
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2005

Intelligent control of nonlinear systems with
actuator saturation using neural networks
Wenzhi Gao

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Electrical and Computer Engineering Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F611&utm_medium=PDF&utm_campaign=PDFCoverPages

NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTELLIGENT CONTROL OF NONLINEAR SYSTEMS WITH ACTUATOR

SATURATION USING NEURAL NETWORKS

by

Wenzhi Gao, M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3164471

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3164471

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

__________ Feb. 24 2005________
Date

W e hereby recommend that the dissertation prepared under our supervision

by_____________________________ Wenzhi Gao____________________________________

entitled____________ Intelligent Control of Nonlinear Systems with Actuator Saturation____________

____________________ Using Neural Networks_______________________________________

be accepted in partial fulfillment o f the requirements for the Degree o f

 Doctor of Philosophy______________________________________

RecommendatLoiy concui in:

Superyis i r f Dissertation Research

Advisory Committee

CAM
Head o f Department

Department

Appnuredt'

Director o f Graduate Studies

Dean o f the College

Approved:

ean of the Graduate School

GS Form 13
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Common actuator nonlinearities such as saturation, deadzone, backlash, and

hysteresis are unavoidable in practical industrial control systems, such as computer

numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead

crane mechanisms, and more. When the actuator nonlinearities exist in control systems,

they may exhibit relatively large steady-state tracking error or even oscillations, cause the

closed-loop system instability, and degrade the overall system performance. Proportional-

derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not

compensated well. The problems are particularly exacerbated when the required accuracy

is high, as in micropositioning devices. Due to the non-analytic nature of the actuator

nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely

operation uncertainty, are unknown, the saturation compensation research is a

challenging and important topic with both theoretical and practical significance.

Adaptive control can accommodate the system modeling, parametric, and

environmental structural uncertainties. With the universal approximating property and

learning capability of neural network (NN), it is appealing to develop adaptive NN-based

saturation compensation scheme without explicit knowledge of actuator saturation

nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes

in several scenarios of nonlinear systems are investigated. The nonlinear systems

iii

with permission of the copyright owner. Further reproduction prohibited without permission.

studied within this dissertation include the general nonlinear system in Brunovsky

canonical form, a second order multi-input multi-output (MIMO) nonlinear system such

as a robot manipulator, and an underactuated system-flexible robot system. The

abovementioned methods assume the full states information is measurable and

completely known.

During the NN-based control law development, the imposed actuator saturation is

assumed to be unknown and treated as the system input disturbance. The schemes that

lead to stability, command following and disturbance rejection is rigorously proved, and

verified using the nonlinear system models. On-line NN weights tuning law, the overall

closed-loop performance, and the boundedness of the NN weights are rigorously derived

and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted

into a feedforward path. The simulation conducted indicates that the proposed schemes

can effectively compensate for the saturation nonlinearity in the presence of system

uncertainty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proPer request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To Guoquan Zhang, Fendy Gao and my dear parents

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF TABLES.. ix

LIST OF FIGURES...x

ACKNOWLEDGMENTS...................................... .. xiii

1 INTRODUCTION.. 1

1.1 Preface...1
1.2 Actuator Saturation... 4
1.3 Charateristics of Underactuated System.. 10
1.4 Organization of the Dissertation.. 13

2 PRELIMINARY REMARKS AND DEFINITIONS..16

3 SATURATION COMPENSATOR FOR A CLASS OF NONLINEAR SYSTEMS.... 20

3.1 Nonlinear Systems Dynamics..20
3.2 Tracking Error Dynamics and Feedback Linearization...21
3.3 NN Saturation Compensator.. 23
3.4 Weights Tuning Law for Guaranteed Tracking Performance............................... 24
3.5 Simulation..29

4 ADAPTIVE NN SATURATION CONTROL IN MOTION CONTROL SYSTEMS . 35

4.1 Dynamics of Mechanical Motion Tracking System.. 35
4.2 Tracking Error Dynamics and Adaptive Controller Design................................. 36
4.3 NN Weights Tuning Law for Guaranteed Tracking Performance........................39
4.4 Simulation..42

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 NN SATURATION COMPENSATOR IMPLEMENTATION USING
SIMULINK S-FUNCTIONS.. 49

5.1 Simulink S-Functions..49
5.2 Simulink Model of NN Saturation Compensator...50

5.2.1 Nonlinear System of “Pendulum Type”... 54
5.2.2 Two-Link Robot Arm...57

6 ROBUST COMPOSITE SATURATION COMPENSATOR FOR SINGLE
FLEXIBLE LINK USING NEURAL NETWORKS.. 60

6.1 Model of Flexible Link Dynamics...60
6.2 Decomposition of Flexible Link Dynamics... 62
6.3 Composite Control Subject to Saturation Constraint... 64
6.4 NN-based Saturation Compensation for Rigid Dynamics.................................... 66
6.5 Robust Saturation Compensator for Fast Dynamics.. 70
6.6 Simulation... 74

6.6.1 Single Flexible Link with Sinusoid the Desired Tracking Path................. 76
6.6.2 Single Flexible Link with Desired Acceleration/Deceleration Profile 80

7 CONCLUSIONS AND RECOMMENDED FUTURE WORK.......................................87

7.1 Conclusions...87
7.2 Recommended Future W ork... 88

APPENDIX A

SIMULATION SOURCE CODE...91

REFERENCES... 106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 5.1. The contents of C-MEX S-function................

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 1.1. Nonlinear plant with actuator saturation ... 5

Figure 1.2. Symmetric saturation nonlinearity..5

Figure 1.3. A schematic of the limited integrator design.. 8

Figure 1.4. Tracking anti-windup strategies.. 9

Figure 1.5. Modified tracking anti-windup m ethod..10

Figure 3.1. General nonlinear system and NN saturation compensator................................ 23

Figure 3.2. Tracking errors e, (solid) and e2 (dotted) without saturation compensator..... 31

Figure 3.3. Control signal r without saturation compensator.. 31

Figure 3.4. Tracking errors ex (solid) and e2 (dotted) with NN saturation compensator... 32

Figure 3.5. Control signal t withNN saturation compensator... 33

Figure 3.6. NN output with NN saturation compensator..33

Figure 4.1. Mechanical system with saturation compensator... 39

Figure 4.2. Two-link robot manipulator ... 42

Figure 4.3. Tracking error for qx (solid) and q2 (dotted) without saturation compensator. .44

Figure 4.4. Control torque r, (solid) and r 2 (dotted) without saturation compensator 45

Figure 4.5. Tracking error for qx (solid) and q2 (dotted) with saturation compensator.......46

Figure 4.6. Control torque r, (solid) and r2 (dotted) with saturation compensator46

Figure 4.7. NN outputs with saturation compensator... 47

Figure 5.1. NN saturation compensator hierarchical model..52

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.2. Components of Simulink block... 52

Figure 5.3. NN saturation compensator hierarchical model for pendulum system................ 55

Figure 5.4. Reference command subsystem.. 55

Figure 5.5. PD controller and NN compensator subsystem..56

Figure 5.6. Fhat calculation sub-block..56

Figure 5.7. NN saturation compensator hierarchical model for robotic system.................... 57

Figure 5.8. Reference command subsystem.. 58

Figure 5.9. PD controller and NN compensator subsystem..58

Figure 6.1. A flexible one-link robot arm...61

Figure 6.2. Flexible link system with NN saturation compensator..65

Figure 6.3. Response of flexible arm with PD controller. Actual (dashed) and desired

(solid) tip position and velocity...76

Figure 6.4. Response of flexible arm with PD controller. Position error (solid) and

velocity error (dashed).. 77

Figure 6.5. Response of flexible arm with PD controller. Flexible modes.............................77

Figure 6.6. Response of flexible arm with PD controller and NN saturation compensator.

Actual (dashed) and desired (solid) tip position and velocity...78

Figure 6.7. Response of flexible arm with PD controller and NN saturation compensator.

Position error (solid) and velocity error (dashed)..79

Figure 6.8. Response o f flexible arm with PD controller and NN saturation compensator.

Flexible modes... 79

Figure 6.9. Open-loop response of flexible arm. Tip position and velocity........................... 80

Figure 6.10. Open-loop response of flexible arm. Flexible modes........................ 81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.11. Response o f flexible ann with PD controller. Actual (dashed) and desired

(solid) tip position and velocity...82

Figure 6.12. Response of flexible arm with PD controller. Position error (solid) and

velocity error (dashed)..82

Figure 6.13. Response of flexible arm with PD controller. Flexible modes..........................83

Figure 6.14. Response of flexible arm with PD controller and NN saturation

compensator. Actual (dashed) and desired (solid) tip position and velocity...........................84

Figure 6.15. Response o f flexible arm with PD controller and NN saturation

compensator. Position error (solid) and velocity error (dashed).. 84

Figure 6.16. Response o f flexible ami with PD controller and NN saturation

compensator. Flexible modes.. 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS

I would like to express great appreciation to Dr. Rastko Selmic for his knowledge

transfer, advice, support, inspiring work and encouragement. I also appreciate the

opportunity of having been allowed to work as a teaching and research assistant under his

supervision. I attribute most of my research career advancement to his insightful

guidance and suggestions.

I would like to thank Dr. Lihe Zou, Dr. Vir V. Phoha, Dr. Huaijin Gu and Dr.

Richard J. Greechie, for serving on my advisory committee and reviewing my

dissertation. I also want to thank Dr. Zou and Dr. Greechie for their countless help and

kind suggestions on my career development. I appreciate that Dr. Gu’s guidance on the

research of adaptive signal processing. In addition, I wish to thank all of the friends in

Ruston who helped me and made my life here memorable.

Finally, I thank my wife Guoquan Zhang, our daughter Fendy, and my dear

parents in China, for their love, patience, encouragement and unselfishness

accompanying me always during my academic pursuits.

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 Preface

Saturation, deadzone, backlash, and hysteresis, are the most common actuator

nonlinearities in practical control systems. Saturation nonlinearity is unavoidable in most

actuators. Categories of saturation nonlinearities include constraints o f the magnitude and

the rate o f actuator inputs. These limits maybe due to restrictions deliberately placed on

the actuators to avoid damage to a system and/or physical limitations on the actuators

themselves. When an actuator has reached such an input limit, it is said to be “saturated”,

since efforts to further increase the actuator output would not result in any variation in the

output. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact

that the exact actuator nonlinear functions, namely operation uncertainty, are unknown,

such systems present a challenge to the control design engineer (Narendra (1991)), and

provide an application field for adaptive control, sliding control and neural network-

based control. If the saturation exists, proportional-derivative (PD) controller has

observed limit cycles; it could lead to a phenomenon called integrator windup (Lewis,

Abdallah, and Dawson (1993)), (Hu and Lin (2001)). Integrator windup occurs when a

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

system has actuator saturation and an integrator in its controller. The effect causes the

control signal saturates the actuator, and a further increase of the control signal will_not

lead to a faster response of the system. If integration of error continues in this case, the

integrator value becomes very large, without having any effect on the plant. The control

error has to be of the opposite sign for a long time to bring the integrator back to its

steady-state value. Some form of anti-windup mechanism must be implemented in the

PID controller.

To tackle this problem, Astrom and Wittenmark (1996) developed the general

actuator saturation compensator scheme; Hanus and Peng (1992) addressed a controller

based on the conditional technique; Walgama and Stemby (1990) developed an observer-

based anti-windup compensator; Niu (1998) designed a robust anti-windup controller

based on the Lyapunov approach to accommodate the constraints and disturbance; Chan

and Hui (1998) investigated the actuator saturation stability issues related to the number

of the integrators in the plant; Hu and Lin (2001) proposed a systematic controller design

to compensate the saturation nonlinearity for continuous and discrete linear systems.

Annaswamy et al. (2001) addressed an adaptive controller to accommodate saturation

constraints in the presence of time delays, which is applicable to 1st, 2nd, and n-th order

linear plants. Atherton (1995) presented tracking windup and modified tracking windup

scheme for linear system based on the measured actuator output.

In some seminal recent work, several rigorously derived adaptive schemes have

been given for actuator nonlinearity compensation (Tao and Kokotovic (1996)).

Compensation for non-symmetric deadzone is considered in (Selmic and Lewis (2000)),

(Tao and Kokotovic (1994)), and (Tao and Kokotovic (1995)) for linear systems and in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

(Recker and. Kokotovic (1991)) for nonlinear systems in Brunovsky form with known

nonlinear functions. Backlash compensation is addressed in (Desoer and Sharhruz

(1986)), (Tao and Kokotovic (1995)), and hysteresis in (Selmic and Lewis (2000)) and

(Tao and Kokotovic (1996)).

Much has been written on intelligent control using neural networks (NNs)

(Miller, Sutton and Werbos (1990)), (Barron (1993)), (Commuri and Lewis (1995)),

(Narendra and Parthasarathy (1990)). With the universal approximation property and

learning capability (Lewis, Yesildirek, and Liu (1996)), NNs have proved to be a

powerful tool to control complex dynamic nonlinear systems with parameter uncertainty.

Although persistent problems (Lewis, Yesildirek, and Liu (1996)), such as ad hoc

controllers, lack of rigorous stability proof, approximation of non-smooth functions and

off-line weights initialization requirement still exist, NN has been widely used in

adaptive and robust adaptive control. The common control strategies with regards to NN

are direct adaptive NN control method with guaranteed stability (Choi, Lee and Kim

(2001)), indirect adaptive NN control based on identification (Narendra (1991)), and

dynamic inverse NN control (Lewis, Campos and Selmic (2002). In general, NN is used

to estimate the unknown nonlinear dynamics and/or function and to compensate for them.

Unlike the standard adaptive control schemes, NN can also cope with a nonlinear system

that is linearly unparameterizable. Recently, a large amount of research (Lewis,

Yesildirek, and Liu (1996)), (Lewis et al. (1993)), (Lewis et al. (1999)), (Lin et al.

(2001)), (Polycarpou (1996)), (Recker et al. (1991)), (Selmic and Lewis (2000)), (Chen

and Khalil (1992)) has used NN to synthesize the feedback linearization for the feedback

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

linearizable system (Isidori (1989)) and to incorporate the Lyapunov theory in order to

ensure the overall system stabilization, command following and disturbance rejection.

Most saturation approaches mentioned above focus on the linear plant and assume

that the saturation is symmetric and that the actuator output is measurable. This

dissertation proposes several novel NN-based saturation control schemes for general

nonlinear systems. The approaches are applied to the feedback linearizable (Nam (1999))

nonlinear plants, with a general model o f actuator saturation assuming that the actuator

output is not necessarily measurable. NN weights are tuned on-line, and the overall

system performance is guaranteed based on Lyapunov function approach. The

convergence of the NN learning process and the boundedness of the NN weights

estimation error are all rigorously proven. The simulation results regarding to the related

nonlinear dynamics model are provided.

1.2 Actuator Saturation

In control engineering, the most commonly used actuators are continuous drive

devices, along with some incremental drive actuators, like the stepper motors (Astrom

and Wittenmark (1996)). Saturation nonlinearity with its maximum and minimum

operation limits is unavoidable in such actuator devices.

As shown in Figure 1.1, r is the actuator output, u is the control input. We study

actuator saturation that appears in the nonlinear system plant, and the way of its

compensation. Compensation technique is based on NN learning capabilities, and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different from existing techniques (Astrom and Wittenmark (1995)), (Annaswamy et al.

(2001)), (Atherton (1995)), (Walgama and Stemby (1990)).

Actuator with Saturation

u x
^ System

Nonlinear

Figure 1.1. Nonlinear plant with actuator saturation.

Figure 1.2 shows the linear saturation x=sat(u), where x and u are scalars. In

general, x and u are vectors. It is commonly assumed that the saturation has a linear

rather than nonlinear form, or that there is unity of form between x and u , which can

easily be mathematically modeled. r max and r min are the actuator operation limits. In this

dissertation, we assume that saturation nonlinearity is unknown.

x = sat(u)i

max

max

T • mm

Figure 1.2. Symmetric saturation nonlinearity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Assuming ideal saturation, mathematically, the output of the actuator r(t) is

given by

Tw. : M(0 ^ T mas/w
r(t) = < mu(t) : r min / m <u{t)< r max / m

. T min : < t) < T MJ m

max

(1.1)

where r max is the chosen positive, and r rnin is the negative saturation limits. If u(t) falls

outside the range of the actuator, actuator saturation occurs, and the control input u(t)

can not be fully implemented by the actuator. The control that can not be implemented by

the actuator, denoted as S (t) , is given by

From (1.2), the nonlinear actuator saturation can be described using §{t)

(Annaswamy et al. (2001)), (Atherton (1995)), (Johnson and Calise (2001)), (Kosut

(1983)). In this dissertation, NN is used to approximate the function S (t) .

An overview of normal saturation compensation strategies (Tharayil and Alleyne

(2001)) is presented next.

Variable Limit Pl-Controiler: This was developed by (Safaric, et al. (1991)) for systems

with plant input saturation that use Pl-controllers. A variable limit is introduced in the

integral branch of the controller to ensure that the control effort does not exceed the

saturation limit. The logic used in this method is as follows:

1. at each time step, calculate up = kve and n, = kje. where e = re f - y.

2. if e = 0 , then u\ = u\

S(t) = T(t) -u (t) = <(m - l)u(t) : T^n /m < u(t) <Trmx/m
J n̂ ~ u (t) : u(t) < / m

max

(1.2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

3. i f e >0 ,

a. if Mnrax— uv > (n0 saturation), then u, = u\

b. if Umax-« p < u\ (saturation), then u\ = umax~ uv (max. value)

4. if e < 0,

a. if umm — Up < Ui (no saturation), then u, = u\

b. if «min - up > Uj (saturation), then u\ = umin -- uv (max. value)

5. U = U p + Uy

In other words, the integral term, u\, is set to be max(wj, nmax - uv) at every time

step. The advantages of this VLPI controller are (1) it eliminates overshoot, (2) response

time and system robustness can be improved by use of higher loop gains without

exaggerated negative effects, (3) besides the feedback loop in the integral branch, this

design is identical to the linear design.

