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ABSTRACT

Melt crystallization is an attractive separation method for the purification of 

organics at a large scale. Because the geometry of the rigid crystal lattice is peculiar to 

the particular substance, most crystallization processes form eutectic systems. The 

kinetics of crystallization limit the rate in which crystal growth can occur without the 

incorporation of undesired impurity. If the rate of heat transfer exceeds the mass transfer 

rate of the impurity, the impurity can solidify, contaminating the product. In practice, one 

would like to specify a crystallization rate and determine the temperature profile of the 

crystallizer wall that would achieve this rate.

In this dissertation we combine analytic and numerical methods for predicting 

solid-layer growth from melt crystallization. First, we predict the wall temperature profile 

over time for achieving solid separation from the melt at a constant rate. Second, we 

predict the rate of crystallization (or solid formation) when the wall temperature is held 

constant at a certain value equal to the lowest temperature that is operationally feasible. 

Third, we predict the temperature distribution in each of the solid and liquid phases. By 

considering a temperature distribution in the solid phase and holding the liquid phase’s 

temperature constant in the radial direction, an analytic model was developed by using 

dimensional analysis. This model was then extended numerically to account for a 

temperature distribution in each of the phases, liquid and solid. Applications of the two 

models were demonstrated with an example involving crystallization of para-

iii
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IV

dichlorobenzene from the ortho-dichlorobenzene and para-dichlorobenzene binary melt. 

Results from both models were analyzed and compared.

Results showed that a lower initial concentration required a higher cooling rate of 

the crystallizer wall in order to maintain the same crystallization rate. Hence, less time 

was needed to reach the wall temperature operation constraint, thus leading to less solid 

layer growth. By comparing the results of the two models, one can conclude that the 

numeric model is preferred, since more crystal growth will occur under the same 

conditions as for the analytic model.
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CHAPTER ONE 

INTRODUCTION

1 ■ 1 Introduction to Melt Crystallization

Melt crystallization for large-scale purification of organics has boomed over the 

past few years. In the USA alone, total on-stream capacity is at least one billion pounds 

per year '̂ .̂ There are two main factors that brought this growth. First are the escalating 

requirements for purification. Melt crystallization is a very effective unit operation to 

produce organic compounds at high purity grade (>99.99%)^^^, and it can easily reach the 

ppm purity levels associated with crystalline materials. Second is the increasing 

environmental concerns. There is no organic solvent needed in the melt crystallization 

process; thus, there is no solvent emission and solvent recovery processes. Also, melt 

crystallization usually operates at relatively lower temperatures, which makes it more 

attractive because of low specific energy required'^^’

The technique is now routinely used to purify naphthalene, paraxylene, 

disubstituted benzenes, acrylic acid, monochloracetic acid, nisphenol A, and many other 

chemicals^'

There are two main melt crystallization methods, directional crystallization and 

zone melting. Directional crystallization has been applied fairly extensively to the 

purification of both organic and inorganic chemicals, as well as metals. Most work has
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been carried out by lowering cylindrical glass containers from hotter to cooler 

environments. Attempts have been made to enhance the efficiency of the method by 

stirring the melt internally or by rotation of the container. A rather different approach to 

enhanced efficiency has been followed by Anderson, who used centrifugal force during 

crystallization'^^^l Other directional crystallization experiments have been designed 

primarily for the concentration and separation of trace impurities. Much work in 

directional crystallization has been devoted to studying the crystallization process itself, 

especially as it relates to characterizing phase diagrams, since it connects solidus and 

liquidus compositions. A more exotic, but nonetheless interesting application, is the 

measurement of thermal conductivities^^^l Directional crystallization has been carried out 

on milligram to multikilogram scale. While most directional crystallization has been 

carried out in the batch mode, a device has been described in which aluminum ingots 

were fed to a crystallizer from which a purified ingot emerged continuously.

Most chemical zone melting is carried out vertically, in cylindrical glass tubes. 

However, sporadic reports of advantageous use o f horizontal or nearly horizontal refiners 

have appeared. In general, molten zones are moved downward from a free surface into 

the ingot being processed. Containers of other shapes and materials have been used. Zone 

melting has been carried out on milligram and even microgram charges^ '̂^. A number of 

attempts have been made to apply zone melting to multikilogram charges of 

chemicals^*^ .̂ Continuous zone melting has been described in [83, 84]. Vertical zone 

melting is usually carried out at 10'"* to 10'  ̂ cm s'^; speeds up to 3xlO'^cm-s'^ have been 

used without loss of effectiveness in systems having effective mixing of the liquid zones.
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As zone-melting techniques have evolved, specialized procedures have been 

introduced in response to particular requirements. In an attempt to improve the efficiency 

of impurity rejection at the solidifying interface, a number of workers have sought to use 

centrifugal solidification as a means for enhancing matter transport

Column crystallization has been used as one of the purification procedures in 

which slurry of crystals and melt is subjected to countercurrent contact. In one system, 

for example, the charge of material to be purified is contained in an annular, cylindrical 

chamber which also houses a metal helix. Rotation of the helix drives the crystals in one 

direction, while melt moves countercurrently. Under an applied temperature gradient, a 

concentration gradient results. Thus, the opposite ends of the column will contain 

material that is more (less) pure than the original. Continuous operation is relatively 

easily achieved by introducing feed at a central point and removing product and waste 

from the ends of the column.

1.2 Comparison with Other Separation Methods

1.2.1 Melt Crystallization Compared 
with Solution Crystallization

Solution crystallization is best known for separating a pure solute from impure 

solutions. An example is crystallization of common salt from brine. Water is a cheap and 

harmless solvent and allows the process to run at a benign temperature. But when 

crystallizing nonpolar organics, solvent crystallization requires organic solvents which 

are typically neither cheap nor harmless. On a laboratory scale, their use is manageable; 

however, large-scale processing becomes expensive because of the effort expended in 

preventing solvent emissions.
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One fact is that most organics have melting points that present quite practical 

processing temperatures without the addition of a solvent. Fig. 1.1 shows a compilation 

by Matsuoka, et al.̂ ^̂  of the melting points of organics from the 1984 CRC handbook. 

Over 70% of these substances have melting points between zero and 200°C. These 

chemicals are prime candidates for melt crystallization.

30G

200

6
u

jO 100  -

35.45 36.85 15.5:

100 3000 200

Helting point C*C]

Fig. 1.1 Melting points o f CRC organics 

Crystallization without using a solvent has a lot of advantages. The volume of 

material being processed is considerably less. Equipment costs and energy consumption 

are thus much lower. Further more, no solvent recovery is necessary. The impurities are 

recovered in molten form and can be recycled, incinerated, or treated in some other 

fashion, without an intermediate solvent-removal step. Also, the product is not
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contaminated with solvent. Table 1.1 summarizes the key differences between melt and

solution crystallization.

Table 1.1. Differences between melt crystallization 
and solution crystallization

Melt Crystallization Solution Crystallization

Compact equipment Larger equipment

No solvent emissions Potential for solvent emissions

No solvent recovery Solvent recovery required

Higher operating temperatures Lower operating temperatures

Higher viscosity fluid Lower viscosity fluid

Moderate crystal growth rates Higher crystal growth rates

Good selectivity Better selectivity

Crystallization only by cooling Evaporative crystallization possible

1.2.2 Melt Civstallization Compared 
with Distillation

Melt crystallization is superficially analogous to distillation since it uses solid- 

liquid equilibria to affect a separation, and distillation uses liquid-vapor equilibria. Both 

separation techniques depend on three elements;

• Phase equilibria which provide the driving force for separation

• Mass-transfer rates which allow phases to equilibrate

• Phase separability

However, the solid-liquid systems differ from vapor-liquid systems significantly in these 

critical areas. Table 1.2 shows the differences in the three aspects.
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Table 1.2. Comparison of solid-liquid and vapor-liquid systems in separations

Melt crystallization(solid/liquid) Distillation(vapor/liquid)

Phase equilibria

Liquid phases are totally miscible; solid 

phases are not miscible 

Typically, an eutectic system 

Solid phase is pure, except at eutectic point 

Partition coefficients are very high 

(theoretically, they can be infinite) 

Ultrahigh purity easy to achieve 

Recovery limited by eutectic compositions

Both liquid and vapor phases are totally 

miscible

Conventional vapor/liquid equilibrium 

Neither phase is pure 

Separation factors are moderate and 

decrease as purity increases 

Ultrahigh purity difficult to achieve 

No theoretical limit on recovery

Mass-trans fer kinetics

Only moderate mass-transfer rates in liquid 

phases, zero in solid 

Slow approach to equilibrium, included 

impurities cannot diffuse out of solid 

Solid phase must be remelted and refrozen 

to allow phase equilibrium

High mass-transfer rates in both liquid and 

vapor phases 

Close approach to equilibrium achieved in 

brief contact time 

Adiabatic contact ensures phase 

equilibrium

Phase separation

Phase densities differ by only about 10%

Liquid viscosity moderate, solid phase rigid 

Phase separation is slow; surface-tension

Phase densities differ by a factor of 100 to 

10,000

Viscosity in both phases low 

Phase separation is rapid and complete
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effects prevent completion

Countercurrent contacting is slow and Countercurrent contacting is quick and

imperfect efficient

From the table, we can see that equilibria are generally much more favorable in 

melt crystallization. Mass-transfer rates are much slower, however, so long residence 

times are needed for the bulk of the phases to approach equilibrium. This requires large 

equipment and makes the processing step costly. Also, phase separation after contacting -  

a trivial step for vapor-liquid systems -  presents a problem for solid-liquid systems. Even 

with long residence times, complete separation is rarely achieved.

Lower temperatures pertaining to melt crystallization slow down the rate 

processes and make them critical. On the one hand, this is a drawback. However, it also 

highlights a situation in which melt crystallization finds its niche. If a material is prone to 

decomposition at distillation temperatures, it will likely be stable at its freezing point. 

Compared with distillation, melt crystallization may be slower, but it is also 

advantageous.

1.3 Application of Melt Crystallization 
to Oreanic Separations

A simple way of presenting where melt crystallization can be used to an 

advantage in organic separations is shown in Fig. 1.2. For mixtures of high relative 

volatility and whose components are thermally stable, distillation is normally the 

preferred separation technique. When relative volatility is low, distillation becomes more 

difficult and melt crystallization is likely to be more attractive. If thermal stability is very 

low, then solution crystallization may be the only practical separation method.
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Fig 1.2. Applications of melt crystallization in organic separations

There are two types of melt crystallization systems: euteetie systems and solid- 

solution systems. The simple binary euteetie systems are mostly adapted during 

separation, and the eutectic systems with more than two components typically behave 

similarly to binary systems as long as the components do not interact with each other. A 

comparison of an eutectic system and a solid-solution system will be given in chapter 

two. The models built in this dissertation will only focus on simple binary eutectic 

systems.

1.4 Inverse Heat Conduction Problem

The Inverse Heat Conduction Problem (IHCP) is a problem of estimating the 

surface conditions such as temperature and heat flux, or surface properties such as 

thermal conductivity and heat capacity of solids by utilizing the transient temperature 

measurements taken within the medium^ '̂^ .̂ IHCP is encountered in various branches of 

science and engineering. Mechanical, aerospace and chemical engineers, mathematicians.
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astrophysicists, geophysicists, statisticians, and specialists of many other disciplines are 

all interested in inverse problems, each with different applications in mind. IHCP is of 

great importance because direct methods cannot be adopted in many cases. For example, 

direct measurement of heat flux at the surface of a wall subjected to fire at the outer 

surface of a reentry vehicle, or at the inside surface of a combustion chamber is extremely 

difficult. In such situations, the inverse method of analysis, using transient temperature 

measurements taken within the medium, can be applied for the estimation of such 

quantities.

IHCP is difficult to solve because it is an ill-posed problem^^''^^; that is, its 

solution does not satisfy the general requirement of existence, uniqueness, and stability 

under small changes to the input data. A variety of analytic and numerical approaches 

have been proposed for the solution of IHCP. Stoltz '̂^  ̂ was one of the earliest 

investigators who developed an analytic solution for a linear inverse heat conduction 

problem by using Duhamel’s method, but the solution was found to be unstable for small 

time steps. This shortcoming was a m e n d e d ^ t h r o u g h  the use of future data concept; as 

a result, the improved solution permitted the use of much smaller time steps than that 

used in [13].

The analytic solutions developed by using integral or Laplace transform 

techniques*̂ ^̂ '^̂  ̂ required continuously differentiable data; as a result, they were not so 

useful for practical applications; however, they provided a good insight into the nature of 

IHCP.
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In order to cast IHCP as a well-posed problem, the traditional heat conduction 

equation was replaced by a hyperbolic heat conduction equation, and the well established 

techniques were used to solve the resulting IHCP̂ ^̂ .̂

The analytic solutions are strictly applicable to linear problems. To extend the 

technique to nonlinear problems, the numerical methods such as FDM [19, 21-28] and 

have been used in the solution of IHCP.

1.5 Research Objectives

Melt crystallization has become an attractive separation method to purify organics 

at large scale. Because the geometry of the rigid crystal lattice is peculiar to the particular 

substance, most crystallization processes form eutectic systems. The kinetics of 

crystallization limit the rate in which crystal growth can occur without incorporation of 

undesired impurity. If the rate of heat transfer exceeds the mass transfer rate of the 

impurity, the impurity can solidify, contaminating the product.

The melt crystallization process involves the problem of heat conduction or 

diffusion with a moving boundary. There are many mathematical models and numerical 

methods describing the inward solidification of a binary melt^^^'^'l Among these, 

Chianese and Santilli^^  ̂proposed an integral formulation approach to predict the growth 

of a crystal on a cylindrical cold surface in contact with a stirred melt. In their method, 

the trend of increase in solid-layer thickness is determined by an energy-integrated 

equation in which the temperature profile within the solid layer is approximated either 

using a second-degree polynomial or solving a steady-state heat transfer equation. 

Feltham and Garside^^^  ̂considered the solidification (freezing) of binary melts which are 

undercooled, and this means that the temperature of the melt lies below its equilibrium
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freezing temperature, in which one of the components is preferentially rejected from the 

forming solid phase. They presented analytic and numerical solutions describing the 

inward solidification of a binary melt on a finite slab and sphere, respectively. The 

surfaces from which solidification commences were held at a constant temperature 

throughout the solidification process. Guardani, et al.'̂ ^̂  ̂ presented experimental results 

and simulation of static and dynamic solid-layer melt crystallization. The experiments 

were carried out in a static-layer crystallization, in which only natural convection 

influences mass and heat transfer, and in dynamic-layer crystallization, in which forced 

convection is obtained by pumping the mother liquor as a falling film on a heat 

exchanger. The solutions to the governing equation for the solid-layer thickness and 

temperature profiles over time were obtained by using an approximate analytic method. 

