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ABSTRACT

This dissertation establishes two theorems which characterize the set of minimal 

obstructions for two classes of graphs. A minimal obstruction for a class of graphs is 

a graph th a t is not in the class but every graph th a t it properly contains, under some 

containment relation, is in the class. In Chapter 2, we provide a characterization 

of the class of cubic outer-planar graphs in term s of its minimal obstructions which 

are also called cubic obstructions in this setting. To do this, we first show th a t all 

the obstructions containing loops can be obtained from the complete set of loopless 

obstructions via an easily specified operation. We subsequently prove th a t there are 

only two loopless obstructions and then generate the complete list of 5 obstructions.

In Chapters 3 and 4, we provide a characterization for the more general class of 

outer-cylindrical graphs -  those graphs th a t can be embedded in the plane so th a t 

there are two faces whose boundaries together contain all the vertices of the graph. 

In particular, in C hapter 3, we build upon the ideas of Chapter 2 by considering 

the operation used to generate all obstructions containing loops from those th a t are 

loopless and extend this operation to the class of outer-cylindrical graphs. We also 

provide a list of 26 loopless graphs and prove th a t each of these is a cubic obstruction 

for outer-cylindrical graphs. In Chapter 4, we prove th a t these 26 graphs are the 

only loopless cubic obstructions for outer-cylindrical graphs. Combining the results 

of Chapters 3 and 4, we then generate the complete list of 124 obstructions which is 

provided in an appendix.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f  Louisiana Tech University the right to 

reproduce, by appropriate methods, upon request, any or all portions o f  this Dissertation. It is understood 

that “proper request” consists o f  the agreement, on the part o f  the requesting party, that said reproduction 

is for his personal use and that subsequent reproduction will not occur without written approval o f  the 

author o f  this Dissertation. Further, any portions o f  the Dissertation used in books, papers, and other 

works must be appropriately referenced to this Dissertation.

Finally, the author o f  this Dissertation reserves the right to publish freely, in the literature, at 

any time, any or all portions o f  this Dissertation.

Author

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

LIST OF T A B L E S ...........................................................................................................  vii

L IS T  O F  F I G U R E S .......................................................................................................................... v iii

A C K N O W L E D G M E N T S..............................................................................................  xii

1 IN T R O D U C T IO N ........................................................................................................  1

1.1 Introduction to Graphs ....................................................................................  1

1.2 Standard Graphs and Graph C la s s e s ..............................................................  2

1.3 C o n n e c tiv i ty ........................................................................................................  3

1.4 M inors.....................................................................................................................  5

1.5 E m beddings...........................................................................................................  5

1.6 Cubic Order ........................................................................................................  7

1.7 Structural P ro p e r tie s ........................................................................................... 9

1.8 Dissertation O v e rv ie w .......................................................................................  13

2 OBSTRUCTIONS FO R CUBIC OUTER-PLANAR GRAPHS ....................  18

2.1 Outer-planar G ra p h s ........................................................................................... 18

2.2 Loopless Outer-planar Cubic Obstructions  ...............................................  24

3 SOME OBSTRUCTION SETS FOR CUBIC OUTER-CYLINDRICAL

G R A P H S ...........................................................................................................  28

3.1 Introduction . . .  ........................................................................................... 28

3.2 Properties of Cubic Outer-cylindrical G r a p h s ............................................ 29

3.3 Obstructions for Outer-cylindrical G raphs.....................................................  36

4 CUBIC OBSTRUCTIONS FO R OUTER-CYLINDRICAL GRAPHS . . . .  51

4.1 Introduction ........................................................................................................  51

4.2 Obstructions from Outer-planar O b s tru c tio n s ............................................ 52

4.3 Obstructions Containing the C u b e ................................................................ 69

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vi

4.4 Restricted O b s tru c tio n s .................................................................................... 78

APPENDIX A: CUBIC OBSTRUCTIONS FOR OUTER-CYLINDRICAL

G R A P H S ...........................................................................................................  100

APPENDIX B: EXCLUDED MINORS FOR OUTER-CYLINDRICAL

G R A P H S ...........................................................................................................  109

B IB L IO G R A P H Y ...........................................................................................................  110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

3.1 The loopless outer-cylindrical cubic obstructions.............................................. 38

A .l The families of cubic obstructions containing loops..............................................102

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

1.1 Graphs and K 2,3..................................................................................................  2

1.2 The cubic edge-deletion of a non-loop edge e ...................................................  8

1.3 A s t o r m ......................................................................................................................  10

1.4 The end edges of each Pi form a 2-edge-cut........................................................  11

1.5 The case where v' = w ' ...........................................................................................  12

1.6 The case where v' is w ' ...........................................................................................  12

1.7 The loopless cubic obstructions for outer-cylindrical graphs.........................  15

1.8 The cubic obstructions for outer-planar graphs.................................................  16

2.1 The cubic obstructions for outer-planar graphs.................................................  18

2.2 A cubic graph w ith a noose (a) and a 2-cycle (b).............................................  19

2.3 The 2-cycle-noose operation depicted................................................................... 20

2.4 The noose-2-cycle operation depicted................................................................... 20

2.5 The contraction of e2 ............................................................................................... 22

2.6 The splitting of the vertex of degree 4 ..................................................................  22

2.7 The graph G'................................................................................................................ 22

2.8 The two loopless cubic obstructions for outer-planar graphs.........................  25

2.9 The graph K 2,:ic2 aIlfl those graphs resulting from a single cubic edge-

deletion of edges of K 2^ c 2 .......................................................................................  26

2.10 The cubic obstructions for outer-planarity th a t contain loops.......................  27

3.1 The loopless cubic obstructions for outer-cylindrical graphs.........................  29

3.2 The 2-cycle-noose operation of G ..........................................................................  30

3.3 The 2-cycle-noose operation of G ..........................................................................  31

3.4 The graphs G  and G1.................................................................................................  32

3.5 Cycle C  forms the boundary of f ..........................................................................  34

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.6 The non-planar cubic obstruction for outer-cylindrical graphs...................... 37

4.1 The cubic obstructions for outer-cylindrical graphs of edge-connectivity one. 53

4.2 The cut edge of (S'......................................................................................................  54

4.3 A subgraph th a t is a subdivision of D 2 ............................................................  56

4.4 A subgraph th a t is a subdivision of D1...............................................................  56

4.5 The halo and the k i t e ..............................................................................................  57

4.6 The set C of graphs which is a subset of the set of loopless cubic obstruc­

tions for outer-cylindrical graphs...........................................................................  58

4.7 A depiction of a 2-edge-cut of (S'............................................................................ 59

4.8 A 2-edge-cut of (S’......................................................................................................  59

4.9 The paths Pi and P2 .................................................................................................  61

4.10 A subdivision of AT3j3 ..............................................................................................  62

4.11 A subdivision of C 2 1 ..............................................................................................  63

4.12 A subdivision of C 1 4 ..............................................................................................  63

4.13 A subdivision of JT3)3 ..............................................................................................  64

4.14 A subdivision of T 5 .................................................................................................  64

4.15 A subdivision of T 4 .................................................................................................  65

4.16 A subdivision of T 5 .................................................................................................  66

4.17 A subdivision of T 2 .................................................................................................  67

4.18 A subdivision of T 3 .................................................................................................  67

4.19 A subdivision of T 1 .................................................................................................  68

4.20 The graph of the cube, denoted Q ........................................................................  69

4.21 A labeled circular ladder.......................................................................................... 70

4.22 The loopless cubic obstructions for outer-cylindrical graphs having a Q- 

subdivision...................................................................................................................  70

4.23 Possible paths starting from the internal vertices of Li 3 .............................  72
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CHAPTER 1

INTRODUCTION

In this chapter, we provide a brief introduction to the basic ideas of graph theory 

th a t are used throughout this dissertation. The reader who is already familiar with 

graphs is encouraged to  turn  to Section 1.8. Unless stated  otherwise, the terminology 

used here will follow West [15] and Diestel [5]. In addition, some concepts related to 

the fundamental structure of graphs are taken from Bondy and M urty [3] and Oxley 

[12].

1.1 In tr o d u c t io n  to  G ra p h s

A graph G is a triple consisting of a vertex set V(G), an edge set E(G), and a 

relation th a t associates with each edge two vertices (not necessarily distinct) called 

its endvertices or ends. A loop is an edge whose endvertices are identical. Parallel or 

multiple edges are non-loop edges having the same pair of endvertices. Two distinct 

vertices u and v are neighbors if they are the ends of an edge, in which case u and v 

are also called adjacent vertices.

A simple graph is a graph having no loops or multiple edges. In the case of simple 

graphs an edge w ith ends u and v is usually w ritten uv  or vu, th a t is uv  and vu  are 

the same edge. If a vertex v is an endvertex of an edge e, then v and e are said to 

be incident. The degree of a vertex v in a graph G is the number of non-loop edges 

incident with v plus twice the number of loops incident with v. We denote the degree 

of v as d(v) or da(v). The minimum vertex degree of a graph G  is denoted S(G), 

and if all the vertices of G have degree k. then G is called k-regular. A graph th a t is 

3-regular is also called a cubic graph.

A subgraph of a graph G is a graph H  obtained by deleting edges or vertices of G. 

We write H  C G and say th a t H  is a subgraph of G or G contains H  as subgraph.

1
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2

If V  is a set of vertices in a graph G, then G — V '  will denote the subgraph of G 

obtained by deleting all the vertices in V '  and the edges incident with them. If V  

consists of a single vertex v , then we also denote G — {u} as G — v. If X  is a set 

of edges in G, then G \ X  will denote the subgraph of G obtained by deleting all the 

edges in X .  If X  consists of a single edge e, then we also denote G \{e} as G\e. If 

S C G, the induced subgraph on S  can be obtained by deleting the set of vertices 

V(G) — S  from G. The induced subgraph is denoted by G[S].

1.2 S ta n d a rd  G ra p h s  a n d  G ra p h  C lasses

A path is a non-empty graph P  where V (P )  — {xq ,xi,  . .. ,X k - i \  and E{P ) = 

{xqX\,X\X2 , • • •, The path  P  is often denoted by the string XqX\ . . .  Xk-i,

and called a path  f r o m  .r;0 to Xk-i- A path  from a vertex u to a vertex v is called 

a (u, v)-path. For a path  P  = xqX4 . . .  Xk-i in G we denote the path  XiXi+1 . . .  x j  as 

P[xi,Xj] as defined in [14].

The end vertices or ends of a (u, u)-path P  are the vertices u and v; the other 

vertices are called the internal vertices of P  and are denoted I(P ) .  Similarly, the end 

edges of a (u, u)-path are the edges of the path  th a t are incident to u or v  where the 

remaining edges are called the internal edges of the path. A path  w ith n  edges is 

denoted Pn. Two paths are called independent ii I (P )n l ( Q )  =  0. Similarly, P  and 

Q are said to  be edge-disjoint provided th a t E (P )  D E(Q) =  0. A cycle is a path 

P  = x o . . .  Xk-i together with an edge e not in P  where the ends of e are xq and xj^-i- 

A cycle w ith n  vertices is called an n-cycle and will be denoted Cn.

Figure 1.1: Graphs K 4 and A ^ .

If any two vertices of a simple graph G  are neighbors then G  is called a complete 

graph. The complete graph with n  vertices is denoted K n. So, K\  is a single vertex,
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K 2 is an edge, and K% is a 3-cycle. A depiction of K 4 can be seen in Figure 1.1. A 

complete bipartite graph is a simple graph having a partition of its vertices into two 

disjoint sets S  and T  such th a t two vertices s and f are adjacent if and only if s is 

in S  and t is in T. W hen the sets have sizes |Sj =  m  and |Tj =  n, the graph is 

denoted K m,n. If G\ and G2 are subgraphs of a graph G , then the union of Gj and 

G2 , denoted G\ U G2 , is the subgraph with vertex set V{Gf) U V (G 2) and edge set 

E (G  1) U E{G 2)- If G\ and G 2 are disjoint, we denote their union by G 1UG2.

1.3 C o n n e c tiv ity

A graph is connected if any two vertices are joined by a path. Otherwise it is 

disconnected The components of a graph are its maximal connected subgraphs. Let 

S' be a set of vertices in a graph G. The set S is a vertex cut of G if G — S  has more 

components than  G. A vertex cut of size n  is called an n-vertex-cut, and a graph 

is called n-connected if every vertex cut contains a t least n  vertices. If v is a vertex 

whose deletion increases the number of components, then v is called a cut-vertex. 

The connectivity or vertex-connectivity of G, denoted k (G), is the minimum size of a 

vertex cut of G. A connected graph th a t has no cut vertices is called a block. A  block 

of a graph is a subgraph th a t is a block and is maximal with this property.

Now, if X  is a subset of E(G), then X  is an edge cut of G if G \ X  has more 

components than  G. The set X  is said to be a minimal edge cut if X  is an edge cut 

but, for any edge x  in X ,  the set X  — {x}  is not. An edge cut of size n  is called an 

n-edge-cut, and a graph is called k-edge-connected if every edge cut contains a t least 

k edges. A cut-edge is an edge whose deletion increases the number of components. 

The edge-connectivity of G, denoted A(G), is the minimum size of an edge cut ofG .

Menger’s Theorem [11] is very useful in proving structural results related to graph 

connectivity. We state  the edge-form of Menger’s Theorem followed by a lemma 

th a t shows th a t if G is a cubic graph, then /c-edge-connectivity implies there are k 

independent paths between any two vertices.

T h e o re m  1.3.1 (Mengerfll]) A graph is k-edge-connected i f  and only i f  it contains 

k edge-disjoint paths between any two distinct vertices.
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L em m a 1.3.2 A k-edge-connected cubic graph contains k independent paths between 

any two distinct vertices.

Proof: Let G  be a /.-edge-connected cubic graph and let v and w  be two vertices 

in G. From Theorem 1.3.1 there are k  edge-disjoint paths from v and w. Trivially 

if k =  0 then there are at least k = 0 independent paths between any two vertices. 

If k =  1 then there is a path  from v to  w. Thus, we may assume th a t k > 2. Let 

P i , . . . ,  Pk be a set of k edge-disjoint paths from v to w such th a t two of these paths 

share a common internal vertex.

Assume th a t Pi and P2 have a common internal vertex u. Since u is an internal 

vertex of Pi, there are 2 edges ei and e\ incident to u  th a t are in Pi. Likewise, u is 

an internal vertex of P2, so there are 2 edges e2 and e'2 incident to  u  th a t are in P2. 

Since Pi and P2 are independent paths it is clear th a t {e1; e^} fl {e2, e'2} =  0. Thus u 

is incident to at least four edges; a contradiction of G being cubic. Therefore, it must 

be th a t no two paths share a common internal vertex, and we conclude th a t there are 

k  independent paths between any two vertices. ■

The following description for 2-connected graphs is taken directly from [12]. Sup­

pose k >  2. A connected graph G is called a generalized cycle w ith parts G i , . . .  ,Gk 

if the following conditions hold:

(i) Each Gi is a connected subgraph of G having a non-empty edge set, and, if 

k — 2, both  Gi and G2 have at least three vertices.

(ii) The edge sets of G i , . . .  ,Gk partition the edge set of G, and each Gi shares 

exactly two vertices, its contact vertices, w ith |J  Gj

(iii) If each Gi is replaced by an edge joining its contact vertices, the resulting graph 

is a cycle.

The following lemma is taken from [12, (5.3.4)] and guarantees th a t a graph of 

connectivity two has a representation as a generalized cycle where each part is a block.
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L e m m a  1.3.3 (Oxley [12]) L e tG  be a block having at least four vertices and suppose 

that G is not 3-connected. Then G has a representation as a generalized cycle, each 

part of which is a block.

1.4 M in o rs

A minor of a graph G is a graph obtained from G by performing a sequence of 

two easily specified operations. The first is the deletion of an edge. The second is 

called the contraction of an edge. The contraction of a non-loop edge e in G with 

endvertices u and v can be obtained by replacing u and v w ith a single vertex whose 

incident edges are the edges other th a t e th a t were incident to u  or v in G where if 

the edge was incident to  both  u  and v, the edge is now a loop. The contraction of a 

loop is the same as the deletion of the loop from G. In either case the contraction of 

an edge uv  from G  is denoted G /uv.

We say th a t a graph H  is a minor  of a graph G, and write H  ■< G, if H  can be 

obtained from G  through a sequence of single-edge deletions or contractions. The 

minor order is a partial ordering on the set of all graphs where the order is defined 

by ;< A class of graphs Q is minor-closed if for any G  in Q, every minor of G is also 

in Q.

The graph G' obtained from G  by replacing edges of G w ith independent paths 

between their ends is called a subdivision of G, and we call these independent paths 

of G' subdivisional paths. If the ends of a subdivisional path P  are u and v, then P  is 

called a (u,v)~subdivisional path. In this context, we view V(G) as a subset of V (G f) 

and call these vertices the branch vertices of G'. The other vertices of G' are called 

the subdividing vertices of G '. Now, if G contains a subgraph th a t is a subdivision of 

H,  then H  is also called a topological minor  of G.

1.5 E m b e d d in g s

A curve is the image of a continuous map from [0,1] to R 2. It is called an (x,y)~ 

curve when it s tarts  at a point x  and ends a t a point y. A  drawing or embedding 

in the plane of a graph G is a function <p defined on V(G)  U E(G)  th a t assigns each
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vertex v a point ci>{v) in the plane and assigns each edge from a vortex u to  a vertex v 

a (<f>(u), 0(u))-curve, where 4>{u) — <p(v) if and only if u =  v. For distinct edges e and 

e' in E(G), a point in 0(e) D 4>{e') tha t is not a common endpoint is called a crossing.

A graph is planar if it has a drawing in the plane w ithout crossings. Such a 

drawing is a planar embedding of G, and a plane graph is a graph th a t has been 

embedded in the plane w ithout crossings. Kuratowski characterized planar graphs 

by proving necessary and sufficient conditions for a graph to be planar in term s of a 

set of minimal non-planar graphs [9]. We now state  this result and the analogue for 

simple cubic graphs as reported by Glover and Huneke [7].

T h e o re m  1.5.1 (Kuratowski [9]) A graph G is planar i f  and only i f  G does not 

contain a subgraph that is a subdivision ofK$ or K 3S.

T h e o re m  1.5.2 (Kuratowski [9]) A simple cubic graph G is planar i f  and only i fG  

does not contain a subgraph that is a subdivision o fK 3j3.

An open set in the plane is a set U C 1R2 such th a t for every point p in the set U , 

all points different from p  w ithin some small euclidean distance from p belong to U . 

A region is an open set U th a t contains a (p,q)-curve for every pair of points p, q in 

U. The faces of a plane graph G are the maximal regions of the plane th a t contain 

no point used in the embedding of G. A  vertex v is said to  lie on the boundary of a 

face /  if for every open set U containing v, the set U fl /  is not empty. Let e be an 

edge of a plane graph and r  be a point of the (p,r/)-curve corresponding to e. Suppose 

th a t r does not correspond to an end of e, then e is said to lie on the boundary of a 

face /  if for every open set U containing r, the set U fl /  is not empty. If a vertex or 

edge lies on the boundary of a face / ,  then it is also said to border f .

The following is taken from Oxley [12, page 284], “Two planar embeddings Gi 

and G*2 of G are said to  be equivalent if the set of edges on the boundary of a face 

in Gi always corresponds to the set of edges on the boundary of a face in G2. We 

say th a t G is uniquely embeddable in the plane if any two planar embeddings of G are 

equivalent.”
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T h e o re m  1.5.3 ( Whitney[16]) Let G be a simple 3-connected planar graph. ThenG  

is uniquely embeddable in the plane.

A planar graph G is said to be outer-planar if it has an embedding such th a t all 

the vertices of G lie on the boundary of one face. A graph embedded in such a way

is called an outer-plane graph. The following lemma is straightforward and is stated

here for reference (see Oxley [12, Section 11.2]).

L em m a  1.5.4 (Oxley [12]) Let G be a graph. Then

(i) G is outer-planar i f  and only i f  its components are outer-planar.

(ii) G is outer-planar i f  and only i f  its blocks are outer-planar.

