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ABSTRACT

The objective of this work is to investigate the combination of layer-by-layer self- 

assembly with microfabrication technology and its applications in microelectronics and 

MEMS.

One can assemble, on a standard silicon wafer, needed multilayers containing 

different nanoparticles and polymers and then apply various micromanufacturing 

techniques to form microdevices with nanostructured elements.

Alternate layer-by-layer self-assembly of linear polyions and colloidal silica at 

elevated temperatures have been firstly studied by QCM and SEM. LbL self-assembly 

and photolithography were combined to fabricate an indium resistor. The RTA method 

was employed in the fabrication. Hot-embossing technique as a reasonably fast and 

moderately expensive technique was used to replicate mold structures into 

thermoplastics. Microstamps with nanofeatures formed by this method can be applied on 

LbL nanoassembled multilayers. Finally, multiple ultrathin microcantilevers were 

developed by integrating LbL self-assembly, photolithography, wet etching, and ICP 

techniques. The purpose is to develop chemical/biosensor arrays for parallel, massive 

data gathering.
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CHAPTER ONE

INTRODUCTION

1.1 Nanotechnology and Nanofabrication 

The semiconductor industry has seen a remarkable miniaturization trend, driven 

by many scientific and technological innovations. It is widely believed that these trends 

are likely to continue for at least another several years (Figure 1-1), but if the trend is to 

continue and provide even faster and cheaper computers, the size of microelectronic 

circuit components will soon need to reach the scale of atoms or molecules [1].

1
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“Moore’s Law” continues to drive semiconductor roadmap 

•  ~ 30% reduction in transistor size with each new technology
Figure 1-1 Overview of semiconductor manufacturing^
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2

Photolithography, the technology used to manufacture computer chips and 

virtually all other microelectronic systems, can be refined to make structures smaller than 

100 nanometers, but doing so is very difficult, expensive and inconvenient. The 

electronics industry is deeply interested in developing new methods for nanofabrication 

so that it can continue its long-term trend of building even smaller, faster and cheaper 

devices.

Therefore, we will have to develop a new "post-lithographic" manufacturing 

technology that will let us inexpensively build computer systems with mole quantities of 

logic elements that are molecular in both size and precision and are interconnected in 

complex and highly idiosyncratic patterns. Nanotechnology will let us do this.

Nanotechnology is concerned with materials and systems whose structures and 

components exhibit novel and significantly improved physical, chemical, and biological 

properties, phenomena, and processes due to their nanoscale size. The aim is to exploit 

these properties by gaining control of structures and devices at atomic, molecular, and 

supermolecular levels and to learn to efficiently manufacture and use these devices [3].

1.2 Nanofabrication

1.2.1 Top Down and Bottom Up

The potential benefits of nanotechnology are pervasive and impact materials and 

manufacturing, nanoelectronics and computer technology, medicine and health, 

aeronautics and space exploration, environment and energy, biotechnology and 

agriculture, even national security and some other government applications [4],

However, in order for this potential of nanotechnology to be realized, novel 

manufacturing methods deviating from scaled-down versions of currently practiced
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3

technologies are required at the nanoscale. Originally, nanofabrication is defined as the 

design and manufacture of devices with dimensions measured in nanometers. One 

nanometer is 10'9 meter, or a millionth of a millimeter.

The two opposite approaches to nanofabrication have been labeled “top down” 

and “bottom up”. In order to extend the macroscale properties effectively down to the 

nanoscale, traditional manufacturing techniques have been miniaturized for fabrication of 

nanostructures as in nanoelectronics, in a top-down approach such as “machining” or 

etching techniques. On the other hand, mono-atomic or molecular units, with their well 

known subatomic structure in isolation, offer the ultimate building blocks for a bottom- 

up, atom-by-atom manufacturing (Figurel-2). They illustrate the evolution of 

nanotechnology's sophistication.

Nanostructured Material

Assem ble from 'Sculpt* from Bulk
Nano- building Blocks

■ m echanical attrition 
- powder/aerosol com paction (ball milling)
■ chemical synthesis -lithography/etching...

Figure 1-2 Schematic of variety of nanostructure synthesis and assembly approaches.
Bottom-up method (left), Top-down method (right)[5]

Now, this concept was extended as a combination of both theoretical (analytical 

and computational) and experimental methodologies including the synthesis of 

nanomaterials and nanoparticles, fabrication and analysis processes; instrumentation and 

equipment for characterization and processing; theory, modeling, simulation and control; 

design and integration of nanodevices and systems [6].
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1.2.2 Fabrication of Ultrathin Film

Driven by the large number of potential applications, in the last decade a lot of 

effort has been put in the study of ultrathin film formation. The current methods used for 

the design of ultrathin films include spin coating and solution casting, thermal deposition, 

polyion layer-by-layer assembly, chemical self-assembly, the Langmuir-Blodgett 

technique, and others. The optimal combination of molecular order and stability of films 

determines the practical usefulness of these technologies [7],

1.2.3 Spin-coating

Spin coating is generally regarded as the best way to deposit a uniform coating for

many applications such as photoresist coating and dielectric/insulating layer coating. It

gives optimal coverage with minimum material usage. This deposition technique is

extremely desirable because the process is simple, safe, and inexpensive. In practice, spin

coating involves four stages as shown in Figure 1-3 [8]. In the first stage, gravitational

forces dominate. The surface is first wetted with excess polymer solution. In the second

stage, rotational forces dominate. Film uniformity is often not present at this stage. In the

third stage, viscous forces dominate. The film continues to get thinner but at a slower

rate, and excess liquid continues to be expelled. In the final stage, evaporative forces
•

dominate. Eventually, the film’s thickness begins to stabilize as the evaporation of the 

solvent causes the viscosity of the liquid to rise sharply and overcome the centrifugal 

forces. What remains is an extremely thin and uniform film that is ready to be further 

processed.
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1.2.4 Self-assembly

The self-assembly process, defined as the autonomous organization of 

components into structurally well-defined aggregates, is characterized by numerous 

beneficial attributes; it is cost-effective, versatile, and facile. The process occurs towards 

the system’s thermodynamic minima, resulting in stable and robust structures [9]. As the 

name suggests, it is a process whereby the organization or the assembly into desired 

structures occurs through nature intended phenomena, either through physical or 

chemical processes or assisted by biomolecules to promote molecular selectivity and 

specificity. It is also a process in which defects are rejected energetically, and, therefore, 

the degree of perfection is relatively high [10] [11]. There are numerous different 

mechanisms by which self-assembly of molecules and nanoclusters can be accomplished.

1.2.5 The Langmuir-Blodgett [LB] Technique

The Langmuir-Blodgett (LB) technique is one of the most conventional methods 

of nano-film fabrication in which organized systems of moieties are efficiently built one 

monolayer at a time. The method involves the monolayer transfer of the desired 

substance, originally adsorbed at the gas-liquid interface, to the substrate of choice [12]. 

The LB apparatus includes a Langmuir trough with a dipping device to lower or raise the 

substrate through the gas-liquid interface, an automated movable barrier, which moves 

during the deposition process in order to maintain a controlled surface pressure, and a 

surface pressure sensor that controls the movable barrier [13]. Unlike the traditional LB 

films of amphiphiles, which displayed poor thermal and mechanical stability, there has 

been progress reported on the robust monolayer fabrication of ligand-stabilized gold 

nanoclusters [14], semiconducting quantum dots [15], and polymeric films [16].
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Although the LB technique has proven to yield consistently near-perfect long 

range ordering of monolayers and multilayers [17] of species that self-assemble at the 

liquid surface, it is cumbersome and time consuming. Additionally, the required 

apparatus comes at great cost and maintenance.

DEPOSITION

(a) First stage of spin-coating

SPIN-OFF

(c) Third stage of spin-coating

d u / d i  * 0

SPIN-UP

(b) Second stage of spin-coating

c n

i n  i n
EVAPORATION

(d) Fourth stage of spin-coating

Figure 1-3 Four stages of spin-coating process[8]

1.2.6 Surface Forces

Surface forces could contribute directly as routes by which molecular self- 

assembly is realized; solvent evaporation in a controlled manner can bring colloids 

together into an ordered array, just as surface active agents can promote periodic network 

structures [18]. Moreover nanotemplates can be directly obtained utilizing microphase 

separation of block copolymers at various concentrations, based on the immiscibility of
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the two polymer blocks [19]. With respect to the former, nanoparticles and other 

molecules can self-assemble in the presence of a thin liquid layer when its thickness is 

suitably controlled. For the case of colloids, it has been hypothesized that particles are 

assembled either by the convective flow at the boundary of the array or by the attractive 

force acting between particles due to surface tension at the film surface [20].

1.2.7 Chemical Self-assembly

Primary chemical bonding, namely covalent, serves as another interaction in the 

self-assembly of molecules and nanoclusters. Since covalent bonding is specific in 

fixating functional groups, robust and permanent structures will be yielded. Chemical 

self-assembly thus provides a method of achieving less dynamic self-assembled films.

The fabrication process is relatively easy, involving alternate immersions of the 

substrate into different solutions containing materials to be deposited, followed by a rinse 

in the appropriate solvent to remove the unbound species. It can be repeated until the 

desired structure is assembled, like the method of electrostatic self-assembly. Through 

molecular engineering and sensible selection of functional spacers/surfactants, we can 

promote molecular level self-assembly through covalent bonding.

1.2.8 Biomolecule-assisted Self-assembly

Currently, there is an escalating awareness in exploiting biomolecules, such as 

DNA and proteins, as construction materials for biomimetic synthesis of nanostructures. 

Numerous research groups have successfully developed protocols to employ DNA 

oligomers, proteins and other biomolecules as self-assembly promoters. Biological 

systems are characterized by complex structures, yet the assembly is dictated by highly
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selective, non-covalent interactions, such as hydrogen bonding and van der Waals 

attractions.

Protein molecules have contributed as self-assembly promoters, especially with 

nanoparticulates. Biological molecules as self-assembly promoters allow systematic 

understanding and fabrication of complex yet functional structures at the molecular level. 

Microfabrication is an indispensable tool in the microelectronics and optoelectronics 

industry today.

Other mechanistic interactions for mediating self-assembly are hydration forces 

(hydrophilic and hydrophobic interactions), van der Waals forces, temperature control, 

and capillary forces.

1.3 LbL Self-assembly

1.3.1 General Principles

The most ordered macromolecular films are free-standing liquid crystalline films, 

but they are very unstable. The Langmuir-Blodgett method allows constructing lipid 

multilayers with a thickness from 5 to 500 nm, but only flat substrates can be covered by 

this film, and it has intrinsic defects at the lipid grain borders. Another method that can be 

applied to surface modification is a monolayer self-assembly, based on thiol or silane 

compounds [7]. By this method, one can achieve self-assembly of 2-5 nm thick organic 

layers on silicon or gold surfaces, but there is no simple means for thicker film 

construction. Other widely used methods for the industrial manufacture of thin films are 

spin coating and thermal deposition of macromolecules onto a substrate. Unfortunately, 

unlike the methods considered above, these methods do not allow one to control a film 

composition in the direction perpendicular to the surface.
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One prevalent mechanism by which self-assembly processes occur is through 

electrostatic interactions between nanoparticles or molecules. This method was first 

introduced and reported by Iler in 1966 [21], who published the original technique of 

constructing multilayer films composed of positively and negatively charged colloidal 

particles, such as silica and alumina.

The assembly of alternating layers of oppositely charged linear or branched 

polyions and nanoparticles is simple and provides the means to form 5-500 nm thick 

films with monolayers of various substances growing in a pre-set sequence on any 

substrate at a growth step of about 1 nm. Mallouk [22] has called this technique 

“molecular beaker epitaxy,” meaning that with simple instruments (exploiting the 

materials self-assembly tendency) one can produce molecularly organized films similar to 

the ones obtained with sophisticated and expensive molecular beam epitaxy technology.

1.3.2 Polvcation / Polvanion 
Laver-bv-Laver Assembly

A cleaned substrate of any shape and dimension is immersed into a dilute solution 

of a cationic polyelectrolyte, for a time optimized for the adsorption of a single 

monolayer (ca 1 nm thick). Afterwards, it is rinsed and dried. The next step is the 

immersion of the polycation-covered substrate into a dilute dispersion of polyanions or 

negatively charged nanoparticles (or any other nanosize charged species), also for a time 

optimized for the adsorption of a monolayer. Next, it is rinsed and dried. These 

operations complete the self-assembly of a polyelectrolyte monolayer and 

monoparticulate layer sandwich unit onto the substrate (Figure 1-4). Subsequent 

sandwich units are self-assembled analogously. Different nanoparticles, enzymes, and 

polyions may be assembled in a pre-planned order in a single film.
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Layer -by layer electrostatic as«embtyby 
alternate adsorption of oppositely charged 

nanoparticles, polyions and proteins

Pb lycationj'p oly anion 
bflayer, D= 1 -2 nm

NanoparticWpolyion (or protein) 

bilayer, D = S -50 nm

Figure 1-4 A scheme of the layer-by-layer assembly 

The forces between nanoparticles and binder layers govern the spontaneous layer- 

by-layer self-assembly of ultrathin films. These forces are primarily electrostatic and 

covalent in nature, but they can also involve hydrogen bonding, hydrophobic, and other 

types of interactions. The properties of the self-assembled multilayers depend on the 

choice of building blocks used and their rational organization and integration along the 

axis perpendicular to the substrate.

The sequential adsorption of oppositely charged colloids was reported in a 

seminal paper in 1966 by Iler [21]. The electrostatic self-assembly was subsequently
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“rediscovered” in the mid-nineties and extended to the preparation of multilayers of 

polycations and phosphonate ions, as well as to the layering of linear polyions, proteins 

and nanoparticles by Decher, Mallouk, Mohwald, Lvov, Rubner, Fendler, Hammond, 

Kunitake, Schlenoff, Kotov, and others. This self-assembly is now employed in the 

fabrication of ultrathin films from charged polymers (polyions) [23]-[35]; dyes [36][37]; 

nanoparticles (metallic, semiconducting, magnetic, insulating); clay nanoplates [38]-[40]; 

proteins [41]-[46]; and other supramolecular species [43]. The greatest advantage of this 

self-assembly is that any of these species can be absorbed layer-by-layer in any order. 

