

to metal lattices in the picoseconds' domains. Depending on the temperature, electrons 

have a heat capacity several orders o f magnitude smaller than that o f  lattices. When 

heated by photons (lasers), the laser energy is prim arily absorbed by  the free electrons 

that are confined within skin depth during the excitation. Electrons first shoot up to 

several hundreds or thousands o f degrees within a few picoseconds without disturbing the 

metal lattices. A major portion o f the thermal electron energy is then transferred to the
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lattices.

Meanwhile, another part o f  the energy diffuses to the electrons in the deeper region o f 

the target. Since the pulse duration is so short, the laser is turned o ff before thermal 

equilibrium between the electrons and the metal lattices is reached. In this time interval, 

the heat flux is thus essentially limited to the region within the electron thermal diffusion 

length. This stage is termed non-equilibrium due to the large difference in temperatures in 

electrons and lattices [Chen 2001b]. The lattice temperature then increases as a result o f 

lattice-electron coupling, resulting in a new thermal property termed the lattice-electron 

coupling factor. The single energy equations describing the heat transport phenomenon at 

the micro scale are not numerically efficient as they include a second-order derivative o f 

temperature with respect to time and a mixed-order derivative o f  temperature with respect 

to space and time [Tzou 1997]. Thus, the process is modeled by the two-step parabolic 

heat transport equations as described in [Tzou 1997]; the significance o f  the parabolic 

two-step model as opposed to the classical and single energy heat conduction equations 

has been discussed in [Tzou 1997]. In this sense, the parabolic two-step model in 

spherical coordinates can be useful when investigating heat transfer around a micro void. 

Micro voids may form during the thermal processing o f  materials due to thermal 

expansion. W hen such impurities occur in the work piece, the thermal energy in their 

neighborhood m ay be amplified which could result in severe damage and, consequently, 

lead to a total failure o f  the thermal processing. A detailed understanding o f the way 

dissipation occurs in the defects is thus crucial not only to prevent damage to the micro 

device but also to optimize the thermal process [Tzou 1997]. Additionally, a micro sphere 

is an important component in the fabrication o f  microelectronic devices, since the
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dimensions under study relate favorably to those o f  elementary physical particles; the 

micro sphere can be used to model the heat transport phenomenon in physical particles; 

therefore, understanding the temperature distribution in this microelectronic device is o f 

vital importance.

1.2 Research Objectives

The research objective is to develop a numerical method to solve the two-step 

parabolic heat transport equations in a micro sphere subjected to an ultra short laser 

pulse. Our coordinates o f  reference will be the spherical coordinates system.

To achieve our objective, these steps will be followed:

(1) Develop an energy estimate to establish that the problem is well posed.

(2) Develop a second order, in both space and time, finite difference scheme, three- 

level in time and central in the spatial directions, to simultaneously solve the electron and 

the lattice temperature distribution.

(3) Prove the stability o f  the numerical method by the discrete energy method.

(4) Apply the numerical scheme to investigate the temperature distribution in a gold 

micro sphere subjected to an ultra short laser pulse. Three cases will be considered under 

the applications: a symmetric heat source, a heat source applied to the hemisphere, and 

the heat source applied on a spot on the sphere.

The results o f  the research will provide a numerically efficient method to solve the 

two-step parabolic heat transport in spherical coordinates and improve our understanding 

o f the transport phenomenon in a micro sphere. The results will also have an impact on 

the design and calibration o f  short-pulse lasers for applications in the structural
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monitoring o f  thin metal films, laser micro-machining and patterning, structural tailoring 

o f  microfilms, and laser synthesis and processing in thin film deposition, as well as in 

other disciplines where high-energy short-pulse lasers are important.

1.3 Organization of the Dissertation

The dissertation is organized as follows: in Chapter 2, we will present the classical 

theory o f  heat transfer at the macro scale with a review o f the heat transport equation 

derived from Fourier’s Law and the Thermal W ave model o f  Cattaneo and Vemotte.

Then, we will discuss heat transfer at the micro scale, essentially the phonon-electron 

interaction model and its associated two-step hyperbolic and parabolic transport 

equations. W e will then introduce the two-step parabolic transport equations in spherical 

coordinates. The chapter will conclude with a review o f  previous researches.

In Chapter 3, we will proceed to a description o f the problem, define the geometry 

and state the governing equations along with the initial and boundary conditions. 

Subsequently, we will develop an energy estimate to prove that the problem is well 

posed. Then, the numerical scheme is introduced and its stability w ill be proven.

In Chapter 4, we will set up the linear systems necessary to solve the finite difference 

scheme introduced in Chapter 3 and define the numerical algorithm used to find the 

solutions.

In Chapter 5, we will investigate the temperature change and distribution in a gold 

micro sphere subjected to an ultra-short laser pulse. The symmetric heat source case, the 

heat source applied to a hemisphere case, and the heat source applied to a spot case will 

be studied. Conclusions and future work will be discussed in Chapter 6.
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CHAPTER 2 

BACKGROUND AND PREVIOUS WORK

2.1 Macroscopic Heat Transfer Models

2.1.1 Classical Theory of Heat Transfer

In thermodynamics, heat is defined as energy transfer due to temperature gradients or 

differences. Consistent with this view point, only two modes o f  heat transfer are 

recognized: conduction and radiation. For example, heat transfer across a steel pipe is by 

conduction, whereas heat transfer from the sun to earth is by radiation. These modes o f 

transfer occur on a molecular or subatomic scale.

In the atmosphere at normal pressure, conduction is by molecules that travel a very 

short distance before colliding with another molecule and exchanging energy. On the 

other hand, radiation is by photons, which travel almost unimpeded through the air from 

one surface to another. Thus, an important distinction between conduction and radiation 

is that the energy carriers for conduction have a shorter mean fre e  path , whereas for 

radiation, the carriers have a long mean free path. Additionally, a fluid, by virtue o f  its 

mass and velocity, can transport momentum, and by virtue o f  its temperature, it can 

transport energy. Therefore, convection is defined as the transport o f  energy by bulk 

motion o f a medium. We will focus our discussions on the conduction mode o f  heat
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transfer.

On a microscopic level, the physical mechanisms o f conduction are complex, ranging 

from molecular collisions in gases to lattice vibration in crystals, and flow o f  free 

electrons in metals. Heat conduction at the macro scale is a description o f  macroscopic 

conditions averaged over many grains. Thus, microscopic behaviors need to be 

aggregated over the domain by placing an emphasis on phenom enological laws, more 

suitable to the macroscopic level. In the classical theory o f  heat transfer, the main 

phenomenological law that governs heat conduction is F ourier’s Law. It is a constitutive 

equation that depicts the way in which cause varies with effects. It is necessary along 

with the conservation o f energy law to derive the heat transport equations. Regardless o f 

the assumptions formulated in the constitutive equation, it m ust be admissible under the 

framework o f  the second law o f thermodynamics.

Fourier’s Law o f Heat Conduction,

q(r , t )  = -k V T (9 ,t) ,  (2.1)

where r denotes the position vector o f  the material volume, k  is the thermal

conductivity o f  the material, and t the physical time, dictates that the heat flux vector (^ )

and the temperature gradient ( V r )  across a material volume occur at the same instant o f 

time. The energy equation derived from the first law o f thermodynamics is:

-V q  = C ^ ^ .  (2.2)
ot

where Cp is the volumetric heat capacity. Taking the divergence o f  equation (2.1) and 

substituting it in equation (2.2), we obtain the traditional heat diffusion equation:
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C ^ ^  = kViVT). (2.3)

The immediate response dictated by Fourier’s Law results in an infinite speed o f  heat

propagation, implying that a disturbance applied at a certain location in a solid medium is 

immediately sensed anywhere else in the medium. Because the heat flux vector and the 

temperature gradient are simultaneous, there is no difference between the cause and the 

effect o f  heat flow.

2.1.2 Thermal Wave Model

[Cattaneo 1958] and [Vemotte 1958, 1961] proposed the Thermal W ave Model (CV 

Model) to resolve the paradox o f  infinite speed o f  heat propagation. The novelty was the 

introduction o f  a time delay r ,  called the relaxation time. In this case, the constitutive

equation can be written as [Ozisik 1994], [Tzou 1997, 1999, 2002]:

q ( r , /  +  t )  = -A V T (r ,( ) . (2.4)

Expanding equation (2.4) in the first order with respect to t yields:

q{7 , t )  + T ^ ^ - k V T { 7 , t ) ,  (2.5)

and taking the divergence o f  equation (2.5) in conjunction with the conservation o f 

energy law, equation (2.3), we obtain,

dT d ( ^  dT^
C  1- T

dt dt k '  a t ,
= ytv.(vr). (2.6)

The CV M odel removes the paradox o f  infinite heat propagation assumed in Fourier’s 

Law as it relates the time delay r  to the thermal wave speed by [Chester 1963]:

(2.7)
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where a  is the thermal diffusivity and C is the thermal wave speed. As C approaches 

infinity, the relation time decreases to zero ( a  = 0), and the CV M odel, equations (2.4) or 

(2.6), reduces to Fourier’s Law [Tzou 1997]. Even though the CV M odel allows for a 

delayed response between the heat flux vector and the temperature gradient, there is still 

the assumption o f  an immediate response between the temperature gradient and the 

energy transport. This response occurs right after the establishment o f  a temperature 

gradient across a material volume, meaning there is still the assumption o f  an 

instantaneous heat flow. The temperature gradient always causes the heat transfer while 

the heat flux is always the effect [Tzou 1997]. While the CV M odel takes a microscopic 

approach to the time domain, it still considers the spatial domain to be macroscopic, 

making it innapropriate to explain the heat transport phenomenon at the micro scale.

2.2 Microscopic Heat Transfer Models

2.2.1 Micro Scale Heat Transfer

At the micro scale, the process o f  heat transfer is determined by phonon-electron 

interaction in metallic films and by phonon scattering in dielectric films, conductors and 

semiconductors [Tien 1998]. The classical theories established at the macro scale, such as 

heat conduction subjected to Fourier’s Law, are not expected to be informative at the 

micro scale as they describe macroscopic behavior aggregated over m any grains. They 

break down further as the temporal domain becomes extremely small, say, on the order o f 

picoseconds or femtoseconds. A typical case occurs in the ultra fast laser heating in the 

thermal processing o f  materials. In this instance, the quasi-equilibrium assumption 

established in Fourier’s Law does not hold along with other macroscopic behaviors.
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In this Chapter, we will present some existing micro scale heat transfer models, 

including the phonon-electron interaction model, the phonon-scattering model, the 

phonon radiative transfer model and the dual phase lag model. The four models 

emphasize micro scale effects in time. Rather than a detailed review o f each model, we 

will place an emphasis on the phonon-electron interaction model, as it leads to the 

microscopic two-step parabolic heat transfer equations, which serves as the basis o f our 

research. To develop a more comprehensive view o f the other models, the readers should 

refer to the papers cited in each section. In this case, special attention should be paid to 

the review articles by Tien and Chen [Tien 1994] and Duncan and Peterson [Duncan 

1994], for those interested in a broader view o f micro scale heat conduction, and those by 

Joseph and Preziosi [Joseph 1989, 1990], and Ozisik and Tzou [Ozisik 1994] for a closer 

look at the wave theory o f  heat conduction.

2.2.2 General Properties

Heat transfer requires sufficient collisions among energy carriers regardless o f  the 

type o f  medium where conduction is taking place. In metals, these energy carriers include 

phonons and electrons. In dielectric crystals, insulators and other semiconductors, 

phonons are the primary energy carriers. The phonon gas can be viewed as a group o f 

“mass particles” that define the energy state o f  the metal lattice. For a metal lattice 

vibrating at a frequency v at a certain temperature 7] the energy state o f  the metal lattice, 

and therefore the energy state o f the phonon, is

E = hv ,  (2.8)

with h being the Planck constant. The frequency o f  the lattice is o f  the order o f  tens o f 

terahertz (10'^ / / i ')  at room temperature. It can be assumed that the lattice frequency is
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proportional to the temperature o f  the metal lattice. Energy transport can therefore be 

viewed as the consequence o f a series o f  phonons collisions in time history, as illustrated 

in Figure 2.1. Bearing energy hv at tim e tj, phonon 1 collides with phonon 2 at and with

phonon 3 at tim er3 . In the course o f  each successive collision, energy is transferred from

phonon 1 to phonon 2 and 3, causing a successive change o f  vibrating frequency o f 

phonon 1. To illustrate the phenomenon, the mean free path {d in space) is defined as the 

algebraic mean o f  the distances traveled by phonon 1 between the two successive 

collisions with phonons 2 and 3:

(2.9a)

The mean free time r  is defined similarly as the algebraic mean o f  the times traveled by 

phonon 1 between the two successful collisions with phonons 2 and 3:

(̂ 2 -T ) + (̂ 3 _ (^~T)
T  = ■ (2.9b)

phonon 2

phonon 3

CO

phonon 1 
atti

Q . CO

phonon 1 
at time t

Figure 2.1 Energy Transport through phonon collision [Tzou 1997].
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To simplify our analysis, two collisions were used in this example. To determine a 

statistically meaningful sample space, a “sufficient” number o f  collisions must be 

collected to determine the mean free path and the mean free time.

The beat transfer models at the macro scale assume that the physical domain under 

consideration is so large that hundreds o f  thousands o f phonon collisions are supposed to 

have occurred before an observation or description o f  the process o f  heat transfer is 

made. Since phonon collision requires a finite amount o f time to occur, hundreds o f 

thousands o f  those collisions would require a sufficiently long time for the process o f  

heat transfer to occur. It is therefore clear that the macroscopic models not only require a 

sufficiently large physical domain for conducting heat (much larger than the mean free 

path), but also a sufficiently long time for heat conduction to take place (much longer 

than the mean free time). It should be pointed out that the sufficiently long time for the 

stabilization o f  energy transport by phonons should not be confused with the time 

required for the steady state to be reached. The sufficiently long time required in phonon 

collisions is to provide a statistically meaningful concept in regards to the mean free path 

and the mean free time. The heat transport phenomenon can still be time dependent after 

phonon transport becomes stabilized. In a phenomenological sense, the mean free time as 

illustrated in Figure 2.1 is parallel to the characteristic time describing the relaxation 

behavior in the fast-transient process. For metals, the mean free time, or relaxation time is 

o f  the order o f  picoseconds. In dielectrics crystals and insulators, the relaxation time is 

longer, roughly o f  the order o f  nanoseconds to picoseconds. As a rough estimate, any 

response time being shorter than one nanosecond should be closely investigated. The 

fast-transient effect, such as wave behavior in heat conduction, may activate and
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introduce unexpected effects in heat transport. Such a threshold value o f  nanoseconds 

however depends on the combined effects o f geometric configuration (o f the specimen) 

and thermal loading imposed upon the system. It may vary by one order o f  magnitude if  

the system involves an abrupt change o f geometric curvatures (specifically around a 

crack or notch tips), or be the subject to discontinuous thermal loading (irradiation o f a 

short pulse laser, for instance).

The mean free path for electrons is o f  the order o f  tens o f nanometers (lO“^/n) at room 

temperature. As a function o f temperature, the mean free path’s value m ay increase to the 

order o f  millimeters in the liquid helium temperature range, roughly 4 K. The mean free 

path in phonon collision or phonon scattering (fi-om the boundaries o f  the grains) is much 

longer. For example, the mean free path is o f the order o f  tenths o f  a m icron (lO“’ m) for 

a type Ila diamond film at room temperature [Majumdar 1993]. As an approximation, a 

physical device with a characteristic dimension in submicrons deserves special attention. 

The micro structural interaction effect, such as phonon-electron or phonon scattering, 

may dramatically enhance heat transfer in short times. Enhancement o f  heat transfer 

enlarges the thermal processing zone and increases temperature levels, which in turn may 

lead to early burnout o f  micro devices if  not properly monitored.

