
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Summer 2004

A high -order finite difference method for solving
bioheat transfer equations in three-dimensional
triple -layered skin structure
Haofeng Yu
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Biophysics Commons, Mathematics Commons, and the Other Biomedical
Engineering and Bioengineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Yu, Haofeng, "" (2004). Dissertation. 646.
https://digitalcommons.latech.edu/dissertations/646

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/239?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/239?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/646?utm_source=digitalcommons.latech.edu%2Fdissertations%2F646&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


A HIGH-ORDER FINITE DIFFERENCE METHOD FOR SOLVING 

BIOHEAT TRANSFER EQUATIONS IN THREE-DIMENSIONAL 

TRIPLE-LAYERED SKIN STRUCTURE

by

Haofeng Yu, B.S., M.S

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

August 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3135578

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3135578 

Copyright 2004 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOI.

J u ly  1 3 . 2004
Date

We hereby recommend that the dissertation prepared under our supervision

by_________ Haofeng Yu_______________________________________________________

entitled H lgh-O rder F in i t e  D if fe r e n c e  Method fo r  S o lv in g  B ioh ea t T ran sfer

-Xquat-inns_iJL-A T h ree-D im en sion a l T r ip le -L a y ered  Skin  S tr u c tu r e

be accepted in partial fulfillment of the requirements for the Degree of

D octor o f  P h ilo so p h y  in  C om putational A n a ly s is  and M odelingP h ilo sop h yfD octor o

jisor of Dissertation Research

Head of Department

Department

Recommendation esncurred in:

>'( /
Dean of the College

Advisory Committee

Apprt^d:

Director of Graduate Studies

Approved:

ean of the Graduate Schod

GS Form 13 
(5/03)

Reproduced with permission of the oopyright owner. Further reproduction prohibited without permission.



ABSTRACT

Investigations on instantaneous skin bums are useful for an accurate assessment 

of bum-evaluation and for establishing thermal protections for various purposes. 

Meanwhile, hyperthermia with radiation is important in the treatment of cancer, and it 

is essential for developers and users of hyperthermia systems to predict, and interpret 

correctly the biomass thermal and vascular response to heating. In this dissertation, we 

employ the well-known Pennes’ bioheat transfer equation to predict the degree of skin 

bum and the temperature distribution in hyperthermia cancer treatment.

A fourth-order compact finite difference scheme is developed to solve Pennes ’ 

bioheat transfer equation in a three-dimensional single vessel embedded triple-layered 

skin stmcture, with two different boundary conditions (constant heating and insulation) 

on the top surface. To this end, we employ the fourth-order compact finite difference 

method to discretize the Permes' bioheat equation, where the second-order derivatives 

of temperature at boundaries and interfaces are calculated using a combined compact 

finite difference method incorporating the boundary conditions and interfacial 

conditions. As such, the solution system becomes a diagonal-dominated tridiagonal 

linear system.

To demonstrate the applicability of the scheme, we investigate four physical 

models. Numerical results show that this compact finite difference scheme is 

unconditionally stable for a one-dimensional uniform-layered skin structure and more

iii
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IV

accurate than the Crank-Nicholson scheme. The comparison of the numerical results in 

the three-dimensional triple-layered skin structures shows that the blood vessel has a 

significant influence on the thermal response of the biomass. Thus, the outcomes 

described above provide a reliable, flexible and efficient numerical method for solving 

Pennes’ bioheat model in a comparatively realistic skin structure.
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NOMENCLATURE

matrix

C, C, specific heat of skin layer I

K, thermal conductivity of skin layer /

Pi density of skin layer 1

q heat flux

blood perfusion rate 

6 elevated tissue temperature

CT standard deviation of the width of a normally distributed laser beam

a, laser absorbtivity of skin layer /

Po laser power

Ql volumetric heat due to spatial heating.

Reffi laser reflectivity of skin layer I

L thickness of the tissue

At time increment

t time

T temperature

x,y,z coordinates

b ,d ,x ,0  vector

xin
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CHAPTER 1

INTRODUCTION

1.1 General Overview

Skin bums caused by exposure to heat in a flash fire, laser irradiation, or by being 

in contact with hot substances are the most commonly encountered hazards in daily life 

and in industry [Moritz 1947][Stoll 1959][Bechnke 1984][Li 1989][Killer 1991] 

[Lecarpentier 1993][Chen 1993][Torvi 1994]. This kind of heating has two common 

distinctive characteristics. Even though such a heating process is often short (i.e., less 

than 5 seconds), the heat flux on the surface of skin can be very high (i.e., 83.2 kW/m^) 

[Torvi 1994]. Investigations on such instantaneous thermal injuries can be useful for an 

accurate assessment on bum-evaluation and for establishing thermal protections for 

various purposes, e.g., fire fighter's safe guard.

In recent years, there has been an increasing interest in the research of 

hyperthermia combined with radiation and cytotoxic dmgs to enhance the killing of 

tumors. Conventional hyperthermia (target temperatures of 42-46”C) [Van Der Zee 1986] 

[Dewhirst 1984] in conjunction with radiation has demonstrated an increased 

effectiveness in the treatment of certain types of cancer, such as the treatment of liver 

metastases.
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Now, because hyperthermia with radiation has become important in the treatment 

of cancer, it has therefore beeome a very active area of study. There are two overarching 

issues related to the research in this dissertation. First, when we heat tumor tissue, it is 

crucial to keep the surrounding normal tissue below the temperature that will produce 

harm [Larkin 1977] [Pettigrew 1974]. Therefore, an accurate prediction of temperature 

distribution in human tissue is important. Second, tissue vasculature plays an important 

role in the temperature responses of biological bodies subjected to laser heating. 

Consequently, increasing attention has been paid to the effect of a single blood vessel on 

tissue temperature prediction during laser-induced thermal therapy. Therefore, a model 

that takes all these factors into account is important. For these purposes, a high-order 

compact finite difference scheme for solving Pennes’ bioheat transfer equation in a three- 

dimensional single vessel embedded triple-layered skin structure will be developed in this 

work.

1.2 Research Objectives

The first objective of this dissertation is to develop a fourth-order compact finite 

difference scheme, following the idea of Lele [Lele 1992], for solving Pennes’ bioheat 

transfer equation.

A series of steps will be taken in order to achieve this objective:

Step 1. Develop a fourth-order compact finite difference scheme for solving 

Pennes’ bioheat transfer equation in a one-dimensional uniform-layered skin structure.

Step 2. Analyze the convergence of the finite difference scheme.

Step 3. Develop a fourth-order compact finite difference scheme for solving 

Pennes’ bioheat transfer equation in a one-dimensional triple-layered skin structure.
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Step 4. Extend the fourth-order compact finite difference scheme to solve Pennes’ 

bioheat transfer equation in a three-dimensional triple-layered skin structure composed of 

epidermis, dermis and subcutaneous tissue.

The second objective of this dissertation is to model the interactions among 

human tissue, a single blood vessel and external heat sources, e.g., constant heating and 

laser power. Given a pre-specified heat source, the application of the fourth-order 

compact finite difference scheme to the model will facilitate prediction of the temperature 

distribution.

1.3 Organization of the Dissertation

In Chapter 1, a general review of the main idea of our work is given. The two 

objectives of this dissertation are specified. Chapter 2 provides some background of this 

active research area. Bioheat transfer equations, numerical methods for them and the 

compact finite difference schemes will be discussed in this chapter. After this. Chapter 3 

details the fourth-order compact finite difference scheme and its applications for Pennes’ 

bioheat transfer equation in four physical models. Then, Chapter 4 gives the numerical 

results of the calculations of the models presented in Chapter 3. Lastly, in Chapter 5, we 

give the conclusions of our work and suggest future research work.
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CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 Bioheat Transfer Models

Biological tissues are complicated structures. They contain dispersed cells 

separated by voids. The mechanism of energy and mass transportation is even more 

complicated; however, knowledge of thermal transport mechanisms in biological tissues 

is important for the therapeutic medical methods which employ the localized application 

of heat to perfused biological tissue [Khaled 2003].

A general description of the thermal transport mechanism can be made as follows: 

blood enters biological tissues through vessels referred to as arteries and perfuses to the 

tissue cells via blood capillaries as shown in Figure 2.1. Returned blood from the 

capillaries is accumulated in veins where the blood is pumped back to the heart; energy 

transport within these tissues is due to thermal conduction, blood perfusion and heat 

generation (e.g. metabolic heat generation) [Khaled 2003].

Various models have been developed to address the thermal transport mechanism, 

yet most of them are intertwined, and therefore it is hard to completely distinguish one 

from the other. Several important models are discussed below to show the development 

in this area. The bioheat transfer equation developed by Pennes [Pennes 1948] is one of
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the earliest models for energy transport in biological tissues (Figure 2.1) and so is taken 

as the beginning point of the development of these models.

Cutaawus Layer (oBtermost skin layer)

“^Transverse vessels
Intermediate 
I hssue

'Deep Tissue 
LayerArtery, Tg

Figure 2.1 Schematic diagram for the intermediate tissue of the skin [Khaled 2003] 

Pennes’ equation has been most frequently used in biological research works 

and is found to be quite useful because of its simplicity. The equation that Pennes used is 

summarized in a simple form as follows:

.3T
p C ^  = -  W,C,(T, - T )  + Q, (2 .1)

where t is the time, p  the tissue density, C the tissue specific heat, Q  the blood specific

heat, the blood volumetric perfusion rate, K  tissue thermal conductivity and Q the

term of heat sources within the tissue. Here, V is a gradient operator [Pennes 

1948][Chato 1989][Klialed 2003]. Pennes proposed that heat was transferred not only by 

conduction but also by blood circulating through the region at the arterial temperature 

when the region’s temperature differs from that of the blood. Pennes considered all the 

properties appearing for the conduction and thermal storage terms to be for the tissue, 

while he referred to the blood properties in the blood perfusion term. This term was
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modeled to be proportional to the difference between the arterial temperature and the 

temperature at a given location. Pennes assumed that the arterial blood temperature Tg 

was uniform throughout the tissue while he considered the vein temperature to be equal 

to the tissue temperature, denoted by T at the same point. The added term, 

Wf,Cg{Tg -T )  takes this blood perfusion into account and it represents a heat sink when

positive and a heat source when negative.

In Pennes’ bioheat transfer equation, AT is a constant, which assumes that the 

effect of blood flow on tissue heat transfer is equivalent to that of a heat sink or source. 

This assumption has been questioned by many subsequent researchers. In Gautherie's 

temperature dependent conductivity model [Gautherie 1969], there is no blood perfusion

term , and the tissue conductivity K  is assumed to be a function of the local tissue

temperature K(T). A simple form of Gautherie’s model is

p C ^  = V(K(TW T) + Q. (2.2)
ot

The effect of the increase in conductivity with temperature is a reduction of the 

temperature gradient as the tissue increases in temperature. A graph of this function can 

be seen in Figure 2.2.

Following a thermal equilibration length analysis, the Chen-Holmes bioheat 

thransfer model is proposed based on a more realistic vascular anatomy of perfused 

tissues than that of Pennes’ model. Considering the blood-perfused tissue as a continuum 

by excluding the large vessels which can be treated individually, the model is given as 

follows [Chen 1980] [Chato 1989]:

p C —  = V(KVT) + PgWgCgiTg ~ T) ~ PgWgU(Tg ~ T) + V (K T) + Q (2.3) 
ot
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Figure 2.2 Gautherie’s thermal conductivity model [Chato 1989]

In this model, the heat transfer mechanism between blood vessels and tissue was 

examined in detail and separated into three terms. The first term, pJV^C,^(T^ -  T ) , reflects 

the actual equilibration of blood temperature. The second term, p,,W^u{T^ ~ T ) ,  concerns 

the convectional heat transfer contributed by the net blood flow velocity within the tissue 

relative to already thermally equilibrated vessels. The third term, V { K ^ T ) ,  relates the 

thermal contribution from the vessels being nearly in equilibrium with the surrounding 

tissue. The conductivity related to blood perfusion, depends on the local

microvasculature and local blood perfusion rate. However, Chen and Holmes, in their 

model, made no effort to evaluate the actual thermal contribution of each term to the total 

heat balance [Chato 1989].

Based on anatomical observations in peripheral tissue and on high spatial 

resolution measurements, Weinbaum et al. [Weinbaum 1984] concluded that the local
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blood contribution to tissue heat transfer is mainly associated with an incomplete 

countercurrent heat exchange mechanism between paired arteries and veins rather than 

with the capillary perfusion. The following is the bioheat transfer equation of Weinbaum- 

Jiji for living tissue [Weinbaum 1985][Chamey 1990]:

dt
p C — ^V K ^^V T  + Q. (2.4)

This model focuses on the vasculature in the subcutaneous region, and it is unique 

in that it quantifies tissue heat transfer with a single equation independent of any blood 

temperature. They used the hypothesis that small arteries and veins are parallel and the 

flow direction is countercurrent resulting in counterbalanced heating and cooling effects. 

This kind of tissue vascularization causes the isotropic blood perfusion term in Pennes’ 

bioheat transfer equation to be negligible, and it causes the tissue to behave as an 

anisotropic heat transfer medium. Accordingly, Weinbaum and Jiji modified the thermal 

conductivity in Pennes’ bioheat transfer equation by means of an “effective conductivity” 

related quadratically to the blood perfusion rate, which is affected by the dimensions and 

the directions of the vessels. They also showed that isotropic blood perfusion between the 

countercurrent vessels can have a significant influence on heat transfer in regions where 

the countercurrent vessels are under 10/jm in diameter [Weinbaum 1985][Chato

1989][Chamey 1990][Khaled 2003].

The importance of “effective thermal conductivity” is further revealed by Song et 

al. [Song 1987][Khaled 2003], in Song-Weinbaum-Jiji model. They propose that the 

conductivity K  he a function of depth, z, and Peclet number (blood flow in the supply 

artery), Pe, representing the blood flow in the main supply artery, which varies according
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to whether the person is at rest or exercising. The graph of this function for different 

Peclet numbers is shown in Figure 2.3.

They also demonstrated that a tissue which exhibits only a small increase in the 

thermal conductivity due to countercurrent convection in its vasoconstricted state (the 

narrowing of the blood vessel) can exhibit more than a fivefold increase in the thermal 

conductivity in its vasodilated state (during relaxation of the blood vessel) [Khaled 2003].

O

£

3

2

1

0
0 t o 2 0 30

Dopth, mm

Figure 2.3 Song-Weinbaum-Jiji thermal conductivity model [Chato 1989]

An important example of research work example that used Weinbaum and Jiji's 

model is the work of Guiot et al. [Guiot 1998]. They employed the Weinbaum and Jiji's 

model, assuming a linear relation between the effective thermal conductivity and the 

blood perfusion rate, to determine the increase in the thermal conductivity in a perfused 

tissue. They reported an 11% increase in the thermal conductivity and their results 

suggested that, in addition to a “temperature map”, a “perfusion map” within the heated
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volume should be monitored routinely throughout the hyperthermic sessions since the 

local value of perfusion can vary substantially within a few centimeters [Khaled 2003].

A numerical comparison of the three hioheat transfer models of Pennes, Gautherie 

and Song-Weinbaum-Jiji, is given by Chato and Eckburg [Chato 1989], using finite 

difference techniques. They concluded that Pennes’ model yielded the fastest response 

rates and the lowest steady state temperatures, while the Song-Weinbaum-Jiji model was 

the slowest with the highest temperatures. “To the best of our knowledge, Gautherie’s 

model is not currently being used very extensively. Pennes’ model, however, can be 

recommended as the first approximation because of its relative simplicity and past 

success”.

Another comparison was made by Xu et al. [Xu 1991]. They compared and 

contrasted Pennes’ model, the Chen-Holmes model and the Weinhaum-Jiji models in a 

pig kidney cortex. Based on the theoretical analyses performed in his study, it is known 

that the three models differ in the way they handle the thermal contribution from the 

flowing blood in living tissue: Pennes’ equation has only the blood perfusion-related 

source term and the Weinbaum-Jiji equation has only the hlood perfusion enhanced 

thermal conduction term, whereas the Chen-Holmes equation has both as well as an 

additional convection term accounting for the thermal effect from the directional hlood 

flow within the tissue.

There are also other models very different from the classic Penne’s bioheat 

transfer equation. In Barun and Ivanov’s work [Barun 2003], a simple model for optical 

and thermal properties o f two-component biological tissues (bloodless basic tissue and 

blood vessels randomly distributed over it) is proposed as applied to studies of thermal
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fields under external illumination. The problem of light thermal action on tissues is 

reduced to the construetion of a model for optical and thermal characteristics of the 

medium on the base of the tissue structure, and to the solution of radiation and heat 

transfer equations using the optical and thermal characteristics as inputs to evaluate light 

and thermal fields.

Another interesting model is provided by Zhou [Zhou 2004], In this model, Tissue 

vasculature plays an important role in the temperature responses of biological bodies 

subject to laser heating. For example, interfaces between a blood vessel and its 

surrounding tissue may lead to reflection or absorption of the coming laser light. 

Different from most of the previous efforts, which focus mainly on a collective model, 

the model by Zhou solves simultaneously the three-dimensional light and heat transport 

in several typical tissue domains with either a single blood vessel or two countercurrent 

blood vessels running through, as shown in the Figure 2.4.
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Figure 2.4 Illustration of Zhou’s model [Zhou 2004]
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Unlike the previous studies, heat transfer coefficients or Nusselt numhers were not used 

to calculate heat transfer to large blood vessels. Instead, the conjugate heat transfer 

problem is solved numerically by modeling the heat transfer in tissues and blood regions 

as a whole. The energy equations used to describe the transient temperature distributions 

in the blood and tissue domains take the same form:

p C ^  + p C v ^  = ^ ^ r  + 0 ,  (2.5)
ot oy

where v is the velocity component on the y-axis.

In living tissue, a large blood vessel can carry away a significant amount of the 

energy deposited from any heat source applied to the tissue, and this carry-away of the 

energy results in a local cooling of the tumor cells immediately adjacent to the vessel and 

leads to possible regenesis of the tumor. This reduction of the velocity of the blood before 

it arrives at the tumor region is often used to reduce the localized cooling of large blood 

vessels. However, when the velocity of the blood flowing through the vessel is reduced 

drastically, the buoyancy-driven flow due to density variations may become significant. 