Just as Theorem 1.5.1 characterizes planar graphs, the following theorem is an 

analogous characterization for the class of outer-planar graphs, first proved by Char- 

trand  and Harary [4],

T h e o re m  1.5.5 (Chartrand, Harary 1967 [4]) A graph G is outer-planar i f  and only 

i f  G does not contain a subgraph that is a subdivision o fK 4 or A ^ .

To complete this section, we now formalize some concepts related to the embedding 

of graphs th a t are generalized cycles. Let (S' be a plane generalized cycle with parts 

G i,G 2 , ■ ■ ■ ,Gk, and let C  be the cycle corresponding to  G as described in part iii of 

the definition of generalized cycle. Clearly there are two faces /  and g incident to 

every edge of the embedding of C  induced by the embedding of G. Likewise if we 

replace each edge of C  w ith its corresponding part in G, we obtain an embedding 

of G where there are two faces f  C /  and g' C g incident to every part of G. We 

call these faces the central faces of G and if the boundary of /  or the boundary of g 

contains all the vertices of Gi, then Gi is said to  be centralized.

1.6 C u b ic  O rd e r

Cubic graphs have been of interest in a number of settings. For example, Glover 

and Huneke found the cubic obstructions for the class of projective planar graphs
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[7]. Archdeacon and Bonnington found the cubic obstructions for the class of spindle 

graphs where they also describe the cubic order by saying, “The cubic order makes 

smaller [simple] graphs by edge deletions followed by suppressing the resulting degree- 

two vertices.” [1]. In this context, a cubic graph G is a cubic obstruction for a class 

of graphs Q if G is not in Q, but every graph th a t G properly contains in the cubic 

order is in Q. Here we formally define an operation over the class of all cubic graphs 

th a t produces the cubic order.

Let G  be a cubic graph. The graph resulting from the cubic edge-deletion of 

an edge e of G , denoted G\.,e is constructed from G by deleting e followed by the 

contraction of two edges. Specifically if e is not a loop, then we contract two non- 

adjacent edges incident with vertices of degree two and delete all resulting vertices 

of degree zero. The graph resulting from a cubic edge-deletion of a loop e' can be 

obtained by deleting e', contracting the edge th a t was adjacent to the loop, and then 

contracting an edge incident to the resulting vertex of degree two. This operation 

ensures th a t the cubic edge-deletion of any edge in a cubic graph results in a cubic 

graph or an em pty graph. The cubic order is a partial ordering on the set of cubic 

graphs together with the operation of cubic edge-deletion.

Suppress
| Delete e. t j Tx, i vertices.

Figure 1.2: The cubic edge-deletion of a non-loop edgee

Recall th a t a graph H  is a topological minor of a graph G  provided th a t G contains 

a subgraph th a t is a subdivision of H. Archdeacon and Bonnington observe th a t the 

topological-minor order is equivalent to the cubic order for the class of cubic graphs 

[1]. Upon combining these two ideas, it is easy to derive the following proposition.

P ro p o s it io n  1.6.1 Let G and H  be cubic graphs. Then G contains H  in the cubic 

order i f  and only i f  G contains a subgraph that is a subdivision of H .
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We conclude this section by proving two lemmas related to a plane cubic graph 

G having a 2-cycle C. In the first lemma, we show tha t if a vertex of C  lies on the 

boundary of a face / ,  then there is an edge of C  th a t also lies on the boundary of / .  

In the second lemma, we show th a t the vertices of C  border the same set of faces of 

G.

L em m a 1.6.2 L etG  be a plane cubic graph having a 2-cycleC. I f  f  is a face bordered 

by a vertex of C  then there is an edge of C  that also borders f .

Proof: Assume V(C ) = {x ,y } ,  E ( C ) =  { e i,e2}, and /  is a face bordered by x. 

Let e be the edge incident to x  th a t is not in E(C).  Since x  is not an isolated vertex, 

one of the edges, ei, e2, or e, incident to  x  borders / .  If e borders /  then, since G  is 

cubic, one of e\ or e2 borders / .  Thus one of the edges of C  must border / .  ■

L em m a  1.6.3 Let G be a plane cubic graph having a 2-cycle C. Then, the vertices 

of C  border the same set of faces.

Proof: Assume V(C ) = {x ,y } ,  E (C )  =  { e i,e2}, and /  is a face bordered by x. 

From Lemma 1.6.2 either e\ or e2 m ust border / .  Since both  e\ and e2 are incident 

to y, the vertex y  must border / .  ■

1.7 S t r u c tu r a l  P ro p e r t ie s

In the previous section, we concluded with two straightforward lemmas related 

to a plane cubic graph having a 2-cycle. In this section, we show three lemmas th a t 

reveal some of the structure of graphs having a 2-edge-cut. Specifically, in the first 

lemma, we show th a t the edges of a 2-edge-cut of a plane 2-edge-connected graph 

border the same set of faces. In the second lemma, we identify some conditions for a 

graph having a 2-edge-cut th a t allows the graph to contain a  ̂ -su b d iv is io n . Finally, 

in the last lemma we identify some conditions for a cubic graph to have a subgraph 

of a certain type which we now describe.
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A storm  of Figure 1.3 is a 3-path w ith an additional edge in parallel to the internal 

edge of the 3-path. The ends of the 3-path are the ends of the storm. The graph of 

the storm is depicted in Figure 1.3.

Figure 1.3: A storm

L em m a  1.7.1 L e tG  be a plane 2-edge-connected graph. The edges of any 2-edge-cut 

of G border the same set of faces.

Proof: Let e.\ and e2 be the edges of a 2-edge-cut of a plane 2-edge-connected 

graph G. Let G\ and G2 be the components of G \{ei, e2} and let vi:j be the end of 

ej in Gi. Now there is no path  from Gi to G2 in G \{ei, e2}, so there m ust be a single 

face /  of G \{ei, e2} having each of ir^i, Uij2, u2)i, and u2i2 on its boundary. Embed e\ 

in /  and we see th a t ex now lies in / .  Upon the embedding of e2, we see th a t there 

are two faces, / '  and /" ,  whose boundaries contain e\ and e2. Thus c.\ and e2 border 

the same faces in G. u

L e m m a  1.7.2 Let G be a connected graph having a maximum degree of three and 

assume that there are three independent paths Pi, P2, and P3 in G having internal 

vertices and sharing endswi a n d w 2 - I f  the end edges of one o f Pi, P2, or P3, do not 

form  a 2 -edge-cut in G, then G contains a subgraph that is a subdivision of K±.

Proof: W ithout loss of generality, assume th a t the end edges of Pi do not form a 2- 

edge-cut. Let Ei  be the set of end edges of P i and recall th a t I  (Pi) = V  (Pi) — {wi ,  u>2}. 

Now, since G \E i  is connected, there is a path  from I  (Pi)  to / ( P 2) U I (P3) in G\Ei.  

Let P  be a shortest such path  from /(P i)  to  / ( P 2) U I(P3). Let v  be the end of P  

in /(P i)  and w be the end of P  in / ( P 2) U I (P3). Assume Q is the path  in {P2, P3}
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W 1

Figure 1.4: The end edges of each P, form a 2-edge-cut.

th a t contains w and Q' is the other path  in {P2, P3} different from Q. We now show 

th a t P  does not contain the end edges of Q or Q'.

If P  contains an end edge of Q', then P  contains an internal vertex of Q' so P  

is not a shortest path  from I  (Pi) to / ( P 2) U I(Ps) ~ a contradiction to the choice of 

P. Thus we see th a t P  avoids the end edges of Q'. Now, suppose th a t P  contains an 

end edge of Q. Then P  must also contain one of w\ or w2. W ithout loss of generality 

assume th a t P  contains vertex W\. Since the maximum degree of G is three and P  

is a path, it is easy to see th a t P  must also contain an end edge of Pi or Q' -  a 

contradiction since P  avoids the end edges of Pi and Q'. So P  does not contain the 

end edges of Q or Q' and it- m ust be th a t G has a subgraph th a t is a subdivision 

of K 4 where v, w, wi, and w 2 are the branch vertices of the ^ -su b d iv is io n  and the 

subdivisional paths are P , Q P i [ w i , v \ ,  Pi[v,w2], Q\wx,w], and Q[w,w2], m

L e m m a  1.7.3 Let G be a cubic 2-edge-connected graph and le tP  be a path in G .  I f  

the end edges of P  form  a 2-edge-cut, then the vertices o fP  are in a subgraph that is 

a subdivision of a storm S  where the ends of P  are the ends of S.

Proof: Since the end edges of P  form a 2-edge-cut, / (P) is not empty. So assume v 

and w are the ends of P , vv' and ww' are the end edges of P , and G' is the component 

of G \{ v v ' , ww'}  containing the internal vertices of P . First, assume v' =  w' (see
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Figure 1.5). Since d{v') = 3, let e be the edge th a t is not vv' or ww' and let x' denote 

the end of e different from v'. Since the edges vv' and ww' disconnect G, it is clear 

th a t x ’ is neither v nor w. If there is a path  from x' to V(G) — V(G')  not using edge 

e, then the removal of vv' and ww' would not disconnect G. So every path  from x' 

to V(G)  — V(G') contains e and so G \e  is disconnected -  a contradiction since G is 

2-edge-connected. Thus, it m ust be th a t v' and w' are distinct.

v' =  w'

Figure 1.5: The case where v' =  w'

Assume th a t v' has only two distinct neighbors v and y. Since d{v') =  3, the 

induced subgraph on v' and y  m ust be a 2-cycle. Moreover, as v' has only two 

neighbors, then every path  containing v' as an internal vertex must also contain its 

neighbors. Since P  contains v' as an internal vertex then P  m ust also contain y as 

an internal vertex, and it is easy to see th a t the vertices o fP  are in a subgraph th a t 

is a subdivision of a storm  where v and w are the ends of the storm.

w

Figure 1.6: The case where v' is w'

Now assume th a t v' has three distinct neighbors v, y, and z. Since d{v') =  3 and 

v and v' are in P  then at least one of y or z must be in P. Assume w ithout loss of 

generality th a t y  is in P. If z is also in P, it is clear th a t the vertices of P  are in a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

subgraph th a t is a subdivision of a storm S  where the ends of P  are the ends of S  

and v' and z are the branch vertices of S  of degree three. Now we consider the case 

where z  is not in P .

Graph G is 2-edge-connected, so from Lemma 1.3.2 there are at least two internally 

disjoint paths from z to  I(P )  one of which is not the edge o'z. Let P ' denote a shortest 

such path  from z to  I (P )  and let z' denote the end of P' th a t is in I(P ). Since P ' is 

in G', it is clear th a t V(G)  — V(G')  and V (P ') are disjoint. So we see th a t the vertices 

of P  lie in a subgraph th a t is a subdivision of a storm where the branch vertices of 

the 2-cycle are v' and z' and the ends of the storm  are the ends of P. m

1.8 D is se r ta tio n  O verv iew

Here we provide an overview of the dissertation by discussing the types of results 

found. The collection of all cubic graphs is an im portant collection in many areas 

of graph theory. One of these areas is related to finding necessary and sufficient 

conditions for a graph to  be in a minor-closed class of graphs. For example, Glover 

and Huneke [7] found the obstructions for the class of cubic projective planar graphs. 

This result pre-dates Glover, Huneke, and W ang’s characterization of the class of all 

projective planar graphs in term s of those minor-minimal graphs not embeddable on 

the projective plane [8]. These graphs, which are called the forbidden or excluded 

minors for the projective plane, are graphs not embeddable on the projective plane 

but every proper minor is embeddable. Characterizations of this type began with the 

classic result by Kuratowski [9] which says th a t a graph G is planar if and only if G 

has neither i\ 5 nor / \ 3 3 as a minor. Thus, Kf, and /L33 are the excluded minors for 

the class of planar graphs.

In general, if one has a complete list of all excluded minors for a specific minor 

closed class of graphs, then  this list yields structural information about the class. For 

example, the fact th a t K$ and /L3 3 are the only two excluded minors for the class of 

planar graphs reveals valuable information about graph embeddability in the plane. 

Now, if S  is a surface for which we would like a complete list of excluded minors, then 

in attem pting to prove th a t a particular list of excluded minors is the complete list of
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excluded minors for the class of graphs embeddable on»S, a fundam ental understand­

ing of graph embeddability on the surface S  is needed. Thus, a first approach to these 

types of problems is to consider a restriction on the class of graphs embeddable on 

S . A class th a t is typically chosen in this setting is the class of cubic graphs. Having 

the complete list of cubic obstructions for a class, then reveals valuable structural 

information about both embeddability on the surface S  and the set of all excluded 

minors for the class of graphs embeddable on S . This is precisely what is reflected in 

the characterization of the class of projective planar graphs.

Presently, a characterization for every surface, other than the plane and projective 

plane, remains intractable. Specifically, the complete list of excluded minors for the 

torus is unknown as well as th a t of any surface of higher genus. A class related to 

th a t of graphs embeddable on the torus is the class of graphs embeddable on the 

pseudo-surface called the spindle surface, such graphs are called spindle graphs. The 

spindle surface is obtained by contracting a meridian of the torus; and thus graphs 

th a t are spindle are also embeddable on the torus. Archdeacon and Bonnington [1] 

provide a characterization for the class of cubic spindle graphs in an effort to gain 

insight into the collection of excluded minors for the class.

The interaction between results on cubic obstructions and excluded minors for 

various classes has generated a number of interesting research questions. While insight 

into embeddability on a surface is gained through finding the cubic obstructions for a 

class, this task  is non-trivial. Moreover, recent results have shown th a t if one has the 

complete list of excluded minors for some surface, it is not simply a corollary to  obtain 

the complete of cubic obstructions for the same surface. It is in this context th a t the 

research presented here was conducted. In [2] the complete list of excluded minors for 

the class of outer-cylindrical graphs is presented - outer-cylindrical graphs are those 

th a t can be embedded in the plane in such a way th a t the boundaries of two faces 

together contain all of the vertices of the graph. In this dissertation, we present the 

complete list of 124 cubic obstructions for the same class. In C hapter 3, we establish a 

number of results th a t help reduce the analysis of the list of obstructions by providing 

a construction th a t allows the generation of all cubic obstructions if one knows the
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Figure 1.7: The loopless cubic obstructions for outer-cylindrical graphs.

list of all cubic obstructions having no loops. We then present a list of loopless cubic 

obstructions, which we have also included in Figure 1.7 in this overview, and then 

prove th a t each of these graphs is a cubic obstruction a t the end of the chapter. 

In Chapter 4, we prove th a t the list of 26 loopless cubic obstructions for the class 

of o u ter-cy lind rica l g rap h s  is th e  com plete  lis t of loopless cubic o b s tru c tio n s . U pon  

combining this w ith the results of Chapter 3, this allows us to generate the complete 

list of all cubic obstructions for the class which can be found on page 100.

In order to establish the characterization for outer-cylindrical graphs provided in 

Chapters 3 and 4, it was necessary to know the complete list of cubic obstructions
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for outer-planar graphs -  graphs th a t can be embedded in the plane so th a t all 

the vertices lie on the boundary of one face. This result is presented in Chapter 

2, and it provides the insight for the construction th a t allows the generation of all 

cubic obstructions from the list of all loopless cubic obstructions. In particular, the 

loopless cubic obstructions for outer-planar graphs are K 4 and K 2^ c 2 depicted in 

Figure 1.8. Taken together, the graphs depicted in Figure 1.8 is the complete list of 

cubic obstructions for outer-planar graphs.

0

2,3(72

02 03

Figure 1.8: The cubic obstructions for outer-planar graphs.

The dissertation presented here provides a theoretical proof th a t the list of 124 

cubic obstructions mentioned above form the complete list of cubic obstructions for 

outer-cylindrical graphs. While nothing related to computer analysis or graph gen­

eration via a computer appears in this dissertation, it is im portant to mention its 

utilization here. The obstructions were originally generated via a computer program 

developed through the support of the Louisiana Educational Quality Support Fund 

under grant LEQSF(2003-06)-RD-A-19. This program builds upon Brendan McKay’s 

[10] work in his software program Nauty. Building on top of Nauty, we developed 

several algorithms to test for the excluded minors and cubic obstructions of a number 

of classes of graphs. The outer-cylindrical graphs were one such class, and the list was 

originally generated via this program. In order to  determine th a t the com puter gener­

ated the complete list, we needed to either theoretically prove th a t there is an upper 

bound on the number of vertices for any cubic obstructions -  and then run the corn-
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puter program through an exhaustive search to th a t point -  or we needed an entirely 

theoretical proof. In the a ttem pt to  do the la tter and develop additional algorithms 

to streamline the search processing time, the insight for a completely theoretical proof 

was obtained. Thus, the results of this dissertation are proved independent of any 

computer program.
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CHAPTER 2

OBSTRUCTIONS FOR CUBIC 

OUTER-PLANAR GRAPHS

2.1 O u te r -p la n a r  G ra p h s

Outer-planar graphs were introduced in Section 1.5, and Theorem 1.5.5 gives a 

characterization of outer-planar graphs first proved by C hartrand and Harary [4]. 

Specifically, they proved th a t any graph th a t is not outer-planar m ust contain a 

subgraph th a t is a subdivision of K 4 or K 2̂ . The next theorem, which is the main 

result of this chapter, provides a characterization of the class of cubic outer-planar 

graphs.

2,3(72

0

02 0 3

Figure 2.1: The cubic obstructions for outer-planar graphs.

T h e o re m  2.1.1 A graph G is a cubic outer-planar graph i f  and only i f  G does not 

contain K 4 , K 2^c2t 0 1 , 0 2 , or 0 3  (o f Figure 2.1) in the cubic order.

Upon combining Theorem 1.5.5 and Proposition 1.6.1, it is easy to  show the 

following.

18
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L e m m a  2.1 .2  K 4 is a cubic obstruction fo r  outer-planar graphs.

Proof: F irst from Theorem 1.5.5, K 4 is not outer-planar. Since the cubic edge- 

deletion of any edge of K 4 results in a graph on two vertices joined by three edges, it is 

clear th a t this graph is outer-planar. Thus, K 4 is a cubic obstruction for outer-planar 

graphs. ■

Dirac [6] showed the following theorem which guarantees th a t a simple cubic graph 

contains a 7h4-subdivision. Recall th a t 5(G) denotes the smallest degree of a vertex 

in G.

T h e o re m  2.1 .3  (Dirac[6f)  Let G be a simple graph. I f  5(G) > 3, then G has a 

subgraph that is a subdivision of K 4

I
I

(a) (b)

Figure 2.2: A cubic graph with a noose (a) and a 2-cycle (b).

From this theorem, every simple cubic graph contains a subgraph th a t is a sub­

division of K 4, and so simple cubic graphs are not outer-planar by Theorem 1.5.5. 

We conclude th a t every cubic outer-planar graph m ust not be simple. Now, consider 

a connected cubic graph G th a t is not simple. This means th a t G contains either a 

loop or a parallel edge. If G contains a loop I incident to a vertex k, then, since G 

is cubic, k must also be incident to a non-loop edge k t which is a bridge. We call 

loop / together with the edge k t a noose where t is the top and k is the knot. So 

if G contains a loop, then G contains a noose as depicted in Figure 2.2 (a). Thus, 

non-simple cubic graphs contain either a 2-cycle or a noose (see Figure 2.2).
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contract

e 2

split

(a) (b)

Figure 2.3: The 2-cycle-noose operation depicted.

Now, let G be a cubic graph w ith a 2-cycle C  having edges e\ and e2 as depicted 

in Figure 2.2 (b). The operation of contracting e2 of C  results in a vertex z of degree 

four incident to a loop consisting of the edgeei (see Figure 2.3 (b)). Now splitting z 

into vertices 2 and z' so th a t z  is incident to the loop e\ and zz ' is a bridge results in 

a cubic graph where the induced subgraph on e\ and zz! is a noose. This operation 

will be called a 2-cycle-noose operation on C. Figure 2.3 depicts the 2-cycle-noose 

operation just described.