The next four control strategies are designed for a system with plant input

saturation that uses PID controllers. A detailed account of the following four anti-windup

strategies can be found in (Bohn, et al. (1995)).

Conditional Integrator: In this method, the integration is switched on or off depending on

certain conditions. These conditions can be the size of the control signal or control error.

Best results are given by a method where integration is suspended when the actuator

saturates and the control error and the control signal have the same sign.

Limited Integrator: In this method, a feedback signal is created from the integrator output

by feeding the integrator output through a dead zone with a high gain. The dead zone is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to reduce the integrator input, as shown in the figure below. To allow the full linear range

of the actuator, the dead zone has to be the same as the linear range of the actuator. With

sufficiently high dead-zone gains, the integrator output will be effectively limited to the

dead zone.

Ktf

Gainl Derivative Control Signalerror

Gain

Gain2 Integrator

du/dt

Dead Zone

Figure 1.3. A schematic of the limited integrator design.

Tracking Anti-Windup: In this “classical” anti-windup method, once the controller output

exceeds the actuator limits, a feedback signal is generated from the difference of the

saturated and unsaturated control signals and used to reduce the integrator output. This

saturation may either be the actual saturation in the actuator, or the model used in the

controller. The figures below show two structures of the tracking anti-windup PID

controller. Limiting the controller output, as shown in Figure 1.4a, may limit the speed

of the actuator. To account for this effect, Figure 1.4b shows a system where the

unrestricted control signal is applied to the process and dead zone is used to generate the

feedback signal.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Control Signal

Derivativeerror

SatirationGain

Gain3

Fig. a

G ain l Derivative Control S ignalerror

G ain

G ain2 In tegrato r

du/dt

D ead Z one

Fig. b

Figure 1.4. Tracking anti-windup control scheme

Modified Tracking Anti-Windup: In the “classical” tracking anti-windup controller

design, a very high initial controller output (due to the Proportional and Derivative terms)

will give a large feedback signal to the integrator. This generated feedback signal can

drive the integrator to a large negative value to bring the controller back to the linear

range. As time increases, the PD term will decrease, but the integrator term will not

increase fast enough to compensate for this, thus resulting in slow response. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

modified tracking anti-windup method avoids this slow response. To do this

modification, an additional limit on the proportional-derivative part of the control signal

used to generate the anti-windup feedback signal has been introduced. This method can

be interpreted as holding the integral action until the control signal from the proportional

and derivative action returns to the linear range and then setting integrator to run. The

integrator will therefore not be driven negative, and the disadvantage of the tracking

method, a very slow step response for a high dead-zone gain, can be avoided. The

following figure gives the structure of this controller:

Control Signal
D erivative

Error

Gain

G ain2 Integrator

D ead Zone

du/dt

S aturation

Figure 1.5. Modified tracking anti-windup method

All the above anti-windup schemes assume that the saturation is a result of the

integral term, and apply corrective actions to the integral terms.

1.3 Characteristics of Underactuated System

Flexible link robot manipulators play an important role in the modem industrial

and space robotic applications with the light weight structure, fast time response and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

underacturated system characteristics. Due to a high nonlinearity, a non-minimum phase

and unmodeled dynamics, they present the challenge in a control systems design and

modeling compared to the rigid robot. The normally used Euler-Bemoulli model of

flexible link is a fourth-order partial differential equation (PDE) system that can lead to

infinite number of flexible modes. Many researches approximate the PDE by a system of

ordinary differential equation (ODE) through assumed modes and finite element method

(Ge, Lee and Zhu (1996)), (Gutierrez, Lewis and Lowe (1998)), (Lewis, Jagannathan, and

Yesildirek (1999)), (Sun et al. (2003)), (Talebi, Patel, and Khorasani (2001)), (Talebi,

Khorasani and Patel, (2002)). A high accuracy model of the flexible link requires a large

number of flexible modes.

For a rigid robot arm, tip trajectory control is equivalent to control of the actuator

o f the rigid mode (joint). However, for a satisfactory control of a flexible link, additional

reliable control of the flexible modes should be considered to handle the unavoidable or

most probably unbounded vibration of the flexible modes. The additional control issue

arises from the noncollocated nature of the sensors and actuator, namely, the zero

dynamics is unstable, which makes the non-minimum phase nonlinear system. At the

same time, the above mentioned model truncation method yields to the unmodeled

dynamics in the mathematical ODE model, and can cause the control spillover effect. As

a result, the exact tracking of the flexible link robot is a challenging problem.

To tackle the control problem of flexible link manipulators, different control

methods were used including feedback linearization (Lewis, Jagannathan, and Yesildirek

(1999)), integral manifold approach (Moallem, Khorasani, and Patel (1997)), output

redefinition method (Talebi, Patel, and Khorasani (2001)), singular perturbation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(Siciliano and Book (1988)) and infinite dimensional approach without considering the

flexible link model truncation and simplification (Luo (1993)), (Zhu, Lewis and Hunt

(1994)). Moalllem et al. (1998) addressed an inversion based robust controller to

compensate the parameter uncertainty and to achieve small tip tracking error. Talebi et al.

(2002) developed “feedback-error-learning” NN-based controller for the tip position

tracking. Output redefinition is always used to overcome the non-minimum phase

characteristic of the flexible link system (Saber (2000)), in which the output of the system

was redefined on the flexible link between the joint and the tip, to ensure the stable zero

dynamics. Singular perturbation (Gutierrez, Lewis and Lowe (1998)), (Lewis,

Jagannathan, and Yesildirek (1999)), (Sun et al. (2003)), (Siciliano and Book (1988)),

(Siciliano, Prasad, and Calise (1992)) provides a systematic approach on modeling. It can

decompose the flexible link dynamics into a slow subsystem of equivalent rigid robot

model and a fast subsystem of flexible model. Based on a singular perturbation, Lewis,

Jagannathan, and Yesildirek (1999) presented a modified joint angle output tracking and

described a controller which includes a singular perturbation inner loop for stabilization

of the fast dynamics, and a neural network inner loop for feedback linearization of the

rigid dynamics. An experiment implementation (Gutierrez, Lewis and Lowe (1998))

showed the NN controller can cause the tracking error almost to zero value. Sun et al.

(2003) developed a dynamic neuron-fuzzy adaptive controller to approximate the slow

rigid dynamics of the flexible-link manipulator, and a fuzzy PD controller to stabilize the

elastic dynamics.

In Chapter 6, we consider the flexible link manipulator controller design subject

to the constrained control input. The imposition of the saturation constraint introduces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

another unmodeled or unknown nonlinearity in the flexible link model. An additional

difficulty is that saturation nonlinearity affects the slow and fast subsystems

Based on a singular perturbation approach and a two-time scale decomposition,

this dissertation proposes a NN-based scheme for saturation control for a slow subsystem

of the equivalent rigid flexible link, and a NN-based compensator for the fast subsystem

of flexible modes with unknown parameters. The approach is the extension of a previous

work in actuator saturation control (Gao and Selmic (2004)) and flexible link control

(Lewis etal. (1999)).

1.4 Organization of the Dissertation

This dissertation is organized as follows. Chapter 2 provides the preliminary

remarks and definitions. The four component chapters from Chapter 3 to Chapter 6 are

composed of the submitted journal/conference papers. Every chapter is self-contained.

In Chapter 3, neural net (NN)-based actuator saturation compensation scheme for

the nonlinear systems in Brunovsky canonical form is presented. The scheme that leads to

stability, command following and disturbance rejection is rigorously proved, and verified

using a nonlinear system of “pendulum type”. On-line weights tuning law, the overall

closed-loop performance, and the boundedness of the NN weights are derived and

guaranteed based on Lyapunov approach. The actuator saturation is assumed to be

unknown, and the compensator is inserted into a feedforward path. The simulation results

indicate that the proposed scheme can effectively compensate for the saturation

nonlinearity in the presence of system uncertainty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Chapter 4 addresses an adaptive NN-based saturation compensator for a class of

motion control systems. The designed intelligent saturation compensator can also apply

to other types of control input distortion than saturation as long as the actuator output is a

bounded, static function of the current control input. The controller does not require a

saturation model to be known. The NN controller does not require preliminary off-line

training. After some initial time, the NN controller learns saturation nonlinearity and

adjusts its weights to prevent the control signal from being saturated. Rigorous stability

proofs are given using Lyapunov theory. The adaptive NN weight tuning law is the same

as in (Lewis et al. (1999)). The paper also shows that Lewis’s intelligent controller can be

effective for the saturation nonlinearity in the motion control systems.

Chapter 5 describes the implementation of the neural net (NN) actuator saturation

compensation scheme for nonlinear systems using Simulink (Dabney and Harman

(2003)) S-function. Simulink-based S-function blocks are developed, which are

equivalent to the theoretical NN saturation compensation schemes. Such control system

platform can be used for real-time code generation using Real-Time Workshop Toolbox.

The proposed scheme consists of a NN saturation compensator and a PD controller. The

NN compensator acts as an intelligent anti-windup compensation for the unknown

actuator saturation nonlinearity. A customized Simulink model for the NN saturation

compensator of the nonlinear systems is provided, that is suitable for real-time

compensator implementation.

In Chapter 6, a robust neural network (NN) composite saturation compensation

scheme is presented for the trajectory tracking and vibration suppression of a flexible link

robot arm. The scheme is based on a singular-perturbation technique and can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accommodate the unknown disturbance and the saturation constraints. The saturation

compensator is composed of a robust fast subcompensator for stabilization of the fast

flexible modes, and a slow subcompensator consisting of an outer-loop PD tracking

controller and robustifying term for stable tracking control o f the rigid modes. The

actuator saturation is assumed unknown. With respect to the slow dynamics, the NN-

based compensator is inserted into the feedforward path. To compensate the saturation in

the fast dynamics, the NN-based robust saturation compensator scheme is developed. No

linearity in the unknown parameters is necessary, and no off-line NN learning is needed.

The stability analysis is based on Lyapunov theory. Simulation results indicate that the

proposed scheme can effectively compensate the saturation nonlinearity in the presence

of the uncertainty for underactuated systems.

The conclusion remarks is drawn in Chapter 7, as well as the future recommended

research topics in the area of intelligent control.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2

PRELIMINARY REMARKS AND DEFINITIONS

Let 91 denote real numbers, 91" denote the real n vector, and 91mx” denote the

real m xn matrices. Let S be a compact simply connected set o f 91” . Let C(S) defined

to be With map { / : S —» 91m | / is continuous}, The initial condition isxn = x(t0) , let the

equilibrium point be , and let U be the neighborhood of (Lewis, Abdallah, and

Dawson (1993)).

Definition 1 (Vector and Matrix Norms) (Lewis, Abdallah, and Dawson (1993)):

By [| | is denoted any suitable vector norm. When it is required to be specific, we denote

the P -norm by|| || . For f : S - > 91m, define the supremum norm of f (x) , over S as

with tr() the trace. The Frobenius norm is compatible with the 2-norm so that

\\Ax\\2 < ||^||F |v||2. The associated inner product is < A, B >F=tr(ATB) ,

16

(2 .1)

Given A = [ay],B e 91mx" the Frobenius norm of A is defined by

(2 .2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

and tr(AB) = tr(BA). Suppose A is positive definite, then for any B e 91"“",

tr(BABT) > 0 (2.3)

= (2.4)
at \ dt J

Definition 2 (Uniformly Ultimate Boundedness (UUB)) (Lewis, Jagannathan, and

Yesildirek: (1999)) Consider the nonlinear system:

x = g (x ,0 (2.5)

with state x(t) € 91". The equilibrium point xe is said to be uniformly ultimately bounded

if there exists a compact set S c 91" such that, for all x0 s S there exists an s > 0 , and a

number T (e ,x0) such that ||v (t)-xe|| < e for all t> t0+ T . That is, after a transition

period T , the state x(t) remains within the ball of radius s around xe.

Definition 3 (NN Universal Approximation Function) (Corless and Leitmann

(1982)): Consider two-layer NN, consisting of two layers of tunable weights. The hidden

layer has L neurons, and the output layer has m neurons,

y = W Tcr(VTx + v0) (2.6)

The multilayer NN is a nonlinear mapping from input space 91" into output space

91'", where

II 7 = 1, 2 , - JS II .*
N

J (2.7)

W = [Wik], i = 0,1,2,■ ••,L; k = \,2,---,m (2.8)

x = [xx,x2,- (2.9)

y=[yi , y2>'■■■>y,J (2.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

V0 ~ IToI’^02’’" ’ ÔL] • (2-11)

To include the thresholds in the matrix W , the vector activation function is

defined as a(W) = [1, or(W}), cr(W2), ■ ■ • cr(WL)]r , where W e 91L. Tuning of the weights

W then also includes tuning of the thresholds.

Many well known results indicate that any sufficiently smooth function can be

approximated arbitrary closely on a compact set using a two-layer NN with appropriate

weights (Scanner and Slotine (1991)), (Seshagiri and Khalil (2000)), (Hovakimyan, Nardi

and Calise (2001), (Corless and Leitmann (1982)), (Cybenko (1989)), (Funahashi

(1989)). Function cr() could be any continuous sigmoidal function. NN universal

approximation property defines that any continuous function can be approximated

arbitrarily well using a linear combination of sigmoidal functions (Cybenko (1989)),

namely,

f (x) = WT<r(VTx + v0) + e{x), (2.12)

where the e{x) is the NN approximation error. The reconstruction error is bounded on a

compact set S by ||f(x:)| < sN ■ Moreover, for any sN, one can find a NN such that

||f (x)|| < sN for all x e S .

The first layer weights V are selected randomly and will not be tuned. The

second layer weights W are tunable. The approximation holds (Igelnik and Pao (1995))

for such a NN, with approximation error convergence to zero of order o (c / V^), where

L is the number of the hidden layer nodes (basis functions), and C is independent o f L .

The approximating weights W are ideal target weights, and it is assumed that

they are bounded so that ||lF|| < WM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Definition 4 (Feedback linearizable) (Nam (1999)): Consider a single input and

single output (SISO) system

x = f (x) +g(x)u , xedV , (2.13)

it is feedback linearizable if there exists a local diffeomorphism, namely, a coordinate

transforming map T : U X ^ T (U X), and a feedback

u = /J(x)v + a(x), and a , f l : UXe -» 91 such that, in the new coordinates z = T(x) ,

z - A z + bv (2.14)

where (A,b) is a Brunovsky controllable canonical pair, i.e.,

0 1 ■• 0 O'

A =
0 0 • • 1

,b =
0

0 0 • ‘ ° 1

It is well known that equation (2.13) is feedback linearizable if and only if the vector

fields {g,adf g, -- - ,ad"' fg} are linear independent and span {g,adf g,---,adn~2fg} is an

involutive distribution (Isidori (1989)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

SATURATION COMPENSATOR FOR A CLASS OF

NONLINEAR SYSTEMS

3.1 Nonlinear Systems Dynamics

Consider the single input single output (SISO) nonlinear systems with state space

representation

; (3.i)

K = f (x) + g{x)T

y = x j

with x = [x,, x2, • ■ ■, xn]r , / : 91" —> 91, an unknown smooth function, which contains the

parameter uncertainties that are not necessarily linear parameterable; g : 91” —» 91, a

known smooth function; Functiont e 9? the control input. Equation (3.1) is said in the

Brunovsky canonical form which is feedback linearizable (Nam (1999)), (Lewis et al.

(1993)).

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

Assumption 3.1: Function g(x) is assumed to be known, such that J g (x) | > s , where

e > 0,£ e 91 .

Define the desired state vector, xd (t) , as

xd(t) = [yd, y d,---,yd "l)]T • (3.2)

Assumption 3.2 (BoundedDesired Trajectory): The desired trajectory xd (t) is

bounded and continuous, and ||xrf (/)|| < Q with Q known scalar bound.

3.2 Tracking Error Dynamics and Feedback Linearization

Define the state tracking error vector, e{t) e 91" as

e(t) = x (t) - x d(t). (3.3)

Let us define a filtered tracking error r e 91 as

r = K Te, (3.4)

where K = [k{,k 2,...kn_x,\]T is appropriately chosen coefficient vector, so that e ->0

exponentially as r -> 0 (Slotine and Li (1991)). Then, the time derivative of the filtered

tracking error can be written as

f = f (x) + g(x)T + Yd, (3.5)

where Yd = - y (dn) + f > ;ei+1 •
1=1

Consider the saturation nonlinearity equation (3.2). The following n-th order

nonlinear system dynamics

x (tn) = f (x) + g(x)r , (3.6)

which is equivalent to (3.1), can be described as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

xln) = / (*) + g(.x)u + g(x)S , (3.7)

in which the saturation will be treated as he system disturbance (Annaswamy et al.

(2001)).

Similarly, in terms of the filtered tracking error above system dynamics can be

described as follows

f = f (x) + g(x)(u + S) + Yd, (3.8)

where Yd is a known function of the tracking error and the desired states.

According to feedback linearization (Slotine and Li (1991)), (Lewis et al. (1999)),

choose the tracking control law as

w = —J— (- f ~ Y d + v - K vr), (3.9)
g(x)

where / is the fixed approximation of function / (x) . The functional estimation error is

given by

/ = / - / • (3-10)

Approximation / is fixed in this dissertation and will not be adapted, v is a robust term

chosen for the disturbance rejection. K v is the feedback gain and normally selected as

scalar. The control law u is then the tracking controller with the saturation compensator,

as shown in the Figure 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

N onlinear System with Saturation

e -> t = sat(u)

Nonlinear
System

Tracking Loop

Figure 3.1. General nonlinear system and NN saturation compensator.