To account for this problem, Zhou and Liu [Zhou 2004] use three-dimensional Navier- 

Stokes equations to calculate the flow field. They state that it is reasonable to assume that 

blood flow behavior can he described by such a continuum model, such as Navier-Stokes 

equations, because in the multiphase system consisting of plasma and blood cells, the 

diameter of the main blood cell is of the order of several micrometers, much less than the 

diameter of the blood vessel [Zhou 2004].

Among these models discussed above, Pennes’ model is of a more general nature 

and, although it has been strongly criticized as a model, it has produced remarkably good
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correlations with experimental data. And, therefore, it is the most frequently used model 

for hyperthermia treatment planning.

Compared with the explosion of activity in studying the hyperbolic heat 

conduction, investigations on the thermal wave propagation in living tissues were carried 

out only very recently in the bioheat transfer field. The conduction term in Pennes’ 

bioheat transfer equation is based on Fourier’s law, which is

q{f, t)  = -KS/T{f,t)  (2.6)

where f  stands for the position vector. This equation implies an instantaneous thermal 

energy deposition in medium; i.e., any local temperature disturbance causes an 

instantaneous perturbation in temperature at each point in medium. Vemotte [Vemotte 

1958] and Cattaneo [Cattaneo 1958] formulated a modified unsteady heat conduction 

equation (the CV equation) as follow:

q{f, t) + = -K V T (r ,t)  (2.7)
ot

where r  is defined as thermal relaxation time in homogeneous substances, which ranges 

from 10“'* - lO ”''*̂  [Kaminski 1990]. Since most of the heating processes are much 

longer than this time scale, Fourier's law has therefore been successfully applied to heat 

conduction in these materials [Liu 1999].

Biological systems are comprised of porous capillary bodies and cells that are 

heterogeneous, multiphasic and surface-dominated systems. In such highly non- 

homogeneous inner structures, t  can have a meaning which is different from the 

commonly referred thermal relaxation time. In such a setting, t  is defined as the 

characteristic time needed for accumulating the thermal energy required for propagative 

transfer to the nearest element within the nonhomogeneous inner structures [Kaminski
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1990]. It reflects energy interaction at the structural level rather than that at the molecular 

or crystal lattice level as in homogeneous materials; and it may, thus, take a much greater 

value. The value of r  in biological systems has been predicted to be in the range between 

20 and 30 seconds [Liu 1999].

Based on Equation (2.7) for heat flux including the characteristic time r  as well 

as Pennes' bioheat transfer equation, a general form of the Thermal Wave Model of 

Bioheat Transfer (TWMBT) in living tissues was initially introduced by Liu et al. [Liu 

1995][Liu 1999] as:

V. -  r)]+e . + a  + T{-w,c, ̂  + ̂  + ̂ ) ]
Ot at at

dt^ dt

(2 .8)

],

where Qm and Qr are volumetric heat due to metabolism and spatial heating, respectively; 

Tb is the artery temperature, and T is the tissue temperature.

The one-dimensional TWMBT in a finite medium, as shown in Figure 2.5, was 

solved by Liu [Liu 1999] using separation of variables.

«yEtK;iujaeou&

iklaiunbK body cone

|4  Hi#
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Figure 2.5 Schematic geometry of three-layered skin structure [Liu 1999]
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Moreover, the analytical solution showed distinctive wave behaviors of bioheat transfer 

in skin subjected to instantaneous heating. The finite difference method was used to 

simulate and study practical problems involved in bum injuries in which skin was 

stratified as three layers with various thermal physical properties. Deviations between the 

TWMBT and the traditional Pennes’ equation imply that, for high flux heating with 

extremely short duration (i.e., flash fire), the TWMBT, which accounts for finite thermal 

wave propagation, may provide realistic predictions on bum evaluation. A general heat 

flux criterion has been established to determine when the thermal wave propagation 

dominates the principal heat transfer process and the model can be used for tissue 

temperature prediction.

Liu furthered his study in a survey on the mechanisms of the wave-like behaviors 

of heat transfer in living tissue [Liu 2000a]. In his work, the mechanism of the wave-like 

behavior of heat transfer in living tissues was studied through introducing a new concept 

of multi-mode energy coupling. With this study, a phenomenological thermal wave 

model of bioheat transfer was obtained, and a new conceptual equation was proposed to 

correlate the heat flux with the temperature gradient. Thus the intriguingly high 

magnitude of the characteristic time in living tissues was better understood, and a simple 

temperature criterion was established to determine when the thermal wave propagation 

dominates the principal heat transfer process.

One important application of the models described above is hyperthermia 

treatment planning. Hyperthermia with radiation is a form of cancer therapy in which the 

objective is to heat the diseased tissue to some therapeutic temperature. As laser-induced 

hyperthermia becomes a more important method for the treatment of tumors, more
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attention has been paid to the research of bioheat transfer in a living biomass under 

microwave hyperthermia [Vanderby 1988][Clegg 1989][Mandal 1989][Martin 1989] 

[Roemer 1989][Roemer 1991][Xu 1993][Chatteijee 1994][Kolios 1995][Kolios 1998] 

[Habash 1999] [Mans 2003], During the hyperthermia treatment, temperature distribution 

has to be precisely controlled to achieve the temperature to kill the tumor yet leave the 

surrounding tissue unharmed. This effect would be an easier task if the therapy 

temperature distribution could be predicted before the treatment. An example of the 

tissue regions involved in practical hyperthermia treatment is shown in Figure 2.6.

Clegg and Roemer performed hyperthermia sessions on a normal canine thigh to 

test the ability of a state and parameter estimation method to accurately predict the 

complete three-dimensional temperature distribution. To determine if thermal 

prescription has been achieved, invasive thermometry is used by inserting a large number 

of thermocouples into the thigh. A small subset of the measures were used as input in the 

Permes’ bioheat transfer equation to predict the parameter of perfusion, and thus 

reconstructed the three-dimensional model [Clegg 1989].
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Figure 2.6 Tissue regions involved in practical hyperthermia treatment [Roemer 1991]
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An example of recent research work using Pennes’ equation is that of Zhu and 

Diao [Zhu 2001]. They used Pennes’ equation to simulate the steady state temperature 

distribution within the brain after head injury. They determined where to place 

temperature sensors for infants and adults beneath the brain tissue in order to monitor the 

volumetric and average brain tissue temperature. Another example is the work of Deng 

and Liu [Deng 2001]. Using Pennes’ bioheat transfer equation, they analytically studied 

the effect of pulsative blood perfusion on the tissue temperature.

Zhen and Dai incorporated an inverse problem into the three-dimensional Pennes’ 

model [Zhen 2003]. They calculate the required laser power to obtain a pre-specified 

temperature at a pre-specified location of the skin after a pre-specified laser exposure 

time.

Zhang and Dai developed a numerical model for optimizing laser power 

irradiating on a three-dimensional triple-layered skin structure [Zhang 2004]. The method 

determines the required laser intensity in order to obtain pre-specified temperature at the 

given locations of the skin after pre-specified laser exposure time.

One of the major advantages of Pennes’ bioheat transfer equation is that it is a 

field equation, which can be readily solved for distributions of temperature in space and 

time. However, one of the inherent deficiencies of Permes’ bioheat transfer equation 

arises from this major advantage. Pennes’ bioheat transfer equation has the inherent 

limitation that it carmot simulate the effects of large, widely spaced thermally significant 

blood vessels; such situations are usually described by another equation [Huang 1994].

Such vessels are distributed throughout the body, and can locally and significantly 

perturb the temperature field [Chen 1980][Rawnsley 1994][Khaled 2003]. Thus, several
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efforts have been made to add blood vessels to the simulations of in vivo temperatures. 

Several investigations [Mooibroek 1985][Crezee 1990][Cben 1993][Lagendijk 1982] 

present the numerical simulation results of the influence of either one or a pair of large 

blood vessels during hyperthermia.

Analytical and numerical studies can also be found in the literature for the beat 

transfer of tissues containing large blood vessels [Cbato 1980][Crezee 1990][Chen 

1993][Cai 1995][Cai 1998]. These studies are restricted to simple geometries. Cbato 

studied a cylindrical non-perfused, unbeated tissue with a single vessel traversing through. 

Huang extended and complemented Cbato’s working by developing the analytical 

solution for predicting the average axially varying temperature of the blood and the 

temperatures in its surrounding tissue for a single vessel traversing a perfused, heated 

tissue as shown in Figure 2.7 [Huang 1994].

Figure 2.7 Schematic diagram of a single large blood vessel embedded in a 
perfused tissue [Huang 1994]

Several investigators [Cbamey 1988][Cbamey 1989][Roemer 1990][Williams

1990][Baisb 1990] [Huang 1994] try to model the beat transfer in tissue with blood

vessels by combining Pennes’ biobeat transfer equation for the tissue and the energy
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equation for the vessels. Majchrzak and Mochnacki considered the thermal processes 

proceeding within a perfused tissue in the presence of a vessel, as shown in Figure 2.8.

i l iW

Figure 2.8 Non-homogeneous domain blood vessel-tissue [Majchrzak 1999] 

Pennes' bioheat transfer equation determines the steady state temperature field in 

the tissue sub-domain, while the ordinary differential equation resulting from the energy 

balance describes the change of blood temperature along the vessel. The problem is 

solved using the combined numerical algorithm, in particular the boundary element 

method (for the tissue sub-domain) and the finite difference method (for the blood vessel 

sub-domain). Only steady state is considered. The Coupling of two equations results from 

the boundary condition given on the blood vessel wall [Majchrzak 1999].

2.2 Numerical Methods for Bioheat Models

2.2.1 Numerical Methods

The complexity of the mathematical modeling of the heat transfer process within 

a human tissue is enormous. But the analytical solution for most of the varieties of 

models discussed above are limited to a simple homogeneous geometry. It is very hard to 

obtain an analytical solution for a more complicated structure. The difficulties arise from
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the fact that the skin is extremely heterogeneous [Chan 1992], In this work, a complicated 

three-dimensional single vessel embedded triple-layered skin structure is considered and 

we might be able to solve it only by using numerical methods.

A review of the numerical solutions of the bioheat transfer equation can be found 

in Strohbehn and Roemer’s work [Strohbehn 1984],

One of the numerical techniques is the method of moments, which enables us to 

determine the heat patterns in a body with arbitrary distribution of conductivity [Iskander 

1982],

Another interesting method is the Cellular Neural Network (CNN) method. Niu 

and his colleagues applied CNN method to solve Pennes’ bioheat transfer equation [Niu 

2001]. Numerical solutions were obtained for a two-dimensional steady-state temperature 

field from ultrasound heat sources. The cellular neural networks’ key features of 

asynchronous parallel processing, continuous-time dynamics and local interaction enable 

real-time temperature field estimation for clinical hyperthermia.

Among all the numerical methods used to solve the bioheat transfer equation for 

the thermal response of the human body under a flash fire or hyperthermia treatment, the 

most frequently used have been the finite difference method and finite element method. 

The former has gained more popularity than the latter.

2.2.2 Finite Element Method (FEM)

The disadvantage of the finite difference method is in that, in order to model the 

tissue inhomogeneities and the complex contours of the human body, one has to use very 

small grid sizes and even unequally spaced grids. But for FEM, it may be possible to 

obtain models which accurately represent the tissue inhomogeneity of the human body.
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by using triangular elements in two-dimensional case and tetrahedral elements in three- 

dimensional ease [Chatteijee 1994].

To study the thermal response of skin subjected to a flash fire, Trovi developed a 

variable property, multiple layer finite element model developed to predict skin 

temperatures and times to second and third degree bums in a triple-layered stmcture 

under simulated flash fire condition. The finite element matrix equation was derived 

using Galerkin’s weighted residual method from the one-dimensional Pennes’ bioheat 

transfer equation for blood-perfused skin. Five cubic Hermitian temperature interpolation 

polynomial elements were used, one for the epidermis, and two each for the dermis and 

subcutaneous region. The model is reported to be more accurate in making temperature 

and bum predictions than the constant single layer closed form solution for heat flux 

[Torvi 1994].

Chatter] ee developed a three-dimensional finite element model of the prostate 

region of the human body which is generated using the automatic mesh generation 

capabilities of the software package ANSYS. The tissue types included are skin, fat, 

muscle, bone, intestine, nerve, prostate and tumor tissue. Variation of blood flow rates 

due to the increasing temperatures during hyperthermia is included. This might be the 

first time that a commercially available software package has been used to predict the 

detailed temperature profiles in the human body undergoing hyperthermia treatment for 

cancer. Figure 2.9 shows the various areas generated by ANSYS with different tissue 

types, and the corresponding mesh using triangular elements is shown in Figure 2.10 

[Chatteijee 1994].
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Figure 2.9 Areas of different tissue types in the prostate cross-section generated 
by ANSYS [Chatteijee 1994]

Figure 2.10 Finite element mesh generated by ANSYS PC/SOLID [Chatteijee 1994] 

2.2.3 Boundary Element Method (BEM)

The Boundary element method is another powerful general purpose method. It is 

far more tolerant of aspect ratio degradation than the FEM and can yield secondary 

variables as accurately as the primary ones. The discretization of the boundary can be 

tailored to any irregular shape, thus it is capable of handling complex geometries [Chan 

1992].
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Mukheijee [Mukheijee 1984] and Chan [Chan 1992] compared the efficiency and 

accuracy of the BEM and the FEM for the Laplace equation. They found that the BEM 

results are more accurate than the FEM, implying that for the same desired level of 

accuracy, the BEM requires a coarser mesh than the FEM. They also found that the BEM 

accuracy, with a fixed boundary mesh, does not change appreciably with the number of 

intemal sampling points, but the FEM accuracy is very sensitive to the internal mesh.

In Chan’s work [Chan 1992], the BEM was formulated for transient and steady 

state, in both two-dimensional and three-dimensional problems. The two-dimensional 

steady-state BEM formulation was first verified by comparison with the analytical 

solution; then it was applied to model the heat transfer within a tissue adjacent to a blood 

vessel. An analytical expression of the one-dimensional model for the heat transfer within 

the blood vessel is incorporated into BEM. The resulting equation governs the conjugate 

heat transfer of a tissue adjacent to a blood vessel. Excellent agreement with the 

analytical solution was obtained in both of the two cases.

Traditional BEM has severe restrictions for solving TWMBT. First, the 

fundamental solution to the TWMBT is very difficult to derive; therefore, the boundary 

integral equation cannot be easily obtained. Second, the non-homogeneous terms 

accounting for effects, such as distributed heating Q, were included in the formulation by 

means of domain integrals, which weaken its “boundary only” character. Liu and Lu 

proposed a dual reciprocity boundary element method to avoid the above restrictions [Liu 

1997] [Liu 2000b].

In Lu’s work [Lu 1998], the reciprocity boundary element method was extended 

to simulate the thermal wave propagation in biological tissues. A deep insight into
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thermal wave behaviors, like reflection, decay, phase jumping, superposition and 

resolution, in a two-dimensional zone under certain boundary conditions is obtained.

2.2.4 Finite Difference Method

Although the advantages of the FEM and the BEM are in the flexibility in 

handling complicated geometries, the finite difference method is much simpler to use in 

the geometries of regular shape. Also, the accuracy of various FEM is usually of second 

order or even first order; yet with delicate derivation, higher-order accuracy can be 

achieved, comparatively easily, through the finite difference method.

Chato and Eckhurg gave a comparison of Pennes’ bioheat transfer model, 

Gautherie’s model, and the Song-Weinbaum-Jiji model using finite difference techniques 

[Chato 1989]. Young and Boehm developed a numerical analysis for calculating the 

temperature fields of a percutaneous transluminal microwave angioplasty system using 

Specific Absorption Rates (SAR) data generated by finite difference time domain 

computations [Young 1993]. In Liu’s work [Liu 1999], a numerical computation code 

based on finite difference scheme was developed to solve TWMBT. Because the 

epidermis, dermis and subcutaneous tissue have different physiological and thermal 

properties, temperature transients were computed within each layer and continuities of 

temperature and heat flux were applied to the boundaries of adjacent layers.

At Louisiana Tech University, a research group has focused on solving bioheat 

transfer problems, using the finite difference method [Dai 2003a][Dai 2003b][Dai 2004]. 

Zhen and Dai [Zhen 2003] incorporate a finite difference scheme and a laser power 

optimization algorithm using the least square method to solve an inverse problem in a 

three-dimensional rectangle triple-layered Pennes’ model. Zhang and Dai [Zhang 2004]
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did this in a three-dimensional cylindrical triple-layered skin structure. Each of these 

solutions has only a second-order accuracy, making it expensive to calculate a 

complicated geometry. In the next section, a compact finite difference scheme will be 

discussed. The technique of this compact scheme will lead to a fourth-order finite 

difference scheme in the present work.

2.3 Compact Finite Difference Scheme

2.3.1 Background

The idea of a compact finite difference scheme in this dissertation is mainly from 

[Lele 1992]. Tele’s work can be summarized in the rest of Section 2.3.

Many physical phenomena have a range of space and time scales, turbulent fluid 

flows being a common example. Direct numerical simulations of these processes require 

all the relevant scales to be properly represented in the numerical model. These 

requirements have led to the development of spectral methods [Gottlieb 1977].

Some examples of the direct simulation of turbulent flows by spectral methods 

may be found in [Rogallo 1984] and [kim 1987]. Now the use of spectral methods is, 

however, limited to flows in simple domains and simple boundary conditions. These 

difficulties may be overcome by employing alternative numerical representations. And 

this is the motivation of the compact finite difference scheme. Rai and Moin [Rai 1989], 

present simulations of a turbulent channel flow using a high-order, upwind-biased finite 

difference scheme.