Let G be a cubic graph with a noose N  as depicted in Figure 2.2 (a). The operation 

of contracting edge k t  to  a vertex z and then splitting z so th a t G has parallel edges 

e\ and e2 will be called a noose-2-cycle operation. Figure 2.4 depicts a noose-2-cycle 

operation.

contract

k t

split

Figure 2.4: The noose-2-cycle operation depicted.
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The next lemma provides a relationship between graphs obtained by 2-cycle-noose 

operations. Recall th a t if N  is a noose, the edge joining the knot k  with the top t is a 

bridge and we denote the loop of N  by I. Also, recall th a t cubic edge-deletion (page 

8) is denoted \ 3.

Lemma 2.1.4 Let G be a cubic graph with a 2 -cycle C whose edges are e\ and e2 

and let G' be the graph with a noose N  resulting from  a 2 -cycle-noose operation on 

C. Then G \3e1 =* G \3e2 9* G \ t k  = G \ l .

Proof: Clearly we see th a t G \3ei =  G \3e2. From the definition of the cubic edge- 

deletion of a noose, we also see th a t G'\3tk = G '\3l. Assume x  and y  are the vertices 

of the 2-cycle C, vertex x ' is the neighbor of x  in V(G) — V(C),  and y' is the neighbor 

of y  in V(G) — V(C).  From the dehnition of the 2-cycle-noose operation, we see th a t 

x ' and y' are the neighbors of the top, t  of the noose N  in G'. Likewise, it is easy to 

see th a t G — V (C ) = G1 — {t, k}.  Now the graph G \3ei is the graph G — V (C ) with 

an additional edge e from x' to y '. The graph G'\3tk  is the graph G' — {/,, k}  with 

an additional edge e' from x ’ to ?/. Thus it is clear th a t G \ 3ei =  G '\3tk.  So we have 

G \ 3e2 9* G \ 3e !  =  G \ t k  ^  G '\3l. •

The following two propositions will be used to determine the cubic obstructions 

for the class of outer-planar graphs. The first proposition establishes a condition for 

outer-planar graphs obtained by a 2-cycle-noose operation. The second proposition 

allows cubic obstructions for outer-planar graphs to be constructed by replacing 2- 

cycles w ith nooses in cubic obstructions th a t are already known.

Proposition 2.1.5 Let G be a cubic graph with a 2 -cycle C  and Gf the graph resulting 

from  a 2-cycle-noose operation on C . Then G is outer-planar i f  and only i f  G' is 

outer-planar.

Proof: Assume G is an outer-planar cubic graph with a 2-cycle C  and let G' be 

the graph resulting from a 2-cycle-noose operation on C. Embed G  in the plane so 

th a t every vertex of G lies on a single face / .  Let V (C ) = {x, y} and E (C ) = {ei, e2}.
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Now we claim th a t a t least one of the parallel edges of C  borders / .  Since G is cubic, 

there is an edge e' incident to x  th a t is not e\ or e2. Let f \  denote the face bordered 

by e' and e\, / 2 denote the face bordered by e! and e2, and / 3 denote the face whose 

boundary is C . Now /  must be one of / i ,  / 2, or / 3 since x  borders / .  From Lemma

1.6.2 one of e\ or e2, say ei, borders /  (see Figure 2.5 (a)).

x

f  eiQe2 G /e2 /
ei • '  :•

(a) (b)
Figure 2.5: The contraction o fe2

Since e\ borders / ,  edge e2 can be contracted, resulting in a vertex z  yielding an 

outer-plane graph where e\ is now a loop and e± borders /  as depicted in Figure 2.5. 

Now z can be split, resulting in an edge zz ' where z  is incident to the loop e\ (see 

Figure 2.6). Thus the resulting graph is isomorphic to G' and is embedded with every 

vertex on face / .  So G' is an outer-planar graph.

/
ei Split z

f
ei

C t

Figure 2.6: The splitting of the vertex of degree 4.

Assume G' is an outer-planar graph having a noose N  arising from the 2-cycle- 

noose operation on C  of G. Em bed G' so th a t every vertex of G' lies on face / .  Since 

k lies on the boundary of /  then both  I and k t are on the boundary of /  as depicted 

in Figure 2.7. Now k t  can be contracted yielding an outer-plane graph where / is still

I

k t
G '/k t

f

f

Figure 2.7: The graph G '.
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on the boundary of /  (as shown in Figure 2.7). Now, the resulting vertex of degree 

4 can be split so th a t I is parallel to the new edge, the resulting graph being a cubic 

graph isomorphic to  G. Notice th a t this graph is embedded so th a t every vertex lies 

on face / .  Thus G  is an outer-planar graph. We conclude th a t G  is outer-planar if 

and only if G' is outer-planar. ■

C o ro lla ry  2 .1 .6  Let G be a cubic graph with a noose N  and G' the graph resulting 

from  a noose-2-cycle operation on N . Then G is outer-planar i f  and only i f  G' is 

outer-planar.

Proof: Assume G  is a cubic graph with a noose N  and G' the graph resulting 

from a noose-2-cycle operation on N . Let C  be the 2-cycle of G' resulting from the 

noose-2-cycle operation on N  of G. Then G  is the graph resulting from a 2-cycle- 

noose operation on C  of G '. Thus, by Proposition 2.1.5, G is outer-planar if and only 

if G' is outer-planar. ■

P ro p o s it io n  2 .1 .7  Let G be a cubic graph with a 2-cycle C , and G' the graph re­

sulting from a 2-cycle-noose operation on C. Then G is a cubic obstruction fo r  

outer-planar graphs i f  and only ifG ' is a cubic obstruction for outer-planar graphs.

Proof: Let G  be a cubic obstruction for outer-planar graphs having a 2-cycle C  

and let N  be the noose of G' obtained from G by a 2-cycle-noose operation on C. By 

Proposition 2.1.5, since G is not outer-planar, then G' is not outer-planar. Let e! be 

an edge in G '. Now if e' is not in N , then e' is in E(G ) — E{C ). So it is clear th a t the 

2-cycle-noose operation on C  in G \3e' results in a graph th a t is isomorphic to G '\3e'. 

Since G is a cubic obstruction for outer-planar graphs then G \3ef is outer-planar. So 

from Proposition 2.1.5 G '\3e' is outer-planar. Now, if e' is in N  then by Lemma 2.1.4 

G '\3e' is isomorphic to G \3e where e is in C. Thus G '\3e' is outer-planar.

We now suppose th a t G' is a cubic obstruction for outer-planar graphs and e is 

in E(G ). Again, Proposition 2.1.5 shows th a t G is not outer-planar. If e is not in C, 

then e is in E(G ') — E (N ). So it is clear th a t the noose-2-cycle operation on N  in
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G '\3e results in a graph th a t is isomorphic to G \3e. Since G' is a cubic obstruction 

for outer-planar graphs then G '\3e is outer-planar. Thus by Corollary 2.1.6, we have 

th a t G \3e is outer-planar. Now, if e is in C, then  by Lemma 2.1.4, G \3e is isomorphic 

to G '\3e' where e' is in N . Thus, G \3e is outer-planar. W ith this the proposition is 

established. ■

C o ro lla ry  2 .1 .8  Let G be a cubic graph with a noose N  and G' the graph resulting 

from  a noose-2-cycle operation on N . Then G is a cubic obstruction fo r  outer-planar 

graphs i f  and only ifG ' is a cubic obstruction fo r  outer-planar graphs.

Proof: Assume G is a cubic graph with a noose N  and G' the graph resulting 

from a noose-2-cycle operation on N . Let C  be the 2-cycle of G' resulting from the 

noose-2-cycle operation of G on N . Then G  is the graph resulting from a 2-cycle- 

noose operation of G' on C. Thus, by Proposition 2.1.7, G is a cubic obstruction for 

outer-planar graphs if and only if G' is a cubic obstruction for outer-planar graphs. 

■

2.2 L oop less  O u te r -p la n a r  C u b ic  O b s tru c tio n s

Proposition 2.1.7 and Corollary 2.1.8 allow us to replace 2-cycles with nooses and 

nooses w ith 2-cycles within a cubic obstruction for outer-planar graphs w ith the result 

being another cubic obstruction. Since a cubic graph has a noose if and only if it has 

a loop, the problem of finding all cubic obstructions for outer-planar graphs is now 

reduced to finding all loopless cubic obstructions. Specifically, in order to obtain the 

complete list of cubic obstructions for outer-planar graphs, we need only perform all 

possible combinations of 2-cycle-noose operations on the loopless cubic obstructions. 

The remainder of this section will be devoted to  proving th a t the loopless cubic 

obstructions for outer-planar graphs are K \ and K 2:.\c2 (see Figure 2.8) as we now 

state  in the following proposition.

P ro p o s it io n  2.2.1 Let G be a loopless cubic obstruction fo r  outer-planar graphs. 

Then G is isomorphic to or K 2^ c 2 ■
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0

- ^ 2 ,3  C2

Figure 2.8: The two loopless cubic obstructions for outer-planar graphs.

Before proving Proposition 2.2.1, we first show th a t all loopless cubic obstructions 

for outer-planar graphs are 2-edge-connected.

P ro p o s it io n  2 .2 .2  I f  G is a loopless cubic obstruction for outer-planar graphs, then 

G is 2 -edge-connected.

Proof: First, we will show th a t any cubic obstruction for outer-planar graphs is 

connected. So, suppose th a t G has more than  one component, say G \, G 2, . . . ,  Gn. 

By Lemma 1.5.4 (i), a graph is outer-planar precisely when its components are outer- 

planar. Since G  is not outer-planar, it m ust be the case th a t a t least one oiG \,G 2, . . . ,  

Gn is not. W ithout loss of generality, assume G i is not outer-planar and let e2 be 

an edge of G2 ■ Since G\ is not outer-planar and is a subgraph of G \3e2, it is clear 

th a t G \3e2 is not outer-planar -  a contradiction of the assumption th a t G  is a cubic 

obstruction. Thus G must be connected.

Now suppose G has an edge e for which G \e  has two components G\ and G2. By 

Lemma 1.5.4 (ii) a graph is outer-planar precisely when its blocks are, and sinceG is 

not outer-planar, it must be the case th a t at least one ofGh, e, or G2 is not outer- 

planar. Clearly, e is outer-planar, so assume one of G\ and G2 is not outer-planar, 

say G1, and let e2 be an edge of G2. Since G  is loopless, e2 is not a loop and so e 

is an edge of G \3e2 which implies th a t G\ is a subgraph of G \3e2. However, G\ is 

not outer-planar, so it must be th a t G \3e2 in not outer-planar -  a contradiction to G 

being a cubic obstruction for outer-planar graphs. Therefore G has no cut-edge and 

is thus 2-edge-connected. ■

Proof o f Proposition 2.2.1: By Lemma 2.1.2, K 4 is a cubic obstruction for outer- 

planar graphs. Therefore we need to show th a t K 2^c 2 is the only other loopless
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cubic obstruction for outer-planar graphs. Clearly, K 2^c 2 contains a subgraph th a t 

is a subdivision of /T2j3, so by Theorem 1.5.5, K 2^c 2 is certainly not outer-planar. 

However, the graph resulting from the cubic edge-deletion of any non-parallel edge is 

isomorphic to  an outer-planar graph -  an embedding of which is depicted in Figure

2.9 (graph A). The graph resulting from the cubic edge-deletion of any parallel edge of 

A-2,3C2 is a iso isomorphic to an outer-planar graph -  as depicted in Figure 2.9 (graph 

B). Thus we can conclude th a t K 2^c 2 is a cubic obstruction for outer-planar graphs. 

Now we show th a t K,\ and K 2 3c2 are the only loopless cubic obstructions.

K 2)3c2 A B

Figure 2.9: The graph K 2 3c2 and those graphs resulting from a single cubic edge- 
deletion of edges of K 2,?,c2 ■

Assume th a t G is a loopless cubic obstruction for outer-planar graphs and is not 

isomorphic to either AT4 or P 2,3C2- Clearly, G does not contain iF4 or K 2 3c2 in the 

cubic order, and so by Proposition 1.6.1, G is a loopless non-outer-planar cubic graph 

with no subgraph th a t is a subdivision of J \4 and no subgraph th a t is a subdivision of 

^"2,3c2- By Theorem 1.5.5, G must have a subgraph th a t is a subdivision of P 2;3 which 

we will denote G '. Let Wi and w2 be the vertices of G' th a t have degree three of the 

AT2,3-subdivision. Let P 4, P2, and P3 be the independent paths w ith internal vertices 

from Wi to w2 th a t form the A ^-subdiv ision  and recall th a t /(P j) =  V(Pi) — {u)i,w 2}.

From Lemma 1.7.2 if any one of P i, P2, or P3 does not form a 2-edge-cut then 

G contains a subgraph th a t is a subdivision of K \. Since G is not isomorphic to  / l 4 

then G would properly contain A 4 in the cubic order -  a contradiction to  G  being a 

cubic obstruction. So it must be th a t the end edges of each o fP 4, P2, and P3 form a 

2-edge-cut.

Hence each P; satisfies the hypothesis of Lemma 1.7.3 and so the vertices of each 

Pi is in a subgraph th a t is a subdivision of a storm  in G where the ends of Pi are the 

ends of the storm. Thus G contains a subgraph th a t is a subdivision of A 2,3c2 -  a
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contradiction to the choice of G. So it m ust be th a t any loopless cubic obstruction 

for outer-planar graphs is isomorphic to either i\ 4 or Ah,3c2- ■

Having established Proposition 2.2.1, we now prove Theorem 2.1.1, namely th a t 

G is a cubic obstruction for outer-planar graphs if and only ifG  does not contain Ah, 

A'2i3c25 01 , 02 , and 0 3  in the cubic order.

0 30201

Figure 2.10: The cubic obstructions for outer-planarity th a t contain loops.

Proof o f Theorem 2.1.1: By Proposition 2.2.1 the only loopless cubic obstructions 

are Ah and A'2,3c2- Using Proposition 2.1.7, we can obtain all cubic obstructions by 

performing a 2-cycle-noose operation on every cubic obstruction having a 2-cycle. 

Graph 01  is obtained from K 2^ c 2 by a 2-cycle-noose operation, 0 2  is obtained from 

01  by a 2-cycle-noose operation, and finally 0 3  is obtained from 0 2  by a 2-cycle-noose 

operation. By the symmetry of Ah,3c2 • every other graph obtained by 2-cycle-noose 

operations from K 2^c 2i 0 1 , and 0 2 , results in a graph isomorphic to either 0 1 , 0 2 , 

or 03 , and the theorem is established. ■
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CHAPTER 3

SOME OBSTRUCTION SETS FOR CUBIC 

OUTER-CYLINDRICAL GRAPHS

3.1 In tr o d u c t io n

In [2], a class of graphs th a t extends the class of outer-planar graphs is character­

ized in term s of excluded minors. In th a t paper it says, “a graph is outer-cylindrical if 

it embeds in the plane so th a t there are at most two distinct faces whose boundaries 

together contain all the vertices.” The class of outer-cylindrical graphs is minor- 

closed, and in [2] the complete set of 38 minor-minimal non-outer-cylindrical graphs 

is determined (see Appendix B). We now formally sta te  this result.

T h e o re m  3.1.1 (Archdeacon, Bonnington, Dean, Hartsfield, and Scott [2]) A graph 

G is outer-cylindrical i f  and only i fG  does not contain any o f the graphs depicted in 

Appendix B in the m inor order.

In this chapter we establish some properties of cubic obstructions for outer-cylin­

drical graphs having loops. As was the case for the cubic obstructions of outer-planar 

graphs, one of the results in this chapter is th a t any cubic obstruction for outer- 

cylindrical graphs having a loop can be obtained from a loopless cubic obstruction. 

Moreover, we present a collection of loopless cubic obstructions for outer-cylindrical 

graphs (see Figure 3.1) and, in Section 3.3, we prove th a t each of these graphs is a 

cubic obstruction. The main result of the following chapter is to show th a t this same 

set of graphs, together w ith the properties established in this chapter, provide the 

complete list of cubic obstructions for the class of outer-cylindrical graphs. For this 

reason, the complete list is depicted in Appendix A, and only the loopless obstructions 

appear in Figure 3.1. So, the main result of Chapters 3 and 4 is the following theorem.

28
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T h e o re m  3.1 .2  A cubic graph G is outer-cylindrical i f  and only ifG  does not contain 

any of the graphs depicted in Appendix A in the cubic order.

Figure 3.1: The loopless cubic obstructions for outer-cylindrical graphs.

3.2 P r o p e r t ie s  o f  C u b ic  O u te r-c y lin d r ic a l G ra p h s .

The following two propositions will be used to determine the cubic obstructions 

for the class of outer-cylindrical graphs. Just as in the case of outer-planar graphs, 

the first proposition establishes a condition for outer-cylindrical graphs obtained by 

a 2-cycle-noose operation. The second proposition allows cubic obstructions to  be 

constructed by replacing 2-cycles with nooses in cubic obstructions th a t are already 

known.
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P ro p o s it io n  3.2.1 Assume G is a cubic graph with a 2-cycle C  and G' is the graph 

resulting from  a 2-cycle-noose operation on C . Then G is outer-cylindrical i f  and 

only i f  G' is outer-cylindrical.

Proof: Assume th a t N  is the noose of G' resulting from the 2-cycle-noose operation 

on C. Label the vertices of C  as x  and y and label the edges of C  as e\ and e2. Denote 

the top of N  as t, the knot of N  as k, and the loop of Ar as I.

contract

e2 v
\

split

(a) (b)

Figure 3.2: The 2-cycle-noose operation ofG.

Assume G is outer-cylindrical and embed G in the plane so th a t there are two 

faces /  and f  whose boundaries together contain all the vertices of G. Now x  must 

lie on the boundary of one of /  or / ' ,  so assume th a t x  lies on the boundary of / .  

From Lemma 1.6.2 one of the edges ofC, say ex, m ust lie on the boundary of / .  Now 

if /  is the face whose boundary is C, let f "  denote the other face incident to ex- In 

this case it is clear th a t / '  and f "  are two faces whose boundaries together contain 

all the vertices on G. So without loss, assume /  is /" .

Notice th a t e2 can be contracted resulting in a vertex z  yielding an outer-cylin­

drical graph where ex is now a loop and ex borders / .  Now z  can be split, resulting 

in an edge zz ' where 2 is incident to a loop. Thus the resulting graph is isomorphic 

to G' and is embedded w ith every vertex lying on the boundary of face /  or / ' ,  and 

so G' is outer-cylindrical.

Now, assume G' is outer-cylindrical and embed G' in the plane so th a t there are 

two faces /  and / '  whose boundaries together contain all the vertices of G. Assume
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contract

k t

split

Figure 3.3: The 2-cycle-noose operation oiG .

f  is the face whose boundary contains the knot k of the noose N . Now if /  is the 

face whose boundary is I, let f "  denote the other face incident to I. In this case it is 

clear th a t / '  and / "  are two faces whose boundaries together contain all the vertices 

of G. So without loss, assume /  is f" .

Notice th a t k t can be contracted into a vertex z yielding an outer-cylindrical graph 

where I is still on the boundary of /  (see Figure 3.3). Now, the resulting vertex of 

degree 4, z, can be split so th a t I is an edge in parallel with the new edge. The result 

is a cubic graph isomorphic to G. Notice th a t this graph is embedded so th a t the 

boundaries of faces /  and f  together contain all the vertices of G. Thus G is an 

outer-cylindrical graph. We conclude th a t G is outer-cylindrical if and only if G' is 

outer-cylindrical. ■

C o ro lla ry  3 .2 .2  Let G be a cubic graph with a noose N  and G' the graph resulting 

from  a noose-2-cycle operation on N . Then G is outer-cylindrical i f  and only ifG ' is 

outer-cylindrical.

Proof: Assume G is a cubic graph with a noose N  and G' is the graph resulting 

from a noose-2-cycle operation on N . Let C  be the 2-cycle of G' resulting from the 

noose-2-cycle operation of G on N . Then G  is the graph resulting from a 2-cycle- 

noose operation of G' on C, and by Proposition 3.2.1, G' is outer-cylindrical if and 

only if G is outer-cylindrical. ■
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P ro p o s it io n  3 .2 .3  Let G be a cubic graph with a 2-cycle C, and G' the graph re­

sulting from a 2-cycle-noose operation on C. Then G is a cubic obstruction for  

outer-cylindrical graphs i f  and only i f  G' is a cubic obstruction fo r  outer-cylindrical 

graphs.