-► x

u = w-q>,

where <p is the approximation of modified saturation nonlinear function

(3.11)

3.3 NN Saturation Compensator

Using the general NN function approximation property, there exists a NN that

closely approximates the modified saturation nonlinear function S (x) .

S = W Tcr(VTxm) + £ . (3.12)

Implementer NN is actually an approximation of the ideal NN (3.12), and is given by

<p = W Ta (V Tx m) , (3.13)

where the NN weights approximation error is

W = W - W . (3.14)

Input to the NN saturation compensator is chosen as x NN = [xd ,e]T.

Assumption 3.3 (Bounded Ideal NN Weights): The ideal NN weights W are bounded

so that ||JF|| < WM, with WM known bounds.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

Assumption 3.4 (Bounded Estimation Error): The nonlinear unknown function

f (x) ’s estimate f (x) is assumed known, so that that the functional estimation error

f (x) satisfies

\ f (x) \ \<fM(x) (3.15)

for some known function bounds f M(x) (Isidori (1989)), (Narendra (1991)).

This assumption is not unreasonable (Corless and Leitmann (1982)), (Gao and

Selmic (2004)), (Selmic and Lewis (2000)), as in practical systems the bound f M can be

computed knowing the upper bound of variables such as payload masses, frictional

effects, and so on.

U sing control law (3.11) and (3.13), and substituting into (3.8), overall closed-

loop eiTor dynamics is

r = f + g(x)WTa (V TxNN) + v - K vr + gs . (3.16)

3.4 Weights Tuning Law for Guaranteed Tracking Performance

The purpose of NN saturation compensator is to design proper control laws

[i.e,.the input u in (3.11)] and stable on-line NN weights update tuning rules, to

guarantee the tracking performance of the overall closed-loop systems under the

unknown saturation nonlinearity. Moreover, an NN saturation compensator, if designed

properly, should reduce the deleterious effect o f saturation nonlinearity on the overall

system performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

Theorem 3.1 (Tuning o f N N Compensator): Given the system in (3.16) and

Assumptions 3.1-3.4, choose the tracking control law (3.9), plus the saturation

compensator (3.11), (3.13), and the robustifying term as

v(0 = ~/m (x)sign(r) , (3.17)

where the f M (*) are bounds on the functional estimation error, and sign(.) is standard

sign function. Let the estimated NN weights be provided by the NN tuning algorithm

= Scr(VTx m)rg {x)-kS \r \W , (3.18)

where

S = S T>0: any constant matrices representing the learning rates of the NN, and k : small

scalar positive design parameter. By properly selecting the control gains and the design

parameters, the filtered error r(t) and the NN weights W are UUB (Uniformly Ultimately

Bounded).

Proof: Choose the Lyapunov function candidate as

Differentiating yields

L = \ r2 + \ tr{$ TS AW) (3.19)

L = rr + tr(WTS ~ lW) (3.20)

Whence substitution from (3.16) yields

L = - K vr 2 + rf + rg(x)WTa (V Txm) + rv + rge + tr (irTS -lW)

= - Kvr 2 + r (f + v + ge) + tr(W T (S-1JV + a (V T xNN)rg(x)))

Applying the NN tuning rules, selected Lyapunov function is simplified to

(3.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L = - K vr 2 + r (f + v + gs) + k\r\tr(WTW)

Using (3.17) one has

L < - K vr 2 +k\r\tr(WT(W ~ W))-\r \fM +\r \ f + \r\gs,

Using the inequality,

rr[xr(X -l)]< ||i |jx ||F - \ \ X

the inequality (3.23) can be written as

L < ~K V \rf + A:|r|(||lF|| ||1F||f - W 2) + \r\g£

,||_<HU/qH + £(W M w }.

W p 2 WMy + - k W ^ +gaA,

which is guaranteed to remain negative as long as

k
+g*N,

which is equivalent to

k T*r2

H>-
~ K ~

or

which is equivalent to

26

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following remarks are relevant.

Modified Backpropagation Terms. The first term of (3.18) is modified version of

the standard backpropagation algorithm. The k term corresponds to the e-modification

(Narendra and Annaswamy (1987)), to guarantee bounded parameter estimates.

Bounds on the Tracking Error and NN Weights Estimation Errors. The right-

hand side of inequality (3.27) can be taken as a practical bound on the tracking error in

the sense that r(t) will never stray far above it. Note that the stability radius may be

decreased by any amount by increasing the PD gain K v. It is noted that PD, P1D, or any

other standard controller does not posses this property when saturation nonlinearity is

present in the system. Moreover, it is difficult to guarantee the stability of such a highly

nonlinear system using only PD. Using the NN saturation compensation, stability of the

system is proved, and the tracking error can be kept arbitrarily small by increasing the

gain Kv. The NN weights errors are fundamentally bounded in terms of WM . The tuning

of parameter k offers a design tradeoff between the eventual relative magnitudes of

W and r .
F

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

NN Weights Initialization. The weights V are set to random values. It is shown

in (Igelnik and Pao (1995)) that for such a NN, termed random variable functional link

(RVFL) NN, the approximation property holds. The weights W are initialized at zero.

Then the PD loop in Figure 3.1 holds the system stable until the NN begins to learn.

Other Types o f Control Input Nonlinearities. As the actuator output r stays

constant and bounded when the control input u is saturated, the NN is used to

approximate the unimplemented function 8 = x - u . This convertion shows that the

proposed NN intelligent compensator can be applied to other types o f control input

distortion and nonlinearities as long as the actuator output r is a bounded function of the

current control input u .

NN Controller in Unsaturated Range. Within the actuator unsaturated range,

actuator output r is linearly proportional to the input u . The NN and robust term are still

used to deal with the system disturbance and uncertainty. Simulation results confirm that

NN output has small value while the control signal is in linear range.

Linearity in the Model Parameters(LIP). The proposed NN-based saturation

compensator does not require LIP. The standard adaptive control techniques for actuator

nonlinearity compensation require this assumption (Tao and Kokotovic (1996)). The LIP

requirement is a severe restriction for practical systems since one has to conduct some

preliminary analysis to determine a regression matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Intelligent Anti-Windup Saturation Compensation. The proposed method

utilizes an NN controller to compensate for the saturation nonlinearity effects. Initially,

the NN controller “learns” and adjusts its weights to prevent the control signal from being

saturated. After the initial learning period, which will be demonstrated below in the

simulation, the NN signal effectively keeps the control signal within saturation bounds.

Therefore, the proposed NN control scheme presents a form of Intelligent Anti-Windup

Saturation Compensation.

3.5 Simulation

The simulation was performed to verify the effectiveness of the proposed NN

compensator. We consider a “generalized pendulum” system (Khalil (2002)) with

saturation nonlinearity.

The numerical simulation program was written in visual C++ and Matlab. The

integration method is a fourth-order Runge-Kutta algorithm. The integration time

step/sampling interval is using 0.001. The program is running on a Dell OPTIPLEX

GX260 computer with Intel Pentium CPU (2.40 GHz, 522, 232 KB RAM).

To show and focus on the functionality of adaptive NN saturation compensator,

we choose the robust term v = 0 , f - f in the following “Pendulum type” simulation

case.

We consider a nonlinear system of a pendulum type given by

x, = x2

x2 = -5xj3 - 2x2 + r (3.30)

y ~ xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Control input r is constrained by the saturation nonlinearity characterized by the

parameters

m̂ax — m̂in ~ Til . (3.31)

The size of the NN considers the stability, performance, limitation of control

efforts, and possible operating conditions (Wai (2003)). The slow convergence of the

tracking error is usually due to the small network size. Moreover, if the chosen size is too

large, the computation burden increases. A common approach is to start with the smaller

NN size, and gradually increase it until satisfactory performance is achieved.

The NN has four, ten and one neurons at the input, hidden and output layers,

respectively. The first-layer weights V are selected randomly (Igelnik and Pao (1995)),

(Selmic and Lewis (2000)), (Corless and Leitmann (1982)). They are uniformly randomly

distributed between -1 and +1. These weights represent the stiffness of the sigmoid

activation function. The threshold weights for the first layer v0 are uniformly randomly

distributed between -15 and +15. The threshold weights represent the bias in activation

functions’ positions. The second layer weights W are initialized to zero or any random

number, and the effect of the inaccurate initialization number can be retrieved by the on­

line weights tuning law methodology.

Tracking loop controller parameters are chosen so that K v =10 , K = [2, l]7 .

Initial conditions are [0 ,0]r , and desired trajectory is given by

v, (t) = sin(r), x2 (t) = cos(t) . The position tracking errors ex (t), and e2 (t) are shown in

the Figure 3.2 without the saturation compensator. The control input signal z(t) is shown

in the Figure 3.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Tracking erro rs e ^ t) and e 2(t)

0 .4

0.2

- 0.2

-0.4

- 0.6

- 0.8

0 5 10 15
tim e (sec)

Figure 3.2. Tracking errors ex (solid) and e2 (dotted) without saturation compensator.

Control signal tau
5

4

3

2

1

0

1

-2

-3

-4

•50 5 10 15
tim e (sec)

Figure 3.3. Control signal r without saturation compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

The NN saturation compensator weights tuning parameters are chosen as

* = 0.0001, 5 = 5 . (3.32)

With the NN saturation compensation included, the tracking errors are given in the Figure

3.4, control signal z(t) in Figure 3.5, and Neural network output in Figure 3.6.

Tracking errors e ^ t) and e 2(t)

0.8

0.6

0.4

0.2

- 0.2

-0.4

- 0.6

- 0.8

tim e (sec)

Figure 3.4. Tracking errors ex (solid) and e2 (dotted) with NN saturation compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Control signal tau
5

4

3

2

1

0

1

■2

•3

-4

-5
5 10 150

tim e (sec)

Figure 3.5. Control signal r with NN saturation compensator.

NN output
2000

1000

-1000

-2000

-3000

-4000

-5000
50

tim e (sec)

Figure 3.6. NN output with NN saturation compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the above simulation, it is clear that the proposed scheme can effectively

compensate the saturation nonlinearity in a class of nonlinear systems. Note also that

after some initial time required for NN to learn the unknown saturation nonlinearity, the

NN saturation compensator effectively prevents the control signal from reaching

saturation limits. NN is trained using the filtered tracking error, trying to minimize the

same. The expection of small tracking error is achieved by keeping control signal under

saturation limit range. Design tradeoff is that intelligent NN saturation compensator

requires extra controller complexity and extra computational power

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

ADAPTIVE NN SATURATION CONTROL IN

MOTION CONTROL SYSTEMS

4.1 Dynamics of Mechanical Motion Tracking System

We consider here the control of mechanical systems in the presence of actuator

saturation nonlinearity. Torque control actuators are subject to saturation limits, and this

needs to be considered when controllers are designed for such systems.

A general dynamics of a mechanical system usually in Lagrangian form can be

written as

M(q)q + VJq,q)q + G(q) + xd =r (4.1)

where q(t) e 91” is a vector describing position and orientation, M(q) is the inertia

matrix, r is the vector of actuator control torques, Vm(q, q) is the coriolis/centripetal

matrix caused by the motion of the links, G(q) is the gravity vector, and zd{t) e 9T

represents disturbances.

The system equation (4.1) satisfies some important physical properties as a

consequence of the fact that they constitute a Lagrangian system. These properties (Lewis

et al. (1999)) are important in control system design and can be described as follows:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Property 1: M (q) is a positive definite symmetric matrix bounded by

nql < M (q) < m2I , where mi m2 are known positive constants.

Property 2: The norm of the matrix Vm(q,q) is bounded by vmf<gd||g|| with vm(q) a known

value.

Property 3: The matrix M - 2Vm is skew-symmetric. This is due to the fact that the

internal forces do no work.

Property 4: The unknown disturbance satisfies ||rd|| < t m , with rM a known positive

constant

4.2 Tracking Error Dynamics and Adaptive Controller Design

To design a motion tracking controller that cause the mechanical system to track a

desired trajectory qd(t), define tracking error as

e(0 = 9rf(0 ~qif) (4.2)

Assumption 4.1 (Bounded Desired Trajectoryj: The desired trajectory qd (t) is bounded

and continuous, and ||qd (/)| < Q with Q known scalar bound.

Then, the filtered tracking error as

r = e + Ae, (4.3)

where A = A r > 0 is a design parameter matrix, usually selected as a diagonal with large

positive entries. At the same time, the control goal is to guarantee the stability of the filter

tracking error r(t).

Differentiating r in equation (4.3) and invoking (4.1) yields the mechanical

dynamics as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Mr = -Vmr - T + f (x) + TJ , (4.4)

where the nonlinear dynamic function is

f { x) = Miq){qd + Ae) + Vm (q , q){qd + Ae) + G{q) (4.5)

Actuator control torques r are subject to saturation constraints (1.1). A robust

saturation controller is given (Lewis et al. (1999)). In this dissertation, we use intelligent

control techniques for saturation compensation.

Considering the saturation model (1.2), the mechanical dynamics are given by

Mr ~~Vmr + f (x) + r d - u - S . (4.6)

Choose the outer tracking controller as in (Gao and Selmic (2003)).

w = f - v + K vr . (4.7)

If approximation of an unknown function f namely / , is chosen as in (Lewis et al.

(1999)).

f = M(q + Ae) + Vm(q + Ae) , (4.8)

and such tracking controller is called the PD Computed Torque Control Variant

(PDCTCV) controller (Lewis et al. (1999)), which is restricted by that M ,V m are all

known. Here the designated controller is not based on equation (4.8). The control scheme

for the mechanical system under actuator saturation consists of a standard tracking

controller and an NN saturation compensator, as shown in Figure 4.1.

Applying NN universal approximation property, there exists NN with some ideal

weights W, that closely approximates the unknown modified saturation function 5

5 = W Tcr(VTx m) + s . (4.9)

Saturation control is given as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

u - w - S , (4.10)

where 6 is the actual realization of the NN compensation function

S = W ra (V rx NN) . (4.11)

NN input is selected as x NN = [qd, qd, e, e]T.

Assumption 4.2 (Bounded Ideal NN Weights): The ideal NN weights W are bounded so

that | l f || < WM, with WM known bounds.

unknown function f (x) is assumed known, so that that the functional estimation error

for some known function bounds f M{x) (Isidori (1989)), (Narendra (1991)).

This assumption is not unreasonable (Corless and Leitmann (1982)), (Gao and

Selmic (2004)), (Selmic and Lewis (2000)), as in practical systems the bound f M can be

computed knowing the upper bound of variables such as payload masses, frictional

effects, and so on.

Substituting (4.10) and (4.11) into (4.6) gives the closed-loop error dynamics

Assumption 4.3 (Bounded Estimation Error): The estimate / (x) of a nonlinear

/ = / - / satisfies

(4.12)

Mr = -Vmr + f (x) - K vr + v - W Ta (V Tx NN) - £ + Td (4.13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

ft*
i i
3 i \

- H > (a /]} f ^ -*d-x _ i— _ _ _ i u _ _ x _a

V

H w lisw ai s y s te m w ith S a tu n tio n

w^satfu)
i l yr.iT-

r M echanical
S y s tem s

y
U ► ?(0

Tracking loop

Figure 4.1. Mechanical system with saturation compensator.

4.3 NN Weights Tuning Law for Guaranteed
Tracking Performance

The following theorem specifies robust and NN part of controller, such that the

closed-loop system is UUB in the presence of the actuator saturation in robot

manipulators.

Theorem 4.1 (Tuning o f N N Compensator): Given the robot arm dynamics (4.13),

Assumptions 4.1-4.3, and Properties 1-4, choose the tracking control law (4.7), and the

saturation compensator (4.10), (4.11). Choose the robustifying term as

v(0 = - (/ m (*) + Cw) | |> (4.14)

where the f M (x) and zM are the bounds on functional estimation error and disturbance,

respectively. Let the estimated NN weights be provided by the NN tuning algorithm

W = - S a (F rx m)r T -kS\\r\W (4.15)

where:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

S = S T > 0 is any constant representing the learning rates of the NN, k is a small scalar

positive design parameter.

By properly selecting the control gains and the design parameters, the filtered error r(t)

and the NN weights W are UUB (Uniformly Ultimately Bounded).

Proof: Choose the Lyapunov function candidate as

Differentiating yields

L = ~ r TMr + ̂ t r (W TS~'W)

L = r TMr + - r TMr + tr(WTS-'W)

(4.16)

(4.17)

Using (4.13) yields

L = r T(-Vmr + f - K vr + v + Td - s - W Ta (V Tx m))

+ ~ r TMr + tr(WTS~1W)

rK..r + r T(f + v + r J - s) + ■L = - r TK vr + r T(/ + v + t d - s) + — r T(M - 2 V m)r
(4.18)

+ tr[WT(S- 'JV-cr(VTx m)r r)]

Applying the tuning rale (4.15), robustifying term (4.14), and Property 3, one has

L = - r TK vr+ r T(f + v+ r d - s) + k\r\tr(WTW) (4.19)

choose K vnin as the smallest eigenvalues of K v, so

i s ~r’K , A r + k\r)fr(WT(W - W)) - ||r | | | / „ + tm || + ||r || f + v

+ * H r *(W« ~ ™ ,) + W £.

< IIHIh K vmin W + k W wM - k w + 8N)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which is guaranteed negative as long as

which is equivalent to

K . r > _ i f 2 + £
vmin II || ^ b N (4.21)

-W -4- £
' M ^ N

Kvmin

(4.22)

or

which is equivalent to

k(W 2 - - W > — W2 + £F 2 M ' 4 M N’ (4.23)

W >
l ^ + e „ + ~ W u

(4.24)

The remarks in last chapter apply here; also the following remarks are relevant.