The oppositely charged species are held together by strong ionic bonds, and they form 

long-lasting, uniform and stable films. Self-assembly is economical and readily 

amenable to scaling-up for the fabrication of large-area defect-free devices on any kind 

and shape of surfaces.

The main idea of this method consists of the resaturation of polyion adsorption, 

which results in the alternation of the terminal charge after each layer is deposited. This 

idea is general and implies that there are no major restrictions in the choice of 

polyelectrolytes. It is possible to design composite polymeric films in the range of 5 to 

1000 nm, with a definite knowledge of their composition. For the successful assembly of 

nanoparticle or protein multilayers, the alternation with linear polyion layers is 

important. Flexible linear polyions penetrate between nanoparticles and act as 

electrostatic glue. The concept of “electrostatic polyion glue,” which keeps together 

neighboring arrays of nanoparticles, is central to this approach [42] [43]. The self­

assembled film contains amorphous polyion interlayers, and this organization “heals”
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defects that arise because of the introduction of foreign particles during the process of 

film formation (dust, microbes) [26] [43].

Linear polyions predominately used in the assembly are: polycations - 

poly(ethylenimine) (PEI), poly(dimethyldiallylammonium chloride) (PDDA), 

poly(allylamine) (PAH), polylysine, chitosan, polyanions - poly(styrenesulfonate) (PSS), 

poly(vinylsulfate), poly(acrylic acid), dextran sulfate, sodium alginate, heparin, and 

DNA. One can grow polymer nanocomposite film's by means of the sequential 

adsorption of different material monolayers that employ hundreds of commercially 

available polyions. The only requirement is that there be a proper (positive/negative) 

alternation of the component charges.

1.3.3 Kinetics of Polvion Adsorption

For the time-dependent control of adsorption and monitoring of the assembly in 

situ, the quartz crystal microbalance method is quite suitable [47], The kinetics of the 

adsorption process could be delineated by the QCM-technique, which is indispensable for 

establishing proper assembly conditions (e.g., a saturation adsorption time).

The multilayer assemblies are characterized by means of quartz crystal 

microbalance technique in two ways: 1) after drying a sample in a nitrogen stream we 

measured the resonance frequency shift and calculated an adsorbed mass by the 

Sauerbrey equation; or 2) by monitoring the resonator frequency during the adsorption 

process onto one side of the resonator which was in permanent contact with polyion 

solutions. While performing experiments in permanent contact with the polyion solution, 

we touched the surface of solutions with one side of the resonator, while the upper
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electrode was kept open to air and the upper contact wire was insulated from the solution 

by a silicone paint covering.

The fitting of adsorption to an exponential law yields a first-order rate of 

adsorption for poly (styrenesulfonate) (PSS) x = 2.5 ± 0.2 minutes and for polyallylamine 

(PAH) x = 2.1 ±0.2 minutes. This means that during the first 5 minutes about 87% of the 

material is adsorbed onto the charged support and t = 8 minutes (t = 3x) gives 95% full 

coverage. Typically, in most publications on polyion assembly, adsorption times of 5 to 

20 minutes are used. One does not need to maintain an adsorption time with great 

precision: a minute more or less does not influence the layer thickness if we are at the 

saturation region. For other species, poly(dimethyldiallylammonium chloride) (PDDA), 

polyethyleneimine (PEI), montmorillonite clay, myoglobin, lysozyme, and glucose 

oxidase, the first-order rate of adsorption onto an oppositely charged surface was found to 

be 2, 3, 1.8, 3, 4 and 5 minutes respectively. Interestingly, 5 - 2 0  minutes is essentially 

greater than the diffusion-limited time (mass transport limitation), which is necessary for 

complete surface covering (for the used linear polyion concentrations it is a few seconds). 

Only for 45-nm silica/PDDA assembly do we have an example when 2 seconds time 

corresponds to the diffusion limited time for the Si0 2  monolayer adsorption.

One could suppose that linear polyion adsorption occurs in two stages: quick 

anchoring to a surface and slow relaxation. To reach a surface charge reversion during 

linear polyion adsorption one needs a concentration greater than 10'5 M [47]. The 

dependence of polyion layer thickness on concentration is not great: thus, in the 

concentration range of 0.1 - 5 mg/ml poly(styrenesulfonate)/poly(allylamine) (PSS/ 

PAH) pair yielded a similar bilayer thickness. A further decrease in polyion
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concentration (using 0.01 mg/ml) decreases the layer thickness of the adsorbed polyion. 

An increase in the component concentrations to 20-30 mg/ml may result in the non-linear 

(exponential) enlargement of the growth rate with adsorption steps, especially if an 

intermediate sample rinsing is not long enough.

1.3.4 First Lavers and Precursor Film

At the very beginning of the alternate assembly process one often sees non-linear 

film growth. At the first 2 - 3  layers, smaller amounts of polyion are adsorbed as 

compared with further assembly, when the film mass and thickness increase linearly with 

the number of adsorption cycles. Tsukruk et al [48] explained this as an island-type 

adsorption of the first polyion layer on a weakly charged solid support. In the following 

two-three adsorption cycles these islands spread and cover the entire surface, and further 

multilayer growth occurs linearly. If a substrate is well charged then a linear growth with 

repeatable steps begins earlier.

In studying the possibility of using new compounds in the assembly, a precursor 

film approach was used. On a substrate (silver electrode of QCM resonator or quartz 

slide) we deposited 2 - 3  layers of polyions, and on this “polyion blanket”, with a well 

defined charge of the outermost layer, an assembly of proteins, nanoparticles, or other 

compounds was produced. In a typical procedure, precursor films were assembled by 

repeating two or three alternate adsorptions of PEI and PSS. The outermost layer became 

" n e g a tiv e "  o r  " p o s it iv e " , r e s p e c t iv e ly .

QCM monitoring of multilayer growth was often the first stage of the assembly 

procedure elaboration. Initially, we estimated the time needed for a component’s 

saturated adsorption in a kinetic experiment. Then, we performed the assembly typically
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with 10 min alternate adsorption. After every other adsorption step, a layer was dried by 

a nitrogen stream and the QCM resonator frequency was registered. The frequency shift 

with adsorption cycles gave us the adsorbed mass at every assembly step. A linear film 

mass increase with the number of assembly steps indicated a successful procedure.

The following relationship is obtained between adsorbed mass M  (g) and 

frequency shift AF (Hz) by taking into account the characteristics of the 9 MHz quartz 

resonators used [47]: AF = -1.83 x l ( f  MZA, where A = 0.16 ± 0.01 cm2 is the surface 

area of the resonator. One finds that a 1 Hz change in AF corresponds to 0.9 ng, and the 

thickness of a film may be calculated from its mass. The adsorbed film thickness at both 

faces of the electrodes (d) is obtainable from the density of the protein / polyion film (ca

1.3 g/cm3) and the real film area: d(nm) = -(0.016 ± 0.02) AF (Hz). The scanning 

electron microscopy data from a number of protein / polyion and linear polycation / 

polyanion film cross-sections permitted us to confirm the validity of this equation. 

Another powerful method for polyion film characterization was small-angle X-ray and 

neutron reflectivity.

1.3.5 Multilayer Structure

X-ray or neutron reflectivity measurements of polyion films show patterns with 

profound intensity oscillations, as demonstrated in Figure 1-5. They are so-called Kiessig 

fringes, due to the interference of radiation beams reflected from interfaces solid 

support/film and air/film. From the periodicity of these oscillations one can calculate the 

film thickness (with the help of the Bragg-like equation and taking into account refraction 

phenomena which are essential at small-angles). Growth steps for a bilayer of 1.1 - 2.0 

nm are typical for alternate linear polyion assembly, and a thickness of one layer often
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equals to half of this value [l]-[27]. These values correspond to a polyion cross-section 

and show that in one cycle of excessive adsorption we have approximately one 

monolayer coverage of the substrate. The nanoparticle/polyion bilayer thickness is 

determined by the diameter of the particle. Model fitting of X-ray data gives a surface 

roughness of the polyion film on an order of 1 nm. Atomic force microscopy and 

scanning electron microscopy data revealed a surface roughness of 1 - 2 nm [34]. Polyion 

films are insoluble in water and in many organic solvents and are stable to 280°C [33] 

[44] [45].

Neutron reflectivity analysis of the films composed of alternate layers of 

deuterated PSS and hydrogen containing PAH has proved that polyanion/polycation films 

possess not only a high uniform thickness but also a multilayer structure[28]-[30]. The 

interfaces between layers in polyion films are not sharp, and partial interpenetration (30- 

40% of their thickness) between neighboring polymeric layers takes place [29][30]. A 

distinct spatial component separation may be reached between the first and the third or 

fourth neighboring polyion layers. In the neutron reflectivity experiments with the 

selectively deuterated component (usually d-PSS), it was possible to observe 1-3 Bragg 

reflections in addition to Kiessig fringes. This observation was not possible in the X-ray 

reflectivity experiments because of a small scattering contrast of neighboring polycations 

and polyanions, and because of their large interpenetration. X-ray Bragg reflections from 

the alternate gold nanoparticle/poly(allylamine) multilayers were observed by Schmitt, 

Decher and others [39], They demonstrated that in order to have good spatial separation 

between gold layers in the film, one needs to make a thicker polyion interlayer (of 3-4 

PSS/PAH bilayers). In a similar approach we formed the four-step unit cell multilayers of
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myoglobin, deuterated, and “usual” poly(styrenesulfonate): (myoglobin/deuterated- 

PSS/myoglobin/PSS)9 . A Bragg-reflection in the neutron reflectivity curve of this four- 

step unit cell multilayer was observed (Figure 1-5). The film’s total thickness was 

calculated at 94.0 nm, and the four-unit cell thickness was 11.1 nm.

1 0

1 8
a

i e
4

i  4m
c

1 2

0  0 0 2  004 008 GCB 0 1  0 1 2

Q A 1

Figure 1-5 Small-angle X-ray and neutron reflectivity curves from 
(PSS/myoglobin/deuterated PSS/myoglobin)g multilayer

The polycation/polyanion bilayer thickness depends on the charge density of the 

polyions. It was shown that more than 10% of polyion side groups have to be ionized for 

a stable reproducible multilayer assembly via alternate electrostatic adsorption [32]. High 

ionization of polyions results in a smaller step of film growth ( 1 - 2  nm) and lower 

ionization gives a larger growth step ( 3 - 6  nm). It can be reached either by adding salt to 

a polyion solution (as discussed above for strong polyelectrolytes, such as PDDA and 

PSS), or by varying the pH for weak polyelectrolytes (e.g., polyacrylic acid (PAA) and 

poly(allylamine) (PAH), as was analyzed by Rubner et al [31]). Direct zeta-potential

PB+iP3SF'et2-+'T“S S ['A P 3r^ft^in rjti^ .
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measurements confirmed a symmetric positive/negative alternation of the 

polycation/polyanion multilayer’s outermost charge with adsorption cycles [32],

1.4 Patterning Techniques 

To use LbL-multilayers in devices, we have to provide film ordering not only in a 

vertical direction but also in the planar direction. This is critical for nanodevice 

production, such as nanoelectronic chips or NEMS (Nano Electro Mechanical Systems) 

[55]-[58].

There are works on applications of the layer-by-layer assembly on two- 

dimensional (2-D) patterns [59]-[63], They are based mostly on the microprinting of thiol 

compounds on gold and further assembly of the polyion multilayers on charged patterns, 

and they were developed by Hammond et al. [59]-[62] This strategy is designed to 

produce patterns by stamping onto substrates chemicals with different functionalities, i.e. 

polyion adhesive or resisting. The polyions were directed only to charge “attractive” 

regions and were repelled from the resistant regions. Whitesides et al [62] crystallized 

latex particles in capillary channels produced by PDMS micromolding and made 3-D 

ensembles of 450-nm spheres with resolution of ca.l pm. In another approach [63], 

poly(pyrrole) and poly(styrenesulfonate) were LbL-assembled on the 2-D charged 

micropattem produced on fluoropolymer by plasma treatment. The three methods 

described were quite successful but restricted in applications by substrate materials (gold, 

fluoropolymers) or by necessity of special plastic stamps. We presented two approaches 

to realize 2-D patterning of self-assembled multilayers by silicon based lithographical 

technology, which is a well-established industrial process.
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1.5 Photochemical Lithography 

Photolithography, literally meaning light-stone-writing in Greek, is the process by 

which patterns on a semiconductor material can be defined using light. It is the means by 

which the small-scale features of integrated circuits are created. Before the resist is 

applied to the substrate, the surface is cleaned to remove any traces of contamination 

from the surface of the wafer such as dust or organic, ionic and metallic compounds. The 

cleaned wafer is subject to priming, to aid the adhesion of the resist to the surface of the 

substrate material. A resist is applied to the surface using a spin-coating machine. This 

device uses a vacuum to hold the wafer of semiconductor. A small quantity resist is 

dispensed in the center of the spinning wafer. The rotation causes the resist to be spread 

across the surface of the wafer with the excess being thrown spun off. Close to the centre 

of the wafer, the variation in the thickness of resist is around 30 nm. Preparation of the 

resist is concluded by a pre-bake, where the wafer is gently heated in a convection oven 

and then a hotplate to evaporate the resist solvent and to partially solidify the resist.

The photomask is created by a photographic process and developed onto a glass 

substrate. The cheapest masks use ordinary photographic emulsion on soda lime glass, 

while chrome on quartz glass is used for the high-resolution, deep UV lithography. 

Alignment of the mask is critical and must be achieved for x-y as well as rotationally. 

Industrial photolithography machines use automatic pattern recognition to achieve the 

registration alignment. Depending on the design of the photolithography machine, the 

mask may be in contact with the surface, very close to the surface, or used to project the 

mask onto the surface of the substrate. These methods are called, not surprisingly, 

contact, proximity and projection, respectively. Figure 1-6 shows a schematic diagram of
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these methods. The projection system is the most complex method but does mean the 

projection of the mask can be scaled. The limit of the feature size is limited by the 

diffraction limit and depends on the size of the wavelength of light used to illuminate the 

mask. Systems using UV light are limited to feature sizes of 1 pm.

An alternative to using a mask is to directly expose the resist using an excimer 

laser, electron beam or ion beam. These systems do not require a mask. Such methods are 

known as Direct Write to Wafer methods (DWW). With the density of features steadily 

increasing, keeping up with the Moore law, finer lithographic techniques will be required. 