Proof: Let G be a cubic graph with a 2-cycle C  and let G' be the graph resulting 

from a 2-cycle-noose operation on C. Furthermore, assume th a t N  is the noose of G' 

resulting from the 2-cycle-noose operation on C. Label the vertices of C  as x  and y 

and label the edges of C  as e\ and e2- Label the non-parallel edge incident to x  as ex 

and label the non-parallel edge incident to y  as ey. Since G' is obtained from G by a 

2-cycle-noose operation on C , then it is easy to see th a t ex and ey are incident to t 

of N  (see Figure 3.4).

G
Figure 3.4: The graphs G and G '.

We first suppose th a t G is a cubic obstruction for outer-cylindrical graphs and 

let e' be an edge of G '. If e! is not in N  then e! is in E(G ) — E (C ). So it is clear 

th a t the 2-cycle-noose-operation on C  in G \3e' results in a graph th a t is isomorphic 

to G '\3e'. Since G is a cubic obstruction for outer-cylindrical graphs, th en G "\3e' is 

outer-cylindrical. So from Proposition 3.2.1 G '\3e' is outer-cylindrical. Now if e' is in 

N , by Lemma 2.1.4, G!\ 3e' is isomorphic to G \3ei. Thus G '\3e' is outer-cylindrical.

We now suppose th a t G' is a cubic obstruction for outer-cylindrical graphs and 

e is in E(G ). Again, Proposition 3.2.1 shows th a t G  is not outer-cylindrical. Now 

if e is not in C, then e is in E(G ') — E (N ).  So it is clear th a t the 2-cycle-noose- 

operation on N  in G '\3e results in a graph th a t is isomorphic to G \3e. Since G' is 

a cubic obstruction for outer-cylindrical graphs, G '\3e is outer-cylindrical. Thus, by 

Corollary 3.2.2, we have th a t G \3e is outer-cylindrical. Now, if e is in C. by Lemma
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2.1.4, G \3e is isomorphic to G '\3tk . Thus G \3e is outer-cylindrical. W ith this the 

proposition is established ■

C o ro lla ry  3 .2 .4  Let G be a cubic graph with a noose N  and G1 the graph resulting 

from  a noose-2-cycle operation o n N . Then G is a cubic obstruction fo r  outer-cylin­

drical graphs i f  and only ifG ' is a cubic obstruction fo r  outer-cylindrical graphs.

Proof: Assume G is a cubic graph with a noose N  and G' the graph resulting 

from a noose-2-cycle operation on N . Let C  be the 2-cycle of G' resulting from the 

noose-2-cycle operation of G on N . Then G is the graph resulting from a 2-cycle- 

noose operation of G' on C. Thus, by Proposition 3.2.3, G is a cubic obstruction for 

outer-cylindrical graphs if and only if G’ is a cubic obstruction for outer-cylindrical 

graphs. ■

We conclude this section w ith two technical lemmas which establish conditions on 

outer-cylindrical graphs having a 2-edge-cut and which will be used in the proof of 

Theorem 3.1.2. For any 2-edge-cut in an outer-cylindrical graph G, the first lemma 

finds two faces whose boundaries together would contain all the vertices of G along 

with the edges of the 2-edge-cut. The second sets a limit on the size of a generalized 

cycle of a cubic obstruction for outer-cylindrical graphs.

L em m a  3.2 .5  Let G be a cubic outer-cylindrical graph. I fG  is 2-edge-connected but 

not 3-edge-connected , then fo r  every 2 -edge-cutE' o f G. there is an embedding ofG  

with faces f  and f "  such that each vertex of G lies on the boundary of f  or f "  and 

both edges of E ' border one of f  and f" .

Proof: Let X1X2 and y \y 2 be the edges of a 2-edge-cut E ' of an outer-cylindrical 

graph G. Let G\  and G2 be the components of (T\{xiX2, I/1I/2} where Xi and yi are in 

V(Gi).  Em bed G in the plane so th a t all the vertices of G border two faces which we 

label f  and

We first show th a t if one of f  or / "  is bordered by vertices of both  G\ and G 2 

then X1X2 and y iy 2 borders the face. So, w ithout loss of generality, assume f  is
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bordered by vertices from both  G\ and GY Now G is a plane cubic graph with edge- 

connectivity two. Thus the boundary of every face of G is a cycle. So there is a cycle 

C  in G th a t forms the boundary of f .  Let vx and v2 be vertices in C  where vx is in 

G\ and v2 is in GY Now, there are two edge disjoint paths P\ and P2 from vx to v2 

in C. Since E ' is a 2-edge-cut then the edge x xx 2 must be in one of Pi and P2 and 

the edge y iy 2 must be in the other. Suppose XiX2 is in E (P X) and y iy 2 is in E (P 2). 

Since C  forms the boundary of f  and edges x xx 2 and y-\ y2 lie in C, it is clear th a t 

XiX2 and y \y2 border f .  So we conclude th a t whenever / '  is bordered by vertices of 

both G\ and G2, the edges x \x 2 and y iy 2 border f .  Now we consider the case where 

all the vertices of G x border one of f  and /" ,  and all the vertices of G2 border the 

other.
*  • - .............X\ x 2 N.

f  V
yi V2 /

« — • —..........

Figure 3.5: Cycle C  forms the boundary of / ' .

W ithout loss of generality, suppose all the vertices of G\ border f  and all the 

vertices of G2 border /" .  Thus G\ and G 2 are outer-planar and we can clearly embed 

G\ and G2 in the plane so th a t all the vertices of G\ and G2 lie on a face / .  Now 

we can embed x \x 2 in the face /  so th a t each vertex of G^UG^ U { x ix 2} lies on the 

boundary of one face, namely / .  Adding yyy2 in the face /  divides /  into two faces 

f i  and f 2 say. The resulting graph is a plane graph isomorphic to G in which each 

vertex of G lies on the boundary of one of f i  or / 2, and x xx 2 and yxy2 lie on the 

boundary of at least one of f x or f 2. n

L em m a  3.2 .6  Let G be a 2-connected, but not 3-connected, cubic obstruction fo r  

outer-cylindrical graphs. Then G has a representation as a generalized cycle, each 

part o f which is a block and the number of parts o f this representation is no more 

than four.
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Proof: Let G be a cubic obstruction for outer-cylindrical graphs of connectivity 

two. From Lemma 1.3.3 we see th a t there is a representation o fG as a generalized 

cycle where each part is a block. Assume th a t the number of parts of this generalized 

cycle is greater than  four where By, B 2, . . . ,  B n are the parts of G and n > 4. Let Vi 

denote the contact vertex of Bi and £>lTi. Since G is cubic it must be th a t B, is an 

edge precisely when and B ,+ ] are not edges, and thus n  is even. For the rest of

the proof, assume th a t B 2, B 4 , . . . ,  B n are edges of G.

Now, suppose th a t £>1, B 3, . . . ,  £ n- i  are outer-planar. Observe th a t the boundaries 

of the central faces of the generalized cycle taken together contain all the vertices of 

G. Thus G is outer-cylindrical -  a contradiction to G being a cubic obstruction. Thus 

it must be th a t one of £>1, -£>3, • • •, -Bn-i is not outer-planar. W ithout loss of generality 

assume th a t By is not outer-planar.

We now claim th a t Bi is outer-planar for j ^  1. This is clearly the case for 

j e  {2 , 4 , . . . ,  n }. Now, suppose th a t one of B 3, B§, . . . ,  B n_y, say B 3, is not outer- 

planar. For any edge e5 in B-,. the blocks B 3 and By are disjoint subgraphs in G \:ie5. 

So we see th a t G \3e5 contains disjoint copies of either I if  or A^,3-subdivisions and as 

a result G '\3es contains disjoint copies of either I \A or AT.3 as a minor. By Theorem 

3.1.1, K 4 U K y, I i \  U K 23, and K 23  U A"2,3 are excluded minors for outer-cylindrical 

graphs, so we see th a t G \3es is not outer-cylindrical -  a contradiction to G being a 

cubic obstruction. So it must be th a t Bi is outer-planar where i 7̂  1.

Let e3 be an edge in B :> and embed the graph G \3e3 so th a t all the vertices 

of G \3e3 lie on the boundary of one of two faces labeled /  and g. Assume th a t a 

vertex v of B 5 lies on the boundary of / .  We now show th a t £>3\ 3e3, B $ , , B n_ 1 are 

centralized parts. So assume th a t one of these parts is not and le tw  be the vertex 

in the non-centralized part of £?3\ 3e3, B $, . . . ,  £?n_ 1 th a t does not lie on the boundary 

of / .  Since G \3e3 is outer-cylindrical, w must lie on the boundary of g. And since 

G is a generalized cycle, there is a (v, re)-path, P, in G \3e3 whose internal vertices 

do not contain vertices from B \. Consider the deletion of B 2, B 3\ 3e3, B 4, B 5, . . . ,  

B n from the embedded graph of G \3e3, the result being B \. Let / '  be the face of B \ 

containing /  and let g' be the face of By containing g. Since By is not outer-planar,
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/ '  7̂  g '. Thus re-embedding P  so th a t u is in /  C / '  and w is in g C g' induces a 

crossing of an edge of P  with an edge of B 1. This implies th a t the embedded graph of 

G \3e3 has a crossing -  a contradiction to the outer-cylindrical embedding o f G \ 3e3. 

So it must be the case th a t all the vertices of B 3\ 3e3, B 5, . . . ,  B n- i  lie on / .  Thus B$ 

is a centralized part.

Likewise for an edge e$ in £>5 we can embed the graph G \3e5 so th a t all the vertices 

of G \3e5 lie on one of two faces labeled h and k. If vertices of £>3 he on the boundary 

of h, then all the vertices of B 3, B 5\ 3e5, . . . ,  B n_ i lie on the boundary of h. Now since 

B$ was a centralized part in the embedding of G \ 3 e3 , we see th a t the replacement of 

B s \3e5 with B 5 is a graph embedded in the plane where there are two faces, namely 

h and k, whose boundaries together contain all the vertices of G. Thus, G  is an 

outer-cylindrical graph -  a contradiction to G  being a cubic obstruction. W ith this 

we conclude th a t the number of parts of G is no more than four. ■

3.3 O bstructions for O uter-cylindrical Graphs

This section is devoted to  showing th a t the graphs depicted in Figure 3.1 are cubic 

obstructions for outer-cylindrical graphs. Before describing the approach we take, we 

will prove the following lemma.

Lemma 3.3.1 The only non-planar cubic obstruction for outer-cylindrical graphs is 

K 3,3.

Proof: Here we show th a t / i 3.3 is a cubic obstruction. Since / i 3i3 is not planar it 

cannot be embedded in the plane. Thus by the definition, K 33  is not outer-cylindri­

cal. For any edge e, the graph /y3i3\ :ie is isomorphic to  K,\ which is outer-cylindrical. 

So we conclude th a t K 33  is a cubic obstruction.

Now suppose, th a t G is a non-planar cubic obstruction for outer-cylindrical graphs. 

By Theorem 1.5.2, the graph G contains a subgraph th a t is a subdivision of K 3-3. 

and by Proposition 1.6.1 G  contains K 3j3 in the cubic order. Since K 3 3 is a cubic 

obstruction, G must be isomorphic to  /y3 3. Therefore, K 33  is the only non-planar 

cubic obstruction for outer-cylindrical graphs. ■
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Figure 3.6: The non-planar cubic obstruction for outer-cylindrical graphs.

The graphs depicted in Figure 3.1 were shown, via computer check, to be cubic 

obstructions for outer-cylindrical graphs. Table 3.1 occurs from pages 38 -  50, and it 

is here th a t the graphs depicted in Figure 3.1 are shown to be cubic obstructions for 

outer-cylindrical graphs. Specifically, each row of the table contains a graph depicted 

in Figure 3.1 and a proof th a t this graph is a cubic obstruction. The labeled g raphG 

in the right column of each row of Table 3.1 is a loopless plane graph from Figure 3.1. 

The chart in the left column of each row of Table 3.1 has two columns, describing an 

outer-cylindrical embedding of G upon the cubic edge-deletion of some edge of G.

Vertices of each graph in the right column of Table 3.1 will be labeled Vi, for some 

i £ {0, 1, . . .  }. The faces of the graph are labeled a ,b ,. . .  ,h . The left column of the 

chart in each row of Table 3.1 contains all the edges ofG up to symmetry. Each entry 

of the right column of the chart contains a list of the faces of the graph resulting from 

the cubic edge-deletion of the corresponding edge in the left column of the chart. To 

explain how this information proves th a t the graph G is an obstruction, we need to 

describe an operation. Now upon the cubic edge-deletion of an edge ofG, a new face 

is created by joining two faces of G. Formally, if a new face is created by the cubic 

edge-deletion of an edge x y  of G. then the new face contains two faces, say a and b, 

and this new face is defined to be a U b U 4>{xy] — {<j)(x), (f>(y)} which will be denoted 

a V b.

Now for each edge in the left column of the chart in each row of Table 3.1, the 

list of faces in the right column of the chart has two faces th a t are enclosed in a

box . These are the two faces whose boundaries together contain all the vertices of

the graph obtained by the cubic edge-deletion of the edge in the left column. So 

for the cubic edge-deletion of any edge e of G, we dem onstrate an outer-cylindrical 

embedding of G \3e.
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Table 3.1: The loopless outer-cylindrical cubic obstructions.

K4UK4

edge xy faces of K ^ U K ^ x y

V0Vl a V g > b, c, d , e, f

9
Vl

Vo

KAJIC4U-n.2i3C2

edge xy faces of K4\JK2̂ c2\ 3x V

VqVi a V / , b, c, \d\,

V2V3 a], b, c, d, e, [ / ]

V4V5 \aA b, c, d V f , e

f Vi
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K 2 ,3  C2 U K 2 ,3  C2

edge xy faces of K 2,3c20 K 2}3c2\ 3xy

v0v1

v2v3

, e
*

a V c , b, c, d , e

c

^2

D1

edge x?/ faces of D l \ 3xy

VqV!

VqV2

V2V5

V3V4

a, 6, Ycl d , e

a V b c,
*

a V c ,b, d , e

|~d~|, 6, c, d , e

a
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D2

edge xy

v0vr

faces of D2\ 3xy

see below *

VqV2 a V b , c, d  , e ,  f

v 2v 8
*

a V c , b, d  , e ,  f

V3V4 a , 6, c, d e, /

VlV6
*

a V e , 0 ,  c> d> /

V5V6 [a], c, d V e, /

V5V7 a , 0 ,  c, d V / ,  e

VGV7 a V r f 5 b

* Embed v2vg of G\3voV\ in face c then faces 
*

a V b and d contain all vertices of G \3vqVi.

C21

edge xy

VqV i

VqV2

V2V3

V3V4

faces of C21 \ 3xy

a ] ,  b, c ,  d ,
*

e V  g

a  V e , b, c, d ,  f ,  [g

a  V c , b, d ,  e, / ,  Yg

[ a ] ,  b  V c, d ,  e , / ,  [g

a
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C9

edge x y

v 0v 1

v0v2

VqV&

ViV2

ViV5

V2V3

V3V4

V3V5

faces of C9\ 3x y

a, b, c V g d , e, /

a , b V g , [cl, |dj, e, /

b V c

a, 6, [d], e, /  V g

[a], b, c V f d, e, g

a , 6 V / ,  [cl, d, e,

a , b V d e, / ,  5

a, b, |~c 1, d V / , e, g

d

T1

edge xy faces of T l \ 3xy

^ 1 a , c, c/, e

a, b , c V d e

V2V5
*

a V e , 6, c, d

V2V3 a V b , c, d e

V3V4 a, b, c, d e

V5Vfi
*

fa], b, c, d  V e
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T2

edge x y faces of T2\ 3x y

VqVi a , b, c, d, e , /

VqV6 see below *

V2V5
*

a V e , b, c, d , /

V2V3
*

a V c , b , d , e, /

V3V4 a , b V c, d , e, /

V5V6
*

[a], b, c, d \ / e , /

* Embed edge V5V8 of G \ 3vqVq in face a. Then 
faces a and e contain all vertices of G \ 3vqVq.

a

v8

T3

edge x y

VqVi

VqV2

V2V3

V3V4

faces of T3\ 3x y

c V e , d

a V c , b, d,

a, b, c V d

a], b, c, d, [e

a

Vi
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T4

edge x y faces of T 4 \3:n/

VqVi

v 0v 2

v0v5

v ± v 6

VlV7

V2V3

V3V4

v5v6

a V e b, [cl, d, f

a V c , b, d, Ve\, f

[a], b, c V e d, f

a], 6, [H  d, e V /

a V / , b , [c], d, e

a, 6, c V d

a , b, c, d, [e], /

a], b V e, [c l  d, /

v7

T5

edge x y faces of T 5 \3xy

VqV!

V0V2

v0v5

V2v 3

V3V4

V5V8

V6V7

a], 6, c, d, e V /

a V e , b, c, d, [7]

a V / , 6, c, d,

a V c , b, d,  e,  [7]

o J i V c ,  d, e, [7]

a V d

Fa], 6, c, d, [e], /
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C16

edge xy

V q V i

v iv2

V2V3

V3V4

faces of C 16\3xy

a, b, c V / ,  d

a, b\ /  c > d, \e\> f ,

b V d , c, e, / ,

a, b, \c\, d V p, [el, /

d

^3

Q l

edge xy

^ 9

V3V4

V4V5

v5v6

V7V8

faces of Q l \3xy

V0v2 a, b, c V d , e , / ,  9

V0v5 a ,
*

b y e , d, e, f ,  g

V1V4
*

a y e , 6 , d, e, / ,  g

VlV7
*

a V d , b Cj 6) f  i g

V1V9 a, 6,
*

c V d , 0 .  / ,  9

d], b , c, d, e, f ,  g

a y  f , b, c, d , e, y

a, 6, c V / ,  [dj, [e], y

b y  f , c, d , e,

a, 6, (cl, d, 0 ,  / ,  0

^9 w2
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edge xy

edge xy
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Q4

edge xy faces of Q4\ 3xy

V0Vi a
*

0 ,  c v  d7 e, / ,  g

VlV 2 0 ’ d> e ’ /> 9

V2v 3 a 5 b , c V d, e, / ,  g

V3V4 a 5
*

b V  d , c , e ,  f , g

d

FI

edge xy

VqVi

VlV2

faces of F I\ 3xy
*

a V b 1 c , d

a, b, [c], d
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P I

edge xy

VqVx

faces of P I \ 3xy

a, b, \cV d , e, f

PP2
*

a V e , 6, c, d , /

a, b, c , d V e , /

1)3̂ 4 a
*

, 6 V d , c, e, /

a
*

, b V e, c, d , /

t)4V6 a , b, c V d , e> /

V2

d

v3

vA

P2

edge xy

VqV2

V6V7

V lV6

ViV4

^4 5̂ a,
*

6 V c , d , e, /

P^8 a,
*

b \ / e , c, d, /

VgVg a, b, [e], d , e > /

VqV5 a, b, c V e , d , /

faces of P2\ 3xy

a V e , b, c, d ,  f

a V c , l&, <*, e, /

a V / , {b}, c, d, e

a, b, c V / , d,

a, b |, c V r f , e, /

u7 ^2

d

^3
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P3

edge xy

V9V10

faces of P3\ 3xy

VqV2
*

a  V c 0  d, e

VqV7
*

a V e 0 ,  c, d

V1V3
*

a V c b d ,  e

V1V4 a V b c d ,  e

V2V3 a ,  0 ,  c, d, e

V4V5
*

a , b V d, c  , e

V4V9
*

a V d b, c, e

V5V6 a , 6, [c], d, e

V7 V8 a ,  b, c , d , e

V8 V9
*

a  V e b c, d

*
, 6, c, d \ J e

C15

edge xy

VqV 1

V l V 3

V2V3

V3V4

faces of C15\sxy

a , b V c, d , e, / ,

a , b , c \ / g ,  d , e, f

q~|, b, c, d V  g , e, /

©  6, c V d ,e, / ,  g
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P4

edge xy faces of P4\ 3xy

vQv2

v0v7

V1V3

V1V4

V2V3

V4V9

V5V9

V7V8

V8V9

a V c ,b ,d ,  Ve\

a V e b , c, d

a V c , b, d,

a V b , c, d,

0 ,  c’

a V d ,-b, c,

a, 6, 0 , d V e

a], b, [c], d, e

a, b, [c l d

*
a V e 5 b , c, d

d

C14

edge xy faces of C14\3xy

V0V2

V2V3

V3V4

v0v5

V\Vq

V5V6

V5V7

, b, c, d, , /

a V e , b, c, d, f ,  Yg

a V c , b, d, e, / ,  [y

, b V c, d, e, / ,  [7j

a V g , b, c, d, [e], /

, b, c, d, [e], /  V y

[a], 6, c, d V y, /

*
a V d , 6, c, e

x7
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P5

edge x y

V 1 2 V 1 3

faces of P5\ 3x y

VqVi
*

a V c , 0 ,  d, e

V0V7
*

a V e , b, c, d

V0Vl3 a, \b\,
*

c V e d

V1V4 a V b cj d, e

ViVu a 5
*

b V c d, e

V2V3 a, 6 , c, d, e

V2V10 a ,6 ,
*

c V d , e

V3V1I a , b, c V d , e

V±Vg a V d , b, c, e

V4V5 a, b\J d , C, e

V5V6 a , b, c d, e

VsVn a, b V d , c, e

V7V3 a, 6, c , d , e

V8Vg
*

a V e , b, c, d

V9V10 a, b_, c, d V e

VWV12 a, b 7
*

c V e d

’a j  b, c, d  , e

^6 v5

d

VlQ'
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CHAPTER 4

CUBIC OBSTRUCTIONS FOR 

OUTER-CYLINDRICAL 

GRAPHS

4.1 Introduction

The main result of this chapter is to show th a t the set of all graphs depicted in 

Appendix A is the complete set of cubic obstructions for outer-cylindrical graphs. 