Nigro, et al.̂ '*̂  ̂ considered the solid finite problem where the governing equations 

combine incompressible Navier-Stokes equations coupled with heat and mass transfer 

including phase change. A phase-wise discontinuous numerical integration of the finite- 

element method was presented to solve thermal phase-change problems in solidification 

processes. However, all of the present models and solutions consider that the surfaces 

from which solidification commences are held either at a constant temperature or at a 

constant convection on the surface where the solidification commences throughout the 

solidification process. A more usefixl approach is to specify a constant solidification 

speed and then determine the required surface cooling temperature in order to maintain 

an optimum crystallization cycle time. This is particularly important during the initial 

stages of crystallization, where heat transfer rates can exceed the mass transfer rates of 

the impurity, incorporating impurity into the solid product^^^l
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This separation process leads to an interesting inverse heat conduction problem 

since the outer cooling temperature is unknown. The solution to a traditional IHCP is 

usually unstable and very sensitive to input data, which are the internal temperatures 

measured through embedded devices. The problem that this dissertation considers is an 

IHCP problem. During crystallization, the solidification speed is specified precisely and 

there is no need for measuring the internal temperatures, so the system input errors do not 

exit. This makes the solution stable.

After the cooling surface temperature reaches an operational constraint imposed 

by the cooling utilities, the system holds this constant temperature and the crystallization 

continues. The problem then changes to the direct heat conduction problem since the 

outer wall temperature is known.

In this study, we will build models for an inward directional crystallization 

process with a moving boundary in a long cylindrical container. Two cases are 

considered: constant and variable liquid phase temperature in the radial direction. In each 

case, one first specifies a constant solidification speed and builds a model, for this inverse 

heat conduction problem, to predict the wall cooling temperature over time, which is 

required for obtaining this constant speed. Then, after the cooling wall temperature 

reaches a certain operating threshold, another model for the direct heat conduction 

problem is considered.

A comparison of the two cases and suggestions for using the models are 

presented.
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1.6 Organization of This Dissertation

This chapter presents the general ideas of melt crystallization and the research 

objectives of this dissertation. In Chapter 2, the technical issues of melt crystallization 

including eutectic system and heat transfer equations are explained. In Chapter 3, a model 

is presented where only the solid phase is considered. In this case, the radial temperature 

in the liquid phase is assumed to be constant. In Chapter 4, we extend the model to 

include both a solid phase and a liquid phase with no restrictions on the temperature 

distribution in either phase. Both models are then illustrated with examples in Chapters 5 

and 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER TWO 

DIRECTIONAL CRYSTALLIZATION

Directional crystallization processes have been commercially operated for the 

separation and purification of a number of chemical products, and they are based on the 

growth of a solid layer adjacent to a cooled surface by freezing a melt under controlled 

conditions of heat exchange.

Directional crystallization may be carried out in three ways: cylindrical/axial, 

cylindrical/radial, and spherical/radial, as illustrated in Fig. 2.1.

In cylindrical/axial mode, a cylinder of liquid, at a temperature slightly above the 

crystallization temperature of the contents, is moved through a temperature gradient into 

a cold zone in such a way that the contents of the tube crystallizes (Fig. 2.1a). Because 

the solidifying interface is perpendicular to the axis of the container, this process has also 

been called “normal freezing.” Another mode of generating a solid cylinder from a melt 

is to “pull” a crystal on a cooled rod from a vessel containing the melt. This tactic, long 

used for growth of single crystals, is known as the Czochralski method^^^ l̂

In cylindrical/radial mode, the solidification procedure may be carried out in one 

of two modes, namely, radially inward and radially outward (Fig. 2.1b). In the former, a 

cylindrical sample container is immersed in a thermostat bath whose temperature is 

slightly lower than the freezing temperature of the contents of the tube. This geometry

14
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produces gradual inward solidification from the cylindrical wall at a rate that diminishes 

with time, as a result of the thermal impedance of the solid that is forming. In the latter, a 

cylindrical sample container is provided with a hollow axial tube through which coolant 

may be circulated in such a way that outward solidification will proceed on the inner tube 

toward the wall of the cylindrical container.

\

V
(a) (b) (c)

Fig 2.1 Modes of directional crystallization's'll 
(a) cylindrical/axial; (b) cylindrical/radial; (c) spherical/radial.

In the spherical/radial mode, the sample is contained in a sphere, which may be a 

round-bottom flask; it is immersed in a cooling bath and a heat source is placed at its 

center. Radial solidification takes place inwardly, leaving a small fraction molten in the 

vicinity of the central heater (Fig. 2.1c).
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All the processes are conceptually transient, since during the crystallization 

process the solid layer thickness increases continuously, causing continuous change in 

process conditions. The separation efficiency in layer crystallization processes is affected 

not only by the initial concentrations of the components, but also by the thermal 

properties of the components, the crystallization speed, as well as the dimensions of the 

crystallizer.

The crystallization technique is in essence very simple. If an impure molten 

material is cooled to its freezing point and more heat is removed, then some of the 

material will solidify. On the other hand, directional crystallization problems are moving 

boundary problems and there are phase changes with the moving solid-liquid interface; 

thus, it is difficult to achieve one direct solution. For a better understanding of the 

problem, this chapter introduces the phase rule and some heat transfer properties of the 

system.

2.1 Phase Rule

As one of the important separation methods for organics in industry, melt 

crystallization can be classified into two types of systems: those forming eutectics and 

those forming solid solutions. Most crystalline solids tend not to form solid solutions 

because the geometry of the rigid crystal lattice is peculiar to the particular substance. 

Impurities cannot fit in when these molecules are of a different size or shape. When a 

crystal is formed, such impurities will be rejected from the lattice. If the temperature is 

low enough that two components are solidified, then two distinct solid phases will be 

formed even though they may be intermixed on a macroscopic scale^'l
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This situation can be explained further using the Phase Rule. The Phase Rule is 

simply stated as follows:

P + F  = C + 2 (2.1)

where P  is the number of phases, F  is the number of degrees of freedom, and C is the 

number of components. If pressure is held constant, the number of degrees of freedom is 

reduced by one and the Phase Rule becomes:

P + F  = C + 1. (2.2)

Consider, for example, a binary system where C takes a value of 2. The number of

degrees of freedom can then be expressed as

F ^ 3 - P .  (2.3)

Different phases formed by a binary system can result in different degrees of freedom of

the system. This is illustrated in Table 2.1.

Table 2.1 Relationships of phase and 
degrees of freedom for a binary system

Phase (P) Degrees of Freedom (F)

1 2

2 1

3 0

We consider a binary melt as one phase (liquid). If none of the solids exist, the phase 

number is 1, thus the system has two degrees of freedom. This means that the 

coneentrations of the two components vary in the liquid state (the melt is not fully 

stirred). If the two components can only form two solid states of their own, the phase 

number becomes 3, then the system has zero degree of freedom (this is the eutectic
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system introduced in the following section). If the binary melt can only form one solid 

state, the phase number is 2 and the system has a freedom of 1 (this is the solid solution 

system in section 2.1.2). The number of solid states that the compound melt can form 

depends on the molecular structures of the components. Different components may form 

different kinds of systems. When considering whether the solid states of two components 

are miscible or not, the phase equilibrium can be classified into two systems as follows.

2.1.1 Eutectic Systems

If two components are not miscible, there will be only two solid states for the two 

components. With the addition of the liquid phase of the two components, at most three 

phases can coexist with P=3. This means that only three phases can coexist at one single 

point (zero freedom) in a composition vs. temperature plot. The point at which the three 

phases coexist is called the eutectic point. At all other compositions, a liquid phase can 

coexist with only a single solid phase. However, in the absence of solid solutions, a single 

solid phase can consist of only one component. It follows that only pure solid can be in 

equilibrium with a liquid mixture, except at a single point on the phase diagram. Systems 

exhibiting such behavior are called eutectic systems.

2.1.1.1 Phase Diagram. The characteristic phase diagram for a simple binary 

eutectic system is shown in Fig. 2.2.

The freezing behavior of a two-component (A and B) mixture of initial 

composition A, and temperature T, is depicted in Fig. 2.2. When the mixture is first 

cooled, the temperature drops to Tf  without any concentration or phase change. The 

mixture is now at its freezing point. Further cooling results in the formation of pure solid 

B, and progressive depletion of component B in the liquid shifts the liquid composition to
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the left on the diagram. At the same time, the freezing point deereases through point L 

towards the eutectic point E. Note that before the eutectic point E  is reached, only 

component B has been crystallized. When the temperature reaches Te, then further 

cooling results in simultaneous crystallization of both A and 5  at a constant temperature. 

Only when all the material is frozen will the temperature fall below the eutectic 

temperature Te- The line Tb-F-L-E-Ta is known as the liquidus line since the system 

contains only liquid in the area above this line.

Note that the composition of the liquid fraction follows the liquidus line as the 

mixture is cooled. The net composition of the total mixture stays constant, however, and 

at a temperature Tl, the mixture is represented by the point M. Used in this way, phase 

diagrams also give information on the relative amounts of solid and liquid in equilibrium. 

Since the mixture M  consists of liquid of composition Xi  and pure solid B, the lever rule 

can be used to calculate the amount of solid and liquid. The rule can be remembered by 

imagining Wl lbs of liquid and Ws lbs of solid placed at opposite ends of a lever L-M-S 

with its fulcrum at point M. To balance the lever,

Wl * L M = W s *MS, (2.4)

where LM  and MS represent the lengths from point L to M  and M  to S, respectively. The 

actual shapes of the liquidus lines are normally determined experimentally. However, 

under certain simplified assumptions they can be represented by thermodynamic 

expressions.
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S b+LS a+L

S a+ S b

100%  B100%  A

mol% B

Fig. 2.2 Phase diagram for binary eutectic systems 

2.1.1.2 Van Laar Equation. If A and B form perfeet solutions and if  the solid and 

liquid have equal heat capacities, then the liquidus line for component A is given bŷ *̂

AH,
\n X  = (2.5)

where X  is the mole fraction of component A in the mixture, AHy^ is the molar heat of

fusion of component A, R is the gas eonstant, T  is the liquidus temperature, and is the 

freezing point of pure A. Similarly, for component B, we have

ln ( l-X )  =
R {\IT - \IT g )

The eutectic point lies at the interseetion of the two lines.

(2 .6)
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2.1.1.3 Eutectic Temperature. By setting Ta = Tb = Teu, we can solve equations 

(2.5) and (2.6) to achieve the eutectic temperature, Teu, which is the minimum 

temperature at which only one pure component can be solidified out. It is also the 

temperature where the melt phase is in equilibrium with two solid phases (i.e., the free 

energy curve of the melt and the free energy of two solid phases lie on the same common 

tangent). The composition of the melt phase at the eutectic temperature is referred to as 

the eutectic composition. A melt with a bulk composition equal to the eutectic 

composition will transform directly to an intergrowth of the two solid phases on cooling 

through the eutectic temperature (the eutectic reaction). Below the eutectic temperature, 

there is a broad two-phase field consisting of an intergrowth of the two solid phases. As 

such, the cooling constraint of solidification utilities should be set to be above this 

eutectic temperature.

2.1.2 Solid-Solution Systems

Solid-solution systems occur when impurity molecules are included in the crystal 

lattice. In organic systems, this occurs typically by substitution of host molecules rather 

than by inclusion in interstitial voids. Solid solutions occur in a minority of cases only 

since the guest molecule must be of a similar size and shape to the host molecule to 

minimize any distortion of the crystal lattice. A simple binary solid-solution case can be 

considered as a counterpart of the simple binary eutectic system discussed above. The 

example below is for a system where solid solubility is mutual and continuous, i.e., it 

occurs over the whole range of composition. As shown above, the phase rule for a binary 

system at a constant pressure reduces to
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F = 3 - P  (2.7)

When considering mutual solid solubility, there can only be one solid phase, but it will 

typically consist of a mixed crystal, i.e., a crystal containing both A and B. If both liquid 

and solid are present, then

P = 2 and F  = 1 (2.8)

In this case, fixing the temperature defines the state of the system, i.e., the relative 

amounts of A and B in coexistent solid and liquid phases are specific functions of 

temperature only. Fig. 2.3 shows a phase diagram for this type of system. It takes the 

same form as the more familiar McCabe-Thiele vapor-liquid equilibrium, another case 

where only two phases can arise.

Consider, again, cooling and crystallizing a mixture at an initial temperature T, 

and an initial composition Xi. Solidification starts at Tf with a solid phase of Yf mol% of 

component B and (1-Ff) mol% of component A. As crystallization progresses, the 

concentration of B in the melt decreases. The composition of the melt shifts from X f  

through Xh at Th to X j  at Tj. At the same time, the crystal composition shifts from Yp 

through Ynio Yj at Tj, and solidification is complete when Yj=Xi. The lower line in this 

phase diagram indicates the temperature at which a solid mixture just starts to melt and is 

called the solidus line.
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Fig. 2.3 Phase diagram for a binary system with continuous solid solubility 

2.1.3 Complex Systems

Melt crystallization is often used to separate isomers after other impurities have 

been separated by distillation. These systems are typically binary or ternary eutectics. 

Systems with more than two components typically behave similarly to binary systems if 

the components do not interact with each other.

More complicated situations with eutectic systems can arise if  one of the 

components exhibits polymorphism or if some of the components react to form other 

compounds. The existence of solid solutions further complicates the picture, since solid 

solubility is often limited to certain concentration ranges. Differing extents of solid
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solubility can give rise to quite different phase diagrams. An excellent survey of this 

topic is available in [64],

Matsuoka^^  ̂ categorized all the organic mixtures in the ICT for which phase 

diagrams could be found. Over 50% exhibited simple binary eutectic behavior. Only 14% 

show partial or total solid solubility. This means that most organic mixtures can, in 

theory, be purified completely in a single stage of melt crystallization. The only 

restriction is that enough of the crystallizing component must remain liquid to prevent the 

liquid from approaching the eutectic composition. This, of course, limits the recovery, 

particularly if the starting material is of low purity.

2.1.4 Determination of Phase Diagram

Engineering design of crystallization systems requires knowledge of an entire 

phase diagram; eutectics, peritectics, and compound formation can exert decisive 

influence on the effectiveness of crystallization processes as industrial techniques. If 

there is a phase transformation near the solidus, it may affect the course of purification in 

that a volume change or a heat effect associated with such a transformation could result 

in entrapment of an impure melt at the interface.

There are four major techniques, which may be used for establishing the solidus 

and liquidus curves of binary systems: (1) thermal microscopy, (2) thermal analysis, (3) 

zone melting, and (4) single-crystal growth. These techniques are not all universally 

applicable, and some have only limited utility. The choice of method will depend on a 

number of factors. These include: availability of instrumentation, amount of material and 

time available, environment mental sensitivity of the components, and temperature range. 

Thermal microscopy and thermal analysis may be carried out with milligram or even
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microgram quantities, while zone melting and single-crystal growth methods require 

gram quantities. However, thermal microscopy and thermal analysis require considerably 

more costly instrumentation than the other methods. It is fairly easy to carry out methods 

3 and 4 in evacuated, sealed vessels. While the sample to be used in methods 1 and 2 may 

also he enclosed in a sealed container, the sample preparation must be carried out in a 

glovebox if it is necessary to exclude air completely from the sample. Naturally, method 

1 could not be applied to a material or system that is photodegraded at or near its melting 

point.