Since the physical dimensions, under consideration at the micro scale, are o f  the same 

order o f  magnitude as the mean free path, and therefore the response time is o f  the same 

order o f  magnitude as the mean free time, the quantities derived from the concept o f 

aggregation at the macro scale need to be reexamined for their meaning in a microscopic 

environment. The temperature gradient, which had been simply derived in macro scale 

heat transfer, may lose its physical meaning for a thin film o f  thiekness, the same order o f
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magnitude as the mean free path. As illustrated in Figure 1.2, while we can still divide the 

temperature difference Fj -T ^ ,  by the film thickness I { = d ,  the mean free path o f  phonon 

interaction/scattering) to obtain a “gradient like” quantity, the temperature gradient 

obtained in this fashion loses its usual physical meaning because o f  the lack o f  sufficient 

energy carriers between the two surfaces o f the film and, consequently, the temperature 

field is discontinuous across the film thickness. Therefore, the concept o f  temperature 

gradient fails. Due to this failure, the macroscopic way o f  ascertaining the heat flux 

vector assuming Fourier’s Law becomes questionable. Thus, there is an immediate 

ambiguity, which exists in both the concept o f  temperature gradient and the concept o f 

heat flux, as we introduce the microscopic effects in space in the conventional theories o f 

macro scale heat transfer.

A similar situation appears as the response time for the temperature is analyzed. The 

typical response time in the thin film is o f  the same order o f  magnitude as the mean free 

time, as a result o f  phonons traveling in the threshold o f  the mean free path. I f  the 

response time o f primary concern (for the temperature or the heat flux vector) is o f  the 

same order o f  magnitude as the mean free time (relaxation time), the individual effects o f 

phonon interaction and phonon scattering must be taken into account in the short time 

transient o f  heat transport. Thus we have another situation that requires a closer look at 

the macroscopic assumptions o f  heat transfer. From Figure 2.2, it is evident that the 

macro scale effects in space interfere with the macro scale effects in time. They cannot be 

separated and must be accounted for simultaneously in any framework seeking to develop 

a theory o f  heat transfer at the micro scale. This becomes obvious as the finite speed o f 

phonon transport in short time is considered. Phonons propagate at the speed o f  sound, on
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average, whieh is o f  the order o f  10“* to 10  ̂m/s at room temperature, depending on the 

type o f  solid medium. A response time o f  the order o f picoseconds ^10”’̂ sj thus implies 

a traveling distance (the penetration depth o f heat by phonon transport) o f  the order o f 

submicrons (10“* to 10’’ m ). Since the penetration depth is microscopic, a simultaneous 

consideration o f  the micro scale effect in space is necessary.

a thin film

o

phonon 2

phonon 1 
a t t

Figure 2.2 Phonon interactions in a film o f  the same order o f  magnitude as the mean free
path [Tzou 1997].

2.2.3 Phonon-Electron Interaction Model

Phenomenologically, the phonons illustrated in Figures 1.1 and 1.2 can be replaced by 

phonons/electrons to depict the phonon-electron interaction for heat transport in metals. 

Since the heat capacity o f  the electrons is one to two orders o f  magnitude smaller than the
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heat capacity o f  metal lattices, the heating mechanism requires excitation o f  the electron 

gas and then the heating o f the metal lattice through phonon-electron interaction in short 

times. The phonon-electron interaction model was proposed to describe this two-step 

mechanism o f heat transfer at the micro scale. The early version o f  the two-step model 

(phonon-electron interaction model) was proposed by Kaganov, et al. [Kaganov 1957] 

and Anisimov, et al. [Anisimov 1974] without a rigorous proof. It remained as a 

phenomenological model until the efforts o f  Qiu and Tien [Qiu 1993] placed the two-step 

model on a quantum and statistical basis. In the next two sections, we derive the two 

principal phonon-interaction models: the hyperbolic two-step model and the parabolic 

two-step model.

2.2.4 Hyperbolic Two-Step Model

In the absence o f  an electrical current during short time heating, the generalized 

hyperbolic constitutive equation for heat transport through the electron gas was derived 

from the Boltzmann transport equation. Three coupled equations are used to describe the 

energy exchange between phonons and electrons, the multidimensional case being 

obtained without much difficulty, we will limit the derivations to the one dimensional 

case:

ot ox

C , ^  = a ( T , - T , ) ,  (2.10b)

r , ^  + K ^  + <l = 0, (2.10c)

with C denoting the volumetric heat capacity, K  the thermal conductivity o f  the electron 

gas, subscripts e and / standing for electron and metal lattice, G is the phonon-electron
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coupling factor, S  represents the heating source, is the relaxation time evaluated at the 

Fermi surface, q is the flux, and T  is the temperature.

In the first step, the externally supplied photons (the source S) increase the 

temperature o f  the electron gas as represented by equation (2.10a). Clearly, diffusion is 

assumed at this stage. Through phonon-electron interactions, the second step, the hot 

electron gas then heats up the metal lattice as represented by equation (2.10b). The 

constitutive equation, equation (2.10c), describes the way in which heat propagates 

through the electron gas. Distinct from the Cattaneo-Vemotte equation for macroscopic 

thermal waves, equations (2.10a) and (2.10c) describe micro scale heat transport through 

the electron gas. Consequently, the thermal conductivity {K) in the phonon-electron 

system may vary with the microscopic quantities such as the electron temperature. The 

quantity tp  is the relaxation time calculated at the Fermi surface:

-1r,=(2)''>A
r r j.  \

, (2.11)
k T , j

where Eq is the Fermi energy o f  electrons at 0 K, 7), is the Debye temperature, and A is a 

constant defined as

Z K ^ P H m l l ) "  ( 3
K -

M k T,
(2 .12)

D V /

with P  standing for the transient matrix element, m the effective mass o f  electrons, M  the 

atomic mass, k  the Boltzmann constant, and A the average volume o f  the unit cell [Qiu 

1993]. The energy exchange between phonons and electrons is characterized by the 

coupling factor G, as shown by [Qiu 1992],
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G = ̂ 7 w L .  (2.13)
K

The coupling factor depends on the number density o f  free electrons in per unit volume 

), the Boltzmann constant/c, and the speed o f sound :

v , = ~ ( 6 n \ p T ^ .  (2.14)

The phonon-electron coupling factor, through the speed o f  sound, is further dependent on 

the Planck constant (Ji), the atomic number density per volume («^), and the Debye

temperature . [Qiu 1992] showed that the s-band approximation provides an accurate 

estimate for the number density o f  free electrons in pure metals. The volumetric heat 

capacities o f  the electron gas and the metal lattice, and C, in equations (2.10a) and

(2.10b), respectively, are functions o f  the electron gas temperature {T^) and the lattice 

temperature (7]).Q iu and Tien, [Qiu 1992, 1993], numerically solved equation (2.10a) by 

specifying the heat source term, S{x, t), as the energy absorption rate in a gold film with 

the laser wavelength in the visible light range. The film thickness was 0.1 ///w, and the 

laser pulse duration was 100 femtoseconds. The predicted temperature change in the 

electron gas established in picoseconds agreed well with the experimental data. The 

classical diffusion model and the thermal wave models, owing to the absence o f  modeling 

the micro structural effect in the short-time transient, predicted a reversed  trend for the 

surface reflectivity at the rear o f the thin film. The analysis supported the hyperbolic two- 

step model when used to describe the heat transfer phenomenon during short pulse laser 

heating o f  metals.
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To explore the wave structure o f  temperatures behind equations (2.10a) to (2.10c), we 

will focus on the metal-lattice temperature (7]) by eliminating the electron gas

temperature from equations (2.10a) to (2.10c). Since the temperature-dependent 

properties, such as the volumetric heat capacity o f  the electron gas, only affect the 

quantitative behavior o f  the temperature waves while the fundamental behavior remains 

unchanged, all the thermal properties are assumed constant in the treatment to follow. 

Differentiating equation (2.10a) with respect to t.

dt^ dxdt dt  ̂ ‘ d t '
(2.15a)

and equation (2 .10c) with respect to x,

(2.15b)
dxdt dx^ dx

and combining the results with equation (2.10a) to eliminate the terms d^qjdxdt

m d d q j d x , the following equation is obtained:

K
dx^

■ + S  + T,
dt

(2 .16)

The q u a n t i t i e s a n d  {T ^ -T ,)  can be related to the lattice temperature by equation

(2.10b):

G dt
consequently, -  7] =

G dt
(2.17)

Substituting equation (2.17) into equation (2.16) results in

d^T
dx^

■ +

dx dt K
S  + T,

dt
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f .

where T= T,,  w ith the subscript omitted for simplicity. The mixed-derivative term 

involving the second-order derivative in space and the first-order derivative in 

time, d^T/ dx^dt, is a common feature o f both parabolic and hyperbolic two-step models. 

In the presence o f  , (1) the time derivative in the energy equation is raised to the third 

order and (2) an apparent heat source term containing the time derivative o f  the real heat 

source applied to the body, ( d S /d t ), exists. While the third-order time derivative alters 

the fundamental structure o f the temperature solution, the apparent heating in equation 

(2.18) resembles that in the classic thermal wave model [Frankel 1985].

Along with the relaxation time o f the electron gas { tp ) ,  the phonon-electron coupling

factor G is the most important factor characterizing equation (2.18). In the case thatT/, 

approaches zero and G approaches infinity, implying that either the number density o f 

free electrons (n^) approaches infinity (according to equation (2.13)), or the speed o f

sound approaches infinity (the atomic number density per unit volume approaches

zero according to equation (2.14)); equation (2.18) reduces to the classical diffusion 

equation. Fourier’s Law embedded in diffusion thus inherits all these assumptions.

2.2.5 Parabolic Two-Step Model

As the relaxation time o f the electron gas calculated at the Fermi surfaces, Zp, 

vanishes, the hyperbolic two-step model perfectly reduces to the parabolic two-step 

model originally proposed by Kaganov, et al. [Kaganov 1957] and Anisimov, et al. 

[Anisimov 1974].
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Equations (2.10a) to (2.10c) become

= + (2.19a)
Ot ox

C , ^  = G ( T , - T , ) ,  (2,19b)

K - ^  + q = 0. (2.19c)
dx

Differentiating equation (2.19c) with respect to a: yields

K ^  + ̂  = Q. (2.20)
dx^ dx

Solving for the term ( dqjdx)  in equation (2.20) and substituting in equation (2.19a),

C , ^  = K ^ - G ( l - T , ) + S .  (2.21a)

C , ^  = G ( T , - T , ) .  (2.21b)

Mathematically, we can generalize equations (2.21a) and (2.21b) to three dimensions, 

thus obtaining the generalized parabolic two-step model,

C , - ^  = ' } - ( K y T , ) - G ( T , - T , y S ,  (2.22a)

C , ^  = G ( T . - T , ) .  (2.22b)

The energy exchange is still characterized by the phonon-electron coupling factor G 
[Kaganov 1957]:

for T ^ » T „  (2.23)
6 ^ 7 .

where represents the electron mass, the number density (concentration) o f 

electrons per unit volume, the electronic relaxation time and the speed o f  sound.
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The electron gas temperature (T J is much higher than the metal lattice temperature (7^)

in the early-time response. The condition o f  T ^ » T ,  in equation (2.23) for the

applicability o f  the G expression is thus valid in the fast-transient process o f  eleetron- 

phonon dynamics. W ithin the limits o f  W iedemann-Frenz’s Law, which states that for 

metals o f moderate temperatures (roughly forT] > 0.487^,) the ratio o f  thermal

conductivity to the electrical conductivity is proportional to the temperature [Tzou 1997], 

and the constant o f  proportionality is independent o f  the particular metal (a metal-type- 

independent constant), the electronic thermal conductivity can be expressed as

(2 24)
3m„

resulting in

(2.25)
j K

Substituting equation (2.25) into equation (2.23) for the electron mass gives

( n v .K y
G = — (2. 26)  

ISA:  ̂ ^

The phonon-electron coupling factor, therefore, depends on the thermal conductivity (K) 

and the number density ( n j  o f  the electron gas. Through the speed o f  sound, it further 

depends on the number density o f  the atoms (n^) and the Debye temperature (T ^ ). The 

coupling factor does not show a strong dependence on the electron gas temperature ( ) ,  

and it does not seem to be affected by the electronic relaxation time .

To estimate the value o f  the phonon-electron coupling factor G according to equation

(2.26), the number density o f  the electron gas ( n j i s  a crucial quantity. Qiu and Tien
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[Qiu 1992] assumed one free electron per atom for noble metals (silver (Ag) and gold 

(Au), for example) and employed the 5-band approximation for the valence electrons in 

transition metals. Due to the relatively heavy mass o f  the J-band electrons in the valence 

electrons, only a fraction o f  the 5-band electrons can be viewed as free electrons. The 

value o f ( « J ,  therefore, is chosen as a fraction o f  the valence electrons. The phonon-

electron coupling factor thus calculated, and the experimentally measured values are 

listed in Table 2.1 for comparison [Qiu 1992]. Except for copper (Cu) and lead (Pb), 

which may exhibit certain ambiguous transition characteristics, the 5-band approximation 

seems to agree well with the experimental results.

Table 2.1 Phonon-electron coupling factor G for some noble and transition
metals [Qiu 1992]

Metal Calculated, xlO'® W /m ' K Measured, x 10'® W /m ' K

Cu
14 4.8 ± 0.7 [Brorson 1990] 

10 [Elsayed-Ali 1987]

Ag 3.1 2.8 [Groeneveld 1990]

Au 2.6 2 .8 1 0 .5  [Brorson 1990]

Cr 45 (« ,/« „  = 0 .5 ) 4 2 1 5  [Brorson1990]

W 27 = 1 .0 ) 2 6 1 3  [Brorson 1990]

V 648 = 2 .0 ) 5 2 3 1 3 7  [Brorson 1990]

Nb 1 3 8 (n ,/u „ = 2 .0 ) 3 8 7 1 3 6  [Brorson 1990]

Ti 202 = 1 .0 ) 185+ 16  [Brorson 1990]

Pb 62 12 .411 .4  [Brorson 1990]
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As a general trend, a higher free electron number density (w jan d  a higher Debye 

temperature ( )  would result in higher values o f  G and smaller values o f  the electronic 

relaxation time .

From a mathematical point o f view, equations (2.22a) and (2.22b) provide two 

equations for two unknowns, the electron gas temperature (F J  and the metal lattice

temperature (7^). They can he solved in a coupled manner, or they can he combined to

obtain a single energy equation, describing heat transport through phonon-electron 

interaction in micro scale, similar to equation (2.18). The complexity o f  the solutions for 

equations (2.22a) and (2.22b) lies in the temperature dependent heat capacity o f  the 

electron gas, i.e., Q  =C^[T^). For an electron gas temperature lower than the Fermi

temperature, which is o f  the order o f 10‘*K, the electron heat capacity is proportional to 

the electron gas temperature. Such temperature dependence makes equations (2.22a) and 

(2.22b) nonlinear. For a gold film subjected to femtoseconds laser heating, Qiu and Tien 

[Qiu 1992] employed the Crank-Nicholson finite difference scheme to obtain numerical 

solutions. Comparing to experimental results, the normalized temperature change in the 

electron gas is identical to the normalized reflectivity change on the film surfaces:

^  = , , (2.27)
( M )  (A T )
V / m a x  V ^ / n i a x

where R  denotes the reflectivity and the subscript “m ax” refers to the maximum value 

occurring in the transient process. Both ratios in equation (2.27) are less than one. The 

left hand side o f  equation (2.27) can be measured by the front-surface-pump and back- 

surface-probe technique [Brorson 1987], [Elsayed-Ali 1991], [Qiu 1994a, 1994b]. The 

right hand side o f  equation (2.27), is obtained by solving equations (2.22a) and (2.22b)
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for the electron gas temperature and normalizing with respect to the maximum value in 

the transient response time at various times [Qiu 1992]. For a gold film subjected to 

irradiation o f  a 96 femtoseconds (fs, 10“‘̂  s) laser with an energy flux o f  1 m J/cm ^, the 

results o f  the reflectivity change at the front surface o f  the film are reproduced in Figure

2.3 [Qiu 1992].

