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ABSTRACT

Fluorescent sensing systems offer the potential for minimally invasive monitoring 

with implantable devices, but they require carrier technologies that provide suitable 

immobilization, accessibility, and biocompatibility while maintaining adequate response 

characteristics. Towards the development of this goal, a general design of a biosensor 

with the capability of detecting different metabolites was investigated. The approach is 

based on the encapsulation of a competitive binding assay in microcapsules and 

monitoring the changes in fluorescence resonance energy transfer (FRET) in the presence 

of analyte. To experimentally demonstrate this type of sensing system, glucose was 

chosen as the model target analyte. The design, fabrication, and characterization of 

several embodiments of a non-consuming fluorescence affinity glucose sensor are 

described in this dissertation. The novel feature of this system used through out the work 

is the employment of microcapsules for entrapping the sensing assay, which allows for 

the free movement of sensing elements while maintaining their constant concentrations 

with continuously-varying analyte concentration.

Initially, a FRET based glucose sensor was demonstrated by encapsulating multi­

layers of Concanavalin A (Con A)/dextran in microcapsules. Even though microcapsules 

comprised of Con A/dextran complexes showed reasonable glucose sensitivity, there are 

some significant obstacles to practical use of this system due to toxicity, aggregation, and 

irreversible binding. Therefore, to overcome the limitations of Con A, an improved FRET

iii
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assay was developed by replacing Con A with apo-glucose oxidase (apo-GOx). Apo-GOx 

is highly specific toward P-D-glucose, reduces the concern over aggregation as it can 

only bind to one glucose molecule (whereas, Con A binds to four glucose molecules), and 

also could be more biocompatible than Con A by recombinant production.

The first attempt at the apo-GOx/dextran assay encapsulated in microcapsules 

used a blue-light-excited FRET pair (FITC/TRITC). The assay elements were 

encapsulated in microcapsules using photosensitive polymers (poly(styrene sulfonate) 

and diazoresin) in the shell structure. The results of glucose sensitivity experiments 

showed a controllable and reversible sensor response with sensitivity in the range of 2 -  6 

% /mM over the range of 0 -  40 mM glucose. In spite of the advantages of this system, it 

is not ideal for in vivo studies, as the short-wavelength dyes will be difficult to interrogate 

transdermally due to high tissue scattering. Additionally, diazoresin contains 

formaldehyde groups that could prove to be toxic.

To reduce the interference of tissue scattering, the sensor operating region was 

extended into the longer and near infrared (NIR) wavelength regions by choosing 

appropriate donor (Alexa Fluor™ 647)-acceptor (QSY21) pair and reference dye (Alexa 

Fluor™ 750). The competitive binding assay operating in red/near infrared region was 

loaded into organo/inorgano microcapsules using glycidyl-silane as the crosslinking 

element. These microcapsules exhibited glucose sensitivity of ~2-5%/mM over the range 

of 0-30mM, which is comparable to the assay operating in the visible region. Thus, this 

assay is superior to the apo-GOx/dextran based assays operating in visible region, 

because it has the advantages of excellent sensitivity, and a significant increase in the 

detected signal levels due to the use of NIR dyes (during in vivo measurements), and the
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use of silane simplifies the encapsulation procedure and also makes this system more 

biocompatible. Based on the sensitivity, specificity, and reversible response in the region 

of interest (0-30mM), this sensing system can potentially be used for glucose monitoring 

in diabetic patients.

These findings demonstrate the feasibility of designing different biosensors using 

apo-enzymes as specific molecular recognition elements in competitive binding assays. 