It must be pointed out that the four methods above are by no means a complete 

compendium of techniques applicable to the determination of phase diagrams. Any 

physical property that changes discontinuously during a liquid/solid phase transition can, 

in principle, be used to obtain liquidus and solidus curves. Line widths in nuclear

magnetic resonance spectra'[85, 86, 87] , exchanges in electrical resistivity, mechanical

properties. X-ray diffraction, and electrochemical methods^^*  ̂ have all been used. In 

recent years, powerful methods have emerged for recognizing the appearance of phases 

in very small samples. Other exotic methods have been reviewed by Rhines^*^ .̂ Table 2.2 

summarizes the common methods for determination of phase diagrams.

Table 2.2 Summary of Experimental Methods 
for Determination of Phase Diagrams^ '̂*^

Technique Range, % Amount

Required

Speed Accuracy Equipment 

Cost, $M, 1986

Thermal

Microscopy

0-100 mg or less High High 5-7
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DTA/DSC 0-100 Tens of mg High Moderate 20-30

Cooling/heating

Curves

0-100 1-lOg Low Moderate 0.5-5

Zone refining 0-10 O.O-lOg Low Moderate 1-5

Temperature 

gradient oven

0-10 1-lOg Low High 2-10

X-ray

diffraction

0-100 Mg Low Moderate >10

Dilatometry 0-100 1-lOg Low Moderate 1-2

2.2 Crystallization Rate 

Crystals grow from melts at widely varying rates. Organic crystals typically grow 

at rates less than 3xlO'^cm/s, ionic crystals at about 10'^cm/s, and metals at rates up to 

10'  ̂ cm/s^^^l The differences result from the differing activation energies required to 

move atoms, ions, or molecules from the melt to the crystal surface through the boundary 

layer around the crystal. The growth rates also depend on associated entropic changes. 

For small, symmetrical crystallizing unit (atoms), the activation energy is low. For large, 

unsymmetrical units (organic molecules), it is high.

The calculation of crystallization rates has been approached from both 

thermodynamic and statistical viewpoints. In the former, the rate is considered at the rate 

of nucleation and calculated from the free energies of solid, melt, and an activated state in 

the melt. The expression for nucleation rate is
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dZ ^
—  = K  exp 
dt

AG
kT

exp ^ (2.9)

where Z is the number of nuclei, AG^ is the activation energy for transfer of atoms from

the melt to the crystal surface by diffusion, AG* is the excess free energy of the critical 

cluster, t is time, T is temperature, and 

kT
K ^ n n —  (2.10)

h

where n is the number of atoms per unit volume in the system, n ' is the number of atoms 

on the surface of the critical nucleus.

Eq. (2.9) predicts zero growth rate at T=OK and T=Tf, with a maximum at some 

intermediate temperature, Tmax (Tf is the equilibrium crystallization temperature of the 

melt).

2.3 Distribution Coefficient

Crystal is a regularly repeated array of a characteristic building block. The 

specific binding forces that lead to the regularity of the crystal lead to the exclusion of 

foreign molecules. If solidification takes place rapidly, then the local composition of the 

resulting solid will be very close to that of the original liquid. On the other hand, if 

solidification is slow, then the crystal architecture of the major component of the mixture 

may direct the chemical composition of the solid that forms. The selectivity of 

crystallization depends upon the specific intermolecular forces acting among the 

constituent molecules, and these forces are determined by the relative sizes, shapes, and 

polarities of the constituent molecules. Considering that the sizes of organics are 

regularly large, the driving forces for crystallization is weak. This results in the
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requirement of relatively low solidification speed in order to purify one component. In 

most cases, the crystal formed is not 100% pure. The purification efficiency is described 

by distribution coefficient,

k = ^  (2.11)
Q

where G  is the concentration of the minor component in the solid and Q  is the uniform 

concentration of the same component in the liquid, at the liquid/solid interface. The ideal 

distribution coefficient is 0 since G  = 0 means there is no impurity in the crystal. When k 

= 1, then Cs is equal to C/, and there is no purification at all.

2.4 Heat Transfer Coefficients 

To better understand the problem, several parameters need to be explained.

2.4.1 Thermal Conductivity

Thermal conductivity {k) represents the effectiveness of a material as a thermal 

insulator. The energy transfer rate through a body is proportional to the temperature 

gradient across the body and its cross sectional area. The fundamental law of heat 

conduction is given as

Q = k - A ~ ,  (2.12)
ax

where Q is the heat flow (W), k  is the thermal conductivity value ( W/(m K )), A is the 

cross-sectional area (m^), and dT/dx is the temperature/thickness gradient (K/m).

A substance with a large thermal conductivity value is a good conductor of heat, 

and one with a small thermal conductivity value is a poor heat conductor, i.e., a good 

insulator. Hence, knowledge of the thermal conductivity value allows quantitive
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comparisons to be made between the thermal insulation efficiencies of different 

materials. The most effective insulation will have a very low thermal conductivity value.

2.4.2 Thermal Diffusivitv

Thermal diffusivity (a) of a medium is the thermophysical property that 

determines the speed of heat propagation by conduction through the medium. The higher 

the thermal diffusivity, the faster the heat propagation. Thermal diffusivity is related to 

the thermal conductivity, density, and specific heat of the medium:

a  = — (2. 13) 
P-^P

where a  is thermal diffusivity (m^/s), k  is thermal conductivity ( W/(m K ) ), p  is density 

(g/m^), and Cp is specific heat ( J/(s K) ). According to the above definition, thermal 

diffusivity affects any conductive transient heat transfer process within the medium.

2.4.3 Specific Heat

Specific heat (cp) is the amount of energy needed to raise the temperature of one 

gram of a substance by 1°C. The relationship between heat and temperature change is 

usually expressed in the form shown below:

Q = c ^ -m -A T ,  (2.14)

where Q is the heat added, Cp is the specific heat, m is the mass, and AT  is the temperature 

change. This relationship does not apply if  a phase change is encountered because the 

heat added or removed during a phase change does not change the temperature.

2.4.4 Latent Heat

Latent heat is encountered whenever a phase change occurs. Latent heat is the 

heat released or absorbed per unit mass by a system in a reversible isobaric-isothermal
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change of phase. The heat will only change the structure or phase of the material, e.g. 

melting or boiling of pure materials. In meteorology, the latent heats of evaporation (or 

condensation), fusion (melting), and sublimation of a water substance are of importance. 

The driving force behind latent heat is called the first law of thermodynamics, more 

commonly known as conservation of energy. One can say energy is conserved in that it is 

not destroyed or created anew, but simply changes form. In a melt crystallization process, 

the solid-liquid interface moves and there is a phase change at the interface, causing 

latent heat to be generated along the interface. As such, any modeling of a moving 

boundary problem should consider latent heat as a critical factor.

2.4.5 Interface Equations

The regions occupied by the solid and liquid phases are linked by the 

conservation of heat flux at the interface. Theoretically, both liquid and solid phases have 

temperature distributions, and the governing equation at the interface is only related to 

the temperature profiles near the interface. For modeling purposes, we consider two 

situations, one where the melt or liquid temperature is constant in the radial direction and 

the other where the temperature varies.

2.4.5.1 Constant Melt Temperature in the Radial Direction. We can simplify the 

problem by considering the melt temperature to be constant. This is a feasible assumption 

in an experiment where the melt is fully stirred. This causes all positions in the melt to 

have the same temperature, Tj,. As the solid layer grows, the bulk temperature will 

decrease with the interface temperature. The governing equation for this situation may be 

expressed aŝ ^̂

( d T ^  
- k  —^

I Sr y
= p r ^  + h , ( T , - T J ,  r = r„-s(0  (2.15)

at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

where k is the thermal conductivity of the solid layer, p  is crystal density, and hi is the 

heat convection coefficient. is the interface (melting) temperature as determined by 

the Van Laar equation, Tb is the temperature of the melt bulk, and X' represents the sum 

of the heat released by crystallization. A,, and of the sensible heat of the crystallized mass: 

l ' ^ X  + C p(Tb-T^.  (2.16)

Here, Cp is the specific heat.

2.4.S.2 Variable Melt Temperature in the Radial Direction. When the liquid is held 

still, a temperature gradient is formed in the radial direction. The temperature decreases 

from the center of the cylinder crystallizer to the solid-liquid interface. In this case, the 

interface equation is given aŝ "̂ ^̂

L ^  = k. k, ^  , r - T o - 5 ( 0 -  (2.17)
dr ) ‘[ d rdt

Here, L is the latent heat per unit volume of solid, ks and ki are the heat conductivity 

coefficients of the solid and liquid layer, respectively. This equation states that the 

difference in heat flux across the interface is equal to heat absorption or heat liberation at 

r=ro-s(t).
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CHAPTER THREE 

MODELING OF BINARY MELT CRYSTALLIZATION 

WITH A CONSTANT LIQUID TEMPERATURE 

IN THE RADIAL DIRECTION

3.1 Introduction

TO

Figure 3.1 Schematic view of a three-dimensional solidification problem
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This study deals with the modeling of melt crystallization through a temperature 

controlled cylindrical container as illustrated in Fig 3.1. The binary melt in the container 

is first preheated to a certain level higher than the eutectic temperature of the compound. 

Then, the melt is cooled down by cooling the wall of the container causing one 

component to solidify out and a solid layer to grow along the wall toward the center of 

the container.

In this model, we assume that the liquid is fully stirred, so the melt has a constant 

temperature during the process. We also assume that the solid remains pure and all the 

impurities remain in the liquid. This is a reasonable assumption for eutectic systems as 

long as the solidification speed does not exceed a certain threshold.

If the ratio of the length of the cylinder to its radius is large, one can simplify the 

model from three- to two-dimensions as shown in Fig 3.2.

Solid
Liquid

Tin' TO

Figure 3.2 Simplified two-dimensional scheme 

Since the two-dimensional problem in Fig 3.2 is circular, we can simplify the 

problem further to a one-dimensional case as illustrated in Fig. 3.3.
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Figure 3.3 Simplified one-dimensional scheme 

Finally, the one-dimensional case is solved to obtain the temperature distribution 

along the radius of the solid.

3.2 Solid Governing Equation

For the solid layer, the heat transfer equation is given as

1 dZ  \ d ^
<r— ), r ^ - s ( t ) < r  <ro , (3.1)

a  dt r dr dr

where Ts is the temperature in the solid side, a  is the heat diffusivity within the solid 

phase, s(t) is the solid layer thickness, and ro is the radius of the cylinder.

3.3 Solid-Liquid Interface Equation 

The solid-liquid interfacial equation of the problem is described as follows:

■ k .
V y

= p r ^  + h , ( T , - T J ,  r = r„-s(l) .  (3.2)
at

where 2' represents the sum of the heat released by crystallization, T, and of the sensible 

heat of the crystallized mass, and

A '= X  + Cpi(Tb-Tr„). (3.3)

In Eqs. (3.2) & (3.3), To is the temperature of the melt bulk, Ts is the temperature of the

solid crystal layer, p  is the density, hi is the heat convection coefficient, ks is the heat
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conductivity coefficient of the solid layer, Cpi is specific heat, and T„ is the melting 

temperature determined by the Van Laar equation^^^’

(3.4)

where f e . - X s ) + X ,  (3.5)
[̂ 0 - “̂ (0]

Here, Xi„u is the initial composition of the compound, and Xg is the composition of the 

solid that has been solidified out.

3.4 Boundary Conditions

For this problem, we assume that the wall temperature To is set equal to the 

temperature of the solid at position r=ro, and the interface temperature, which is also the 

melting point, is set equal to the temperature of the solid at r=ro-s(t). These conditions 

are described in Eqs. (3.6) and (3.7) as follows:

Ts(ro, t) = To, r = ro (3.6)

and

Ts(ro -  s(t), t) = Tm, r = ro -  s(t). (3.7)

For simplicity, we set the melt bulk temperature to a constant C degrees higher than 

the interface temperature as stated in Eq. (3.8).

To-T^ = C (3.8)

3.5 Dimensional Analysis

Since Eq. (3.1) is in cylindrical coordinates, it is extremely difficult to obtain a 

solution by directly solving the heat equation. However, we can solve the problem by 

using dimensional analysis. Besides the temperature in the governing equation, there are 

three other dimensional quantities in the system: thermal diffusivity a  (units, m^s'^).
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length r (unit, m), and time t (unit, s). If we consider the factor a  “/ f ,  the units will be 

^ 2a+bg-a+c ĵ g dimensionlcss if 2a + b = -a + c = 0. Thus, this leads to the ratio

a:b:c = -1:2:-1. Any function of these will also be dimensionless, and it proves to be 

somewhat more convenient if the combination

(3.9)

is used instead^^^l These considerations suggest that the one-dimensional time-dependent 

conduction Eq. (3.1) has a solution of the following form:

T/x, t) = To + (Ti-To)f(v), (3.10)

where To is the initial temperature, and Ti is the temperature at time t.

3.6 Problem Solutions 

Since we already know the form of the solution, we can solve for the function f(7}) 

by substituting the solution into the governing equation and using the boundary 

conditions in Eqs. (3.6) - (3.8).

Using the chain rule of differentiation in Eq. (3.10), we obtain

(3.11)

(3.12)

and

dr^ -‘-oJ J 2 A ^drj 4at
(3.13)

Substituting Eqs. (3.11)-(3.13) into Eq. (3.1), we obtain
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^  + ( 2 n + h f -  = 0. (3.14)
dT] Tj dri

Integrating Eq. (3.14) twice gives the solution

^  ^  A -  (3.15)
drj 7j

m  ^  A [ ^ e ^ ' d ^  + B (3.16)

where ̂ 4 and B are constants. By substituting back into Eq. (3.10), we obtain the solution

T^{r,t) = A ^ ‘^e~^'d^ + B .  (3.17)

Now, we solve for the constants A and B using the boundary and interface conditions. 

Using Eqs. (3.2), (3.6), and (3.7), we obtain

/—  ( r o - 5 ( 0 ) ^

- K A ^ L ^ - e  = p ^ ^ ^ h , { m - T S t ) ) ,  (3.18)
0̂ “  • (̂0 -yj^oct dt

'■o

T^{t) = A ^ < ^ e - ^ ^ d ^  + B , (3.19)

and

' • o - s ( 0

T^(t) = + (3.20)

In Eqs. (3.18)-(3.20), A and B are unknown. Also, solidification speed (ds/dt) and the 

wall temperature {To) are unknown. However, during solidification, we first specify one 

constant (solidification speed) and calculate the wall temperature, then we fix the wall 

temperature (at a certain value) and calculate crystal growth. These two stages go in 

sequence, so at any one time, there is only one unknown, solidification speed or wall 

temperature. As a result, we solve the problem using Eqs. (3.18) - (3.20).
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Eliminating the constants, A and B, in Eqs. (3.18) - (3.20), we obtain

1 r / ('o~̂ (0) »^  2
m  = T , { t ) - - \ p X %  + h {T b -T m (t) )Y r ,-s ( t) )e  r f f . (3.21)

This is the equation that relates the wall temperature To, to solidification speed ds/dt, 

interface temperature T^, and time t. In what follows, we give the solutions for two 

solidification stages: solidification with a constant solidification speed, and solidification 

with a fixed wall temperature.