During the exposure process, the resist undergoes a chemical reaction. Depending on the 

chemical composition of resist, it can react in two ways when the light strikes the surface. 

The action of light on a positive resist causes it to become polymerized where it has been 

exposed to the light. A negative resist has the reverse property. Exposure to UV-light 

causes the resist to decompose. After the developing process, a negative of the mask 

remains as a pattern of resist. Although not necessary for all processing, to further harden 

and remove any residue of the developer, the wafer undergoes a post-bake process. 

During this process, the resist temperature can be controlled to cause a plastic flow of the 

resist, which can be desirable for tailoring sidewall angles. After either deposition of 

semiconductor layers or metal or etching down to selectively remove parts of the SiO 2 , 

the resist can be removed. For positive photoresists, accetone, trichloroethylene and 

phenol-based strippers may be used, while negative resists are generally removed using 

Methyl Ethyl Ketone (MEK) or Methyl Isobutyl Ketone (MIBK). Figure 1-6 shows the 

process schematically using a proximity mask.
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Figure 1-6 The main processes in the photolithography 6̂41
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CHAPTER TWO

TEMPERATURE EFFECT ON LBL SELF-ASSEMBLY

2.1 Introduction

Research into polyelectrolyte multilayer (PEM) thin films has seen a massive 

escalation since the layer-by layer assembly technique [65] was first applied to polymer 

films in the early 1990s [6 6 ] [67]. The assembly of multilayer thin films is driven by 

Coulombic attraction between two multiply-charged species: the substrate surface and the 

polymer adsorbate. This electrostatic binding of multiple charge sites provides for robust 

and quasi-irreversible adsorption of each individual polymer layer [6 8 ] [69]. Moreover, 

these individual layers can be successively deposited to create multilayer 

heterostructures. Because these multilayers are versatile in terms of the type of charged 

species that can be incorporated into the system [23][70], a wide variety of complex 

structures is possible. Due to this tremendous structural versatility, as well as the 

simplicity of the deposition procedure, the alternate assembly is now extended to 

functional polymers [70], conducting and dielectric layers [71], organic and inorganic 

nanoparticles [72]-[74], and biospecific complexes [75]. The regular alternate immersion 

of a wafer in oppositely charged solutions allows complete automation of the process. It 

is likely to open up a new field to diversities of functional devices fabricated with 

nanoblocks by batch production.

22
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The ability to rationally design functional materials and devices based on layer- 

by-layer self-assembled multilayers depends on a thorough knowledge of the factors that 

control the deposition and structural evolution of these films. Similarly, the ability to 

predict the behavior of these materials under various conditions depends on a clear 

understanding of environmental influences on self-assembled microstructure. However, 

an accurate physical model has not been established to reveal the mechanism of the 

electrostatic colloidal adsorption onto the substrate. Moreover, in order to produce a 

workable device, tens or even hundreds of monolayers have to be coated layer-by-layer. 

Therefore, efficiency will be one of the important issues for economical consideration.

Ultrathin polymer films may be deposited on a substrate by exposing it, in an 

alternating fashion, to solutions of oppositely charged polyelectrolyte [76]-[78]. Each 

immersion cycle contributes a reproducible and, eventually, constant increment to the 

film thickness. Several key experimental variables control the buildup of multilayered 

films in these systems [78]. For a given pair of strongly dissociated polycations and 

polyanions, the concentration of salt in the deposition solution appears to exert the 

strongest influence on the thickness of each polymer layer, which is approximately 

proportional to salt concentration [79]. Variables of lesser impact include salt 

composition, molecular weight, polymer concentration, and deposition time [79]. 

Previous studies have shown that film growth is mainly affected by factors such as 

polyelectrolyte charge density and pH [80].

2.2 Silica Multilayers

As an example of the nanoparticle architecture, let us analyze a 45-nm silica 

assembly by alternate adsorption with polycation poly(dimethyldiallylammonium
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chloride), (PDDA) [80][81]. In situ quartz crystal microbalance (QCM) monitoring of 

alternate PDDA and SiC>2 adsorption gave the kinetics of the assembly process. In the 

first step, PDDA was adsorbed onto a Ag-electrode. The QCM frequency decreased 

during the first 60 seconds, after which a slower change was observed as adsorption 

saturation set in. Then, the resonator was immersed in pure water for washing. Next, the 

film was immersed in SiC>2 dispersion and silica adsorption saturation occurred within 

several seconds. After subsequent water rinsing, the film was immersed again in a PDDA 

solution, and so on. Each growth step was reproducible, and the adsorption process 

reached 90% saturation in 10 seconds for SiC>2 and 30 seconds for PDDA. The film 

assembly was not possible simply by the multiple immersion of the substrate in the silica 

solution. An alternation with an oppositely charged polyion was necessary. At every 

assembly step the component monolayers were formed, as was recorded by QCM, 

scanning electron microscopy (SEM) (Figure 2-1).

The average density of Si0 2 /PDDA multilayers is <p> = 1.43 ± 0.05 g/cm3. 

SiCb/PDDA film volume composition is 60% SiC>2 + 10% polycation + 30% air-filled 

pores. These pores are formed by closely packed 45-nm Si0 2  and have a typical 

dimension of 20 nm. The films have controlled pores, which can be varied by the 

selection of the nanoparticle diameter. We estimated the diffusion limitation for surface 

coverage A(t) by adsorption from solution of particles with the diffusion coefficient D 

from A(t) = 2/n C VDt. For t = 2 s , C = 10 mg/cm3, and assuming for 45-nm silica D =

1.1 x 10'7 cm2/s, A ~ 3 x 10'6 g/cm2 and the layer thickness: L = A(t)/<p> ~ 21 nm. This 

result is reasonably close to the experimental silica monolayer thickness of 24.6 nm. 

Thus, 2 seconds corresponds roughly to the diffusion-limited time for the SiC>2
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monolayer adsorption; this time is the fastest nanoparticle monolayer formation rate that 

we have achieved.

BBS
5  0  u  m

Figure 2-1 SEM image of multilayer containing 18 monolayers of 45-nm diameter silica
alternated with polycation PDDA

2.3 Latex Assembly

Charged latex is a good building block for an electrostatic layer-by-layer 

a s s e m b ly .  P o s i t i v e l y  or n e g a t i v e ly  c h a r g e d  m o n o d i s p e r s e  la t e c e s  w i t h  d ia m e te r s  of 30, 

40, 45, 50, or 75-nm and with different colors are commercially available, for example, 

from Seradyn Inc or IDC-Ultraclean Uniform Latex Inc. For the first time a multilayer 

assembly of negative latex spheres (carboxyl-modified or sulfate polystyrene) in
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alternation with positive latex (amidine-modified polystyrene) was reported by Bliznyuk 

and Tsukruk [82]. They have described a strong tethering of charged nanoparticles to the 

surface, which prevents surface diffusion and the rearrangement required for formation of 

perfect lateral ordering. This situation is different from the one with the formation of the 

ordered 3D-mesocrystals by slow crystallization of the monodispersed aqueous colloids 

[83]. In the nanoparticle/polyion multilayers, one loses the crystal-like ordering, but gains 

control of the process, preparing multilayers of close-packed nanoparticles with a 

precisely known number of monolayers.

2.4 The Effect of pH

The thin films prepared using the layer-by-layer method are most frequently 

composed of strong polyelectrolytes because they remain fully charged over a wide pH 

range [84].

When weak polyelectrolytes are used as constituents of multilayers, the amount of 

charges in the multilayers can vary with the solution acidity and/or concentration of small 

ions; changes in pH/ionic strength might trigger changes in film structure and stability 

[85]. Ionizable polymers are often used to build multilayers, and pH modulation allows 

additional manipulation of molecular organization in these systems by the control of the 

thickness of each deposited polymer layer [85] [8 6 ]. In their pioneering work, Mohwald 

and co-workers found that permeation of the chemicals through the shell of the 

multilayered capsules could be modulated by pH [87].

More recent studies have shown that preparing multiplayer thin films from weak 

polyelectrolytes can produce systems with a rich suite of properties because the behavior 

of this class of polyelectrolytes is sensitive to its pH [8 8 ], In fact, it was recently shown
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that even a single weak polyelectrolyte layer embedded at the bottom of a 1 0 -layer film is 

greatly influenced by the local environment at the surface layer [89]. Rubner et al. [90] 

have recently reported pH-induced changes in stability and morphology of films 

deposited on a flat substrate.

Many of the polyelectrolytes employed for multilayers are either weak acids or 

their salts (such as carboxylates) [91]-[93] or protonated forms of weak bases (for 

example, poly(allylamine), poly(ethylene imine), and other polyamines) [78]. The use of 

one or more polymers bearing weak acid/base functionality affords the possibility of 

controlling the average charge per repeat unit and thus the extent of interaction between 

charged polymers. Most of the initial work, and a substantial number of continuing 

studies, are performed under pH conditions, which ensure that the polyelectrolyte 

remains in its most highly charged form (for example, protonated poly- (allylamine), 

PAH). A number of recent studies, notably those of Rubner et al. [91 ]-[93], have probed 

the complex behaviors for weak polyacid/polybase pairs that occur over a wide range of 

“pH space.” Depending on the pH, both polyanion and polycation can be weakly or 

strongly charged, leading to fine control over the thickness of each deposited polymer 

layer [92] [94]. Under certain deposition conditions, phase separation of multiplayer 

components yields unusual microporous ultrathin films [93].

2.5 Ionic Strength

Less attention has been paid to the influence of salt concentration (ionic strength) 

on the buildup of weak polyacid/base-containing multilayers. In a study employing 

polymers on carboxylate and oligo(ethylene glycol) functionalized monolayers was 

strongly dependent on the ionic strength of the deposition solution. Selective deposition
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of polyelectrolytes on substrates offers the possibility of pattern formation and processing 

using multilayers [78], In certain applications, selective (or nonselective) deposition 

would ideally be followed by quantitative removal of the thin film, preferably in ambient 

under mild conditions. An additional benefit would be realized if processing were to be 

based solely on aqueous solutions.

Castelnovo and Joanny [95] investigated the formation of multilayer films in 

polymeric systems. They find that the first polymer layer differs from subsequent layers 

and that the thickness of all layers increases monotonically with the solution salt 

concentration, in agreement with experimental observations [23],

More recently, Park et al. [96] reexamined the layer-by-layer deposition of 

charged polymers, accounting for “charge regulation,” or the sensitivity of the degree of 

charging to pH. They find that the adsorbed layer thickness is molecularly thin when the 

polyelectrolytes are fully charged, while thicker, brush-like layers are obtained when the 

chains are not fully dissociated.

It was found that, as may be expected, the thickness of an adsorbed layer of rigid 

macroions on an oppositely charged substrate increases monotonically with the substrate- 

to-macroion charge ratio. The layer thickness decreases with the solution salt 

concentration and increases with its hydrophobicity, as manifested by a decrease in its 

dielectric constant.

2.6 Other Factors

In a system with electrostatically driven self-assembly, Schlenoff contrasted the 

effects of pH and ionic strength on the multilayer stability [97]. In a different system, in 

which self-assembly was driven by hydrogen bonding, it has been shown recently that
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multilayers can be controllably “erased” by changes in pH, ionic strength, or electric field

[98]. The control over film decomposition offers new possibilities in making drug release 

devices. Patterned surfaces created by the selective removal of specific multilayer films

[99] are also possible.

For the time-dependent control of adsorption and monitoring of the assembly in 

situ, the quartz crystal microbalance method is quite suitable [100]. The kinetics of the 

adsorption process could be delineated by the QCM-technique, which is indispensable for 

establishing proper assembly conditions (e.g., a saturation adsorption time).

The multilayer assemblies are characterized by means of quartz crystal 

microbalance technique in two ways: 1 ) after drying a sample in a nitrogen stream we 

measured the resonance frequency shift and calculated an adsorbed mass by the 

Sauerbrey equation; or 2) by monitoring the resonator frequency during the adsorption 

process onto one side of the resonator which was in permanent contact with polyion 

solutions. While performing experiments in permanent contact with the polyion solution, 

we touched the surface of solutions with one side of the resonator, while the upper 

electrode was kept open to air, and the upper contact wire was insulated from the solution 

by a silicone paint covering.

The fitting of adsorption to an exponential law yields a first-order rate of 

adsorption for poly(styrenesulfonate) (PSS) □= 2.5 ± 0.2 minutes and for polyallylamine 

(PAH) □= 2.1 ± 0.2 minutes. This means that during the first 5 minutes about 87% of 

the material is adsorbed onto the charged support and t = 8  minutes (t = 3 □ gives 95% 

full coverage. Typically, in most publications on polyion assembly, adsorption times of 5 

to 20 min are used. One does not need to maintain an adsorption time with great
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precision: a minute more or less does not influence the layer thickness if we are at the 

saturation region. For other species, poly(dimethyldiallylammonium chloride) (PDDA), 

polyethyleneimine (PEI), montmorillonite clay, myoglobin, lysozyme, and glucose 

oxidase, the first-order rate of adsorption onto an oppositely charged surface was found to 

be 2, 3, 1.8, 3, 4 and 5 min respectively. Interestingly, 5 - 2 0  minutes is essentially greater 

than the diffusion-limited time (mass transport limitation), which is necessary for 

complete surface covering (for the used linear polyion concentrations, it is a few 

seconds). Only for 45-nm silica / PDDA assembly do we have an example when 2 

seconds time corresponds to the diffusion limited time for the Si0 2  monolayer 

adsorption.

One could suppose that linear polyion adsorption occurs in two stages: quick 

anchoring to a surface and slow relaxation. To reach a surface charge reversion during 

linear polyion adsorption one needs a concentration greater than 10' 5 M [100], The 

dependence of polyion layer thickness on concentration is not great: thus, in the 

concentration range of 0.1 - 5 mg/mL poly(styrenesulfonate)/poly(allylamine) 

(PS S/PAH) pair yielded a similar bilayer thickness. A further decrease in polyion 

concentration (using 0.01 mg/mL) decreases the layer thickness of the adsorbed polyion. 

An increase in the component concentrations to 20-30 mg/ml may result in the non-linear 

(exponential) enlargement of the growth rate with adsorption steps, especially if an 

intermediate sample rinsing is not long enough [1 0 1 ].