2.3.2 General Explicit Schemes

Given the values of a function on a set of nodes the finite difference 

approximation to the derivative of the function is expressed as a linear combination of the
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given function values. For simplicity, we consider a uniformly spaced mesh where the 

nodes are indexed by i. The independent variable at each node i is x,. = h{i - 1) for 

1 < i , and the function values at the nodes f^ = f {x- )  are given. The finite difference 

approximation f  '. to the first derivative {df /d'x)(x,)at node i depends on the function 

values at nodes near i. For second and fourth-order central differences, the approximation, 

f'. depends on the sets (/_ ,,/;+ ,) and i f ^  respectively. In the spectral 

methods, however, the value of f- depends on all the nodal values. The Fade or compact

finite difference schemes [Kreiss 1972] mimic this global dependence. The schemes 

presented here are generalizations of the Fade scheme. These generalizations are derived 

by writing approximations of the form:

+<V-2 +Pf l ,  ■ (2.9)oh Ah 2h

The relations between the coefficients a, b, c and a , ^  are derived by matching the 

Taylor series coefficients of various orders. The first unmatched coefficient determines 

the formal truncation error of the approximation (2.9). These constraints are:

a+ b + c = \ + 2 a + 2/3 (Second order) (2.10)

a + 2^b + 3^ c = 2 ^ ^ ( a + 2^ (Fourth order) (2.11)

Similarly, the derivation of compact approximations for the second derivative proceeds 

analogously to that of the first order derivative. This relations is of the form

PfU + < 2  +fl2 + < 2  +/¥l2 -  ̂  ^  ^ ^ ~ ^ ^ ~ ̂  ^9/i Ah h

where f  . is the second derivative at the node i. Once again, the relations between the
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coefficients a, b, c and a , p  are derived by matching the Taylor series coefficients of 

various orders. These constraints are:

a + b + c = \ + 2a + 2 p ,  (Second order) (2.13)

a + 2^b + 3^c = ^ ( a  + 2^y0), (Fourth order) (2.14)

which appear very similar to the constraints of the first derivative approximations but

different in their right hand sides. By choosing J3 = Q and c = 0 , a one-parameter family

of fourth-order schemes is generated. This family has

4 1-10«
P = 0, c = 0, a = - { \ - a ) ,  b = -  ̂ . (2.15)

It may be noted that as a  ^  0 this family coincides with the well-known fourth-order

central difference scheme. For a  = —  , the classical Fade scheme is recovered.
10

If the dependent variables are periodic in x, then the system of relations. 

Equations (2.9) and (2.12), can be solved as a linear system of equations for the unknown 

derivative values. This linear system is a cyclic pentadiagonal (tridiagonal) when f3 is 

nonzero (zero, respectively). The general non-periodic case requires additional relations 

appropriate for the near boundary nodes. The resulting linear system is amenable to 

efficient numerical solution. Equations (2.9) and (2.12), along with a mathematically 

defined mapping between a non-uniform physical mesh and a uniform computational 

mesh, provide derivatives on a non-uniform mesh. It is also possible to derive relations, 

analogous to Equations (2.9) and (2.12), for a non-uniform mesh directly (e.g., relations 

corresponding to the traditional Fade scheme were derived in [Goedheer 1985]).
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2.3.3 Boundary Formulation

The general non-periodic case requires additional relations appropriate for the 

near boundary nodes. Many applications involve computations in domains with non­

periodic boundaries. This section introduces approximations for the first and second 

derivatives for the near boundary nodes.

The first derivative at the boundary i = 1 may be obtained from a relation of the 

form coupled to the Equation (2.9) written for the interior nodes as follows:

/i + «f2 = t(« /i  + ¥ ’2 +C/3  +df^). (2.16)h

Requiring Equation (2.16) to be at least second-order accurate constrains the coefficients 

to

Z + a  + l d  . ^  ̂ , \ - a  + 6da - --------------- , b = 2 + 3d, c = --------------- . (2.17)
2 2

Similarly, the relations appropriate for near boundary nodes between the nodal values of 

a function and its second derivative may be derived by Taylor series expansions. The 

compact scheme analogous to Equation (2.16) is given by

Requiring Equation (2.18) to be at least second-order accurate constrains the coefficients 

to

a = a  + 2 + e, b = -{2a + 5 + Ae), c = a  + A + 6e, d = ~(\ + Ae). (2.19)
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2.3.4 Applications

The different schemes described above provide an improved resolution of the 

short-length scales. Furthermore, the schemes have a pure central difference form (except 

near the boundaries); specifically, they have no built-in artificial dissipation. It is, 

therefore, necessary that the applications to which they are applied be such that there is a 

well-defined cutoff for the shortest scales. In other words, the shortest scales should be 

determined physically and not numerically, and this rules out applications to problems 

with discontinuities (in variables and their derivatives). This is not to say that the present 

method is inapplicable to inviscid problems. It is, however, restricted to problems with 

smooth solutions.

The spectral-like nature of the finite difference schemes also makes it necessary to 

use accurate boundary conditions. Boundary conditions, which may seem suitable with 

low-order schemes (and with built-in dissipation), may not perform well with the 

schemes described here. These were used in [Lele 1989] and [Sandham 1989] in 

applications to compressible mixing layers. A full discussion of the different boundary 

conditions, comparisons with other methods commonly used with low-order schemes, 

and application to reacting and non-reacting flows are presented in [Poinsot 1989]. 

Applications to three-dimensional incompressible mixing layers and wakes (along with 

spectral methods in two directions) are described by Buell [Buell 1989].
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CHAPTER 3

MATHEMATICAL MODELS AND COMPACT FINITE 

DIFFERENCE SCHEMES

3.1 General Governing Equations 

3.1.1 Problem Description

To study the thermal behavior in the human skin, we consider a three-dimensional 

single vessel embedded triple-layered skin structure composed of epidermis, dermis and 

subcutaneous tissue. A physical description of heat flow in Pennes’ bioheat transfer 

model can be schematically expressed as in Figure 3.1. Here, a single blood vessel goes 

through the subcutaneous layer, and two different heat sources are considered; First, 

constant heating is applied to the top surface. Second, a laser beam focuses on top of the 

skin and penetrates into the inner structure.

3.1.2 General Governing Equations

The governing equation that describes the thermal behavior of the three- 

dimensional structure based on Pennes’ bioheat transfer equation [Peimes 1948] is 

described as follows:

p , C , ^  = K , { ^  + ̂  + ̂ ) - W ; , C i e , + Q „  /=:1,2,3. (3.1)
ot dx oy oz
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where is the elevated tissue temperature above surrounding temperature due to heating 

or laser radiation, while p, , C, and denote density, specific heat, and thermal 

conductivity of tissue, respectively. C[ is the specific heat of blood, Wl is the blood 

perfusion rate and Q[ the volumetric heat due to spatial heating.

Laser

Epidermis

Dermis

Subcutaneous
Tissue

Blood Vessel

Figure 3.1 Schematic configuration of a three-dimensional triple-layered 
skin structure and laser power

The boundary condition of the top surface is Dirichlet, when constant heating is

applied, specifically,

= constant, z = 0. (3.2)

The boundary condition of the top surface is Neumann, when laser radiation is applied, 

speicifically,

dG,
dz

=  0, z  =  0 . (3.3)
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In the three-dimensional triple-layered skin structure, perfect contact (continuous

temperature and equality of flux-in and flux-out) is assumed. The boundary conditions 

for the interfaces and the bottom surface are listed as follows:

dO, dO-,
0 , = e „  k , ^  = k , ^ , z  = L,, (3.4)

OZ oz

^2 ^ ^ 3  ̂ ^2 Z= L ,+ L ^ ,  (3.5)
oz oz

dO
~ 0, z = + Z/2 4- T j . (3.6)

dz

On the lateral walls we have

The initial conditions are

V^ = 0. (3.7)

=0, f = 0 , /  = 1,2, 3. (3.8)

3.2 One-Dimensional Uniform-Layered Case

3.2.1 Model Description

For the sake of simplicity, we begin with a one-dimensional uniform skin 

structure to demonstrate the fourth-order compact finite difference scheme. A physical 

description of heat flow in Pennes’ bioheat transfer model for this one-dimensional skin 

structure can be schematically expressed as in Figure. 3.2. This skin is composed of a 

imiform layer. The numbers in the Figure 3.2 represent the order of discretized grids.
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it- '4- M

Figure 3.2 Schematic configuration of a onc-dimcnsional uniform-layered skin stmcture

3.2.2 Governing Equations

The general governing Equation (3.1) is simplified to describe the thermal 

behavior of uniform-layered skin stmctures as follows:

p C -  = K ^ - W , C , e  +Q.  
dt

(3.9)

Compared with the general goveming equation, the terms corresponding to the y  and z 

Axes, the contribution of the perfusion of the single blood vessel, and the heat source Q 

are eliminated. Constant heating is applied, which suggests that the boundary condition at 

the top surface is Dirichlet, as Equation (3.2). The boundary condition at the bottom 

surface is

The initial condition is

de

dz
= 0, z =L. (3.10)

e = o, t = o. (3.11)
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3.2.3 Finite Difference Scheme

Let 6 ‘j be the numerical approximation of^(7Ax,^At), where Ax and At are the 

spatial and temporal mesh sizes, respectively. Here, j  is chosen to be 0 < 7 < M  +1, 

where {M + l)Ax = L .

Using the compact finite difference method [Lele 1992], we develop a fourth- 

order compact finite difference scheme for solving the above initial and boundary value 

problem in the following.

Discretize Equation (3.9) with finite different method and we have

—Q* 0*+̂  ^ 0 ‘
\ < j < M ,  (3.12)

where, for non-interface layer, and 6 ‘̂  satisfy 

and

2 s y < m - i . p .w )

The derivation of Equations (3.13) and (3.14) is shown as follows:

A generalization of this relation will take the form of

+ c (e „ )„ , + ie j  p . i s )

Using the Taylor series at location7 , we have

Ax^
+0(Ax>), (3.16)

Ax^iOJ,,, = ( « „ ) , + A*(e^ ) , + — ( « „ ) , + 0(Ar>), (3.17)
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- ^ { e ^ , ) . - ^ ^ { 9 ^ ) j - ^ 0 { h x ^ ) ,  (3.18)

Ay  ̂ Ay  ̂ At^
0 . , ,= { e  ) , + A x (^J , + —  +0(A x^), (3.19)

The relation between the coefficients a,b,c,d,e?in^ f  are derived by matching the Taylor 

series coefficients of various orders,

balancing of the order derivative, 9j , will give d + e + f  = 0; (3.20)

balancing of the 1®‘ order derivative, {9^) j , will give -  d + f  -Q', (3.21)

balancing of the 2"** order derivative, {9 ^ ) j , will give 6 + a + c = ^ J + ^  / ; (3.22)

balancing of the 3* order derivative, { 9 ^  ) ■, will give - b  + c - - —d +—f .  (3.23)
3! 3!

Let coefficient a be free and b = ^ a  in Equation (3.15). Solve the group of equations

(3.20-3.23) and we have 6  = — a, c -  —  a, d =  — a, e - - — a, /■ = —a. If we let a
10 10 5 5 5

= 1, we will have Equations (3.13) and (3.14).

When a constant heating boundary is applied, specifically, 9^ is given, (0„), is

calculated by a second order approximation

«?„), = ^ ( 9 . - 2 9 ,  + 9 , ) .  (3.24)
Ax

when an insulated boundary is applied, specifically, (^^ )o = 0 , (0 „ ) , is determined by the 

following equation

Ax Ax
(6>,)o + a { 9 J ,  +c(9^},  = T t (^^2 +fO, ),  (3.25)
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where a, b, c, e and/  are constants. The relation between the coefficients a,b,c,e and f  

are derived again by matching the Taylor series coefficients of various orders,

balancing of the 0* order derivative, 8 ^ , will give e + f  = 0; (3.26)

balancing of the 1®' order derivative, {0^)^, will give b = 2e + f  ; (3.27)

2  ̂ 1^
balancing of the 2"*̂ order derivative, (^^̂  )o, will give

2  ̂ 1̂
balancing of the 3* order derivative, (0 ^ )o , will give 2b + a = — e +— f . (3.29)

Matching the coefficients, we obtain a = - e , b  = -e,  c = -  — e and /  = - e  in order to
6 3

have a fourth order approximation. Let e - I ,  then Equation (3.25) becomes

(3-30)
6 3 Ax Ax

(^xx)m is determined by the following equation:

«>«>„)«-,+«(»„)» + / « « ) .  (3-31)Ax Ax

where a, b, c, e and/are constants.

The relation between the coefficients a, b, c, e and/ are derived again by matching 

the Taylor series coefficients of various orders,

tVibalancing of the 0 order derivative, 6^^^ , will give e + f  = 0; (3.32)

balancing of the L* order derivative, (9^)^+^ > will give c = - 2 e - f ; (3.33)

22 J2
balancing of the 2"‘* order derivative, (9^)^^^, will give ’ (3-34)

th 2  ̂ Lbalancing of the 3 order derivative, ( 9 ^ ) ^ ^ ^ , will give - 2 b - a  = -  — e -  —/.(3.3S)
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11 1
Matching the coefficients, we obtain a = — e,c = ~e, b = —  e and f  = - e  in order to

6 3

have a fourth order approximation. Let e = l ,  then Equation (3. 31) becomes

11 1
3 6 Ax Ax

(3.36)

Equations (3.24), (3.13) or (3.14) and (3.36) will form a tridiagonal system that can be 

transformed into

10 5Ax
(3.37)

where

10
1 10 1

1 10 1 
- 4  22J

and

B =

10 - 5  
- 6  12 - 6

■6 12 - 6  
- 6  6

Therefore we have

9 ^ = - — A-^B0 + m )  
Ax

(3.38)

Similarly, Equations (3.30), (3.13) or (3.14) and (3.36) will form a tridiagonal system that 

can be transformed into

—  C d ^ = -----
10 "  5Ax"

(3.39)
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C =

22 - 4
1 10 1

1 10 1 
- 4  22

and

^ 6 - 6  

-6 12

- 6  12 - 6  
- 6  6

Therefore we have

C~'D6 (3.40)

Solving the two tridiagonal linear systems, Equations (3.38) and (3.40), will give 

solution for 0 ^̂ , which can be used to solve Pennes’ bioheat transfer equation through

iteration.

3.2.4 Algorithm

To solve the discretized form of the one-dimensional Pennes’ bioheat transfer 

equation. Equation (3.10), the following steps will be taken:

Step 1. Apply O'., at time t -  0, 1, 2, ........, to the right hand side of the

tridiagonal system. Equation (3.38) or (3.40) to calculate (^ ')„ .

Step 2. Apply (6>ĵ ’)" , at time t = t+\ and n = 0, 1 , 2 ,  , to the right hand side

of the tridiagonal system to calculate {6'*^)" .̂ When « = 0, let(^j‘"')" be equal to {O'jY .
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Step 3. Substitute(0 ')^ and (6>j^')^back to Equation (3.12) to get(^j"^‘)" '''. Let 

{9‘j ^̂ )” be equal to the newest obtained .

Step 4. Repeat step 2-3 until MAX {6!^^)”*̂ -  < s  .

Step 5. Increment time level by 1, and then repeat step 1-4 until the criteria for 

time is satisfied.

3.2.5 Convergence Analysis

Convergence analysis of a finite difference scheme is important in that its 

property of convergence will decide the flexibility in choosing the spatial and temporal 

grid sizes. We begin with investigating the convergence of the compact finite difference 

scheme for a uniform-layered skin structure with a constant heating boundary condition.

Theorem 1: The compact finite difference we developed above is unconditionally 

stable for Pennes’ bioheat transfer equation in a uniform-layered skin structure with 

constant heating boundary condition.

Proof: Substituting Equation (3.38) back to Equation (3.12), we have

Qn^X_gn 0 ’'̂  ̂+ Q"
pC-..............= ------ -(^-'56>"^‘ +A-^B6’' ) . - W . a ................ +c, (3.41)

At 2Ac' * 2

where c is some constant. Multiply both sides by A t , we have

2pC{0"^' - 0 ”) = - K r ( A - 'B 0 ”̂ ' +A- 'B0") j  -W,C,(0"^'  +0'‘)At + c, (3.42) 

2Atwhere y =
Ax^

Solve for 6 , we obtain

{2pcl + AtW .CJ  + KyA-^B)6”̂  ̂ = (2pc7 -  AtW .CJ  -  KyA-^B)e" + c (3.43)

and then
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=^{2pcI + AtWi,C^I + KyA-'B)-\2pcI-AtW^C^I-KrA-'B)e' '  +c = H0"  + c. (3.44) 

We have the following lemma, which we state without proof.

Lemma 1 [Burden 2001]: for any e i?”,the sequence defined by

+ C, for each k > \ ,  converges to the unique solution if and only if the 

spectral radius p(T)  satisfies p{T) < 1.

We will show that p{H) < 1 holds. Let Abe an eigenvalue of A^^B and x  its

corresponding eigenvector.

AJ = A~^Bx => PiAx = => Ax^Ax — x^B x .

Observe that

(3.45)

x^yfx = (x, X2 o

^10  ̂
1 10 1

1 10 1 
- 4  22

(3.46)

2 2 2 
=  10X] + X j X 2 + 1 0 x 2  + X 2 X 3 + I O X 3  +  V3X4 + . . .  +  X^_2X,„_j

+ + 2 2 x„'

> 10Xĵ  -^(Xj^ +X2^) + 10X2  ̂ ~ (^2  ̂ +X3^) + 10X3  ̂ - ( ^ 3  ̂+X4^) + ... + (x„ ^m -2

+ + +^™') + 2 2 x„

= — Xî  + — X2  ̂+ 8X3̂  +... + 8x 2 \2 1 2 2  fn-\ 2 ^

>0

and
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^10 - 5
- 6  12

^ B x  =  {x^ x ^  . . .  x„)

■6 12 - 6  
- 6  6

X,

(3.47)

=  1 0 x j ^  - S x j X ^  - 6 x j X2 + 1 2 x 2^ - 6 x 2 X 3  - 6 X 3 X 3  + 1 2 x j ^  - 6 X 3 X 4 ■6x„ ,x „  ,m—l m—l

+ 12x„_,' -6x„_iX „ - 6 x „ _ ,x „  + 6 x „ '

> 10xj  ̂ -  —(x /  +X2^)-3(x,^ +X2^) + 12x2  ̂ -3(x2^ +X3^)-3(x2^ +X3^) + 12x3^

3(x3  ̂+ x, ^ ) - . . . - 3 ( x^ J  + x ^ J )  + l 2 x ^ J - 3 ( x ^ J  + x J ) - 3 ( x ^ J  + x j )  + 6 x j

9 2 ^ 1  2= —X, + —X, 
2 '  2 '

> 0 .

Thus, we can conclude thatT > 0. Because p , c ,  W^, are all positive, we have 

2pcl + so

\{2pcI~^tW,CJ-KyX{A-'B)\  <\{2pcl + M W .C J  + Ky2.iA^'B)\, (3.48)

therefore, we conclude that

|T ( / / ) |  =\{2pcI  + ̂ t W , C J  + K y A -^B y \2 p c I - ^ tW f ,C J -K y A - 'B ) \< \  (3.49) 

Thus, by Lemma 1, we have proved Theorem 1.