In Section 4.2, we characterize cubic obstructions tha t are disconnected, 1-edge- 

connected, and those having a 2-edge-cut whose deletion results in a graph th a t 

has no components which are 2-cycles. In Section 4.3, we characterize those cubic 

obstructions containing a subgraph th a t is a subdivision of a cube. We complete this 

chapter in Section 4.4 by characterizing the remaining cubic obstructions not already 

characterized in the previous sections.

If G is a cubic obstruction for outer-cylindrical graphs, Proposition 3.2.3 and 

Corollary 3.2.4 allow us to replace 2-cycles with nooses and nooses w ith 2-cycles 

within G and obtain another cubic obstruction. Since a cubic graph has a noose 

if and only if it has a loop, the problem of finding all cubic obstructions for outer- 

cylindrical graphs is reduced to finding all loopless cubic obstructions. In order to 

obtain the complete list of cubic obstructions for outer-cylindrical graphs, we need 

only  perfo rm  all possib le com b ina tions of 2-cycle-noose o p e ra tio n s  on th e  loopless 

cubic obstructions. Thus, the remainder of this chapter will be devoted to finding all 

loopless cubic obstructions for outer-cylindrical graphs.

51
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4.2  O b s tru c tio n s  fro m  O u te r -p la n a r  O b s tru c tio n s

In this section we show th a t the disconnected cubic obstructions for outer-cylin­

drical graphs are the disjoint unions of two cubic obstructions for outer-planar graphs. 

Furthermore, we show th a t loopless cubic obstructions of edge-connectivity one are 

D1 and D2 which were presented in Table 3.1 on pages 39 and 40. Finally, we show 

th a t if none of the components resulting from a 2-edge-cut of a cubic obstruction is a 

2-cycle then the obstruction is either C9, C14, T l , T2, T3, T4, or T5. From Lemma 

3.3.1, the problem of finding all the cubic obstructions for outer-cylindrical graphs 

is reduced to finding only the loopless cubic obstructions th a t are planar. We now 

prove two propositions, the first of which characterizes the cubic obstructions th a t 

are disconnected. The second proposition gives the loopless cubic obstructions having 

edge-connectivity one.

P ro p o s it io n  4 .2 .1  The planar disconnected cubic obstructions fo r  outer-cylindrical 

graphs are the disjoint unions o f two cubic obstructions fo r outer-planar graphs.

Proof: From Table 3.1 (pages 38 -  39), Theorem 2.1.1, and Proposition 3.2.3, it is 

clear th a t disjoint union of two cubic obstructions for outer-planar graphs is a cubic 

obstruction for outer-cylindrical graphs. We claim th a t there no others. Assume 

th a t G is a disconnected cubic obstruction for outer-cylindrical graphs, arid G is not 

isomorphic to the disjoint union of two cubic obstructions for outer-planar graphs. 

Since G is disconnected then G  has a t least two components G\ and Gb. We now 

show th a t neither Gb nor Gb is outer-planar.

W ithout loss of generality assume th a t Gb is outer-planar. Then, since G is a 

cubic obstruction, G — V{G \) can be embedded so th a t every vertex lies on a t most 

two faces. Consider such an embedding of G — V (Gb) and let /  and g be the two faces 

of the embedding whose boundaries together contain all the vertices ofG  — V(Gb). 

Since Gb is outer-planar embed Gb in /  so th a t every vertex of Gb lies on / .  So 

there are two faces of an embedding of G whose boundaries together contain all the 

vertices of G, and G is an outer-cylindrical graph -  a contradiction to the choice of
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G. So it must be th a t G\ is not outer-planar. We conclude th a t neither G\ nor G 2 is 

outer-planar.

Since G\ is cubic and not outer-planar, from Theorem 2.1.1, G\ contains a cubic 

obstruction for outer-planar graphs, likewise G2 contains a cubic obstruction for outer- 

planar graphs. Because G\ and G 2 are disjoint then G contains a disjoint union of 

two cubic obstructions for outer-planar graphs. Now G is a cubic obstruction for 

outer-cylindrical graphs and G contains a disjoint union of two cubic obstructions for 

outer-planar graphs in the cubic order. Thus G is isomorphic to a disjoint union of 

cubic obstructions for outer-planar graphs -  a contradiction to the choice of6 '. W ith 

this contradiction the proposition is established. ■

D1 D2

Figure 4.1: The cubic obstructions for outer-cylindrical graphs of edge-connectivity 

one.

P ro p o s it io n  4 .2 .2  L e tG  be a loopless planar cubic obstruction fo r  outer-cylindrical 

graphs. I f  G is o f edge-connectivity one, thenG  is isomorphic to D1 or D2.

Proof: In Theorem 3.1.1, the excluded minors for outer-cylindrical graphs are 

presented, the disconnected ones being K 4UK4 , AbU/Wa, and K 2p J K 2,3- So if G 

contains disjoint copies of AT4 or K 2j3 subdivisions, then clearly G  contains disjoint 

copies of Ah or Ah,3 as a minor. So, by Theorem 3.1.1 we can state  the following.

4.2 .3  I f  G contains a subdivision of K4&K4, K^\JK 2̂ , or K 2^\JK 2;s, th en G  is not 

outer-cylindrical.

Let G be a loopless cubic obstruction for outer-cylindrical graphs th a t is not 

isomorphic to one of D1 and D2, and suppose G \v iv 2 is a disconnected subgraph 

th a t has components G\ and G2 where V\ is in Gj and v2 is in G 2.
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Figure 4.2: The cut edge of G.

We now show th a t Gi and G2 are not outer-planar. W ithout loss of generality, 

assume th a t G\ is outer-planar and let e' be an edge of G\. We will now construct 

an outer-cylindrical embedding of G. Since G  is loopless, G2 is a subgraph of G \3e' 

and so G 2 is outer-cylindrical. Embed G 2 so th a t the boundaries of two faces, say /  

and g, together contain all the vertices o iG 2. Now suppose th a t /  is the face having 

v2 on its boundary. Since G\ is outer-planar, embed V\V2 and G\ in /  such th a t all 

the vertices of G i lie in / .  Thus G is embedded in the plane so th a t there are two 

faces whose boundaries together contain every vertex ofG'. So G  is outer-cylindrical 

-  a contradiction to G  being a cubic obstruction. Therefore, it m ust be th a t G\ and 

G2 are not outer-planar, and by Theorem 1.5.5 both  G\ and G 2 contain a subgraph 

th a t is a subdivision of either K 4 or K 2 3.

Assume th a t either G\ or G2 is not 2-edge-connected. So w ithout loss of generality 

assume there is an edge v'v" th a t disconnects G 2 into components G' and G" where v' 

is in G' and v" is in G ". If G' and G" are outer-planar then G2 would be outer-planar 

by Lemma 1.5.4. So assume G' is not outer-planar and consider an edge e" in G". 

Since G" is not a loop and e" is not either v4v2 or v'v" then G' and G\ are disjoint and 

subgraphs of G \3e". Thus G \3e" contains disjoint subgraphs which are subdivisions 

of either K 4 or Ah,:;. So from 4.2.3, it is clear th a t G \3e" is not outer-cylindrical -  a 

contradiction to  G being a cubic obstruction. Thus G 1 and G2 are 2-edge-connected.

Assume th a t both components contain a subgraph tha t is a subdivision of K 4. 

The ends of V\V2 are not of degree three in either component thus they are not 

the vertices of degree three of either subgraph th a t is a subdivision of K 4. So, the 

graph G \3V\V2 contains a subgraph th a t is a subdivision of A'4UA'4 which means th a t 

G \3v\V2 is not outer-cylindrical by Proposition 4.2.1 -  a contradiction to G being a
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cubic obstruction. So it m ust be one component does not contain a subgraph th a t is 

a subdivision of K 4.

Now, for the remainder of this proof, w ithout loss of generality, assume th a t G2 

does not contain a subgraph th a t is a subdivision of K 4. By Theorem 1.5.2, since G2 

is not outer-planar, Go m ust contain a subgraph th a t is a subdivision of A'2,3 which 

we will denote H 2. Now again, by Theorem 1.5.5, we have the following.

4 .2 .4  Since G 4 is not outer-planar, it contains a subgraph that is a subdivision of 

K 4 or K 2)3 which we denote H 4.

Since G is 1-edge-connected there is at least one path from H } to H 2. Assume 

R  is a shortest such path  and let h 4 be the end of R  in H 4 and let h2 be the end of 

R  in H 2. Since H 2 is a subgraph th a t is a subdivision of A'2,3, let w 4 and w2 denote 

the vertices of degree three, and P i, P2, and P3 be the internally disjoint paths of I i2 

whose ends are w 4 and w2. Since h2 is in P 2, then h2 is an internal vertex of either 

Pi, P2, or P3. W ithout loss of generality, assume h2 is in P2.

Assume th a t the end edges of one of Pi, P2, or P3 do not form a 2-edge-cut in 

G2 . From Lemma 1.7.2, G 2 contains a subgraph th a t is a subdivision of K 4 -  a 

contradiction to G2 not containing a subgraph th a t is a subdivision of AT4. Thus it 

must be th a t the end edges of each of P i, P2, and P3 form a 2-edge-cut in G2.

Since G is cubic and R  is a shortest path  from H i to H 2, then R  avoids Pi and 

P3. Clearly, R  utilizes the bridge V \ V 2. So it is clear tha t vertex v 2 is not in either Pi 

or P3. Thus we see th a t the end edges of each of P i and P3 form a 2-edge-cut in G .

Now by Lemma 1.7.3 we see th a t each of Pi and P3 are paths whose vertices are 

in a subgraph th a t is a subdivision of a storm  and the ends of Pi and P3 are the ends 

of the storm. Let x \ and y\ denote the internal vertices of P\ th a t are in a storm  and 

let xz and y3 denote the internal vertices of P3 th a t are in a storm. We now consider 

the two cases implicit in 4.2.4 above.

Suppose th a t Hi is a subgraph th a t is a subdivision of Ah- Let k4, k2, k3, and k4 be 

the branch vertices of P i  having degree three and let h4 be in the (k4 ,k4 )-subdivisional 

path. Thus we see th a t G contains a subgraph th a t is a subdivision of D2 denoted I)
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Figure 4.3: A subgraph th a t is a subdivision of D2

where the branch vertices of degree three th a t are not in any 2-cycle axeki, k2, k3, 

A4, hi, h2, W\, and w2 and the branch vertices of D  tha t are in a 2-cycle are x \, y\, 

X3 , and ys. So it must be th a t if G\ contains a subgraph th a t is a subdivision of K,\ 

then G contains a subgraph th a t is a subdivision of D2. NowG is a cubic obstruction 

and G contains D 2 in the cubic order, thus G  is isomorphic to D2 -  a contradiction 

to  the choice of G. Thus, for the remainder of this proof assume th a t G\ does not 

contain a subgraph th a t is a subdivision of .

In this case, H i is a subgraph th a t is a subdivision of K 2,3. Let w[ and w 2 denote 

the vertices of degree three of H i, and let Q \. Q2. and Qs be the internally disjoint 

paths of Hj joining w[ and w'2. W ithout loss of generality, assume hi is in Q\. Since 

the degree of w[ and w2 is three, notice th a t hi 7  ̂w '1 and hi 7̂  w2.

Figure 4.4: A subgraph th a t is a subdivision of D l.
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Assume th a t the end edges of one of Qi, Q2, or Q3 do not form a 2-edge-cut in 

G\. Then from Lemma 1.7.2, G i contains a subgraph tha t is a subdivision of K± -  

a contradiction to G-\ not containing a subgraph th a t is a subdivision of K 4. Thus it 

must be th a t the end edges of each o fQ i, Q2 , and Q:\ form a 2-edge-cut in G\.

Since R  is a shortest path  from H i to H 2, path  R  avoids Q2 and Q3 . Now clearly 

R  utilizes the bridge V\V2. So it is clear th a t vertex v\ is not in either Q2 or Q3. Thus 

we see th a t the end edges of each of Q2 and Q% form a 2-edge-cut in G.

Now by Lemma 1.7.3 we see th a t each o fQ 2 and Q;>, are paths whose vertices are 

in a subgraph th a t is a subdivision of a storm  and the ends of Q2 and Q:>t are the ends 

of the storm. Let x 2 and y2 denote the internal vertices Q2 th a t are in a storm and 

let .To and y'z denote the internal vertices of Q;\ th a t are in a storm. Thus G contains 

a subgraph th a t is a subdivision of D1 where the branch vertices of degree three th a t 

are not in a 2-cycle are w[, w'2, hi, h2, w\, and w 2 and the branch vertices of D  th a t 

are in a 2-cycle are x \, yi, x 2, y2, X3 , yz, x'z , and y'3,. So it must be th a t G\ contains 

a subgraph th a t is a subdivision of D l. Now G  is a cubic obstruction and G contains 

D 1 in the cubic order, thus G is isomorphic to D l -  a contradiction to  the choice of 

G. m

a b

Figure 4.5: The halo and the kite

W ith the establishment of Propositions 4.2.1 and 4.2.2, the problem of finding 

all the cubic obstructions for outer-cylindrical graphs is now reduced to finding only 

the planar cubic obstructions th a t are 2-edge-connected. In the next proposition, we 

characterize the planar cubic obstructions for which there is a 2-edge-cut, E ', where 

neither component of the graph obtained from deleting E ' is a 2-cycle. Before proving 

the next proposition, we need to formally develop some of the terminology used in the
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proof. Let G be a 6-cycle and e\ and e2 be distinct edges of G where the endvertices 

of e\ and e2 are not neighbors. The halo is obtained by adding one edge in parallel 

to e\ and one edge in parallel to e2. The halo is depicted in Figure 4.5 (a). The kite 

is obtained by deleting one edge of K,\ (see Figure 4.5 (b)).

T2T1 T3

T5T4 C14

C21

Figure 4.6: The set C of graphs which is a subset of the set of loopless cubic obstruc­

tions for outer-cylindrical graphs.

P ro p o s it io n  4 .2 .5  Let G be a planar cubic obstruction for outer-cylindrical graphs 

that has edge-connectivity two. I f  neither component obtained from  some 2-edge-cut 

of G is a 2-cycle, thenG  is isomorphic to one of CIA, C21, T l , T2, T3, T4, or T5.

Proof: Assume th a t G is a loopless cubic obstruction th a t is not isomorphic to 

C14, C21, T l ,  T2, T3, T4, or T5. Let X  and Y  denote the components resulting 

from the deletion of a 2-edge-cut {x 'y ', x"y"} of G , where x', x" are vertices in X  and 

y', y" are vertices in Y ,  and suppose X  and Y  are not 2-cycles.

Assume th a t X  and Y  are outer-planar and embed X  and Y  in the plane so th a t 

all the vertices of X  and Y  lie on the boundary of one face d en o ted /. Em bed x 'y ' in 

/  and we see th a t x'y ' lies in / .  Upon the embedding of x"y", we see th a t there are
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YA

Figure 4.7: A depiction of a 2-edge-cut ofG.

two faces / '  and f "  whose boundaries together contain all the vertices of A  and Y  

and the edges x 'y ' and x"y" . Thus G  is outer-cylindrical -  a contradiction since G is 

a cubic obstruction. So it m ust be th a t a t least one of A  and Y  is not outer-planar. 

For the remainder of this proof we will assume th a t A  is not outer-planar. We now 

show the following.

L e m m a  4 .2 .6  y' and y" are not neighbors.

Proof: Assume th a t y' and y" are neighbors (see Figure 4.8). Because the compo­

nents resulting from G \{ x 'y ', x"y"}  are not 2-cycles, y' has a neighbor z' ^  y" in Y  

and y" has a neighbor z" y' in Y .  Since G is cubic and 2-edge-connected, z" /  z '. 

So the 2-edge-connected graph G \3y'y"  has a 2-edge-cut { x 'z '. x"z"}  having A  as a 

component. Let S  be the component of {G\3y 'y " )\{x ' z \  x"z"}  th a t is not A . It is 

easy to  see th a t y'y" is not part of a 2-edge-cut of G and as a result, G \3y'y"  is 

2-edge-connected.

Figure 4.8: A 2-edge-cut of G.

By Proposition 3.2.5 there is an outer-cylindrical embedding ofG \3y'y" with faces 

/ i  and / 2 such th a t each vertex of G \3y'y" borders either / i  or f 2 and x 'z ', x"z"  border 

one of f i  and / 2, say / i .  From Lemma 1.7.1, x 'z ' and x"z"  border the same faces so 

let f  and f "  be the faces bordered by x 'z ' and x"z" . Clearly f \  is one of f  or f" ,
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so, w ithout loss of generality, assume th a t / i  =  / ' .  If f 2 is /" ,  then G — V (S ) = X  

would be outer-planar -  a contradiction to  X  not being outer-planar. So it must be 

th a t f "  is not f 2. Since X  is not outer-planar, vertices of X  lie on the boundary of 

both  fx and f 2

Assume th a t there is a vertex s of S  th a t borders f 2. Since G \3y'y" is 2-edge- 

connected, the boundary of f 2 is a cycle C. So we see th a t s is a vertex of C . Since 

vertices of X  are in / 2, let x be a vertex of X  th a t is also in C. Now there are two 

disjoint paths from x  to s th a t are in C. Since x'z '  and x"z"  is a 2-edge-cut, then 

they must also be in C. And since C  is the boundary of f 2, edges x'z '  and x"z"  lie on 

the boundary of f 2 which implies f "  =  f 2 . Since this is a contradiction to f "  ^  f 2, 

it must be tha t vertices of S  do not border f 2. So we see th a t all the vertices of S  

border f \ .

Let G' be the graph obtained by subdividing x 'z '  and x"z"  once, obtaining new 

vertices W\ and w 2 and embedding the edge W\W2 in face f" .  Since W\ and w2 lie on 

/ i ( — / ') ,  each vertex of G' lies on the boundary of either f \  or f 2. Thus G' is an 

outer-cylindrical graph. But G' is isomorphic to G -  a contradiction. We conclude 

th a t y' and y" are not neighbors and Lemma 4.2.6 is established. ■

L em m a  4 .2 .7  We now show that Y  has one of two subgraphs of a certain type. Y  

has a subgraph that is a subdivision of a kite or a halo, denoted Y ' , where y' and y" 

are the branch vertices o f degree two o fY '.