3.6.1 Solid Growth At Constant Speed

If the speed at which the solid layer grows is a constant u, we have ds(t)/dt = u 

and hence s(t) = ut with s(0) = 0. Substituting s(t) -  ut into Eq. (3.21), we obtain the 

surface temperature To(t)  profile at different times:

1 r / \1 (/p-̂ (O)̂  * 'Q 2
m  = T J I ) - - - [ p X u  + h , { m - U l ) ) \ ( , r , - s ( l ) ) e  -  (3.22)L/------------------  y ~ m v / / j \  u - V / y  - JQ-S(I) £,

Here, I '  -  X + Cpi(Tb~ Tm), and the interface temperature Tm(t) can be calculated through 

the Van Laar Eqs. (3.4) and (3.5),

T. = - j  Y --------------■
T ^  /K T J ^  liquid )

where X , , ^  = — d — ( x , ^ , - X , ) + X , .  (3.24)

For simplicity, we choose Tb(t) to be some constant degrees higher than Tm(t).

To obtain the temperature distribution Ts(r, t)  within the solid, we subtract Eq. 

(3.19) from Eq. (3.20) to obtain

^  ^ M l  where Integral = ■ (3-25)
Integral Hill I
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By eliminating the constant B in Eqs. (3.17) and (3.19), one can solve for T/r, t) to 

obtain

TXr,t) = T , - A  d ^ .  (3.26)

3.6.2 Solid Growth after Wall 
Temperature Reaches a Lower Limit

With time. Toft) will drop to a temperature constraint imposed by the cooling

utilities. After the temperature reaches the operation limit, say T /  at time f ,  one may

hold the surface temperature at and then let the solidification process continue with a

solid width of In this case, we substitute Toft)  = T / into Eq. (3.21) and obtain a first-

order nonlinear ordinary differential equation as follows:

1 r 1 - '0 2

T :  =  T , 0 ) - Y \ p i ^ * h , { T , ( t ) - T , 0 ) m - s O ) ) e  . (3.27)

Using the implicit Euler method, equation (3.27) is then discretized as follows:

where s" is the approximation oisftn), n is time level, and At is time increment. The initial 

interface is set at sftno), where tno is the time duration where the solid layer growth is a 

constant. Since equation (3.28) is a nonlinear equation for we let

1 r I M -a

S j 4o(„+i

Using Newton’s iterative method, we can calculate the solid growth over time as

(3.30)^n ew  ^ o ld  7^ ' /  n + \ \  ’

„n+l _  „n+l ^i^old  )

where the integral in Eq. (3.29) is calculated by the composite Simpson’s rule^^^l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

After the solid growth is achieved, one can calculate the temperature distribution 

in the solid layer by using the same method in section 3.6.1. This gives

r ,{/■,() = r „ - A  whereA = ~ , (3.31)

T . = - j  ^ -------------  , (3.32)

T l

and

(3.33)
[ro~s(0]

3.7 Algorithm

A procedure for predicting solid growth from melt crystallization can be written 

as follows:

Phase A. Given a constant speed u, solve the surface temperature To(t) from Eq.

(3.22) until it reaches the lower limit, To(t„o) =  Tq‘ .

Phase B. Letting To(t) = Tq̂ and s„o =  s(t„o), solve for from equation (3.30), 

and continue iteration until the crystal growth rate falls below a threshold,

The algorithm for solving the problem is listed below in detail:

Step 1: initialize dt, dr, t-0, s, u, C.

Step2: increment time t-t+dt, s -u * t.

Step 3: calculate the interface temperature reusing Eq. (3.23).

Step 4: update the bulk temperature reusing Eq. (3.8).

2
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Step 5: calculate A'using equation (3.3).

Step 6: calculate the wall temperature To using Eq. (3.22).

Step 7: calculate the solid temperature distribution Is using Eq. (3.26). 

Step 8: check if  Tq<=Tô.

\ iTo< ^To\

Continue with Step 9.

Else,

Continue with Step 2.

Step 9: increment time t=t+dt.

Step 10: c a l c u l a t e u s i n g  Eq. (3.30).

Step 11: calculate A r-

Step 12: calculate the interface temperature Tm using Eq. (3.32).

Step 13: calculate the solid temperature distribution E, using Eq. (3.31). 

Step 14: check if

Else,

Stop.

Continue with Step 9.
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CHAPTER FOUR 

MODELING OF BINARY MELT CRYSTALLIZATION 

WITH A LIQUID TEMPERATURE DISTRIBUTION

4.1 Introduction

Chapter three presents a numerical model to simulate melt crystallization in the 

case of a fully stirred binary melt. A more realistic scenario is the situation where the 

melt is not stirred. In such a case, the temperature of the melt decreases from the center to 

the solid-liquid interface. In this chapter, we present a model to simulate this situation.

The binary melt crystallization scheme to be modeled is illustrated in Fig. 4.1. 

Here, Ti is the liquid temperature. To is the wall temperature, ro is the radius of the 

cylinder, and s is the solid layer width. The binary melt is preheated, in a temperature 

controlled cylindrical container, a few degrees higher than the eutectic temperature of the 

compound. Then, the melt is cooled down by decreasing the wall temperature To of the 

cylindrical container causing one component to solidify. The solid layer grows from the 

wall towards the center of the container.

In this m odel, w e assume that the liquid is still, in which case the melt 

temperature decreases from the center to the solid-liquid interface during the 

crystallization process. We also assume that the solid remains pure and all of the

42
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impurities remain in the liquid. This is a reasonable assumption for eutectic systems as 

long as the solidification speed does not exceed a certain threshold

I TO
-ZnsJi  - -

Figure 4.1 Schematic view of a three-dimensional 
solidification problem

Solid
Liquid

Figure 4.2 Simplified two-dimensional 
binary melt crystallization scheme
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Under certain assumptions, one may simplify the problem to one-dimension. 

First, assume that the ratio of the length of the cylinder to its radius is large enough so 

that one can simplify the model from three-dimensions to two-dimensions as described in 

Fig. 4.2. Flere, is the interface temperature, and Ts is the solid temperature.

Since the two-dimensional problem in Fig. 4.2 is circularly symmetric, one can 

simplify the problem further to one-dimension as illustrated in Fig. 4.3.

Liquid side Solid side

\ ,l
0 Ti(r,t) ro

Figure 4.3 Simplified one-dimensional scheme 

A solution to the one-dimensional problem involves solving for the temperature 

distribution along the radius of the cylinder. The difference of the simplified problem in 

this model with the previous one is that the previous model solves for the temperature 

distribution along the solid part (ro-s<r<=ro), and this model solves for the whole 

temperature distribution, solid and liquid (0<r<=ro). In this chapter, in addition to the 

solid governing equations, we will introduce the liquid governing equations. Also, an 

interface equation and liquid boundary equation will be introduced.

4.2 Solid and Liquid Governing Equations

For the solid layer and liquid bulk, the heat transfer equations are given as

I dT  1 9 .  dT( r ^ ) ,  ra -s(t)< r< ro ,  (4.1)
dt r dr dr

and
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\ dT, \ d , dT,^ ^
-  0 < ' ' <  ^0-^(0 ,  (4.2)

a, dt r dr dr

where Ts and Ti are the temperatures in the solid and liquid, respectively, a  s and a  \ are 

the heat diffusivities within the solid and liquid phases, s(t) is the solid layer thickness, 

and ro is the radius of the cylinder.

4.3 Solid-Liquid Interface Equation 

The solid-liquid interfacial equation is given as

L  = k,
dt y d r  j

ds(t) fdT^]
- k ,  —  , r = r^ -s { t ) ,  (4.3)

ydr  )

where L is the latent heat per unit volume of solid, ks and ki are the heat conductivity 

coefficients of the solid and liquid layer, respectively, Ti is temperature of the melt, and 

Ts is the temperature of the solid crystal layer.

4.4 Boundary Conditions 

It is assumed that the wall temperature Tq is equal to the temperature of the solid at 

the point r=ro. The temperatures of the solid and liquid at the interface {r^ro-s(t)) are 

both equal to the interface temperature, Tm- These boundary conditions are described in 

Eqs. (4.4)-(4.6) as follows:

T .k . t )  = T„, (4.4)

= (4.5)

and

Ti{r^-s(t),t) = T^. (4.6)
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In Eqs. (4.5) and (4.6), Tm is the melting temperature as determined by the Van Laar 

equation

ln(X,„„,,) :::: (4.7)
R T j  t :

where - X , ) + X (4.8)
\Vq

Here, Xinu is the initial composition of the compound, and Xs is the composition of the 

solid.

At the center of the melt, the temperature distribution is axi-symmetric, and there is 

no heat diffusion across the center. This means that the temperature derivative is zero at 

that point. Thus, we obtain the following boundary condition,

^  = 0, r  = 0. (4.9)
d r   ̂ ’

4.5 Mathematical Model 

We first give the mathematical model for the melt side. Then by adding the 

interface equation, we will solve the temperature distribution for the solid side.

4.5.1 Solution in the Melt Phase

The interface temperature is actually the melting point of the compound, and it is 

only related to the composition of the compound. For a given initial composition, since 

the solid is pure by assumption, the composition of the compound at a given time is only 

related to the solid width. The more the target component has been solidified out, the 

lower the composition of the component in the melt. This is obvious from the Van Laar
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equation. By solving Eqs. (4.7) and (4.8), we can calculate T„ for the given solid layer 

width, s(t)\

T, = ^  Y --------------•
rpf f  ^

where = - - X , )  + X , .  (4.11)
[̂ 0 -s(t)]

To obtain the temperature distribution of the melt, we solve the governing equation 

(4.2) with the boundary condition at the interface, which is Tm in equation (4.10), and the 

boundary condition at the center in equation (4.9). Figure 4.4 illustrates the grid points 

used in the numerical solution.

Liquid s i d e  { Sol id  s i de

0 1 2 3 4   N N+t

i
0 Ti(r.t) ro

Figure 4.4 Grid points 

Because of the growth of the solid layer, the interface point Ti(r,t)\N+] will move 

inward causing the number of grid points to decrease. At a given time level n+i ,  we have

J’-LL = (“ .12)

by equation (4.6). By discretizing equation (4.9), we have

T  I"'*'’ — T

A r
= 0 , (4.13)

or

T \T  = (4.14)
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By discretizing equation (4.2), we have

|«+1

1 \-e  1
a, At Ar'

r
■ J + i

+
0 1
Vj Ar

Here, 0is the distribution factor for this implicit scheme.

Equations (4.12), (4.14), and (4.15) form a tridiagonal linear system.

• z(j + -  Cj
- c .

- a N - \ K-i
- a

- c N - \

N

T i
T,

l/I+l

IK + 1
\n - i
in+1

^N-\

where.

Qj = { \ - 0 ) r  ^d 2
A r'

b, = 2(1-6> )r.+  r.
'  ^  a^At '

C j= {\-0 )r .^ ,

J=12,.. .N,

 r. - 2 6  r,.
ya^At

rri j ̂  I /I 'T' I ̂r, . + ^ r. , J) . ,

and

fj = r^-s{ t)  + jA t  

rj_L = ro-s{t)  + { j - \ ) A t  

=^0 - s i t )  + ( j  + j)A t .

48

(4.15)

(4.16)

(4.17)
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i«+ i

Using Gaussian elimination, we obtain the melt temperatures ^!y  ̂j~0, 1,

N+L  These values are taken to the next time level 7]|", and some points are

automatically discarded because the interface moves.

It should be pointed out that through this process, the obtained solution is a 

function of the solid width s(t). When the solidification has a constant speed u, the solid 

width is equal to ut. After the wall temperature reaches a fixed point, the solid width can 

be calculated using the iteration method introduced in the following section.

4.5.2 Solution in the Solid Phase

l«+l - _ i«+l
After calculating the liquid side temperatures, one has \ ̂  I n+\ '

term Qf in the interface equation (4.3) can be calculated as -
Ar

By using dimensional analysis as in Chapter Three, we can construct a 

dimensionless variable rj to combine the three dimensional variables in the system: 

thermal diffusivity a  (units, m^s"'), length r (unit, m), and time t (unit, s). The variable rj 

is given as

= (4.18)

The one-dimensional time-dependent conduction equation (4.1) has a solution of 

the form

Ts(x, t) = To + (TrTo)f(v), (4.19)

where To is the initial temperature, and Tj is the temperature at time t.
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One can solve for the function f(r]) by substituting the solution from Eq. (4.19) 

into the governing equation and using the boundary conditions. Using the chain rule of 

differentiation in equation (4.19), one obtains

ot uTj dt dvj 2/ J

and

(4.21)
or drj dr drj ^ 4 a t

As such,

^  (4.22)
dr drj 4at

Substituting Eqs. (4.20)-(4.22) into Eq. (4.1), we obtain

^  + (2,j + - ) ^  = 0. (4.23)
drj Tj dt]

Integrating Eq. (4.23) twice gives the solution

= A ' -  , (4.24)
drj t]

and

m  = A ' l ^ e - ^ ' d ^  + B', (4.25)

where A' and B' are constants. By substituting back into equation (4.19), we obtain the 

solution to the problem,

TXr,t) = A ^ j e - ^ ^ d ^  + B .  (4.26)
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Here A and B are constants. Now, we solve for A and B using the boundary and interface 

conditions.

Using Eqs. (4.3), (4.4), and (4.5), we obtain

■Lu = k A
Tq -  ut -jAat

dTi
ydr  ^

, where r = u t ,

T,(t) = A [ W ‘je -^ 'd ^  + B ,

and

U t )  = A p ^ j e - ^ ' d ^  + B.

(4.27)

(4.28)

(4.29)

In Eq. (4.27), the term — -  is known as from the solution of the
dr Ar

liquid temperature. In Eqs. (4.27)-(4.29), A, B, solidification speed, d s/d t, and wall 

temperature To, are unknowns. However, during solidification, we first specify one 

constant (solidification speed) and calculate the wall temperature. Then, we fix the wall 

temperature (at a certain value) and calculate solid growth. These two stages go in 

sequence, so at any one time, there is only one unknown, solidification speed or wall 

temperature. As a result, we solve the problem using Eqs. (4.27) - (4.29).

Eliminating the constants A and B in Eqs. (4.27)-(4.29), we obtain

To(t)
( r o s y  - n>

(4.30)
■jAal

This is the equation that relates the wall temperature Tq to the solidification speed ds/d t, 

the interface temperature T^, and time t. In what follows, we give solutions for two 

solidification cases: solidification under a constant speed, and solidification under a fixed 

wall temperature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

4.5.2.1 Solid Growth at a Constant Speed. In this case, we first calculate the liquid 

phase temperature by solving the linear system as introduced in section 4.5.1. Then, from

dTi
the liquid temperatures at the interface and Qf can be calculated as

. If the solid layer grows at a constant speed u, then ds(t)/dt = u and s(t) -  ut
Ar

with s(0) = 0. Replacing s(t) by ut and Qr by in equation (4.30), one
Ar

obtains the surface temperature To(t) profile over time.