Now, we investigate the convergence of the compact finite difference scheme for 

a uniform-layered skin structure with insulated boundary condition.
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Theorem 2: The compact finite difference we developed above is unconditionally 

stable for Pennes’ bioheat transfer equation in a uniform-layered skin structure with 

insulated boundary condition.

Proof: Similarly, Substitute Equation (3.40) back to Equation (3.12), then we have

6 ’""̂  ={2pcI + AtW,Ci,I + K y C - 'D y \2 p c I -A tW ,C i , I -K yC - 'D )e "  - = H 0 \  (3.50) 

We will show that p{H) < 1 holds. Let 2 be an eigenvalue of C~^D and x  its

corresponding eigenvector.

Ax =  C^^Dx  ^  AiCx =  D x  = >  A ^^C x  =  x ^ D x (3.51)

x^Cx = (x, Xj

22 - 4  
1 10 1

1 10 1 
- 4  22

/  \

(3.52)

:2 2 Xĵ  -4XjX2 +X^X2 + 10x2  ̂ + 2X2X3 + 10X3  ̂ + 2X3X4 + ... + 2x^,2^m-l

+ 10x 4x ,x + x  ,x + 2 2 x ^^  m - l  m - \  m m - \  m m

> 22x^  -  —(Xj  ̂+X2^) + 10Xj  ̂~{^2 + ^ 3^) + 10X3  ̂ “ (^3  ̂ + +

+ f + 2 2 x„'

41 2 15 2 2 g 2 15 2 41 2
=  X, H X, +8X3 + .. .  + 8x„ 2 H x„ , H x„2 1 2 'w-z 2 W“i 2 ^

> 0

and
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Dx = (x, Xj 0

6 - 6
- 6  12 - 6

■6 12 - 6  
- 6  6

(3.53)

=  6 x j ^  - 6 x j X 2  - 6 X ] X 2  + 1 2 x 2 ^  - 6 x 2 X 3  - 6 x 3 X 3  + 1 2 x j ^  - 6 x 3 X 4

+ 12x„_,' - 6x„_,x„ - 6x„_iX„ + 6x„ '

>  6 x , ^  - 3 ( X ] ^  + X 2 ^ ) - 3 ( x , ^  + X 2 ^ )  +  1 2 x 2 ^  ~ 3 ( X 2 ^  + X 3 ^ ) - 3 ( X 2 ^  + X 3 ^ )  +  1 2 x 3 ^  -  

3(x3  ̂+X4')-. . .-3(x„_2' + -3(x„_i' +x„ ' ) -3 (x„_ , '  + x ^ ' )  + 6x„

> 0 .

Thus, we can conclude that A > 0 . Again, 2pc7 + AtWj^C^I>0, so

{2 p c I -A tW ,C J-K yX {C - 'D )  < (2pcl + A tW ,C J + KyA{C-'D) , (3.54)

therefore, we conclude that

I A{H) 1=1 {2pcI + AtW^CJ + KyC-'Dy^ {2pcl-  A tW ,C ,I -  KyC~'D) \< 1. (3.55) 

Thus, by Lemma 1, we have proved Theorem 2.

3.3 One-Dimensional Triple-Layered Case

3.3.1 Model Description

In this section we extend the finite difference scheme from the one-dimensional 

uniform layered case to a triple-layered case. The physical description of heat flow in 

Pennes’ bioheat transfer model for this case can be schematically expressed as in Figure 

3.3.
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M l

Mi+ Ma

Mi+ Ma+1̂ 3

4̂ ------ Epidermis

  Dermis

Subcutaneous

Figure 3.3 One-dimensional triple-layered skin structure and laser power

3.3.2 Governing Equations

To describe the thermal behavior of a one-dimensional triple-layered skin 

structures, the general governing Equation (3.1) is simplified as follows:

80, 8^0, , ,
p , C , - ^  = K , - ^ - W : c l 0 , + Q „  / = 1,2,3. 

8t 8x
(3.56)

Compared with the general governing equation, the terms regarding to y  and z 

Axes, the contribution of the perfusion of the single blood vessel and the heat source Q 

are eliminated. The boundary and initial conditions are the same as Equations (3.2-3.7).

3.3.3 Finite Difference Scheme

Let 6 ‘j be the numerical approximation of^(yAz, tAt), where Azand At are the

spatial and temporal mesh sizes, respectively. Here, j  is chosen such that 

where M^Az = Z, and 7=1,2,3.

The compact finite difference scheme for Permes’ bioheat transfer equation in a 

one-dimensional triple-layered skin structure is different from the previous scheme in
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Section 3.2 only in that the relation of row vector and G at the interfaces in the

tridiagonal system Equations (3.38) and (3.40).

Now, we will show the derivation of such relation in a general case. Assume there 

is an interface with subscript /  which connects two layers of different thermal properties. 

Two superscripts, up and down, represent the upper and lower layer relative to the 

interface. Using the compact finite difference methods [Lele 1994], (0„)/ is determined 

by two equations:

—  (0 jf™  +«""(^„).-, + 6 “'’(0 „ ) f  = ■̂ ê ^G,_, (3.57)
Av

and

down
/ / I  \dow n  , ^ d o w n / / \  \  , r^down / r \ \dow n jd o w n r x  , down r \ r o \{GJi +a { G J ,  G ,+e G,^,, (3.58)

Ax

where ,b"” ,d"P,e‘̂ ^ a r e  coefficients.

Using the Taylor series at location I, we have

Ax ̂
= ( ^ « ) 7 - A r ( ^ ^ ) ,+ ^ ( 0 _ ) ,+ O ( A x ^ ) ,  (3.59)

Ax^
(^xx) m  = (^ xx) i + ^ ( ^ xxx) i + ~ ^ ( ^ xxxx) i +0(Ax ^),  (3.60)

Ax̂  Ax̂  Ax"̂
G,_,=G, - A x ( G J , + ^ ( G J , - ^ i G ^ ) , + — iG ^J ,+ 0 (A x^ ) ,  (3.61)

Ax^ Ax^
G, ,̂ =G, +Ax( G J , + ^ ( G J , + ^ ( G ^ ) , + ^ ( G ^ ) , + 0 ( A x ^).  (3.62) 

The relation between the coefficients c “̂ , u “̂

derived by matching the Taylor series coefficients of various orders. In Equation (3.57),
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balancing of the order derivative, 6 j , will give d"’’ + e"'’ = 0 ; (3.63)

c"P e"’’
balancing of the 1® order derivative, {OJ,  will give —  = ------- ; (3.64)

Ax Ax

balancing of the 2"‘' order derivative, {0„), will give

balancing of the 3*̂  order derivative, {9^^^), will give - a “̂  ' (3 -66 )

Let c"” be the free coefficient and c"” = 6c in Equation (3.57). Solve the group

of Equations (3.63-3.66) yields a"’’ = - lc ,  6 "^ = -2c, = 6c, e " ^ = - 6c. In

Equation (3.58),

balancing of the order derivative, 9  ̂ , will give = 0 ; (3.67)

„ down down

balancing of the V order derivative, ( 9 J j , will g ive  = ------- ; (3 .6 8 )
Ax Ax

balancing of the 2"‘' order derivative, ( 9 ^ ) j , will give ; (3.69)

balancing of the 3* order derivative, (9^^)^, will give o —  (3.70)

Let c*™ be the free coefficient and 0 “̂°™ =6c in Equation (3.58). Solve the 

group of Equation (3.67-3.70) will give us = lc, =2c, d ‘‘°'^ = - 6c,

= 6c.

By the assumption of perfect contact,

Rup . ^  . { 9 y r " ‘ ■ (3-71)

Multiplying Equation (3.57) by IC^ and Equation (3.58) by and subtracting one

from the other will give
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\ ^ P  I V U ^ P T / ' ^ P f O  \^ P  u^ow n  jydow n  / n  \ d o w n -\ ̂ dow n rrdow n / n  \u p^  ^ ^  \^xx)i -t> ^  \ - a  K

= K'‘’’{d'“’9j +e'“’9 j_ ^)-K ‘̂‘’'̂ '‘(d ‘̂ '^''0j (3.72)

Notice that and {9^Yf  are second order derivatives in two different

layers. So, the left hand side of Equation (3.72) has four unknowns. In order to fit 

Equation (3.72) into tridiagonal system, Equation (3.38) or (3.40), we will eliminate 

(9^^Y°™ in the following.

By Pennes’ bioheat transfer equation. Equation (3.56), we have

puPc^p{e,Yj  - w Y ^ c Y ^ ’o,  (3.73)

and

^  down down / n  \d o w n  r/- down /  r \ \d o w n  rrr  down /~y down ^  n  a \P ^  i^xx)i - ^ b  (3-/4)

for the interface I. By the assumption of perfect contact, we have

{ e Y Y = { 9 , Y r .  (3.75)

Multiplying Equation (3.73) by p '‘"C'‘̂  and Equation (3.74) by  ̂ and

subtracting one from the other will give

l u p  d ow n^dow n  d o w n ^  down u p ^ u p __^ P ^  ^P ^d o w n /^d o w n

(f>yr= - f  (g„)7+(  ̂ ‘ ^ ‘ ^ ^ Wr (3.76) ̂ xx-'y \  j^d o w H p U p ^ u p  /  j  \  /

Substitute Equation (3.76) back into Equation (3.72) will give

7 1//? down down

 ](0 yp - ( 9  )T\  XX y I —I ^ J  down ^UD /^UD ^  * \  XX -P J

= K '‘’’{d'^”9, +e'“’9 ,_ Y - K ‘‘°'"{d‘̂ '^9i +e“°'^9,^Y +

Txy aown ^  aown u p ^ u p   W  -d o w n  ^ a
j^downj^downb P ^ b  ^b P  ^  \n (3 77^

k (2̂  ̂ y * *
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Equations (3.24), (3.13) or (3.14), (3.36) and (3.77) form a tridiagonal system for a one­

dimensional triple-layered skin structure with constant heating boundary condition. 

Equations (3.30), (3.13) or (3.14), (3.36) and (3.77) form a tridiagonal system for a one­

dimensional triple-layered skin structure with insulated boundary condition. The 

algorithm for the one-dimensional triple-layered case is the same as described in Section 

3.2.4.

3.4 Three-Dimensional Triple-layered Case

3.4.1 Model Description

In this section, we extend the previous finite difference scheme to a three- 

dimensional triple-layered case. A physical description of heat flow in Pennes’ bioheat 

model for this case can be schematically expressed as in Figure 3.4.

Laser

Z

Epidermis

Dermis

Subcutaneous
Tissue

Figure 3.4 Laser radiated three-dimensional triple-layered skin structure
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3.4.2 Governing Equations

To describe the thermal behavior of three-dimensional triple-layered skin 

structure, the general governing Equation (3.1) is simplified as follows:

de, d^e, d^e, e^e, , ,
p , C , - ^  = K , i ^  + ̂  + ̂ ) - W l C i e , + Q „  /^1,2,3 (3.78)

dt dx dy  dz

The boundary and initial conditions are the same as Equations (3.2-3.7).

Heat sources Ql are introduced in this section (when constant heating boundary

condition is applied, this term is 0). We assume that the laser power is continuous and 

spatial with a normal distribution. The heat source Ql can be described as follows [Han 

1994][Zhen2003]:

P(l-Ref f , ) ,  (3.79)
2na

P{\-Re f f , ) ,  (3.80)
171(7

(3.81)
2na

where , «2 ’ absorbtivity of the three layers, Reff^, Reff^, Reff^ are laser

reflectivity of the three layers of the skin, <7 is the standard deviation of the width of a 

normally distributed laser beam, and are the depths of the three layers of the

skin.

3.4.3 Finite Difference Scheme

Let be the numerical approximation of (9i){iAx,j'Ay,kAz,tAt) , where

Ax, Ay, Az and At are the spatial and temporal mesh sizes, respectively. Here i, j, k  are
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chosen to be 0 < i< N ^  +l ,0<  j  <N^ +1, 0 < k < Ni , so that Nj Az = L f , I =1,2,3. Also, 

we let (Qi)iji, be the numerical approximation of (Q,){iAx, jAy,kAz) .

Equation (3.78) can be discretized as

nt+i _ f)<+i I Qt
piC. . .  "* +k , + c + » ' „ + « ,) ,,  -> n c . ,  ** H Q ,),, (3.82)

The bioheat transfer in the directions of the three Axes, x, y, z, are assumed to be 

independent. The bioheat transfer along x and y  Axes are considered to be in a uniform- 

layered skin structure. Therefore it is considered similar as the one-dimensional uniform- 

layered case in Section 3.2. The bioheat transfer along z Axis is similar to the one­

dimensional triple-layered case in Section 3.3.

3.4.4 Algorithm

To solve the discretized form of Pennes’ bioheat transfer equation in a one­

dimensional triple-layered skin structure, Equation (3.82), thefollowing steps will be 

taken:

Step 1. Calculate (0,)^^.

Step 2. Apply , at time t = 0, 1, 2,........, to the right hand side of the

tridiagonal system to calculate(6»',)„,(6»p)^^and(6>'J,,.

Step 3. Apply(^^.^')”, at time t = t+\ and n = 0, 1 ,2 , ........, to the right hand side

of the tridiagonal system to calculate (^^t‘) ^ ' , (^,y^')"^'and (^ p ') ”̂""’ . When n = 0, 

be equal to (0‘Y  .
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Step 4. Substitute , ( C ' ) ; : ' , ( ^ ^ r ) r  and

(2 ,)p  back to Equation (3.73) to obtain . Let (^,'4')"  equal to the newest

obtained

Step 5. Repeat step 3-4 until MAX <£.

Step 6 . Increment time level by 1, and then repeat step 2-5 until the criteria for 

time is satisfied.

3.5 Three-Dimensional Single Vessel Embedded 
Triple-Layered Case

3.5.1 Problem Description

In this section, the last component, a single blood vessel is added into the 

suhcutaneous tissue to complete our three-dimensional single vessel embedded triple­

layered model. A physical description of heat flow in Pennes’ bioheat transfer model, 

in a three-dimensional single vessel embedded triple-layered skin structure, can be 

schematically expressed as in Figure 3.1 (page 31).

3.5.2 Governing Equations

The governing equations that describe the thermal behavior of triple-layered skin 

structures are described as follows:

= + + +WiCle,+Q„  / = 1,2,3. (3.83)
ot dx dy dz

The temperature of blood corresponding to co-ordinate z is assumed to be uniform. The 

constraints of energy balance will lead to the following Ordinary Differential Equation 

(ODE) [Majchrzak 1999]
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C , v F -  aP{G^ - 9 , )  = Q>, (3.84)
dy

where C b , v , F, a , P , 9^,9^ are specific heat of blood, velocity of blood, vessel lateral 

section, heat transfer coefficient between and tissue, vessel periphery and vessel wall 

temperature. We assume at the entry.

3.5.3 Finite Difference Scheme

Equation (3.83) can be discretized as

- W ^ C ^   -  +  W ^ C ^ { 9 ' ^ .  + { Q , ) > J ,  ■ (3.85)

The tissue part is the same with that in Section 3.4. For the vessel part, we let {Ĝ )'j be 

the numerical approximation oi9f,{jlyy,tlS.t), where 0<y<A^^+l .  9^ is approximated

by taking the average of temperature, 0 , around the vessel. The ODE (3.84) is solved 

using second-order Runge-Kutta method.

3.5.4 Algorithm

To solve the discretized form of three-dimensional Pennes’ bioheat transfer 

equation in a three-dimensional single vessel embedded triple-layered skin structure. 

Equation (3.85), the following steps will be taken:

Step 1. Calculate (0 ,)^  .

Step 2. Apply 9‘j^., at time t = 0, 1, 2,....... , to the right hand side of the

tridiagonal system to calculate , {9y,̂ )yy and(6>̂ Ĵ .̂
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Step 3. Apply )", at time t = /+1 and n = 0, 1 , 2 , ........, to the right hand side

of the tridiagonal system to ealeulate and . When n = 0,

let(6>'"’)" be equal to (0 j)"  .

Step 4. Solve the ODE using second order Runge-Kutta method to get {9^)".

Step 5. Substitute  ̂( O ^ : ' > ( C ) "

(2/)yi back to Equation (3.85) to obtain . Let (01^')" equal to the newest

obtained

Step 6 . Repeat step 3-5 until MAX ( ^ r r ‘ - ( ^ r r <  £ .

Step 7. Increment time level by 1, and then repeat step 2-6 until the criteria for 

time is satisfied.
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CHAPTER 4

NUMERICAL EXAMPLES AND RESULTS

4.1 One-Dimensional Uniform-Layered Case

To test the accuracy of the compact finite difference scheme presented in Section 

3.2, we consider a uniform tissue with depth of 1mm. The material parameters used are 

listed in Table 4.1.

Table 4.1 Parameters for the uniform layer in the human skin tissue [Liu 1999]

Parameters Value

Cb 4.2 J/g-°C

c 4.2 J/g-°C

Wb 0.0000005 g/mm^-s

K 0.0002  W/mm-°C

P 0.001 g/mm^

9o 12°C

It can be shown that the analytical solution of the above problem is [Liu 1999]

oo
+ ZAexp{-a[

Qr
K

K

where

A U

54
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K  {ln-\)e^7t

K 2

We apply both the fourth-order compact finite difference scheme and second- 

order Crank-Nicholson scheme to the skin structure. The time increment was chosen to 

be 0.001 second and the grid size, Ax, to be 0.2, 0.1 and 0.05mm, respectively. The 

numerical solutions when 0 < t < 1 5 0  seconds were compared with the analjhical 

solution, as shown in Figure 4.1.

w

10'

V
2nd order- grids 5 
2nd order- gridsID 
2nd order-grids20

  4th order - grids 5
■—  4th order - grid s  1D 
 4th order-grids 20

0 50 100 150
Time(S)

Figure 4.1 Comparison of numerical errors between the second-order Crank-Nicholson 
scheme and the fourth-order compact finite difference scheme

It can be seen from Figure 4.1 that the compact finite difference scheme that we

develop is much more accurate than the Crank-Nicholson scheme. Furthermore, the CPU

time in a Sun Workstation for these two schemes with different grid sizes is listed in

Table 4.2. One can see that the speeds for both schemes are not much different.
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Table 4.2 Comparison of the running time with different grid sizes

Grid Size (mm) Crank-Nicholson scheme 
(Second)

Fourth-order compact 
scheme (Second)

0.2 840.00 792.83

0.1 1776 1559

0.05 3907 3590

4.2 One-Dimensional Triple-Layered Case

We also consider a one-dimensional triple-layered skin structure with depth of

12.08mm. Let0 o=12°C. The dimension and thermal properties are listed in the Table 4.3. 