• ,0 r ..p_  
, { ■-

e
S<:

<

OJ

0.6

0,4

0.2

d^ffuston, -  = 0.05 and 0.1 
rwo-slep, L -  0 .06 ijm 
two-siep, L = 0.1 jifTt 
experiment, L = 0.1 pm  
experiment, L = 0.05 pm

t> .
‘ .A ^

i  °'<3.

time delay (ps)

Figure 2.3 Transient reflectivity change at the front surface o f  gold films (thickness o f 
0.05 and 0.1 //m ) subjected to laser irradiation (pulse width 96 fs ,  energy flux 1 mJ/cm ^) 
[Qiu 1992], [Brorson 1987].

The time delay indicated on the horizontal axis is the time difference between the pump 

(heating) and the probe (detecting) lasers, which is equivalent to the physical time in the 

transient response. For both thicknesses o f  the films, 0.05 and 0.1 jum, the microscopic 

two-step model describing the phonon-electron interaction effect captures the heating 

(O <  ̂<0.096 picoseconds (ps)) and thermalization (0.096 < t< 3 p s )p ro c e sse s  o f  the
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electron gas temperature. The temperature level, as expected, increases as the thickness 

o f  the film decreases. The classical theory o f  diffusion, which assumes an immediate 

equilibrium between phonons (lattice) and electrons and is called the one-step heating 

model by [Qiu 1992], fails to describe the fast energy transport process. Particularly in 

the thermalization stage, it clearly overestimates the transient temperature. The transient 

temperature at the front surface does not seem to depend on the film thickness according 

to the diffusion model. The transient temperature remains almost at the same level as the 

film thickness increases from 0.05 to 0.1 /j.m .

cc
S
a:<5

1,0

o.a

0.6 j >A

0 . 4 A ;

0.2

0.0
0.0

o,.

C'i*niSicr\ L = 0.05 i.jm
  o i^ lu s io r .  L = 0 .1  jiiTi

iw o-siep. L ^ 0 05  urn
  1A>0-step L = 0.1 urn
G experimem, L = 0 .05  jim
i  experiment, L -  C.1 |.t'r

oa
O A

01
O A  A 

O "a 'V
O A S

O A .^ k^  A ,

0,5 1.0

time delay (ps)
1.5 2.0

Figure 2.4 Transient reflectivity change at the rear surface o f  gold films (thickness o f 
0.05 and 0.1 jum)  subjected to laser irradiation (pulse width 96 Js, energy flux 1 mJ/cm ^) 
[Qiu 1992], [Brorson 1987].

Figure 2.4 shows the transient reflectivity change at the rear surface o f  the film. The

difference in time (between the heating and thermalization stages) increases with film
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thickness. Thus, the plot displays a “wave like” behavior even as we assume diffusion o f 

heat transport through the electron gas. The one-step heating model (diffusion) fails to 

describe the thermalization process at the rear surface o f the film. Unlike Figure 1.3, 

where the qualitative trend was preserved in the same domain o f  response times, the 

heating stage predicted by the diffusion model shown in Figure 2.4 (the rear surface) lasts 

beyond the threshold o f  2 ps, resulting in a transient response o f  reflectivity change that 

significantly differs from the experimental result, both quantitatively and qualitatively. 

From Figures 2.3 and 2.4, it is clear that, for metals, the microscopic phonon-electron 

interaction is an important effect to he incorporated for an accurate description o f  micro 

scale heat transport. In addition to the familiar thermal properties such as heat capacity 

and thermal conductivity, the phonon-electron coupling factor describing the short-time 

energy exchange between phonons and electrons is a dominating property in the fast- 

transient process o f  laser heating.

Similar to the hyperbolic two-step model, we can derive a single energy equation for 

the parabolic two-step model by combining equations (2.22a) and (2.22b). Given their 

forms, equations (2.22a) and (2.22h) can be solved simultaneously for(Th) and (2^).

This coupled approach is a more efficient numerical method, and we will use that 

approach in this study. The derivation o f  the single energy will illustrate the fact, as seen 

in equation (2.18) for the hyperbolic model, that the appearance o f  mixed order derivative 

makes the single energy equation less numerically efficient. In the following derivation, 

the characteristics o f the electron gas and lattice temperatures, all thermal properties, 

including heat capacities for the electron gas (Q )a n d  metal lattice ( Q )  as well as the 

thermal conductivity (K), are assumed to be temperature independent (i.e. constant).
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A single energy equation governing the lattice temperature can be obtained by 

eliminating the electron gas temperature, , from equations (2.22a) and (2.22b).

From equation (2.22b), the electron gas temperature can be expressed in terms o f  the 

metal lattice temperature and its time derivative:

= (2.28)

Substituting equation (2.28) into equation (2.22a), and using the result o f  G{T^-T,)  

from equation (2.22b) results in

‘ \ G ) d t  ‘ dt y K G y d e
(2.29)

K

Equation (2.29), governing the lattice temperature alone, introduces a new type o f  energy 

equation in conductive beat transfer. It has a usual diffusion term { d T J d t ) ,  a thermal

wave term {d^T,ldt^"^, and a mixed-derivative term jtb a t reflects the

combined effects o f  microscopic phonon-electron interaction and macroscopic diffusion. 

In the case that the phonon-electron coupling factor G approaches infinity ( G ^ c o ) ,

implying that the energy transfer from electrons to phonons is occurring at an infinite 

rate, equation (2.29) reduces to the conventional diffusion equation employing Fourier’s 

Law, with the coefficient {C ^ + C ,) lK  appearing as the equivalent thermal diffusivity.

A single energy equation describing the electron gas temperature can be obtained 

similarly. From equation (2.22a),

T. = T  S 7 X + — — - (2.30)
‘ '  G '  G dt  ̂ ^
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Substituting equation (2.30) into equation (2.22b), and using the result o f  G{T^-T,)  

from equation (2.22a) results in

— VT„ = 
dt K

+ 
dt k K G , dt^

(2.31)

It comes as no surprise that equation (2.31) has the same exact form as equation (2.29).

2.3 Previous Work

High-power lasers play an important role in the fabrication o f  micro scale devices. 

Due to the microscopic size o f the devices, the thermal process needs to be carefully 

monitored to prevent thermal damages [Al-Nimr 1997a, 1997b, 1999]. The use o f 

continuous-pulse or long-pulse lasers in micro manufacturing creates a risk o f  melting the 

micro device under fabrication. The immediate consequence is an uncontrollable 

spreading o f  the thermal process zone. As an alternative, ultrashort-pulsed lasers with 

pulse durations o f  the order o f  sub-picosecond to femtosecond domain possess exclusive 

capabilities in limiting the spread o f  the thermal process zone [Qiu 1992], [Antaki 2002]. 

For an ultrashort-pulsed laser, the heating o f  the material involves a high-rate flow from 

electrons to lattices in the picosecond time domain. Depending on the temperature, 

electrons have a heat capacity two to three orders o f  magnitude smaller than that o f metal 

lattices [Tzou 1997]. When the external photons are supplied by  the lasers, the laser 

energy is prim arily absorbed by the free electrons that are confined within skin depth 

during the excitation. Electrons first shoot up to several hundreds or thousands o f  degrees 

within a few picoseconds without disturbing the metal lattices. A major portion o f  the 

thermal electron energy is then transferred to the lattices. Meanwhile, another part o f  the 

energy diffuses to the electrons in the deeper regions o f the target [Kaganov 1957]
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[Anisimov 1974] [Qiu 1993] [Tien 1994]. Because the laser pulse is so short, the laser is 

turned o ff before thermal equilibrium between the electron gas and the lattices is reached 

[Al-Nimr 1999, 2000a, 2001, 2003], [Fujimoto 1984]. In this time interval, the heat flux 

is essentially limited to the region within the electron thermal diffusion length. This stage 

is termed non-equilibrium heating due to the large difference in temperature between the 

electron gas and the metal lattice. The lattice temperature then increases as a result o f  

phonon-electron coupling, resulting in a new thermal property called the phonon-electron 

interaction factor. The energy equations describing the continuous energy flow from the 

hot electron gas to the metal lattice during non-equilibrium can be written as [Kaganov 

1957], [Anisimov 1974], [Qiu 1993]:

c , ^  = v . ( A : v r , ) - G ( r , - 7 ; ) + s ,  (2 .2 2 a)

C , ^  = G ( T , - T , ) ,  (2.22b)

with C denoting the volumetric heat capacity, K  the thermal conductivity o f  the electron 

gas, subscripts e and / standing for electron and metal lattice, G is the phonon-electron 

coupling factor, S  represents the ultrashort-pulsed laser heating source, and T  is the 

temperature. In the classical theory o f  diffusion, 7], = 7] because o f  the equilibrium

condition in Fourier’s Law; thus, equations (2.22a) and (2.22b) reduce to the classical 

heat conduction equation at equilibrium. However, for sub-picosecond and sub-micro 

scale conditions, > Tj during the non-equilibrium heating stage. The significance o f

the heat transport equations (2.22a) and (2.22b) as opposed to the classical conduction 

equation has been discussed in the previous sections.
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The above eoupled equations, often referred to as the parabolic two-step micro heat 

transport equations, have been widely applied for thermal analysis o f  thin metal films 

exposed to picosecond thermal pulses. Among these studies, Qiu and Tien, [Qiu 1992, 

1993, 1994a, 1994b] studied the heat transfer mechanism during short-pulse laser heating 

o f  metals using both experimental and numerical methods. Joshi and M ajumdar, [Joshi 

1993], obtained a numerical solution using the explicit upstream difference method. Tzou 

and others, [Tzou 1997], [Al-Nimr 2000b], [Antaki 1998a, 1998b], [Chen 1999, 2000, 

2001a], [Ho 2003], [Wang 2000, 2001a, 2001b, 2002], modified equations (2.22a) and 

(2.22b) by introducing the concept o f  a dual-phase-lag. They developed both analytical 

and numerical methods to study the lagging behavior in micro scale heat transfer. [Tzou 

1997] contains most o f the early formulations and results obtained by the dual-phase-lag 

model. In [Tzou 1997] and [Ozisik 1994], the dual-phase-lag model was considered in 

one dimension, and the heat flux was eliminated to derive a dimensionless heat transport 

equation. The lagging behavior was investigated with the new equation in a semi-infinite 

interval. The solutions were obtained by using the Laplace transform method and the 

Riemann-sum approximation for the inversion.

Additionally, [Ozisik 1994] investigated three major issues: the engineering 

applications o f  the thermal wave theory, the special features that existed in the thermal 

wave propagation, and the relationship between the thermal wave model and the 

microscopic two-step model. The study showed that special features in thermal wave 

propagation included the sharp wavefront and rate effects, the thermal shock 

phenomenon, the thermal resonance phenomenon, and reflections o f  thermal waves 

across a material interface. Using the dual-phase-lag concept, the study established that
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the governing energy equation could be reduced to the heat transport equation through 

the metal lattice in the microscopic two step model.

Chen and Beraun employed the corrective smoothed particle method to obtain a 

numerical solution o f  ultrashort laser pulse interactions with metal films [Chen 1999, 

2000, 2001a, 2001b]. The study introduces a dual hyperbolic two-step radiation heating 

to investigate the ultrashort laser pulse interactions with the films, thus providing an 

extension o f  Qiu and Tien’s theory by the introduction o f  the effect o f  heat conduction in 

the metal lattice. Furthermore, to account for the ballistic behavior in particle transport, 

the study introduces a modified laser intensity depth distribution by adding the ballistic 

range to the optical penetration depth. The study then proceeded to compare their results 

to the existing models, the parabolic two-step method, Qiu and T ien’s proposed models 

and Fourier’s Law o f heat conduction, which were solved by using a mesh-free particle 

method. The numerical analysis was performed with gold films and the results were 

compared to the experimental data o f  Qiu, Jubhasz, Suarez, Bron, Tien, Wellershoff, 

Hohfeld, Gudde, and Matthais. The study showed that Chen’s method is a better predictor 

o f the thermal response. It also showed that the inclusion o f  the ballistic effect to the 

depth distribution o f  the laser intensity significantly improves the melting threshold 

fluence prediction.

Tang and Araki introduced a generalized macroscopic model in the treatment o f 

transient heat conduction problems in finite rigid slabs under short-pulse laser irradiation. 

The analytical solution is derived by using Green’s function method and a finite integral 

transform technique [Tang 1999].
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In [Lin 1997], the authors attempt to investigate the possibility o f  a unified heat 

conduction equation, and an analytic solution was obtained by using Fourier’s series. A 

discussion o f  the exact solution shows a discrepancy between some o f  L in’s results and 

previous results obtained by [Tzou 1997].

Al-Nimr and Arpaci proposed a new method, based on a physical decoupling o f  the 

two-step hyperbolic model, to study the effects o f  radiative and convective thermal losses 

during short-pulse lasers heating o f  thin film metals [Al-Nimr 1997a, 1997b, 1999, 2001, 

2003]. The decoupling keeps the basic two-step model assumption that the metal film 

thermal behaviors occurs in two phases. An initial phase during which the electron gas 

energy is transferred to the metal lattice through phonon-electron coupling, other 

mechanisms o f  heat transport are considered to be negligible at this stage, and a 

secondary phase, where thermal equilibrium is reached between the electron gas and the 

metal lattice. At this stage, the phonon-electron coupling is considered negligible and 

thermal diffusion is the transport method that dominates. This method succeeds in 

eliminating the coupling between the hyperbolic equations, thus making the resulting 

differential equations easier to manipulate. An applicability criterion is developed for

GL^
metal films whenever the dimensionless p aram eter  is much larger than 1.

Ke

Dai and Nassar developed several unconditionally stable finite difference schemes to 

solve a dual-phase-lag heat transport equations [Dai 1999, 2000b, 2001a]. Additionally, 

they developed several domain decomposition methods to solve Tzou’s dimensionless 

heat transport equation in double layered films, [Dai 2000a, 2001b], and devised an 

approximate analytic method to solve the dual-phase-lag equations [Dai 2002]. In
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collaboration with Shen, they developed a convergent finite difference scheme to solve 

the dual-phase-lag heat transport equations in spherical coordinates [Dai 2004].

Wang, Zhou and Xu developed techniques to measure the phase-lags o f  the heat flux 

and the temperature gradients. They derived analytical solutions for one to three 

dimensional heat conduetion domains under arbitrary initial and boundary eonditions. 

Furthermore, structural theorems were developed for mixed and Cauchy problems o f 

dual-phase-lag heat transport. The studies included a proof o f  the well-posedness o f  the 

dual-phase-lag model under Diriehlet, Neumann and Robin’s boundary conditions [Wang 

2000, 2001a, 2001b, 2002].
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CHAPTER 3

MATHEMATICAL MODEL AND FINITE 

DIFFERENCE SCHEME

3.1 Mathematical Model

3.1.1 Problem Description

This chapter investigates the heat transport phenomenon in a microsphere subjected to 

an ultrashort laser pulse. As described in Chapter Two, there is a risk o f  cracking during 

the microfabrication process. These cracks may lead to an accumulation o f  energy in the 

neighborhood o f  the cracks. Additionally, micro voids may form during the thermal 

processing o f  materials due to thermal expansion. W hen such impurities occur in the 

work piece, the thermal energy in their neighborhood may be amplified which could 

result in severe damage and, consequently, lead to a total failure o f  the thermal 

processing. A detailed understanding o f  the way dissipation occurs in the defects is thus 

crucial not only to prevent damage to the micro device but also to optimize the thermal 

process [Tzou 1997]. From a micro fabrication standpoint, a micro sphere is an important 

component in the fabrication o f microelectronic devices, and understanding the 

temperature distribution at the sub-atomic level as well as in the metal lattice is the

34
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subject o f  important investigations. Geometrically, since the dimensions o f  a microsphere 

relate favorably to those o f elementary physical particles, the micro sphere can be used to 

model the heat transport phenomenon in physical particles. Thus, a clear understanding o f 

the temperature distribution in this microelectronic device is o f  vital importance. To this 

end, the well-posedness o f the problem is investigated; a numerical scheme is proposed to 

solve the governing equations. A stability analysis o f  the scheme is done and the scheme 

will be applied to numerical examples.