H+1 _|H+i (n3-5(0)̂  - 'h
m  = + •" (4.31)

Âal

To obtain the temperature distribution Ts(r, t) within the solid, we subtract Eq. 

(4.28) from Eq. (4.29) to give

^  ^ Integral = (4.32)
Integral ^

Subtracting Eq. (4.26) from Eq. (4.28), one obtains

-  '■o
U r , t )  = T , - A  4 ^ ‘ U - ^ d ^ .  (4.33)

^4at

4.5.2.2 Solid Growth after the Wall Temperature Reaches a Lower Limit. When 

the wall temperature reaches a certain fixed point, the solid layer growth slows down as 

time proceeds. We first calculate the solid layer growth for the next time step using 

iteration, then calculate the liquid temperature distribution using the method in section 

4.5.1. At last, we will derive the anal)4ic solution for the solid phase.

With time, To(t) will drop to a point imposed by the cooling utilities. After the 

temperature reaches this point, say Tq̂  at time t‘̂, and the solid layer width reaches s‘̂, one
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may hold the surface temperature at and then let the solidification process continue 

with the initial width 5 .̂ In this case, the liquid temperatures at the interface rJ" and

dT, j | «  _ j | "  

are Known, tsy aiscreuzmg ‘ ‘ ^TA are known. By discretizing Qf to —   we replace To(t) by Tg  ̂ and Qj-

r J ” -Tfl"
by — y------ y±L in Eq. (4.30) to obtain the first-order nonlinear ordinary differential

Ar

equation:

K  = T J t ) + ^ ( - L i  + k , ^ i ^ ) e  (4.34)

dsSince the wall temperature is fixed, the solidification speed —  is no longer a
dt

constant. In order to solve for the solid layer growth at the next time level, we discretize 

ds A.y
—  as — . Since calculation of the liquid phase temperature distribution uses fixed grid 
dt At

points, are dependent on the values of r ,|” for i . j  = 0,I,...,N. This requires that As

should be fixed. In order to calculate for solid growth with fixed A.S, we construct a 

function f(s, t), and let

f ( s , t )  = ^  (4.35)
ds

or

1 ds
f{ s , t )  dt

By substituting Eq. (4.36) into Eq. (4.34), we solve for f(s, t) and obtain

(4.36)
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= --------------------------  -̂----------------  . (4.37)
„  4 a l  , r. ■‘/I/If ■‘ /Iw + l 

ro I &r

(fo -■/(<)) ^ i e - ’'d x

Using the 4̂*̂ order Runge-Kutta method, one obtains the solution,

h+\ ~ t - + \{k-^+2k2+'2.k^+k^), / = 0,1,2,..,M  , (4.38)

where

K = h f(s , , t i )  

kz = h f ( S i + ^ , t i + ^ )

ki = h f ( s , + ^ , t . + ^ )  
k, = h f i s .+ h j .+ k ^ )  

t o=t" ,  ^0=^"

h = ~
M '

As such, the next time level for growth of the next solid layer is equal to Im-

After solid growth is achieved, one can calculate the liquid temperature

distribution 7]|". \  j  = OX,—,N  + l.  and will be used in the next time level for

calculating growth of the solid layer. Then, one can solve for the temperature distribution 

in the solid phase by using the same method in section 4.5.2.1,

r,(r,<) = T „ - a ! ^  ie-^'d4, where A = (3.40)

and

T, = ^   . (3.41)

tJ  a h ^

where

=7---------------------------------------------------------------------------------- (3.42)
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4.6 Algorithm

A procedure for predicting solid growth from melt crystallization can be written 

as follows:

Phase A. Given a constant speed u, calculate the liquid phase temperature 

distribution by solving the linear system in Eqs. (4.16)-(4.17). Then, by 

coupling with the interface equation, solve for the solid layer temperature 

distribution and the surface (wall) temperature To(t) until it reaches the 

constraint, To(tno) — Tq̂ .

Phase B. Fix the wall temperature To at Tq̂. Fix /Is and set s„o = s(t„o). Solve for 

using the 4* order Runge-Kutta method, then calculate the liquid side 

temperature distribution by solving the linear system of Eqs. (4.16)-(4.17) 

as in phase A. Then, by coupling with the interface equation, solve for the 

solid layer temperature distribution. Continue with the next solid growth 

until the solid growth rate falls below a threshold.

The steps for solving this problem are listed below:

Step 1: initialize At, Ar, t=0, s, u, C.

Step2: increment time t=t+At, s = u*t\

Step 3: calculate the interface temperature using Eqs. (4.10) and (4.11).

Step 4: calculate the melt temperature J/by solving the linear system in Eqs.

(4.16)-(4.17).

Step 5: calculate Qr by .
Ar

Step 6: calculate the wall temperature To using Eq. (4.31).
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Step 7: calculate the solid temperature distribution Ts using Eqs. (4.32) and

(4.33).

Step 8: check if To<=To^. 

liTo<=To\

Fix the wall temperature at Tq.

Continue with Step 9.

Else,

Continue with Step 2.

Step 9: increment solid growth s=s+Ar.

Step 10: calculate using Eqs. (4.37)-(4.39).

Step 11: calculate A t-  and c = — .
At

Step 12: calculate the interface temperature Tm using Eqs. (4.10) and (4.11). 

Step 13: calculate the melt temperature T/by solving the linear system in Eqs.

(4.16)-(4.17).

dTj
Step 14: calculate Qf by

Ar

Step 15: calculate the solid temperature distribution Ts using Eqs. (4.40)-(4.42). 

Step 16: check if  c <£

If c <e

Stop.

Else,

Continue with Step 9.
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CHAPTER FIVE 

MODEL APPLICATION

This chapter presents specifications and requirements for applications of the two 

models developed in Chapters Three and Four. One application on separation via melt 

crystallization of para-dichlorobenzen from binary compound of two isomers (para- 

dichlorobenzen and ortho-dichlorobenzen) will be given. Parameters adopted for the 

models and the intermediate variables calculated will be described.

5.1 Application Requirements of the Models

The simplified model built in Chapter 3 and the complete model built in Chapter 4 

are based on certain specifications including the kind of devices that should be used, and 

the kind of substances that can be separated. Whether or not a process follows model 

specifications will determine the success of the application of the model.

5.1.1 Utilities

The two models in Chapter 3 and Chapter 4 give solutions for one-dimensional 

solidification problems as illustrated in Figures 3.1 and 4.1. As explained in Chapter 3 

and Chapter 4, the simplification from three- to one-dimension requires that the ratio of 

the length of the cylinder to its diameter should be large, and the cylinder should be 

circular and symmetric.

57
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The models deal with the inverse heat conduction problem. The output of the 

models is the wall temperature profile for a constant solidification speed and solid layer 

growth after the wall temperature reaches a lower limit. The temperature distribution in 

the solid (simplified model) or the temperature distributions in both solid and liquid 

(extended model) will be calculated to demonstrate the solidification process.

The simplified model in Chapter 3 is based on the assumption that the bulk 

temperature is constant with no gradient along the radius of the cylindrical crystallizer. 

This requires that the melt should be evenly mixed during the solidification process.

The extended model in Chapter 4 allows for a radial temperature gradient in both 

the solid and liquid phases. In this case, the melt has a temperature distribution which 

decreases from the center to the interface.

5.1.2 Components of the Compoimd

In this study, we model solid layer growth from melt crystallization in the case of 

a binary compound. The component in the solid layer is pure and the melt contains the 

binary compound. Systems with more than two components typically behave similarly to 

binary systems if  the components do not interact with each other.

It is assumed that the two components are not miscible, thus forming a eutectic 

system (see Chapter 2 for details). Eutectic behavior is necessary for solid layer growth 

from melt crystallization. Consider the example in Fig. 2.1 with two components, A and 

B. If one wishes to separate component B  from the A, B  mixture, the initial composition 

of B should fall on the right side of the eutectic point {E), that is, it should be larger than 

Xe. Otherwise, component A will be solidified out first.
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The models developed in this study are more suitable for the separation of organic 

compounds which are usually difficult to separate using some other techniques.

5.2 Model Application

5.2.1 Selection of the Compound

To test our combined analytic and numerical method, we employ the models to 

simulate the inward solidification of para-dichlorobenzene from the binary ortho- 

dichlorobenzene (ODCB) and para-dichlorobenzene (PDCB) compound. This compound 

is an isomeric mixture (Table 5.1) that is of significance in industry. It is a good 

candidate for melt crystallization due to the serious challenges that separation via 

distillation would present.

Table 5.1. Technical specifications of the two components, ODCB and PDCB^’̂ 1

Chemical Name Orthodichlorobenzene Paradichlorobenzene

Molecular Formula C6 H4CI2 C6H4CI2

Molecular Weight 147.00 147.00

CAS Registry Number 95-50-1 106-46-7

Chemical Structure

Cl/■
/' f" ) w a a —; :■ ) —Cl

Other Names
1,2-  Dichlorobenzene, 

ODCB, 0-Dichlorobenzene

1,4-  Dichlorobenzene, 

PDCB, P-Dichlorobenzene

Ortho-dichlorobenzene is used primarily in the sjmthesis of 3,4-dichloroaniline, 

which is used in the production of herbicides. It is also used in the manufacture of dyes, 

as a solvent in paint removers and engine cleaners, and as a de-inking solvent. Para-
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dichlorobenzene is used in the manufacture of 1,2,4-trichlorobenzene, polyphenylene 

(Polyphenylene is a commercial polymer known as Ryton®, having many industrial 

applications^^^^), sulfide resins, room deodorants, moth proofing products, and as an 

intermediate in the dye and insecticide industries^^* .̂

5.2.2 Parameter Settings

In order to better describe the parameters of the system, we list the governing 

equations and boundary conditions for the models as described in Chapters 3 and 4.

For the simplified model in Chapter 3, the equations are

\ dT  ̂ \ d  dT
a  ot r or or

\  or J at

Ts(ro, t) =  To, r  =  ro,

Ts(ro -  s(t), t) =^Tm, r = ^ r o -  s(t),

X' = A, + Cpi(Tb- T„f), 

Tb - Tm=C.

For the complete model in Chapter 4, the equations are

1 57; 1 5 ,  5 J ,, , .
a ,  o t r  o r  o r

Uf dt

^  dsjt) 
dt

Ts{rb,t)^T^,

1 5 ,  571. _( r ^ ) ,  Q < r< r^-s{ t) ,  
r or or

= k.
(d T .\

- k . —  L ri  a -  J . 5r J

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)
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TXr,-s{t) ,t)^T„,  (5.11)

TXr,-s{t),t) = T^, (5.12)

^  = 0, r = 0. (5.13)
dr

Of the two models, the interface temperature Tm is calculated by the Van Laar Equation, 

M X  1  L)
liquid )  ~  \  f  )

^  (5.14)
where

(5.15)
[̂ 0

In Eqs. (5.1)-(5.15), the radius of the cylinder ro is taken as 60mm. The heat 

diffusivity of the solid a  and as in Eqs. (5.1) and (5.7), and the heat diffusivity of the 

liquid ai in Equation (5.8) are calculated in the next section. In Eqs. (5.2) and (5.9), the 

thermal conductivity of PDCB (^i)is 0.14473W/mK. In Equation (5.2), the solid density 

of PDCB ip) is 1.241kg/m^. I ' i s  calculated from Eq. (5.5), and the heat convection 

coefficient {hi) is 150W/mK. In Eq. (5.5), the heat released from crystallization (A) is 

18,160J/g mole, and the specific heat (Cpi) is 170.9J/g mole. The constant in Eq. (5.6) is 

taken as 1. In Eq. (5.9), the latent heat per unit volume of solid (L) and the heat 

conductivity of liquid (ki) are calculated in the next section.

In Eqs. (5.14) and (5.15), because we assume that the solid is pure, the 

composition of the solid Xj is 1. The gas constant R is 8.32J/gmoleK. The molar heat of 

fusion AH{  and the liquidus temperature of the two components, oDCB and pDCB, are 

129301/gmole, 181601/gmole, and 256K, 326.1K, respectively. The initial composition of
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pDCB in the melt is considered to be 0.95 or 0.8. Table 5.2 summarizes some of 

the parameters used in the models.

Table 5.2. Parameters used in applications of the modelŝ ^̂ '̂ "*̂

NAME UNIT VALUE

r o mm 60

k s ( P D C B ) W/mK 0.14473

k i ( P D C B ) W/mK 0.105

k i ( O D C B ) W/mK 0.121

C p i ( P D C B ) J/gK 1.188(liquid), 1.005(solid)

C p i ( O D C B ) J/gK 1.159(liquid)

p ( P D C B ) kg/L 1.2475(liquid), 1.241 (solid)

p ( O D C B ) kg/L 1.3022(liquid)

h i W/mK 150

X J/g-mole 18,160

c K 1

R J/gmoleK 8.32

X s N/A 1

X i n i t N/A 0.95, 0.8

T j ( P D C B ) K 326.1

t J ( O D C B ) K 256

A f / u s ( P D C B ) J/gmole 18,160

A P f u s ( O D C B ) J/gmole 12,930
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The solution to the simplified model is as follows:

When the solidification speed is fixed, the wall temperature profile is

1 r / \ i . 'p
d ^ . ( 5 A 6 )

■Jial

The solid temperature distribution is

7-,(r,0 = T , - A p P j e - ^ ' d ^ ,

where

T ( t \ - T  (t) 2
j  = _oW ^  integral = R ,  d B .

Integral ^ ^

When the wall temperature is fixed, solid growth is given by

,«+i
ôld n+ K  ’

where

(5.17)

(5.18)

(5.19)

1) ^  T ; - ' _ A  [pX [t, -  )]{r, -  ) e e - ^ d B - T . F
yl*a‘n+l

(5.20)

The solid temperature distribution is

TXr,t) = T , - A \ 7 p j e - ^ ' d B ,  where A =
l̂4at

(5.21)

In Eqs. (5.16)-(5.18), solidification speed is taken to be 0.0005, 0.001, 0.0025, or 

0.005mm/s. The time grid At is Is.

The solution to the extended model is as follows:

The liquid temperature distribution is calculated by solving the linear system
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, p | « + i  r r \ X

 ̂ ' I7_____
a. At

\ - 9  1

+

Vj Ar 

0 1
Vj Ar

r. , ( r , r  - 7 ; r ) - r .  , ( r J " - r J "  ).y+4VM,+i i \ j j  7-4V 'I7 'I7-1/.