2.7 Temperature Effect 

Though the ionic strength and pH dependence of multilayer assembly has been 

studied extensively, the temperature dependence has been comparatively neglected.
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Recent work by Btlscher et al. [102] has shown that increasing the temperature of the 

deposition solution tends to increase the thickness of electrostatically deposited films of 

poly(allylamine) hydrochloride (PAH) and poly(styrenesulfonate) (PSS).

In my work the temperature dependence of PEM film thickness has been further 

explored in an effort to identify the mechanism by which heat promotes polyelectrolyte 

adsorption. Electrostatically grown, multilayer films containing two strong 

polyelectrolytes, poly(diallyldimethylammonium chloride) (PDDA) and PSS, have been 

prepared under various conditions and characterized ellipsometrically. Moreover, the 

effect of temperature on alternate layer-by-layer (LbL) self-assembly of inorganic and 

organic nanoparticles was investigated. Compared to bigger particles, temperature has 

more effect on the adsorption rate of smaller particles. High temperature can enhance the 

efficiency dramatically. Based on this, temperature can be used as one of the alternative 

parameters to optimize this layer-by-layer electrostatic self-assembly. The significance 

of this study mainly relies on the batch-production feasibility of LbL self-assembled 

devices based on NP thin films.

Materials involved are (1) poly(dimethyldiallyl ammonium chloride) (PDDA) 

aqueous solution, MW 200 to 300 K, 3 mg/ml, 0.5 M NaCl, (2) sodium 

ploy(styrenesulfonate) (PSS) aqueous solution, MW 70 K, 3 mg/ml , 0.5 M NaCl. Both 

of them were obtained from Aldrich Sigma. SiC>2 colloidal dispersions in water (231 

mg.ml'1, Nissan Kagaku, Japan) were diluted to provide a concentration of 5 mg/ml, and 

Si0 2  particles were 45 and 300 nm in diameter. The 04644-Series Digital Hot 

Plate/Stirrer was from Cole & Parmer. The WYKO RST white light interferometer 

microscope used to measure the thin film surface roughness was made by WYKO. Silver
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Plated QCM resonators, 9 MHZ were from Sanwa Tsusho Co. Ltd and the frequency 

counter from Itsuwa Electric Co.,Ltd.

A series of experiments were designed and implemented to monitor the 

adsorption rate and quality of the multilayer films at various temperatures. The quartz 

crystal microbalance (QCM) technique was adopted to measure the mass change during 

the assembling process. QCM frequencies decrease proportionally upon mass increase. 

The QCM resonators are covered by evaporated silver on both sides as the electrodes. 

The resonance frequency was 9 MHz (AT-cut). The resonator was soaked into the 

polyelectrolyte solution for a period of time and dried by a nitrogen gun, and the 

frequency change was registered. The QCM frequency in air was stable within ±2Hz 

during 1 hour [103]. At the beginning, the base film containing several polyion layers (in 

the alternate mode) was assembled onto the resonators with the outermost positive PDDA 

layer. Following the above procedure, the resonator was alternately immersed for 10 

minutes in an aqueous solution of SiC>2 and PDDA with intermediate distilled (DI) water 

rinsing and drying by a nitrogen stream. The frequencies were measured after washing 

and drying periodically. The relationship here is obtained between the adsorption mass 

M (g) and the frequency shift AF (Hz) by taking into account the characteristics of the 

quartz resonators, which is the so-called Sauerbrey equation

A/ = -2AmnfQ2 /(A ^ju~p^)  (2-1)

Where n is the overtone number, f0  is the fundamental frequency, A is the electrode area, 

mq is the shear modules of quartz, and rq is the density of quartz. For our QCM 

resonator the thickness can be expressed by the following equation:
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d(nm) = 0.022(-AF(Hz)) (2-2)

For each type of particle the experiment was carried out at 0°C, 22°C, 45°C, 60°C, and 

90°C, respectively. The QCM resonator must be cleaned in the solution (KOH 1% + 

alcohol 39% + DI water 60%) with an ultrasonic treatment for 30 seconds. At every 

temperature the adsorption was in a sequence of PDDA (20 minutes) + PSS (10 minutes) 

+ PDDA (10 minutes) + PSS (10 minutes) + [PDDA (10 minutes) + SiC>2 (2.5 minutes)]5. 

Intermediate DI water rinsing of 40 seconds and drying by a nitrogen stream was 

necessary. The original frequency of each QCM was recorded as well as the frequency 

after each step. It took a period of time for the frequency to stabilize and the frequency 

was recorded after one minute. Therefore the frequency shift of each step was obtained 

and temperature dependent curves were made from a series of adsorption curves at 

various temperatures.

Three layers of monolayers composed of the same particle were also deposited on 

the silicon wafer under an identical condition. The roughness of each thin film was 

measured by WYKO RST white light interferometer microscope.

2.7 Results and Discussions

The LbL self-assembled nano-blocks can grow in the vertical direction in a 

presetting sequence at about 2 nm every growth step. This provides the way to construct 

well-ordered and tight structures composed of various substances, as shown in Figure 2-2 

and Figure 2-3.

As the first simple system, we have analyzed the assembly between PSS and 

PDDA. Figure 2-4 illustrates the frequency and thickness shift against the assembly step, 

when a QCM was alternatively immersed into the PDDA and PSS solution at different
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temperature. The amount of polyions assembled increased upon increasing the solution 

temperatures. Table 2-1 shows both the polycation(PDDA) and polyanion(PSS) have the 

same trend. In addition, the similar amount of polycations were adsorbed on the QCM 

when it is assembled with silica nanoparticles (300nm) as shown in Figure 2-4(b).

Figure 2-2 SEM picture of silica particle thin film (particle size: 300 nm)

Figure 2-3 TEM picture of silica particle thin film (particle size: 45 nm)
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Figure 2-5 & Figure 2-6 illustrate the stepwise assembly of PDDA and silica 

nanoparticles onto the QCM surface at 2°C, 22°C, 45°C, 60°C, and 90°C, respectively. 

The higher temperature results in the larger amount of adsorption substances on the 

surface, which is possibly due to the enhancement of the energy of the particles at 

increased temperatures.

8000 

7000 

6000 

5000 

X 4000
LL

^ 3000 

2000 

1000 

0

RT( 22°C) 
60 °C 
90 °C J l

/ /

i - :

122 4 6 8 10
Cycle of Adsorption

Figure 2-4 Frequency shift for PDDA(PSS/PDDA)2-i2 at different temperatures 

The adsorption rate (the amount of adsorption per step) is related to the 

probability for a particle to get into the attractive region, which relies on the energy of the 

particles. The role of temperature is to adjust the thermal energy or velocity of the 

particles. The particles with more energy will have more opportunities to search for a site 

to reside. In addition, the polyions (here PDDA) also gain more thermal energy and 

probably go through the gaps among the nanoparticles and then fill in the gaps, resulting
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in more adsorption of polyions. As observed in Figure 2-4, a stronger electric field is 

created and more oppositely charged particles are needed to neutralize it. Consequently, 

all of these factors contribute to increase the thickness of every step.

Table 2-1 The mean frequency shift in the above figures

Temperature

Adsorption(Hz)
RT(22°C) 60°C 90°C

PSS/PDDA 

Figure 2-4

PDDA, 1st 76 496 823

<PDDA> 188 401 425

<PSS> 265 6 8 8 826

PDD A/Silica(3 OOnm) 

Figure 2-5

<PDDA> 195 423 300

<Silica> 2233 3151 5969

PDDA, 1 s t : the frequency shift for first assembly step 

<PDDA> : the mean frequency shift for each assembly step of PDDA

<PSS>: the mean frequency shift for each assembly step of PSS

<Silica>: the mean frequency shift for each assembly step of Silica (300nm)

It is also shown in Figure 2-6 that the temperature has much more effect on 

smaller particle than on bigger ones. The frequency shift at every step for the smaller 

particles was more from room temperature (RT) to 90°C, compared to the bigger 

particles, illustrating that the gap between the curves at RT and 90°C is wider for smaller 

particles, as shown in Figure 2-5. Compared to bigger particles, smaller particles are 

more sensitive to temperature adjustment. On one hand, its thermal velocity varies 

greatly under the same momentum change due to its smaller mass. On the other hand, the
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larger amount of smaller particles is needed to neutralize the opposite charges of the 

polyion layers because it carries less electrical charges.

Another important phenomenon is the threshold of temperature effect. The 

experiment demonstrates that the deposition performance is the same at 0°C and room 

temperature. It means that temperature does not influence the deposition process until it 

exceeds the threshold temperature (here it is about room temperature). Under the 

threshold value, the increase of temperature is not considerable because the thermal 

velocity of the particle and the probability of being adsorbed onto the substrate are not 

increased greatly.

Above the threshold value, the temperature changes the deposition rate 

dramatically. For example, it takes almost 5 cycles of immersions for the 45 nm particle 

thin films to reach 200 nm thick at room temperature, but it takes only one cycle at 90°C. 

If one cycle takes 15 minutes, then 1 hour is saved. The LbL self-assembled monolayer 

is usually at the magnitude of a nanometer so that tens of layers of different materials are 

necessary to realize certain thickness. By dipping the substrate at higher temperatures, a 

great quantity of time can be saved if batch fabrication is under consideration in the 

future.

A control system (with nothing on the QCM) was designed to investigate the 

temperature effect on the QCM itself. Figure 2-7 shows this frequency shift of QCM 

after being kept in the solution at different temperature for 2 0  minutes and then another 

10 minutes. The frequency shift is small comparing to former study in Figure 2-5 and 

Figure 2-6, and it is almost kept unchanged during the following adsorption steps, 

indicating the temperature effect on QCM can be omitted in our studies
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Figure 2-5 Adsorption of Silica particle on QCM surface (the first 4 steps are base 
layers), thickness versus cycles of adsorption (particle size: 300 nm)

Another conjecture is temperature effect on the pH of the solution. However, the 

pH has little effect on the adsorption behavior of PDDA, while has some influence on the 

assembly of PSS. In our first simple system, the frequency shift for the first adsorption of 

PDDA also increases dramatically as the temperature increases, suggesting that the 

temperature can directly affect the assembly.

The surface roughness prepared under different temperature was inspected, as 

shown in Figure 2-8, Figure 2-9 and Figure 2-10. It is found that raising the 

temperature will have little effect on the multilayer film prepared by the smaller 

particles. However, when the bigger particles were utilized, the surface roughness 

was degraded, which may be caused by the big size of the particle. In other words,
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these observations suggested that this temperature effect would be most suitable for 

the particles with smaller dimensions if the film quality is critically required.
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Figure 2-6 Adsorption of Silica particle on QCM surface (the first 4 steps are base 
layers), thickness versus cycles of adsorption (particle size: 45 nm)

Figure 2-11 shows the similar result for LATEX particles. Comparing the curves 

for SiC>2 and LATEX, we can see that high temperatures can affect the adsorption of the 

LATEX more,nprobably because the dimension of LATEX particle is much larger than 

th a t  o f  th e  s i l i c a .  S o  w h e n  th e  p o s s ib i l i t i e s  o f  th e  a d s o r p t io n  to  th e  s u r fa c e  a re  in c r e a s e d ,  

the thickness increased more.
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Figure 2-7 Frequency shift versus the temperature for the control system. The shift is 
negligible comparing to our results in Figure 2-5 and Figure 2-6

A new phenomenon in layer-by-layer self-assembly of linear polyions and 

nanoparticles, 1 0 0 - 2 0 0 % increase of growth step with temperatures, was found, and it 

has to be taken into account in the applications of LbL technique. The possible 

mechanism may involve the temperature effects of polymer conformation, dielectric 

constant of medium, electrostatic interaction, enthalpy/entropy balance in charge 

shielding, the surface coverage of polymers and the aggregation of polymers at greater 

temperatures due to dehydration.
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CHAPTER THREE

FABRICATION OF INDIUM RESISTOR

3.1 Introduction

The electrical resistance of a material is a measure of how difficult it is for 

electric current to flow through the atomic structure of a material. A resistor is an 

electronic circuit element with a fixed amount of resistance to current flow. Resistors are 

used to create a voltage drop to meet the voltage requirements of the electrical device 

through which the electric current is flowing.

A microelectronic resistor is commonly formed by creating a thin ribbon of 

semiconducting material, doped with either negative "N-type" or positive "P-type" charge 

carriers, in a region doped with charge carriers of the opposite type [104].

With the increasing demand for ever-smaller devices, much recent research has 

focused on the fabrication and characterization of “self-organizing” nanoscale systems. 

This charge reveals a shift away from “top-down” approaches, such as those based on 

photolithography, to “bottom-up” approaches that should not only permit the fabrication 

of much smaller devices but also allow facile, and yet highly reproducible assembly.

Nanoparticles based nanostructured films are currently under intense investigation 

since they offer the potential for applications in various fields such as semiconductors,
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molecular electronics, photovoltaic, chemical and biological sensing and catalysis [105]- 

[107],

These particles are of interest for several reasons: first, it is possible that new 

energy levels become available because of the reduced dimensionality of the system; this 

is particularly relevant to semiconductor particles [108]. For metallic nanoparticles, it is 

not so much that the energy levels change but rather that the reduced dimensions of the 

particles become smaller than the electron mean free path. This charge leads to increased 

electron scattering and, hence, affects both the electronic and optical properties of the 

nanoparticles. Further, by reducing the size of such particles, one also reduces the 

capacitance associated with charging them, which, in turn, can lead to interesting 

conductivity behavior, for example, room-temperature single electron transport [109].

3.2 LbL in Solid State Devices

In solid state devices inorganic multilayer films have already attracted great 

interest as a way to control surface properties. In particular, the introduction of 

nanostructured materials inside a lamellar structure has been of great interest as a way to 

develop specific nanosize effects, in particular with colloidal particles [21]. Several 

attractive combined properties including mechanical, electrical, optical, and magnetic 

ones have been developed with different inorganic nanoparticles such as, for example, 

Ti02, Fe30 4, CdTe, and MoS2 [110].

Different technical approaches exist for hybrid materials; all of them are based on 

a sequential way to control the multilayer deposition. These techniques are based mainly 

on van der Waals type interactions, as in the classical Langmuir-Blodgett (LB) approach, 

covalent bonding in self-assembly monolayers (SAMS), or electrostatic interactions using
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layer-by-layer assembly [7]. This last technique, using oppositely charged polymers, has 

been successfully developed during these past years [23]. It has recently been 

demonstrated that the growth of lamellar systems containing inorganic charged 

nanoparticles can be controlled [111]. This process is an alternative to the already 

developed semiamphiphilic LB technique with ionic surfactants used, in particular, for 

specific molecular magnetic systems [1 1 2 ].