N N Intelligent Controller as Saturation Compensator. Tuning law is the same as

in (Lewis et al. (1999)). This result shows that Lewis’ controller can be used as a

saturation compensator, provided that the estimate / (x) of an unknown function / (x) is

known.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

4.4 Simulation

The simulation was performed to verify the effectiveness of the proposed NN

saturation compensator. A planar two-serial robotic link arm is chosen and shown in

Figure 4.2. The robotic model is provided in (Lewis et al. (1999)), (Selmic and Lewis

(2001)). Robot dynamics is in the general form given in (4.1). In order to focus on the

effects of actuator saturation nonlinearity, gravity and friction are not included in the

system model. Yet, the model contains all nonlinear terms arising in the general n-link

manipulators.

The numerical simulation program was written in visual C++ and Matlab. The

integration method is a fourth-order Runge-Kutta algorithm. The integration time

step/sampling interval is using 0.001. The program is running on a Dell OPTEPLEX

GX260 computer with Intel Pentium CPU (2.40 GHz, 522, 232 KB RAM).

To show and focus on the functionality of adaptive NN saturation compensator,

we choose the robust term v = 0 and / = 0 in the following simulation.

m i

Figure 4.2. Two-link robot manipulator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

where <?,, q2 are the angles of joint 1 and joint 2; m ,, m2 are the masses of link 1 and

link 2, / j , 12 are the lengths of link 1 and link 2.

The system parameters are chosen as

mx =1.8, m2 =2.0, /, =1.0, l2 =1.0 . (4.25)

The parameters for the saturation nonlinearity are chosen as

r max = 10> Tnin = - 10> ™ = 1 • (4-26)

In order to show the robustness of the controller, a bounded disturbance is added

on the robotic system dynamics as follows:

T d = [2sinf, 2cosf]r (4.27)

The size of the NN affects the stability, performance, limitation of control efforts,

and possible operating conditions. The slow convergence of the tracking error is usually

due to the small network size. Moreover, if the network chosen size is too large, the

computation burden increases. Common approach is to start with the smaller NN size,

and gradually increase the number of hidden layer nodes until satisfactory performance is

achieved.

In this example, the NN has eight, forty and two neurons at the input, hidden and

output layers, respectively. The first-layer weights V are selected randomly, they are

uniformly randomly distributed between -1 and +1. These weights represent the stiffness

of the sigmoid activation function. The threshold weights for the first layer v0 are

uniformly randomly distributed between -15 and +15. The threshold weights represent

the bias in activation functions’ positions. The second layer weights W are initialized to

zero or any random numbers, and the effect of the inaccurate initialization number can be

retrieved by the on-line weights tuning law methodology.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

Within the outer loop tracking controller, parameters are chosen so that

K v = A'ag{500,500}, A = r/zag {10,10}. The joint variable is q = (q,q). The robot arm is

initially at rest on the horizontal plane qx = 0, q 2 = 0, and is commanded into a periodic

sinusoidal trajectory qdx = sin(r), qd2 = cos(r).

The tracking errors for the first and second joints are shown in Figure 4.3 without

the saturation compensator considered; the actuator output control signal z(t) for the two

joints is shown in Figure 4.4.

q1 error(solid line) and q2 error(dotted line)
5

4

3

2

1a>a>
0

•1

-2

-3

-4 0 10 20 30 40 50 60 70 80
tim e(sec)

Figure 4.3. Tracking errors for qx (solid) and q2 (dotted) without saturation
compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

8

6

4

2

0

-2

-4

-6

-8

-10

control torque

10 20 30 4 0 50
tim e(sec)

60 70 80

Figure 4.4. Control torque r, (solid) and r 2 (dotted) without saturation compensator.

The NN saturation compensator weights tuning parameters are chosen as

k = 0.002 , 5 = 2 . (4.28)

The tracking errors for the first and second joints are shown in Figure 4.5, control signal

v(t) in Figure 4.6, and NN output is in Figure 4.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

q1 error(solid line) and q2 error(dotted line)

^ 0 10 20 30 4 0 50 60 70 80
time(sec)

Figure 4.5. Tracking errors for q{ (solid) and q2 (dotted) with saturation compensator.

contro l torque

3

-10 40
time(sec)

Figure 4.6. Control torque r, (solid) and z 2 (dotted) with saturation compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

NN output
2000

1000

-1000

-2000

-3000

-4000

-5000
60

tim e (se c)

Figure 4.7. NN outputs with saturation compensator.

From the above simulation, it is clear that the proposed scheme can effectively

compensate the saturation nonlinearity in a class of nonlinear systems with MIMO, in the

presence of disturbance and actuator saturation nonlinearity. The NN saturation

compensation scheme designed in Chapter 3 can also be applied and extended for this

robotic application

To show the interconnection and the similarity of the control scheme design, it is

necessary to derive a suitable state space dynamic equation. The equation (4.1) can be

expressed in the form of state equation with the state vector x = (xl,x2)T =(q, q f as

i , = x 2

X2= fr (X) + g r(X)T (4.29)
y = * i = q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

where f r (x) = - M ~ x (x,)(Vm (x)x2 + G(x1) + rd) and g r (x) - M ~ l(x{). It is clear that

equation (4.1) is feedback linearizable (Nam (1999)), (Lewis, Jagannathan, and

Yesildirek (1999)), (Slotine and Li (1991)), (Chen and Khalil (1992)), (Hovakimyan,

Nardi and Calise (2001) and (Isidori (1989))

Comparing equation (4.29) to (4.1), function/.(x) e 91" and gr(x) e 91" have the

corresponding counterparts / (x) e 91 and g(x) e 91 respectively. Normally, the inertia

matrix M(x) is known, and it is usual to have uncertainty in the Coriolis/ centripetal

matrix VJq.q) which is difficult to compute. Thus, it is feasible to assume that function

f r (x) is unknown and function g r (x) is known, which satisfies Assumption 3.1. Note

that f r(x) and g r(x) in equation (4.29) are vector of dimension n while f (x) and

g(x) in equation (3.1) are scalars.

Chapter 4 is self-contained and is an extension of Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5

NN SATURATION COMPENSATOR IMPLEMENTATION

USING SIMULINK S-FUNCTIONS

5.1 Simulink S-Functions

Within the last few decades, computer simulations have become an important tool

in research and education (Twigg and Johnson (2003)). Various tools provide help to

engineers/designers from the research concept, prototyping, development, design, to

verification and validation. The common approach in developing a computer model of a

dynamic system is to start with a block diagram or flow chart, followed by the block

diagram translation, to the source code of a programming language. This practice

involves duplication of effort, as the system and controller have to be described twice; in

the block diagram with repetition in the programming language (Dabney and Harman

(2003)). The development of the faster computers, new software design tools, and the

affiliated internet technology has streamlined development cycles in the control system

design and implementation (Apkarian (1998)). Simulink has allowed engineers to rapidly

and accurately build computer models of dynamical systems and modem control

algorithms using block diagram notation.

In (Gao and Selmic (2003)), we proposed a neural network-based saturation

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

compensation is presented for a class of SISO nonlinear systems. The designed intelligent

saturation compensator can also apply to other types of control input distortion than

saturation as long as the actuator output is a bounded, static function of the current

control input .The practical application and extension are made on a specific MEMO

system—a second order robotic manipulator. The controller does not require a saturation

model to be known, hr this chapter, we described how to implement the customized NN

saturation compensator using Simulink S-function block diagrams. S-function

implementation is done using C MEX S-function (Mathworks (2002)) and MATLAB as

simulation tools. The advantage of Simulink implementation is rapid development,

prototyping, and potential of real-time code generation using the Real-Time Workshop

Toolbox (Mathworks (2002)). This implementation is a crucial step in any real-time

saturation compensation implementation. In this dissertation, we show how custom-made

NN control system design can be efficiently implemented in the real-time environment on

microcontroller.

5.2 Simulink Model of NN Saturation Compensator

Simulink is a software package for modeling, simulation, and analyzes of

dynamical systems. It includes a wide range of predefined blocks and symbols, and

various standard libraries for different applications. Simulink models consist of inputs,

outputs, states, and system functions (output function, update, and derivative function)

specifying the time-dependent relationships between the inputs, states and the outputs.

Simulink also supports the subsystem hierarchical structure (Mathworks (2002)). It is a

convenient simulation tool that simplifies complex system development and design. For

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

linear systems, Simulink is equipped with transfer function block and state-space block.

But to build the system function block for equation (3.1) and (4.1), the general nonlinear

system dynamics, or the application-customized NN weight dynamics for saturation

compensator, no standard block can be utilized. One has to develop a customized S-

function (system-function) (Mathworks (2002)), and to create the custom block for these

dynamic systems

S-function provides a powerful mechanism to extend the capability of Simulink. It

allows user to add new general purpose blocks in Simulink and incorporate the existing C

code into it. S-function is a computer language description of Simulink block, which can

be written in C, C++, MATLAB and compiled using MEX-files mex utility. S-function

can also be used with Real-Time Workshop (Mathworks (2002)) to provide real-time

code that can be implemented on the microcontrollers.

Given the NN saturation compensation scheme for the nonlinear systems in

Figure 3.1 and Figure 4.1, the equivalent Simulink block model of the NN saturation

compensator is shown in the Figure 5.1. It consists of two subsystems: reference

command subsystem to specify the desired system states xd(t) , namely

xd(t) = [yd, y d, - - , y (d ~l)]T, and PD controller and NN compensator subsystem. The

nonlinear system model block, PD controller, and NN compensator block are written and

implemented using C MEX S-function mechanism (Mathworks (2002)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

NN Saturation Compensator Design in Nonlinear System

R e fe re n c e C o m m a n d
S u b sy s te m

P D C ontro ller a n d NN C o m p e n s a to r
S u b sy s te m

A ctua to r N on lin ear S y s te m
S a tu ra tio n M odel

Figure 5.1. NN saturation compensator hierarchical model.

A Simulink block as shown in Figure 5.2 consists of a set of inputs, states and

outputs, where the output is a function of the sample time, the inputs and the block states.

input {u) states(x) output{y)

Figure 5.2. Components of Simulink block.

Considering continuous states only, the mathematical expression among the

components of the Simulink block is as follows,

y = f a {t , x, u) {Output)
xc = f c(t,x,u) {Derivative)

(5.1)

and the equation (3.1) is given by,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

y = xl (Output)
x\ l) = / (x) + S(X)T (Derivative) ’ ̂ ^

where the control torque r is the input to the block, x = [xt ,x2,---,xn]T are the states,

and the output is x{.

With respect to the NN weights tuning dynamics, the Simulink block are

composed of the input to the NN compensation block (xNN), the states (the weight matrix

W), and the output of the block (the output of the NN <p = W T <j {Vt x NN)).

S-function simulates a general model and represents the mathematical relationship

of the block components for equations such as weight tuning dynamics equation and

equation (5.2). In Figure 5.1, top-level hierarchical block contains NN saturation

compensator and PD controller sub-blocks.

Execution of Simulink S-function model proceeds in stages (Mathworks (2002)).

The initialization stage determines the S-function block's characteristics (the number of

inputs, outputs, states, the sample time, etc.), which follows a simulation loop, with

sequential Simulink steps. During each step, Simulink invokes functions to calculate the

present state, the next state, derivative and outputs for the current sample time. The

following table lists the contents of the C-MEX file S-function used in simulation

examples in this dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Table 5.1. The contents of C-MEX S-function.
Simulation Stage S-Function Routine

Initialize size mdllnitializeS izes

Initialize sample time mdllnitializeSampleT imes

Initialize conditions mdllnitializeConditions

Calculate output mdlOutputs

Calculate derivative mdlDerivatives

End simulation mdlTerminate

We present two Simulink simulation examples involving saturation compensation.

5.2.1 Nonlinear System of “Pendulum Type”

In the program running, the NN has four, ten, and one neurons at the input, hidden

and output layers, respectively. The first-layer weights V , NN weight tuning paprameter

are selected as in C-haper 3.

Two S-functions, Pendulummex which is shown and labeled pendulum system

model (Figure 5.3) and NN Pendulummex Sat which is shown and labeled NN

saturation compensator (Figure 5.5), were written in C programming language and

compiled via the MATLAB MEX-file utility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

NN Saturation Compensator Design in Pendulum System

Dps red x[0]

Desired KdQtlOl

R efe re n c e C om m and
S a tu ra te d

C ontrol T o rq u e

PD C on tro ller a n d NN C o m p e n sa to r

P e n d u lu m
S y s te m M odel

A ctuator
S a tu ra tion

Figure 5.3. NN saturation compensator hierarchical model for pendulum system.

Reference Command

xd[0]

Sine Reference
Input xd[0]

du/dt

-»m
xddot[0] Desired x[0]

►GD
Desired xdot[0]

Figure 5.4. Reference command subsystem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

PD Controller and NN Compensator

C D
xd[0]

xddo t[0]

G D * |
P e n d u lu m

S ystem
S ig n a ls

xddo tO]

NN Pendulum m ex Sa

NN o u tp u t
NN S a tu ra tio n C o m p e n sa to r

-Kv r

F hat C a cu a tion

CD
C ontro l T o n q u es

[n
P o sitio n Error

Figure 5.5. PD controller and NN compensator subsystem

Fhat Calculation

m — I
x[0] [^ ► l

v Power Fun

C D —
xdot[0]

Figure 5.6. Fhat calculation sub-block

'CD
Fhat

After the Simulink block running, the simulation result such as the tracking errors

and control signal z{t) are turned out as same as the Figures shown in Chapter 3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.2 Two-Link Robot Arm

In the program running, the NN parameter such as input layer, hidden function,

and output layers, the first-layer weights V , as well as NN weight tuning paprameter are

selected as in Chaper 4.

Two S-functions, Robotmex which is shown and labeled pendulum system model

in Figure 5.7 and NN_Robotmex_Sat shown and labeled NN saturation compensator in

Figure 5.9, were written in C programming language and compiled via the MATLAB

MEX-file utility.

NN Saturation Compensator Design in Robotic System

S a tu r a te d R e f e re n c e C o m m a n d
C ontro l T o rq u e

>

P D C o n tro l le r a n d NN C o m p e n s a to r

A c tu a to r R o b o tic
S a tu ra t io n S y s te m M o d el

Figure 5.7. NN saturation compensator hierarchical model for robotic system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Reference Command

qd[0]

Sine Reference
Input qd[0]

du/dt

-KID
qddot[0] Desired q[0]

Desired qdot[0]

qd[1]

Cosine Reference
Input qd[1] du/dt

qddot[1]

■ > m
Desired q[1]

-KZD
Desired qdot[1]

Figure 5.8. Reference command subsystem.

PD Con!roller and NN Compensator

qd[0]

G >
qd[0] qddotfO]

q d d o t [0] ^ ^ qd[1]
NN o u tp u t

qd[1] q ddo t[1 j

NN Roboimetf*qddotM l

NN S a tu ra t io n C o m p en sa to r

qdotfO]

qdot[1]

C D
Control T o rq u e s

G3-H
R obotic S ta te

S ig n a ls

P o sitio n Error

Figure 5.9. PD controller and NN compensator subsystem.

After the Simulink block running, the simulation result such as the first and

second joints tracking errors and control signal r{t) are turned out as same as the figures

shown in Chapter 4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Simulink-based S-function blocks are developed that are equivalent to theoretical

NN saturation compensation schemes. Such control system platform can be used for real­

time code generation using Real-Time Workshop Toolbox. This chapter shows how the

custom-made NN control system design can easily be implemented in the real-time

environment on microcontroller.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

the standard dynamics model of a flexible link manipulator may be defined using the

Y

Figure 6.1. A flexible one-link robot arm.

recursive Lagrangian approach (Lewis, Jagannathan, and Yesildirek: (1999)), (Talebi et

al. (2002)),

M(q)q + D{q,q)q + Kq + F(q,q) + G(q) = B{q)r , (6.4)

where q = [qr q f } ' , q r e 91 "r is the vector of rigid modes (generalized joint

coordinates), qf e 91°° is the vector of infinitely many flexible modes, M{q) = M(qr,qf)

is the inertia matrix, D(q,q) = D(qr,qf ,qr,qf) is the coriolis/centripetal matrix containing

rigid and flexible modes, K is the stiffness matrix, F{q,q) = (qr,qf ,qr,q f) is the friction

matrix, G(q) = G(qr,qf) is the gravity vector, B(q) = B(qr,qf) is the input matrix. The

input actuator control torque applied to each joint is vector r . All of the abovementioned

matrices have compatible, yet practically infinite dimensions (Zhu et al. (1994)). In this

dissertation, we follow the finite dimensional approach that many researchers (Gutierrez,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

Lewis and Lowe (1998)), (Lewis, Jagannathan, and Yesildirek (1999)), (Sun et al.

(2003)), (Siciliano and Book (1988)), (Siciliano, Prasad, and Calise (1992)), (Moallem,

Khorasani, and Patel (1997)), (Saber (2000)), (Talebi et al. (2002)) adopted along with

the model truncation to obtain the system dynamics. Equation (6.4) is characterized as the

underactuated system, which has more degrees of freedom than the dimensions of the

control torque r .