(5.22)

When the solidification speed is fixed, the wall temperature profile is given by

{ro-s(l)r -

•J*al

d4. (5.23)

The solid temperature distribution is

r^(r,t) =
J4at

(5.24)

where

j  -  ^ 0^ — '̂ m (()  ̂ Integral =  ̂ ^'r •
Integral

After the wall temperature is held constant, we fix As and calculate the time needed 

to grow the solid layer by a As increment. The next time level is given by

h+\ ~ + i(^ i + ' ^ ^ 2  +2A:3 + k^), i = 0,1,2,..,M with t"^  ̂=tM, (5.25)

where

and

K = hf(S; , t i )

K  = h f ( s , + \ , t i + T )
ks =  h f ( s , + ^ , t i + ^ )  

ki = h f ( s . + h , t i + k ^ )

h ^h = — ,
M

(5.26)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

(5.27)
+ Ar

(̂ 0 X

■J4al

dx

The temperature distribution in the solid is

T^{r,t) = T q~ A JV ^ j e   ̂ d^, where A =
■iiat

m - u t )
JTa 1

(5.28)

£1
d^

In Eqs. (5.22)-(5.24), the solidification speed is considered to be 0.0005, 0.001, 0.0025, 

or 0.005mm/s. The time grid A t  is 3s, and the space grid A x  is 3E-4mm/s. 0is 0.495.

5.2.3 Calculation of Compound Properties

• Calculation of Eutectic Temperature:

It is noted that ortho-dichlorobenzene and para-dichlorobenzene form a eutectic 

solid-liquid phase. The eutectic temperature, Teu, of the system is important because it 

provides a constraint in which selective crystallization of a desired component occurs. 

Below the eutectic temperature, the binary solution can exist only as a solid. A prediction 

of the eutectic temperature, Tgu, can be obtained by simultaneously solving for 

X i i q u i d ( o r t h o ) ,  X i i q u i d ( p a r a ) ,  and from the Van Laar equation (5.14). This is given by:

and

^r{x.aoDCB)\ =  M M

= M M

1 1
n io D C B ) (5.29)

Tj ipDCB) (5.30)

coupled with the mass balance equation

X u , A o D C B h  X ^ ^ i p D C B )  =  1 . (5.31)
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It should be pointed out that the form of the Van Laar equation used in Eqs. (5.14) and 

(5.15) assumes that the activity coefficients of both components are equal to one. The 

assumption that ortho- and para-dichlorobenzene form an ideal mixture was verified by 

comparing the experimental eutectic temperature reported in the International Critical 

Tables with the calculated eutectic temperature. Calculated and literature eutectic 

temperature and concentration varied by only 0.02% and 1%, respectively, demonstrating 

that ortho- and para-dichlorobenzene can be modeled accurately as an ideal mixture. We 

found, from the National Institutes of Standards and Technology’s pure-component 

database^^^^ AH^a and T̂ a to be 12,930 J/g-mole and 256 K, respectively, for ortho- 

dichlorobenzene, and 18,160 J/g mole and 326.1 K, for para-dichlorobenzene. As such, 

we obtained Tm = 250.2K, which means that J'e„=250.2K.

• Calculation of thermal diffusivity 

From Chapter 2, we know that thermal diffusivity affects any conductive transient heat 

transfer process within the medium. It is defined as

a  =  ( 5 .3 2 )
p C ,

where a  is thermal diffusivity (m^/s), k is thermal conductivity (W/(m K)), p  is density 

(g/m^),and Cp is specific heat (J/(s K)).

From Eq. (5.32), we can calculate the thermal diffusivity of the solid (pure 

PDCB), a  (in the first model) and (in the second model). Because the liquid represents 

a mixture of two components, we calculate the compound thermal diffusivity based on 

the proportion of the two components.
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Suppose the compound thermal conductivity, density and specific heat in the 

liquid are ki, pi and Cpi, respectively, then the compound thermal diffusivity ai is defined 

as

a , = — L .  (5,33)
P i  ■ ^ p l

We should point out that as the solidification proceeds, the composition of the 

components changes with time. Thus, the compound thermal diffusivity changes with 

time.

• Calculation of L, ki and pi and Cpi

L in the interface Eq. (5.9) for the extended model represents the latent heat per unit 

volume of the solid. It is calculated by the following formula.

n+I
L = p X ' ,  whereX'= X + CpiiTi  ^  (5 3 4 )

The compound thermal conductivity ki, density pi, and specific heat Cpi in the liquid 

are used in the extended model to calculate the compound thermal diffusivity. ki is also 

used in the interface condition, Eq. (5.9). The values of these parameters change as the 

solid layer grows and they are directly related to the composition of the two components 

in the liquid.

The proportion of PDCB in the liquid is given by

= , , ,, ,  (5.35)
[̂ 0 -S(t)]

where Xi„it is the initial proportion of PDCB in the melt, Xg is the proportion of PDCB in 

the solid, ro is the radius of the cylinder, and s(t) is the solid layer width at time t.
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Suppose the thermal conductivities, densities, and specific heats of PDCB and ODCB are 

ki, pi, Cpi, and k2 , P2 , Cp2 , respectively, then the compound thermal properties will be

k, =  (5 .3 6 )

P i “  ^  liquid P \ ^liquid^P 2  ̂ ( 5 -3 7 )

Cp, -  (5 .3 8 )

In this chapter, all the parameters necessary for model application are introduced 

and explained. Model results and discussion are given in the next chapter.
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CHAPTER SIX 

RESULTS AND DISCUSSION

6.1 Simulation Design 

In order to test the simplified model in Chapter 3 and the extended model in 

Chapter 4, we simulate the inward solidification of para-dichlorobenzene from the binary 

orthochlorobenzen (ODCB) and para-dichlorobenzen (PDCB) compound in a cylindrical 

crystallizer. The radius of the container is fixed at 60mm.

There are some constraints considered during simulation. First, based on the 

thermal properties of the two components given in Chapter 5, the eutectic temperature Teu 

= 250.2K. During solidification, the solid-liquid interface temperature cannot fall below 

Teu- Second, we set the constraint for the cooling utility to be 290K, which means that 

when the wall temperature reaches 290K, it will stop decreasing although the 

solidification will continue for some time. Third, before solidification, we first preheat 

the melt temperature evenly to a specified temperature. The initial melt temperatures are 

316.5K and 324.6K with an initial composition of PDCB of 0.8 and 0.95 mole fractions, 

respectively. For the simplified model, the melt temperature is maintained constant along 

the radius. It decreases with the solid-liquid interface temperature and is set to be always 

IK higher than the interface temperature. For the extended model, the melt temperature

69
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decreases from the center of the cylinder to the solid-liquid interface and is calculated by 

solving the linear system in Eq. (4.16)-(4.17) as explained in Chapter 4.

To demonstrate the effect of the models, we ran the simulation for different 

parameters including speed, u (5.0e-6m/s, 2.5e-6/s, 1.0e-6m/s, and G.5e-6m/s), and initial 

concentration of PDCB, X mi (0.8 and 0.95). In addition to the wall temperature profiles, 

we also output the interface temperature Tm over time, the solid width s, and the 

temperature distribution in the solid (simplified model) and in both of the liquid-solid 

phases (extended model).

6.2 Simulation Results 

Figure (6.1) depicts the surface (wall) temperature profiles necessary to achieve 

four different constant crystallization speeds with an initial para-dichlorobenzene mole 

fraction of 0.95. The four constant speeds tested were 0.005, 0.0025, 0.001, and 

0.0005mm/s. We fixed the wall temperature when it reached the operation limit, that is, 

Tô  = 290K. The crystallizer wall temperature profiles determined by the models 

presented in this study represent the temperature profiles that are necessary to maintain a 

constant crystallization rate. The highest crystallization rate 0.005mm/s required an 

average wall temperature drop of 64°K/h and 53°K/h for the simplified and the extended 

model, respectively. A lower cooling rate is not expected to affect product purity, but 

would increase the cycle time of the process. The increase in the cycle time would 

increase the size of the static crystallizer necessary to achieve a given throughput. 

Commercial vendors such as Suzler Chemtech^^^  ̂ (Switzerland) and BEFS 

Technologies^’^̂ (France) provide static crystallizers in which the cooling profile is 

controlled with a high degree of precision. If the standard equipment available from these
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or other vendors cannot achieve the desired cooling rate, one would have to determine if 

the additional capital required to achieve the faster cooling rate outweighed the increase 

in capital required from a larger crystallizer.
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Wall Temperature Profiles at Different Speed (model 1)
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Figure 6.1. Solid-layer growth with Xjnit = 0.95 mole fraction at four different constant 
speeds, 0.005, 0.0025, 0.001, and 0.0005mm/s, and 70“̂ = 290K
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Tables 6.1 and Fig. 6.2 give the statistical results from the two models. From 

these results we can see that, given a certain constraint To'̂ , one could significantly 

increase the solid layer growth by decreasing the solidification speed. Also, model 2 

(extended model) gives more solid growth than model 1 (simplified model).

—♦—Model 1 
- Model 2

30^
25

20 u

10—

3.00&03 2.00E-03
Solidification speed (mm/s)

1.00E-03 O.OOEfOO6.00E-03 5.00E-03

Figure 6.2 Relation of solid layer growth to solidification speed
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Table 6.1 Calculation results from the two models at different solidification speeds

Solidifieation

Speed

Results of 

Simplified model

Results of 

Extended model

Decreasing rate of 

wall temperature

5.0E-6m/s 64K/h 53K/h

2.5E-6m/s 24K/h 17.1K/h

1.0E-6m/s 6.2K/h 3.5K/h

0.5E-6m/s 2.4K/h 1.5K/h

Time to reaeh the 

operation limit 

(290K)

5.0E-6m/s 1,852s 2,238s

2.5E-6m/s 5,041s 7,134s

1.0E-6m/s 19,522s 34,380s

0.5E-6m/s 50,225s 78,990s

Solid layer width 

when the operation 

limit is reached

5.0E-6m/s 9.3mm 11.2mm

2.5E-6m/s 12.6mm 17.8mm

1.0E-6m/s 19.5mm 34.4mm

0.5E-6m/s 25.1mm 39.5mm
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Wall Temperature Profiles with Different Xinit (model 1)
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Figure 6.3. Wall temperature profiles over time for two different initial concentrations 
Xinit = 0.95 and 0.8 with a speed of 0.005mm/s and = 290K
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Table 6.2 Results from two models for different initial concentrations

Initial

Concentrations

Simplified

Model

Extended

Model

Decreasing rate of wall 

temperature

Xinit -  0.95 64K/h 53K/h

Xinit = 0.8 72K/h 59K/h

Time to reach the 

operation limit of 290K

Xinit = 0.95 1,852s 2,238s

Xinit = 0.8 1,276s 1,569s

Solid layer width when 

the operation limit is 

reached

Xinit = 0.95 9.3mm 11.2mm

Xinit = 0.8 6.4mm 7.8mm

Figure 6.3 and Table 6.2 show the crystallizer wall temperature over time for two 

different initial concentrations, Xi„it = 0.95 and 0.80. The crystallization rate for both 

concentrations is maintained at a constant rate of 0.005mm/s. The models predict that the 

lower initial concentration will require a slightly higher average rate of decrease in 

crystallizer wall temperature to maintain the same crystallization rate, and the lower 

initial concentration will also grow less solid when the operation limit is reached. Both 

models show the same trends, and the extended model, compared with the simplified 

model, requires less rate of decrease in crystallizer wall temperature, needs more time to 

reach the operation limit, and can grow more solid.
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Solid layer growth at different Xinit (model 1)
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Figure 6.4. Total solid-layer growth from melt crystallization 
with a speed of 0.005mm/s and = 290K
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Fig. 6.4 shows solidification in the radial direction that occurs given the cooling 

rate of 0.005mm/s and = 290K. The position depicted in Fig. 6.4 is the interface 

between the solid and liquid at a given time. Because the lower concentration requires a 

higher rate of decrease in the crystallizer wall temperature in order to achieve a given 

solidification speed, it also needs less time to reach the operation limit (in this case, 

290K), as shown in Table 6.2. After the wall temperature is fixed at 290K, the 

solidification speed slows down. As time proceeds, the solid layer growth becomes 

slower and slower. If a threshold for the growth speed of the solid is specified, one can 

use the model to calculate the time required for the solidification speed to fall below the 

threshold, thus leading for a termination for the crystallization process.

Fig. 6.4 also indicates that a lower initial concentration will grow less solid after 

the wall temperature is fixed.
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Solid s ide temperature distribution a t  different times (model 1)
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Figure 6.5. Temperature distributions at different times
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Figure 6.5 depicts the temperature profiles that exist in the solid phase (simplified 

model) and both solid and liquid phases (extended model) for Xinit = 0.95 at different 

times. The solid-liquid interface for the extended model is identified by a small vertical 

bar in the figure. The crystallization rate was held constant at 0.005mm/s. Large 

temperature gradients are clearly evident in the solid phase. Since the liquid has a lower 

compound thermal conductivity than the solid (see Chapter 5 for parameters), it shows 

lower temperature gradients. The poor thermal conductivity of the organic compounds 

creates challenges in maintaining the desired crystallization rate.
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Interface temperature profiles at different Xinit (model 1)
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Figure 6.6. Interfacial temperature change with time
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Figure 6.6 shows the solid/liquid interface temperatures as a function of time for 

Xinit = 0.95 and 0.80. The reduction in interfacial temperature is determined by the liquid 

concentration using the Schroder-van Laar equation. The reduction in the melting point 

as a function of bulk liquid concentration must be accounted for, due to the significant 

thermal resistant that the solid layer imposes. Neglecting the change in liquid 

composition would predict a shorter cycle time than required, which would result in 

undersizing of the crystallizer equipment.

6.3 Discussion

For the simplified model (model 1), the liquid is fully stirred and the temperature 

in the liquid is constant in the radial direction. Heat convection is considered in the 

model. For the extended model (model 2), the liquid is still and the liquid’s temperatures 

decrease from the center of the cylinder to the solid-liquid interface. Based on these facts, 

the two models adopted different interface equations. From the results, we can see that by 

changing the solidification speed from 0.5e-6m/s to 2.5e-6m/s, the cooling rates of the 

crystallizer wall fall between 2.4~24K/h and 1.5-17.IK/h for the simplified and extended 

model, respectively. These are in accordance with the experimental results by Duardani, 

et aF*l Guardani, et al, chose cooling rates ranging from 2.4K/h to 24K/h for 

crystallizing e-caprolactam from a binary compound with water as impurity. They also 

considered two cases, static layer crystallization, in which only natural convection 

influences mass and heat transfer, and dynamic layer crystallization, in which forced 

convection is obtained by pumping the mother liquor as a falling film on a heat 

exchanger.
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From the results of this study, we can conclude that the simplified model needs 

higher cooling rate than the extended model to achieve the same solid layer growth rate. 

In other words, higher layer growth rate can be obtained when using the extended model 

at the same cooling rate. This is due to the heat transfer conditions between the melt and 

the solid-liquid interface. Since, in the extended model, the melt is still and a temperature 

profile across the melt is established, the melt can reach a lower temperature during the 

crystallization time.

Results from the two models show the same trend, namely that a lower initial 

concentration requires a higher cooling rate of the crystallizer wall in order to maintain 

the same crystallization rate. Hence, less time is needed to reach the operation constraint, 

thus leading to less solid layer growth.