Recently the layer-by-layer (LbL) growth of polyelectrolyte/ gold nanoparticle 

films has also been reported [113][114] using the electrostatic method popularised by 

Decher [23]. These works have demonstrated that depending on the polyelectrolyte 

structure and nanoparticle morphology as well as conditions of self-assembling, the final 

properties of charge transport and permeability within the assembly can be varied from a 

film with bulk metal conductivity [113] to a film exhibiting electronic charge transport 

from electrode through the film via an electron hopping from nanoparticle to 

nanoparticle. A tunable mobility of electrolyte ions moving through the film (necessary 

for electroneutrality) has also been described [114]. On the other hand, it has been also 

demonstrated that electronic charge transport within LbL self-assembled multilayers of 

polyelectrolytes can occur by electron hopping between adjacent molecular redox centers 

that are covalently grafted on the polyelectrolyte backbone. Such systems involved redox 

polyelectrolytes assemblies such as poly(butanylviologen)/poly(styrenesulfonate) [115], 

poly(allylamine)ferrocene or osmium complex-derivatized poly(allylamine)/glucose 

oxidase [116] or viologenfimctionalized poly(vinylpyridinium)/nitrate reductase [117].
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3.3 Conductivity of an LbL Polvelectrolyte Multilayer

Despite these advantages, early ionic conductivity results were disappointing. The 

dielectric and ion conduction properties of LbL films were first investigated by Durstock 

and Rubner [118], following limited earlier studies on cast polycation/polyanion 

complexes [119].

The first LBL investigation evaluated films of poly- (allylamine hydrochloride) 

(PAH) with poly(styrene sulfonate) (SPS) and poly(acrylic acid) (PAA). These
n

composites demonstrated ionic conductivity with a maximum of 2x10' S/cm at room 

temperature and high hydration [118], which is too low for most electrochemical 

applications. The low ionic conductivity of typical electrostatic LBL films can be 

explained using the general relation.

all ion types

<*= (3 *i)>
;=i

where a is ionic conductivity, i is the ion type, n is the number of mobile ions, q is the ion 

charge, and pi is the ion mobility. The ion number and mobility are potentially limited by 

the LbL technique.

The limited number of mobile ions is due to the large extent of polyion pairing 

and rejection of residual small ions from the LbL film bulk, which is especially notable in 

strong polyion systems such as poly(diallyl dimethylammonium chloride) (PDAC)/SPS 

[119]. In general, an electrostatic LbL film cannot contain as many dissociable small 

counter ions as a neat film of either polyion, which would contain one counter ion per 

monomer unit. In addition, hydrophobic aspects of common model polyelectrolytes such 

as PAH, PDAC, or SPS limit the potential for residual or added salt to dissolve into the 

film.
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Limited mobility is due to an inherently high crosslink density, which has been 

shown to decrease ionic conductivity in polyether networks [121]. The underlying 

mechanism of such poor conductivity is the constraint of small-segment polymer 

dynamics, which are widely recognized as being coupled to ion mobility [1 2 2 ]. 

Furthermore, each ion pair within a LbL film can behave as a “coulomb trap”, slowing 

migration by temporary association with the migrating ion.

3.4 Conductivity of Inorganic Nanoparticles/Polvelectrolvte Multilayer

Recently, technologies for the production of metallic, semiconducting, and 

insulating nanocrystals are able to provide nanoparticles that function similarly to the 

high-grade materials used by the modem microelectronics industry [122] [123]. Due to 

their unique properties and versatility, nanoparticles have become the focus of material 

research for applications in microelectronics, optoelectronics, and catalysis and for 

fundamental research in solid state physics.

A number of studies have been performed specifically investigating the buildup 

of nanoparticle/polyelectrolyte composites, with many different combinations of 

materials possible. Some common nanoparticle components in these films have been 

SiC>2 [124], TiC>2 [124][125], iron oxide [125], and gold [126]. These materials have been 

combined with polymers such as poly(styrene sulfonicacid) [124] [125], poly(allylamine 

hydrochloride), and poly(diallyldimethylammonium chloride) [125].

Among various nanoparticle/polyelectrolyte composites, metal nanoparticles and 

nanostructures have been the subject of many extensive scientific and practical studies 

[127][128]. There are a number of conductor applications requiring medium to low 

resolution lines ( 1 0  pm and up) including solar cells, microwave circuits et. al.
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3.5 Manufacturing Method 

The optimum deposition approach is one that minimizes capital investment while 

reducing ancillary processing. Direct writing of inks to form conductor lines has inherent 

processing advantages over screen-printing and vapor deposition in that no post-printing 

thermal treatments or photolithographic processing are required. However, they have 

some special requirements for the ink. These inks must function to produce adherent and 

electrically connected layers at suitable processing temperatures. In addition, high purity 

may be required to attain satisfactory conductivity in the deposited layers [129]. Liquid 

embossing overcomes these limitations through two critical differences from other 

techniques. The first is that the patterned material remain a liquid throughout the 

embossing, requiring no chemical reaction or phase change to occur during the actual 

patterning. The second is that the emboss pushes through the thin liquid film and contacts 

the substrate beneath, enabling the additive fabrication of electrically isolated features 

and the direct formation of vias, both without the etching required for contact-printing 

and imprint schemes. But it still depends on the template fabrication [130]. The master is 

fabricated using microlithography techniques such as photolithography, micromachining, 

e-beam writing, or by using available relief structures such as diffraction gratings [131].

We developed lift-off and metal mask technique based on LbL self-assembly and 

traditional lithography [132]-[136]. Self-assembled monolayer or multilayers were 

utilized to generate the devices such as capacitor [135], FET. Because layer-by-layer self- 

assembly and lithography techniques are mature processes, and lithography is widely 

applied in the modem semiconductor industry, a combinative technique will be 

economical and suitable for mass production. By just following the traditional process,
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the nanostructures composed of nano-building blocks can be realized. As it is used in the 

semiconductor industry, the process results in such a high reproducibility that distinct

patterns (in this experiment precise 10/An) can be created in almost all o f the dies on the 

wafer.

As we all know well, microelectronic devices consist of a conducting layer, 

insulating layer, and a semiconducting layer. For our devices, both the semiconducting 

layer and the insulating layer can be fabricated by LbL self-assembly. For both methods, 

the conducting layers were fabricated by evaporation or sputtering [135]. To our 

knowledge, few conducting layers were generated by LbL self-assembly with inorganic 

nanoparticles. In our work, LbL self-assembly techniques were employed in order to 

form metal nanoparticle/polyions multilayers. Indium nanoparticles were utilized as 

building blocks to obtain conducting line.

3.6 Conductive Materials

For bulk materials, gold, platinum and copper are all good as conductive 

components. Accordingly, their nanoparticles were used in our work. However, the 

results were disappointing. The multilayer made of gold nanoparticles/PDDA didn’t 

show any resistor-like characteristics. The multilayer of Cu nanoparticles/PDDA and Pt 

nanoparticles/PDDA multilayer showed fairly poor conductance as well. SEM (Scanning 

Electron Microscopy) images were taken on these multilayers.

From Figure 3-la, b and c we can see those nanoparticles do not at all or barely 

contact each other. Polyelectrolytes filled the gap between the nanoparticles. Their 

conductance was proven to be very low. Therefore, instead of common materials, indium 

nanoparticles were utilized. These particles showed desired characteristics, and the SEM
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image reveals the reason (Figure 3-1(d)). Unlike the previous pictures, these 

nanoparticles have good connection with each other. Further treatment by RTA (Rapid 

Thermal Annealing) results in even better properties.

Figure 3-1 (a) SEM image of (PDDA/PSS)2+(Au/PDDA)7,(b) SEM image of 
(PDDA/PSS)2+(Pt/PSS)7,(c) SEM image of (PDDA/PSS)2+(Cu/PDDA)7,(d) SEM image

of (PDDA/PSS)3+(In/PSS)i0

3.7 Fabrication of the Indium Resistor 

Materials involved are poly(dimethyldiallyl ammonium chloride) (PDDA) 

aqueous solution, MW 200 to 300K, 3mg/ml; 0.5M NaCl and sodium 

ploy(styrenesulfonate) (PSS) aqueous solution, MW 70K, 3mg/ml; and 0.5M NaCl. Both 

of them were obtained from Aldrich Sigma. Dispersion of In nanoparticles, 0.15g/ml,
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10-80nm in diameter was also taken from Aldrich Sigma. RTA facilities (RTA-600S, 

Modular Process Technology Corp) were used for post-treatment.

A 4-inch silicon wafer was immersed in H2SO4 and H2O2 solution (volume ratio 

7:3) at 70°C for 1 hour. Then, it was “hardbaked” at 115°C on hotplate for 5 minutes. A 

layer of 1 pm photoresist was spun on the silicon wafer. The speed was 1500 rpm, ramp 

was 200 r/s, and time 40 seconds. It was baked on hotplate at 115°C for 1 minute. It was 

exposed under UV light for 7 seconds, and the desired pattern on photomask was 

transferred onto the surface of photoresist by developing. The developer was MF-319, 

and the time was 40 seconds.

The substrate was dipped into PDDA, PSS solutions alternatively, in the sequence 

of PDDA(20 minutes) +(PSS(10 minutes)+ PDDA(10 minutes))2+ PSS( 10 minutes). The 

substrate was rinsed by DI water for 1 minute and dried by spinning between two 

alternate immersions. The speed was 1300 rpm, ramp was 300 r/s and time 40 seconds. 

Indium nanoparticles were adsorbed alternately with PSS in the sequence of (Indium (2.5 

minutes) +PSS(10 minutes))io and dried by parallel nitrogen flow between two alternate 

immersions.

The substrate was put into acetone solution with ultrasonic treatment for 7 

seconds to remove the photoresist. Finally, the patterned thin film went through Rapid 

Thermal Annealing (300°C, 3 seconds)

3.8 Results and Discussions

Figure 3-2 shows the lift-off method used to fabricate the functional devices and 

microscopic configuration of the conducting line. It can work well on the thin film made 

of indium nanoparticle. A lear image can be seen in Figure 3-3.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



52

Figure 3-4 shows the electrical characteristics of fabricated devices. The 

electrical properties were determined by standard four-probe measurements (Figure 3-5). 

From this figure, we can see RTA (rapid thermal annealing) has significant effects on 

conductance of the fabricated devices. The measurement was made on the lOum wide, 

220um long line. From the results obtained by RST, the thickness of the film was around 

543nm. By combing the measured resistance R of the resistor with its geometry (h, w and

Rs1), the resistivity of the patterned Indium was calculated using the formula p  = — .

The resistivity before annealing was calculated as 2.4xlO5 Qcm. It was reduced 

dramatically after annealing as around 0.9 Q cm. In air, the conductance of the devices 

decreases. The performance of the devices degraded as the current goes through. It might 

be caused by the heat generated when the voltage was applied. One of the possible 

reasons for the conductance decrease is the oxidation of the nanoparticles. Indium can be 

oxidized to 1 ^ 0 3  when it is heated in the air, and then it will become more insulating. 

The other possible reason is that the multilayer may adsorb H2O contained in the air, so 

that the conductance was reduced.

The degradation gets less significant as we continued to apply voltage on the 

device. At some value, it becomes stable. The reason is not very clear yet. It is predicted 

that only some amount of indium nanoparticles can be oxidized. The stable value comes 

after maximum oxidation happens. Therefore, this device can function relatively 

consistently if the current is kept going through for some time before it begins working.

Figure 3-6 presents the two AFM images before and after RTA, respectively. 

Before annealing, the nanoparticles are separately distributed. They do not contact well. 

RTA made it possible to form the cluster of indium nanoparticles. The melting point of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



53

indium is around 140°C, and our annealing temperature is around 30CTC. Therefore, 

when the nanoparticles are heated, they might melt and aggregate as shown in Figure 3- 

5(b). The other possible reason is the removal of polyions by annealing. RST (Roughness 

Surface Tester) results show that the thickness of the multilayer decreased lightly after 

annealing.

1_1 Silicon wafer

□ PtcrtDiEsist

Fblyion Multilayer

Indium nanoparticle

multilayer

Figure 3-2 Scheme of patterning nanoparticle thin films with lift-off method 

Several different types of metal nanoparticles were investigated, such as gold, 

platinum and copper nanoparticles. All of them have lower resistivity than indium as bulk 

m a te r ia ls .  B u t  e v e n  fo r  th e  n o b le  m e t a ls  l ik e  A u ,  t h e y  d id n ’t  s h o w  g o o d  c o n d u c t iv i t y  

when we tried the same fabrication process on them as we did on indium nanoparticles. 

The possible reason is all of them have much higher melting temperature, so we couldn’t 

get the good contact even through RTA.
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Figure 3-3 Patterned conducting line made of indium nanoparticle (the first 6  steps are
platform layers)

A resistor based on multiplayer thin film made of indium nanoparticles and 

polyions was fabricated by LbL self-assembly and traditional lithography techniques. It 

has the lowest resistivity ever realized by LbL technique and can work as a conductive 

layer in the microelectronic devices. RTA annealing can improve the conductance 

dramatically. One of the possible reasons is the aggregation of indium nanoparticles 

through rapid thermal annealing due to its low melting point. Degradation is a problem 

for this device. However, one can still have relatively good and stable performance by 

applying voltage on it for some time. This device will have potential applications in 

microelectronic devices and MEMS with an advantage of lower cost and a simpler 

process.
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Figure 3-4 Schematic diagram of set-up for I-V and C-V measurement
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Figure 3-5 Typical I-V curves measured on patterned LBL Indium nanoparticle thin film 
(before and after RTA). After RTA 1,2, 3... refer to the measuring sequences
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(b)

Figure 3-6 AFM micrograph taken on multiplayer thin film of indium nanoparticles and
ployions a) Before RTA b) After RTA
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CHAPTER FOUR

LBL NANOASSEMBLY COMBINED WITH HOT-EMBOSSING

4.1 Introduction

Nowadays, nanoscale electronics is a fast developing field and is predicted to play 

a significant role in future device technology [24]. Useful and interesting properties have 

been reported in the case of nano wires of metallic alloys [137] and semiconductors [138]. 