6.2 Decomposition of Flexible Link Dynamics

The singular perturbation approach consists of decomposing the system dynamics

into two time scale subsystems. In this dissertation, slow dynamics and fast dynamics

corresponds to the rigid modes qr and flexible modes qf respectively. To apply singular

perturbation as in (Siciliano and Book (1988)), (Lewis, Jagannathan, and Yesildirek

(1999)), equation (6.4) is converted to

qr = -D'rrqr —D'rfqf - K'rfqf - F r> -G'r + B>rr

qf = - D ‘frqr -D's qf - K ,ffqf - F\ -G<f + B ‘f r

According to (Lewis, Jagannathan, and Yesildirek (1999)), the slow subsystem of

the flexible link manipulator is given by

M rrqr +Drrqr +Fr +Gr = f , (6 .6)

where the bar over the variables denotes the slow part of them and it assumes that the

stiffness of the flexible links is sufficiently large, f is the control input of the slow

system, and M rr, Drr, Fr, G are defined as in (Lewis, Jagannathan, and Yesildirek

(1999)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

To define the fast subsystem, let us introduce scale factor e , where 11e2 is the

smallest stiffness in K'f f , and define f,2q = q f , Kff = e2K 'ff, C/ — € - £ C2 = t »

where £ = Kjf H ^ (- D xfrqr - F xf - G xf + B xf x) (Lewis, Jagannathan, and Yesildirek (1999)),

and a fast time scale ;/ = t/f, , resulting in

d_
dq

0 / ' "C,
r H ff(qr,0)Kff 0 Ci

+
0

5 } (^ 0) ' F >

or dC_
dq

(6.7)

(6 .8)

with C = [C,r C2r f .

The following remarks are relevant:

The slow subsystem equation (6 .6) and fast subsystem (6.7) are reduced control

effective by order of e from original system equation (6.4), that is

<lr =<lr+ 0 (£)
qf = e \ { + 0 + 0(6)

(6.9)

The chosen modified joint-based tracking output control y = qr is in contrast to

the reflected-tip control y ri = qri - (wi{xi,t) / (Talebi et al (2002)). Both of them have

the advantage over joint-based control that can make the vibration of the flexible mode

controllable.

Assumption of that (Af , BF) is stabilizable is reasonable, since the fast system

(6 .8) parameters have bounded uncertainty and perturbation because of slow system

variable, which vary smoothly with time (Lewis, Jagannathan, and Yesildirek (1999)).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

The model (6 .6) follows the same properties of rigid link robot. Namely, M n.(qr)

is a positive definite symmetric matrix and upper and lower bounded, Drr(qr,qr) is

bounded by rfOT(gr)||gr|| with dm(qr) a known value, and M - 2 D rr is skew-symmetric.

For flexible one link, qr is a scalar, qf is a vector, and the number of the vector

depends on number of flexible modes.

For flexible one link, the composite control r = f + xF is a scalar as well as f and

rF.

We consider composite control r of flexible one link robot manipulator in the

presence of actuator saturation nonlinearity. Actuators control torque is subject to

saturation limits and this elevates the complexity of the controller for flexible link robot

arm.

6.3 Composite Control Subject to Saturation Constraint

Based on singular perturbation and due to the extension of Tikhonov’s Theorem

(Lewis, Jagannathan, and Yesildirek (1999)), (Siciliano and Book (1988)), the slow and

fast controls are time domain separate and essentially independent. It is reasonable to

design slow control u for the slow subsystem (6 .6), and to design fast control uF for the

fast subsystem (6.7). Two control designs can be initiated to obtain the independent

control input components and simply add together to produce the composite control u .

When the saturation is imposed on the control input u , equivalently it affects the two

independent control components u and uF . To compensate the saturation of composite

control u , saturation compensation should consider both the slow and fast control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

signals, and it means to develop two independent saturation compensator components for

the slow and fast subsystem respectively.

According to saturation model (1.2), the composite control subject to saturation

constraint is given by

T = u + d + u F+SF, (6.10)

where f = sat(u), 5 = x — u, xF = sat(uF), dF = tf - uF .

Based on Lyapunov theory two saturation sub-compensators are designed to

accommodate S , and SF. Figure 6.2 shows the overall control diagram of the flexible

link system with NN saturation compensator consisting of two neural nets, namely NNr

and N N f for rigid and fast subsystems.

'W /

Fast Subsystem

Fast Control

Tracking Loop

Figure 6.2. Flexible link system with NN saturation compensator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

6.4 NN-based Saturation Compensation
for Rigid Dynamics

Rigid dynamics (6 .6) is exactly the Lagrange form of /7-link rigid robot arm

equation. Thus, any existing adaptive or NN-based control and identification techniques

can be applied here (Gao and Selmic (2003)), (Lewis, Jagannathan, and Yesildirek:

(1999)). Subject to constraint on the slow control, equation (6 .6) can be rewritten as

M rrqr + Drrqr + Fr +Gr = u + 6 . (6.11)

Given a desired arm trajectory qd (t) , define tracking error as

e (0 = 9 r f (0 - ? r (0 (6 - 1 2)

Assumption 6.1 (Bounded Desired Trajectory): The desired trajectory qd (t) is

bounded and continuous, and ||qd (t)|| < Q with Q known scalar bound.

Then, the filtered tracking error is given as

r = e + Ae, (6.13)

where A = Ar > 0 is a design parameter scalar. At the same time, the control goal is to

guarantee the stability of the filter tracking error r(t) (Slotine and Li (1991)).

differentiating r in equation (6.13) and invoking (6.11) yields the rigid link dynamics as

M rrr = —Drrr - u - S + f (x), (6.14)

where the nonlinear rigid robot function is

f { x) = M„ (qr)(qd + Ae) + Drr (qr , qr)(qd + Ae) + Gr (qr) + Fr(qr). (6.15)

Vector x contains all the time signals needed to compute f (x) , and may be defined for

instance as x = [qd,qd,qd,e,e]T. It is noted that the function f (x) contains all the

potentially unknown functions in (6 .11).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Choose the tracking controller as in (Gao and Selmic (2004)).

w = f - v R + K vr , (6.16)

where f is the fixed approximation of function / (x) . The functional estimation error is

given by / = f - f , and the robust term corresponding to the rigid subsystem is given

by v*.

Approximation / is fixed in this dissertation and will not be adapted. Robust

term vn is chosen for the disturbance rejection. The control scheme for robot

manipulators under actuator saturation consists of a standard tracking controller and an

NN saturation compensator.

NN universal approximation property defines that any continuous function can be

approximated arbitrarily well using a linear combination of sigmoidal functions, namely,

f (x) = W Tcr(VTx) + s(x) , (6.17)

where the s(x) is the NN approximation error. The reconstruction error is bounded on a

compact set S by ||£(x)|| < s N. Moreover, for any eN one can find a NN such that

||£(x)|| < eN for all x e S .

The first layer weights V (including thresholds) are selected randomly and will

not be tuned. The second layer weights W are tunable. The approximating weights W

are ideal target weights, and it is assumed that they are bounded so that \\Wj| < WM .

Applying NN universal approximation property, there exist NN with some ideal

feed-forward NN weights VR and WR corresponding to the rigid subsystem to closely

approximate the unknown modified saturation function <5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

3 = WRro(VZxNN) + e . (6.18)

Saturation control is given by

u = w - 3 , (6.19)

where 3 is the actual realization of the NN rigid subsystem, denoted as NNR in Figure

6 .2 , compensation function given by

3 =--Wtr g(Vtr x nn), (6.20)

where the NN weights approximation error is WR = WR - W R, and the NN input is

selected as x m = \xd, xd, e, e\r .

Assumption 6.2 (Bounded Ideal NN Weights): The ideal NN weights W are bounded

so that ||1F|| < WM, with WM known bounds.

Assumption 6.3 (Bounded Estimation Error): The estimate f (x) of a nonlinear

unknown function / (x) is assumed known, so that the functional estimation error f (jt)

satisfies / (x) < f M(x) for some known function bounds f M (x) (Isidori (1989)),

(N arendra (1991)).

Substituting (6.18) and (6.19) into (6.14) gives the closed-loop error dynamics

M rrr = - D rrr + f { x) - K vr + vR -W Za{V Zxm) - s . (6.21)

The following theorem specifies the robust term and the stable NN weights tuning

rules of controller, such that the closed-loop system is uniformly ultimately bounded

(UUB) in the presence of the actuator saturation in rigid link manipulators.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Theorem 6.1 (Tuning o f N N Rigid Subsystem Compensator)'. Given the rigid robot

arm dynamics (6.21), Assumptions 6.1, 6.2, and 6.3, choose the tracking control law

(6.16), and the saturation compensator (6.19), (6.20). Choose the robustifying term as

Vr (0 = - f M (x)sign(r), (6 .22)

where the f M(x) is the bound on functional estimation error. Let the estimated NN

weights be provided by the NN tuning algorithm

^ ,= - S < j (V srx m)rr -kS lr lw , (S.23)

where S = S T > 0 is any constant matrix representing the learning rates of the NN, and

A: is a small scalar positive design parameter. By properly selecting the control gains and the

design parameters, the filtered error r(t) and the NN weights WR are UUB (Uniformly

Ultimately Bounded).

Here, we skip the proof part o f above theorem. Regarding the candidate o f the

lyapunov function, and how the robust term and weight tuning law is derived, interested

reader can refer to Chapter 3. Also the detail proof of the Theorem 6.1 that uses the

Lyapunov stability analysis is given in (Gao and Selmic (2003)) as well as the explicit

bounds for ||r|| and

During operational phase, the first layer weights VR are selected randomly and

will not be tuned. The second layer weights WR are on-line tunable based on equation

(6.23) and can be initialized to be zero. The robustifying term vR(t) is needed to for

disturbance rejection and to keep the closed-loop system stable during the initial NN

learning phase.

WR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

6.5 Robust Saturation Compensator for Fast Dynamics

As shown in (6.7), the fast subsystem is parameterized by the slow variable qr

From equation (6.12), replacing qr by e + qd in the fast dynamics (6.7) results in

d_
dq

V , ' 0 r "r.
r I l f f {e)Kff 0 Ci

+
0

B U e)
(6.24)

As discussed in Section 6.3, the goal of the slow control is to make the filter error r

arbitrary small, or equivalently to make the tracking error e arbitrary small. For instance,

optimal control can be used to design t f such that the internal dynamics is stable (Lewis,

Jagannathan, and Yesildirek (1999)).

Subject to constraint on the fast control, equation (6 .8) can be rewritten as

dC
dq

' AFC + BF(uF +Sf), (6.25)

with C = [Cf Cl]T • Let us define the desired state vector as

Cd =[GTd,GTd]T. (6.26)

Assumption 6.4 (Bounded Desired Trajectory)'. The desired trajectory Cd (0 is

continuous, available and bounded, and \Cd (t)| ^ E with E known scalar bound.

Assumption 6.5: The state C(t) is completely measurable and available for controller

design.

The output of (6.25) is choosen as

G = CfC, (6.27)

where Cf =[Cf l (qr), 0], (6.28)

and in (6.28) Cf l (qr) is noramly selected as a constant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

In this section, a NN is used to estimate the unknown nonlinear saturation

function SF appearing in (6.25). The NNf is a two-layer net, where WF is the estimate of

the second layer weights, a is the basis activation function, Cm = [Cv (2, C2f is the

input vector of the NN, which should include the full state information of the unknown

system. There exists a NN with some ideal weights VF and WF that closely

approximates the unknown function SF

SF =JV^a(V^CNN) + e . (6.29)

Choose the fast control law

uf = - K f<Z-Wfa(VFCm) - v F , (6.30)

where robustifying term vF is added to provide the robustness for the NN reconstruction

error e (Huang and Lewis (2003)) and the unmodeled dynamics, and K F is the pole

placement gain selected using Ackermann's formula. Substituting into (6.25) results in

~ - = AsC + BfWfo (Vf£ nn) + Bf £f - Bfvf . (6.31)
drj

where As is a stable matrix satisfying

As =Af - B fK f , (6.32)

WF =WF - W F . (6.33)

People normally adopt LQR or other optimal control law to reliaze the fast control

torque to cause the fast subsystem stability. The control input wF = - K FC, is chosen to

stabilize the unstable fast subsystem (6.7) or (6 .8), while the NNf is used to compensate

the fast subsystem for the saturation nonlinearity effect. The N N f prevents the control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

signal from being saturated and ensures the system stability that would otherwise be hard

to rigorously prove.

Theorem 6.2 (Tuning o f N N Fast Subsystem Estimator): Given the fast subsystem

dynamics (6.31), Assumptions 6.2, 6.4, and 6.5, choose the robust term as

vF = sign(BTFQ e M, (6.34)

where the sM is the bound on NN functional estimation error. Let the estimated NNF

weights be provided by the NN tuning algorithm

, = r a (V ^ m)CrBF-hY%\W„ (6.35)

where T = F r > 6 is a constant matrix representing the learning rates of the NN, and h

is a small scalar positive design parameter. By properly selecting the control gains and

the design parameters, the fast system states (and the NN weights WF are UUB.

Proof: Choose the Lyapunov function candidate as

L = ~ C C ^ H W tf T-xWf) (6.36)

Differentiating yields

L = CTC + tr{WTFY-lWF) (6.37)

Whence substitution from dynamics equation (6.31) yields

L = CTAsC + CTBF(eF- v F) + t r ^ TF[r^W F + o(VfCNN) C BF]\ (6.38)

Applying the NN tuning rules, selected Lyapunov function is simplified to

L=i;TAsc*t:TBF(eF- M , s ll)+tr^;wr) ^ \ . (6.39)
i F I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Let ASmh be the smallest eigenvalue of A

\MVL < - A s^\\t;\2 + C B FeF -
\BTA

ew + tr

Using the inequality,

t r [xT(X - X)] < m \ x \ F - x

the inequality (6.40) can be written as

1 + (TBpep -
i n ,

| i 2 i i ^ i | 2

\b; c\

< -h U j i d + * (IV,

which is guaranteed to remain negative as long as

hW?
H > M

4A

or

W

S min

(6.40)

(6.41)

^ A W>u U (TBpeF - | S , [| f | | s „ (6 .4 2)

(6.43)

(6.44)

The fast subsystems NN saturation compensator is needed to ensure stability of

the fast subsystem in the presence of the actuator saturation nonlinearity. Standard PD

controller or optimal controller can not rigorously guarantee the closed-loop system

stability in the presence of the actuator input signal limits. NN compensator not only

provides efficient compensation thus improving the system performance, but also

guarantees the stability of the overall flexible link system. The NN does not need any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

previous, off-line learning. NN weights are adjusted on-line, in the real-time while

keeping the control signal from being saturated.

6.6 Simulation

In this section, simulation results for the proposed neural network saturation

compensator are presented. A single link flexible arm with pined-pined boundary

conditions is considered in the simulation. The model with two flexible modes is as

follows (Lewis, Jagannathan, and Yesildirek (1999)).

"2.2024 0.0517 0.0410" "0.0200 0.0013 0.0027"
M — 0.0517 0.0026 0.0036 , D = 0.0013 0.0001 0.0002

0.0410 0.0036 0.0080 0.0027 0.0002 0.0004

0 0

1o
o "1.0000"

0 14.0733
0

, F = G = 0, B = 0.0668

0 0 225.1734_ 0.1337

the state is q = [qr, q f v q f 2 -, <lr> 7 / i> 9 / 2] ar>d we select y = [qr , qr] for the tracking

control o f the joint position. Here two simulations scenarios are conducted. For each

simulation case first the standard PD (proportional derivative) controller is designed

under the saturation constraints, followed by the proposed NN controllers. The advantage

of the NN saturation compensator can be compared over the standard PD controller.

The size of the NN considers the stability, performance, limitation of control

efforts, and possible operating conditions. The slow convergence of the tracking error is

usually due to the smallness of the network size. Moreover, if the chosen size is too large,

the computation burden increases. Common approach is to start with the smaller NN size,

and gradually increase it until satisfactory performance is achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

In this dissertation, NNR with sigmoidal function has four, ten and one neurons at

the input, hidden and output layers, respectively. The first-layer weights VR are selected

randomly (Igelnik and Pao (1995)), (Selmic and Lewis (2000)), (Corless and Leitmann

(1982)). They are uniformly randomly distributed between -1 and +1. These weights

represent the stiffness of the sigmoid activation function. The threshold weights for the

first layer v0 are uniformly randomly distributed between -20 and +20. The threshold

weights represent the bias in activation functions’ positions. The second layer weights

WR are initialized to zero, and the effect o f the inaccurate initialization number can be

retrieved by the on-line weights tuning law methodology. For the out tracking PD

controller will make the whole system stable subject to the saturated constraints before

the NN saturation compensators start learning and control. NNF has four, twenty and one

neurons at the input, hidden and output layers, respectively. The first-layer weights VF

are selected randomly and are uniformly distributed between -1 and +1. The threshold

weights for the first layer v0 are uniformly randomly distributed between -15 and +16.

The second layer weights WF are initialized to zero.

The numerical simulation program was written in visual C++ and Matlab. The

integration method is a fourth-order Runge-Kutta algorithm. The integration time step is

using 0.001. Some common parameter for the two simulation cases are chosen as follows

Control input r is constrained by the saturation nonlinearity characterized by the

parameters

e = 0.26 (6.46)

max (6.47)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Following is the two scenarios of desired tracking cases we simulated.

6.6.1 Single Flexible Link with Sinusoid
the Desired Tracking Path

PD out tracking loop controller parameters are chosen so that K v = 12, A = [1, l]r

= [-0.01085 0.1223 0.0047 0.0474], Desired trajectory is given by

xx (t) = sin(/), x2 (t) = cos(t). The simulation results with PD controller only are shown

in Figure 6.3, Figure 6.4, and Figure 6 .6 .

W \ \ / V ' v

7 V \ \ , 1 / f i \
x ¥ \

- - / - - - - - - - - A - - - - - - -

■■ \ ■ \ l / / V- V.

/ , \ :- v . k f \ X

i tf t V

/ f \

v- X n i; x x
\ ' \ ; j: (: V. ^

V \ f \ /: I \

H A i h \ r
\ J i \J i; . u

t / 1
' \ /

i■1.5------------------------------------- 1------------------------------------- 1--------------------------------------
0 5 10 15

tim e

Figure 6.3. Response of flexible arm with PD controller. Actual (dashed) and desired
(solid) tip position and velocity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.4. Response of flexible arm with PD controller. Position error (solid) and
velocity error (dashed).