The extended model is preferred, since more crystal growth will occur under the 

same conditions as for the simplified model. A combination of the extended model with 

information concerning investment and operating costs for items such as the heat 

exchange area, pumping, and heating power, will lead to an optimal design of a layer 

crystallization process.
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CHAPTER SEVEN 

SUMMARY AND FUTURE WORK

7.1 Summary

In this dissertation we combine analytic and numerical methods for predicting 

solid-layer growth from melt crystallization. First, we predict the wall temperature profile 

over time for achieving solid separation from the melt at a constant rate. Second, we 

predict the rate of crystallization (or solid formation) when the wall temperature is held 

constant at a certain value equal to the lowest temperature that is operationally feasible. 

Third, we predict the temperature distribution in each of the solid and liquid phases. By 

considering a temperature distribution in the solid phase and holding the liquid phase’s 

temperature constant in the radial direction, an analytic model was developed by using 

dimensional analysis. This model was then extended numerically to account for a 

temperature distribution in each of the phases, liquid and solid. Applications of the two 

models were demonstrated with an example involving crystallization of para- 

dichlorobenzene from the ortho-dichlorobenzene and para-dichlorobenzene binary melt. 

Results from both models were analyzed and compared.

Results showed that a lower initial concentration required a higher cooling rate of 

the crystallizer wall in order to maintain the same crystallization rate. Hence, less time 

was needed to reach the wall temperature operation constraint, thus leading to less solid

84
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layer growth. By comparing the results of the two models, one can conclude that the 

second model in which there is a melt temperature gradient in the radial direction is 

preferred, since more crystal growth will occur under the same conditions as for the first 

model.

7.2 Future Work 

Future studies to consider are the following:

• In the first model (analytic model), the temperature in the melt is considered 

constant in the radial direction. During modeling, the melt temperature is set to be 

a constant degree higher than the solid-liquid interface temperature. Other cases 

may be considered such as a melt temperature which decreases at a different rate 

from the solid-liquid interface temperature, or a melt temperature that is held 

constant over time.

• There are three modes of directional melt crystallization as explained in Chapter 

2. This study deals with the inward cylindrical radial mode. The models built here 

can be easily modified to adapt the outward cylindrical radial mode.

• The examples chosen in this study are two organics, para-dichlorobenzen and 

ortho-dichlorobenzen. Further studies may consider different organics, or non- 

organic substances.

• For model validation, experiments can be run with the same wall temperature 

profile (cooling rate) as predicted from each model, and observed solid layer 

growth can be compared to that predicted from the model.
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Program 1: Source code for simplified model

This program uses simplified model to calculate solid layer growth at constant speed. The 
liquid temperature is considered constant in radial direction. First, it calculates the 
crystallizer wall temperature profile at a given constant solidification speed. Then when 
the wall temperature reaches the operation limit (290K), the solid layer growth rate is 
calculated. The temperature distributions of solid in both cases are calculated.

#include <iostream.h>
#include <math.h>

double C; //the solidification speed
double rO; //the radius o f  the cylinder
double TO; //the outer wall temperature
double Tb; //the bulk(liquid) temperature
double Tm; //the solid-liquid interface temperature
double Teu; //Eutectic temperature for the binary mixture

double lamda2; //sum  o f  heat o f  crystallization and latent heat

//constant variables
double alfa; //thermal diffusivity o f  solid (PDCB)
double Ks; //thermal conductivity o f  solid
double P; //density o f  solid
double lamda; //heat released by crystallization
double he; //heat convection coefficient
double Cpl; //specific heat
double Xliquid; //composition o f  PDCB in liquid
double deltaHaf; //molar heat o f  fusion
double Taf; //liquidus temperature o f  PDCB
double Xinit; //initial composition o f  PDCB in liquid
double Xs; //m ole fimction params.
double R=8.32/147; //gas constant

const int DIFF = 1; // Tb - Tm

//constant for controling the output 
const int OUT_Tm =  1; 
const int OUT TO = 2; 
const int OUT Ts = 3;

const int OUT = OUT TO;

/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

// function used to calculate the term inside the integration 
// input: X
// output: value o f  the term

double fun(double x)
{

return 1/x * exp(-x*x);
}
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/ /= = = = = = ^ = = = 3 = = = = = = = = = = = = = = = = = = =

11 function used to calculate interface temperature 
11 input: solid layer width ss 
11 output: interface temperature Tm
/ /= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

double getXm(double ss)
{

return 1.0 / ( 1.0/Taf - (R/deltaHaf)*log( rO*rO/((rO-ss)*(rO-ss)) *(X init-X s)+X s));
}

// function used to calculate integaration 
// input: lower limit and upper limit 
// output: remit o f  integration
1 1 = = = ^ = = ^ = = = = ^ = = :^ = = ^ = = = = = = := =

double myIntegral(double bot, double top)
{

long int n =  10000; 
double h =  (top - bot)/n; 
double XI, XIO, XII, XI2, X;

XIO = fun(bot) + fun(top);
XII =  0;
XI2 = 0;

for(inti= 1; i<n; i++)
{

X = bot + i*h;

if(i%2==0)
XI2 = XI2 + fun(X);

else
XII = XII + fun(X);

}

XI = h*(XIO + 2*XI2 + 4*X Il)/3; 
retum XI;

//======—=— ==================™=
// fimction for calculation the solid width after stopping 
// decreasing o f  TO, using Runge-Kutta iteration.
//--------------------------------------------------------
double function(double t, double s)
{

double bot, top, integral, result;

top = r0/sqrt(4*alfa*t);
bot =  (r0-s)/sqrt(4*alfa*t);

integral =  myIntegral(bot, top);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

Tm = 1.0 / ( 1.0/Taf - (R/deltaHaf)*log( rO*rO/((rO-s)*(rO-s)) *(X init-Xs)+X s));

Tb = Tm + DIFF; //temporarily set Tb-Tm constant 

lamda2 = lamda + Cpl * (Tb - Tm);

result = ( (Tm - TO)*Ks/(rO-s) * exp((-l)*(r0-s)*(r0-s)/(4*alfa*t)) / integral - he*(Tb-Tm )) / 
(P*lamda2);

retum result;

}

double RungeKutta(double a, double b, double init)
{

double w;
double k l, k2, k3, k4; 
const int N  = 10; 
double h, t;

h = (b-a)/N; 
t = a; 
w = init;

for(int i= l ;i<=N;i++)
{

k l = h*function(t, w); 
k2 = h*function(t + h/2, w  + k l/2); 
k3 = h*function(t + h/2, w  + k2/2); 
k4 = h*function(t + h, w  + k3);

w  = w  + (k l + 2*k2 + 2*k3 + k4) /  6; 
t =  a +  i*h;

}

retum w;

}

double Euler(double a, double b, double init)
{

double dt; 
double ret;

dt = b - a;
ret =  init + dt * function(a, init); 

retum ret;

/=
// begirming o f  the main function

int main(void) 
{
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double s;
double bot, top, integral; 
double A, Ts, r; 
intt, N;

//initialize the parameters
rO = 0.060; // m  - the radius o f  the bolk melt
s = 0 ;

//thermal properties o f  solid (pure PDCB)
Ks = 0 .14473; //W /(m k )
Cpl = 1.005; //J /gK
P =1.241e6; //g /m 3
alfa = Ks/(P*Cpl); // =1.1604E-7

lamda = 18160/147; //J /g
he = 150; //W /m K

deltaHaf= 18160/147; // J/gmole
Taf = 326 .1 ;/ /K
Xs = 1.0;

//= = = = variab les= = = == ===================================
Xinit =  0.95;
C = 5e-6;
/ / = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

Teu = 250.2; //K eutectic temperature

//print out the titles in the output
c o u t « " % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = " « e n d l ;
cou t«"% = =  C = " « C « "  -  X in it= " « X in it« en d l;  
switch(OUT)
{
case OUT TO: 
case OUT Tm:

cou t«"% t \t s \t Tm \t TO"; 
break;

case OUT Ts:
cou t«"% r\tT ";
break;

}
cou t«en d l;

//constant solidification speed 
for(t=l ;t<=70000;t++)
{

s = C*t;
Tm = getTm(s);

Tb =  Tm + DIFF;

lamda2 = lamda + Cpl * (Tb - Tm);
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top = r0/sqrt(4*alfa*t); 
bot =  (rO-s)/sqrt(4*alfa*t);

integral =  myIntegral(bot, top);

if(integral==0)
TO = Tm;

else
TO = Tm - 1.0/Ks *( P*lamda2*C + he*(Tb-Tm) )*(rO-s) * exp((rO-s)*(rO-

s)/(4*alfa*t)) * integral;

switch(OUT){ 
case OUT TO: 
case OUT_Tm:

if(t%200==0)
c o u t « t« " \t ' ’« s « " \ t " « T m « " \t " « T O « e n d l;

break; 
case OUT_Ts:

//output the inner temperatures in the solid 
if(t%300 == 0)
{

A = (TO-Tm) / integral;

c o u t« " % = = = = = = = = = = = = = = = = = “ = = = = = = = = = = = = = = = = = \n " ;
cout«"% s:'’« s « "  t : " « t « "  T m :" « T m « "  T O :"«T O «endl;

top = rO/sqrt(4*alfa*t); 
for(int i=0;i<=20;i++)
{

r = rO - i*(s/20); 
bot = r /  sqrt(4*alfa*t);
Ts = TO - A  * myIntegral(bot, top); 
c o u t« r *  10 0 0 « " \t" « T s « e n d l;

}
}
break;

//check if  the solidification ends 
if(Tm<=Teu){

//print out the ending temperature 
co u t« " \n  Solidification stopped.\n";
cou t«" %  t =  " « t  «"\tT O  = " « T O « " \ts  =  " « s « " \t T m  = " « T m ;  
retum 0;

}

if(T0<=290){ // calculation by fixing TO
cou t«" %  t =  " « t  «"\tT O  = " « T O « " \ts  =  " « s « " \t T m  = " « T m ;  
cou t« " \n % = = = = = = = = = = = F ix in g T O = = = = = = " ;
break;

}
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co u t« en d l« " % S to p  decreasing TO ."«endl;

//ealeulate the solid growth after stopping decreasing TO 
N  = t-1;

double a, b, init, dR;

for(t=N+l ;t<=60000;t++)
{

a = t-1; 
b = t; 
init = s;

dR = RungeKutta(a, b, init) - s;
//s = Euler(a, b, init); //updating s and Tm
s =  s + dR;

Tm = 1.0 /  ( 1.0/Taf - (R/deltaHaf)*log( rO*rO/((rO-s)*(rO-s)) *(X init-X s)+X s)); 

Tb =  Tm + DIFF;

switcb(OUT)
{
case OUT TO: 
case OUT Tm:

if(t%100==0)
c o u t « t « " \t" « s « " \ t " « T m « " \t " « T O « " \t %  " « d R « e n d l;

break;

case OUT_Ts:
if(t%1000 == 0)
{

top = r0/sqrt(4*alfa*t); 
bot =  (r0-s)/sqrt(4*alfa*t);

integral =  myIntegral(bot, top);

A  = (TO-Tm) /  integral;

c o u t « " % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \n " ;
c o u t« " % s :" « s « "  t : " « t « "  T m :" « T m « "  T O :"«T O «"

deltaR: " « d R « e n d l;

}
break;

top == r0/sqrt(4*alfa*t); 
for(int i=0;i<=20;i++)
{

r =  rO - i*(s/20); 
bot =  r /  sqrt(4’’'alfa*t);
Ts = TO - A  * myIntegral(bot, top); 
c o u t« r *  10 0 0 « " \ t" « T  s « e n d l;

}
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}

} //end of calculation after stopping TO 

retum(0);
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Program 2: Source code for extended model

This program uses extended model to calculate solid layer growth at constant speed. Both 
solid and liquid phases have temperature gradients in radial direction. First, it calculates 
the crystallizer wall temperature profile at a given constant solidification speed. Then 
when the wall temperature reaches the operation limit (290K), the solid layer growth rate 
is calculated. The temperature distributions of solid and liquid in both cases are 
calculated.

#include <iostream.h>
#include <math.h>

double C; //the solidification speed
double rO; //the radius o f  the cylinder
double TO; //the outer temperature
double Tb; //the bulk(liquid) temperature
double Tm; //the solid-liquid interface temperature
double Teu; //Eutectic temperamre for the binary mixture

double
double
double
double
double
double
double
double
double
double
double
double
double
double

alfa;
alfa2;
s;
r;
rl;
rr;
Ks;
Km;
P;
PI;
lamda;
lamda2;
Cpl;
L;

//heat diffusivity o f  solid
//heat diffusivity o f  liquid (compound)
//solid layer width
//radius variable
//index o f  left grid point
//index o f  right grid point
//thermal conductivity o f  solid
//thermal conductivity o f  liquid (compound)
//density o f  solid
//density o f  liquid (compound)
//heat released from crystallization
//sum o f  heat released from crystallization and sensible heat 
//specific heat
//latent heat for imit volume o f  phase transision

double Xliquid; //Composition o f  PCB in the liquid 
double deltaHaf; //molar heat o f  fusion 
double Taf; //
double Xinit; //initial composition o f  PCB in the liquid
double Xs; 
double R = 8.32/147;

//composition o f  PCB in the solid 
//gas constant. J/gmold K

double theta = 0.495; //distribution factor for implicit method

double deltaR 
double deltaT 
double deltaBigR;

//grid size 
//time step 
//space step

long int Jinit; 
long int I; 
long int J;

//number o f  grid points per space step (deltaBigR) 
//number o f  grid points in liquid phase 
//number o f  grid points in solid phase

//constant for controling the output
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const int OUT_Tm = 1; 
const int OUT TO = 2; 
const int OUT Ts = 3;

const int OUT = OUT TO;

//variables for calculation temperature distributions
const int MAX GRID = 200000; //total number o f  grid points through solid and liquid
const double PAI =  3.14159265;
double *T; //temprature distributions
double *Tarray; //the linear system for solving liquid temperature distribution for each step

//variables initializing linear system o f  the implicit scheme 
double to, t l ,  t2, t3, t4, t5;

double W ; //W  alts

int i, j, k;
int pre =0, cur =1; //variables for tracking iterations
int step l, step2; //variables for formating the output

//fimction declarisions 
void getTb(); 
double getAlfa2(); 
void UpdateKmP(double ss);

//function for calculation interface temperature 
double getTm(double ss)
{

retum 1.0 /  ( 1.0/Taf - (R/deltaHaf)*log( rO*rO/((rO-ss)*(rO-ss)) *(X init-X s)+X s));
}

//function for calculation the term inside integration 
double fun(double x)
{

retum 1/x * exp(-x*x);
}

//function to calculate the integration 
double myIntegral(double bot, double top)
{

long int n = 10000; 
double h = (top - bot)/n; 
double XI, XIO, X II, XI2, X;

XIO = fun(bot) + fun(top);
XII = 0;
XI2 = 0;

for(int i=  I ; i<n; i++)
{

X  = bot + i*h; 

if(i%2==0)
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XI2 = XI2 + fun(X);
else

XII = XII + flin(X);
}

XI = h*(XIO + 2*XI2 + 4*X Il)/3; 
retum XI;