Proof: From Lemma 3.2.6 the number of parts of a generalized cycle of a cubic 

obstruction is not larger than  four and every part is a block; so Y  must be a block. 

By Theorem 1.3.1, in Y  there are two disjoint paths Y\ and Y> from y' to y". Since 

y'y" is not an edge of Y. the paths Yj and Y2 must each have a t least one internal 

vertex. If there is a path  from /(Y i) to /(Y 2) not containing the end edges of Yi and 

Y2 , then by taking a shortest such path  in Y together with Yi and Y2, it is easy to see 

th a t Y contains a subgraph th a t is a subdivision of a kite where the branch vertices 

of degree two are y' and y". If there is no path  from IiY f)  to  I(Y 2), then the end
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edges of Yi form a 2-edge-cut and the end edges of Y2 form a 2-edge-cut. Thus, from 

Lemma 1.7.3, the vertices of Y  are in a subgraph tha t is a subdivision of a storm 

where the ends of Y are the ends of the storm  subdivision. Hence, Y must contain a 

subgraph th a t is a subdivision of a halo where the vertices of degree two are?/ and 

y", and Lemma 4.2.7 is established. ■

From Lemma 4.2.7, Y contains a subgraph Y' th a t is a subdivision of either a 

halo or a kite where y' and y" are degree two branch vertices of Y'. Since X  is not 

outer-planar, by Theorem 1.5.5, X  contains a subgraph th a t is a subdivision of K 4 

or Ff2,3 which we denote X '.  Since G is 2-edge-connected, there are 2 disjoint paths 

from X '  to Y ' . Let P\ and P2 be the two of the shortest such paths. Let x\ be the 

end of Pi in X '  and x '2 be the end of P2 in X ' . Since y' and y" are ends of the edges 

of the edge cut E', then y’ and y" m ust be the ends of Pi and P2 th a t are in Y'. 

W ithout loss of generality assume th a t y' is the end of Py in Y' and y" is the end of 

P2 in Y'.

Figure 4.9: The paths Pi and P2.

We conclude th a t one of the following four cases occurs.

Case 1: X ’ is a subgraph th a t is a subdivision of K.y and Y' is a subgraph th a t is a 

subdivision of a kite.

Case 2: X '  is a subgraph th a t is a subdivision of K A and Y' is a subgraph th a t is a 

subdivision of a halo.

Case 3: X ' is a subgraph th a t is a subdivision of / v ' 2 , 3  and Y ' is a subgraph th a t is 

a subdivision of a kite.
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Case 4-' X '  is a subgraph th a t is a subdivision of K 2̂  and Y '  is a subgraph th a t is 

a subdivision of a halo.

The remainder of this proof will be devoted to  showing th a t in each case G must 

contain a subgraph th a t is a subdivision of one of C14, C21, T l ,  T2, T3, T4, or T5. 

In Cases 1 and 2 we assume th a t X '  is a subgraph th a t is a subdivision of X 4.

Case 1: Assume Y '  is a subgraph th a t is a subdivision of a kite where the branch 

vertices of degree two are y' and y" . Let ki, k2, fc3, and fc4, be the branch vertices of 

degree three of X '  and let y\ and y2 be the branch vertices of degree three of Y ' .

First we show th a t it is not possible for the ends of Pi and P 2 to  be on different 

subdivisional paths of X '  th a t do not share the same ends in X ' . W ithout loss of 

generality, assume x[ lies on the (fci,fc2)-subdivisional path and x'2 lies on the (P3,/c4)- 

subdivisional path (see Figure 4.10). T henG  contains a subgraph th a t is a subdivision 

of AT3,3 where £4 , k2, k3, fc4, x[, and x'2 are the branch vertices of degree three of a/T3j3- 

subdivision. Thus, G is non-planar and from Lemma 3.3.1, G must be isomorphic to 

A 3,3 -  a contradiction since A(G) =  2. So it must be th a t either the ends of Pi and 

P2 are on the same subdivisional path  of X '  or the ends of Pi and P2 are on different 

subdivisional paths th a t share an end in X ' .

Now consider the case when x \  and x'2 lie on the same subdivisional path  of X ', 

say the (k i,k2)--subdivisional path. Then G contains a subgraph th a t is a subdivision

k2

Figure 4.10: A subdivision of X 3j3
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of C21 where k4, k2, k3, k4, x 'l7 x 2, yi, y2, y \  and y" are the branch vertices of degree 

three as shown in Figure 4.11.

1-

C21

Figure 4.11: A subdivision of C21

Last, consider the case when x[ and x 2 lie on different subdivisional paths of X '  

th a t share an end. W ithout loss of generality, assume th a t x[ lies on the (k i,k2)~ 

subdivisional path  and x '2 lies on the (/c2,&4)-subdivisional path. Then G contains a 

subgraph th a t is a subdivision of C14 where k4, k2, k3, k4, x'x, x 2, y 4, y2, y', and y" 

are the branch vertices of degree three as depicted in Figure 4.12.

r

C14

Figure 4.12: A subdivision of C14

Case 2: Assume th a t Y '  is a subgraph th a t is a subdivision of a halo where the 

branch vertices of degree two are y' and y" . Let k-\, k2, k4. and k4 be the branch 

vertices of degree three of X 1 and C\ and C2 be the two cycles in Y ’ th a t are the 

subdivisions of 2-cycles.

First we show th a t it is not possible for the ends of P4 and P2 to be on different 

subdivisional paths of X '  th a t do not share the same ends in X '. W ithout loss of
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h

x.

h■2

X\

Figure 4.13: A subdivision of X 3,3

generality, assume x'x lies on the (fci,/c2)-subdivisional path and x '2 lies on the (/c;i./c,4)- 

subdivisional path  (see Figure 4.13). ThenG  contains a subgraph th a t is a subdivision 

of where ki, k2, k3, k±, x[, and x 2 are the branch vertices of degree three of a K 3,3- 

subdivision. Thus, G is non-planar and from Lemma 3.3.1, G  must be isomorphic 

to AT3,3 -  a contradiction since A(G) =  2. So it must be th a t either the ends of P\ 

and P2 are on the same subdivisional path  or the ends of P\ and P2 are on different 

subdivisional paths th a t share an end in X ' .

T5

k K . . .

h

k±*

i ,2 x ,

Figure 4.14: A subdivision of T5

x \ P i

C i j  i

w
c 2;

Y'

Now, consider the case when x\  and x '2 lie on the same subdivisional path  of X ', 

say the {k\ ,/,:2)-subflivisiorial path. Then G contains a subgraph tha t is a subdivision
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of T5 where k\, k2 , k3, /C4, x \ , x 2 , y', and y" are the branch vertices of degree three 

and C\ and C2 are the cycles of T5 as shown in Figure 4.14.

v '
..........

Fy# . k2 C\ ■ I C2 ■ ’■

V w

xC ''',

X ' Y '

Figure 4.15: A subdivision of T4

Finally, consider the case when 2̂  and x '2 lie on different subdivisional paths of 

X ' th a t share an end. W ithout loss of generality, assume tha t x[ lies on the (kiJiy)- 

subdivisional path  and x '2 lies on the (A:2,/c4)-subdivisional path. Then G contains a 

subgraph th a t is a subdivision of T4 where k\, k2, k3, /c4, x 2, y ', and y" are the

branch vertices of degree three an d C i and C2 are the cycles of T4 (see Figure 4.15).

Having settled Cases 1 and 2, for the next two cases, we assume th a t A ' is a 

subgraph th a t is a subdivision of a K 2 3 where Q i, Q2, or Q3 are independent paths 

of the ^ ^ -su b d iv is io n  and vertices Wi and w2 are the ends of each of Q 1, Q 2, and Q3. 

Additionally we may assume, from Cases 1 and 2, th a t A  does not have a subgraph 

th a t is a subdivision of K 4 . If the end edges of one of Qi, Q2 , or Q3 do not form a 

2-edge-cut in A , then, from Lemma 1.7.2, A  contains a subgraph th a t is a subdivision 

of A 4 -  a contradiction to A  not containing a subgraph th a t is a subdivision of A 4. 

Thus it must be th a t the end edges of each of Q i, Q2, and Q 3 form a 2-edge-cut in 

A .

Case 3: Assume Y '  is a subgraph th a t is a subdivision of a kite where the branch 

vertices of degree two are y' and y" and vertices 7/1 and y2 are the branch vertices of 

degree three of Y ' .

T4

ki
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Figure 4.16: A subdivision of T5

First, consider the case where x[ and x '2 lie on the same Qi, say <3i, of X '.  Since 

Pi and P2 are two shortest, disjoint paths from X '  to  Y ' , then both avoid Q2 and Q3. 

Since edge x 'y ' is in P\ and edge x"y" is in P2, the vertex x 1 is not in either Q2 or Q3, 

and x" is not in either Q 2 or Q3. Thus we see th a t the end edges of each of Q2 and 

Q3 form a 2-edge-cut in G. So, from Lemma 1.7.3, the vertices of Q 2 lie in a storm 

and the vertices of Q:> lie in a storm and w\ and w 2 are the ends of both storms. Let 

C' be the 2-cycle of the storm having vertices in Q 2 and let C" be the 2-cycle of Q3 

having vertices in Q3. Thus it is easy to see th a t G contains a subgraph th a t is a 

subdivision of T5 where the branch vertices of degree three th a t are not in a 2-cycle 

are x \, x'2, W\, w2, y ' , y" , yi, and y2 and the 2-cycles of the storms are C' and C" as 

shown in Figure 4.16.

Second, consider the case where x'x and x '2 lie on distinct subdivisional paths, say 

Q 1 and Q2, of X ' . Since Pi and P2 are two shortest disjoint paths from X '  to  Y ' , 

bo th  avoid Q3. Since edge x 'y ' is in P\ and edge x"y" is in P2, the vertices x ' and x" 

are not in Q3. Thus, we see th a t the end edges of each o fQ 3 form a 2-edge-cut in G. 

So, from Lemma 1.7.3, we see th a t the internal vertices ofQ3 lie in a storm  of G and 

Wi and w2 are the ends of the storm. Let C  denote the 2-cycle of the storm. Thus, G 

contains a subgraph th a t is a subdivision of T2 where the branch vertices of degree 

three th a t are not in a 2-cycle are x[, x'2, W\, w2, y\, y2, y ', and y" and the 2-cycle of 

the storm  is C  as shown in Figure 4.17.
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T2

x\

Pi

y

.CL
......... y \ .#2/2

X ' Pi 

Figure 4.17: A subdivision of T2

— : // y '  V

Case 4- Assume X' is a subgraph th a t is a subdivision of a halo where the branch 

vertices of degree two are y ' and y" and the 2-cycles of Y ’ are C\ and 62 .

Figure 4.18: A subdivision of T3

First, consider the case where x[ and x ’2 lie on the same subdivisional path, say 

Q 1, of X ' . Since Pi and P2 are two shortest, disjoint paths from X ' to  Y ', bo th  paths 

avoid Q 2 and Q3. Since edge x 'y ' is in Pi and edge x"y"  is in P2, the vertex x' is not 

in either Q2 or Q3, and x" is not in either Q 2 or Q3. Thus, we see th a t the end edges 

of each of Q2 and Q3 form a 2-edge-cut in G. So, from Lemma 1.7.3, it is clear th a t 

the vertices of Q2 lie in a storm  and the vertices of Q 3 lie in a storm  where W\ and 

W2 are the ends of both  storms. Let C' denote the 2-cycle containing vertices of Q2
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and let C" denote the 2-cycle containing vertices ofQs- Thus, it is easy to see th a t G 

contains a subgraph th a t is a subdivision of T3 where the branch vertices of degree 

three are x j, x '2, w-[. w2, y ', and y" as shown in Figure 4.18 and the 2-cycles are C' 

and C ".

x\ n,'
.j**.

T1

P2

x 2 x '  Y '
*     y "

Figure 4.19: A subdivision of T1

Now, consider the case where x \  and x '2 lie on different subdivisional paths, say 

Qi and Q2, of X '.  Since P\ and P2 are two shortest disjoint paths from Ai' to Y 1, both 

paths avoid Q3. Since edge x 'y ' is in Pi and edge x"y" is in P2, the vertices x ' and 

x" are not in Q3. Thus, we see th a t the end edges of Q3 form a 2-edge-cut in G. So, 

from Lemma 1.7.3, it is clear th a t the vertices ofQs lie in a storm where w\ and w2 

are the ends of the storm. Let C  denote the 2-cycle of the storm. Thus, it is easy to 

see th a t G contains a subgraph th a t is a subdivision of T1 where the branch vertices 

of degree three th a t are not in a 2-cycle arercj, x'2, w 3, w2, i/, and y" as shown in 

Figure 4.19.

Now G is a cubic obstruction and G contains either C14, C21, T l ,  T2, T3, T4, or 

T5 in the cubic order, thus G is isomorphic to either C14, C21, T l ,  T2, T3, T4, or 

T5 -  a contradiction to the choice of G. So it m ust be th a t if both of the components 

obtained from a 2-edge-cut of a loopless 2-edge-connected cubic obstruction is not a

2-cycle then the obstruction is isomorphic to one of C14, C21, T l ,  T2, T3, T4, or T5, 

and Proposition 4.2.5 holds. ■
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For the remainder of this chapter, C will represent the set of obstructions {C14, 

C21, T l , T2, T3, T4, T5} as just described in Proposition 4.6 and depicted in Figure

Corollary 4.2.8 Let G be a loopless planar cubic obstruction for  outer-cylindrical 

graphs that is not isomorphic to any graph inC. Then i f  E ' is a 2-edge-cut ofG , one 

of the components o fG \E '  is a 2-cycle.

Proof: Assume the components G\ and Go of G \E ' are not 2-cycles. By Propo­

sition 4.2.5 G is in C -  a contradiction. Thus if E ' is a 2-edge-cut of G , one of the 

components of G \E ' is a 2-cycle. ■

Now the problem of finding all the cubic obstructions for outer-cylindrical graphs 

has been reduced to Ending all the planar 2-edge-connected obstructions not in C. 

From Corollary 4.2.8, if E '  is a 2-edge-cut of a loopless 2-edge-connected obstruction 

not in C, then one of the components of G \E '  is a 2-cycle. In the next section we 

will characterize those obstructions th a t contain the cube, Q (see Figure 4.20) in the 

cubic order.

In Proposition 4.3.1 we identify the loopless cubic obstructions th a t contain a cube 

in the cubic order. Specifically, we show th a t the cubic obstructions containing the 

cube are C16, Q I, Q2, Q3, and Q4 (see Figure 4.22). Before stating this proposition, 

we need some additional terminology.

4.6.

4.3 O bstructions Containing the Cube

Figure 4.20: The graph of the cube, denoted Q.
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The graph of Figure 4.20 is a cube and will be denoted Q. Since the cube is

3-connected, it is easy to  see th a t no member of C contains the cube in the cubic 

order.

A circular ladder (see Figure 4.21) is a graph th a t consists of two disjoint cycles of 

the same size C = I1I3 . . .  l2n- i  and D  = l2l4 ■ ■ - hn where Z2«-1 and l2i where 1 <  i < n  

are joined by an edge called a rung. Here, the cycles C  and D  are called the rails. A 

circular ladder with n  rungs will be called an n-circular-ladder and is denoted C L n. 

Notice th a t the cube is a 4-circular-ladder.

2 n —1

2 n

Figure 4.21: A labeled circular ladder.

Q2

C16

1^ 7 !
Ql

lr \i R 1

Q3 Q4

Figure 4.22: The loopless cubic obstructions for outer-cylindrical graphs having a 

(^-subdivision.
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Proposition 4.3.1 Let G be a planar loopless cubic obstruction for  outer-cylindrical 

graphs. I fG  contains the cube in the cubic order thenG  is isomorphic to one of C16, 

Q I, Q2, Q3, and Q4.

Proof: Suppose G is a loopless planar cubic obstruction for outer-cylindrical graphs 

containing the cube in the cubic order. In this proof we show th a t G contains a 

subgraph th a t is a subdivision of C16, Q I, Q2, Q3, or Q4. By Proposition 1.6.1, G 

contains a subgraph th a t is a subdivision of the cube. Since the cube is a 4-circular- 

ladder, the graph G contains an n-circular-ladder where n >  A. Let n  be an integer 

such th a t G  contains a subgraph th a t is a subdivision of the n-circular-ladder C L n, 

which we label L, and G  does not contain a fc-circular-ladder where k > n. Assume 

the rails of this copy of C L n are C = h h  ■.. h n - i  and D  =  l2l4 ■ ■ - h n  and the rungs 

are l\l2, I 3 U , . . .  h n - i h n -  Let LtJ denote the subdivisional path  of L  from to  lj of 

C L n. Notice th a t any n-circular-ladder is outer-cylindrical by embedding (7£n in the 

plane and observing th a t the rails of the n-circular-ladder bound two faces. Since G  is 

cubic and not outer-cylindrical, G is not isomorphic to an n-circular-ladder and thus 

G is not isomorphic to  L. Moreover, as all the vertices of L  have degree three and 

G is connected, a t least one of the subdivisional paths of £, say £ ', has an internal 

vertex (see Figure 4.21).

We claim th a t every path  from the internal vertices of IJ to V  (L ) — V  (Lr) contains 

an end edge of L ' . Let P  be a shortest such path  in G from / ( £ ')  to V (L ) — V(L')  

not containing an end edge of £', vertex v  be the end of P  in I(L ')  and w be the end 

of P i n  V { L ) - V { L ’).

First suppose L' is one of £*,*+2, £ 271- 1,1, or £ 271,2- By the sym m etry of the graph £, 

assume L' is £ 1,3 as depicted in Figure 4.23. Since the cube is uniquely embeddable, 

w must be a vertex in £ 1;2, £ 3,4, £ 2,4, £ 21- 1,27+1 where 2 <  i < n  — 1, or £ 2n-i,i  or G 

would not be planar. If w is in £ 1i2, £ 3,4, £ 3,5, or £ 2n_i,i, then G contains a subgraph 

th a t is a subdivision of C16.

If w is in £ 2,4, then G contains a subgraph th a t is a subdivision of an (n +  1)- 

circular-ladder -  a contradiction of the choice of £. Suppose w  is in £ 2j_i,2i+i where 

2 <  i < n — 1, then G contains a subgraph th a t is a subdivision of C l6 ifn  >  5. If
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2 n —1

2n

Figure 4.23: Possible paths starting from the internal vertices o fL ij3

Figure 4.24: Subdivisional paths L3j5 and have internal vertices

n = 4 then i is 2 or 3 and w is in either L3>5 or L5i7 as depicted in Figure 4.24. If w 

is in L3j5 then G contains a subgraph th a t is a subdivision of C16 where v, w, and 

Z3 are vertices of a cycle of L  tha t correspond to the triangle of C16. If w is in L5 7, 

then G contains a 5-circular-ladder where cycles l \v lG J2 and G w lshh  are the rails of 

the 5-circular-ladder. Thus it must be th a t L' is not one of L iji+2, L 2n- 1,1, or L 2nt2- 

Second, suppose L' is one of the subdivisional paths of L  corresponding to  a rung 

of Liti+1 . By sym m etry of L, assume L' is L3)4 as depicted in Figure 4.25. Now w 

must be a vertex in L it2, Ti,3, £ 2,4, -^3,5) ^ 4,6) or -^5,61 or G would not be planar. If w 

is in L1)3, Z/2,4) T3 5, or L4 6, then G contains a subgraph th a t is a subdivision of C16. 

So it must be th a t w is in either L ii2 or Z/5 6. By the symmetry of L, assume w is in 

£ 5,6-
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2 n —1

2n

Figure 4.25: Possible paths starting from the internal vertices o fL 3)4

w2 n

2 n —1

C16

2 n —1

V> w

2 n

Figure 4.26: The subdivisional path  £ 5̂  has internal vertices.