0.05

0.04

0.03

0.02

| 0.01
0)oTOQ. 0
V)

- 0.01

- 0.02

-0.03

-0.04

tim e

Figure 6.5. Response of flexible arm with PD controller. Flexible modes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

The NN r and NNF chooses the following parameters

k = 0.6 , S = 35, f M - 0.0 . (6.48)

h = 0 .0 0 0 0 0 1 , r = 0 .001, sM = 0.01 . (6 .49)

With the NN saturation compensation included, the simulation results are given in the

Figure 6 .6 , Figure 6.7, and Figure 6 .8 .

1.5

1

>, 0 .5

! o

§■ -0.5

-1

-1.5
0 5 10 15

t im e

Figure 6 .6 . Response of flexible arm with PD controller and NN saturation compensator.
Actual (dashed) and desired (solid) tip position and velocity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

0.6

0.4

0.2
CD

! °
>
? -0.2 (0
S0
c
.9

I

-0.4

•0.8

15
tim e

Figure 6.7. Response of flexible arm with PD controller and NN saturation
compensator. Position error (solid) and velocity error (dashed).

0 .05

0 .04

0.03

0.02

0.01

Q.

•0.01

■0.02

•0.03

■0.04

tim e

Figure 6 .8 . Response of flexible arm with PD controller and NN saturation compensator.
Flexible modes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

6.6.2 Single Flexible Link with Desired
Acceleration/Deceleration Profile

As in (Lewis, Jagannathan, and Yesildirek (1999)), the same acceleration and/or

deceleration profile is used for the open-loop testing. The open-loop position and velocity

response are shown in Figure 6.9, the flexible mode in Figure 6.10.

0.4

0 .35

0.3

2? °-25
<3 o
? 0.2
-o

0.05

0

-0.05
0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1.4

time

Figure 6.9. Open-loop response of flexible arm. Tip position and velocity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

0.015

0.01

0 .005

0
c
0
E
8 -0.005TO
Q .
CO

^ - 0.01

-0 .015

- 0.02

-0 .025
0 0 .2 0 .4 0 .6 0 .8 1 1.2 1.4

tim e

Figure 6.10. Open-loop response of flexible arm. Flexible modes.

PD out tracking loop controller parameters are chosen, so that7Tv = 15,

A = [2, l]r , K F = [-0.01085 0.1223 0.0047 0.0474], Desired trajectory is calculated

based on the desired acceleration/deceleration profile and shown in the following figures.

The simulation results with PD controller only are shown in Figure 6.11, Figure 6.12 and

Figure 6.13.

v V v v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.11. Response of flexible arm with PD controller. Actual (dashed) and desired
(solid) tip position and velocity.

Figure 6.12. Response of flexible arm with PD controller. Position error (solid) and
velocity error (dashed).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.13. Response o f flexible arm with PD controller. Flexible modes.

The NNr and NNF chooses the following parameters

k = 0.08 , S = 20 , f M = 1.5 . (6.50)

h = 0.0001 , r = 0 .001, f M = 1 . (6.51)

With the NN saturation compensation included, the simulation results are given in the

Figure 6.14, Figure 6.15 and Figure 6.16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.14. Response o f flexible arm with PD controller and NN saturation
compensator. Actual (dashed) and desired (solid) tip position and velocity.

x 1 0 '

_ 4 ------------------------- 1-------------------------1------------------------- 1-------------------------1________________i________________ i________________

0 0 .2 0 .4 0 .6 0 .8 1 1 .2 1.4
tim e

Figure 6.15. Response of flexible arm with PD controller and NN saturation
compensator. Position error (solid) and velocity error (dashed).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

0 . 0 2 5 j j j r r - i- -

0.02------------ \------------ j--------------------------j---- ------- \-------------j------------

0 . 0 1 5 — U - l J — 1 - i - i - i - i - i -

I l y i I : i i i i

! I j ’ | i i i i i

0 . 0 1 - i - i - i - i - " -

w I i l l I I / ! U n . - - i • ' f — " ~ i ! i i 1 I i
C I i l l ' I M i ' « ■ ; : : ; ;
g 0 . 0 0 5 + - l l i - + - U i - r - ' - : - 1 - - - - - - - - - - - - - - - - 1 — M -

® I H | l i I V i i i : ! M

I . ^ 4 -
x i I f H i j * i j i ; i ! S ;

- 0 . 0 0 5 - i - i - j l — - 4 - i- 1— - 4 - 4 4 - — ■

- 0 . 0 1 1 H ---------------[■-----------------------j---------------------- 1*-----------------------1-....................... 1------------------- -j-----------------------

- 0 . 0 1 5 - 4 - - - - - - - - - - - - - - - - - - 1— — " 4 - 1- 1- \ - i -

-0.02---------‘---------- l-------- i-------- i---------- i---------- i--------
0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4

tim e

Figure 6.16. Response of flexible arm with PD controller and NN saturation
compensator. Flexible modes.

From above simulation, the PD gain is selected specially to keep the flexible link

tip tracking error within 10 percent subject to the saturation constraints; when the NN

saturation compensator is imposed, the tracking error and flexible mode vibration are

more than five times improved. It verifies the effectiveness o f the proposed robust

composite NN saturation compensator for single flexible link.

In this chapter, A singular-perturbation based robust composite saturation

compensator consisting of an NN slow dynamics subcompensator and NN fast dynamics

subcompensator is presented. It uses two neural networks for two different control

components. The compensator efficiently prevents the control signal from being

saturated, thus providing the intelligent anti windup saturation control scheme. Rigorous

stability proof is given using Lyapunov theory. Simulation results show that the proposed

+-m
\ i l l ! !l

Mi I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

saturation compensation techniques can be effective for an underactuated system such as

a single flexible link.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS AND RECOMMENDED

FUTURE WORK

7.1 Conclusions

This dissertation describes intelligent actuator saturation compensation

approaches for effectively controlling uncertain nonlinear systems with unknown actuator

saturation. It addresses the standard mathematical actuator saturation model, filtered

tracking error, designed assumptions, overall closed-loop nonlinear system dynamics,

outer loop controller structure, robust NN weight tuning law, tracking performance and

stability analysis, with extensive simulation results on various nonlinear system models.

Through conversion of the standard actuator saturation dynamics, artificial neural

network with the universal approximation property and learning capability successfully

estimates the modified actuator saturation function. The developed theory in this

dissertation is in a general framework readily applicable to practical NN actuator

saturation compensation problems.

The proposed saturation compensation schemes apply to several common

uncertain nonlinear system dynamics such as a general SISO nonlinear system with

Brunovsky form and some MIMO nonlinear system dynamics (Xu and Ioannou (2003))

such as the rigid robotic dynamics and the flexible robotic dynamics. Based on filtered

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

error dynamics design and proper Lyapunov function candidate selection, the on line

weight tuning law is derived to ensure the small tracking error and the bounded internal

states. As indicated in the development of the compensator, no actuator output is assumed

known, rigorous stability proof is given and simulation examples verify the satisfied

performance.

7.2 Recommended Future Work

Since a number of compensation schemes for the common actuator nonlinearity

such as saturation, deadzone, backlash, hysteresis etc. have appeared (Hu and Lin

(2001)), (Gao and Selmic (2003)), (Lewis, Campos, and Selmic (2002)), (Selmic and

Lewis (2001)), (Narendra and Balakrishana (1997)), (Tao and Kokotovic (1994)), (He

and Jagannathan (2004)). The schemes were developed to accommodate individual

actuator nonlinearity. In reality, the several kinds of actuator nonlinearity coexist with

each other at the same time. If people just combine the above mentioned individual

compensation scheme to tackle the combined actuator nonlinearities, the increased

computation burden will be problematic. Additional research should be performed in

developing the methodology of simple and composite actuator nonlinearity compensation

scheme to accommodate the combined actuator nonlinearities.

In Tao’s recent book on actuator failure (Tao, Chen, Tang and Joshi (2004)),

adaptive law is designed to automatically to adjust the controller parameters based on the

system response errors emerged from the actuator failures. He mainly focused on the

fixed-value actuator failures, referred to as “lock-in-place” actuator failures, in which the

actuator output may get stuck at some unknown fixed (varied, but bounded values) at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

unknown time instants and cannot be influenced by further actuator control input. This

characteristic has similarity as the saturation case addressed in this dissertation. The

different point is that the NN saturation compensation control law developed in this

dissertation is added in the same saturated actuator, while the adaptive actuator failure

compensation control law (Tao, Chen, Tang and Joshi (2004)) is executed on some other

redundant functional actuators to achieve the desired control objective. It is reasonable to

extend/modify this developed saturation compensation scheme and apply to fixed-value

actuator failures which have the similar characteristics as the saturation.

In the designed actuator nonlinearity compensation schemes, NNs with the

universal approximation property and learning capability (Lewis, Jagannathan, and

Yesildirek (1999)), (Narendra (1991)) have proved to be a powerful tool to model,

identify and control the complex dynamic nonlinear systems with parameter uncertainty.

NNs are used to estimate the unknown actuator failure and/or actuator nonlinear

dynamics and/or function and compensate it. The objective of the use of NN is to design

an adaptive on-line NN weight tuning law for updating the parameter estimates to modify

the control law to accommodate the common actuator nonlinearities. Fuzzy logic has

been used for its similar approximation property as NN. The classification property-that

is, to discriminate information based on regions of input variables (e.g., positive or

negative) of fuzzy logic (Wang (1994)) makes them natural candidate for the rejection of

errors generated by the common actuator nonlinearities such as deadzone, saturation,

backlash, hysteresis etc. and an ideal candidate for compensation of non analytical

actuator nonlinearities (Lewis, Liu, Selmic and Wang (1997)), an extension to the

research presented herein, future work should be performed in developing the actuator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

saturation compensation using adaptive fuzzy logic, as some fore researcher has done

already.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A

SIMULATION SOURCE CODE

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

/ / Saturation source code using C++

/ * - - - —

This is control sim ulation o f nonlinear system with saturation based on paper
"Robust com posite saturation com pensator for single flexib le link using feedforward and
recurrent NNs"

#include <stdio.h>
#include <math.h>
//include <stdlib.h>
#include <m alloc.h>
//include <w indow s.h>

/* Parameters for sim ulation, tim e step, plotting tim e,... */
#define tim e step 0.001
#defm e print_step 50
#define tfinal 18

#defm e N1
//define N 2
#define N 3

10
1

/ / Input layer
// H idden layer
// Output layer

#define w tod 1 /57.2958

/* Parameters o f the N N (N eural N etw ork F lexib le used as com pensator) */
d e fin e N F l 9 //In p u t layer
#define N F2 20 // H idden layer
#define N F3 1 // Output layer

//define ns 2 // number o f slow system states
//define nsF 4 // number o f fast system states
#define nsFE 4 / / num ber o f fast system estimator states

double saturationlimit =
double slope = 1;

2 .50000000 ; // saturation lim it
// slope o f saturation

double t = 0.0;
double tF = 0.0;

double tuning s = 20;
double k l = 2;

// tuning parameter for N N R
// parameters for tuning law in N N R

double tuning G = 1 8 ; // tuning parameter for N N F
double h = 0.2; // parameters for tuning law in N N F
/* External variables w hich are used by N N tuning law */
double norm r = 0; // norm o f the rigid states filtered tracking error;
double norm zeta tilda; // norm o f fast states error
double zeta_tilda[4] [1];

int N 2 n n = N2; // N N 2_nn, N N 3_n n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

int N3 nn = N 3; // are just for external variables;

int NF2 nn = N F 2 ; // N N 2 jn n , N N 3 nn
int NF3 nn = N F 3 ; // are just for external variables;

double A S [4][4] = {0, 1 ,0 , 0 , 0 , 0 , 1 ,0 ,0 , 0 ,0 , 1 ,-1 ,-1 ,-1 ,-1 j ;
double A F [4][4] = {0, 0 , 1, 0 , 0, 0, 0, 1, -2238 .1 , 13051, 0 , 0 , 815 .7292 , -6 8 6 0 .2 , 0 , 0;

double B F [4][1]= { 0 ,0 ,3 .2 4 9 , 14 .7183};
d ou b lep [4][4] = { 1 , 0 , 0 , 0 , 0 , 1 ,0 , 0 , 0 , 0 , 1 ,0 , 0 , 0 ,0 , 1};

double N N F [1][1]; / /N N output;
double w F [l] [l] , u F [l] [l] , tauF;
double vF {4][1], norm W F;
double epson = 0.26;

int m ain() {

double x[ns], xFjnsFj, xFE[nsFE]; // states o f the nonlinear system s;
double xd[ns]; / / desired trajectory;

double x NNf N 1 1; // input o f N N R system s, [qd, qdp,e,edot]
double x _ N N F [N F l]; //in p u t o f N N F

double V m in, V m ax, vO m in, vO max; // Initialization for N N R
double V F m in , VF m ax, vF O m in , vFO m ax; // Initialization for N N F

double V [N l][N 2] ,v 0 [N 2];
double W [N 2+1][N 3];
double N N {N 3][1];
double V F tN F l]fN F 2],v F 0 [N F 2]; / /N N
double W F [N F 2+ 1] [N F 3];

double R A N M A X = 32676.0;

double e[2];
double r;
double F h a t,g ;
double Yd;

double w , u bar, tau;
double Lambda[2];
double Kv;

// robust term vR
double fM x = 1 .5 ;
double vR , signr;

// robust term vF
double Kr = 100;
double K w = 10;

double K p F [l] [2]= {-0 .18479716427186 , 1 .12229191902755},
K d F [l] [2]= {0 .04679366635748 , 0 .47433958126960};

// tracking errors;
// filtered tracking errors;
// Approxim ate nonlinear robot function

// signals w , u, and tau;
// parameter Lambda;
// PD gain;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

double B r_bar=l, B r b a r _ in v = l; //parameter for tao bar and tao

double F fl bar = 0, G fl bar = 0;
double K fl[2][2]= { 1 4 .0 7 3 3 ,0 ,0 ,2 2 5 .1 7 3 4 } ;

double K ff_tilda[2][2];
K ff tilda[0][0]=pow (epson ,2)*K ff[0][0];
K ff_tilda[0] [1]=pow (epson ,2) *K ff[0] [1];
K ff tildat 1] [0] =pow (epson ,2)*K ff[1] [0];
K ff j i ld a f 1] [1]=pow (epson ,2)*K ff[1] [1];

double K ffjild a _ in v [2][2] = { 1.0511, 0, 0, 0 .0657};

double H ff bar_inv[2][2] = {0 .001386 , .0 0 2 6 3 7 ,0 .0 0 2 6 3 7 ,0 .0 0 7 2 3 5 } ;

double H ff bar[2][2] = {2352 .5 , -857 .4 , -857 .4 , 45 0 .7 } ,
V frl_bar[2]| 1]= {-0 .042 , 0 .337},
B fl_ b a r [2][l] = {3 .2497 , 14.7183};

double x i_bar[2][l];
int i , j ,k ;

srand(10000);

// PAR AM ETERS for rigid robot PD controller
K v = 10.0;

Lambda[0] = 2.0;
L am bdafl] = 1.0;

// Random numbers are uniform ly distributed betw een v jtn in and v max
V m in = -1.0; V n ia x = 1.0;
vO min = -20.0; vO niax = 20.0;

// Generate the random values for V
for (i=0; i< N l; i++)
i

for (j=0; j<N 2; j+ +)
{

// Generate the random number betw een 0 and 1 for w eights V
V [i][j] = rand() / R A N M A X ;
// T ransfonn the random number to the (V m in, V max) interval
V ti][j] = (V |i |[j | * (V max - V m in)) + V min;

}i
i

11 Generate the random values for vO
for (i=0; i<N2; i++)
/ / Generate the random num ber betw een 0 and 1 for w eights vO
v0[i] = rand() / R A N M A X ;
//Transform the random number to the (vO min, vOmax) interval
vOfi] = (v0[i] * (vO m ax - vO m in)) + vO min;
i
i

//N N F
// Random numbers are uniform ly distributed betw een vF min and vF max
VF_ min = -1 .0 ; V F j n a x = 1 .0 ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

v F O m in = -15.0; vFO_max = 15.0;
// Generate the random values for VF
for (i=0; i< N F l; i++)
ii
for (j=0; j<N F 2; j+ +)

{
// Generate the random number betw een 0 and 1 for w eights V
V F[i][j] = rand() / R A N M A X ;
//Transform the random number to the (V min, V jm a x) interval
V F [i][j] = (V F[i][j] * (V F m a x - VF m in)) + V F m in ;

ii

/ / Generate the random values for vFO
for (GO; i<NF2; i++)
// Generate the random number betw een 0 and 1 for w eights vO
vF0[i] = rand() / R AN M AX;
//Transform the random number to the (vO m in, vOmax) interval
vF0[i] = (vF 0[i] * (vFO m ax - vF O m in)) + vF O m in ;
}

// INITIA LIZA TIO N
for (i=0; i<ns; i+ +) x[i] = 0.0;
for (i=0; i<nsF; i+ +) xF[i] = 0.1;
for (i=0; i<nsFE; i+ +) xFE[i] = -0.001;

// initialize the second layer w eights to 0;
for (i=0; i< (N 2 + l); i++)

for G = 0 ;j< N 3 ;j+ +)
W [i][j] = 0.0;

for (i=0; i< (N F 2 + l); i++) {
for (j=0; j<N F 3; j+ +)

F[i]Lj] = 0.0;

// O pen the files for the storage o f the data
FILE *frobot, *fweight;

frobot = fopen("c:\\m atlab6p5\\paper flexibleNW x_robot.dat","w");
fw eight = fopen("c:\\m atlab6p5\\paperflexib leN \\xN N w eight.dat" ,"w ");

// initialization for N N F
//N N F [0][0] = 0;
uF[0][0] = 1;