}

//=
// function for calculation the solid width after stopping 
// decreasing o f  TO, using Runge-Kutta iteration.
//-------------------------------------------
double function(double tt, double ss)
{

double bot, top, integral, result;

top = r0/sqrt(4*alfa*tt); 
bot =  (r0-ss)/sqrt(4*alfa*tt);

integral =  myIntegral(bot, top);

result = ( (Tm - TO)*Ks/(rO-ss) * exp((-I)*(rO-ss)*(rO-ss)/(4*alfa*tt)) /  integral - Km*(Tb- 
T m )/deltaR )/L ;

retum result;

}
/ / = = = _ = = , 3 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

// function for calculation the next time level after stopping 
// decreasing o f  TO, using Runge-Kutta iteration.
//-------------------------------------------
double flmction2(double ss, double tt)
{

double bot, top, integral, result;

top = r0/sqrt(4*alfa*tt); 
bot =  (r0-ss)/sqrt(4*alfa*tt);

integral =  myIntegral(bot, top);

result = ( (Tm - TO)*Ks/(rO-ss) * exp((-l)*(r0-ss)*(r0-ss)/(4*alfa*tt)) / integral + Km*(Tb- 
Tm)/deltaR ) /  L;

retum 1/result;

}

double RungeKutta(double sa, double sb, double tO)
{
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double w;
double k l, k2, k3, k4; 
const int N  = 10; 
double h, sO;

h = (sb-sa)/N; 
sO = sa; 
w = tO;

for(int 1=1 ;i<=N;i++)
{

k l = h*function2(s0, w); 
k2 = h*function2(s0 + h/2, w  + kl/2); 
k3 = h*function2(s0 + h/2, w  + k2/2); 
k4 = h*function2(s0 + h, w  + k3);

w = w + (k l + 2*k2 + 2*k3 + k4) /  6; 
sO = sO + i*h;

}

return w;

}

double Euler(double a, double b, double init)
{

double dt; 
double ret;

dt =  b - a;
ret =  init + dt * function(a, init);

retum ret;
}

//start o f  the program 
int main(void)
{

double s;
double bot, top, integral; 
double A, Ts, r, t; 
intN;

//initialize the parameters
rO = 0.060; // m  - the radius o f  the bolk melt
s = 0 ;

//thermal properties o f  solid (pure PDCB)
Ks =0 .14473; //W /(m k )
Cpl =  1.005; //J /gK
P = 1 .241e6; //g /m 3
alfa =  Ks/(P^Cpl); // = 1 .1604E-7

lamda = 18160/147; //J /g

deltaHaf= 18160/147; //J/gm ole
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Taf = 326 .1 ; / /K
Xs = 1.0;

//====variables= 
Xinit = 0.95;
C = 5e-6;
/ / = = = = = = = = = = =

Teu = 250.2; //eutectic temperature

T = new double[(M AX_GRID+l)*2*sizeof(double)];
Tarray = new double[(M AX_GRID+l)*4*sizeof(double)];
Jinit =  50;
N  = 0 ;

deltaR = rO / M A X G R ID ;  
deltaBigR = deltaR * Jinit; 
deltaT = deltaBigR / C;

I = M AX GRID -1; //grid size in the melt 
J = 0; //grid size in the solid

pre = (N+1) % 2; 
cur = N  % 2;

//initialize bulk temperature Tb
Xliquid = Xinit; //first value = Xinit
Tm = (Taf * deltaHaf) / (deltaHaf - Taf * R  * log(Xliquid));

for(i =  0; K M A X  GRID; i++)
T[cur*MAX_GRID + i] =  Tm + 5;

//print out the titles in the output
c o u t« " % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = — = = = = = = = = = = = = = = " « e n d l;
cou t«"% == C = " « C « "  -  X in it= " « X in it« "  -  d T = " «d eltaT «en d l;  
switch(OUT)
{
case OUT TO: 
case OUT Tm:

cou t«"% t \t s \t Tm \t TO"; 
break;

case OUT Ts:
cou t«"% r\tT ";
break;

}
cou t«en d l;

for(i=l ;i<=70000;i++)
{

//increment the width 
N++;
t = deltaT * N;
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J += Jinit;
I -= Jinit;

//get new solid thickness 
s =  C*t;

//set the pointer o f  the old T and new T 
pre = (N+1) % 2; 
cur = N % 2 ;

//calculate new inner boundary condition 
Tm = getXm(s);

//calculate the liquid temperature distribution 
getXbO;

//calculate the compound properties 
UpdateKmP(s);

//calculate the wall temperature 
top = r0/sqrt(4*alfa*t); 
bot = (r0-s)/sqrt(4*alfa*t); 
integral = myIntegral(bot, top);

lamda2 = lamda + Cpl * (Tb - Tm);
L =  P*lamda2;

if(integral==0)
TO = Tm;

else
{

double tmp = exp((r0-s)*(r0-s)/(4*alfa*t));
TO = Tm + (rO-s)/Ks * (-L*C + Km*(Tb-Tm)/deltaR) * integral * exp((rO-

s)*(r0-s)/(4*alfa*t));
}

switch(OUT){ 
case OUT TO: 
case OUT Tm:

if(i% 1 0 = 0 )
c o u t « t « " \ t " « s « " \ t " « T m « " \t " « T O « e n d l ;

break; 
case OUT_Ts:

//output the inner temperatures in the solid and liquid phases 
if(i%100 == 0)
{

if(I>50)
stepl =  1/50;

else

if(J>50)

else

stepl = 1; 

step2 = J/50; 

step2 = 1;
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cou t«" % = = = = = = = = = = = = = = = = = = = = = = = = = ----= = = = = = = = = \n " ;
c o u t« " % s :" « s « "  t : " « t « "  T m :" « T m « "  T O :"«T O «endl;

//liquid side temperature distribution 
for(k=0;k<l;k+=step 1)

cout«k*deltaR * 1000«" \t" «T [cu r*M A X _G R ID + k ]«en d l;

//interface temperature
//output a vertical bar to mark the interface
for(k=0;k<10;k++)

co u t«I*d e ltaR *1000«" \t" «T m -0 .5+ k /10 .0«" \t% -—

}
break;

//solid side temperature distribution 
A  = (TO-Tm) / integral;

top = r0/sqrt(4*alfa*t); 
for(k=20;k>=0;k—)
{

r = rO - k*(s/20); 
bot = r /  sqrt(4*alfa*t);
Ts = TO - A  * myIntegral(bot, top); 
co u t« r *  10 0 0 « " \t" « T s « e n d l;

}

//check if  the solidification ends
if(Tm<=Teu){

//print out the ending temperature 
cout«"\n%  Solidification stopped.\n"; 
retum 0;

}

if(T0<=290){ // *********»K*(.ojitinue calculation by fixing TO
cou t«" %  t =  " « t  «"\tT O  =  " « T O « " \ts  =  " « s « " \t T m  = " « T m ;  
cout«"\n%  =============Fixing T 0 = = = " ;
break;

}

}

cou t«en d l«" % = = S top  decreasing TO ."«endl;

//calculate the solid growth after stopping decreasing TO 
for(j=i;j<=15000J++)
{

N++;
s =  s + deltaBigR;
J += Jinit;
I -= Jinit;

deltaT = RungeKutta(s-deltaBigR, s,t) - 1;
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t = t + deltaT;

//set the pointer o f  the old T and new T 
pre = (N+1) % 2; 
cur = N % 2 ;

Tm = getTm(s); 
getTbO;

UpdateKmP(s);

top = r0/sqrt(4*alfa*t); 
bot =  (r0-s)/sqrt(4*alfa*t); 
integral = myIntegral(bot, top);

lamda2 = lamda + Cpl * (Tb - Tm);
L = P*lamda2;

switch(OUT)
{
case OUT TO: 
case OUT Tm:

ifG%20==0)
c o u t « t « " \t" « s « " \ t " « T m « " \t " « T O « " \t %  " « d e lta T « en d l;

break;

case OUT Ts:
if(j%200 == 0)
{

if(I>50)
stepl =  1/50;

else

if(J>50)

else

stepl = 1; 

step2 = J/50; 

step2 = 1;

deltaT :" « d e lta T « en d l;

c o u t« " % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = \n " ;
c o u t« " % s :" « s « "  t : " « t « "  T m :" « T m « "  T O :"«T O «"

//liquid side temperature distribution 
for(k=0;k<l;k+=stepl)

cout«k*deltaR* 1000«"\t"«T[cur*M AX_G RID+k]«endl;

//interface temperature 
for(k=0 ;k< 10 ;k++)

co u t« I* d e ltaR *1000«" \t" «T m -0 .5+ k /10 .0«" \t% -----
" « en d l;

//solid side temperature distribution 
A  = (TO-Tm) /  integral;
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}

top = r0/sqrt(4*alfa*t); 
for(k=20;k>=0;k-)
{

r = rO - k*(s/20); 
bot =  r /  sqrt(4*alfa*t);
Ts = TO - A  * myIntegral(bot, top); 
co u t« r *  10 0 0 « " \t" « T s « e n d l;

}

}
break;

}

//check i f  the solidification ends 
if(Tm<=Teu){

//print out the ending temperature 
co u t« " \n  Solidification stoped.\n";
c o u t « e n d l« t « " \ t" « s « " \t " « T O « " \t" « T m « " \t " « d e lta T ;  

retum 0;
}

if(deltaT < 0) 
break;

} //end o f  calculation after stopping TO 

retum(O);

void gefTb()
{

inti;

//set the boundary temperature 
T[cur*MAX_GRID + 1 +1] = Tm;

//initialize the array o f  the linear systems 
r = 0; 
rr=0  
rl= 0

alfa2 = getAlfa2();

for(i=l;i<=I;i++)
{ r += i*deltaR;

rr =  r + deltaR/2; 
rl =  r - deltaR/2; 
to = T[pre*MAX_GRID + i -1]; 
tl = T[pre*MAX_GRID + i +0]; 
t2 =  T[pre*MAX_GRID + i +1];
Tarray [(i) *4+0] =  (-l)*(l-theta)*rl;
Tarray[(i)*4+1] =  deltaR*deltaR*r/(alfa2*deltaT) + 2*(l-theta)*r; 
Tarray[(i)*4+2] =  (-l)*(l-theta)*rr;
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Tarray[(i)*4+3] = theta*rl*tO + ( deltaR*deltaR*r/(alfa2*deltaT) - 2*theta*r )* tl +
theta*rr*t2;

}
Tarray[l*4 + 1] += Tarray[l*4 + 0];
Tarray[I*4 + 3] -= Tarray[I*4 +2] * Tm;

//Gauss eliminition 
double ratio; 
for(i=2;i<=I;i++)
{

ratio =  Tarray[i*4+0] /  Tarray[(i-1)*4+1];
Tarray[i*4+0] = Tarray[i*4+0] - Tarray[(i-l)*4+l]*ratio; // =0 
Tarray[i*4+1] =  Tarray[i*4+1] - Tarray[(i-l)*4+2]*ratio;
Tarray[i*4+3] = Tarray[i*4+3] - Tarray[(i-l)*4+3]*ratio;

}
Tarray[I*4 + 3] =  Tarray[I*4 + 3] /  Tarray[I*4 +1];
Tarray[I*4 + 1] = 1; 
for(i=I-l;i>= l;i—)
{

ratio =  Tarray[(i)*4+2];
Tarray[i*4+3] -= Tarray[(i+l)*4+3]*ratio;
Tarray[i*4+2] = 0;
Tarray[i*4+3] =  Tarray[i*4+3]/Tarray[i*4+l];

}

//store the new value 
for(i=l ;i<=I;i++)

{
T[cur*MAX_GRID + i] =  Tarray [i *4+3];

}
T[cur*MAX_GRID + 0] = T[cur*MAX_GRID + 1];

Tb = T[cur*MAX_GRID + 1]; //the point next to the melting interface
}

double getAlfa2()
{

double K l, K2, P I, P2, C pl, Cp2, KO, PO, CpO; 
double portion;

//proportion o f  para-DCB to total melt 
portion =  1 - rO*rO*(l-Xinit)/( (rO-s)*(rO-s));

//parameters for para-DCB 
K l = 0 .105 ; //W /(m K )
P l =  1.2475e6; //g /m 3  
C p l=  1.188; //J /gK

//paramters for ortho-DCB 
K2 = 0 .1 2 1 ;//W /(m K )
P2 = 1.3022e6; //g /m 3  
Cp2= 1.159; //J /gK

//the paramters for the melt by proportion 
KO = portion*Kl + (l-portion)*K2;
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}

PO = portion*Kl + (l-portion)*P2; 
CpO= portion*Cpl + (l-portion)*Cp2;

return KO / (PO*CpO);

void UpdateKmP(double ss)
{

double K l, K2, PI, P2, C pl, Cp2; 
double portion;

//proportion o f  para-DCB to total melt 
portion = 1 - rO*rO*(l-Xinit)/( (rO-ss)*(rO-ss));

//parameters for para-DCB 
K l = 0 .105; //W /(m K )
P l =  1.2475e6; / / g/m3 
C pl=  1.188; //J /g

//paramters for ortho-DCB 
K2 = 0 .121;//W /(m K )
P2 = 1.3022e6; //g /m 3
Cp2= 1.159; //J /g

//the paramters for the melt by proportion 
Km = portion*Kl + (l-portion)*JC2;
PI = portion*Kl + (l-portion)*P2;

retum;
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Program 3: Source code for calculation of eutectic temperature

This program calculates the eutectic temperature for the binary system of the example in 
Chapter 5.

#mclude <stdio.h>
#include <math.h>
#include <stdlib.h>

void main()
{

/ /1 :0 D C B  
// 2: PDCB
double dHafl = 18160; 
double dHaf2 = 12930; 
double R = 8.32;
double T afl = 326 .1;
double Taf2 = 256;
double a, b, c, d; 
double T m l, Tm2, Tm, f l ,  f2, f;

double Xliquid 1, Xliquid2;

a = dH afl/R /Tafl; 
b = dHafl/R; 
c = dHaf2/RyTaO; 
d = dHaf2/R;

Tm l = 360;
Tm2 = 100;
Tm = (Tm l + Tm2)/2; 
printf("\n%li\t%lf\t%lf',Tml,Tm,Tm2);

do{

f l  = exp(a - b /T m l) + exp(c - d/Tm l) -1 ;  
f2 = exp(a - b /Tm2) + exp(c - d/Tm2) - 1; 
f  =  exp(a - b /T m ) + exp(c - d/T m ) - 1;

if(fl * f  <=0)
Tm2 = Tm; 

else if(£2 *f<=0)
T m l = Tm;

else{
p r i n t f ( " \ n e r r o r ! " ) ;  

e x i t ( 0 ) ;

}

Tm = (Tm l + Tm2)/2; 
printf("\n%lf\t%lf\t%lf',Tml,Tm,Tm2);

}while(fabs(Tm - Tm 2)>0.000001);
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Xliquidl = exp(dH afl/R *(l/T afl - 1/Tm));
Xliquid2 = exp(dHaf2/R*(l/Taf2 - 1/Tm));

printf(''\nFinal: Tm = % lf\tXl = %lf\tX2 =  %lf\n",Tm,Xliquidl,Xliquid2);
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