Table 4.3 Parameters for the three layers in the human skin structure

Epidermis Dermis Subcutaneous tissue

Thickness (mm) 0.08 2.0 10.0

p, (g/mm^) 0.0012 0.0012 0.001

C (J/g .T ) 3.6 3.4 3.06

Cb (J/g .°C) 4.2 4.2 4.2

K (W/mm .°C) 0.00026 0.00052 0.00021

-7

Wb(g/mm .s) 0 0.0000005 0.0000005

The time increment is chosen to be 0.001 second and the grid size Ax = 0.02mm. 

The numerical solutions for four locations of different depth, within the time domain 

[0,150] seconds are shown in Figure 4.2.
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Figure 4.2 Transient temperatures under constant heating with duration of 150 seconds 

Totally, 94.98 seconds of CPU time is needed in a Sun Workstation. The 

numerical solution along the depth after 150 seconds are shown in Figure 4.3. The 

different thermal properties of different layers account for the sudden change in the curve.
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Figure 4.3 Transient temperatures distribution under constant heating after 150 seconds

4.3 Three-Dimensional Triple-Layered Case

We consider a three-dimensional triple-layered skin structure with geometry of 

IG/wwxlOm/nx 12.08/Mm in width, length and depth. The other dimensions and thermal 

properties are listed in the Table 4.3. When boundary condition of constant heating is 

applied for the top surface, 6  ̂ is set to 12 °C. When insulation boundary condition is

applied at the top surface, the laser power is introduced. Assume the laser power is 

continuous and spatial with a normal distribution as described in Equations (3.79-3.81) 

Parameters of the laser power are shown in Table 4.4.
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Table 4.4 Parameters of laser power for the three layers in the skin structure [Han 1994]

= 0.1 Laser absorbtivity o f first layer

«2  = 0.08 Laser absorbtivity o f layer

rZj = 0.04 Laser absorbtivity o f 3'̂  ̂layer

Reff, = 0.93 Laser reflectivity o f first layer

Reff ,= 0.93 Laser reflectivity o f 2nd layer

Reff,= 0.93 Laser reflectivity o f 3rd layer

a  = \mm Standard deviation o f Laser beam width

In Figure 4.4, we show the contours of temperature distribution in the yz-cross 

section in the three-dimensional triple-layered case with constant heating at the top 

surface.
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Figure 4.4 Contour of temperature distribution in the yz-cross section in three- 
dimensional case with constant heating boundary at various times
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Figure 4.4 (continued)

As shown in Figure 4.4, heat transfers, smoothly and uniformly, down from the 

top surface, which maintains a temperature of 12°C.

Now, in Figure 4.5, we show the contours of temperature distribution in the yz- 

cross section in the three-dimensional triple-layered case with insulated boundary under 

laser radiation.
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Figure 4.5 Contour of temperature distribution in the yz-cross section in three- 
dimensional case with insulated boundary at various times
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Figure 4.5 (continued)

As shown in Figure 4.5, heat generated by laser power smoothly and uniformly 

spreads out from the center and down from the upper tissue because of the higher 

temperature in the upper tissue.
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4.4 Three-Dimensional Single Vessel Embedded 
Triple-Layered Case

This case is different from that described in Section 4.3 only in that a single vessel 

parallel to the y  Axis with radius of 0.01mm goes through the subcutaneous tissue. The 

center of vessel locates at X = 4.99mm and Z = 6.09mm. The thermal properties of blood 

vessel are listed in Table 4.5.

Table 4.5 Parameters of blood vessel [Majhrzak 1999]

Parameters Value

a IQOOW/m^K

Q 4. 134x lOV/m' X

V 0.08m/s

In Figure 4.6, we show the contours of temperature distribution in the yz-cross 

section in the three-dimensional single vessel embedded triple-layered case with constant 

heating at the top surface.
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Figure 4.6 Contour of temperature distribution in the yz-cross section in three- 
dimensional single vessel embedded case with constant heating boundary at various times
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Figure 4.6 (continued)

As shown in Figure 4.6, the existence of the blood vessel breaks the symmetry of 

the temperature distribution in the skin structure. The temperature in this case is generally 

higher than the case without a single blood vessel, as shown in Figure 4.4. Apparently, 

the heat that blood brings in causes the rising of temperature in the tissue. As the blood 

flows through the tissue, it loses heat to its surrounding. Therefore, the temperature of the 

blood drops, and so does the gradient of heat flux from the blood vessel to its surrounding
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tissue. Consequently, at the same depth, the locations closer to the entry of blood vessel 

have the higher temperature.

Now, we show the contours of temperature distribution in the yz-cross section in 

three-dimensional single vessel embedded triple-layered case with insulated boundary 

under laser radiation in Figure 4.7.
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Figure 4.7 Contour of temperature distribution in the yz-cross section in three- 
dimensional single vessel embedded case with insulated boundary at various times
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Figure 4.7 (continued)

As shown in Figure 4.7, the existence of the blood vessel breaks the symmetry of 

the temperature distribution in the skin structure. The temperature in this case is generally 

higher than the case without a single blood vessel, which is shown in Figure 4.5. 

Apparently, the heat that blood brings in causes the rising of temperature in the tissue. As 

the blood flows through the tissue, it loses heat to its surrounding tissue, when the 

temperature in the surrounding tissue is lower than the blood. However, it absorbs heat 

from the surrounding tissue later on, when the temperature in the surrounding tissue is
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higher than the blood later on due to laser radiation. Specifically, in Figures 4.7 (c) and 

4.7 (d), when the temperature of blood vessel is higher than that in its surrounding tissue, 

the temperature at the locations close to the entry is higher than that far from it. Later on, 

in Figures 4.7 (e) and 4.7 (f), when the tissue around blood vessel is heated up by laser 

power to a generally higher temperature than that of the blood vessel, the temperature at 

the locations close to the entry becomes lower than that far from it. The changing of the 

temperature distribution pattern implies a “local cooling mechanism”, as discussed in 

many previous research [Roemer 1991] [Huang 1994][Torvi 1994] [Xuan 1997 ].

A contrast of the CPU time needed to solve the models in a Sun Workstation is 

shown in Table 4.6.

Table 4.6 Contrast of the ruiming time for three-dimensional cases

Models Time (s)

B.C of Constant heating three-dimensional 
model with blood vessel 137756.0

B.C of Constant heating three-dimensional 
model without blood vessel 128331.6

B.C of insulation three-dimensional model 
with blood vessel 150967.6

B.C of insulation three-dimensional model 
without blood vessel 130342.3
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK

Conclusions drawn from this work can be stated as follows:

A fourth-order compact finite difference scheme for solving Pennes’ bioheat 

transfer equation has been developed. Several numerical examples were given. Numerical 

results show that the scheme is uneonditionally stable and more accurate than the 

Crank-Nieholson scheme for a one-dimensional uniform-layered case.

A model simulating the interactions among human tissue, blood vessel, and 

external heat source (e.g., laser), has been developed. The application of the fourth-order 

eompact finite difference scheme to the model will facilitate the prediction of the 

temperature distribution given a pre-specified laser radiation.

The outcomes above will provide a reliable, flexible and efficient numerical 

method for solving Pennes’ bioheat transfer equation in skin stmcture.

Future studies need addressing the following issues: first, further convergence 

analysis of the high-order compact finite difference scheme in complicated geometries, 

because of the complexity of the human skin structure. High-order compact finite 

difference scheme will be more flexible and applicable, if preferable convergenee 

conditions hold. Second, inverse problem of bioheat transfer [Zhen 2003][Zhang

86
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2004][Roemer 1991][Liaixh 1993][Zhou 2004]. This is important because, with 

knowledge of the entire temperature field in the hyperthermia treatment region, clinical 

personnel can potentially control the heating sources to deliver energy to the target 

locations. An accurate solution to inverse problems will help specify which power 

deposition pattern is needed to obtain an ideal tissue temperature distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

SOURCE CODE FOR SOLVING PENNES’ BIOHEAT 

TRANSFER EQUATION IN A ONE-DIMENSIONAL 

UNIFORM-LAYERED SKIN STRUCTURE

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

c Table A .l Program I: Source code for solving the ID Pennes bioheat transfer equation 
c in a single-layered skin structure 
c Haofeng Yu 
c 06/27/04
c This program is about heat transfer in the skin of a human being, 
c There is a single layer in the skin, 
c The govening equation used is: 
c pc(partialU/patrialt)=k(Uzz)-WbCbU 

program bioheat ID
parameter(m=99, pi=3.14159265358979323846) 

integer n,t,reminder,posi
double precision v(0:m+l),vn(0:m+l),vnl(0:m+l),vn2(0:m+l)
double precision q2(0:m+l)
double precision vxx(0:m+l),vxxl(0:m+l),dif
double precision a3(0:m+1 ),b3(0 :m+1 ),c3(0:m+1 ),d(0 :m-l-1 ),d 1 (0:m+1)
double precision dt,dz,er,rho,c,cb,wb,rk,zl
double precision an, part,try,miu
double precision pl,p2,p3,p5,p4,p6,p7,ql,q3
REAL etime ! Declare the type of etime()
REAL elapsed(2) ! For receiving user and system time 
REAL total ! For receiving total time

er = .00001 
dz = 0.01 
dt = .0005 
rho = 0.001 
c = 4.200 
cb = 4.2 
wb = .0000005 
rk = .0002 
zl = 1.0
alpha = rk/(rho*c) 
p4= wb*cb*zl*zl/rk 
miu=dt/(dz*dz)

open(unit = 1, file = 'BioHeat4th.dat', status = 'old')

c // initialization! 
do i=0, m-t-1 

v(i) = 0.0 
q2(i) = 0.0 
a3(i) = 0.0 
c3(i) = 0.0 
b3(i) = 0.0 
dl(i) = 0.0 
d(i) = 0.0 

enddo
c // initiate the temperature 

do i=l, m 
vn(i) = 0.0 
vnl(i)=0.0
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vn2(i)=0.0
enddo
vn(0)=12.0
vnl(0)=12.0
vn2(0)=12.0

d o t= l,150000 
c //Calculate the exact value! 

do i=l,m 
pl=sqrt(wb*cb/rk)*(i*dz-zl) 
p2=sqrt(wb*cb/rk) 
p3 = 0.0 
do n=l,500 

p5=(2.0*n-1.0)*(2.0*n-1.0)*pi*pi/4.0 
p6=p5/(zl*zl)+wb*cb/rk 
p7=sin((n-0.5)*pi*i*dz/zl) 
an=-(2.0*n-l ,0)*12.0*pi/(p4+p5) 
p3 = p3 + an*exp(-alpha*t*dt*p6)*p7 

enddo
v(i) = 12.0*(exp(pl)+exp(-pl))/

+ (exp(p2)+exp(-p2))+p3
enddo

compact scheme *********************** 
c // initiate the coefficients in LHS of the tridiagonal,a(i),b(i),c(i) 

b3(l) =0.0 
a3(l)=  1.0 
c3(l) =0.0 
do i=2,m-l 

b3(i) = -0.1 
a3(i) = 1.0 
c3(i) = -0.1 

enddo
b3(m)= 1.0/3.0 
a3(m) = 11.0/6.0 
c3(m) =0.0

c // initiate the coefficients in RHS of the tridiagonal,d(i) 
vxx(l) = miu*(vn(0)-2*vn(l)+vn(2)) 
d(l)= miu*(vn(0)-2*vn(l)+vn(2)) 
do i=2,m-l

d(i) = (6.0*miu/5.0)*(vn(i-l)*2*vn(i)+vn(i+l)) 
enddo
d(m) = miu*(vn(m-l)-vn(m))

c // Call subroutine to sovle the tridiagonal system 
call tri(m,b3,a3,c3,d,vxx) 
call equal(vnl,vn,m)

10 continue 
c // Interation!
c // Reiresh the coefficients in RHS of the tridiagonal,dl(i) 

vxxl(l) = miu*(vnl(0)-2*vnl(l) + vnl(2)) 
d l(l)  = miu*(vnl(0)-2*vnl(l) + vnl(2))
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do i=2,m-l
dl(i) = (6.0*miu/5.0)*(vnl(i-l)-2*vnl(i) + vnl(i+l)) 

enddo
dl(m) = miu * (vnl(m-l)-vnl(m)) 
call tri(m,b3,a3,c3,dl,vxxl)

// calculate the vnew(i) with vxx(i) and vxxl(i) 
ql=  wb*cb*0.5*dt 
do i = l,m 

q2(i)= rk*0.5*(vxx(i)+vxxl(i)) 
enddo 
do i = l,m

vn2(i) = (q2(i)+(rho*c-ql)*vn(i))/(ql+rho*c) 
enddo

//check the error condition 
do i=l,m 

if(abs(vnl (i)-vn2(i)).gt.er) then 
call equal(vnl,vn2,m) 
goto 10 

endif 
enddo
call equal(vn,vn2,m)

//output 
dif=0.0  
do i= l, m 

if (dif .It. abs(vn2(i) - v(i))) then 
dif = abs(vn2(i) - v(i)) 
posi = i 

endif 
enddo
reminder = mod(t,25) 
if (reminder ==1) then 

write(l,*) posi,",dif 
endif
write(*,*) 't = ',t 

enddo

// Record the CPU time 
total = etime(elapsed)
write(l,*) 'End: total=', to tal,' user=', elapsed(l),

+ ' system=', elapsed(2)
stop 
end
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c Table A.2 Program II:
c Source code for solving the ID Triple-layered Pennes bioheat 
c transfer equation in a Triple-layered skin structure

c Haofeng Yu

c 07/01/04

c This program aims to solve about heat transfer in the skin of human being,
c There are three layers in the skin, Epiderms,Dermis and Subcutaneous,
c The govening equation used is:
c pc(partialU/patialt)=k(Uzz)-WbCbU

program BioheatID3Layer 
parameter(nz=603 ,pi=3.14159265358979)

real c 1 ,c2,c3 ,rk 1 ,rk2,rk3 ,rho 1 ,rho2,rho3 ,wb 1,wb2,wb3 ,cb 1 ,cb2,cb3 
integer Nt,Nx,Ny,nz I ,nz2,t,counter 
integer n,reminder,posi
double precision v(0:nz+l),vn(0:nz+l),vnI(0:nz+I),vn2(0:nz+I) 
double precision q2(0:nz+l)
double precision vxx(0:nz+I),vxxl(0:nz+l),dif,dl(0:nz-Hl)
double precision a(0:nz+l),b(0:nz+l),c(0:nz+l),d(0:nz+l)
double precision dt,dz,er
double precision part,try,miu
double precision pl,p2,p3,p5,p4,p6,p7,q3
real inta,intb,intc,intd,inte,intf
real inta2,intb2,intc2,intd2,inte2,intf2
REAL etime ! Declare the type of etime()
REAL elapsed(2) ! For receiving user and system time
REAL total ! For receiving total time
er=.OOOI
dz = 0.02
dt = .001
nzl = 4
nz2 = 100

cl = 3.6 
c2 = 3.4 
c3 = 3.06 
cbl = 0.0 
cb2 = 4.2 
cb3 = 4.2 
rkl = 0.00026 
rk2 = 0.00052 
rk3 = 0.00021 
rhol = 0.0012 
rho2 = 0.0012 
rho3 = 0.001 
wbl = 0.0 
wb2 = 0.0000005 
wb3 = 0.0000005

c //inta 1 ,intb 1 ,intc 1 ,intd 1 ,iete 1 are the coefficients for the upper part to the interface,
c //inta2,intb2,intc2,intd2,iete2 are the coefficients for the upper part to the interface.
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intal=-1.0 
intbl=-2.0 
intcl=6.0 
intdl=6.0 
intel=-6.0 
inta2=1.0 
intb2=2.0 
intc2=6.0 
intd2=-6.0 
inte2=6.0 
miu=dt/(dz*dz)

open(unit = 1, file = 'new basel.dat', status = 'old') 
open(unit = 2, file = 'new base4 .dat', status = 'old') 
open(unit = 3, file = 'new basel04.dat', status = 'old') 
open(unit = 4 , file = 'new base604.dat', status = 'old') 
open(unit = 5, file = 'new basel50second.dat', status = 'old')

^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  OOIXl̂ ^̂ Ot Sotl^fn^  ̂ ^^ ̂  ̂  ̂  ̂ 5|c jf* ̂  ̂  ̂  ̂  ̂   ̂̂  ̂
c // initialization! 

do i=0, nz+1 
a(i) = 0.0 
c(i) = 0.0 
b(i) = 0.0 
dl(i) = 0.0 
d(i) = 0.0 

enddo
c // initiate the temperature 

do i= l, nz+1 
vn(i)=0.0 
vnl(i)=0.0 
vn2(i)=0.0 

enddo 
vn(0)=12.0 
vnl(0)=12.0 
vn2(0)=12.0

c // Start the loop by time step
c // initiate the coefficients in LHS of the tridiagonal,a(i),b(i),c(i) 

b(l) = 0.0 
a(l)=  1.0 
c(l) = 0.0 
do i=2,nzl-l 

b(i) = -0.1 
a(i)= 1.0 
c(i) = -0.1 

enddo
b(nzl) = -intal*rkl
a(nzl) = intbl*rkl-intb2*rk2 *0.472222222 
c(nzl) = inta2*rk2 
b(nzl+l) = -0 .1*0.472222222 
a(nzl+l) = 1.0 
c(nzl+l) = -0.1 
do i=nzl+2,nzl+nz2-l 

b(i) = -0.1
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a(i)= 1.0 
c(i) = -0.1 

enddo
b(nzl+nz2) = -intal*rk2
a(nzH-nz2) = (intbl*rk2-intb2*rk3*1.857142857) 
c(nzl+nz2) = inta2*rk3 
b(nzl+nz2+l) = -0.1*1.857142857 
a(nzl+nz2+l) =1.0 
c(nzl+nz2-l-l) = -0.1 
do i=nzl+nz2-l-2,nz-l 

b(i) = -0.1 
a(i)= 1.0 
c(i) = -0.1 

enddo
b(nz) = 1.0/3.0 
a(nz) = 11.0/6.0 
c(nz) = 0.0

do 1=1,50000
c // initiate the coefficients in RHS of the tridiagonal,d(i) 

d(l)= miu*(vn(0)-2*vn(l)+vn(2)) 
do i=2,nzl-l 

d(i) = (6.0*miu/5.0)*(vn(i-l)-2*vn(i) + vn(H-l)) 
enddo

d(nzl)= miu*(rkl*intel*vn(nzl-l)
& + (rkl*intdl-rk2*intd2)*vn(nzl)-rk2*inte2*vn(nzH-l))
& 4- intb2*rk2*0.00403846*vn(nzl)