Many interesting problems have been thrown up because of unusual properties exhibited 

by these materials [21][139]. The drive to develop nanostructures has prompted a creative 

surge in technologies bridging the gap between the bottom-up nanoassembly and top- 

down micromanufacturing due to the high density of structures that can be produced 

with precise control over architecture at the nanoscale. Layer-by-Layer (LbL) self- 

assembly is a prospective nanofabrication technique to produce multilayer structures with 

precision of one nanometer through alternate adsorption of oppositely charged 

components (polymers, enzymes and nanoparticles) primarily via electrostatic attraction. 

When combined with nanopatteming techniques, this approach will make it possible the 

formation and study of conducting, semiconducting, and insulating nanowires.

Hot embossing is a reasonably fast and moderately expensive technique used to 

replicate mold structures into thermoplastics. It is a simple process, where the polymer 

and the tool are heated above the glass transition temperature (7g) of the thermoplastic
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and a controlled force is applied under vacuum. With the force still applied, the assembly 

is cooled below the 7g and they are de-embossed. Though the process cannot be fully 

automated, it is widely used to replicate microstructures on thermoplastics having 

different glass transition temperatures due to low start-up costs and ease of fabrication. 

Hot embossing offers the advantage of a relatively simpler replication process with few 

variable parameters and high structural accuracy. The hot-embossing technique can be 

employed to form the stamps with a nanoedge or nanotip. Our final goal is employing 

LbL self-assembly technique to fabricate metallic, semiconducting, and insulating 

nanowires with the aid of the stamps we already made.

4.2 Fabrication and Discussion

4.2.1 Fabrication of Silicon Mold

A 4-inch silicon wafer with lum silicon was immersed in H2SO4 and H2O2 

solution (volumn ratio 7:3) at 70°C for 1 hour. Then, it was “hardbaked” at 115°C on 

hotplate for 5 minutes. A layer of 1 pm photoresist was spun on the silicon wafer. The 

speed was 1500 rpm, ramp was 200 r/s, and time 40 seconds. The wafer was baked on 

hotplate at 115°C for 1 minute. It was exposed under UV light for 17 seconds, and the 

desired pattern on photomask was transferred onto the surface of photoresist by 

developing. The developer was MF-319, and time was 40 seconds. Following the above 

steps, BOE (N H 4F : H F  = 5.4:1) etching was done for 12 minutes in order to transfer the 

pattern on SiC>2 . KOH wet etching (45% KOH) was carried with SiC>2 as mask for lh. 

The resulted mold was shown in Figure 5-1. In this step, the KOH etching speed will 

substantially affect the quality of fabricated microstamp. Reducing the etching rate could 

get the best results.
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Figure 4-1 Silicon mold after KOH etching

4.2.2 Fabrication of PDMS Stamps

The elastomeric stamp is prepared by cast molding [140]: A prepolymer of the 

elastomer is poured over a master having a relief structure on its surface, then cured and 

peeled off. The master was fabricated as described. Figure 4-2 illustrates the procedure 

for fabricating PDMS stamps. The PDMS elastomer that we usually use is Sylgard™ 160 

obtained from DowComing. It is supplied as a two-part kit: a liquid silicon rubber base 

(i.e. a vinyl-terminated PDMS) and a catalyst or curing agent (i.e., a mixture of a 

platinum complex and copolymers of methylhydrosiloxane and dimethylsiloxane). Once 

mixed, poured over the master, and heated to elevated temperatures, the liquid mixture 

becomes a solid, cross-linked elastomer in a few hours via the hydrosilylation reaction 

between vinyl (SiCH=CH2) groups and hydrosilane (SiH) groups [141].
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PDMS

Silicon mold
Pouring PDMS or Hot-embossing to get 
PDMS or PMMA stamp

Stamping

PDMS

Feature size should be in nano scale (not Patterning
shown in figure)

Figure 4-2 Fabrication process of nanopatteming

4.2.3 Fabrication of PMMA Stamps 
by Hot-embossing

Hot embossing system HEX 01 /LT is used in our experiment, a commercial 

system from Jenoptik Mikrotechnik Company in Germany. The PMMA sheet is 0.5 mm 

thick with a glass transition temperature of 98°C. The entire fabrication procedures and 

parameters are as follows: (1) Open chamber and put PMMA on the substrate stage, (2) 

Close chamber and evacuate it down to 3 mTorr, (3) Lower the mold tool down to barely 

touch on the PMMA with the touch force 300 N, (4) Heat mold and PMMA in the same 

time to 130°C and keep the temperature for about 5 minutes, (5) Insert the mold into 

PMMA under force around 35000 N and keep it for 1 minute, (6 ) Cool down the mold 

and PMMA to 85°C, (7) Vent chamber and then demolding. The whole processing cycle 

is about 20 minutes. The sharp edges were accomplished after this. A good result 

obtained under the above process is shown in Figure 4-3
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Figure 4-3 PMMA stamp made by hot-embossing

4.2.4 LbL Self-assembly and Discussion

LbL assembly of 45 nm silica particles was implemented on the silicon wafer. 

The sequence of the alternate immersion was [PDDA (10 min) + PSS (10 min) ] 2  + 

[PDDA (10 min) + silica (10 min)] 6 . The intermediate rinsing and drying after each 

immersion was necessary. The rinsing was done by purging the wafer in DI water flow 

for 1 minute. The wafer was placed on a spinner and spun to remove water by centrifugal 

force. The maximum rotation speed was set at 1300 rpm for a time of 45 seconds.

During the fabrication, we found the molecular weight of silicon elastomer has a 

critical effect on the formation of PDMS stamp. Silicon elastomer 184 (lower molecular 

weight) was used, and the formed stamp was shown in Figure 4-4(a). From this figure, 

we can see the edge is not as sharp as expected. It is not in nanoscale. Figure 4-4(b) 

shows the stamp formed by the silicon elastomer 160 (higher molecular weight). It almost
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has the same structure of the silicon mold. The PMMA stamp with nanoscale feature size 

can also be fabricated by hot-embossing techniques.

ft * A *,* '* '

(b)
Figure 4-4(a) PDMS stamp made of silicon elastomer 184; (b) PDMS stamp made of

silicon elastomer 160
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CHAPTER FIVE

MICROCANTILEVER ARRAY BY LBL NANOASSEMBLY

5.1 Introduction

In the last decade, emerging MEMS technology and micromachining techniques 

have been popular in the miniaturization of sensors. Recent advances in designing and 

fabricating microcantilever beams capable of detecting extremely small forces, 

mechanical stresses, and mass additions offer the promising prospects of chemical, 

physical, and biological sensing with unprecedented sensitivity and dynamic range 

[142] [143]. The cantilevers are microscopic bars free to move at one end and fixed at the 

opposite end, the bases are produced using standard silicon microfabrication techniques. 

The cantilevers are the simplest microelectromechanical systems devices that can easily 

be micromachined and mass-produced. Microcantilever-based sensors can be operated as 

surface stress sensors. Microcantilever-based surface stress sensors have been 

successfully used to monitor different bio-interactions in liquid environment like

unspecific protein adsorption [144] [145], DNA hybridisation [146], and antibody/antigen

interaction [147]. The basis for the detection as surface stress sensor is that, when the 

target substance adsorbs onto the cantilever, the surface stress of that cantilever side 

changes. The change then generates a difference in the surface stress between both sides 

of the cantilever, which induces a permanent bending. It is this
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cantilever bending which is ultimately detected and recognized as indicating the presence 

of the target analyte. The bending of the cantilever is detected using an optical lever 

method, by focusing the light from a low power laser diode onto the free end of the 

cantilever and recording the deflection by monitoring the displacements of the reflected 

laser light with a position sensitive detector.

Compared to traditional microsensors without moving parts, microcantilevers 

present some interesting properties such as good sensitivity and compactness. A 

cantilever array that enables multiple experiments to be performed simultaneously will 

expedite the experimental process and thereby rapidly provide a large database to study 

the underlying physics. A cantilever array also offers the opportunity to cancel cantilever 

drift and effects of external unrelated stimuli by subtracting the deflection signal of a 

functionalized cantilever from a nonfunctionalized one [148], LbL was used for the 

construction of the microcantilevers for chemical/bio sensing. It is expected that these 

microarray assays will be able to provide massive, parallel platforms for data gathering. 

The advantage of the LbL method over the existing solid silicon or metal 

microcantilevers is that it allows remarkable nanometer-level control over the thickness 

and the vertical structure of the resulting multilayer. The thickness, hardness and other 

physical or chemical properties can be tuned through the number of layers that are 

deposited and the types of nanoparticles that are used. The thickness of microcantilevers 

fabricated in our experiments is 230nm, which is much thinner than regular solid or metal 

microcantilevers.

Primary technologies used in microarray manufacture include photolithography, 

ink-jetting, mechanical microspotting, and derivatives thereof [149][150]. In our work,
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traditional microfabrication techniques such as lithography, ICP, and wet etching were 

employed in order to form multiple microcantilevers and provide the possibility of direct 

experimental determination of many physical properties of the LBL films of fundamental 

significance.

5.2 Fabrication of Microcantilever Array 

Poly(dimethyldiallyl ammonium chloride), MW 200-300K (PDDA, Aldrich); and 

sodium poly (styrenesulfonate), MW 70,000 (PSS, Aldrich), were used at a concentration 

of 1.5 - 3 mg/ml. Dispersion of montmorillonite clay (Sigma) and Fe3(VFe2C)3 powder 

were prepared by ultrasonificating for 30minutes. Both of the concentrations are 5 mg/ml. 

FesCVFeiCL nanoparticles were bought from PolySciences Incorp. Buffered Oxide Etch 

(BOE) solution ( 6  parts 40% NH4F and 1 part 49% F1F) and positive photoresist S I813 

(SHIPLEY) were employed in the fabrication process. An Inductively Coupled Plasma 

Etch System (Alcatel) was used for dicing the wafer, and a DC-RF Magnetron Sputter 

Deposition System (Uni-Film Technology) was used for the deposition of titanium and 

gold on the surface of the microstrip. For analysis of the microcantilever structures, we 

used a Scanning Electron Microscope (SEM, AMRAY), and Optical microscope 

(Olympus Japan).

A 4-inch silicon wafer (with 2pm Si0 2 ) was placed in nano strip solution at 80°C 

for 1 hour. The wafer was completely rinsed by DI water and baked on a hotplate at 

115°C for 7 minutes. Positive photoresist (PR1813, Shipley) was coated on a silicon 

wafer with 2pm oxide. The photoresist was subsequently exposed to UV light through a 

mask. After developing and removing the exposed oxide, inductively coupled plasma 

(Alcatel) etching was done on this patterned wafer to form trenches to easily divide the
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wafer. Photoresist was again applied on the wafer, and a second mask was utilized to 

transfer channels onto the photoresist. The photo resist was irradiated again through the 

third mask to project the image of the cantilever beams on the photoresist. LbL assembly 

of clay and magnetite nanoparticles was performed on this patterned substrate. Two 

precursor bilayers of PDDA and PSS were deposited to provide a uniformly charged 

surface. The subsequent coating of clay was optimized to make the multilayer strong and 

flexible. The sequence of assembly being [PDDA (10 minutes) +PSS (10 minutes) ] 2 cycles 

+[PDDA (10 minutes) + FesCL-FeaCL (15 minutes) +PDDA (10 minutes) +Clay ( 8  

minutes)] 8 cycles- The intermediate rinsing and drying after each immersion was necessary. 

Subsequently, 20nm titanium, and 20nm gold were deposited on the multilayer. The 

wafer with the stratified layers of polyelectrolyte, magnetic nanoparticles, clay powder, 

titanium and gold was soaked in the developer solution to remove the photoresist and the 

multilayers above it. The wafer was then placed in acetone for 24 hours to obtain free­

standing cantilevers. Finally, the wafer was divided to obtain cantilever bodies (Figure 5- 

1). An example of a thin film assembled to build up multilayers with alternating 

montmorillonite (clay) nanoparticles and cationic PEI or PDDA is shown in Figure 5-2.

5.3 Results and Discussion 

The size of the microcantilevers is 200pm x 100pm (Figure 5-3 and Figure 5-4). 

And the thickness of the microstrip was measured to be 230nm (Tencor Profiler). The 

cantilevers are highly flexible and can bend over 90 degrees by moving a permanent 

magnet of 400 Oe, 0.5cm above them and can be restored immediately once the magnetic 

field was removed.
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Figure 5-1 Fabrication procedure of microcantilevers by lithography and LbL assembly
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Figure 5-2 SEM image of a single Montmorillonite sheet and cross-section of the 
composite Montmorillonite/PDDA multilayer used for cantilever preparation

The apparatus used for deflection measurements is shown in Figure 5-5. The 

experiments were carried out in a flow-through glass fluid cell that holds the 

microcantilever. The volume of the glass cell is 0.3 cm3, which ensures the fast 

replacement of the solution. The deflection of the microcantilever was measured utilizing 

an AFM head by monitoring the position of a laser beam reflected off the surface of the 

cantilever onto a four-quadrant photodiode (position-sensitive detector) [151]. The inset 

in Figure 5-4 shows the real picture when the cantilever was incorporated into the system. 

Once the molecules (in preliminary experiments -  glucose oxidase) are absorbed through 

LbL assembly onto the cantilever surface, glucose oxidase will react with glucose in the 

solution. The cantilever will bend due to the stress induced by the reaction, and then the 

deflection can be detected.
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Figure 5-3 Images of free-standing microcantilever array in water

Figure 5-4 (left) and optical microscope image of microcantilever array (right)
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The realization of the deflection measurement requires strong reflectivity of the 

cantilever surface. However, the property of the multilayer made from nanocomposite 

materials is inferior. The morphology of the microcantilever surface was investigated 

using the SEM (Figure 5-6). Although LbL self-assembly provided the nanostructured, 

precisely ordered ultrathin structure for the microcantilevers, the surface roughness was 

added while each layer of nanoparticles was deposited. Total integrated theory [152] [153] 

provides the premise that rougher surfaces scatter more light, relating the surface 

roughness to the intensity of either diffuse or specular reflectivity. From equation 5-1 the

Rspec/Rtotai value of close to one will be desirable for our work. In order to obtain this, 5

(RMS roughness) has to be as small as possible. For instance, the average surface 

roughness of wafer doesn’t exceed 5A, and they will be able to provide sufficient 

reflectivity after sputtering the 20nm thick gold with all the other parameters in the 

equation kept same.