If n  > 4, G contains a subgraph th a t is a subdivision of C16 by deleting edges 

in the path  Z/3j4[h,v] where w, /4, and are the vertices of the cycle of G th a t 

corresponds to  the triangle of C16. This is depicted in Figure 4.26. If n  is 4 (see 

Figure 4.27) then G contains a 5-circular-ladder where l ^ v l ^  and l7l5wl6l8 are the 

rails and l\l7, l3l5, vw, bd6, and l2l8 the are the rungs of the 5-circular-ladder. Since 

this is a contradiction to the choice of L, every path  from the internal vertices of L' 

to V (L ) — V (L ') contains an end edge of L' and by Corollary 4.2.8, the induced graph 

on the internal vertices of any subdivisional path  of L  is a 2-cycle.

Notice th a t if none of the rungs of L  have internal vertices then G  would be 

outer-cylindrical. We see this by embedding G in the plane and observing th a t the 

boundaries of the faces bounded by the cycle of L  corresponding to  the rails of an
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n-circular-ladder together contain all the vertices of G. This means th a t one of the 

rungs of L  must contain internal vertices.

Figure 4.27: The subdivisional path  L5 6 has internal vertices.

2 n —1

3 ( 1
•2 n

k kP2

Figure 4.28: P2 with the induced labeling from n-circular-ladder. W hen / ( T i ;2) form 

a 2-cycle, G contains P2 in the cubic order.

W ithout loss of generality, assume th a t L \ ]2 has internal vertices. Since the end 

edges of L i)2 form a 2-edge-cut, by Corollary 4.2.8, we see th a t the vertices o fL i;2 

he in a storm in G. If n >  5, then by deleting the edges of path  L3 5 we see th a t G 

contains a subgraph th a t is a subdivision of P2 as depicted in Figure 4.28. SinceG is 

a cubic obstruction and G contains P2 in the cubic order, then G m ust be isomorphic 

to P2 since P2 is a cubic obstruction. But P2 does not contain the cube in the cubic 

order -  a contradiction to the choice of G. So it must be th a t n = 4, and L  is a 

subdivision of the cube Q.

Since n  =  4, a t least two subdivisional paths have internal vertices, or G is outer- 

cylindrical. Now suppose th a t exactly two subdivisional paths of L, say L' and L", 

have internal vertices. Clearly if there is a face /  whose boundary contains I(L ')  and
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J(L"), then G would be an outer-cylindrical graph. So su p p o se /(I /)  and I(L ")  do 

not lie on the boundary of a common face. W ithout loss of generality assume th a tL ' 

is the L i;2 of the graph depicted in Figure 4.29.

I7 1$

9

Figure 4.29: Faces of the cube.

Now L" must be one o fL 5]7, L5j6, £ 5,3, -F4;6, or L6;8. If L" is one of L5j7, L5;6, or L6j8 

then we see th a t the boundaries of the faces /  and g together contain all the vertices 

of G. Thus G is an outer-cylindrical graph -  a contradiction to G  being a cubic 

obstruction. If L" is one L5j3 or L ^ q then the boundaries faces of h and k together 

contain all the vertices of G. Thus G is an outer-cylindrical graph -  a contradiction 

to G being a cubic obstruction. Since both cases lead to a contradiction, it must be 

th a t at least three subdivisional paths of L  say L \ . L2) and T3 have internal vertices 

whose induced subgraph in G is a 2-cycle.

L e m m a  4.3 .2  Let L' and L" be distinct subdivisional paths o f L  having a common 

endvertex, then G contains a subgraph that is a subdivision of either Q I, Q2, or Q3 

depicted in Figure f.22.

Proof: By the symmetry of the cube, assume L' =  L1j2 and L" =  L 1;3. Now at 

least one of L x, L2, and L3, say L 1; is not Li 2 or Li 3. Consider the cubic edge- 

deletion of the parallel edge e of Li and embed G \3e. Since the cube is 3-connected, 

from Theorem 1.5.3, we see th a tG ^ e  has the unique embedding depicted in Figure 

4.30. Now the only pair of faces whose boundaries together would contain all the 

branch vertices of the cube along with the internal vertices o iL \-2 and L ij3 is the face 

/  incident to both the internal vertices of L ij2 and the face g.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

9

Figure 4.30: Faces of the cube.

If L \ is one of £ 2,4, L 3)4, L $j, L ^ q, L^g, or L73, then G is outer-cylindrical since 

the vertices of all these paths lie on the boundaries of /  and g. So we may assume 

th a t Li is one of L i j ,  L2,8,  T 3 , 5 ,  or L46. If Li is then G contains a subgraph 

th a t is a subdivision of Q2 (see Figure 4.30). If Lj is L2,8 or L3i5 then G  contains a 

subgraph th a t is a subdivision of Q l. If L\ is L4 6 then G contains a subgraph th a t 

is a subdivision of Q3.

M

Q l Q2 Q3

Figure 4.31: The graphs Q l, Q2, and Q3

Thus if L' and L" are distinct subdivisional paths of G having internal vertices 

such th a t V (L ')n V (L " )  7  ̂ 0, then G contains a subgraph th a t is a subdivision of Q l, 

Q2, or Q3 and Lemma 4.3.2 holds. ■

From Lemma 4.3.2 we may assume th a t paths Li, L2, and L3 do not share an

end.

L em m a  4.3 .3  Let L' and L" be distinct subdivisional paths o f L having internal 

vertices then L' and L" do not lie on the boundary of a common face fo r  the embedding 

of G.
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Proof: Assume th a t for the embedding of G, two subdivisional paths of L. say L' 

and L", having internal vertices lie on the boundary of a common face. Now at least 

one of Li, L2, and L3 is not L' or L" so assume th a t is neither L' nor L ". Consider 

the cubic edge-deletion of a parallel edge e of L \ and embed G \3e. Since the cube is 

uniquely embeddable, the embedding of G \3e results in a plane graph where 1J and 

L" lie on the boundary of a common face / .  By Lemma 4.3.2 we may assume th a t L' 

and L" do not share an end, so w ithout loss of generality assume th a t L' is L 12 and 

L" is L3i4.

Again by Lemma 4.3.2, subdivisional paths o fL  having internal vertices m ust not 

share an end, and so L \ is one of L5 6, L5>7, L6 8, or L7i8. But in all of these cases, G 

would is an outer-cylindrical graph by considering faces /  and g -  a contradiction to 

G  being an obstruction. Thus Lemma 4.3.3 holds. ■

Since L  has at least three subdivisional paths with internal vertices, three of which 

we have labeled L i, L2, and L3, assume by symmetry of the cube th a t L\ = L 1]2. By 

Lemmas 4.3.2 and 4.3.3, we need only consider the cases whereL2 is one of L5)7, L5 6, 

£ 5,3j -^4,6 or L6,8. By symmetry of the cube, we only consider the case where L2 is 

L5j7 or L5j6 (see Figure 4.32).

I 7  I 5  I 5  I 3

9

Figure 4.32: The symmetry of the cube.

Now if L2 =  L5j7 then the only subdivisional path  th a t does not share an end 

with either L \ or L2 and does not lie on the boundary of a face incident to  either 

L i or L2 is Z/4j6; now if L3 =  then G  contains a subgraph th a t is a subdivision 

of Q4. Now if it were the case th a t L2 =  L5j6 then the only subdivisional path  th a t
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does not share an end w ith either L i or L 2 and does not lie on the boundary of a face 

incident to either L i or L 2 is f/6,8; now if L3 =  L6i8 then G contains a subgraph th a t 

is a subdivision of Q4. So we have shown th a t G  must contain a subgraph th a t is a 

subdivision of C16, Q l, Q2, Q3, or Q4. Since G is a cubic obstruction and G contains 

either C16, Q l, Q2, Q3, or Q4 in the cubic order, thenG  must be isomorphic to C16, 

Q l, Q2, Q3, or Q4. Thus, we see th a t ifG  contains a cube and is a cubic obstruction 

for outer-cylindrical graphs, then G either C16, Q l, Q2, Q3, or Q4 and Proposition

4.3.1 holds. ■

To conclude this section, we introduce some additional terminology th a t will be 

used to  complete the proof of Theorem 3.1.2. L et7f be a set of graphs. We say th a t 

graph G is Hz-less if for any H  in H , the graph G does not contain H  in the cubic 

order. If H  consists of a single graph i f ,  we denote { if  }3-less also as i f 3-less.

Now from Proposition 4.3.1 and Proposition 4.2.5 the problem of finding all the 

cubic obstructions for outer-cylindrical graphs has been reduced to  finding the loop­

less, planar, 2-edge-connected, Q3-less, cubic obstructions for outer-cylindrical graphs 

th a t are not in C. For ease of notation, in the remainder of this chapter we will call 

a planar 2-edge-connected Q3-less cubic obstruction for outer-cylindrical graphs th a t 

is not in C a restricted obstruction.

4 .4  R e s tr ic te d  O b s tru c tio n s

In this section we prove th a t the set of restricted obstructions is {FI, P I , P2, P3, 

P4, P5, C9, C15} (see Figure 4.34). Before we prove this, we introduce a family of 

graphs and a canonical labeling of the members of this family.

For an integer k > l a  k-house is a graph ff& obtained from a path  which is labeled 

h2kh2k -2■ ■ ■ h2h0hili3 . .. h2k-i along with edges h2i - \h 2i for 1 <  i <  k. A 0-house is 

the graph Hq th a t is comprised of a single vertex /r0.

E x a m p le  4 .4 .1  We depict a labeled n-house in Figure 4-33.

Assume x  < y < z are non-negative integers. Let A  be an .x-house obtained 

from the path  a2xa2x^ 2 . . .  a2aoaiaz . . .  a2x_\, let B  be a y-house obtained from the
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ho

'>4%-

2 n —1'277,

Figure 4.33: A labeled n-house.

path  b2yb2y- 2 .. .b2bob\b% .. .b2y- \ ,  and let C be a z-house obtained from the path  

C2zC2z- 2  ■ ■ ■ C2C0C1C3 . . .  c2z-i- An (x ,y , z)-die  denoted DXjVtZ is the graph obtained 

from A , B, and C by adding a vertex d together with edges da0, db0 , d.c0 , a2xb2y_i, 

b2yC2z -i, and c2za2x_ 1 (see Figure 4.35). This labeling of vertices and edges o fDXtV}Z 

is called a canonical labeling of D XjyjZ. In order to allow for effective labeling of dies, 

we also label ao as a_i, bo as b -1, and cq as c_ 1.

Recall th a t the subdivisional paths of a subdivision of a graph G are the paths 

of the subdivision th a t correspond to  the edges of G. We now discuss a canonical 

labeling of the subdivisional paths of a subgraph th a t is a subdivision ofZ)Xj2/z. Let D  

be a subgraph th a t is a subdivision of DXtV̂z and assume th a t the branch vertices of D  

receive the canonical labeling of D XjyiZ. The (d,a0)-subdivisional path  of D  is labeled 

A 0, the (d,&0)-subdivisional path  of D  is labeled B 0, and the (d,c0)-subdivisional 

path  of D  is labeled Co. The (aj,aj)-subdivisional path of D  is labeled A ij ,  the 

(&i,6j)-subdivisional path  of D  is labeled B ij,  and the (ci,Cj)-subdivisional path  of D  

is labeled C ij. The {(i2x -b2v- \ )-subdivisional path  of D  is labeled A, the (b2y,e2z_ \ )- 

subdivisional path of D  is labeled B , the (c2z,a2a;_i)-subdivisional path of D  is labeled 

C. Now we define an order <£> on dies.

D e fin itio n  4 .4 .2  We say that D x^ z < d D xr y> zi whenever:

x  < x' or

x  =  x' and y < y' or 

x  = x ', y  =  y', and z < z ' .

For dies D ' and D" we say that D" is larger than D' i f  D ' < 0  D " .
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F I P2

P3 P4 P5

C9 C15

Figure 4.34: Restricted obstructions

In order to prove th a t the set of restricted obstructions is {FI, P I , P2, P3, P4, 

P5, C9, C 15}, we will use the next proposition which shows us th a t every restricted 

obstruction contains K A in the cubic order and, since K 4 =  A),o,o, every such obstruc­

tion contains a subgraph th a t is a subdivision of a die. From this we will be able to 

build all of the restricted obstructions. Here we recall th a t the following is the list of 

the properties of a restricted obstruction.

• loopless

•  planar

•  2-edge-connected

•  Qa-less

•  One of the components resulting from any 2-edge-cut is a 2-cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

2j/—1

B

Figure 4.35: The canonical labeling of a die 

P ro p o s it io n  4 .4 .3  Every restricted obstruction contains a K A in the cubic order.

Proof: Let G be a restricted obstruction and let E ' =  {ei, e2, e3, . . . ,  emj  be a set 

of edges of G consisting of one edge from every pair of parallel edges of G. Let G' 

denote the graph obtained by the cubic edge-deletion of every edge in E ' and let G" 

denote the graph G \E '.

Since G  is cubic and 2-edge-connected and G" is obtained from G by deleting 

only parallel edges of G , G" must also be 2-edge-connected. By definition of cubic 

edge-deletion, G" is a subdivision of G', thus G' must also be 2-edge-connected. So 

G' is loopless because loops in cubic graphs occur only in nooses and nooses contain 

a bridge. Let P% denote the subdivisional path  of G" corresponding to the edge e% 

in E{G'). Now G" was obtained by the deletion of only parallel edges of G. So, the
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• — o — •

Figure 4.36: Possible graphs for G[Pi\.

induced subgraph G[Pi] of G is either an edge or is a path v0v i . . .  un_1; where n  is 

even, together w ith edges parallel to  ViVi+1 for each i G { 1 , 3 , . . . ,  n  — 3} (see Figure 

4.36). Such a subgraph will be called a 2-cycle-path. Note th a t a 2-cycle-path could 

be an edge.

We will now show th a t G' is simple. So, suppose G' has a pair of parallel edges. 

W ithout loss of generality, assume this pair ise i and e2. Let x  and y denote the ends 

of e\ and e2 and label the edge different from ei and e2 incident to  x  as e3 and label 

the edge different from e\ and e2 incident to  y  as e4. (see Figure 4.37).

G'

Pi

G"

Figure 4.37: The graphs G' and G".

Since the induced subgraphs in G, G[V(Pi)], G[V(P2)], G[V(P3)\, and G'[ld(P4)] 

are isomorphic to 2-cycle-paths, we have th a t the end edge o fP 3 incident to x  and 

the end edge of P4 incident to y form a 2-edge-cut which we denote E " . Let M  and 

N  be the components of the graph of G \E " . W ithout loss of generality, assume tha t 

Pi and P2 are in component M .

Since G' was obtained by the cubic edge-deletion of one of every pair of parallel 

edges of G, then ei and e2 are not parallel edges of G. Thus, a t least one of Pi or P2
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has internal vertices. W ithout loss of generality, assume th a t Pi has internal vertices. 

So it is clear th a t M  is not a 2-cycle.

x

y
G

Figure 4.38: Component N  is a 2-cycle.

Now, if N  is not a 2-cycle, then from Proposition 4.2.5 we see th a t G is in the 

collection C -  a contradiction to G being a restricted obstruction. So N  is a 2-cycle as 

depicted in Figure 4.38. It then follows th a t G" is a subdivision of Thus there 

are three faces associated w ith any embedding o iG ". Furthermore, the boundaries 

together of any two of the three faces contain all the vertices of Gw. Now upon the 

embedding of the edges of E ' th a t are in parallel to edges of G", we see th a t G has 

been embedded so th a t all the vertices of G lie on the boundary of a t most two 

faces. Thus G is an outer-cylindrical graph -  a contradiction to G being a restricted 

obstruction. So it must be th a t G' does not have parallel edges.

Now, since G' does not have loops or parallel edges, G' is a simple graph. So, 

by Theorem 2.1.3, we see th a t G' contains a subgraph th a t is a subdivision of K \ . 

Therefore, from Theorem 1.6.1, it follows th a t G  contains in the cubic order. So 

it must be th a t any restricted obstruction contains a K A in the cubic order. ■

Proposition 4.4.3 ensures th a t each member of the set of restricted obstructions 

contains a subgraph th a t is a subdivision of a die. Now, to finish the proof of Theorem

3.1.2 we take a largest d ie P  in a restricted obstruction and find all the cubic obstruc­

tions th a t have a subgraph th a t is a subdivision of D. We prove four lemmas which 

will complete the proof of Theorem 3.1.2. We will determine all the restricted ob­

structions by considering the cubic obstructions containing a largest die, with respect 

to <£>, of .Do,o,o? A),o,i, P 0,i,i, and finally A ,h,c where a > 0, b > 1, and c > 2.
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c4 Cl bo

Figure 4.39: Do,0,2 — A),i,i- A),1,1 has the appropriate labels of .Do,0,2 showing the 

isomorphism.

Since D 0io,2 is isomorphic to Do, 1,1 (see Figure 4.39), if G contains a subgraph th a t 

is a subdivision of D 0,o,c where c >  2 then G contains a subgraph th a t is a subdivision

of D 0, M .

Figure 4.40: F I

L em m a  4 .4 .4  A ny restricted obstruction containing a largest die in the cubic order 

isomorphic to Do,0,0 is F I.

Proof: Let G be a restricted obstruction containing a largest die D  th a t is isomor­

phic to D 0,0,0 where the vertices of D are canonically labeled as described on page 79. 

Since D is outer-cylindrical, D is not isomorphic to G and so one of the subdivisional
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paths of D  has an inner vertex. By the sym m etry of D , assume th a t path  A  has an 

internal vertex. Now if there were a path  P  from 1(A) to D  - 1(A) not containing 

an end edge of P  then G would contain a subgraph th a t is a subdivision of A),0,1 or 

A ,3 a contradiction to the choice of G. This is depicted in Figure 4.41.

Now it must be th a t the end edges of A  form a 2-edge-cut. By Proposition 4.2.5, 

since G  is not in C, the induced subgraph on 1(A) is a 2-cycle. Moreover, since A  

was arbitrarily chosen, due to the symmetry of D, this is true for every subdivisional 

path  P  of D  th a t has internal vertices.

We claim th a t for every subdivisional path  P  of D. the set I (P )  is nonempty. 

Assume th a t this is not the case and by sym m etry of the graph assume 1(B) is 

empty. Since 1(B ) is empty, F I  is not isomorphic to G and F I properly contains G in 

the cubic order. Since F I is a cubic obstruction, it must be th a tG  is outer-cylindrical 

-  a contradiction since G is a cubic obstruction. So it must be th a t any subdivisional 

path  of a restricted obstruction containing a 110,0,0 as a largest die in the cubic order 

has internal vertices and therefore G is isomorphic to F I. ■

In the next lemma, we will show th a t any restricted obstruction containing a P 0,o,i 

and no larger die contains one of P3, P4, or P5 in the cubic order. Figure 4.42 depicts 

P3, P4, and P5 and this, together with the depictions ofZ}0,o,i in Figure 4.43, reveals 

th a t each of P3, P4, and P5 contain Ho,o,i in the cubic order.

L em m a  4 .4 .5  Any restricted obstruction containing a largest die in the cubic order 

isomorphic to J}0,o,i is one of P3, P4, or P5.

Figure 4.41: Subdivisional paths of D 0,o,o
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< 3 [ > — < 3
P3 P4 P5

Figure 4.42: The graphs P3, P4, and P5

Proof: Let G be a restricted obstruction containing a subgraph th a t is a subdivi­

sion of a largest die isomorphic to A ),o ,i we denote D. Assume the vertices of D  

are canonically labeled (see Figure 4.43) and G is not isomorphic to  P3, P4, or P5. 

Since D  is outer-cylindrical, D  is not isomorphic to  G; so one of the subdivisional 

paths of D  has an internal vertex.

The graph of the prism  is isomorphic to the die A ),o ,i and is depicted in Figure 

4.43 with the die-labeling.

Figure 4.43: The die T>o,o,i and two depictions of the prism with the die-labeling.

d

We claim th a t the end edges of every subdivisional path D' of D  having internal 

vertices form a 2-edge-cut. So assume there is a path  from /(IT ) to  D  not containing 

the end edges of D ' . Let P  be a shortest such path  where v is the end of P  in I(D ')  

and w is the end of P  in D.
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Assume th a t v is a vertex in a cycle of D  corresponding to  a triangle in £>o,o,i- 

Then v is an internal vertex of one of Aq, B q, A, Cop, Cog, or Cig. By the symmetry 

of D  (see Figure 4.43) we can assume v is in the subdivisional path  A 0 (see Figure 

4.44). From Theorem 1.5.3 since D  is 3-connected, D  is uniquely embeddable in the 

plane. Since G is cubic, w must be an internal vertex of a subdivisional path  of D. 