^  ^ ^  ̂  ̂  5|C ̂  ̂  ^  ̂  ̂  ̂  5|c ^   ̂ ^ ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  «fC ̂  ^  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂

do i=nzl+l,nzl-l-nz2-l 
d(i) = (6.0*miu/5.0)*(vn(i-l)-2*vn(i) + vn(i+l)) 

enddo
d(nzH l) = d(nzl+l)-0.1*0.00403846*vn(nzl)

d(nzl+nz2)= miu*(rk2*intel *vn(nzl4-nz2-l)
& -f-(rk2 *intd 1 -rk3 *intd2)*vn(nz 1 +nz2)-rk3 *inte2 *vn(nz 14-nz2+1)) 
& -l-intb2*rk3*0.0025*vn(nzH-nz2)

do i=nz 14-nz2+1 ,nz-1 
d(i) = (6.0*miu/5.0)*(vn(i-l)-2*vn(i) -t- vn(i+l)) 

enddo
d(nz 1 +az2+1 )=d(nz 1 +nz2+1 )-0.1 *0.0025 * vn(nz 1 -f-nz2) 
d(nz) = miu * (vn(nz-l)-vn(nz)) 

c // Call subroutine to sovle the tridiagonal system 
call tri(nz,b,a,c,d,vxx) 
call equal(vnl,vn,nz)

10 continue 
c // Interation!
c // Refresh the coefficients in RHS of the tridiagonal,dl(i) 

vxxl(l) = miu*(vnl(0)-2*vnl(l) -I- vnl(2)) 
d l(l)  = miu*(vnl(0)-2*vnl(l) + vnl(2)) 
do i=2,nzl-l

dl(i) = (6.0*miu/5.0)*(vnl(i-l)-2*vnl(i) + vnl(i+l))
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enddo
 ̂5jC )|€ SjC 5l6 ̂   ̂5jC ̂  ̂  3|6  ̂  ̂ ^ S|€ ̂  ̂  ̂  ̂  ̂  ̂  5jC ̂  5jC 5̂C 5|C 5|C ̂  ̂C ̂  ̂  j|€ S|C 5|C 3jC

dl(nzl)=  m iu*(rkl*intel*vnl(nzl-l)
& + (rkl*intdl-rk2*intd2)*vnl(nzl)-rk2*inte2*vnl(nzl+l))
& + intb2*rk2*0.00403846*vnl(nzl)

 ̂)|6 ̂  5|C ̂  ̂  ̂  3̂5 4$ ̂  ̂  5|6 5|5 ̂  5|C 5̂C ̂ ^  ̂  ̂  ̂  ̂  ̂  3j% 5ji ̂  ̂  ̂  ̂  ̂  3|C 3|C #|C ̂   ̂̂5|C 3|C

do i=nzl+l,nzl+nz2-l 
dl(i) = (6.0*miu/5.0)*(vnl(i-l)-2*vnl(i) + vnl(i+l)) 

enddo
d l(nz l+ l) = dl(nzl+l)-0.1*0.00403846*vnl(nzl)

d 1 (nz 1 +nz2)= miu * (rk2 *inte 1 * vn 1 (nz 1 +nz2 -1)
& +(rk2 *intd 1 -rk3 *intd2) *vn 1 (nz 1 +nz2)-rk3 *intc2 *vn 1 (nz 1 +nz2+1)) 
& +intb2*rk3*0.0025*vnl(nzl+nz2)

do i=nzl+nz2+l,nz-l 
dl(i) =(6.0*miu/5.0)*(vnl(i-l)-2*vnl(i) + vnl(i+l)) 

enddo
dl (nzl +nz2+1 )=dl (nzl+nz2+1 )-0.1 *0.0025 *vnl (nzl +nz2) 
dl(nz) = miu*(vnl(nz-l)-vnl(nz)) 
call tri(nz,b,a,c,dl,vxxl)

// calculate the vnew(i) with vxx(i) and vxxl(i) 
p l=  wbl*cbl*0.5*dt 
do i = l,nzl 

q2(i)= rkl*0.5*(vxx(i)+vxxl(i)) 
enddo 
do i = l,nzl

vn2(i) = (q2(i)+(rhol*cl-pl)*vn(i))/(pl+rhol*cl) 
enddo
p2- wb2*cb2*0.5*dt 
do i = nzl+l,nzl+nz2 

q2(i)= rk2*0.5*(vxx(i)+vxxl(i)) 
enddo
do i = nzl+l,nzl+nz2 

vn2(i) = (q2(i)+(rho2*c2-p2)*vn(i))/(p2+rho2*c2) 
enddo
p3= wb3*cb3*0.5*dt 
do i = nzl+nz2+l,nz 

q2(i)= rk3*0.5*(vxx(i)+vxxl(i)) 
enddo
do i = nzl+nz2+l,nz 

vn2(i) = (q2(i)+(rho3*c3-p3)*vn(i))/(p3+rho3*c3) 
enddo

//check the error condition 
do i=l,nz 

if(abs(vnl(i)-vn2(i)).gt.er) then 
call equal(vnl,vn2,nz) 
goto 10 

endif 
enddo
call equal(vn,vn2,nz)

//output
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write(*,*) 't = ',t 
enddo

c 11 Record the CPU time
total = etime(elapsed)
write(5,*) 'End: total=', to tal,' user=', elapsed(l),

+ ' system=', elapsed(2)
stop 
end

subroutinc equal *********************** 
subroutine equal(wold,wnew,n) 
integer n
double precision wold(0:n+l),wnew(0:n+l) 
do i=l,n+l 

wold(i) = wnew(i) 
enddo 
return 
end
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c Table A.3 Program III:
c Source code for solving the 3D Triple-layered Pennes bioheat
c transfer equation with laser power in a Triple-layered skin structure

c Haofeng Yu

c 07/01/04

c This program aims to solve about heat transfer in the skin of human being,
c There are three layers in the skin, Epiderms,Dermis and Subcutaneous,
c The skin structure is 10byl0byl2.08mm in geometry
c The govening equation used is:
c pc(partialU/patialt)=k(Uzz)-WbCbU+Q
c Two boundaries conditions are considered:
c 1. Dirichlet The temperature at surface is assumed to be constant, lOoC
c 2. Neumann The temperature at surface is assumed to be heat insulated

program bioheat3D3LLaser
parameter(nz=603,pi=3.1415926535 8979,nx= 10,ny= 10)

V3.i*i2.blc declaration 
real c 1 ,c2,c3 ,rkl ,rk2,rk3 ,rho 1 ,rho2,rho3,wb 1 ,wb2,wb3 ,cb 1 ,cb2,cb3 

integer x,y,z 
integer Nt,nz 1 ,nz2,t,counter 
integer n,reminder,posi

c _____________ __________________________________________
double precision Ql(0:nx,0:ny,0:nz), Q2(0:nx,0:ny,0:nz) 
double precision Q3(0:nx,0:ny,0:nz) 
double precision v(0:nx,0:ny,0:nz+l),vn(0:nx,0:ny,0:nz+l) 
double precision vnl(0:nx,0:ny,0:nz+l),vn2(0:nx,0:ny,0:nz+l) 
double precision qq2(0:nz+l),dxl(0:nx),dyl(0:ny),dzl(0:nz+l) 
double precision tempx(0:nx),tempy(0:ny),tempz(0:nz+l) 
double precision vxx(0:nx,0:ny,0:nz-l-l),vxxl(0:nx,0:ny,0:nz-l-l) 
double precision vyy(0:nx,0:ny,0:nz+l),vyyl(0:nx,0:ny,0:nz-t-l) 
double precision vzz(0:nx,0:ny,0:nz+l),vzzl(0:nx,0:ny,0:nz+l)

double precision ax(0:nx),bx(0:nx),cx(0:nx),dx(0:nx)
double precision ay(0:ny),by(0:ny),cy(0:ny),dy(0:ny)
double precision az(0:nz+l),bz(0:nz+l),cz(0:nz+l),dz(0:nz+l)
double precision dt,er,dif
double precision part,try,miu,miuxy
double precision pl,p2,p3,p5,p4,p6,p7
real inta2,intb2,intc2,intd2,inte2,intf
real inta 1 ,intb 1 ,intc 1 ,intd 1 ,inte 1 ,int£2

double precision Sigma,Alphal,Alpha2,Alpha3,Reffl,Reff2,Reff3 
double precision PO 

REAL etime ! Declare the type of etime()
REAL elapsed(2) ! For receiving user and system time 
REAL total ! For receiving total time 

c // Discretization units 
er=  0.001 
deltax = 1.0 
deltay =1.0 
deltaz = 0.02
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deltaz3 = 0.02 
Ration = deltaz3/deltaz 
dt = .001 
nzl = 4 
nz2 = 100
11 Parameters related to Laser Power
Sigma= 1.0
Alpha 1=0.1
Alpha2=0.08
Alpha3=0.04
Reffl=0.93
Reff2=0,93
Reff3=0.93
P0=6.4
// Parameters related to layers of skin

cl = 3.6 
c2 = 3.4 
c3 = 3.06 
cbl = 0.0 
cb2 = 4.2 
cb3 = 4.2 
rkl = 0.00026 
rk2 = 0.00052 
rk3 = 0.00021 
rbol = 0.0012 
rbo2 = 0.0012 
rbo3 = 0.001 

wbl = 0.0 
wb2 = 0.0000005 
wb3 = 0.0000005
//intal,intbl,intcl,intdl,ietel are the coefficients for the upper part to the interface.
//inta2,intb2,intc2,intd2,iete2 are the coefficients for the upper part to the interface.
intal=-1.0
intbl=-2.0
intc 1=6.0
intdl=6.0
intel=-6.0
inta2=1.0
intb2=2.0
intc2=6.0
intd2=-6.0
inte2=6.0
miu=dt/(deltaz*deltaz)

miu3=dt/(deltaz3*deltaz3)
miux=dt/(deltax*deltax)

miuy=dt/(deltay*deltay)
miuxy=dt/(deltay*deltay)

open(unit = 1, file = '0603 tlOOO.daf, status = 'old') 
open(unit = 2, file = '0603 t3000.dat', status = 'old') 
open(unit = 3, file = '0603 t5000.dat', status = 'old') 
open(unit = 4, file = '0603 tlOOOO.dat', status = 'old') 
open(unit = 5, file = '0603 tl5000.dat', status = 'old')
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open(unit = 6, file = '0603 t20000.dat', status = 'old') 
open(unit = 1, file = 'time.dat', status = 'old')
^ ̂ ^  ̂  ̂  ̂  ^ ̂   ̂ ^ ̂  ̂  ̂  coin̂ )3-Ct sclidxic ^ ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂ ^ ̂  ̂  ̂  ̂  ̂  ̂

11 Initialization! 
do i=0, nx 

ax(i) = 0.0 
cx(i) = 0.0 
bx(i) = 0.0 
dxl(i) = 0.0 
dx(i) = 0.0 

enddo 
do j=0, ny

Bv(i) = 0.0 
BpO) = 0.0
BvlQ) = 0.0

ay(j) = 0.0 
cy(j) = 0.0 
byO) = 0.0 
dylO) = 0.0
dy(j) = 0.0

enddo
do k=0, nz+1 

az(k) = 0.0 
cz(k) = 0.0 
bz(k) = 0.0 
dzl(k) = 0.0 
dz(k) = 0.0 

enddo 
do i=0, nx

doj=0,ny
do k=0, nz+1

vn(i,j,k)=0.0
vnl(i,j,k)=0.0
vn2(i,j,k)=0.0

enddo
enddo

enddo
Calculate the laser power Q(i,j,k) 
do i=0,nx 
doj=0,ny 
do z=0,nzl

Q 1 (i,j ,z)=Alphal *exp(-Alphal *z*deltaZ)/(2*pi*Sigma* *2)* 
$ exp(-((nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*deltax**2/
$ (2*Sigma*Sigma)) * PO*(l-Reffl ) 

enddo
do z =nzl,nzl+nz2

Q2(i,j,z)= Alpha2 * exp( - Alpha2 *(z-nzl) *deltaZ )*
$ exp(-Alphal*deltaZ*nzl ) /(2*pi*Sigma**2)*
$ exp(-((nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*deltax**2/
$ (2*Sigma*Sigma)) * P0*(l-Reff2 ) 

enddo
Q l(i,j,nzl) = (Ql(i,j,nzl)+Q2(i,j,nzl))/2.0 

do z =nzl+nz2,nz
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Q3(i,j,z)= Alpha3*exp( - Alpha3 *(z-nz2-nzl) *deltaZ3 )*
$ exp(-Alphal*deltaZ*nzl ) *exp(-Alpha2*deltaZ’'‘nz2 ) /
$ (2*pi*Sigma**2)*exp(-(( nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*
$ deltax**2/(2*Sigma*Sigma)) * PO*(l-RefG ) 

enddo
Q2(i,j,nzl+nz2) = (Q2(i,j,nzl+nz2)+Q3(i,j,nzl+nz2))/2.0 

enddo 
enddo
Begin the big loop by time step!!!!!!!!!!!!!!!!!!!!!! 

do t= 1,50001
// intialize ax,bx,cx 

bx(l) =0.0 
ax(l) = 11.0/6.0 
cx (l)= l.0/3.0 
do i=2,nx-2 

bx(i) = -0.1 
ax(i)= 1.0 
cx(i) = -0.1 

enddo
bx(nx-l) = 1.0/3.0 
ax(nx-l) = 11.0/6.0 
cx(nx-l) =0.0

// intialize dx and caulculate vxx 
do j=l,ny-l

do k=l,nz
dx(l)=miuxy*(vn(2,j,k)-vn(l,j,k)) 
do i=2,nx-2

dx(i) = (6.0*miuxy/5.0)*(vn(i-l,j,k)-2*vn(i,j,k) 
+ + vn(i+l,j,k))

enddo
dx(nx-l) = miuxy * (vn(nx-2,j,k)-vn(nx-l j,k)) 
call tri(nx-l,bx,ax,cx,dx,tempx) 
do i=l,nx-l

vxx(i,j ,k)=tempx(i)
enddo

enddo
enddo
// intialize ay,by,cy 

by(l) =0.0 
ay(l)=  11.0/6.0 
c y (l)= l.0/3.0 
do i=2,ny-2 

by(i) = -0.1 
ay(i) = 1.0 
cy(i) = -0.1 

enddo
by(ny-l) = 1.0/3.0 
ay(ny-l) = 11.0/6.0 
cy(ny-l) =0.0

// intialize dy and caulculate vyy 
do i=l,nx-l

do k=l,nz
dy( 1 )= miuxy*(vn(i,2,k)-vn(i, 1 ,k))
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do j=2,ny-2
dy(i) = (6.0*miuxy/5.0)*(vn(i,j-l,k)-2*vn(iJ,k) 

+- +vn(i,j+l,k))
enddo
dy(ny-l) = miuxy * (vn(i,ny-2,k)-vn(i,ny-l,k)) 
call tri(ny-l,by,ay,cy,dy,tempy) 
doj=l,ny-l

vyy(ij,k)=tempy(i)
enddo

enddo
enddo
// intialize az,bz,cz 

bz(l) =0.0 
az(l)=  11.0/6.0 
cz(l)=1.0/3.0 
do i=2,nzl-l 

bz(i) = -0.1 
az(i) =1.0 
cz(i) = -0.1 

enddo
bz(nzl) = -intal*rkl
az(nzl) = intbl*rkl-intb2*rk2*0.472222222 
cz(nzl) = inta2*rk2 
bz(nzl+l) = -0.1*0.472222222 
az(nzl-i-l) =1.0 
cz(nzl+l) = -0.1 
do i=nzl+2,nzl-l-nz2-l 

bz(i) = -0.1 
az(i) =1.0 
cz(i) = -0.1 

enddo
bz(nzH-nz2) = -intal*rk2
az(nzl+nz2) = (intbl*rk2-intb2*rk3*1.857142857*ration) 
cz(nzl+nz2) = inta2*rk3*ration 
bz(nzl+nz2+l) = -0.1*1.857142857 
az(nzl+nz2+l) = 1.0 
cz(nzl+nz2+l) = -0.1 
do i=nzl+nz2+2,nz-l 

bz(i) = -0.1 
az(i) = 1.0 
cz(i) = -0.1 

enddo
bz(nz) = 1.0/3.0 
az(nz) = 11.0/6.0 
cz(nz) = 0.0

// initiate the coefficients in RHS of the tridiagonal,d(i) 
do i=l,nx-l 
doj=l,ny-l

dz(l)= miu*(-vn(i,j,l)+vn(i,j,2)) 
do k=2,nzl-l
dz(k) = (6.0*miu/5.0)*(vn(i,j,k-l)-2*vn(iJ,k) + vn(i,j,k-tl))

enddo
SjC 3|6 5|C ^  3|6 SjC ^  ^  ^  ^  S|C ^  ^  ^  ̂  5|C ^  ^  ^  ^  ^  ^  ^  ^  5|C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

dz(nz 1 )= miu*(rk 1 *inte 1 * vn 1 (i,j ,nz 1 -1)
& + (rkl*intdl-rk2*intd2)*vn(i,j,nzl)-rk2*inte2*vn(i,j,nzl+l))
& + intb2*rk2*0.00403846*(vn(ij,nzl)-Bv(j))

do k=nz 1+1 ,nz 1 +nz2-1
dz(k)=(6.0*miu/5.0)*(vn(i,j,k-l)-2*vn(i,j,k) + vn(i,j,k+l)) 
enddo
dz(nzl+l) = dz(nzl+l)-0.1*0.004038462*(Vn(i,j,nzl)-Bv(j))

dz(nz 1 +nz2)= miu *rk2 *inte 1 * vn(i ,j ,nz 1 +nz2 -1)
& +(miu*rk2 *intd 1 -miu3 *rk3 *ration*intd2) * vn(i,j ,nz 1 +nz2)- 
& miu3 *rk3 *ration*inte2 * vn(i,j ,nz 1 +nz2+1 )+
& ration*intb2*rk3*0.0025*(vn(i,j,nz2+nzl)-Bv(j))

do k=nzl+nz2+l,nz-l 
dz(k)=(6.0*miu3/5.0)*(vn(i,j,k-l)-2*vn(i,j,k) + vn(i,j,k+l)) 

enddo
dz(nzl+nz2+l)=dz(nzl+nz2+l)-0.1*0.0025*(Vn(i,j,nzl+nz2)-Bv(j)) 
dz(nz) = miu3*(vn(i,j,nz-l)-vn(i,j,nz)) 

c // Call subroutine to sovle the tridiagonal system 
call tri(nz,bz,az,cz,dz,tempz) 

dok=l,nz
vzz(i,j ,k)=tempz(k)

enddo
enddo
enddo

call equal(vnl,vn,nx,ny,nz)
10 continue 
c // Interation!
c // Refresh the coefficients in RHS of the tridiagonal,dl(i) 

doj=l,ny-l
do k=l,nz

dxl(l)=miuxy*(vnl(2,j,k)-vnl(l,j,k)) 
do i=2,nx-2

dxl(i) = (6.0*miuxy/5.0)*(vnl(i-l,j,k)-2*vnl(i,j,k) 
+ + vnl(i+l,j,k))

enddo
dxl(nx-l) = miuxy * (vnl(nx-2,j,k)-vnl(nx-l,j,k)) 
call tri(nx-l,bx,ax,cx,dxl,tempx) 
do i=l,nx-l

vxx 1 (i,j ,k)=tempx(i)
enddo

enddo
enddo

c //slove the vyylQ 
do i=l,nx-l

do k=l,nz
dy 1 (1 )= miuxy *(vn 1 (i,2,k)-vn 1 (i, 1 ,k)) 
do j=2,ny-2

dyl(j) = (6.0*miuxy/5.0)*(vnl(i,j-l,k)-2*vnl(ij,k) 
+ +vnl(i,j+ l,k))

enddo
dyl(ny-l) = miuxy * (vnl(i,ny-2,k)-vnl(i,ny-l,k))
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call tri(ny-l,by,ay,cy,dyl,tempy) 
doj=l,ny-l

vyyl(i,j,k)=tempy(j)
enddo

enddo
enddo
//Slove the vzzl() 
do i=l,nx-l 
do j=l,ny-l

d z l(l)  = miu*(-vnl(i,j,l)+vnl(i,j,2)) 
do k=2,nzl-l

dzl(k)=(6.0*miu/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k)+vnl(i,j,k+l))
enddo