/* main iteration loop */
k = 0;
do {

// finding desired path
double ainp = 1.0;
double om ega = 1 ;

xd[0] = amp * sin(om ega*t);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xd[l] = amp * omega * cos(omega*t);

// finding tracking errors
e[0] = x [0] -x d [0] ;
e[1] = x [l] - x d [l];

// finding filtered tracking errors
r = Lam bda[0]*e[0] + L am b d a [l]* e[l];

// finding the norm o f r
n o r m r = sqrt(r*r);

// Calculate Fhat matrix
Fhat = -0 .0 0 9 1 * x [l];
g = 0.4541;

// signal Y d
Y d = -am p*om ega*om ega*sin(om ega*t) + Lambda[0 |*e[0];

// robust term for N N R
if(r>0) signr = 1;
else i f (r = 0) signr = 0;
else signr = -1;

vR = -fM x*signr;
vR = 0;

// rigid control signal w
w = (-Fhat - Y d - K v * r + vR)/g;

// Calculate the N N R
/ / get the x N N , input states o f N N
x N N [0] = xd [0]; x_N N [1] = xd[1];
x_N N [2] = e[0]; x_N N [3] = e [l] ;

// C alculate aux2 = V T * x N N + vO;
// find the V T (transpouse);
double V _transp[N 2][N l];
M atrixTransp(& V (0][0], N l , N 2 , & V _transp[0][0], N 2 , N l) ;

/ / f in d V T * x _ N N = au x l;
double a u x l[N 2][l] ;
M atrixM ul(& V jransp[0][0], N 2 , N l , & x_N N [0], N l , 1,

& a u x l[0][0] ,N 2 , 1);

// find aux2 = aux 1 + vO = V T * x_ N N + vO;
double au x2[N 2][l];
M atrixAdd(& aux 1 [0][0], N 2, 1, & v0[0], N 2, 1,

& aux2[0][0], N 2 , 1);

// find the sigm oid activation function o f N N ;
double s ig m a [N 2 + l][l];
for (i= l; i< (N 2 + l); i++)
sigm a[i][0] = 1.0 / (1 .0 + ex p (- l* (a u x 2 [i- l][0])));

sigm a[0][0] = 1.0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

// find NN: NN = WT * sigma;
double WT[N3][N2+1];
MatrixTransp(&W[0][0], N2+1, N3, &WT[0][0], N3, N2+1);
MatrixMul(&WT[0][0], N3, N2+1, &sigma[0][0], N2+1, 1,

&NN[0][0], N3, 1);

NN[0][0] = 0;
u b ar = w - NN[0][0];

/ // SATURATION
if ((u bar > saturationlimit/slope) || (u bar< -saturationlimit/slope))
{

if (u bar >= saturationlimit/slope) tau = saturationlimit;
if (u_bar < -saturationlimit/slope) tau = -saturationlimit;

} else {
tau = ubar;

double KH[2][2];
MatrixMul(&Kff tilda inv[0|[0], 2, 2, &Hff_bar_inv[0][0], 2, 2,

&KH[0][0], 2, 2);

double Vfrl bar 1 [2][1];
Vfrl_barl[0j[0] = -Vfrl_bar[0][0]*x[l];
Vfr 1 bar 1 [1] [0] = -Vfrl_bar[l][0]*x[l];

doubleBfl barl[2][l];
B fl barl[0][0] = Bfl_bar[0][0]*tau;

B fl barl[1][0] = B fl bar[l][0]*tau;

double VB[2][1];
MatrixAdd(&VfrI bar 1 [0][0], 2, 1, & Bflbar1 [()][()], 2, 1,

&VB[0]f0], 2, 1);

MatrixMul(&KH[0][0], 2, 2, &VB[0][0], 2, 1,
&xi_barf0][0], 2, 1);

// get qf and qfp
double zetal2[2][l], zeta34[2][l];
double qf[2][l],qf)p[2]f 1];

zetal2[0][0] = xF[0];
zetal2[l][0] = xF[l];
zeta34t0]t0] = xF[2];
zeta34[l](0] = xF[3];

double qfl[2][1];
MatrixAdd(&zetal2[0][0], 2, 1, &xi bar[0][0], 2, 1,

qfl [0][0], 2, 1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

q f[0][0] = pow (epson ,2)*q fl [0][0];
q f[l][0] = p o w (ep so n ,2)* q fl[l][0];
q fp [0] |0 | = ep son * ze ta 3 4 [0] [Oj;
q fp [l][0] = epson*zeta34[l][0];

double p f[l][l], p f l [l] [l] , d f[l][l], d f l[l] [l] , kx[l][l];
MatrixMul(&KpF[0][0], 1,2, &zetal2[0][0], 2, 1,

&pfl[0][0], 1, 1);
MatrixMul(&KdF[0][0], 1, 2, &zeta34[0][0], 2, 1,

&dfl[0][0], 1,1);
pf[0]t0] = -pfl[0]t0];
df[0]t0] = -dfl[0][0];

Matrix Add(&pf[0][0], 1, l,& df[0][0], 1,1,
&wF[0][0], 1,1);

// robust term for NNF: vF = Kr*(zeta_tilda) + Kw * norm) W I) * (ze ta ti Ida)

zeta tilda[0][0] = (xF[0] - xFE[0]);
zeta tilda[l][0] = (xF[l] - xFE[l]);
zeta_tilda[2][0] = (xF[2] - xFE[2J);
zeta_tilda[3][0] = (xF[3] - xFE[3]);

// calculate norm zeta tilda
double zeta tilda_transp[l][4], temp ztt[1][11;
MatrixTransp(&zeta_tilda[0][0], 4, 1, &zeta_tilda transp[0][0J, 1, 4);
MatrixMul(&zeta tilda transpt0J[0], 1,4, &zeta tilda[0][0}, 4,1,

&temp_ztt[0][0], 1,1);

norm zeta tiIda = sqrt(temp_ztt[0][0]);

// calculate norm WF
double WF_transp[NF3][NF2+l], temp W [l][l];
MatrixTransp(&WF[0][0], NF2+1, NF3, &WF_transp[0][0], NF3, NF2+1);
MatrixMul(&WFjransp[0][0], 1.NF2+1, &WF[0][0], NF2+1.1,

&temp W[0][0], 1,1);
norm WF = sqrt(temp_W[0][0]);

// prepair to calculate vF
double rzeta tildaf4] [1J;
rzeta_tildaf0][0] = Kr*zetatilda[0)[0];
rzeta tilda[1J [0] = Ki'*zeta tilda[l][0];
rzeta tilda[2][0] = Kr*zetatilda[2][()j;
rzeta_tilda[3][0] = Kr*zeta tilda[3 J [Oj;

double wzeta_tilda[4]fl];
wzeta_tilda[0][0] = Kw*norm_WF*zeta_tilda[0][0];
wzeta_tilda[l]fO] = Kw*norm_WF*zeta_tildaf l][0];
wzeta_tilda[2][0] = Kw*norm_WF*zeta_tilda[2][0];
wzeta_tilda[3][0] = Kw*norm WF*zeta_tilda[3][0];

M atrixAdd(& rzeta_tilda[0][0], 4 , 1, & w zeta tilda[0][0], 4 , 1,
& vF [0][0], 4 , 1);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

for(i=0;i<4;i++) for(j-0;j< I ;j i ') vF[i][j] = 0;

// calculate the NNF
x_NNF[0] = xF[0];
x_NNF[l] = xF[l];
x_NNF[2] = xF[2];
x_NNF[3] = xF[3];
x_NNF[4] = zeta_tilda[0][0];
x_NNF[5] = zeta_tilda[l][0];
x_NNF[6] = zeta_tilda[2][0];
x_NNF[7] = zeta tilda[3][()];
x_NNF[8] = uF[0][0];

// Calculate auxF2 = VFT * x NNF + vFO;
// find the VFT (transpouse);
double VF_transp[NF2][NFl];
MatrixTransp(&VF[0][0], NF1, NF2, &VF_transp[0][0], NF2, NF1);

// find VFT * x NNF = auxFl;
double auxFl[NF2][l];
MatrixMul(&VF transp[0][0], NF2, NF1, &x NNF|0], NF1, 1,

&auxFl[0][0],NF2, 1);

// find auxF2 = auxFl + vFO = VFT * x NNF + vFO;
double auxF2[NF2][l];
MatrixAdd(&auxFl[0][0],NF2, 1, &vF0[0], NF2, 1,

&auxF2[0][0], NF2, 1);

// find the sigmoid activation function o f NN;
double sigmaF[NF2+l][l];
for (i=l; i<(NF2+l); i++)

sigmaF[i][0] = 1.0 / (1.0 + exp(-l*(auxF2[i-l][0])));

sigmaF[0][0] = 1.0;

// find NN: NN = WT * sigma;
double WFT[NF3][NF2+1];
MatrixTransp(&WF[0][0], NF2+1, NF3, &WFT[0][0], NF3, NF2+1);
MatrixMul(&WFT[0][0], NF3, NF2+1, &sigmaF[0][0], NF2+1, 1,

&NNF[0][0], NF3, 1);

/ get uF = wF - NNFout
NNF[0][0] = 0;
// without NNF
uF[0][0] = wF[0][0] - NNF[0](0];

// Print the chosen values to the screen and file;
if (k % print step == 0) {
k = 0;

// print the values to the screen;
printf ("%f %f %f %f %f %f %f %f %f %f \n", t, e[0], e[l], tau,

xF(0], xF[l], xd[0],x[0], qf[0][0], qfll][0]);
// print the values to the file;
fprintf(frobot, "%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f \n",t,e[0],e(l],tau.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

xF[0], xF[l], xd[0],x[0], xd[l],x[l],qf[0][0], qf[l][0],NNF[0][0], uF[0][0],
zeta tildafO][0], zeta tildaf 1][0J, zeta_tilda[2][0],zeta_tilda[3][0]);

fprintf(fweight,"%f %f\n", W[0][2], W[4][7]);

k++;

// Integration for rigid robot arm dynamics
rk4(flexibleR_dyn, 2, &x[0], &tau, &x[0], t, t+time_step);

// Integration for flexible robot arm dynamics
rk4(flexibleF_dyn, 4, &xF[0], &uF[0][0], &xF[0], t, t+time_step);

// Integration for flexible robot arm estimator dynamics
rk4(flexibleFE dyn, 4, &xFE[0], &uF[0][0], &xFE[0], t, t+time_step);

// prapare for W weights integration, the V weights are not tunable;

// NNR weight tuning

double tau_W 1 [N2+1][N3],tau_W[N2+1] [N3];
MarixMul(&sigma[0][0], N2+1, l,& r, 1, 1,

&tau W 1[0][0],N2+1,N3);
// Multiply result by S*g
for (i=0; i<(N2+l); i++) {
for(j=0;j< l;j++)

tau_W[i][j] = tuning_S*g*tau_Wl[i][j];

// Integration for NN weights W
rk4(weightsJW, (N2+1)*N3, &W[0][0], &tau W[0J[0], &W[0][0], t, t+time_step);

double tau^WFl[NF2+ l][NF3],tau_WF[NF2+1][NF3];
double BF transp[l][4];
double temp_sB[NF2+l][4];
MatrixTransp(&BFfO]tOJ, 4 ,1 , &BF transp[0][0|, 1,4);
MatrixMul(&sigmaF[0][0], NF2+1, 1, &BF transp[d|[0j, 1,4,

&temp_sB[0][0], NF2+1, 4);
double temp_sp[NF2+l][4];
MatrixMul(&temp sB[0][0], NF2+1, 4,&p[0][0], 4, 4,

&temp_sp[0][0], NF2+1, 4);
MatrixMul(&temp_sp[0][0], NF2+1, 4,&zeta tilda[0][0], 4, 1,

&tau_WFl[0]f0], NF2+1, 1);
// Multiply result by G
for (i=0; i<(NF2+l); i++)
for (j~0; j< l; j++)

tau_WF[i][j] = tuning_G*tau_WFl [i][j];

// Integration for NN weights W
rk4(weights_WF, (NF2+1)*NF3, &WF[0]t0], &tau_WF[0][0], &WF[0][0], t, t+time_step);

t += time step; // increment the time;

} while (t <= tfinal);

fcloseall();
return 0;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

} // E N D o f main function

// R unge Kutta 4. order
void rk4 (void (*rastko)(double* x, double* tau, double* xdot),
int states num,
double* x j n ,
double* u,
double* x_out,
double tO,
double tf)

int i;
double h = tf-tO;
double h2 = h/2.0;
double h3 = h/3.0;
double h6 = h/6.0;
double *x_midl, *x mid2, *x_end, *xdot_init, *xdot m id i;
double *xdot mid2, *xdot end;

x m i d l = (double *) calloc(states_num, sizeof(double));
x_mid2 = (double *) calloc(states num, sizeof(double));
x end = (double *) callocfstates num, sizeof(double));
xdot init = (double *) calloc(states_num, sizeof(double));
xdot mid 1 = (double *) callocfstates num, sizeof(double));
xdot mid2 = (double *) callocfstates num, sizeof(double));
xdot end = (double *) calloc(states num, sizeof(double));

(*rastko)(x_in, u, xdot init); /* get xdot at initial x */

for (i O; i<states_num; i++)
x_midl[i] = x_in[i] + h2*xdot_init[i];
(*rastko)(x_midl, u, xdot midl);

for (i=0; i<states num; i++)
x mid2[i] = x in[i] + h2*xdot midi[i];
(*rastko)(x_mid2, u, xdot_mid2);

for (i=0; i<states num; i++)
x_end[i] = x_in[i] + li*xdotinid2[i];
(*rastko)(x_end, u, xdot end); /* get xdot at estimated x(t+dt) */

for (i=0; i<states num; i++)
x outfi] = x in [i| + h 6*(xdot initfi] + xdot end[i])
+ h3*(xdot_midl [i]+xdot_mid2[i]);

free(x midl); ffee(x mid2); free(x end); free(xdot init);
freefxdot midi); free(xdot inid2); free(xdot end);

} //E N D

void flex ib leR dyn(double* x, double* tau, double* xdot) {

/* --

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

Function for calculating the xdot, based on the dynamics of the
sustem.

INPUT VALUES: double* x, double* tau
RETURNED VALUE: douboe* xdot
 */

// Parameters o f the nonlinear system
double xO, x l , tauO;
xO = *x;
xl = *(x+l);

tauO = *tau;
*xdot = x 1;
*(xdot+l) = -0.0091*xl + 0.4541*tau0;

1 //Close rogid robot dyn function

void flexibleF_dyn(double* x, double* tau, double* xdot) {

/* -
Function for calculating the xdot, based on the dynamics of the
sustem.

INPUT VALUES: double* x, double* tau
RETURNED VALUE: douboe* xdot
— */

// Parameters o f the nonlinear system
extern double epson, AS[4][4], AF[4][4], BF[4][1];
double xO, x l, x2, x3, tauF;

xO = *x;
xl = *(x+l);
x2 = *(x+2);
x3 = *(x+3);

tauF = *tau;

// State space model o f the robot

*xdot = (l/epson)*x2;
*(xdot+l) = (l/epson)*x3;
(xdot+2) = (l/epson)(AF[2][0]*x0 + A F[2][l]*xl + BF[2][0]*tauF);
(xdot+3) = (l/epson)(AF[3][0]*x0 + A F[3][l]*xl + BF[3][0]*tauF);

} //C lose flex ib le robot dyn function

void IlexibleFE_dyn(double* x, double* tau, double* xdot) { // here is the same tau=uF as in
above equ
extern int NF2_nn, NF3_nn;
extern double epson ,NNF[1][1], uF[l][l], BF[4][1],AS[4][4], AF[4][4], vF[4][l];

double xO, x l , x2, x3, tauF;
xO = *x;
xl = *(x+l);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

x2 = *(x+2);
x3 = *(x+3);
tauF = *tau;

xdot = (l/e p so n) (x l + vF[0][0J);
* (x d o t+ l) = (l/ep so n)* (x2 + v F [l][0]);
(xdot+2) = (l/ep so n) (x 3 + B F[2][0]*(tauF +N N F [0][0]) + vF [2][0]);
(xdot+3) = (l/ep so n) (-xO -x l - x2 - x3 + B F [3][0]*(tauF +N N F [0][0]) + vF [3][0]);

} //C lose flexib le robot dyn estim ator function

// N N R tuning law dynam ics
void w eights W /double* W , double* tau, double* W dot)
{
extern double n o r m j , k l , tuning S;
extern int N 2_nn, N 3 nn;
in t j ,k ;

// Tuning law: W approxdot = tau - k 1 *S*norm _r*W approx
for (j=0; j< N 2 nn i 1; j+ +) {

for (k=0; k<N 3_nn; k++) {
W dot[j*N3 nn+k] = tau[j*N3 tin ! k] - k l*tuning_S*norm _r*(W [j*N 3_nn+k]);

\i
}

}

II N N F tuning law dynam ics
void w eights W F(double* W F, double* tau, double* W Fdot)
{
extern double epson, norm zeta tilda, h, tuning G;
extern int N F2_nn, NF3 nn;
in t j ,k ;

// Tuning law: W Fdot = G *sigm aF*BF'*P'*zeta_tilda - h*G*norm zeta*W F;
for (j -0 ; j< N F 2_ im + 1; j+ +) {

for (k=0; k<NF3 nn; k++) {
W Fdol[j*N F3_nn+k] = (tau[j*NF3 nn+k] -
h * tuni n g C i * no r m z e ta tilda*(W F[j*NF3 _nn+k]))/epson;
}

1
}

/ * ... — -............................
Functions for matrix manipulation: transpouse, m ultiplication,
sumation.
 */

// Sum o f 2 m atrices

void Matrix Add (double *A 1, int m l , int n l ,
double *A 2, int m 2, int n2, double *R, int p, int q) {

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

int j , k;

// C heck i f matrix dim enstions are matching for this operation;
i f (!(m l= = m 2 && m l= = p && n l= = n 2 && n2==q)) M essageB ox(N U L L , "Check your matrix
dim ensions !", "ERROR: Matrix dim ensions not m atching !", M B IC O N E X C L A M A T IO N);

for (j=0; j< m l; j+ +) {
for (k=0; k < n l; k++) {

(R + j n l+ k) = *(A1 + j* n l+ k) + *(A2 + j*n l+ k);

\ //C lose M atrixAdd function

11 M ultiplication o f the m atrices

/* - —

This function m ultiplis the matrix A l(m l , n l) w ith matrix
A 2(m 2, n 2) . T he result is the matrix R (m l, n2).