3.1.2 Geometry Description

Figure 3.1 shows a sphere in a three-dimensional coordinates system. Considering the 

spherical coordinates system, the point P  is defined by the following spherical 

coordinates: r,6> ,^ , where r is the length OP, ranging from 0 to oo; ^  is the angle 

between the projection o f  OP  on the ;cy-plane with the positive v-axis ranging from 

0 to 2 ;t ; (p is the angle between OP and the positive z-axis ranging from 0 to .

Figure 3.1 Spherical coordinates system.
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3.1.3 Governing Equations

Using the two-step parabolic heat transport equations at the microscale to model the 

microsphere, we take advantage o f  the geometry o f  the sphere by  rewriting equations 

(2.22a) and (2.22b) in spherical coordinates. The spherical coordinates o f  a point P  

(r, 6,(p) are related to x, y, and z as follows:

X r s in ^ c o s 0, y  = r s i n ^ s in 0, z  = r co s (p .

X

Figure 3.2 Change o f  Coordinates 

Performing the derivations as in [Brown 2001], we obtain

 ̂ dt dr
dP
dr

+  -

r sin (p dcp

dP„
dcp

r^ sin" cp d0^

(3 .1)
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C , ^  = G { T , - T , ) .  (3.2)

where r,9,(p are the spherical coordinates with Q <r < L ,Q < 0  <27t,0<q><n.

3.1.4 Initial and Boundary Conditions

The initial conditions are assumed to be

r ,  (r ,e ,(p ,0)  = Ti {r,d,cp,Q) = T^, (3.3)

dT^{r,e,(p,0) _  dTiir,0,(p,0)

dt dt

and the boundary conditions are

^ 0  (3.4)

dT^(r,e,0,t) ^ dTXr,e,n,t)  ^  ̂ dTi(r,0,O,t) ^ dTi{r,9,n,t) ^ 
d(p d(p ' dcp dcp '

dT^{L,9,cp,t) ^  dT,{L,9,cp,t) ^  ^  

dr dr

T^{r,9,cp,t) = T^{r,9  + l7t,cp,t), T ,{ r ,9 ,^ , t )  = T ,{r ,9 +  27r,cp,t). (3.7)

These boundary conditions arise when the micro sphere is subjected to an ultrashort pulse 

laser irradiation. Due to the extremely short time domain, it can be assumed that no heat 

losses occur at the boundary (equation 3.6), and due to the symmetric nature o f  the sphere 

equations (3.5) and (3.8) are obtained [Tzou 1997]. For simplicity o f  the theoretical 

analysis, we will further assume that

dT^{0,9,cp,t) dTi{0,9,<p,t)

dr dr
= 0. (3.8)
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3.2 Energy Estimate and Well-Posedness

THEOREM  1. Assume that the eoefficients C^,Ci,k^din6. G are positive constants,

and that the solutions and 7] o f the above initial and boundary value problem are 

smooth. A  stronger estimate holds as follows:

t
F (r )< e ' [F (0 )+ J o (5 )c /5 ] ,  (3.9)

0

where
L2n n L2n  n

1 J sin<pdrd6d(p + Ci J J Jr  ̂r /  sincpdrdddcp, (3.10)
0 0 0 0 0 0

and
. L2n n

0 ( r )  = — ^  ^  sin (pdrdOdcp, (3.11)
0 0 0

which implies that the problem is well-posed in the sense o f  the definition described in 

[Strikwerda 1989].

Proof. M ultiplying equation (3.1) by r 7̂], s i n a n d  equation (3.2) by s i n a n d

integrating over the domain < r < L,Q> < 9 < 2 n  < k ] , and summing the results

together, we obtain

L2n K L2n n

J J s in ^ — - fd r d $ d ( p +  J J sin^/?— -TidrdOdq)
0 0 0 0 0 0

s i n ^ T ^ - ^  drdOdcp-v f  f  f  71 ^  drdOdcp
" " 5 r l  dr ) J J Jsin®  " 39^

d T K  ... d^T

0 0 0   ̂  ̂ 0 0 0
sin^i? d9"

L2n n  /  -..m. \  L2n  ndT„

0 0 0  ^  ^  0 0 0
dcp

- I l k .  s in ^7],— I s i n ^ . ^  ^drd9dcp-  I J F  sin c p G ( f - T i )  drd9dcp
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t l K  n

J  J  sin ̂  7̂  -S' drdOdcp. (3.12)
0 0 0

Rearranging the left-hand side o f equation (3.12) we obtain:

^  j ]  p
0 0 0

L2k K

sinqj-

= sin

0 0 0

L2k n

dt
-drdOdtp

0 0 0

L 2 n  7t

+ j  J  J^eSin^T;
0 0 0

L2n n

dr

d(p

V ydr
0 0 0

. ^ 2  rji
drdOd(p+ f f [ - ^ T ^ ^ d r d e d m  

J J J s in ^

s in ^
dcp

L2n n

drdOdcp- 111 r̂ sin ̂  G (Jg -  drdOdcp
0 0 0

+ J  J  sincpT^SdrdOdcp. (3.13)
0 0 0

Now, we m ay use G reen’s Theorem and equations (3.6) and (3.8) to simplify the first 

term on the right hand side o f  equation (3.13) as follows:

L2n n f  a'T' A

0 0 0

dT„

mk.sim cpT—  r ^ — -  drdOdcp
d r y  d r  IV ydr

2n n

0 0

, • r p  2k^smcpT^r
dr

L2n n

0 0 0

ddd<p- f [ \ k ^ s m q ) ^ ^ r ^  ^ ^ d r d d d c p
J J J Of Qp

L2n K

- K \ \  j s in ^ r^
0 0 0

y dr J
drdOdcp. (3.14)

Similarly, we simplify the second term on the right hand side o f  equation (3.13) using 

equation (3.7) as follows:
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1 J drdOdcp 
0 0 0 ŝin̂ p dO

0 0

J e _ T ^
sin^  ̂ dO

In L 2 k  7t

drdcp-  [ f f— 
J J J si
0 0 0

drdOdcp
smcp dO dO

The third term can be simplified in the same fashion using equation (3.5) as;

L i n  K

1 J
0 0 0

dcp
smcp

dcp
drdOdcp

L i n

= J 1
0 0

1.T ■ '̂d'e
dcp

L i n  n

d rd O -  f f s i n d r d O d c p
J i  J r)m dm
0 0 0

dq) dcp

Furthermore, we can rewrite the left-hand side o f equation (3.13) as:

Substituting equations (3.14)-(3.17) into equation (3.13), we obtain:

f  ^  L In  n ^  L i n  n

s in o  r ?  drdOdcD+ ^
d_
dt

J L 2 /r 7T l-t 2tc 7T
—  J  I  s in ^  Tg drdOdcp+ ~  J  |  j^i

0 0 0

L i n  n L i n  n

+ J J jr ^  sin cpG{Tg- Tj drdOdcp + J J Jsin q> r^ drdOdq)
0 0 0 0 0 0
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L i n  n

=  - K J I J -J J J sin
0 0 0

sm î? y d O j
drdOdcp. (3.15)

L i n  n

- t J J J s i n p
0 0 0

^ d T ^
ydcp j

drdOdq) . (3.16)

L H S ^
dt

L i n  n

J I  jr^ s in ^  Tg drdOdcp+ —  J |  jr^ s in ^  drdOdcp
0 0 0

(3.17)



41

+k.
U PJ J J s i n

L i n  n

0 0 0
sm ^ y d e ,

^ 5 r P
drdddcp + kg U P ’’ I a,«

0 0 0 \  ^  J
drdddcp

L i n  n

= J J Jr  ̂sin^Tg S  drdddcp. (3.18)
0 0 0

Dropping the positive integrals in the second, third, fourth and fifth terms on the left-hand 

side o f  equation (3.18), we have

f  L i n  n

dt

L i n  n

Cg I  J s in ^  drdddcp -4- Q  J J s in ^  drdddcp
\  0 0 0 0 0 0

L i n  n

< 1 1  ^2r^ smcpT^Sdrdddcp. (3.19)
0 0 0

By Cauchy-Schwartz’s inequality, we have

2 T ^ S < e { T ^ f + - S \  (3.20)
8

for £• > 0. Letting s  = C^ and substituting equation (3.20) into equation (3.19) gives

d_
dt

(  L i n  n L i n  n

Cg J I  jr^  s in ^  drdddcp + P  |  J s in ^  drdddcp
V 0 0 0 0 0 0

L i n  n
< j  J j P [ C g ( 7 ; ) '  smcpdrdddcp

0 0 0

L i n  n L i n  n

Cg J J ^r^{Tgf sin cp drdddcp+ —  J J ^r^S^ sin cp drdddcp. (3-21)
0 0 0

Using the notations o f  F (t)  and 0 ( 0 ,  equation (3.21) can be simplified as:

F \ t ) < F { t )  + ̂ { t ) . (3.22)
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By Gronwall’s inequality [Evans 1998], we obtain
t

F ( t ) < e ' [ F ( 0 ) + (3. 23)
0

which completes the proof.

3.3 Finite Difference Scheme

3.3.1 Difference Operators

We denote Tyi^as the numerical approximation o f  T^iAr, JA0,kA<p, n A t) ,  v/here 

Ar,A6,A(p m d  At are the r,6,(p directional spatial and temporal mesh sizes, 

respectively, and 0 < i< N , . ,0 <  j  < N g ,0 < k < N ^  so that N^Ar L, NgAO = I k , 

N^Atp = K . W e introduce the following difference operators:

(3.24)

(3.25)

(3.26)

Ar

rntl
^ i jk

rpn
~ ^ i - \ j k

Ar

rpn qntl
^ ij+ \k  ~ - ‘-ijk

A d

rpn
^ ijk

rpn
^ i j - l k

A 6

rpn rpn
■‘ŷ +1 -^ijk

A(p

rpn
H jk

rpn
^ iJ k - \

(3.28)

a/  ;

Furthermore, we introduce the following operators.
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rpn    rpn rpn  __ rpn
i + \ j k ~  ijk . . 2  ijk ^ i - \ j k  .

1 /A  x2 1 /A  \ 2  ’
'+ 2

rpn O T '^  _L

(A0 )^ ’  ̂ ^

rpn    rpn rpn    rpn

P , ( 7 ; )  = sm »  , J ^ - s i „ p  , (3.32)
»+5 ‘‘-2

and a temporal weighted average for stability purposes,

rpn+\ , r p n —\

^t(TiJk) = — --------   — ■ (3-33)

3.3.2 Finite Difference Scheme

We develop a three-level finite difference scheme to solve equations (3.1) and (3.2) as 

follows:

c .  = ! \ p ^ { w , [ ( r . ) j j ]) + p , W , [ ( r . ) j , ]}
2 At r; (sin^o^)

+ P A m T . % 2 ^ ) - G -  fy, [ ( r .)”» -  (p,)j* 1
Vi sm ^^

+ S !k , (3-34)

"‘ i M  P .3 5 )

Here, ^ = I'Ar and q)ĵ  -  ktk(p. The boundary conditions are discretized as follows:

V p(P,);,j*  = y ^ T .H ik  = 0. = V ,(7i)r,.. = 0; (3.36)

( T , ) m = ( T e ) U , , .  « ) ; * = «  W ;  (3-37)
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= 0 , = v^-(r,)j, = o. (3.38)

Since the scheme is three-level in time, the discretized initial conditions are assumed to 

be

^ e f ^ k = ^ i % k = i T e f m = ^ i ^ m = T , .  (3.39)

It can he seen that the truncation errors for Equations (3.34) and (3.35) are 

(9 (A t^  - I - +  A ^ ^ ) .

3.4 Stability Analysis

Using the discrete energy method [Lees 1961, 1966] to prove the stability o f our 

numerical scheme. Equations (3.34)-(3.39), we need to introduce the definitions o f  the

inner products and norms between the mesh functions and . Let A/, be the set 

|m = {uy,^} 0 < / < A^^,0 < j  < N g ,0<  A: < . For any u ,v  e  Sy, the inner produets and

norms are defined as follows;

N , - \  Ng N ^ - \

( m , v )  = ArA dA g) Uijk-^ijk^ (3-40)
,■=1 j= \ k=\

(m,m) = ||m|P, (3.41)

N r Ng N ^ - \

||v ,! ,|f  = (V ,« , V ,a)| = A r A 9 A f > E E Z  . (3-42)
/=1 j= \ k=\

N r~ \ Ng  A 'p - l

||V^m||^ = ( y  qU,V qu\  = Ar AO Acp Z Z Z  (V,-w), (3.43)
/=] j=\ k=\

, = (V ,«.V p«), =A ,A (?A (!,2i Z E < V ) .  (3.44)
/= ]  J=\ k=\
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The following lemmas are easily derived: 

LEMMA 1. Let T  ^  S^. For any n.

N , - \  N n

/=i j=\ k=i

4 5

Ar AS A « - ^ ' f ;  I ;  sin f t  [ { j ;y ' + 2 ; ;  )^ -  (Z ; ;+ 7 5 -'
,■=1 j=] k=]

= | | r V ^ ( r + '  + r ) | | '  - | | r V ^ ( r  + r - ' ) (3.45)

LEMMA 2. For any mesh function 7]̂  ̂ and 5 '^ ,

A'̂ -l Nr
Ar 2 ]  />. (J>*) ■ = - A r X  r ' , V,j;,* . V ,S^  -  r | . 5,

(=1 (=1 ‘ 2 2
Ojk

W-
(3.46)

Proof. From equation (3.30), we get

Nj.-\

;=1

N r - \

= Ar 7  r
t r  s

T - T2 ^ i+ \ jk  ^ ijk •A,.,.
N r~ \ T

2 ^ i jk  ^ i - \ j k  p
■ kJ:,

'•4 (Ar)^ ^  (Ar)
ijk

Nr T  — T  A 'r -1  T  — T
2 ^ ijk  ^ i - \ J k  p  _ A s . ' V » . 2  P  / - 1 7^ ^

(=2 2 (Ar)^
1

;= l  2
<-T (Ar)"

ijk

N f .  r p    r p  r p    r p

’■li
/= ! 2 1=1  '  2

(Ar)"
ijk

„ 2  ' \̂Jk '̂ Qjk e , - 2  '^N̂ Jk '^N^-\Jk ^
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■ A '- i '- ;  , . V  + r l  , ■ S „ ,;,
,•=1 ' ” 2  2  ' ' 2

=  ^  ^ ^ _ \ ^ r ' ^ i j k  ■ ^ F * ^ i7 y t ~  ^ l ^ r T \  j k  ' j k  +  ’ ^ N , j k  ■

(=1 '  2  2  ' ' 2

LEMMA 3. For any mesh function and 8^,^,

Ne Ng
- ^ s S i M - ^ s Ti h -Sm

y=i i=i

(3-47)

Proof. From equation (3.31), we get

Ng

;=i

P  { A 0 f

Ng T ' _ T  Ng rp _ ' T
: A ^ y  . e _  A ^ y  J L J L l i . c

^  (A^)^  ̂ jii ' (A^)^ '

Â^+1 p  _ y  y  — T!
: A^ y  ^  . A. ^  • 5.;

(A ^) rA/3A2 y'

^ y + '  T  — T  ‘'^g T  — T  T  T

= A6  V  - 2 — - A e y - 2 — -4 ,
^  (A0 )^ “  (A^)^  ̂ A6i=\

Ng T  _ p  .  , _  ,

:A 0 y ^ ^ - j ^ . v  A ^ y
^  (A^)^ '  ^  (A0 )^ "

=1 { A 9 f

'd T
r  y

'k '^ i j - \k

=1

1 p
^ ijk ~ ' ^ i j - \ k
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C , ^A'g+U '̂ iNgk „
A0  •‘̂<■0  ̂ iNek

N q rj-t r p  'T'   'T'
a / j V w  r  _ i n k Z l m .  q  -‘//Vg+u -‘WgA: „

' e ^ i j k ' ^  e ^ i j k  ^ iN f , k

M

Ng

=  - A d ' ^ V g T j j i ^  ' ^ e ^ i j k  ~ ’ ' ^ e ' ^ i \ k  '^ tO k  + ^ 0 ^ W 0 + U  ' ^ i N g k -

M

LEMMA 4. For any mesh function Tyĵ  and ijk =

Z  Pcp{Tijk)-Siji, = - A ( p ^ s \ n ( p  , - s i n ^ ,  V^7|,, -Sy^
k=\ k=\ 2 2

Proof. From equation (3.32), we get

^(pY^p<pi'^ijk)-Sijk
k=\

(̂p~̂  fĵ   >T> <̂p 1 'T,   'V,
= A ( p ' y  s in ^  1 — ^ ' ^ i i k  1   '"^T^'^ijk

^ 4  (k<pf *  ‘4  i i ^ v f  *

A ' „  r p  r p  A ' p - l  r p  _  r p

^ i /k  ^ i i k - \  r t  A . .  - •  „  ‘Jk  ^ iJ k - \: sin (p ] — ---------- ■ Aŷ _] -  A ^ Z  sin ̂h ‘4 ('i?’) «  ‘4 "
Wp T _  T 7’  T’

: A^ijV sin ̂  1 —  sin (p , — -----• 5.-^t ;  ‘4 *4 <A«»" "

^yl ^yo p ■  ̂ p
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T:n -T::,
=  Sin -  sin  (p,_ ' S ^ o  +  sin  (p ^

k=\ <p 2 S.(p

N.„

t . ( p ^ s m ( p  - s i n ^ , V ^ 7 .̂, -5 .̂0 +  s in ®  y ^ i j N .  - S y N ^ -

k=\
k - -  

2

It should be noted that i f  both Tijk and satisfy the boundary conditions, i.e.