The concept of the encapsulation of a competitive binding assay in microcapsules is 

advantageous, as it allows for the stable entrapment of the sensing assay elements and 

free movement of the analyte molecules. Thus, the concept of sensing that is 

demonstrated in this dissertation can potentially be used to develop a wide variety of 

biosensors by choosing corresponding apo-enzyme and ligand molecules.
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CHAPTER 1

INTRODUCTION

In recent years, interest towards developing biosensors for continuous monitoring 

with high specificity has increased, mainly because of the potential of avoiding the long­

term side affects of many diseases, by taking appropriate measures when the disease is in 

its early stage. Several variations of biosensors were previously reported for various 

applications.1"4 Some of the molecular recognition techniques used in developing 

biosensors are based on antigen/antibody, enzyme/substrate, and affinity (competitive 

binding) interactions. One of the sensing mechanisms that has been extensively explored 

in the past, is the competitive binding process, which is based on the variations in the 

binding affinities of two molecules towards the substrate. The main goal of this 

dissertation is to develop a generic design for biosensors, based on the combination of 

competitive binding and fluorescence spectroscopic techniques. This design must also be 

applicable to the detection of a wide variety of analytes.

In order to demonstrate the working principle of this sensing system, glucose is 

chosen as the model analyte molecule, because of its importance and need in the 

biosensor industry. Biosensors for monitoring blood glucose are of special interest, 

because the incidence of diabetes mellitus is increasing uncontrollably worldwide, and is

1
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one of the leading causes of death by disease, with over 170 million diabetics 

worldwide.5'7 Diabetes is a disease affecting the body’s ability to produce or use insulin 

and thus resulting in large fluctuations in blood glucose levels, unless proper treatment is

O 1A

provided in time. ’ When left untreated or improperly managed, diabetes can increase 

the risk of heart disease, adult blindness, kidney disease, and erectile dysfunction.11

Therefore, most diabetics are required to measure the blood glucose concentrations

8 12several times a day. ' In spite of the enormous advantages in monitoring glucose level 

several times a day, and the availability of about 40 types of glucose meters in the market 

place (which are based on the fmger-prick method), frequent monitoring is not widely 

practiced due to a number of reasons such as, painful testing procedures or ignorance of 

the advantages, difficulty in understanding the readings, tediousness, etc.10,13,14 Therefore, 

there is an urgent need for the development of a simple and painless monitoring system to 

help improve the lives and longevity of diabetic patients.

In an attempt to advance glucose sensing technology, a variety of minimally 

invasive continuous glucose monitoring systems (e.g. implantable needle-type 

amperometric electrode), have been introduced into the market.8’10’15,16 However, these 

instruments are not yet completely reliable, as they have problems associated with 

unpredictable drift, stability, lifetime, repeated calibration (~4 times a day), a long warm 

up time, etc.17,18 In spite of enormous efforts to develop implantable glucose monitoring 

systems, there are many parameters that need to be improved. In order to be frequently 

used by the diabetic patients, sensors should be less cumbersome, require fewer 

calibrations, have a biocompatible surface, offer long sensor lifetime, and understandable 

read-out technology.6 Other parameters that are necessary include repeatable sensor
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fabrication, specificity, linear response in the region of interest, accuracy, and rapid 

response time. In order to meet all the requirements for the production of glucose sensors, 

different sensing approaches are being continuously explored. Among these, fluorescence 

spectroscopy is receiving significant attention because of its high sensitivity and 

suitability for fast and non- or minimally-invasive measurements.

Currently, fluorescence techniques are widely used as a read-out technology for 

various biosensors based on different working principles. Several variations of enzymatic 

activity and affinity based glucose sensors based on using fluorescence intensity and 

lifetime measurements have been previously reported in the literature19-23 and are 

proposed for in vivo use. However, a practical design for their use under in vivo 

conditions was not reported. Thus, there remains a need to develop an implantable 

glucose monitoring system permitting frequent monitoring of glucose level.

1.1 Implantable Glucose Sensors 
-  Under Research

In order to develop a subcutaneously implantable glucose sensor, the sensing 

assay chemistry must be encapsulated into a microcontainer, which can allow the analyte 

molecules to diffuse in, while holding the assay elements without leaching. The assay 

loaded microcontainers can then be implanted subcutaneously and interrogated remotely 

by exciting the fluorescent molecules in the microcontainers and collecting the emitted 

light coming out of the skin, the so called “smart tattoo” approach,24-27 as shown in 