Y * * * * * * * * * ^ * * * * * * * * * * * * *

dz 1 (nz 1 )= miu * (rk 1 *inte 1 * vn 1 (i ,j ,nz 1 -1)
& + (rk 1 *intd 1 -rk2 *intd2) *vn 1 (i,j ,nz 1 )-rk2 *inte2 *vn 1 (i,j ,nz 1+1))
& + intb2*rk2*0.00403846*(vnl(i,j,nzl)-Bvl(j))

**************** cc 1 **********************
do k=nzl+l,nzl+nz2-l
dzl(k)=(6.0*miu/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k) + vnl(i,j,k+l)) 
enddo
dzl(nzl+ l) = dzl(nzl+l)-0.1*0.004038462*(Vnl(i,j,nzl)-Bvl(j))

dzl(nzl+nz2)= miu*rk2*intel *vnl(i,j,nzl+nz2-l)
& +(miu*rk2 *intd 1 -miu3 *ration*rk3 *intd2) * vn 1 (i,j ,nz 1 +nz2)- 
& miu3 *rk3 *ration*inte2 * vn 1 (i,j ,nz 1 +nz2+1)+
& ration*intb2*rk3*0.0025*(vnl(i,j,nz2+nzl)-Bvl(j))

^ 5 | C * * * * * * * * * * * * *  * 2  ^ ^ * * * * * * * * 3 | % ^ 5 j C 5 j C 5 ( t * * * * * * *

do k=nz 1 +nz2+1 ,nz-1
dzl(k)=(6.0*miu3/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k) + vnl(i,j,k+l)) 
enddo
dzl(nzl+nz2+l)=dzl(nzl+nz2+l)-0.1*0.0025*(Vnl(i,j,nzl+nz2)-Bvl(j)) 
dzl(nz) = miu3*(vnl(i,j,nz-l)-vnl(i,j,nz))
// Call subroutine to sovle the tridiagonal system 

call tri(nz,bz,az,cz,dzl,tempz) 
do k=l,nz

vzz 1 (i,j ,k)=tempz(k)
enddo

enddo
enddo

// calculate the vnew with vzz and vzzl 
do i=l,nx-l 
do j=l,ny-l 

p l=  wbl*cbl*0.5*dt 
do k = l,nzl

qq2(k)= rkl *0.5 *(vxx(i,j ,k)+vxx 1 (ij ,k)+vyy(i j  ,k)
+ +vyy 1 (i,j ,k)+vzz(i,j,k)+vzzl (i j  ,k))

enddo 
do k = 1 ,nzl
vn2(i,j ,k)=(qq2(k)+(rho 1 *cl -p 1 )*vn(i,j ,k)
$ +ql(i,j,k)*dt)/(pl+rhol*cl) 
enddo
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p2= wb2*cb2*0.5*dt 
do k = nzl+l,nzl+nz2 

qq2(k)= rk2 *0.5 *(vxx(i,j ,k)+vxx 1 (i,j ,k)+vyy(i,j ,k)
+ +vyy 1 (i,j ,k)+vzz(i,j ,k)+vzzl (ij ,k))

enddo 
do k = nzl+l,nzl+nz2 
vn2(ij,k)=(qq2(k)+(rho2*c2-p2)*vn(ij,k)
$ +q2(ij,k)*dt)/(p2+rho2*c2)
enddo

p3= wb3*cb3*0.5*dt 
do k = nzl+nz2+l,nz 

qq2(k)= rk3 *0.5 *(vxx(i j  ,k)+vxx 1 (i j  ,k)+vyy(i j  ,k)
+ +vyy 1 (i j  ,k)+vzz(i j  ,k)+vzz 1 (i j  ,k))

enddo
do k = nzl+nz2+l,nz

vn2(i j  ,k)=(qq2(k)+(rho3 *c3 -p3)*vn(i j  ,k) 
+ +q3(ij,k)*dt)/(p3+rho3*c3)

enddo
vn2(i,i,nz+l) = vn2(ij,nz) 
vn2(ij,0) = vn2(ij,l)

enddo
enddo

do j=0,ny
do k=l,nz+l

vn2(0j,k) = vn2(l j,k) 
vn2(nxj,k) = vn2(nx-l j,k)

enddo
enddo 
do 1=0,nx

do k=l,nz+l
vn2(i,0,k) = vn2(i,l,k) 
vn20,ny,k) = vn2(i,ny-l,k)

enddo
enddo

c //check the error condition 
do i=0,nx 
do j=0,ny 

do k=0,nz 
if(abs(vn 1 (i j  ,k)-vn2(i,j ,k)). gt.er) then 

x=i
y=j
z=k

call equal(vnl,vn2,nx,ny,nz)
write(*,*) 'error too big, loop back' 

goto 10 
endif 

enddo 
enddo 
enddo

call equal(vn,vn2,nx,ny,nz)
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c //output
c Result at different time level 

write(*,*) 't = ',t
if (t .eq. 10000)then 

do k=l,nz
WRITE(ll,*)vn2(5,5,k)

enddo
WRITE(1,*) 'TITLE = "t=50"’
WRITE(1,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(1,*) 'zone 1=604, J= ll , F=POINT' 
doj=0,ny

do k=0,nz
WRITE(l,*)j*L0,k*0.02,(vn2(4,j,k)+vn2(5,j,k))/2.0

enddo
enddo

endif

if (t .eq. 30000)then 
do k=l,nz

WRITE(12,*) vn2(5,5,k)
enddo
WRITE(2,*) 'TITLE = "t=100"'
WRITE(2,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(2,*) 'zone 1=604, J=11, F=POINT' 
doj=0,ny

do k=0,nz
WRITE(2,*)j*1.0,k*0.02,(vn2(4,j,k)+vn2(5,j,k))/2.0

enddo
enddo

endif

if (t .eq. 60000)then 
do k=l,nz

WRITE(13,*) vn2(5,5,k)
enddo
WRITE(3,*) 'TITLE = "t=200"'
WRITE(3,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(3,*) 'zone 1=604, J=11, F=POINT' 
doj=0,ny

do k=0,nz
WRITE(3,*)j*1.0,k*0.02,(vn2(4,j,k)+vn2(5J,k))/2.0

enddo
enddo

endif

if  (t .eq. 180000)then 
do k=l,nz

WRITE(14,*) vn2(5,5,k)
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enddo
WRITE(4,*) 'TITLE = "t=300"’
WRITE(4,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(4,*) 'zone 1=604, J=11, F=POINT' 
doj=0,ny

do k=0,nz
WRITE(4,*) j * 1 .G,k*G.G2,(vn2(4,j,k)+vn2(5 ,j ,k))/2.0

enddo
enddo

endif

if (t .eq. 3GGGGG)then

do k=l,nz
WRITE(15,*)vn2(5,5,k)

enddo
WRITE(5,*) 'TITLE = "t=4GG"'
WRITE(5,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(5,*) 'zone I=6G4, J = ll , F=POINT' 
doj=G,ny

do k=G,nz
WRITE(5,*)j*l.G,k*G.G2,(vn2(4,j,k)+vn2(5,j,k))/2.G

enddo
enddo

endif

if (t .eq. 6GGGGG)then 
do k=l,nz

WRITE(16,*) vn2(5,5,k)
enddo
WRITE(6,*) 'TITLE = "t=5GG"'
WRITE(6,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(6,*) 'zone I=6G4, J=11, F=POINT' 
doj=G,ny

do k=G,nz
WRITE(6,*)j*I.G,k*G.G2,(vn2(4,j,k)+vn2(5o,k))/2.G

enddo
enddo

endif
enddo

c // Record the CPU time 

total = etime(elapsed)
write(7,*) 'End: total=', to tal,' user=', elapsed(l),

+ ' system=', elapsed(2)
stop 
end
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c Table A.4 Program IV:
c Source code for solving the 3D single vessel embedded Triple-layered Pennes bioheat
c transfer model with laser power in a Triple-layered skin structure

c Haofeng Yu

c 07/01/04

c This program aims to solve about heat transfer in the skin of human being,
c There are three layers in the skin, Epiderms,Dermis and Subcutaneous,
c The skin structure is 10byl0byl2.08mm in geometry
c The govening equation used is:
c pc(partialU/patialt)=k(Uzz)-WbCbU+WbCbUb+Q
c Two boundaries conditions are considered:
c 1. Dirichlet The temperature at surface is assumed to be constant, lOoC
c 2. Neumann The temperature at surface is assumed to be heat insulated

program bioheat3D3LVesselLaser 
parameter(nz=603,pi=3.14159265358979,nx=l 0,ny=l 0)

real c 1 ,c2,c3,rk 1 ,rk2,rk3,rho 1 ,rho2,rho3,wb 1 ,wb2,wb3,cb 1 ,cb2,cb3 
integer x,y,z 

integer Nt,nzl ,nz2,t,counter 
integer n,reminder,posi

c ________________________________________________________
double precision Bp(0:ny),Bdiv(0:ny),Bv(0:ny),Bvl(0:ny) 
double precision Br,Bu,BPF,BAlpha,BL,Bk,BCb,Bratio 
double precision Ql(0:nx,0:ny,0:nz), Q2(0:nx,0:ny,0:nz) 
double precision Q3(0:nx,0:ny,0:nz)

double precision v(0:nx,0:ny,0:nz+l),vn(0:nx,0:ny,0:nz+l) 
double precision vnl(0:nx,0:ny,0:nz+l),vn2(0:nx,0:ny,0:nz+l) 
double precision qq2(0:nz+l),dxl(0:nx),dyl(0:ny),dzl(0:nz-l-l) 

double precision tempx(0:nx),tempy(0:ny),tempz(0:nz-i-l) 
double precision vxx(0:nx,0:ny,0:nz+l),vxxl(0:nx,0:ny,0:nz+l) 
double precision vyy(0:nx,0:ny,0:nz+l),vyyl(0:nx,0:ny,0:nz+l) 
double precision vzz(0:nx,0:ny,0:nz-t-l),vzzl(0:nx,0:ny,0:nz-l-l) 

double precision ax(0:nx),bx(0:nx),cx(0:nx),dx(0:nx) 
double precision ay(0:ny),by(0:ny),cy(0:ny),dy(0:ny) 
double precision az(0:nz+l),bz(0:nz+l),cz(0:nz+l),dz(0:nz+l) 
double precision dt,er,dif 
double precision part,try,miu,miuxy 
double precision pl,p2,p3,p5,p4,p6,p7 
real inta2,intb2,intc2,intd2,inte2,intf 
real inta 1 ,intb 1 ,intc 1 ,intdl ,inte 1 ,intf2

double precision Sigma,Alphal,Alpha2,Alpha3,Reffl,Reff2,Reff3 
double precision PO 

REAL etime ! Declare the type of etime()
REAL elapsed(2) ! For receiving user and system time 
REAL total ! For receiving total time 

c // Discretization units 
er = 0.001 
deltax =1.0
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deltay =1.0 
deltaz = 0.02

deltaz3 = 0.02 
Ration = deltaz3/deltaz 

dt = .001 
nzl = 4 
nz2 = 100

// Parameters related to blood vessel
Br=0.01
Bu=80
BPF=200
BAlpha=0.002
BL=20
Bk=0.0005
BCb=0.004134
Bratio = Balpha*BPF/(Bcb*Bu)
// Parameters related to Laser Power
Sigma= 1.0
Alphal=0.1
Alpha2=0.08
Alpha3=0.04
Reffl=0.93
Reff2=0.93
Reff3=0.93
P0=6.4
// Parameters related to layers of skin

cl = 3.6 
c2 = 3.4 
c3 = 3.06 
cbl = 0.0 
cb2 = 4.2 
cb3 = 4.2 
rkl = 0.00026 
rk2 = 0.00052 
rk3 = 0.00021 
rhol = 0.0012 
rho2 = 0.0012 
rho3 = 0.001 

wbl = 0.0 
wb2 = 0.0000005 
wb3 = 0.0000005
//intal,intbl,intcl,intdl,ietel are the coefficients for the upper part to the interface.
//inta2,intb2,intc2,intd2,iete2 are the coefficients for the upper part to the interface.
intal=-1.0
intbl=-2.0
intc 1=6.0
intdl=6.0
intel=-6.0
inta2=1.0
intb2=2.0
intc2=6.0
intd2=-6.0
inte2=6.0
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miu=dt/(deltaz*deltaz) 
miu3=dt/(deltaz3 *deltaz3) 
miux=dt/(deltax*deltax) 
miuy=dt/(deltay*deltay) 
miuxy=dt/(deltay*deltay)

open(unit = 1, file = '0603 tlOOO.dat', status = 'old') 
open(unit = 2, file = '0603 t3000.dat', status = 'old') 
open(unit = 3, file = '0603 t5000.dat', status = 'old') 
open(unit = 4 , file = '0603 tlOOOO.dat', status = 'old') 
open(unit = 5, file = '0603 tl5000.dat', status = 'old') 
open(unit = 6, file = '0603 t20000.dat', status = 'old') 
open(unit = 7, file = 'time.dat', status = 'old')

C0inp3.Ct sdlGmG
c // Initialization! 

do i=0, nx 
ax(i) = 0.0 
cx(i) = 0.0 
bx(i) = 0.0 
dxl(i) = 0.0 
dx(i) = 0.0 

enddo
doj=0,ny

Bv(j) = 0.0 
BpO) = 0.0 
Bvl(j) = 0.0

ay(j) = 0.0 
cy(j) = 0.0 
by(j) = 0.0 
dyl(i) = 0.0 
dyQ) = 0.0 

enddo
dok=0, nz+1 

az(k) = 0.0 
cz(k) = 0.0 
bz(k) = 0.0 
dzl(k) = 0.0 
dz(k) = 0.0 

enddo 
do i=0, nx

do j=0, ny
do k=0, nz+1

vn(i,j,k)=0.0
vnl(i,j,k)=0.0
vn2(i,j,k)=0.0

enddo
enddo

enddo

Blood temperature at entry o f vessel 
B v l(0 )=  10.0 
Bv(0) = 10.0
Calculate the laser power Q(i,j,k)
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do i=0,nx 
doj=0,ny 
do z=0,nzl