Equations (3.36)-(3.38), then Equations (3.46)-(3.48) reduce to:

N^-\ Nr
Z  (Tijk) • = - A r ^ r ^ _ y y j k  ’ ^7 ^ ,ijk
i=\ /= ! 2

N g Ng

= -A e X ^ g T , j t -W u S i j t
y=i y=i

N^-\
^(pj]p<piTijk)'Sijk = -A (p '^ s m (p  y y j k

k=\ k=\ 2
ijk

(3.49)

(3.50)

(3.51)

THEOREM 2. Assume that {Tyj^,{Ti)1jk and (5'g)”-^,(5';)'|-^ satisfy the numerical scheme,

Equations (3.34) and (3.35) with the same initial and boundary conditions. Equations 

(3.36)-(3.39), but different source terms respectively. Let

( " , ) » = ( ? ; & - ( 5 . ) ”, ,  (K ,& = (7 ;) " » - (S ,) " , ,a n d g " = G ,” - G ; .  Then (n ,)L  and

will satisfy for any 0  < nAt <

2 C J | r V ^ [ ( w J ”"' + (m J"] '  + 2 C; r V ^ [ ( « / ) " ^ '  +(w,)"]

8 e '̂°
<  max l|r

( 2  0<m<n I
V sin^g" (3.52)

Hence, the scheme is unconditionally stable with respect to the source term. 

Proof. It can be seen that (Wg)"-̂  and (W;)".̂  satisfy
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-P e W X iU e t^ )

+ -
sin^^

(3.53)

(3.54)

and initial and boundary conditions

(3.55)

(^ e  )ljk -  i ^ e  ) y + N g k  ’ ( ^ /  )ljk ~  ( “ / ’ (3.56)

i^e%k ~ (^I%k -  (̂ e)lyA: ~ (^l)ijk ~ O' (3.58)

M ultiplying equation (3.53) by 4ArA^ sin^y^ [(m^)"-^'+2(Wg)p+(Wg)"-4 ’], and

equation (3.54) by At^rb.9L(p [(m/)|||' +2(wy),"^ ], and adding the two equationsn - \  -

together and summing over the i , j , k , l < i < N ^ - l , l <  y < , 1 < A: < -1 , , we obtain

by Lemmas 1-4 and Equations (3.55)-(3.58):

2 C r^sin(p[iu^Y^^ + (u j" ]  - l U s i n ^ ^ M j ” + (m J” ’]

+2 C /j|rV shi^[(M ,)''""+ (« /)"] -Ir^JsincpiiuiY  +(w,)" ']
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^Jsin<p

-k^At (E  2 s i n ^ ) v j ( M , r ‘ + 2 ( M , r + ( w , r ']

-G A t +2(a,)" +2(a,)“

+(g",4A(r^ sin«)[(»,)"' +2(u,)“ +(u,)” ']),n+1 (3.59)

_ i  - i  - i
where  ̂ is a shift operator such that E  ’̂ r^=r  , and£ ' ^ s in ^ ^ = s in ^

'—2 2

Rearranging equations (3.59), we obtain:

2 Q | | r 7 sh i^ [(w J”’̂ ' + (m J"] + 2 Q ||r 7 sin^[(M/)'’'̂ ’ + (« /)"]

■¥kgAt

+^gAr
sm(^

•\-kgAt

+GA/ r V ^ { [ ( u , ) ' ‘"‘ + 2 ( « J ” + (w J ”- ‘]-[(M ,)”^’ + 2 («,)" + ( 2. ,)”-']}

2 C r 7 shi^[(M g)"+(m J” ‘] + 2 C J r ^ s in 2̂?[(w,)” +(«/)" ’]
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+ ( g " , 4 A ( s i n + 2(a,)” + (u,)""']). (3.60)

Dropping the positive values in the third, fourth, fifth, and sixth terms on the right-hand 

side o f Equation (3.60) yields

2 c J | r V ^ [ ( M j " ^ ’ + ( u , ) " ] '  + 2 c J | r V ^ [ ( u / ) " ^ '  +(W/)”]

< 2 c A r ^ s in (p [ { u ^ f  + { u ^ f  ']  + 2C ,\ry jsm (p{{uif + { u i f  ’]

+ { g \A M  s in ^ [ (u j" " ' + 2 { u J + { u S ~ ' ] ) .n - \  - (3.61)

Evaluating the term {g" , sin^[(Wg)""^' + 2(Wg)" + (Wg)" ‘ ]), we getg r ' + 2 (Ug)"+(Ug)”- ’-

{ g \ r ^ s i n ( p [ { u , r '+ 2 { u , r + { u , r ' ] ) .X«+1

V , - l  N g  V ^ - 1

^ r A 9 A < p 2 ^ 2 j 2 ^  g^^ -r̂  sin^J(Ug)^.^ + 2 («g)yvt + K V  1

,•=1 j= \ k=\

N ^ - \  N g  A 'y -1

■ A r A O A c p ^  2  S  Sljk -r! ^^^(Pkli^ehk +i%)ijk]
/=i y=i A=i

«+ l n

+Ar E Z I  4 it-'i-^sin^J(Wg)p+(Mg)^.^ ]
,■=1 j= \ k=\

N ^ - \  N g  V p - 1  _________  _________

= Ar AO A(p I E E (  i;. V s i i i ^ g p ) V sin%  [(«e)^I + {u,) p ]
/=! y=i ^=1

Ai,.-] Af̂  A'p-1     ^
-l-Ar A^ A^ Z E E (

/=1 y=l yt=l

By Cauchy-Schwartz’s inequality, we have

2 t e " ,  s in  < A (u ,r '  +  2<>-.)" +  1).
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Nr-\ Ne N^-\ _____  _____
-  Ar z s i ; (  Vi ^sm(Pkg1jk) -n T s i i T ^ [(u^ ) l l  + (u^) ]

,=i j=] k=\

Nr-\ Ne A'p-l _____  _____
+ ArA0Aq) n ^ J ^ ^ g i j k ) - r i  V s i n ^ J K ) - v t  ]

M 7=1 A=1

+ - | | r 7 s in ^ g ” || + f | | r 7 s in ^ [(M j” + (U gf ’] 
e " " "

(3.62)

C
where £ >  0. Choosing f  = - ^  and then substituting Equation (3.62) into Equation 

(3.61), we obtain

2 C r v ^ K w , ) ”-*-’ + (u ,)" ]  '  + 2 Q  | | r V ^ [ ( U / ) '’+’ + (« /)”]

< 2 c J |r ^ /s in ^ [ (M g )" + (W g )” ’ ] + 2 Q  r^sin^p[(M;)" + (w /)"  ‘ ]

+CgAt r /̂sin [̂(Wg)''■ ‘̂ +(Wg)"] +QAt r^sin^0[(wj” + {u j '  ']

8Ani I-.—  „|K 
+  rysin^^g

C.
(3.63)

Finally, we have

(2 Q - C ,A 0 l | r V ^ [ ( w . r '  + (« e )" ] '  + 2 C j |r V ^ [ ( M / ) '’-̂ ' + (« ,)”]

< (2C, + QAO l l r V ^ [ ( m ,)«  + (m,)”-’ ] '  + 2C, \ \ r ^ ^ [ ( u i  f  + (Ui)" '' ]

8 At

C
^yjsincpg" (3.64)

Denoting
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F{n) = 1C, + ( u j ] '  + 2Q  | | r V ^ [ ( W / ) ”"’ + (m,)"] (3.65)

and
8

C.
(3.66)

Equation (3.64) can be written as follows:

(1 -  At)F(n)  < (1 + At)F(n  -1 )  + At <!)(«). (3.67)

Thus, we have 

F(n)

(1 + At) , At . , .+ _ — ^ O ( n )
(1 -A t) (1 -A t)

< (1 + At)
(1 -A t)

(1 + At) At - .
 ̂ ■ F{n-2) + - — 7 -7 0 ( « - l )

(1 -A t) (1 -A t)
+  0 (n)

(1 -A t)

< ^1 + A tV  f  At
V1 -  At y

F(0) +
vl Aty

1 +
^ l  + A t^  f \  + At'

vl At y
+

vl At y

1 + At 

1 -A t

N/l-l
max 0 ( k )
0<,k<n

< ^ l  + A t X  f  At
v l At y

F(0) +
V1 — At y

0  + A t^”
V l - A t y

^ 1 + A t  ̂
V 1 — At y

max 0 (A:)
0<k<n

< X  + At^"
V 1 -  A t  y

F ( 0 ) - - 1 -

" 1  + A t^”
V 1 — At y

max 0 (A:)
0<k<n

< 1 + At
V l - A t y

F(0)-
1 + At 

V 1 — At y
max 0 (A) -  — max 0 (A:)
0<k<n 2  0<k<n
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< F(0)-
1 + Â

V1 — A  ̂y
max 0 (k)
0<k<n

<
v l - A O

F ( 0 ) + max 0 (A:) .
0< /t< n

(3.68)

Now using the following results: (1 + £)" <e"‘̂ , s > 0  and (1 - f )  ’ < ,  0<£■ < —, we
1

obtain

F ( 0 ) + max 0 (A:)
0<k<n

<e,3nAt F (0 ) + max 0(A:)
0<k<n

<e 3(q F (0 ) + max O (^)
0<kin

(3.69)

when At < ^ .  From Equation (3.58), we obtain that F (0 ) = 0 , hence,

F{n) < max 0(A :),
Q<k<n

(3.70)

which completes the proof.
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CHAPTER 4

NUMERICAL ALGORITHM

4.1 Linear Systems

The finite difference scheme defined in Chapter 3 is given by

(r.)i,-, - ( r j i , - .  [ { r j " , ] } + f ,  [w , [ ( f .) '- ,])
2 At (sin^^)

+ F, {IF,[(r.)”,  ]} -  G . IF,KF,);. -  ( F , ]

+ (4.1)

Here, = iAr and (Pĵ  = A:A^. The initial and boundary conditions are:

= 0, v ,( r ,) ;^ = v,(r,)r,, = o; (4.3)

( ^ ) i ; t = ( 7 ; W .  ( ^ ) p = ( t ; w ;  (4 -4 )

=v^(rj”, = 0, =v^(t;)”, ^o; (4.5)

= ( ? ; ) k = ( ^ ) k = ^ -  (4.6)

We expand Equations (4.1) and (4.2) to set up our linear systems:

55
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2M 4r.2 r

+ -
4^. (sin ̂ 4 )

+ 2 ( r , & + ( 2 ; ) ;* ']

+
A 2 ■ <P4^. sin%

« . /T’

G
(2 ; ) p  + 2 f f i ) ; ,  + ( 2 ; ) ?  - [ ( 2 ; ) ; ; '+ 2 (2});*+ ( 2 ; ) ; j '

We now solve for (7])”-̂ ' in Equation (4.8):

W e substitute Equation (4.9) into Equation (4.8), which yields

a
2At An2 r

n , frp \n—\ 
ijk

+

AVj sin^^

G
4

+2(T,);,
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4 - 9 ” (4.7)

+ 2 ( r . ) ”,  + ( r . e '  + 2 (2 ; ) ; .  + ( 2 ;)" j ' (4.8)

(2 ;)m =
2 C ;-G A G 2 Cy + GA/

(4.9)



5 7

G
T

GAt
2C i+ G A t

+-
2Cj — GAt 

2Ci + GAt ijk

r i« (4.10)

Simplifying we obtain

2At Ar,
2 r ( T X ^ + 2 ( T X + ( ^ X

n-l
ijk

+
HrJ (sir, "

(r .© '+ 2(r.)”,+ (r ,)”i'

+ -
4^. sin^^

G Q
4 Q + 2 G A t

(4.11)

When we move all (n+I) time labels to the left-hand side and all lower time labels to the 

right hand side, we obtain

2At
n ( T  p  ( T  t ” '*'’^e\^eJiik . ~) . (̂D\ ê>Uk

Ari (sin^^) 4 -̂ sin^^

4C ;+2G A t

4r;" i r f  (sin (Pt f

+ -
4n sin^^

P , [ 2 ( r . ) »  + (T JijJ  ]  -  °  [ 2 ( r j ; ,  + ( J ; ) S ' - 2 ( z ; ) “,  - 2 ( r , ) 5 ' ;
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2A^

5 8

( 4 .1 2 )

From Equations (4.9) and (4.12), we set up our two linear systems with three time levels

A ^ B f " + c  + D T " + E  f ; ~ ^ + s ' ' , (4 . 1 3 )

which is the equivalent o f  Equation (4.12) and

A' ^  B' + C  f ;  + D' + E' f;" + F '  , (4.14)

which is the equivalent o f Equation (4.9). {A, B, C, D, E, A ’, B \  C', D \  E ’, F ’) are

coefficient matrices for the temperature vectors 7  ̂ and 7). In Equation (4.13), the lower

time labels ( n and n-l)  on the left-hand side are all known as we perform the calculations 

to determine the {ij,k}  - th  term at time label ( n+1) on the right-hand side. Also, all the 

lower spatial labels {i-1, j-1, k-1) at time label ( n+1) are known. Thus, we can set up a

Gauss-Siedel iterative solve to determine (T^)"- '̂ in Equation (4.13). A t this point, all

terms on the right-hand side o f Equation (4.14) will be known, and we can directly

substitute to determine (Tg)”-̂ ’ . To this end, we expand the right-hand side (RHS) o f

Equation (4.12) as

2At
GC, n+1

RH S = ^ { T X k +  ------(^. yiik

4;  ̂ (Ar)
\n+ \
h-\jk

4/;.^(sin(j9j^(A6>)^

4^. sin(pX<P)
sm(p 1

k+ ~

/rp \ n + l    /rp \W+1
G e ) i jk + \  G e ) i j k - sm ̂  ]

k— 
2
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W e introduce the following coefficients for simplicity

afl, = - ^  (4.15)
’ 2At

G Q
a2 = . . (4-16)

4C ;+2G A t

(4-17)

^4 =  (4.18)
4^."(Ar)^

“5 = 7 1 7 — ^ 2 7 7 ^  (4.19)4i;. ( s i n ^ J  (A6»)

«6 = ,  2 • '   -̂T  • 1 (4-20)4^. s in^^(A ^) A+-

ay = 2 - ^ 4 — i- (4.21)
4^. sin^^(A ^)

Thus, we can rewrite the right-hand side o f Equation (4.12) as

n + l
RHS = + ̂ 2 3̂ 4̂ 2̂2j ^6 7̂ ] (7g )//'A

- a 4 ( j ; ) ' 7  - " 5 ( r .) ; : 'u

-«5(j;)"* 'u  . <4 .2 2 )

W e rewrite the left-hand side (LHS) o f  Equation (4.12) in a similar fashion:

LHS = -2 [<22 + <33 + <34 + 2a^ + <3g + ] (T̂ ),"̂

+2a3(r,)"4,,, + 2 a 4 ( r j ;“_,^, +2a5(7;);;.4„

+ 2a3(rj« ._„ + 2 a ,(7 ;) ; ,4 , +2a2(7;);;,_,
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+ [a, - a j - a 3 - fl4 -  2 0 5  - Og " « 7  ]

+«3(^e)”+UA: + ‘̂ 4(^e)”-lyVt +

+ 2 a , { T , y ! j , + 2 a , i T , y i j ^  + S t j , .  (4.23)

From Equations (4.22) and (4.23), we have

[ a i  +  ^ 2  +  <^3 +  <^4 +  2 a 5  +  « g  +  a y  ]  (7"^ ) ”-^’ =  (T ^ )M J k  +  ^ 4  ( ^ e ) m  Jk +  ^5 ( ^ e ) y + l / t

-  2  [a , + Oj + a ,  +  2 0 ;  + a ,  + a ,  ] ( r j  J,

* ' ^ a , ( T J U J ^ + 2 a ^ ( T , ) U J k + 2 a i ( T , ) ' • J , u  

+ 2 f 5 ( T e ) ; - u  +2<i6(j;)”».,+2<i7(?;);„-,

+ [a, -  a , -  a , -  8 4  -  2a j -  Bj -  a , ] ( r ,  ) j j '

+ “ A T e ) ' ! : U + ‘‘> ( T X U

+«5(j;)r-i»+“6(?;)s:i+<17(2;);.-, 

+ 2 a ,( j ; ) , ; ,+ 2 a ,(7 ;) ,5 '+ S ; , .  (4.24)

Rewriting Equations (4.24) and (4.8) in matrix form, we obtain

A j n + ^ = H \  (4.25)

7 ;"+' = K " , (4.26)
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where H ’' is the right-hand side o f  Equation (4.24) and is the right-hand side o f 

Equation (4.8). Equation (4.25) is solved with a Gauss-Seidel iterative solver and 

Equation (4.24) is solved by substitution.