A=wavelength 

5=RMS roughness

0i=angle of incidence

RsPec=total specular intensity

Rtotai=fotal reflected intensity (specular+diffuse)

(5-1)
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Figure 5-4 Schematic representation of the instrument showing the method of measuring 
cantilever deflection and the scheme for introducing solutions onto the cantilever

Figure 5-5 SEM image of one single microcantilever after sputtering deposition of 20nm
titanium and 20nm gold
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Figure 5-6 The surface roughness of modified nanocomposite multiplayer by deposition 
of (PDDA/PSS)io, Upper, before modification; Bottom, after modification

Therefore, the surface has to be tailored to form a uniform multilayerd ultrathin 

strip. Polyelectrolytes have been utilized to modify surfaces and colloids [23][70]. In our 

experiments, multilayer buildup of PDDA and PSS was deposited on the microcantilever
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surface before gold/titanium coating through spin-assembly [154]-[156]. It was expected 

that the surface smoothness would increase. The surface morphology was changed after 

modification. From the Figure 5-7, we can see the polyelectrolytes formed islands on the 

surface of originally fabricated multiplayer, which, however, provided insufficient 

reflectivity in the following characterizing experiments. Adjustment of fabrication 

processes will be required to provide better reflectivity.

Nanocomposite microcantilever arrays were fabricated using tradiational 

lithography and LbL techniques. These microcantilevers are highly flexible due to the 

special properties of nanocomposite materials, providing a new route of constructing 

particularly sensitive chemical sensors to detect desired or undesired chemicals in the 

solutions. Measurements of cantilever deflections will be performed by detecting the 

reflected laser beam from the top of the microcantilever using a four quadrant 

photodiode. Further work will be done to modify the surface of microcantilever by LbL 

self-assembly for various chemical sensing.
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CHAPTER SIX

CONCLUSIONS AND FUTURE WORK

LbL nanoself-assembly has been described as an approach to design organized 

films that contain different polymer, protein, dye, and nanoparticle monolayers in precise 

locations perpendicular to the surface. It can be further investigated and combined with 

various microfabrication techniques such as RTA, photolithography, hot-embossing and 

ICP to form microelectronic and MEMS devices. The LbL nanoself-assembly is an easy 

and general fabrication process. It does not demand a high purity of components. It can 

be automated and scaled-up for mass production.

The temperature effect of LbL self-assembly was studied. In addition to ionic 

strength, pH, it can be another factor to adjust the adsorption rate. Increasing temperature 

can enhance the efficiency of this technique. With further knowledge about this method, 

a resistor was fabricated by combining photolithography and LbL self-assembly. The 

RTA technique was employed to achieve higher conductivity. Microstamps with 

nanoedge were formed by hot-embossing, and they could be applied to attain 

nanopattering on LbL self-assembled multilayer. Through integrating nanoassembly, 

photolithography, wet etching and ICP, microcantilever arrays were accomplished. 

Provided less surface roughness is achieved, the multiple microcantilevers can be utilized 

for chemical/biosensing.
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Different materials such silica nanoparticles can replace magnetic nanoparticles as 

the main component for the construction of microcantilevers array. Since they have more 

uniform size distribution than Fe2 0 3 /Fe3 0 4  nanoparticles, smoother surfaces will be 

expected. Another approach is to adjust the fabrication process. If the evaporation or 

sputtering of gold layer can be done before the deposition of nanoparticle multilayers, it 

will not be affected by the rough surface made by LbL self assembly. Once this obstacle 

is cleared, these microcantilever arrays can be developed into various 

chemicals/biosensors by simply modifying the top surface with selective chemicals.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



APPENDIX A

MOS-CAPACITOR BASED ON LBL SELF-ASSEMBLY

1 Introduction

Nanoparticles (NPs) are exciting materials because they exhibit unique electronic, 

catalytic, and optical properties, sometimes different from those of the same bulk 

material. A great deal of attention has been attracted for applications of nanoparticles as 

building blocks to microelectronics, optoelectronics, and catalysis.

The relatively new layer-by-layer (LbL) self-assembly, based on alternate 

adsorption of oppositely charged components (polymers, nanoparticles, or proteins), is 

becoming an increasingly popular technique. At the beginning of the process, three layers 

of linear polyions are adsorbed onto the substrate to make the surface uniformly charged. 

Next, negatively charged nanoparticle layers are assembled step by step in alternation 

with an oppositely charged polycation solution.

In addition to the thin film deposition, an approach must be developed to readily 

generate complex and distinct patterns on the LbL self-assembled multilayer films. In our 

early reports, two methods, based on the combination of traditional lithography and LbL 

assembly, were presented to pattern nanoparticle films. One is referred to by the authors 

as the “modified lift-off’, and the other as the “metal-mask method”. In our experiment, 

the capacitor arrays were patterned by the “modified lift-off’ as illustrated in Figure 1.
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These capacitors can be fabricated onto integrated circuit chips. Metal-oxide- 

semiconductor (MOS) capacitors, with thermal SiCh as the gate oxide, have become the 

prime structure to carry out digital functions in silicon integrated circuits. However, the 

fabrication of a MOS capacitor using the conventional silicon MOS technology demands 

sophisticated facilities. High process temperature also needs to be balanced to avoid the 

damage to subsequent processes. And the growth rate of the thermal silicon dioxide is 

usually very low. Hereby an approach to fabricate the basic MOS capacitor with a 

technique combining traditional lithographic technique and LbL self-assembly was 

developed because dielectric layer consisting of silica and polyion can be self-assembled 

easily and rapidly. The insulating layer is made of 6  layers of LbL self-assembled silica 

nanoparticle thin film. Capacitors are fabricated on 4 inch P-type and N-type silicon 

wafers. The measured CV curves are in compliance with typical MOS capacitors. 

Compared to the traditional process, this has the advantages of low temperature, low cost, 

and short processing time. LbL self-assembly is also called molecular beaker epitaxy 

because it just requires several beakers to realize the “dipping in” adsorption. The 

lithographic technique is already a mature process, widely used in the microelectronic 

industry. The combination of traditional lithography and LbL self-assembly guarantees 

an extremely high reproducibility in fabrication of semiconductor devices. The regular 

dipping also enables the automation of this process if it is applied to mass production. 

The self-assembled thin film of silica nanoparticle is stable enough to withstand the 

ultrasonic wave. The simplicity and reliability of this process to fabricate the simple 

MOS capacitor provides a new way to fabricate other microelectronic or optoelectronic 

devices by traditional lithography and LbL self-assembled building blocks.
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2 Experimental Methods 

Poly (diallyldimethylammonium chloride), MW 200-300K (PDDA, Aldrich), and 

sodium poly (styrenesulfonate), MW 70,000 (PSS, Aldrich), were commercially 

available and used without further purification at a concentration of 1.5 - 3 mg/mL. The 

pH of the solutions was adjusted by adding aqueous NaOH or HC1. PDDA is a 

quartemary ammonium linear polycation and PSS (pKa 1) is a linear polyanion. 

Polyions were used in solutions at pH 8 . SiC>2 colloidal solutions (231 mg/mL, Nissan 

Chemical, Ltd) were diluted in water to provide concentrations of 10 mg/mL at pH 9. 

The diameter of the silica particles was 45 ± 5 nm.

Substrate

NP film

.polyion

.resist
--------

Before
lift-ofiV

Polyion multilayers 
deposition

nanoparticle multilayers 
deposition

Lift off polyion and 
nanoparticle films above 
the photoresist with 

2 assistance of ultrasonic 
treatment.

Figure 1 (a) Scheme of patterning nanoparticle thin films with ultrasonic treatment (b) 
Scheme of patterning nanoparticle thin films without ultrasonic treatment. NP and 

polyion films can not be lifted off because of the linkage between polyion molecules

A QCM equipment produced by USI System in Japan was used to monitor the 

assembly process. The resonators used were covered by evaporated silver electrodes on 

both sides. The resonance frequency was 9 MHz (AT-cut). The QCM resonator was 

immersed for a given period of time in a polyelectrolyte solution and dried in nitrogen
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stream. The frequency changes were then measured. The QCM frequency was stable 

within ± 2 Hz during 1 hour. All experiments were carried out in an air-conditioned 

room at about 22 °C.

In the first stage, a well-defined precursor film with a thickness of about 10 nm 

was assembled from PDDA and PSS onto resonators or mica. The precursor films 

contained 3 polyion layers in the alternate mode: PDDA /PSS, and the terminal layer was 

"positive” PDDA. Then a substrate was alternately immersed for 10 min in aqueous 

dispersions of SiC>2 and in aqueous PDDA with intermediate water washing. This 

process was periodically interrupted for the purpose of measuring QCM resonance 

frequency.

The following relationship is obtained between adsorbed mass M  (g) and 

frequency shift AF (Hz) by taking into account the characteristics of quartz resonators 

used:

AF = -1.83 x lO 8M/A (1)

where A  is the apparent area of quartz microbalance placed between QCM electrodes. 

This is 0.16 ± 0.01 cm in our system. Then, one finds that 1 Hz change in AF 

corresponds to 0.9 ng in weight. The thickness of the alternate layer corresponding to 

QCM frequency shift was determined by SEM observation of the film cross-section from 

SEM images of cut resonators coated with silicon/polycation films, which gives the 

following relationship with ±5 % error:

d (nm) = 0.022 (-AF) (Hz) (2)

A resonator with an assembled film was cut and coated with 20 A thick Pt by use 

of an ion-coater (Hitachi E-1030 ion sputter, 10 mA/ 10 Pa) under argon atmosphere.
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Scanning electron micrographs were obtained with a Hitachi S-900 instrument at an 

acceleration voltage of 25 kV. SEM images of MOS-capacitors were made with a lower 

resolution instrument “AMRAY”

The substrates were 4-inch silicon wafers, P type (orientation <100>, > 1 OHM- 

CM) and N-type (orientation <100>, 1-100 OHM-CM) from Silicon Quest Inc. A 

double-side mask aligner (EV420 from Electronic Visions, Inc.) was used as the UV light 

illuminator. Aluminum layers were deposited on a silicon substrate by the DV-502A 

high-vacuum evaporator from Denton Vacuum, Inc. The WYK RST white light 

interferometer microscope was used to measure the surface roughness and dimension of 

the thin film. The electronic characteristic instrument was from Keithley Co., Inc. 

Ultrasonication was performed with an 8892 Cole-Parmer ultrasonic cleaner.

Initially, the 4-inch silicon wafer was put into sulfuric acid and hydrogen peroxide 

solution (volume ratio 3:7) at 70°C for 1 hour. The wafer was completely rinsed by DI 

water and baked on a hotplate at 150°C for 5 minutes to remove the moisture. Then it 

was placed on a spinner to coat a layer of negative photoresist (NR9-1500P from 

Futurrex, Inc.). The maximum speed was set at 1000 rpm for 40 seconds. The wafer 

with photoresist was baked on a hotplate at 150°C for 80 seconds. The resist was 

subsequently exposed by UV light for 22 seconds to transfer the pattern from the mask 

onto the resist. Next, it was baked at 100°C for 80 seconds and finally immersed in 

developer solution for 12 seconds. At this point, the capacitor pattern was transferred 

onto the resist.

Following the above steps, LbL assembly of 45 nm silica particles was 

implemented on the silicon wafer. The sequence of the alternate immersion was [PDDA
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(10 min) + PSS (10 min) ] 2  + [PDDA (10 min) + silica (10 min)]6 . The intermediate 

rinsing and drying after each immersion was necessary. The rinsing was done by purging 

the wafer in DI water flow for 1 minute. The wafer was placed on a spinner and spun to 

remove water by centrifugal force. The maximum rotation speed was set at 1300 rpm for 

a time of 45 seconds. Subsequently, the deposition of aluminum was carried out at a 

pressure of 10-5 mtorr with a deposition rate of 2  A/s until a thickness of 3000 A was 

reached. The wafer was then soaked into acetone solution for 5 minutes to dissolve the 

photoresist, and an ultrasonic bath was introduced for roughly 3 seconds to improve the 

lift-off.

The capacitors were made on both P and N type wafers. The capacitance versus 

voltage curves were obtained under a voltage range from -2V to 2V with a step of 20 mV.

3 Results and Discussions 

Figure 2(a) shows an SEM image of the (45-nm silica/PDDA)4  multilayer cross- 

section. The film has a permanent thickness of 170 nm, leading to 43 nm for every 

bilayer close to the silica particle diameter. A film mass from QCM and film thickness

3
from SEM gives a density of the SiC^/PDDA multilayers as p = 1.43 ± 0.05 g/cm . To 

calculate the silica packing coefficient in the films, it is reasonable to assume that the dry 

film consists of SiC>2 , PDDA, and air-filled pores. The mass ratio of PDDA to

PDDA/Si0 2  bilayer obtained from QCM measurements is 0.08. Taking into account

3
component densities ( p  = 1.43, Psi02 = 2.2, and pppD A  =1-1 g/cm ), the volume ratio is 

obtained as VPDDA/V biiayer=  0.1. From the equation PpddA^PDDA  + PSi02^Si02 +
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Pair^air ~ pV, where the air-term is very small, V$i02^ ~  0-7- This is very close to the

theoretical dense-packing coefficient for spheres (0.63), and corresponds to details in the

SEM-micrographs. Si0 2 /PDDA film volume composition is: 70 % SiC>2 + 10 %

polycation + 20 % air-filled pores. These pores are formed by closely packed 45-nm 

Si02 and have a typical dimension of 15 nm. Therefore, the dielectric constant of our 

silica/PDDA multilayer is different from silica due to about 30% of inclusions, such as 

air, polyion layers, etc. In the analysis of the MOS devices, it is found that the dielectric 

constant was slightly higher than the one for thermal silica. In our group, it is possible to 

produce ultrathin multilayers of silica nanoparticles in the thickness ranging from 1 0 0  nm 

to hundreds of nm with precision of about 10 nm. These films have a porous structure 

related to the close packing of silica spheres in the layer.

As shown in Figure 3, clear patterns of the capacitor arrays with sharp borders 

were created on a silicon wafer. The arrays consist of round and square capacitors with 

various sizes. All 45 nm SiC>2 spheres were closely packed to form a dense structure. 