 */

void M atrixM ul (double *A 1, int m l , int n l ,
double *A 2, int m 2, int n2, double *R, int p, int q) {

int j , k, 1;
double sum;

// Check i f matrix dim enstions are m atching for this operation;
i f (!(n l= = m 2 & & m l= = p & & n2==q)) M essageB oxfN U L L , "Check your matrix d im ensions !",
"ERROR: M atrix d im ensions not m atching !", M B IC O N E X C LA M A T IO N);

for (i=0; j<m l; j+ +) {
for (k=0; k<n2; k+ +) {
sum = 0;

for (1=0; l< n l; 1++) {
sum = sum + (*(A 1 + j* n l+ l)) * (*(A 2 + l*n2+k));

}

*(R + j*q+k) = sum;

} //C lose M atrixM ul function

// Transpose o f matrix

/*------

This function transpose matrix A l(m ,n). The result is the matrix R (n ,m)—— */

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

vo id M atrixTransp (double * A I , int m, int n,
double *R, int p, int q) {

int j , k;

// C heck i f matrix dim enstions are m atching for this operation;
i f ((m != q) || (n != p)) M essageB ox(N U L L , "Check your matrix d im ensions !", "ERROR: Matrix
dim ensions not m atching !", M B IC O N EX C LA M A TIO N);

for (j=0; j<m ; j+ +) {
for (k=0; k<n; k++) {
*(R + k*m +j) = *(A1 + j*n+k);

1

J //C lose M atrixTransp function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

[1] J. Apkarian, “Systematic Controller Design and Rapid Prototyping,” Matlab
Digest www.mathworks.com/company/digest/dec98/systematic.shtml, Dec 1998.

[2] K. J. Astrom and B. Wittenmark, Computer-Controlled Systems: Theory and
Design, Prentice Hall; 3rd edition, November 20, 1996.

[3] A.M. Annaswamy, S. Evesque, S. Niculescu, and A.P. Dowling, “Adaptive
Control of a Class of Time-delay Systems in the Presence of Saturation,”
Adaptive Control o f Nonsmooth Dynamic Systems, Eds. G. Tao and F. Lewis,
Springer-Verlag, New York, NY, 2001.

[4] B. C. Atherton, “An Analysis Package Comparing PID Anti-Windup Strategies,”
IEEE Control Systems Magazine, Issue 2, pp. 34 - 40, April 1995.

[5] R. Barron, “Universal approximation bounds for superpositions o f a sigmoidal
function,” IEEE Trans. Info. Theory, vol. 39, no. 3, pp. 930-945, May 1993.

[6] A. G. Barto, “Reinforcement learning and adaptive critic methods,” Handbook of
Intelligent Control, edited by David A. White and Donald A. Sofge, Van Nostrand
Reinhold, pp. 469-492, New York. Jan. 1992.

[7] J. Campos and F. L. Lewis, “Adaptive critic neural network for feedforward
compensation,” Proc. o f the American Controls Conference, pp. 2813-2818,
1999.

[8] J. Campos, and F.L. Lewis, “Deadzone compensation in discrete-time using
adaptive fuzzy logic,” IEEE Trans. Fuzzy Systems, vol. 7, no. 6, pp. 697-707,
1999.

[9] C.W. Chan, and K. Hui "On the existence of globally stable actuator saturation
compensators," International journal o f Control, Vol. 69, no. 6, pp. 773-788,
April 1998.

[10] F.-C. Chen, and H. K. Khalil, “Adaptive control of nonlinear systems using neural
networks,” Int. J. Contr., vol. 55, no. 6, pp. 1299-1317, 1992.

[11] F.C. Chen and ILK. Khalil, “Adaptive control of nonlinear discrete-time systems
using neural networks,” IEEE Transactions on Automatic Control, vol. 40, pp.
791-801, May 1995.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mathworks.com/company/digest/dec98/systematic.shtml

107

[12] Y. -K. Choi, M. J. Lee, S. Kim, “Design and implementation of Adaptive Neural-
Network Compensator for Control Systems,” IEEE Trans. Industrial Electronics,
Vol.48, no.2, Apr 2001.

[13] S. Commuri and F. L. Lewis, “CMAC neural networks for control of nonlinear
dynamical systems: structure, stability and passivity,” Proc. IEEE Int. Symp.
Intell. Contr., Monterey, pp. 123-129, Aug. 1995.

[14] M. J. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform
ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Automat.
Contr., vol. 26, pp. 850-861, May, 1982.

[15] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math.
Contr. Signals, Syst., vol. 2, no. 4, pp. 303-314, 1989.

[16] J. B. Dabney and T. L. Harman, Mastering Simulink, Pearson Prentice Hall, May
2003.

[17] C. A. Desoer and S. M. Shahruz, “Stability of dithered nonlinear systems with
backlash or hysteresis, ’’Int. J. Contr., vol. 43, no. 4, pp. 1045-1060, 1986.

[18] B. Friedland, Advanced Control System design, Prentice-Hall, New Jersey, 1996.

[19] K. Funahashi, “On the approximate realization of continuous mappings by neural
networks,” Neural Networks, vol. 2, pp. 183-192, 1989.

[20] W. Gao and R. Selmic, “Neural network control of a class of nonlinear systems
with actuator saturation,” Proceedings o f American Control Conference, Boston,
Massachusetts, USA, pp. 2569-2574, June 2004.

[21] W. Gao and R. Selmic, “Neural network control of robot manipulator and a class
of nonlinear systems with actuator saturation,” submitted to IEEE Trans. Neural
networks, July 2003.

[22] S. S. Ge, T. H. Lee, and G. Zhu, “Tip tracking control of a flexible manipulator
using PD type controller,” Proceedings o f IEEE Int. Conf. On Control
Applications, pp. 309-313, 1996.

[23] J. W. Gilbart and G. C. Winston, “Adaptive compensation for an optical tracking
telescope," Automatica, vol. 10, pp. 125-131, 1974.

[24] L. B. Gutierrez, F. L. Lewis and J. Andy Lowe, “Implementation of a neural
network tracking controller for a single flexible link: Comparing with PD and PID
controller,” IEEE Trans. Ijidustrial Electronics, Vol. 45, no. 2, pp.307-318, April
1998.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

[25] R. Hanus and Y. Peng, “Conditioning Technique for Controller with Time-
Delays,” IEEE Trans. Automat. Contr., vol. AC-37, pp.689-692, May, 1992.

[26] P. He and S. Jagarmathan, “Reinforcement learning based output feedback control
of nonlinear systems with input constraints,” Proceedings o f American Control
Conference, Boston, Massachusetts, USA, pp.2563-2568, June 2004.

[27] N. Hovakimyan, F. Nardi, A. Calise, “A Novel Error Observer based Adaptive
Output Feedback Approach for Control of Uncertain Systems,” IEEE
Transactions on Automatic Control, vol.47, no.8, pp. 1310-1314, 2002.

[28] N. Hovakimyan, F. Nardi, A. Calise, H. Lee, “Adaptive Output Feedback Control
of a Class of Nonlinear Systems using Neural Networks,”. International Journal
o f Control, Vol.74, no.12, pp.l 161-1169, 2001.

[29] T. Hu and Z. Lin, Control Systems with Actuator Saturation: Analysis and
Design, Birkhauser, Boston, 2001.

[30] S. Jagannathan and F. L. Lewis, “Multilayer neural network controller for a class
of nonlinear systems,” Proceedings o f the IEEE International Symposium on
Intelligent Control, pp.427-432, Aug. 1995.

[31] Jin-quan Huang and F. L. Lewis, “Neural-network Predictive Control for
Nonlinear Dynamic Systems with Time Delay, ” IEEE Trans. Neural Networks,
vol. 14, no. 2, pp. 377-389, Mar. 2003.

[32] B. Igelnik and Y. H. Pao, “Stochastic Choice of Basis Functions in Adaptive
Function Approximation and the Functional-Link Net,” IEEE Trans. Neural
Networks, vol. 6, no. 6, pp. 1320-1329, Nov. 1995.

[33] A. Isidori, Nonlinear Control Systems, 2nd ed. Berlin, Germany: Springer Verlag,
1989.

[34] S. Jagannathan and F. L. Lewis, “Multilayer discrete-time neural-net controller
with guaranteed performance,” IEEE Trans. Neural Networks, vol. 7, pp. 107-
130, Jan. 1996.

[35] E. N. Johnson, A. J. Calise, “Neural Network Adaptive Control of Systems with
Input Saturation,” In American Control Conference, Arlington, Virginia, June
2001 .

[36] H. K. Khalil, Nonlinear Systems, 3rd Ed., Prentice Hall, Upper Saddle River, NJ,
2002.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

[37] S. P. Karason and A.M. Annaswamy, “Adaptive control in the presence of input
constraints,” IEEE Transactions on Automatic Control, Vol. 39, pp.2325-2330,
1994.

[38] Y. Kim and F. L. Lewis, High level feedback control with neural networks,
Singapore: world scientific, 1998.

[39] J.-H. Kim, J.-H. Park, S.-W. Lee, and E. K. P. Chong, “A two-layered fuzzy logic
controller for systems with deadzones, ’’IEEE Trans. Industrial Electron., vol. 41,
no. 2, pp.155-162, Apr. 1994.

[40] R. L. Kosut, “Design of linear systems with saturating linear control and bounded
states,” IEEE Trans. Automat. Contr., 28(1), pp.121-124, 1983.

[41] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural-net robot controller
with guaranteed tracking performance,” IEEE Trans. Neural Networks, vol. 7, no.
2, pp. 1-11, Mar. 1996.

[42] F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control o f Robot Manipulators,
Macmillan, New York, 1993.

[43] F. L. Lewis, S. Jagannathan, and A. Yesildirek, Neural Network Control o f Robot
Manipulators and Nonlinear Systems, Taylor and Francis, Philadelphia, PA, 1999.

[44] F. L. Lewis, K. Liu, R. R. Selmic, and Li-Xin Wang, “Adaptive fuzzy logic
compensation of actuator deadzones,” J. Robot. Sys., vol. 14, no. 6, pp. 501-511,
1997.

[45] S. Lin, Goldenberg, A. A “Neural-network control of mobile manipulators,” IEEE
Transactions on Autoatic Control, Volume: 12 Issue: 5, pp.1121 - 1133, Sept.
2001.

[46] F. L. Lewis, J. Campos, and R. R. Selmic, Neuro-Fuzzy Control o f Industrial
Systems With Actuator Nonlinearities, SIAM Press, Philadelphia, PA, 2002.

[47] Z. Luo, “Direct strain feedback control of flexible robot arms: new theories and
experimental result,” IEEE Trans. Automatic control, vol. 38, no. 1, pp. 1610-
1612,1993.

[48] Mathworks, Inc., Writing S-Functions, Version 4, Natick, Mass: 2002.

[49] Mathworks, Inc Real-Time Workshop for use with Simulink, Version 5, 2002.

[50] W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for Control.
Cambridge, MA: MIT press, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

[51] M. Moallem, K, Khorasani, and R. A. Patel, “Inversion-based sliding control o f a
flexible link manipulator,” Int. J. Control vol, 71, no.3, pp. 477-490, Taylor and
Francis Ltd, 1998.

[52] M. Moallem, K, Khorasani, and R. A. Patel, “A integral manifold approach for tip
position tracking of flexible multi-link manipulators,” IEEE Transactions on
Robotics and Automation, Vol. 13, No. 6, pp. 823-837, December 1997.

[53] K. Nam, “Stabilization of Feedback Linearizable Systems Using a Radial Basis
Function Network,” IEEE Trans. Automat. Contr., vol.44, no. 5, May 1999.

[54] K. S. Narendra, “Adaptive Control Using Neural Networks,” Neural Networks fo r
Control, pp. 115-142. ed. W. T. Miller, R. S. Sutton, P. J. Werbos, Cambridge:
MIT Press, 1991.

[55] K. S. Narendra and A. M. Annaswamy, “A new adaptive law for robust
adaptation without persistent excitation,” IEEE Trans. Automat. Control, vol. 32,
no. 2, pp. 134-145, Feb. 1987.

[56] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Trans. Neural Networks, vol. 1, pp. 4-27,
Mar. 1990.

[57] W. Niu and M. Tomizuka, “A Robust Anti-Windup Controller Design for
Asymptotic Tracking of Motion Control System Subjected to Actuator
Saturation,” The 37th IEEE Conference on Decision and Control, Tampa,
December 1998.

[58] M. M. Polycarpou, “Stable adaptive neural control scheme for nonlinear
systems,” IEEE Trans. Automat. Contr., vol. 41, no. 3, pp. 447-451, March 1996.

[59] M. M. Polycarpou and P. A. Ioannou, “Modeling, identification and stable
adaptive control of continuous-time nonlinear dynamical systems using neural
networks,” Proc. Amer. Contr. Conf, vol. 1, pp. 36-40, 1992.

[60] D. V. Pokhorov and D. C. Wunch, “Adaptive critic designs,” IEEE Transaction
on Neural Networks, vol. 8, no.5, pp. 997-1007, 1997.

[61] D. A. Recker, P. V. Kokotovic, D. Rhode, and J. Winkelman, “Adaptive nonlinear
control of systems containing a dead zone,” in Proc. IEEE C onf. Decis. Contr.,
pp. 2111-2115, 1991.

[62] X. M. Ren, A. B. Rad, P. T. Chan and W. L. Lo, “Identification and control of
continuous-time nonlinear systems via dynamical using neural networks,” IEEE
Trans. Indus. Elec., vol. 50, pp. 478-486, June. 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

[75] J. E. Slotine and W. Li, Applied Nonlinear Control, J.-, Prentice Hall, 1991.

[76] J.-J. E. Slotine and W. Li, “Adaptive manipulator control: a case study,” IEEE
Trans. Automat. Control, vol. 33, no. 11, pp. 995-1003, Nov. 1988.

[77] F. C. Sun, Z. Q. Sun, L.B. Zhang and F. J. Xu, “Dynamic neuro-fuzzy adaptive
control for flexible-link manipulators,” International Journal o f Fuzzy Systems,
vol. 5, pp.432-437, June 2003.

[78] H. A. Talebi, R. V. Patel, and K. Khorasani, Control o f Flexible-link
Manipulators using Neural Networks, Springer 2001.

[79] H. A. Talebi, K. Khorasani and R. V. Patel, “Tracking control o f a flexible-link
manipulator using neural networks: experimental results,” Robotica, vol 20, pp.
417-427. 2002.

[80] G. Tao and P. V. Kokotovic, “Adaptive Control of plants with unknown dead-
zonesflE E E Trans. Automat. Control, vol. 39, pp.59-68, Jan. 1994.

[81] G. Tao and P. V. Kokotovic, “Adaptive control of systems with unknown output
backlash,” IEEE Trans. Automat. Control, vol. 40, no. 2, pp. 326-330, Feb. 1995.

[82] G. Tao and P. V. Kokotovic, “Continuous-time adaptive control of systems with
unknown backlash,” Trans. Automat. Control, vol. 40, no. 6, pp. 1083-1087, June
1995.

[83] G. Tao and P. V. Kokotovic, “Discrete-time adaptive control of systems with
unknown deadzones,” Int. J. Contr., vol. 61, no. 1, pp. 1-17,1995.

[84] G. Tao and P. V. Kokotovic, Adaptive Control o f Systems With Actuator and
Sensor Nonlinearities, John Wiley & Sons, New York, 1996.

[85] M. Tharayil and A. Alleyne, “An Error Governor Based Saturation Compensation
Scheme for PID Controllers,” University o f Illinois at C/rhann-Champaign, 2001.

[86] S. Twigg and E. N. Johnson, “Use of Real Time Simulation in a Laborary
Course,” Proc. o f the 2003 American Society for Engineering Education Annual
Conference, 2003.

[87] K. S. Walgama and J. Stemby, “Inherent observer property in a class of anti­
windup compensator,” Int. J. Control, 52, 3, pp.705-724, 1990.

[88] R. Wai, “Tracking control based on Neural Network Strategy for Robot
Manipulator,” Neurocomputing, 51, pp.425-445, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

[89] L. -X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis,
Prentice-Hall, New Jersey, 1994.

[90] P. J. Werbos, “Neurocontrol and supervised learning: An overview and
evaluation, ” Handbook of Intelligent Control, edited by David A. White and
Donald A. Sofge, Van Nostrand Reinhold, pp. 65-90, New York, 1992.

[91] H. Xu and P. A. Ioannou, “Robust adaptive control for a class of MIMO nonlinear
systems with guaranteed error bounds,” IEEE Trans. Automat. Contr., vol.48,
May 2003.

[92] S. Q. Zhu, F. L. Lewis and L. R. Hunt, “Robust Stabilization of the internal
Dynamics of Flexible Robots without Measuring the Velocity of the Deflection,”
Proc. IEEE Conf. Decis. Contr., pp. 1811-1816, 1994.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2005

	Intelligent control of nonlinear systems with actuator saturation using neural networks
	Wenzhi Gao

	tmp.1563469115.pdf.tjYfm