4.2 Numerical Algorithm

A Fortran-77 program implementing the numerical method is attached in the 

appendix. The algorithm is as follows:

Step 1 Define constants, variables and data structures.

Step 2 Set tolerance (TOE) and maximum number o f iterations ( ) .

Step 2 Set up the initial conditions, Equations (4.3)-(4.6).

Step 3 Calculate coefficients for the linear system. Equations (4.15)-(4.21).

Step 4 Calculate the value for the Heat source:

(a) Symmetric heat source {0 < r  < L ,O < 0  < I n ,  0 < (p < n )

n
(b) Heat source on a hemisphere {Q <r < L ,Q < 9  < I n ,  0 < ^  < —)

(c) Heat source on a spot {Q < r < L ,0 < 9  < I n ,  0 < ^  < ^ ) .

Step 5 Calculate the left-hand side o f  linear system. Equation (4.25).

Step 6 Set count = 1.

Step 7 While ( count < Nf^^x) steps 8-11.

Step 8 Solve for all (T J ^  .

Step 9 if  m ax |(7 ;)”,"’ - ( r j ”, |< r o z , t h e n s t e p l 3 .

Step 10 Set count = count + 1 .
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«+iStep 11 For all i,j, k  set 

Step 12 M aximum number o f iterations reached, stop 

Step 13 Solve for all .

Step 14 Print results to file:

(a) Upper surface Temperature

(b) Cross-section

(c) Temperature along r-axis.
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CHAPTER 5

NUMERICAL EXAMPLES

5.1 Description

We will apply our numerical method to investigate the temperature distribution in a 

gold sphere subjected to an ultra-short laser pulse heating. The radius (Z) o f  the sphere 

isO .l^m  . The thermal properties o f  gold are shown in Table 5.1.

Table 5.1 Thermal properties o f  gold [Tzou 1997]

Parameters Values

Q 2 .1 x 1 0 ''J/m^ K

Q 2.5xlO^J/m ^ K

K 315W /m K

G 2.6x10'^ W/m^ K

The initial conditions are

Tg (r, e, (p, 0) = {r, 6», 0) = Tg, (5.1)

where Ta = 300 K ,

^ { r , e , ( p , 0 )  = ^ { r , e , c p , 0 )  = Q. 
ot ot

(5.2)

63
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The boundary conditions are

^ { L , e , ( p , t ) = - ^ { L , e , ( p j ) ^ Q ,  
or or

T^{r,e,(p,t) = T^{r,9 + 2n,(p,t), T,{r,6,(p,t) = T,{r,6+ 2n:,(p,t),

^ np ^ 'jp
^ ( r , e , 0 , t )  = ^ { r , e , 7 r , t ) .  
o(p o(p

(5.3)

(5.4)

(5.5)

The scheme is applied for each case with three different mesh sizes, 50x20x20, 

100x20x20, and 200x20x20 grid points in a (r, 6*, ̂ o) spherical coordinates system. The 

time increment (At) is 0.005 ps.

5.2 Symmetric Heat Source

5.2.1 Heat Source

Figure 5.1 Gold sphere subjected to a symmetric ultra-short pulse laser irradiation
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The heat source is chosen to be

Q{r,t) = Q.9AJ
\ - R

L -r
- 2.11

(5.6)

where J  is the laser fluence, L  is the radius o f the sphere, d  is the penetration depth o f 

laser irradiation, R  is the radiative reflectivity o f  the sample to the laser beam, and the

full-width-at-half-maximum pulse duration.

Table 5.2 Heat source parameters [Tzou 1997]

Parameters Values

J 13.4 J/m^

100/5 (1 /5 =  10”'^5 )

5 15.3 nm (1 )

R 0.93

5.2.2 Results

Electron gas temperature. Figure 5.2 shows the normalized electron gas temperature

change
AT.

on the surface o f  the gold sphere. This temperature distribution is

divided in three time intervals. In the first time interval, 0-0.25 ps,  we have a very fast 

rise o f  the electron gas temperature on the surface, up to several hundred 

degrees (ATg)rngx = 9 1 0 K , due to the initial excitation o f the laser pulse. M ost o f  the 

supplied energy is being transferred to the inner regions o f  the sphere thus raising the 

temperature in those areas. In the second time interval, which lasts from about 0.26 ps  to
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1.8 ps, thermal equilibrium is quiekly reached within the electron gas and then the 

electron gas temperature starts to drop quickly. This is due to the fact that during this 

time period, the energy supplied is heating the metal lattice through lattice-electron 

coupling. In the final time domain, 1.8 ps  and up, the electron gas temperature is uniform 

as thermal equilibrium with the metal lattice is approaching. W e see that the plot is very 

similar to the one obtained by [Tzou 1997] as seen in Figure 2.3. Additionally, the mesh 

size’s impact on the temperature profile is insignificant which implies numerical stability.

Figures 5.3-5.7 show the contour plots o f  the electron gas temperatures along the rep 

cross-section { 0 < r < L ,  0<(p <7u) at times t=0.2 ps, 0.25 ps, 0.5 ps, 1.0 ps, and 2.0 ps, 

respectively. In Figure 5.3, t=0.2 ps, we are in the first phase o f  the electronic excitation. 

The temperature difference is very large between the outer layer and the inner part o f the 

sphere, (A T J  «400K , and the outer temperature has still not reached its maximum o f 

about 1200K. At t=0.25 ps, as shown in Figure 5.4. The temperature difference is still 

the same between the outer layer and the inner parts, (ATg) »400K , but at this point the 

maximum temperature o f  1200K is almost reached, signifying the end o f  the first phase. 

Figure 5.5 shows that at t=0.5 ps, thermal equilibrium has occurred within the electron 

gas around 966K, thus signaling the beginning o f  the second phase. Heat transfer to the 

metal lattice is occurring through lattice-electron coupling. In Figure 5.6, which describes 

t=1.0 ps, we see the effect o f  the lattice-electron coupling as the electron gas temperature 

has dropped by 300K in 0.5 p s  to around 660K. Finally, in Figure 5.7, we are in the third 

phase, t=2.0 ps. The effect o f the coupling is slowing down. The electron gas temperature 

has dropped by only 260K in 1 ps  stabilizing around 41 OK as the process is headed 

toward thermal equilibrium between the electron gas temperature and the metal lattice
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temperature. Figure 5.8 describes the electron gas temperature along the radial axis, r. 

W e see that at t=Q2 ps  and t=0.25 p s  the electron gas temperature is rising to its 

maximum value near the surface while the central regions are lagging a few hundred 

degrees behind. It should also be noted that the exponential decay along the radial axis 

assumed in Equation (5.6) holds very well at this stage. At t=0.5 ps,  the thermal 

equilibrium is reached within the electron gas and the temperature has started its 

downward shift which is continued at t= 1 .0 p s  and t= 2 .0 ps.

  50x20x20
  100x20x20
  200x20x20

0.9

0>

0>
H  0.4  
<

0.3

1.25 1.750.750.25
Time (ps)

Figure 5.2 Normalized electron gas temperature change plotted against time.
(Symmetric heat source)
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Figure 5.3 Contour plot o f  electron gas temperature along the r(p cross-section at
t=0.2 ps. (Symmetric heat source)
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Figure 5.4 Contour plot o f  electron gas temperature along the rep cross-section at
t=0.25 ps. (Symmetric heat source)
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Figure 5.5 Contour plot o f  electron gas temperature along the r<p cross-section at
(=0.5 ps. (Symmetric heat source)
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Figure 5.6 Contour plot o f  electron gas temperature along the r(p cross-section at
(=1.0 ps. (Symmetric heat source)
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Figure 5.7 Contour plot o f  electron gas temperature along the rg) eross-section at
t= 2 .0 ps. (Sjnnmetric heat source)
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Figure 5.8 Electron gas temperature along the radial axis r. (Symmetric heat source)
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Lattice Tem perature. Figure 5.9 shows the normalized lattice temperature change 

on the surface o f  the gold sphere. This temperature distribution is divided inat;

(at;)„,.

three time intervals. In the first time interval, 0-0.25 ps, we have no activities at all. All 

the supplied energy is being transferred to the electron gas, no coupling is taking place at 

this time, and consequently the metal lattice temperature is almost unchanged. In the 

second time interval, which lasts from about 0.26 p s  to 1.8 ps, the metal lattice 

temperature starts to rise quickly as the electron-lattice coupling kicks in thus raising the 

temperature o f  the lattice. In the final time domain, 1.8 p s  and up, the lattice temperature 

is leveling o ff as thermal equilibrium with the electron gas is approaching. We see that 

this plot is completely different from the one obtained by [Tzou 1997] as seen in Figure 

2.3. Also, the mesh size’s impact on the temperature profile is insignificant which implies 

numerical stability.

Figures 5.10-5.14 show the contour plots o f the lattice temperatures along the r<p 

cross-section ( 0 < r < L ,  0< g)<7v) at times t= 0.2ps, 0 .25ps, 0 .5 ps, 1 .0ps, and 2 .0 ps, 

respectively. In Figure 5.10, t=0.2 ps, we are in the first phase o f  the electronic 

excitation. All the energy is being used by the electron gas and no coupling is occurring 

yet. The temperature difference is insignificant between the outer layer and the inner part 

o f the sphere (A7[) »0K . At i=0.25 ps, as shown in Figure 5.11. The temperature

difference is still the same between the outer layer and the inner parts, (AT;) «0K , but at 

this point the electron gas temperature has reached its maximum signifying the end o f the 

first phase. Figure 5.12 shows that at t=0.5 ps, since thermal equilibrium has occurred 

within the electron gas, the coupling is about to start. The temperature is starting to rise
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almost uniformly across the sphere. In Figure 5.13, which describes t=1.0 ps, we see the 

effect o f  the lattice-electron coupling as the lattice temperature rises uniform ly by 3K in 

0.5 ps  to around 306K. Finally, in Figure 5.14, we are in the third phase, t=2.0 ps. The 

effect o f  the coupling is slowing down; the lattice temperature continues a slower rise 

toward thermal equilibrium between the electron gas temperature and the metal lattice 

temperature. Figure 5.15 describes the metal lattice temperature along the radial axis, r. 

W e see that at t=0.2 p s  and t=0.25 p s  the lattice temperature is uniformly unchanged 

although it is showing a slight spike around the surface. It should also be noted that the 

exponential decay along the radial axis assumed in Equation (5.6) is being slightly 

transferred to the metal lattice as well. At t=0.5 ps, the thermal equilibrium is reached 

within the electron gas and the metal lattice temperature has started its upward shift, 

which is continued at t=1.0 p s  and t=2.0 ps. As the lattice moves toward equilibrium 

with the electron gas, the exponential decay is being affirmed in a more pronounced way.
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Figure 5.9 Normalized metal lattice temperature change plotted against time.
(Symmetric heat source)
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Figure 5.10 Contour plot o f  the metal lattice temperature along the rep cross-section at
i=0.2 ps. (Symmetric heat source)
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Figure 5.11 Contour plot o f  the metal lattice temperature along the rep cross-section at
t=0.25 ps. (Symmetric heat source)
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Figure 5.12 Contour plot o f  the metal lattice temperature along the r(p cross-section at
t=0.5 ps. (Symmetric heat source)
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Figure 5.13 Contour plot o f  the metal lattice temperature along the rep cross-section at
t=1.0 ps. (Symmetric heat source)
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Figure 5.14 Contour plot o f  the metal lattice temperature along the rq> cross-section at
t= 2 .0 ps. (Symmetric heat source)
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Figure 5.15 M etal lattice temperature along the radial axis r. (Symmetric heat source)
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5.3 Heat Source Applied to a Hemisphere

5.3.1 Heat Source

Figure 5.16 Gold hemisphere subjected to a unidirectional ultra-short pulse laser
irradiation

The heat source is chosen to be

Q{r,(p,t) = <d.9AJ
\ - R

L -r
■2.77

t-2t„

V ‘P COS^, (5.7)

where J  is the laser fluence, L  is the radius o f  the sphere, d  is the penetration depth o f 

laser irradiation, R  is the radiative reflectivity o f  the sample to the laser beam, the full-

width-at-half-maximum pulse duration, cp is the angle between OP, and the positive z-

n
axis, ranging from 0 to y .
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5.3.2 Results

Electron gas temperature. Figure 5.17 shows the normalized electron gas temperature

change on the surface o f  the gold sphere. This temperature distribution is

divided in three time intervals. In the first time interval, 0-0.25 ps, we have a very fast 

rise o f  the electron gas temperature on the surface, up to several hundred 

degrees = 8 4 3 K , due to the initial excitation o f  the laser pulse. In the second

time interval, which lasts from about 0.26 p s  to 1.5 ps, the electron gas temperature drops 

quickly as most o f  the supplied energy is being transferred to the inner part o f  the sphere 

thus raising the temperature in those areas. In the final time domain, 1.5 p s  and up, the 

electron gas temperature is slowly moving towards thermal equilibrium. W e see that the 

plot is very similar to the one obtained in Figure 5.2, except that it is taking longer to 

reaeh thermal equilibrium within the electron gas temperature. Additionally, the mesh 

size’s impact on the temperature profile is insignificant which implies numerical stability.