Thus w  must be a vertex in A, B 0, C, C0, or Cog. If w is a vertex in C  or A, then 

G contains a subgraph th a t is a subdivision of £>0,1,1 where d and Co receive the same 

labels, v is labeled bo, and b0 is labeled a0 -  a contradiction to  the choice of £>.

do

0 , 2'

Figure 4.44: Labeled vertices of £>0,0,1

If w is a vertex in B 0 or Co, then G contains a subgraph th a t is a subdivision of 

£>0,1,1 where a0 is labeled d, bo is labeled Oo, v is labeled b0, and c2 is labeled Co -  

a contradiction to the choice of £>. And if in is a vertex in Cog, then G contains a 

subgraph th a t is a subdivision of the cube where a0vwc2 and bQdcoCi are the rails of 

the cube -  a contradiction to C  being a restricted obstruction.

Assume th a t v is a vertex in a cycle of £> th a t does not correspond to  a triangle 

in £>o,o,i- Then v is in one of C, C0, or B  (see Figure 4.45). By the sym m etry of £> 

assume th a t v is in C0. Since the end edges of subdivisional paths of £> corresponding 

to a triangle in £>0,0,1 form 2-edge-cuts, w  must be in either B  or C. By the symmetry 

of D  assume th a t w is in B . Then G contains a subgraph th a t is a subdivision of 

£>0,1,1 where w is labeled d, v is labeled a0, bo receives the same label, andci is labeled 

Co, -  a contradiction to the choice of £>. So it m ust be th a t the end edges of every

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

B

Figure 4.45: Labeled vertices of Z?o,o,i

subdivisional path  of D  having internal vertices form a 2-edge-cut. We now show 

th a t D  has specific subdivisional paths containing internal vertices. Specifically, we 

prove the following lemma.

L em m a  4 .4 .6  A t least one cycle o f D corresponding to a triangle o f D 0,o,i h-as at 

least two subdivisional paths with internal vertices.

Proof: Assume th a t neither cycle of D  corresponding to a triangle of D 0,o.i has 

at least two internal subdivisional paths w ith internal vertices. If neither cycle of D  

corresponding to a triangle of A),o,i has subdivisional paths with has internal vertices, 

then G has an outer-cylindrical embedding where the boundaries o f / i  and f 2 together 

contain all the vertices of G (see Figure 4.46). This is a contradiction to G being a 

cubic obstruction.

Now, assume th a t exactly one of the cycles of D  corresponding to a triangle 

of Do,o,i has exactly one subdivisional path  with internal vertices. W ithout loss of 

generality, assume th a t Co,i has internal vertices. Then it is clear th a t the boundaries 

of faces f i  and f 2 together contain all the vertices of G.

Hence we can assume th a t both  cycles of D  corresponding to  a triangle of D 0,o,i 

each have exactly one subdivisional path  w ith internal vertices. We have two cases. 

By the symmetry of D, if Cq,i and B 0 bo th  have internal vertices then G has an
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a0

u

B

Figure 4.46: Labeled vertices of A),o,i

outer-cylindrical embedding where the boundaries of / i  and / 2 together contain all 

the vertices of G -  a contradiction to G  being a cubic obstruction. By the symmetry 

of D , if Coy and A 0 both have internal vertices then G has an outer-cylindrical 

embedding where the boundaries of / i  and / 2 together contain all the vertices of G -  

a contradiction to G being a cubic obstruction. So there is a cycle of D  corresponding 

to a triangle of A),o,i having a t least two subdivisional paths w ith internal vertices 

and Lemma 4.4.6 holds. ■

From Lemma 4.4.6, we assume for the remainder of this proof th a t two subdi­

visional paths of a cycle of D  corresponding to a triangle of fdo.0,1 contain internal 

vertices. By the symmetry of D  assume th a t Cop and C0>2 contain internal vertices. 

If C0p and Coj2 were the only subdivisional paths of D  w ith internal vertices then G 

would be outer-cylindrical where the boundaries of /1 and / 2 would contain all the 

vertices of C. So we know there is another subdivisional path  of D  th a t has internal 

vertices and we have one of the following cases.

(i) C i,2 is a subdivisional path  w ith internal vertices.

(ii) C  or B  is a subdivisional path  w ith internal vertices.

(iii) C0 is a subdivisional path  w ith internal vertices.

(iv) A(}. B 0, or A is a subdivisional path  with internal vertices.
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(
A

h

B

Figure 4.47: The paths Cop, Co,2, and C  have internal vertices

Suppose (i) holds, th a t is, C i,2 is a subdivisional path w ith internal vertices (see 

Figure 4.47). Now if Cop, Co,2, and C i,2 were the only subdivisional paths of D  w ith 

internal vertices then G would be outer-cylindrical since the boundaries of and 

contain all the vertices of G. So assume there is another subdivisional path  P"  of 

D  th a t has internal vertices. The induced subgraph on P" is a 2-cycle, so let e be 

a parallel edge of I{P "). Embed G \3e so th a t all the vertices lie on two faces. Now 

the only two faces whose boundaries together contain all the vertices o fG \3e are / 5 

and / 3. If P" is one of the subdivisional paths .40, B q. or A  then we see th a t G is 

an outer-cylindrical graph. So it must be th a t P" is one of C, B , or Co- But in all 

three of these cases it is easy to  see th a t C  contains a subgraph th a t is a subdivision 

of P4. Now C  is a cubic obstruction and C  contains P4 in the cubic order, thus G is 

isomorphic to P4 -  a contradiction to the choice of G.

Suppose (ii) holds, th a t is G or B  is a subdivisional path  w ith internal vertices. 

By the symmetry of D  we may assume th a t G is such a path  (see Figure 4.48). Now 

if G0p, G0,2, and G were the only subdivisional paths o fD  with internal vertices then 

G would be outer-cylindrical where the boundaries of faces f \  and / 2 together would 

contain all the vertices of G. So we know there is another subdivisional path  P"  of 

D  th a t has internal vertices. The induced subgraph on I(P ")  is a 2-cycle, so let e be 

a parallel edge of P " . Embed G \3e so th a t all the vertices lie on the boundary of at 

most two faces.
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a0

h

B

Figure 4.48: The paths Cop, C0p, and C  have internal vertices

Notice th a t the boundary of / 5 along w ith the boundary of any other face does not 

contain all the vertices of C \3e. Likewise the boundary of / 4 along with the boundary 

of any other face does not contain all the vertices of G. In addition, the boundary 

of fs  along with the boundary of any other face does not contain all the vertices of 

G \3e. Thus the only two faces whose boundaries together contain all the vertices of 

G \3e are / i  and f 2.

Now if P"  is one of the subdivisional paths A 0, B 0, Co, or B , then G is an out­

er-cylindrical graph with all the vertices lying on the boundaries of f i  or f 2. So it 

must be th a t P"  is A. But then it is easy to  see th a t G contains a subgraph th a t is 

a subdivision of P5. Now G is a cubic obstruction and G contains P5 in the cubic 

order, thus G is isomorphic to P5 -  a contradiction to the choice of G.

Suppose (iii) holds, th a t is Co is a subdivisional path  w ith internal vertices (see 

Figure 4.49). If Cop, Cop, and C0 were the only subdivisional paths o fD  with internal 

vertices then G would be outer-cylindrical where the boundaries of faces / i  and f 2 

together would contain all the vertices ofG. So we know there is another subdivisional 

path  P" of D  th a t has internal vertices. The induced subgraph on I ( P ") is a 2-cycle, 

so let e be a parallel edge of P". Embed G \3e so th a t all the vertices lie on the 

boundary of at most two faces. Now the only pair of faces whose boundaries together 

contain all the vertices of G \3e is f i  and f 2. If P" is one of the subdivisional paths A 0. 

Bq, C, or B  then we see th a t G is an outer-cylindrical graph -  a contradiction to G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

a 0

U

B

Figure 4.49: The paths Co,!, C0,2, and C0 have internal vertices

being a restricted obstruction. So it must be th a t P"  is A. But then it is easy to see 

th a t G contains a subgraph th a t is a subdivision of P3. NowG is a cubic obstruction 

and G contains P3 in the cubic order, thus G  is isomorphic to  P3 -  a contradiction 

to the choice of G.

Having settled cases (i), (ii), and (iii), the only subdivisional paths containing 

internal vertices are those described in case (iv). But in this case, we see th a t G is 

an outer-cylindrical graph by observing th a t the boundary of faces / 5 and / 3 together 

contain all the vertices of G -  a contradiction to G being a restricted obstruction. 

W ith this last contradiction Lemma 4.4.5 is established. ■

The next proposition shows th a t any restricted obstruction containing a largest 

die in the cubic order isomorphic to A),i,i is P I  or P 2. Before proving this, we require 

another definition.

A boat is a graph consisting of two vertices b and s called the bow and stern 

respectively and three disjoint (6,s)-paths. One of the paths is an edge called the 

tether and the other two paths are of equal length and are denoted Ine] u;3 . . .  w2n- \ s  

and bw2w ^ . . . w 2ns. An edge, called a rib, joins w2i- \  to w2i. A boat w ith n  ribs 

is called an n-boat. If G is a subgraph th a t is a subdivision of an n-boat then the 

subdivisional path  whose ends are b and w 1 is IT]. the subdivisional path  whose 

ends are the b and w2 is W 2. Similarly, the subdivisional path  whose ends are s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

W5

b

W4w 2

Figure 4.50: An n-boat

and W2n -i  is W3, and the subdivisional path  whose ends are s and w2n is W 4 .  The 

subdivisional path  corresponding to the tether (whose ends are the b  and s ) is W 5 ,  

and the subdivisional path  whose ends are the Wi and w:) is Wh:i. This is the canonical 

labeling of an n-boat.

w 4

W l'

w 4w2

Figure 4.51: The 3-boat is isomorphic to Do,1,1.

Notice th a t a 3-boat is the die D 0,i,i by mapping w3 to d, W4 to  a0, W\ to b0, w5 

to Co, w2 to bi, b to  b2, s to  ci, and Wq to c2.

L em m a 4 .4 .7  A ny restricted obstruction having a largest die in the cubic order iso­

morphic to D 0,1,1 is isom,orphic to P I  or P2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

E g
P2

Figure 4.52: The graphs P I  and P2

Proof: Let G be a restricted obstruction containing a subgraph th a t is a subdi­

vision of a largest die isomorphic to  Ho,i,i we will denote D. Assume th a t G  is not 

isomorphic to P I  or P2 and th a t the vertices o fD  have a canonical labeling. Let n  

be an integer such th a t G  contains a subgraph th a t is a subdivision of an n-boat we

denote B  and G does not contain a k-boat for k > n. Then n  is at least three since

Dq \ \ is isomorphic to a 3-boat. Notice th a t an n-boat is outer-cylindrical by con­

sidering the faces bounded by the cycles bwiWs . . .  w2n~is and bw2v.>4 ■ . ■ w 2ns. Thus 

there are subdivisional paths of B  th a t contain internal vertices.

L em m a  4 .4 .8  The end edges o f every subdivisional path B ' o f B  having internal 

vertices form  a 2 -edge-cut

Proof: Assume there is a path  from I (B' )  to  V ( B ) — I(B' )  not containing the end 

edges of B'.  Let P  be a shortest such path  where v is the end of P  in B 1 and w is 

the end of P  in V ( B ) — I(B' ) .  By symmetry of the boat, we have four cases for P .

(1) v an internal vertex of W \ , W 2, W 3 , or W 4

(2) w an internal vertex of ITj^+i

(3) v an internal vertex of W^i+2 where i is odd

(4) w an internal vertex of IT5

First suppose th a t (1) v is in one of Wi,  W 2, W3, or W 4. By the symmetry of B  

assume th a t v is in W \. Since G is planar then  w must be in W 2, W 5, IF ij2, VFi)3,

W 3, or W 2i- i ,2i+i where 2 <  i < n  — 1. If w is in W 2 or W 5 then G contains a
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W 5

w l

b

Figure 4.53: The paths of W \

(n +  l)-boat -  a contradiction to G not containing a fc-boat where k > n. If re is in 

then G contains a die isomorphic to Do,1,2 where d is w3, a0 is w4 , bQ is w2n-i ,  

and Co is -  a contradiction to G not containing a die larger than  A m  i. If w  is in 

IF ii3 then G contains a die isomorphic to D 0ji;2 where d is w3, a0 is w4, bo is u>2n-i, 

and Co is w -  a contradiction to  G not containing a die larger than  Dopp. If w  is 

in W 3  then G contains a subgraph th a t is a subdivision of a cube having rails bvws 

and W2WiW2n-iW 2n -  a contradiction to G being a restricted obstruction. If w is in 

I^2i- i ,2i+i, where 2 <  i < n  — 1, then G contains a subgraph th a t is a subdivision of 

a cube having rails bvws and W2WiW2i-\W 2i -  a contradiction to  G being a restricted 

obstruction. It then follows th a t if W i ,  W 2 , IF3, or W 4  are subdivisional paths having 

internal vertices, then the end edges of W \, W 2 , IF3, or W 4  form a 2-edge-cut.

w 2

Figure 4.54: The paths of
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Now assume th a t (2) v is in W iji+i. Now we can assume by case (1) th a t vertex 

w is not in one of W i, W2, W 3 , or W 4 . So we have two cases, the first being th a t w is 

in one of W^i+2, Wi+1,1+3, W ^ 2,i, or H/j_i!j+i and the second is th a t w is in Wi+2,i+3 

or W i-2,1-1 if the respective paths exists. For the first case, by the symmetry o fD, 

assume th a t w is in W iji+2, then G contains a die isomorphic to D+1+ where d is wi+i, 

ao is v and bo is W2 and Co is W2n -  a contradiction to  the choice of D. Considering the 

second case, from the symmetry of D, assume th a t w is in Wi+2,i+3• Then we see th a t 

G contains a subgraph th a t is a subdivision of a cube where the rails arc: vwwi+2'll}i 

and Wi+\Wi+3sb -  a contradiction to G being a restricted obstruction. Thus we see 

th a t the end edges of W ^+ i form 2-edge-cut.

1,1 + 2

Figure 4.55: The paths of W/j)i+2

Next we assume th a t (3) v is in VF̂ +2 where i is odd. Now by cases (1) ane (2) 

vertex w is not in one of W i ,  VF2, W 3 , W 4 ,  VFj+i^+3, IF^+i, or W i + 2,i+3- So we have 

two cases, the first being th a t w is in W jj+2 for j  7̂  i and the second is th a t w is in 

W5. For the first case, assume by the sym m etry of the n-boat, th a t w is in W jj+2 for 

j  < i. Then B  contains a Th,i, 1 subdivision where d is w.i+ \ , do is wt . bQ is w2, and Co 

is W2n -  a contradiction to the choice of D.

For the last case, where w is in IF5. we have two cases. In the first case assume 

th a t i =  1. Then G contains a subdivision of a die isomorphic to  .Do,1,2 where d is W4 , 

a0 is w3, bQ is w2n and c0 is w2 -  a contradiction to the choice of D. In the case th a t 

i ^  I, G contains a subdivision of a die isomorphic to D 0>ij2 where d is Wi+1, a0 is
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Wi, bo is u>2 and cq is u>2n ~ a contradiction to the choice of D.  Thus we see th a t the 

end edges of W^i+2 form a 2-edge-cut where i is odd. Likewise by the sym m etry of 

D  we see th a t W^i+2 form a 2-edge-cut where i is even. Now case (4) cannot occur, 

because if v is in W5, there is no place for w. We conclude th a t the end edges of every 

subdivisional path  of B  form a 2-edge-cut. ■

Consider an outer-cylindrical embedding of an n-boat where the boundaries of 

faces /  and g together contain all the vertices of the n-boat. Now we know th a t n  is 

a t least three and since the n-boat is an outer-cylindrical graph, at least one of the 

subdivisional paths of B  must have internal vertices.

Assume th a t one of /  or g, say g, is not incident to W 5, the subdivisional path  

corresponding to the tether. If g is the face bounded by the cycle of B  corresponding 

to a triangle of the n-boat, then the boundary of any other face, together w ith this 

face would not contain all the vertices of G. If g is the face bounded by the cycle of B  

corresponding to  a 4-cycle of the n-boat, then the boundary of g, together w ith any 

other face would not contain all the vertices o f B .  So it must be th a t /  and g both  

m ust be incident to the path  W 5 .  Now the only subdivisional paths of B  not lying on 

the boundary of /  or g are the ones denoted W^i+1. Since G is not an outer-cylindrical 

graph and G contains B , it then follows th a t one of the IF^+i subdivisional paths of 

B  has internal vertices.

w 1

W  4W  2

W4 W 2

bP2s

Figure 4.56: W hen /( IP ij2) forms a 2-cycle, G contains P2.

Suppose W \ t2 or W 2n- i ,2 n  has internal vertices. By the sym m etry of B , assume 

th a t Wi;2 has internal vertices. Then B  has a P2-subdivision as depicted in Figure
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4.56. Now G is a cubic obstruction and G contains P2 in the cubic order, thus G is 

isomorphic to P2 -  a contradiction to the choice ofG.

Wi

w2

Wi w i

W2

Figure 4.57: W hen I{W i^+1) forms a 2-cycle, G contains P I .

If Witi+\ where « ^  1 and i 7  ̂ 2 n  — 1 has internal vertices then G contains a 

subgraph th a t is a subdivision of P I  as depicted in Figure 4.57. Now G is a cubic 

obstruction and G  contains P I  in the cubic order, thus G is isomorphic to P I  -  

a contradiction to the choice of G. So, it m ust be tha t any restricted obstruction 

containing a largest die D  isomorphic to  D 0j1;1 is isomorphic to P I  or P2. ■

C15C9

Figure 4.58: The graphs C9 and C15

L em m a  4 .4 .9  A ny restricted obstruction having a largest die in the cubic order iso­

morphic to D a^ c where a > 0, b > 1, and c >  2 is C9 or C15.

Proof: Let G  be a restricted obstruction containing a largest die D  isomorphic to 

D a ,b,c where a > 0, b > 1, and c >  2 and assume th a t G is not isomorphic to  C9 or 

C15. But C9 is a cubic obstruction for outer-cylindrical graphs and is isomorphic to
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Do,i,2- Thus if G contains a die D q̂ c where b > 1 and c >  2 then G would properly 

contain C9 in the cubic order -  a contradiction to G being a cubic obstruction. So 

it must be th a t G contains a largest die isomorphic to D j j j .  But C15 is a cubic 

obstruction for outer-cylindrical graphs and is isomorphic to D i^ i .  Thus G properly 

contains C15 in the cubic order -  a contradiction to G being a cubic obstruction. 

Thus it must be th a t any restricted obstruction having a largest die in the cubic 

order isomorphic to D afi,c where a > 0, b >  1, and c >  2 is C9 or C15. This finishes 

the proof of Theorem 3.1.2. ■
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APPENDIX A

CUBIC OBSTRUCTIONS FOR 

OUTER-CYLINDRICAL 

GRAPHS

-m-

Figure A .l: The simple cubic obstructions for outer-cylindrical graphs.

In Table A .l (on page 102) we give all cubic obstructions for outer-cylindrical 

graphs th a t contain loops. The graphs in the left column of the page are the non­

simple loopless cubic obstructions which are also listed in Figure A.2. The family of 

graphs in the right column of the page is every graph, up to isomorphism, created 

from a set of 2-cycle-noose operations on 2-cycles of the graph in the left column of 

the page.

100
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Figure A.2: The non-simple cubic obstructions for outer-cylindrical graphs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

Table A .l: The families of cubic obstructions containing loops.

2,3C2U K 2t3C2

D2
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Q3

21

P I

P3
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APPENDIX B

EXCLUDED MINORS FOR 

OUTER-CYLINDRICAL 

GRAPHS
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