Ql(i,j,z)=Alphal *exp(-Alphal *z*deltaZ)/(2*pi*Sigma**2)*
$ exp(-((nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*deltax**2/
$ (2*Sigma*Sigma)) * PO*(l-Reffl ) 

enddo
do z =nzl,nzl+nz2

Q2(ij,z)= Alpha2 * exp( - Alpha2 *(z-nzl) *deltaZ )*
$ exp(-Alphal*deltaZ*nzl ) /(2*pi*Sigma**2)*
$ exp(-((nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*deltax**2/
$ (2*Sigma*Sigma)) * P0*(l-Reff2 ) 

enddo
Ql(i,j,nzl) = (Ql(ij,nzl)+Q2(i,j,nzl))/2.0 

do z =nzl+nz2,nz
Q3(i,j,z)= Alpha3*exp( - Alpha3 *(z-nz2-nzl) *deltaZ3 )*

$ exp(-Alphal*deltaZ*nzl ) *exp(-Alpha2*deltaZ*nz2 ) /
$ (2*pi*Sigma**2)*exp(-(( nx/2-i)*(nx/2-i)+(ny/2-j)*(ny/2-j))*
$ deltax**2/(2*Sigma*Sigma)) * P0*(l-Reff3 ) 

enddo
Q2(i,j,nzl+nz2) = (Q2(i,j,nzl+nz2)+Q3(i,j,nzl+nz2))/2.0 
enddo 

enddo

Begin the big loop by time step!!I!!!!!! I!!!I! 1! 1! 11!! 
do t= l,50001

// intialize ax,bx,cx 
bx(l) =0.0 
ax(l)=  11.0/6.0 
c x (l)= l.0/3.0 
do i=2,nx-2 

bx(i) = -0.1 
ax(i) = 1.0 
cx(i) = -0.1 

enddo
bx(nx-l) = 1.0/3.0 
ax(nx-l) = 11.0/6.0 
cx(nx-l) =0.0

// intialize dx and caulculate vxx 
doj=l,ny-l

do k=l,nz
dx(l)= miuxy*(vn(2,j,k)-vn(l,j,k)) 
do i=2,nx-2

dx(i) = (6.0*miuxy/5.0)*(vn(i-l,j,k)-2*vn(i,j,k) 
+ + vn(i+l,j,k))

enddo
dx(nx-l) = miuxy * (vn(nx-2,j,k)-vn(nx-l,j,k)) 
call tri(nx-l,bx,ax,cx,dx,tempx) 
do i=l,nx-l

vxx(i,j ,k)=tempx(i)
enddo

enddo
enddo
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11 intialize ay,by,cy 
by(l) =0.0 
ay(l) = 11.0/6.0 
cy(l)=1.0/3.0 
do i=2,ny-2 

by(i) = -0.1 
ay(i) = 1.0 
cy(i) = -0.1 

enddo
by(ny-l)= 1.0/3.0 
ay(ny-l) = 11.0/6.0 
cy(ny-l) =0.0

// intialize dy and caulculate vyy 
do i=l,nx-l

do k=l,nz
dy(l)= miuxy*(vn(i,2,k)-vn(i,l,k)) 
do j=2,ny-2

dy(j) = (6.0*miuxy/5.0)*(vn(i,j-l,k)-2*vn(iJ,k) 
+ + vn(i,j+l,k))

enddo
dy(ny-l) = miuxy * (vn(i,ny-2,k)-vn(i,ny-l,k)) 
call tri(ny-l,by,ay,cy,dy,tempy) 
do j=l,ny-l

vyy(i,j,k)=tempy(j)
enddo

enddo
enddo
// intialize az,bz,cz 

bz(l) =0.0 
az(l)=  11.0/6.0 
c z (l)= l.0/3.0 
do i=2,nzl-l 

bz(i) = -0.1 
az(i) = 1.0 
cz(i) = -0.1 

enddo
bz(nzl) = -intal*rkl
az(nzl) = intbl*rkl-intb2*rk2*0.472222222 
cz(nzl) = inta2*rk2 
bz(nzl+l) = -0.1*0.472222222 
az(nzl+l) = 1.0 
cz(nzl+l) = -0.1 
do i=nzl+2,nzl+nz2-l 

bz(i) = -0.1 
az(i) = 1.0 
cz(i) = -0.1 

enddo
bz(nzl+nz2) = -intal*rk2
az(nzl+nz2) = (intbl*rk2-intb2*rk3*1.857142857*ration)
cz(nzl+nz2) = inta2*rk3*ration
bz(nzl+nz2-tl) = -0.1*1.857142857
az(nzl+nz2-l-l) =1.0
cz(nzl+nz2+l) = -0.1
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do i=nzl+nz2+2,nz-l 
bz(i) = -0.1 
az(i) = 1.0 
cz(i) = -0.1 

enddo
bz(nz) = 1.0/3.0 
az(nz) = 11.0/6.0 
cz(nz) = 0.0

c // initiate the coefficients in RHS of the tridiagonal,d(i) 
do i=l,nx-l 
do j=l,ny-l

dz(l)= miu*(-vn(i,j,l)+vn(i,j,2)) 
do k=2,nzl-l
dz(k) = (6.0*miu/5.0)*(vn(i,j,k-l)-2*vn(i,j,k) + vn(i,j,k+l))

enddo

dz(nz 1 )= miu * (rk 1 *inte 1 * vn 1 (i,j ,nz 1 -1)
& + (rkl*intdl-rk2*intd2)*vn(i,j,nzl)-rk2*inte2*vn(i,j,nzl+l))
& + intb2*rk2*0.00403846*(vn(i,j,nzl)-Bv(j))

g 1 **********************
do k=nzl+l,nzl+nz2-l
dz(k)=(6.0*miu/5.0)*(vn(i,j,k-l)-2*vn(i,j,k) + vn(i,j,k+l)) 
enddo
dz(nzl+l) = dz(nzl+l)-0.1*0.004038462*(Vn(i,j,nzl)-Bv(j))

g  2  * * * * * * * * * * * * * * * * * * * * * * *

dz(nzl+nz2)= miu*rk2*intel *vn(i,j,nzl+nz2-l)
& +(miu*rk2 *intd 1 -miu3 *rk3 *ration*intd2) * vn(i,j ,nz 1 +nz2)- 
& miu3 *rk3 *ration*inte2 *vn(i,j ,nz 1 +nz2+1)+
& ration*intb2 *rk3 *0.0025*(vn(i,j ,nz2+nz 1 )-B v(j))

L P  ^  ^  ^  ^  ^  .,1̂  ^  .4  ̂ .A* •Ia *1*

do k=nzl+nz2+l,nz-l 
dz(k)=(6.0*miu3/5.0)*(vn(i,j,k-l)-2*vn(i,j,k) + vn(i,j,k+l)) 

enddo
dz(nz 1 +nz2+1 )=dz(nzl +nz2+1 )-0.1 *0.0025 *(Vn(i,j ,nz 1 +nz2)-Bv(j)) 
dz(nz) = miu3*(vn(i,j,nz-l)-vn(i,j,nz)) 

c // Call subroutine to sovle the tridiagonal system 
call tri(nz,bz,az,cz,dz,tempz) 

do k=l,nz
vzz(i,j ,k)=tempz(k)

enddo
enddo
enddo

call equal(vnl,vn,nx,ny,nz)
10 continue 
c // Interation!
c // Refresh the coefficients in RHS of the tridiagonal,dl(i) 

doj=l,ny-l
do k=l,nz

dx 1 (1 )= miuxy* (vn 1 (2 ,j ,k)-vn 1 (1J ,k)) 
do i=2,nx-2

dxl(i) = (6.0*miuxy/5.0)*(vnl(i-l,j,k)-2*vnl(ij,k) 
+ + vn l(i+ lj,k ))

enddo
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dxl(nx-l) = miuxy * (vnl(nx-2j,k)-vnl(nx-l,j,k)) 
call tri(nx-l,bx,ax,cx,dxl,tempx) 
do i=l,nx-l

vxx 1 (i,j ,k)=tempx(i)
enddo

enddo
enddo
//slove the vyyl() 
do i=l,nx-l

do k=l,nz
dy 1 (1)= miuxy*(vnl (i,2,k)-vnl (i, 1 ,k)) 
do j=2,ny-2

dyl(i) = (6.0*miuxy/5.0)*(vnl(i,j-l,k)-2*vnl(i,j,k) 
+ + vnl(i,j+l,k))

enddo
dyl(ny-l) = miuxy * (vnl(i,ny-2,k)-vnl(i,ny-l,k)) 
call tri(ny-l,by,ay,cy,dyl,tempy) 
do j=l,ny-l

vyyl(i,j,k)=tempy(j)
enddo

enddo
enddo
//Slove the vzzl() 
do i=l,nx-l 
do j=l,ny-l

d z l(l)  = miu*(-vnl(i,j,l)+vnl(i,j,2)) 
do k=2,nzl-l

dzl(k)=(6.0*miu/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k)+vnl(i,j,k+l))
enddo

I 1 ^  ̂  ^  ̂  ^  ^1 n  I I  ^  ^  ̂  ̂  ̂  ^  ^  'T ' ̂  'T ' 'T* ^  ^  ^  ^  'T*

dz 1 (nz 1 )= miu * (rk 1 * inte l*vnl(i,j,nzl-l)
& + (rk 1 *intd 1 -rk2 *intd2) *vn 1 (i,j ,nz 1 )-rk2 *inte2 *vn 1 (i,j ,nz 1+1))
& + intb2*rk2*0.00403846*(vnl(i,j,nzl)-Bvl(j))

1 **********************
do k=nzl+l,nzl+nz2-l
dzl(k)=(6.0*miu/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k) + vnl(i,j,k+l)) 
enddo
dzl(nzl+ l) = dzl(nzl+l)-0.1*0.004038462*(Vnl(i,j,nzl)-Bvl(j))

2 * * * * * * * * * * * * * * * * * * * * * * *  

dz 1 (nz 1 +nz2)= miu *rk2 *inte 1 * vn 1 (i,j ,nz 1 +nz2 -1)
& +(miu*rk2*intdl -miu3 *ration*rk3 *intd2)*vnl (i,j ,nzl+nz2)- 
& miu3 *rk3 *ration*inte2 *vn 1 (i,j ,nz 1 +nz2+1 )+
& ration*intb2*rk3 *0.0025 *(vnl (i,j ,nz2+nzl)-Bvl (j))

2 * * * * * * * * * * * * * * * * * * * * * *

do k=nz 1 +nz2+1 ,nz-1
dzl(k)=(6.0*miu3/5.0)*(vnl(i,j,k-l)-2*vnl(i,j,k) + vnl(ij,k+ l)) 
enddo
dzl(nzl+nz2+l)=dzl(nzl+nz2+l)-0.1*0.0025*(Vnl(i,j,nzl+nz2)-Bvl(j)) 
dzl(nz) = miu3*(vnl(i,j,nz-l)-vnl(i,j,nz))
// Call subroutine to sovle the tridiagonal system 

call tri(nz,bz,az,cz,dzl ,tempz) 
do k=l,nz

vzz 1 (i j  ,k)=tempz(k)
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enddo
enddo
enddo
Calculate temperature in the periphery 
do j=0,ny

Bp(j)=(vn2(4,j,304)+vn2(4,j,305)+vn2(5,j,304)+vn2(5J,305))/4.0
enddo
calculate Bvl(j)the influence from blood with Bp(j),BvO) 
do j=l,ny

Bdiv(j-1) = -1.0*Bratio*(Bvl(j-l) - Bp(j-1))
Bvl(j) = Bvl(j-1) + 0.5*deltay*(Bdiv(j-l)-Bratio*(Bvl(j-l)

@ + deltay*Bdiv(j-l) - BpO)))
enddo

// calculate the vnew with vzz and vzzl 
do i=l,nx-l 
do j=l,ny-l 

p l=  wbl*cbl*0.5*dt 
do k = l,nzl

qq2(k)= rkl *0.5*(vxx(i,j,k)+vxxl(i,j,k)+vyy(i,j,k)
+ +vyyl (i,j,k)+vzz(i,j,k)+vzzl (i,j,k))

enddo 
do k = l,nzl
vn2(i,j ,k)=(2 *p 1 *Bv 1 (j)+qq2(k)+(rho 1 *c 1 -p 1) * vn(i,j ,k)
$ +ql(i,j,k)*dt)/(pl+rhol*cl) 
enddo 

p2= wb2*cb2*0.5*dt 
do k = nzl+l,nzl+nz2 

qq2(k)= rk2 *0.5 *(vxx(i,j ,k)+vxx 1 (i,j ,k)+vyy(i,j ,k)
+ +vyyl(i,j,k)+vzz(i,j,k)+vzzl(ij,k))

enddo 
do k = nzl+l,nzl+nz2
vn2(i,j,k)=(2*p2*Bvl(]’)+qq2(k)+(rho2*c2-p2)*vn(i,j,k)
$ +q2(i,j,k)*dt)/(p2+rho2*c2)
enddo 

p3= wb3*cb3*0.5*dt 
do k = nzl+nz2+l,nz 

qq2(k)= rk3 *0.5 *(vxx(i,j ,k)+vxx 1 (i,j ,k)+vyy(i,j ,k)
+ +vyyl (i j,k)+vzz(i,j,k)+vzzl (i,j,k))

enddo 
do k = nzl+nz2+l,nz
vn2(i,j ,k)=(2 *p3 *B v 1 (j)+qq2(k)+(rho3 *c3 -p3)* vn(i,j ,k)

+ +q3(i,j,k)*dt)/(p3+rho3*c3)
enddo

vn2(i,j,nz+l) = vn2(i,j,nz) 
vn2(i,j,0) = vn2(i,j,l)

enddo 
enddo 
do j=0,ny

do k=l,nz+l
vn2(0j,k) = vn2(l,j,k) 
vn2(nx,j,k) = vn2(rrx-l,j,k)

enddo
enddo
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do i=0,nx
do k=l,nz+l

vn2(i,0,k) = vn2(i,l,k) 
vn2(i,ny,k) = vn2(i,ny-l,k)

enddo
enddo 
do j=0,ny

Bp(j)=(vn2(4,j,304)+vn2(4J,305)+vn2(5,j,304)+vn2(5,j,305))/4.0
enddo

c //check the error condition 
do i=0,nx 
doj=0,ny 

do k=0,nz 
if(abs(vnl (i,j,k)-vn2(i,j,k)).gt.er) then 

x=i
y=j
z=k

call equal(vnl,vn2,nx,ny,nz)
write(*,*) 'error too big, loop back' 

goto 10 
endif 

enddo 
enddo 
enddo 
do j=0,ny

Bv(i) = Bvl(j)
enddo

write(* *) 'loop fished*********************************' 
call equal(vn,vn2,nx,ny,nz) 

c //output
c Result at different time level 

if  (t .eq. 10000)then 
do k=l,nz

WRITE(11,*) vn2(5,5,k)
enddo
WRITE(1,*) 'TITLE = "t=50"'
WRITE(1,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(1,*) 'zone 1=607, J = ll , F=POINT' 
doj=0,ny

do k=0,nz
WRITE(1 ,*) j * 1.0,k*0.02,(vn2(4,j ,k)+vn2(5 J ,k))/2.0 

if (k .eq.304) then
WRITE(I,*)j*1.0,6.08I,Bvl(j)
WRITE(I,*)j*I.0,6.090,BvI(j)
WRITE(l,*)j*1.0,6.099,BvI(j)

endif
enddo

enddo
endif

if (t .eq. 30000)then 
dok=l,nz

WRITE(12,*) vn2(5,5,k)
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enddo
WRITE(2,*) 'TITLE = "t=100"'
WRITE(2,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(2,*) 'zone 1=607, J = ll , F=POINT' 
doj=0,ny

do k=0,nz
WRITE(2,*)j*1.0,k*G.G2,(vn2(4J,k)+vn2(5,j,k))/2.G 

if (k ,eq.3G4) then
WRITE(2,*) j * l.G,6.G81 ,Bvl (j) 
WRITE(2,*)j*l.G,6.G9G,Bvl(i)
WRITE(2,*) j * l.G,6.G99,Bvl (j)

endif
enddo

enddo
endif

if (t .eq. 6GGGG)then 
do k=l,nz

WRITE(13,*)vn2(5,5,k)
enddo
WRITE(3,*) 'TITLE = "t=2GG"'
WRITE(3,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(3,*) 'zone I=6G7, J=11, F=POINT' 
do j=G,ny

do k=G,nz
WRITE(3,*)j*l.G,k*G.G2,(vn2(4,j,k)+vn2(5,j,k))/2.G 

if (k .eq.3G4) then
WRITE(3 ,*) j * 1.0,6.081 ,Bvl G) 
WRITE(3,*)j*l.G,6.G9G,BvlO) 
WRITE(3,*)j*l.G,6.G99,BvlG)

endif
enddo

enddo
endif

if (t .eq. 18GGGG)then 
do k=l,nz

WRITE(14,*) vn2(5,5,k)
enddo
WRITE(4,*) 'TITLE = "t=300"'
WRITE(4,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(4,*) 'zone 1=607, J= ll , F=POINT' 
do j=0,ny

do k=0,nz
WRITE(4,*)j*1.0,k*0.02,(vn2(4j,k)+vn2(5j,k))/2.0 

if (k .eq.304) then
WRITE(4,*) j* l .0,6.081 ,Bvl 0) 
WRITE(4,*)j*1.0,6.090,BvlG)
WRITE(4,*) j * 1.0,6.099,Bvl 0)

endif
enddo

enddo
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endif

if (t .eq. 300000)then

do k=l,nz
WRITE(15,*) vn2(5,5,k)

enddo
WRITE(5,*) TITLE = "t=400"'
WRITE(5,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(5,*) 'zone 1=607, J= ll , F=POINT' 
do j=0,ny

do k=0,nz
WRITE(5,*) j*l.G,k*G.02,(vn2(4,j,k)+vn2(5,j,k))/2.G 

if (k .eq.3G4) then
WRITE(5,*)j*l.G,6.G81,Bvl(i)
WRITE(5,*)j*l.G,6.G9G,BvlO)
WRITE(5,*)j*l.G,6.G99,Bvl(j)

endif
enddo

enddo
endif

if (t .eq. 6GGGGG)then 
do k=l,nz

WRITE(16,*) vn2(5,5,k)
enddo
WRITE(6,*) 'TITLE = "t=5GG"'
WRITE(6,*) 'VARIABLES = "y", "depth", "Temp"'
WRITE(6,*) 'zone I=6G7, J=11, F=POINT' 
do j=G,ny

do k=G,nz
WRITE(6,*)j*l.G,k*G.G2,(vn2(4,j,k)+vn2(5,j,k))/2.G 

if (k .eq.3G4) then
WRITE(6,*) j * l.G,6.G81 ,Bvl(j) 
WRITE(6,*)j*l.G,6.G9G,Bvl(i) 
WRITE(6,*)j*l.G,6.G99,Bvl(j)

endif
enddo

enddo
endif

enddo
// Record the CPU time 

total = etime(elapsed)
write(7,*) 'End: total=', to tal,' user=', elapsed(l),

+ ' system=', elapsed(2)
stop 
end
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c Table A.5 Subroutine 1: Source code for equalizing two 3D arrays

subroutino equal *********************** 
subroutine equal(wold,wnew,xn,yn,zn) 
integer xn,yn,zn
double precision wold(0:xn,0:yn,0:zn+l),wnew(0:xn,0:yn,0:zn+l) 
do i=0,xn

do j=0,yn
do k=0,zn+l

wold(i,j,k) = wnew(i,j,k)
enddo

enddo
enddo
return
end
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c Table A. 6 Subroutine 2: Source code for solving the tri-diagonal system by Thomas Algorithm

subroutine tri(n,b,a,c,d,wv) 
integer n
double precision a(0:n+l),b(0:n+l),c(0:n-t-l),d(0:n-l-l)
double precision alpha(0:n+l),beta(0:n+l),wv(0:n+l)
alpha(n+l)=0
beta(n+l)=0
do i=n,l,-l

alpha(i)=(d(i)+c(i)*alpha(i+1))/(a(i)-c(i) *beta(i+1)) 
beta(i)=b(i)/(a(i)-c(i)*beta(i+1)) 

enddo 
do i=l,n 

vw(i)= alpha(i)+beta(i)*vvv(i-l) 
enddo 
return 
end
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