Figures 5.18-5.22 show the contour plots o f  the electron gas temperatures along the 

r(p cross-section ( 0 < r < Z ,  0<<p < n )  oi times t= 0 2  ps, 0.25 ps, 0.5 ps, 1.0 ps, and 2.0 

ps, respectively. In Figure 5.18, t=0.2 ps, we are in the first phase o f  the electronic 

excitation. The temperature difference is very large between the outer layer and the inner 

part o f  the sphere, (ATg) »600K , and the outer temperature has still not reached its 

maximum o f about 1200K. At t=0.25 ps, as shown in Figure 5.19. The temperature 

difference is the largest between the outer layer and the inner parts, (ATg) «870K , but at

this point the maximum temperature o f  1200K is almost reached signifying the end o f  the 

first phase. Figures 5.20 and 5.21 show that at t=0.5 p s  and t=1.0 ps, we are closing in on
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thermal equilibrium within the electron gas as the difference in temperature falls from 

(A7^) «870K  in Figure 5.19 to around 400K in Figure 5.20 and to less than lOOK in

Figure 5.21 thus signaling the end o f the second phase. Finally, in Figure 5.22, we are in 

the third phase, t=2.0 ps. The electron gas temperature has almost reached thermal 

equilibrium, (Ar^) »5K . Figure 5.23 describes the electron gas temperature along the 

radial axis, r. We see that at t=0.2 p s  and t=0.25 ps, the electron gas temperature is rising 

to its maximum value near the surface while the central regions lag a few hundred 

degrees behind. At the other time indices, we see the transfer o f  energy from the top to 

the bottom o f  the microsphere.
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Figure 5.17 Normalized electron gas temperature change plotted against time. 
(Heat source applied to a hemisphere)
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Figure 5.18 Contour plot o f  the electron gas temperature along the rep cross-section at 
t=0.2 ps. (Heat source applied to a hemisphere)
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Figure 5.19 Contour plot o f the electron gas temperature along the rep cross-section at 
t=0.25 ps. (Heat source applied to a hemisphere)
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Figure 5.20 Contour plot o f the electron gas temperature along the rep cross-section at 
t=0.5 ps. (Heat source applied to a hemisphere)
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Figure 5.21 Contour plot o f  the electron gas temperature along the rep cross-section at 
t=1.0 ps. (Heat souree applied to a hemisphere)

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



8 2

0.0001 

7. JE-O J 

JE-O J 

2. JE-O J

1  ° 
u

-2 .JE-OJ 

-JE-OJ 

-7 .JE-OJ

I

Temp
1200
1140
1030
1020
seo
900
840
780
720
6S0
600
540
480
420
360
300

-0.0001
-U.OOOl -JE-OJ

I I I I I I I I 
JE-OJ 0.0001

Figure 5.22 Contour plot o f  the electron gas temperature along the r<p cross-section at 
t=2.0 ps. (Heat source applied to a hemisphere)
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Figure 5.23 Electron gas temperature along the radial axis r. 
(Heat source applied to a hemisphere)
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Lattice Tem perature. Figure 5.24 shows the normalized lattice temperature change 

on the surface o f  the gold sphere. This temperature distribution is divided in
at;

(at; ) ,

three time intervals. In the first time interval, 0-0.25 p s , we have no activities at all. All 

the supplied energy is being transferred to the electron gas, no coupling is taking place at 

this time, and consequently the metal lattice temperature is almost unchanged. In the 

second time interval, which lasts from about 0.26 p s  to 1.5 ps, the metal lattice 

temperature starts to rise slowly as the electron-lattice coupling kicks in, thus raising the 

temperature o f  the lattice. This plot is very similar to the one obtained in Figure 5.9 

except that it is a lot steeper in the early stages due to the fact that at this point thermal 

equilibrium has not been reached within the electron gas yet. In the final time domain, 

1.5 ps  and up, the lattice temperature is leveling o ff as thermal equilibrium within the 

electron gas is approaching. Also the mesh size’s impact on the temperature profile is 

insignificant which implies numerical stability.

Figures 5.25-5.29 show the contour plots o f  the lattice temperatures along the r(p 

cross-section ( 0 < r  < L , 0 < ^ < ; r ) a t  times t=0.2 ps, 0.25 ps, 0.5 ps, 1.0 p s  and 2.0 ps, 

respectively. They show a progressive heating o f the metal lattice as the temperature is 

being transferred from the inner surface towards the bottom o f  the sphere. Figure 5.30 

describes the metal lattice temperature along the radial axis, r. W e see the temperature 

slowly rising as there is a clear difference between the upper surface and the colder 

regions at the bottom o f the sphere. This plot is very different from the obtained in Figure 

5.15 as it is no longer a uniform temperature distribution.
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Figure 5.24 Normalized metal lattice temperature change plotted against time. 
(Heat source applied to a hemisphere)
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Figure 5.25 Contour plot o f  the metal lattice temperature along the rep cross-section at 
r=0.2 ps. (Heat source applied to a hemisphere)
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Figure 5.26 Contour plot o f  the metal lattice temperature along the r<p cross-section at 
t=0.25 ps. (Heat source applied to a hemisphere)
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Figure 5.27 Contour plot o f  the metal lattice temperature along the rip cross-section at 
t=0.5 ps. (Heat source applied to a hemisphere)
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Figure 5.28 Contour plot o f  the metal lattice temperature along the rep cross-section at 
t=1.0 ps. (Heat source applied to a hemisphere)
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Figure 5.29 Contour plot o f the metal lattice temperature along the r(p cross-section at 
t= 2 .0 ps. (Heat source applied to a hemisphere)
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Figure 5.30 Metal lattice temperature along the radial axis r. 
(Heat source applied to a hemisphere)
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5.4 Heat Source Applied to a Spot

5.4.1 Heat Source

88

Figure 5.31 Gold sphere subjected to a unidirectional ultra-short pulse laser irradiation.

Angle o f  irradiation (0 < ^  < —)

The heat source is ehosen to be equation (5.7):

Q(r,<p,t)=^0.94J
l - R
tp5

L-r
-2 .7 7

t-2 t .

coscp, (5.7)

where J  is the laser fluence, L  is the radius o f the sphere, 3  is the penetration depth o f 

laser irradiation, R is the radiative reflectivity o f the sample to the laser beam, tp the full-

width-at-half-maximum pulse duration, (p is the angle between OP, and the positive z-

7 t
axis, ranging from 0 to — .
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5.4.2 Results

Electron gas temperature. Figure 5.32 shows the normalized electron gas temperature

change at; on the surface o f  the gold sphere. This temperature distribution is
_(at;)„ ,

divided in three time intervals. In the first time interval, 0-0.25 ps, we have a very fast 

rise o f  the electron gas temperature on the surface, up to several hundred 

degrees ( a t ; = 8 2 2 K ,  due to the initial excitation o f  the laser pulse. In the second

time interval, which lasts from about 0.26 p s  to 1.3 ps, the electron gas temperature drops 

quickly as most o f  the supplied energy is being transferred to the inner part o f  the sphere 

thus raising the temperature in those areas. In the final time domain, 1.3 ps  and up, the 

electron gas temperature is slowly moving towards thermal equilibrium. We see that the 

plot is very similar to the one obtained in Figure 5.17, except that the temperature drop is 

more accelerated. Additionally, the mesh size’s impact on the temperature profile is 

insignificant which implies numerical stability.

Figures 5.33-5.37 show the contour plots o f  the electron gas temperatures along the 

r(p cross-section {Q < r < L, 0 < ^ < ; r ) a t  times i= 0 .2 ps, 0 .25ps, 0 .5 ps, 1 .0ps, and 2.0 

ps, respectively. In Figure 5.33, i=0.2 ps, we are in the first phase o f  the electronic 

excitation. The temperature difference is very large between the outer layer and the inner 

part o f  the sphere, (AT;) »600K , and the outer temperature has still not reached its 

maximum o f about 1200K. At t=0.25 ps, as shown in Figure 5.34, the temperature 

difference is the largest between the outer layer and the inner parts, (AT;) «850K , but at

this point the maximum temperature o f  1200K is almost reached, signifying the end o f 

the first phase. Figures 5.35 and 5.36 show that at t=0.5 p s  and i= I.O ps, we are closing
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in on thermal equilibrium within the electron gas as the difference in temperature falls 

from (ATg) «850K  in Figure 5.34 to around 320K in Figure 5.35 and to less than 80K in

Figure 5.36, thus signaling the end o f  the second phase. Finally, in Figure 5.37, we are in 

the third phase, t=2.0 ps. The electron gas temperature has almost reached thermal 

equilibrium, (ATg) «3K . Figure 5.38 describes the electron gas temperature along the

radial axis, r. W e see that at t=0.2 p s  and i=0.25 p s  the electron gas temperature is rising 

to its maximum value near the surface while the central regions lag a few hundred 

degrees behind. At the other time indices, we see the transfer o f  energy from the top to 

the bottom o f the microsphere.

30x20x20
100x20x20
200x20x20

0.9

0.5

Hi

0.3

1.751.250.25 0.75

Time (ps)

Figure 5.32 Normalized electron gas temperature change plotted against time.
(Heat source applied to a spot)
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Figure 5.33 Contour plot o f the electron gas temperature along the rep cross-section at
(=0.2 ps. (Heat source applied to a spot)
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Figure 5.34 Contour plot o f  the electron gas temperature along the rq> eross-section at
(=0.25 ps. (Heat source applied to a spot)
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Figure 5.35 Contour plot o f  the electron gas temperature along the rep cross-section at
(=0.5 ps. (Heat source applied to a spot)
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Figure 5.36 Contour plot o f the electron gas temperature along the r<p cross-section at
(=1.0 ps. (Heat source applied to a spot)
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Figure 5.37 Contour plot o f the electron gas temperature along the r(p cross-section at
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Figure 5.38 Electron gas temperature along the radial axis r. 
(Heat source applied to a spot)
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Lattice Tem perature. Figure 5.39 shows the normalized lattice temperature change 

on the surface o f  the gold sphere. This temperature distribution is divided in
at;

(at; ) ,

three time intervals. In the first time interval, 0-0.25 ps, we have no activities at all. All 

the supplied energy is being transferred to the electron gas, no coupling is taking place at 

this time, and consequently the metal lattice temperature is almost unchanged. In the 

second time interval, which lasts from about 0.26 p s  to 1.3 ps, the metal lattice 

temperature starts to rise slowly as the electron-lattice coupling kicks in, thus raising the 

temperature o f  the lattice. This plot is very similar to the one obtained in Figure 5.24 

except that it is a steeper in the early stages due to the fact that at this point thermal 

equilibrium has not been reached within the electron gas yet. In the final time domain,

1.3 ps  and up, the lattice temperature is leveling o ff as thermal equilibrium within the 

electron gas is approaching. Also, the mesh size’s impact on the temperature profile is 

insignificant which implies numerical stability.

Figures 5.40-5.44 show the contour plots o f  the lattice temperatures along the rep 

cross-section ( 0 < r < L ,  0<<p <7t ) at times t= 0.2ps, 0 .25ps, 0.5 ps, 1 .0p s  and 2 .0 ps, 

respectively. They show a progressive heating o f  the metal lattice as the temperature is 

being transferred from the inner surface towards the bottom o f  the sphere. Figure 5.45 

describes the metal lattice temperature along the radial axis, r  W e see the temperature 

slowly rising as there is a clear difference between the upper surface and the colder 

regions at the bottom o f the sphere. This plot is very similar to the one obtained in Figure 

5.30 with the difference that the temperature rise is slower.
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Figure 5.39 Normalized metal lattice temperature change plotted against time.
(Heat source applied to a spot)
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Figure 5.40 Contour plot o f the metal lattice temperature along the rep cross-section at
t=0.2 ps. (Heat source applied to a spot)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



9 6

0.0001

7.5E-05

JE-OJ

2 .JE-O J

I

I
IKm-2 .JE-OJ 

-JE-OJ 

-7 .JE-OJ

Teit5>
307.5 
307
306.5 
306
305.5 
305
304.5
304
303.5
305
302.5 
302
301.5 
301
300.5 
3CD

I ..........................
-JE-OJ 0

r (mm)

JE-OJ 0.0001

Figure 5.41 Contour plot o f  the metal lattice temperature along the r<p cross-section at
/=0.25 ps. (Heat source applied to a spot)
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Figure 5.42 Contour plot o f  the metal lattice temperature along the r<p cross-section at
t=0.5 ps. (Heat source applied to a spot)
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Figure 5.43 Contour plot o f  the metal lattice temperature along the cross-section at
t=1.0 ps. (Heat source applied to a spot)
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Figure 5.44 Contour plot o f the metal lattice temperature along the r<p cross-section at
t=2.0 ps. (Heat source applied to a spot)
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CHAPTER 6 

CONCLUSION

In this dissertation, we have investigated a micro sphere subjected to an ultrashort 

laser pulse. W hile continuous and long pulses create a risk o f  melting in the 

microstructure under fabrication, ultra-short pulse lasers offer an excellent alternative to 

optimize the thermal process and reduce the risk o f  thermal damage. The parabolic two- 

step model was used to model the transport phenomenon as it offered a set o f  equations 

that is more numerically efficient than the traditional single energy equation o f  

microscale heat transfer. W e established the well-posedness o f  the problem and proposed 

a numerical method to solve the governing equations. The scheme was shown to be 

unconditionally stable with respect to the source term. Numerical applications were used 

to validate the results.

Future studies will consist o f extending our numerical method to solve the parabolic 

two-step equations in a multi-layered microsphere, and to develop a domain 

decomposition method to accelerate the convergence o f  the scheme. Additionally, higher 

order methods m ay be developed based on our method, and nonlinear thermal 

coefficients will be considered.

99
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APPENDIX 

SOURCE CODE OF THE NUMERICAL 

METHOD
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jjC jjC )|€ ^  ^  ^  ^  ^  ^  ^  ^  ^  ^  j|C 5|C j|C jjc d{( SjC 5|C ^C ^  5^ jjC ^  5j{ ^  SjC 5|€ 3|C 5^ jJC jjC ijC ^  ^  ^  ^  ^C ^  ^  j|€ SjC ^  ^  5|C ^  ^  3|C jJC ^  ^  J|C j|€ 5j€ ^  JjC JjC J|€ ^  ^  ^  ^  ^  ^  ^  ^

c Title: Parabolic two-step modeling o f  heat transfer in a microsphere
c
c Time units are in picosecond and distance units are in millimeter 
c Temperatures are in Kelvin
c L=0.1 micrometer = 1 OOnm radius
c dx=dr in spherical dy is the dtheta dz is the dphi
c
c

jjC ^  SjC ^  ^  ^  JjC j|c  jjC j|C ^  ^  ^  ^  JjC ^  ^  S|€ jjc SjC jjC jjC ^  5|C jjC ^  ^  ^  ^  3^  ^  «JC ^  ^  ^  ^  3^ 3jC 3|C ^  ^  ^  ^  3jC 3js 3j€ ^  j|€ ^  3jC ^  5|C 3jc ^  ^  3|C 3|C 5|C 3|c 3|C 3|% 3|< 3|C

c Declaration o f  variables and data structures 
c
c t_variable refers to the electron gas and tl_variable to the lattice temperature 

dimension te0(0:201,0:51,0:51),te l(0 :201,0:51,0:51) 
dimension tl0(0:201,0:51,0:51),tll(0:201,0:51,0:51) 
dimension Q(0:201),tguess(0:201,0:51,0:51), tsurface(2:400) 
dimension tl2(0:201,0:51,0:5 l),te2(0:201,0:51,0:51) 
dimension tcenter(2:400),tlcenter(2:400),tlsurface(2:400) 
double precision Q,Ce,Cl,Ke,G,tp,d,R,Jn,dz,dx,dy,dt,temp7 
double precision te0,tel,te2,pi,temp6,temp3,temp4,temp5 
double precision tguess,tlO,tll,tl2,denl,L,templ,temp2,temp8 
double precision al,a2,a3,a4,a5,a6,a7,a8,coef,temp9,tsurface 
double precision tcenter,tlcenter,tlsurface

c
^  ^  ^  ^  ^  3|C 3|C ^  3^ ^  5|c 3^  3|C 3jS ^  3j^ ^  ^  3|C ^  ^  3jS 3j€ ^  ^  3|C 3|C 3|C 3|C 3jC 3j€ 3|C ^  SjC ^  ^  3^  3|C ^  ^  3jc 3|C 3jC ^  ^  3|c 3|€ ^  ^  3|€ 3jC ^  3jc 3{C ^  ^  3|C 3|C 3^ ^  ^  3)c 3|( 3|( 5^ 3jc 3|c

c Declaration and assignment o f  constants 
c

pi-3.1415926
L-O.OOOl
dz-0.05*pi
dx=0.000001
dy=0.1*pi
dt=0.005
Jn=0.0000134
R-0.93
0=0.000026
d=0.0000153
tp=0.1
Ce=0.000021
Cl=0.0025
Ke=0.000000000000315
a6=0.5*Ce/dt
a7=G*Cl/(2*Cl+G*dt)
a8=0.5*a7

nx=100
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ny=20
nz=20

c A forced Gauss-seidel algorithm was used i.e no maximum number o f  iterations for 
convergence