The surface roughness of the capacitor was 6.5 nm measured by RST. The growth step 

can be easily estimated by measuring the frequency shift of the quartz crystal 

microbalance resonator, and the monolayer thickness can be calculated accordingly by 

the Sauerbrey equation. Figure 2(b) gives the QCM monitoring of alternate PDDA and 

SiC>2 adsorption where the thickness was calculated from frequency shifts with formula 2. 

As recorded by QCM, at every assembly step, the component monolayer was formed. It 

shows that at the sixth cycle, the thickness of the SiC>2 layers is 260 nm. When added to 

the 300 nm aluminum electrode, the height of the whole device is 567 nm, in well 

compliance with the 2-D profile of Figure 3(b).
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Figure 2 (a) SEM image of cross-section of (45-nm silica / PDDA)4 multilayer on silver 
electrode (b) QCM monitored 45-nm silica growth

The fabricated device demonstrates the C-V curve of a typical MOS capacitor 

with distinct accumulation, depletion, and inversion regions, as shown in figure 4. The 

MOS structure is basically a capacitor with the silica as the dielectric material. If the 

silicon were a perfect conductor, the parallel-plate capacitance would be determined by 

the oxide capacitance as it is in the accumulation region. However, it always deviates 

from the oxide capacitance due to the voltage dependence of the surface space-charge 

layer in silicon. The space-charge occurring at the interface of silicon and oxide acts as 

another capacitance in series with the oxide capacitor, giving an overall capacitance that 

is smaller than the pure oxide capacitance. Since the inversion of a P-type MOS 

capacitor happens at a positive voltage and an N-type one at a negative voltage, the C-V 

curves move in opposite directions for P and N type MOS capacitors. If the layer of 

silicon dioxide was produced by conventional thermal oxidation, the dielectric constant 

would be 3.9. Given the size of each square device 200 pm by 200 pm and 267 nm high, 

the oxide capacitance is calculated as 5.2 pF, reasonably close to the experimental data, 8  

pF. The slightly larger value means a larger dielectric constant of the LbL self-assembled 

insulator layer. The precursor and intermediate polyion multilayer is the root for the
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higher dielectric constant because the dielectric constant of the polyion films is normally 

ten times higher than silica18. The experimental results also show that the capacitance of 

each device is strictly proportional to the area of electrode, implying an extremely high 

reproducibility of the processes.

In our process, a conventional lithographic technique, such as lift-off, was used to 

pattern the capacitors on multilayer films. However, because the LbL self-assembled 

nanoparticle films are unlike the conventional thin films in many respects, modification 

and optimization of the traditional process is required.

During the lift-off it was better to introduce ultrasonic treatment for 3 seconds 

when the wafer was soaked in developer solution. Inside the structure of nanoparticle 

film, polyion multilayers such as PDDA and PSS were sandwiched between the 

nanoparticle film and photoresist as a kind of “chemical glue”. The structure of the 

polyion is like a long thread which strongly links to each other. It is hard to break them 

up during the lift-off, so at some areas the nanoparticle and polyion multilayer can not be 

removed when the photoresist is dissolved. They just drop down and re-attach to the film 

underneath, as shown in Figure 1(b). The ultrasonic treatment is introduced to disconnect 

the linkage between polyion branches and obtain a more distinct pattern with higher 

reproducibility.
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Figure 3 (a) optical image of the capacitor arrays, the minimum diameter or size is 50 pm 
(b) 2-D profile (c) SEM image of layers of 45-nm silica particle thin film (d) 3-D plot of

the capacitors

Other dielectric materials such as montmorillonite had also been tested as the 

insulating layer. They did not perform as well as the silica nanoparticle although the 

monolayer thickness can be more precisely controlled. There are many other 

nanoparticles suitable for LbL self-assembly which may function differently for various 

devices.

4 Conclusions

Layer-by-layer (LbL) self-assembled thin films were introduced to the fabrication 

of basic MOS devices. The corresponding patterning technique was also developed to 

process the LbL assembled thin film. The resulted geometry and electronic 

characteristics indicate the extension of this technique to fabricate other semiconductor or

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



86

optoelectronic devices. The combination of LbL assembly with the mature lithography 

process offers us the opportunity to fabricate devices rapidly with inexpensive beakers at 

room temperature. The additive thin films can be coated on almost any material in 

nature. It also provides a remarkable reliability and possibility of automation for batch 

production.

A wide array of potential applications exists for the fabrication of conventional 

devices using nano-bricks, as well as lowering the price and reducing the complexity of 

the traditional processes. More sophisticated devices such as MOS field effect transistors 

made by this technique are under investigation.
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Figure 4 capacitance versus voltage curves of MOS P and N type capacitors (a) N type 
square capacitor with size of 200 pm (b) N type round capacitor with diameter of 200 pm 

(c) P type square capacitor with size of 200 pm (d) P type round capacitor with d
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APPENDIX B

OFET CONTAINING LBL SELF-ASSEMBLED SILICA

1 Introduction

Organic field-effect transistors (OFETs) have attracted great interests since the 

last decade due to their low cost, flexibility, and easy processability for the applications 

to large-area displays and low-end electronic devices like smart cards.

To be the potential solutions for those applications, OFETs must provide 

substantial performance and processing advantages compared with the conventional 

technologies. The main important parameters of device performances are charge carrier 

mobility, threshold voltage, on/off current ratio. Among the various OFETs based on 

organic semiconductors, pentacene OFETs were demonstrated to have the highest 

mobility and sufficiently high on/off current ratios up to date. Moreover, the low-cost 

and batch fabrication process is extremely necessary to benefit the various advantages of 

the OFETs. Furthermore, the low-temperature process is required due to the thermal 

properties of the organic materials. Si0 2  is the most widely used gate dielectric. 

However, the deposition of Si0 2  in the previous works was done either by the high- 

temperature thermal oxidation, or through LPCVD, PECVD, or sputtering requiring 

complex equipments.
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In recent years, the layer-by-layer nano-assembly has gathered a lot of attention in 

the fabrication of nanometer scale electronic devices because it is a very easy and low- 

temperature process requiring no expensive and complex facilities. The vertical 

dimension of the self-assembled thin film can be precisely controlled as well as the 

molecular order. Unlike the conventional process, the LbL self-assembly allows one to 

obtain the thin films for a semiconductor device with a dramatically lower temperature, 

lower cost and shorter processing time. In this paper, a simple, low-temperature, and low- 

cost fabrication procedure of pentacene OFETs is presented. Self-assembly technology 

was used to deposit the gate dielectric layer formed with SiC>2 nanoparticles.

2 Experiments

Figure 1 shows the electrical characteristic of the Au/self-assembled SiC^/heavily 

doped Si structure shown as the inset of Figure 1. The SiC>2 layer 0.45 pm thick was self­

assembled and a gold electrode 80 nm thick was sputtered. Since the breakdown field 

was larger than 0.44 MV/cm from the analysis of electrical characteristics shown in 

Figure 1, it indicates that the self-assembled SiC>2 can be used as a gate dielectric instead 

of silicon dioxide based on thermal oxidation or other deposition techniques.

For the pentacene OFETs with self-assembled Si0 2  (SA-Si0 2 ) as the gate 

dielectric, shown in Figure 2(b), a heavily doped silicon wafer (resistivity of about 0.001 

O-cm) was used as the gate electrode and the substrate. Next, the dielectric layer was 

self-assembled with Si0 2  nanoparticles 45 nm in diameter. Figure 3(a) shows the 

schematic diagram of the device with 4 layers of self-assembled Si0 2  nanoparticles, and 

Figure 3(b) illustrates the self-assembled Si0 2  thin film. After the cleaning of the silicon 

wafer surface and H2SO4-H2O2 treatment for 1 hour, the silicon substrate was immersed
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into a 50 ml poly(dimethyldiallylammonium chloride) (PDDA) solution for 20 minutes. 

Following that, it was rinsed in DI water for 1 minute, and dried by a nitrogen flow. It 

was then immersed in a 50 ml polystyrene (PSS) solution for 10 minutes, rinsed and dried 

as in the previous step. Then the immersion into PDDA was repeated for 10 minutes. 

The sequence was done as {PDDA (20 minutes) + [PSS (10 minutes) + PDDA (10 

minutes)]2 }, i.e. dipping in PSS and PDDA were carried again after the first three steps. 

The intermediate rinsing and drying are necessary. Thus up to date the outermost layer 

was positively charged PDDA. After the precursor mutilayer, the substrate was 

immersed in 50 ml diluted SiC>2 (45 nm in diameter) colloidal dispersions (231 mg/ml, 

Nissan Kagaku, Japan) with a concentration of 5 mg/ml for 5 minutes, rinsed and dried, 

followed by another cycle of PDDA (10 minutes). Therefore the complete sequence of 

adsorption is {PDDA (20 minutes) + [PSS (10 minutes) + PDDA (10 minutes)^} + [SiC>2 

(5 minutes) + PDDA (10 minutes)] k>. After 10 layers of SiC>2 nanoparticles self­

assembled, the thickness of the final SiC>2 layer is about 450 nm.

Upon finishing the self-assembly of SiC>2 layer as the gate dielectric, a layer of Au 

80 nm thick was sputtered on top of gate dielectric, and then patterned to form the source 

and the drain electrodes, as shown in the Figure 2(b). Finally, the pentacene OFETs were 

completed with the deposition of a layer of pentacene about 2 0 0  nm thick as the organic 

semiconductor. Pentacene, consisting of five fused benzene rings with the structure 

shown in Figure 2(a), was thermally evaporated through a shadow mask with a slow 

deposition rate and a working pressure of 6x10’7 Torr. Pentacene was used as purchased 

from the company without any purification. During the evaporation of pentacene, the 

substrate was held at room temperature. With the purification of the pentacene material
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and the moderation of the substrate heating as described in previous work, the electrical 

characteristics of the fabricated FETs could be much improved as expected. The 

electronic characteristic instrument was from Keithley Co., Inc.
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Figure 1 Gate leakage characteristic of the Au/self-assembled SiC^/heavily-doped Si
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Figure 2 Schematic structures (a) chemical structure of pentacene molecular, (b) Organic
FET
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3 Results and Discussions

By assuming that the MOS theory of the traditional MOSFETs is still effective for 

the organic FETs, the drain current in the linear region and the saturation region can be 

expressed by the following equations.:

where W and L are the channel width and length, respectively, pfet is the field-effect 

mobility of the charge carrier in the pentacene channel, C0x=Sox/d0x is the gate dielectric 

capacitance per unit area (sox and dox are the dielectric constant and the thickness of the 

self-assembled Si0 2  gate dielectric layer, respectively), and V g s , V d s , V th are the gate- 

source voltage, the drain-source voltage, and the threshold voltage, respectively.

The Id - V ds drain characteristics of a typical pentacene FET fabricated with self­

assembled SiC>2 as the gate dielectric are shown in Figure 4. This device has a channel 

length and width of 25 and 500 pm, respectively, and a gate dielectric layer 450 nm thick.

The average density of SiC^/ PDDA multilayers is <p> = 1.43 ± 0.05 g/cm3. 

SiC>2 / PDDA film volume composition is: 70 % SiC>2 + 10 % polycation + 20 % air- 

filled pores. These pores are formed by closely packed 45-nm SiC>2 and have a typical 

dimension of 20 nm. The films have controlled pores, which can be varied by the 

selection of the nanoparticle diameter.

If the layer of silicon dioxide were produced by conventional thermal oxidation, 

the dielectric constant would be 3.9.

0 )

(2)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



92

? PDDA 
) Si02 
-  PDDA 

S1O2 
PDDA 
Si02 
PDDA 
Si02

(PDDA/PSS)2+PDDA
Substrate

(b)
Figure 3 (a) Schematic diagram of self-assembly of SiCh nanoparticles on a silicon 

substrate, (b)nano-assembled SiC>2 nanoparticles 45nm in diameter

The following relationship is obtained between adsorbed mass M  (g) and 

frequency shift AF (Hz) by taking into account the characteristics of quartz resonators 

used:

AF = -1.83 x lO 8M/A (3)

where A  is the apparent area of quartz microbalance placed between QCM electrodes. 

This is 0.16 ± 0.01 cm in our system. Then, one finds that 1 Hz change in AF 

corresponds to 0.9 ng in weight. The thickness of the alternate layer corresponding to 

QCM frequency shift was determined by SEM observation of the film cross-section from 

SEM images of cut resonators coated with silicon/polycation films, which gives the 

following relationship with ±5 % error:
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Figure 4 Drain characteristics of pentacene FET on SA-Si0 2  with L/W=25/500 

In pentacene organic FETs, the current between the drain and the source Id is 

controlled by the applied gate-source voltage V g s- Since pentacene is a p-type polymeric 

semiconductor, pentacene FETs generally operate in the accumulation mode with the 

negative bias on drain-source and the gate-source electrodes. The negative gate bias will 

enlarge the conduction channel due to the formation of a hole accumulation layer. Thus, 

the conductivity of the channel between the drain and the source is increased with the 

negative gate bias.

Figure 5 shows the measured gate transfer characteristics of the same pentacene 

organic FET described above. The field-effect mobility is generally determined in the 

region where the drain current saturates according to the equation (2). From the slope of 

the square root of the saturation current as a function of the gate voltage as shown in 

Figure 5, a field-effect mobility of 0.064 cm2/Vs was extracted at the small VDs of -3 V. 

By linearly extrapolating the curve to the V gs axis, the threshold voltage Vth can be
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extracted to be 0.3 V. When the Vds of -3 V was applied and the gate voltage were swept 

from 2 V to -10 V, the threshold slope was obtained to be about 1.4 V/decade, and the 

on/off current ratio was about 1 0 3.
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Figure 5 Gate characteristics of pentacene FET on SA-Si02 with L/W=25/500 um

4 Conclusions

In summary, we have demonstrated the low-cost and low-temperature fabrication 

process of organic field-effect transistors (OFETs) using self-assembled Si0 2  as a gate 

dielectric material and pentacene as a semiconductor. 10 layers of Si0 2  nanoparticles 45 

nm in diameter were self-assembled to form the dielectric layer, which has a breakdown 

field larger than 0.44 MV/cm. The fabricated transistors have a threshold voltage of 0.3 

V, a field-effect mobility of 0.064 cm2/Vs, and an on/off current ratio of about 103. Due 

to the low-cost and low-temperature advantages of the fabrication process, self-assembly 

is particularly suitable for the fabrication of OFETs.
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