^  ^  ^  ^  ^  ^  ^  ^  ^  U# ^  ̂  ^  ^  ^  ̂  ^  ^  ^  ^  ̂ 1# ̂  ^  ^  ^  ̂  ̂  ̂  ^  ^  ̂  ^  ^  ̂  ̂  ^  ^  ^  ̂  ̂  ^  ^  ^  ̂  ^  ^  ^  ^r p  Sys S|5 9fi #1% 3fi ^6 wfi 9fi r p  r fi  »p •!% *T* "I*

c Initial condition

do i= l,n x -l
do j= 0 ,ny-l
do k = l,n z -l
tl0(i,j,k)=300.0
tll(i,j,k)=300.0
te0(i,j,k)=300.0
tel(i,j,k)=300.0
enddo
enddo
enddo

c
c
c Time iteration Counter 

nt= l
c
c------------------Begin iteration----------------------------------------------
c
999 d o i= l,n x - l 

do j= 0 ,ny-l 
do k = l,n z -l 
tguess(ij,k )= te l(ij,k ) 
enddo 
enddo 
enddo

c Case 1 ( Symmetric Heat Source)

9 d o i= l,n x -l
Q(i)=0.94*(1.0-R)*Jn*exp(-(L-dx*i)/d-2.77*(nt*dt/tp-2.0)

$ **2.0)/(tp*d)
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p|c sfc d|c d|C d|C )|c d|c ^C d|c 9|c ^C ^C d|c d|c 9|C |̂>

c Case 2 (Hemisphere)

9 if  (k .it. nz/2) then
Q(i,k)=(0.94*(1.0-R)*Jn*exp(-(L-dx*i)/d-2.77*(nt*dt/tp-2.0)

$ **2.0)/(tp*d))*cos(k*dz) 
else
Q(i,k)=0
Endif

djc #|c ^C ){( ?|6 5j6 ^C ^6 ^6 ^C ^C ) |( )|C ^6 )|( Sjc )|C ^6 ^C )|C #(C )|C 5^ djC ^6 9|C )jC )|C S|c ^C 5̂ C ^C

c Case 3 (Spot)

9 if  (k .It. nz/4) then
Q(i,k)=(0.94*(1.0-R)*Jn*exp(-(L-dx*i)/d-2.77*(nt*dt/tp-2.0)

$ **2.0)/(tp*d))*cos(k*dz) 
else
Q(i,k)=G
Endif

denl=ke/(4.0*i*i*dx*dx)
a2=denl*(i-0.5)**2.0
a3=denl*(i+0.5)**2.0

do j= 0 ,ny-l 
do k = l,n z -l
a 1 =denl/(dy * dy * sin(k* dz)* sin(k* dz)) 
a4=(denl*sin((k-0.5)*dz))/(dy*dy*sin(k*dz)) 
a5=(denl* sin((k+0.5) * dz))/(dy* dy* sin(k* dz))

Coef=2*al+a2+a3+a4+a5+a6+a8

if  (i .eq. 1) then
temp 1 =a2 * (2 .0 * te l(lJ  ,k)+teO( 1 ,j ,k))
eoef=coef-a2
else
temp 1 =a2*(te2(i-1 j  ,k)+2. 0*te 1 (i-1J ,k)+teO(i-1 ,j ,k)) 
endif

if  (i .eq. nx-1) then
temp2=a3 *(2. 0* te 1 (nx-1 ,j ,k)+teO(nx-1 ,j ,k))
eoef=coef-a3
else
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temp2=a3 * (tguess(i+1 ,j ,k)+2. 0* te 1 (i+1 j  ,k)+teO(i+1 j  ,k)) 
endif

if  (j .eq. 0) then
tem p3-a l *(tguess(i,ny-1 ,k)+2.0*tel (i,ny-1 ,k)+teO(i,ny-1 ,k)) 
else
temp3=a 1 *(te2(i,j -1 ,k)+2. 0*te 1 (i j  -1 ,k)+teO(i,j -1 ,k)) 
endif

if  (j .eq. ny-1) then
temp4=al*(te2(i,0,k)+2.0*tel(i,0,k)+te0(i,0,k))
else
tem p4= al*(tguess(i,j+ l,k )+ 2 .0* te l(ij+ l,k )+ te0(ij+ l,k ))
endif

if  (k .eq. 1) then
tem p5=a4*(2 .0*tel(i,j,l)+ te0(ij,l))
coef=coef-a4
else
temp5=a4*(te2(i,j ,k-1 )+2.0*te 1 (i j  ,k-1 )+teO(i,j ,k-1)) 
endif

if  (k .eq. nz-1) then
temp6=a5 * (2.0 * te 1 (i,j ,nz-1 )+teO(i,j ,nz-1))
coef=coef-a5
else
temp6=a5 * (tguess(i,j ,k+1 )+2. 0*te 1 (i,j ,k+1 )+teO(i,j ,k+1)) 
endif

temp7=tel(i,j,k)*(4.G*al+2.G*a2+2.G*a3+2.G*a4+2.0*a5+a7)

temp8=teG(iJ,k)*(a6-2.G*al-a2-a3-a4-a5-G.5*a7)

temp 9=a7 * (tl 1 (i ,j ,k)+tlG(i,j ,k))

te2(ij,k)=(templ+tem p2+temp3+temp4+tem p5+temp6-tem p7+temp8 
$ +temp9+Q(i))/coef

enddo
enddo
enddo

c--------------------- End Iteration---------------------------------------------------------
c
c
0
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c Begin error analysis for iteration-
c

er=0.0
do 4 i= l,n x -l 
do 4 j=0,ny-l 
do 4 k = l,n z -l
err=abs(te2(iJ,k)-tguess(ij,k)) 
if(err.le.er)goto 4 
er=err 

4 continue 
if  (er.le.0.0000000l)goto 99 
do i==l,nx-l 
do j= 0 ,ny-l 
do k = l,n z -l 
tguess(ij,k)=te2(i,j,k) 
enddo
enddo 
enddo 
goto 9

-End Error analysis
0
c

c
c------------------- Begin replacement for Lattice Temperature----------------------
c

99 do i= l,n x -l 
do j= 0 ,ny-l 
do k = l,n z -l
tl2(i,j,k)=(G*dt/(2.0*Cl+G*dt))*(te2(i,j,k)+2.0*tel(iJ,k)

$+te0(i,j,k)-2.0*tll(i,j,k))+((2.0*Cl-G*dt)/(2.0*Cl+G*dt))
$ *tlO(ij,k)
enddo
enddo
enddo
nt=nt+l

c End Lattice temperature replacement— dt is incremented-

c
c-------------------------- begin print job-

c surface temperature vs time-
tsurface(nt)=te2(nx-1,10,10) 
tcenter(nt)=te2( 1,10,10) 
tlsurface(nt)-tl2(nx-1,10,10) 
tlcenter(nt)=tl2( 1,10,10)
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c---------------------- dte/dtemax vs depth & cross section plots at specified times-

if  (nt .eq. 40) then
open(unit=6,file='100te_t=0.2ps.txt')
do i= n x -l,l ,- l
print l l , i ,  te2(i,10,10)
enddo
print 11,0, te2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  te2(i,10,10)
enddo
close(6)
open(unit=6,file='100cross_t=0.2ps.txt') 
write (6,14)
W RITE (6,12)
WRITE (6,13) 
do k=0,nz 
do i= l,n x -l 

if  (k .eq. 0) then 
print 10, 0, i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, -l* i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then
print 10, 0, -l* i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,te2(i,0,k)
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elseif (k .It. nz) then
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 50) then
open(unit=6,file='100te_t=0.25ps.txf)
do i= n x -l,l ,- l
print l l , i ,  te2(i,10,10)
enddo
print 11,0, te2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  te2(i,10,10)
enddo
close(6)
open(unit=6,file-'100cross_t=0.25ps.txt') 
write (6,14)
WRITE (6,12)
WRITE (6,13) 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, -l*i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz
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do i= l,n x -l 
i f  (k .eq. 0) then
print 10, 0, -l*i*dx, te2(i,0,k+l) 

elseif (k .It. nz/2) then
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 100) then
open(unit=6,file='100te_t=0.5ps.txt')
do i= n x -l,l ,- l
print l l , i ,  te2(i,10,10)
enddo
print 11,0, te2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  te2(i,10,10)
enddo
close(6)
open(unit=6,file-100cross_t=0.5ps.txf) 
write (6,14)
WRITE (6,12)
WRITE (6,13) 
do k=0,nz 
do i - l ,n x - l  

i f  (k .eq. 0) then 
print 10, 0, i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,te2(i,0,k)
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elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, -l*i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then
print 10, 0, -l*i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 200) then
open(unit=6,file=' 1 OOte_t=lps.txf)
do i= n x -l,l,- l
print l l , i ,  te2(i,10,10)
enddo
print 11,0, te2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  te2(i,10,10)
enddo
close(6)
open(unit=6,file='100cross_t=lps.txf) 
write (6,14)
W RITE (6,12)
WRITE (6,13) 
do k=0,nz 
do i= l,n x -l
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if  (k .eq. 0) then
print 10, 0, i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, -l* i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then
print 10, 0, -l*i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,te2(i,0,k)

elseif (k .It. nz) then 
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

else
print 10, 0, i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 400) then
open(unit=6,file='100te_t=2ps.txf)
do i= n x -l,l ,- l
print l l , i ,  te2(i,10,10)
enddo
print 11 ,0 ,te2(1,10,10) 
do i= l,n x -l
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print ll,-l* i>  te2(i,10,10)
enddo
close(6)
open(unit=6,file=' 100cross_t=2ps.txt') 
write (6,14)
W RITE (6,12)
W RITE (6,13) 
do k=0,nz 
do i= l,n x -l 

if  (k .eq. 0) then 
print 10, 0, i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,te2(i,0,k)

elseif (k .It. nz) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), te2(i,0,k)

else
print 10, 0, -l*i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then
print 10, 0, -l*i*dx, te2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,te2(i,0,k)

elseif (k .It. nz) then
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), te2(i,0,k) 

else
print 10, 0, i*dx, te2(i,0,k-l) 
endif 

enddo 
enddo 
close(6)
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open(unit=6,file='te_surface.txt')
do 1=2,400
print 11 ,i,tsurface(i)
enddo
close(6)
open(unit=6, fi le='te_center. txt')
do 1=2,400
print 11 ,l,tcenter(l)
enddo
close(6)
endif

c -------------------— .........—Now same thing for the TL's.......

If (nt .eq. 40) then
open(unlt=6, file=' 100tl_t=0. 2ps. tx f)
do l= n x -l,l ,- l
print 11,1, tl2(l,10,10)

enddo
print 11,0, tl2( 1,10,10) 
do l= l,n x -l
print 11,-1*1,112(1,10,10)
enddo
close(6)
open(un lt= 6 ,flle-100crosstl_t=0.2ps.txf) 
write (6,14)
W RITE (6,12)
W RITE (6,13) 
do k=0,nz 
do l= l,n x -l 

If (k .eq. 0) then 
print 10, 0, l*dx, tl2(l,0,k+l)

elseif (k .It. nz/2) then
print 10, l*dx*sln(k*dz), l*dx*cos(k*dz), tl2(l,0,k)

elseif (k .eq. nz/2) then 
print 10, l*dx,0,tl2(l,0,k)

elseif (k .It. nz) then 
print 10, l*dx*sln(k*dz), l*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, -l*l*dx, tl2(l,0,k-l) 
endif 

enddo 
enddo
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do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, -l*i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then 
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 50) then
open(unit=6,file-100tl_t=0.25ps.txf)
do i= n x -l,l ,- l
print l l , i ,  tl2(i,10,10)
enddo
print 11,0, tl2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  tl2(i,10,10)
enddo
close(6)
open(un it= 6 ,file-100crosstl_t=0.25ps.txf) 
write (6,14)
WRITE (6,12)
WRITE (6,13) 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,tl2(i,0,k)
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elseif (k .It. nz) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, -l*i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, -l* i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then 
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 100) then
open(unit=6,file=' 100tl_t=0.5ps.txt')
do i= n x -l,l ,- l
print l l , i ,  tl2(i,10,10)

enddo
print 11,0, tl2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  tl2(i,10,10)
enddo
close(6)
open(unit=6,file-100crosstl_t=0.5ps.txt') 
write (6,14)
WRITE (6,12)
W RITE (6,13) 
do k=0,nz
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do i= l,n x -l 
i f  (k .eq. 0) then 
print 10, 0, i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k) 

else
print 10, 0, -l*i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, -l*i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k) 

else
print 10, 0, i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
close(6) 
endif

if  (nt .eq. 200) then
open(unit=6,file='100tl_t=lps.txf)
do i==nx-l,l,-l
print l l , i ,  tl2(i,10,10)
enddo
print 11,0, tl2( 1,10,10)
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do i= l,n x -l
print ll,-l* i>  tl2(i,10,10)
enddo
close(6)
open(unit=6, file=' 1 OOcro sstl_t= 1 ps. txt') 
write (6,14)
WRITE (6,12)
W RITE (6,13) 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k) 

else
print 10, 0, -l*i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, -l* i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then
print 10, -l*i*dx*sin(k*dz) , -l*i*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



11 7

close(6)
endif

if  (nt .eq. 400) then 
open(unit=6,file=' 100tl_t=2ps.txf) 
do i= n x -l,l ,- l  

print l l , i ,  tl2(i,10,10) 
enddo
print 11,0, tl2( 1,10,10) 
do i= l,n x -l
print l l , - l* i ,  tl2(i,10,10)
enddo
close(6)
open(unit=6,file=' 100crosstl_t=2ps.txf) 
write (6,14)
W RITE (6,12)
W RITE (6,13) 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, i*dx,0,tl2(i,0,k)

elseif (k .It. nz) then
print 10, i*dx*sin(k*dz), i*dx*cos(k*dz), tl2(i,0,k) 

else
print 10, 0, -l* i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
do k=0,nz 
do i= l,n x -l 

i f  (k .eq. 0) then 
print 10, 0, -l*i*dx, tl2(i,0,k+l)

elseif (k .It. nz/2) then 
print 10, -l*i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

elseif (k .eq. nz/2) then 
print 10, -l*i*dx,0,tl2(i,0,k)
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elseif (k .It. nz) then 
print 10, -l* i*dx*sin(k*dz), -l*i*dx*cos(k*dz), tl2(i,0,k)

else
print 10, 0, i*dx, tl2(i,0,k-l) 
endif 

enddo 
enddo 
close(6)
open(unit=6,file='tl_surface.txf)
do i=2,400
print 11 ,i,tlsurface(i)
enddo
close(6)
open(unit=6,file='tl_center.txf)
do i=2,400
print 11 ,i,tlcenter(i)
enddo
close(6)
endif

c ------------------------------------------ ----- -----------------------------
10 form at(el2.6,4x,el2.6,4x,fl2 .7)
11 fonnat(2x,I6,2X ,fl2.7)
14 FORMATC Contour plot o f a C rossection ')
12 formate Variables = "X","Y","Temp" ')
13 formate ZONE 1=99, J=42, K=1, F=POINT ’)
c---------------  —end dte/dtemax vs depth at specified times-------------------------- ----

0
c-------------------------- end print jo b ----------- ----------- ------------- ---------- -----------------------
c
c
c— ---------  Check if  last time level has been reached and then replace value for next
iteration
c

if(nt.eq.400)goto 1
do i= l,n x -l
do j= 0 ,ny-l
do k = l,n z-l
teO(i,j,k)=tel(iJ,k)
tel(i,j,k)=te2(i,j,k)
tlO(i,j,k)=tll(i,j,k)
tll(i,j,k )= tl2(ij,k )
enddo

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1 1 9

enddo 
enddo 
goto 999

c------------------ end o f preparation for next iteration-

c
c
c

1 end
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