Figure 1.1. This technology has significant advantages over other mechanisms, because 

there is no need for inserting any kind of probes, and it can also prevent some of the 

cytotoxicity problems without allowing the leaching of free assay elements.
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The first sensor designed to function similar to the above-mentioned “smart 

tattoo” technology, was based on the encapsulation of lectin/dextran in poly(ethylene 

glycol) hydrogel spheres.26 However, the prototype of the fabricated sensors showed 

substantial leaching of assay components from the hydrogel spheres. The millimeter size 

of the spheres is also not appropriate for implantation, as the body mounts a substantial 

host response. There were also difficulties in the production of monodispersed and 

uniformly loaded spheres. These sensors showed sensitivity in the range of 0-600mg/dL. 

Although it was mentioned that the sensor response was 90% reversible, results were not 

shown.

Figure 1.1. (a) Skin cross-section showing the implanted sensors between dermis and epidermis, (b) 
Subcutaneous implantation of micropsheres loaded with sensing assay elements and interrogation of 
sensors by (c) exciting the fluorescent assay elements and (d) collecting the emitted light28
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1.2 Objectives and Novel Aspects

Due to the severe limitations of existing smart tattoo systems, this dissertation 

work is focused on developing smart tattoo based non-consuming glucose sensors by 

overcoming the problems associated with previously reported sensing systems. The 

sensing mechanism in this new system is based on the competitive displacement of ligand 

by target-analyte, in order to occupy a binding site on the receptor molecule. These 

changes in the distance between ligand and receptor are monitored using fluorescence 

spectroscopic techniques. The significant advancement in this design is the packaging of 

competitive binding assay in microscale containers. In fact, as the microcapsules are 

about 5 pm in diameter they can also be used as implantable sensors for frequent or 

continuous monitoring.

The novelty of this work is the demonstration of a general design of a new 

approach to the fluorescent affinity glucose sensing system based on a competitive 

binding assay. It is believed that this system can be extended to the detection of a wide 

variety of analytes other than glucose. The uniqueness in the competitive binding assay is 

the use of apo-enzyme (deactivated enzyme) as the receptor molecule whereby the apo- 

enzyme results in high specificity and does not exhibit the problems of aggregation and 

toxicity, which were seen with lectins. This design can potentially be used as a platform 

technology for detecting different analytes simply by selecting the appropriate enzyme 

and competitive ligand molecules.

In comparison to previously reported sensors, a significant achievement in this 

study is the efficient and stable encapsulation of sensing assay elements in microcapsules, 

without any loss in sensitivity which makes them more appropriate for use in the smart-
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tattoo system. Also, this work demonstrates step-by-step development of the fluorescent 

affinity sensors operating in visible (green/orange, orange/red), and near-infrared (NIR) 

regions. Another notable feature is that even after extending the operating region from 

visible to NIR, there is no loss in sensitivity, which makes it more suitable for in vivo use, 

because there will be a significant increase in signal to noise ratio in NIR regions 

compared to shorter wavelengths. The important features of this sensing system are (1) 

non-toxic, which was the major disadvantage of all the lectin-based sensors, (2) efficient 

encapsulation of sensing assay elements in microcapsules, and (3) excellent sensor 

response of microcapsules comprised of sensing elements. The major objectives of this 

work are to design, fabricate glucose sensors and characterize its functional properties 

and response. Chapter Four to Chapter Seven will demonstrate various designs for 

developing glucose sensors, which have the potential to be used in minimally invasive 

systems based on the smart tattoo approach.

1.3 Organization of Chapters

The chapters in this dissertation are organized as follows. Chapter Two reviews 

various non-consuming fluorescence glucose monitoring techniques reported by different 

researchers and addresses the disadvantages in these systems and the need for 

improvements. Chapter Three explains the theory involved for the sensing mechanisms 

employed in this work. Chapter Four demonstrates for the first time a fluorescence 

glucose sensor based on the encapsulation of a Con A/dextran competitive binding assay 

into microcapsules. This work has been published in a peer reviewed journal, in a special 

issue on glucose sensing (Journal o f Fluorescence, 14 (5), 585-595, 2004). Chapter Five 

demonstrates the apo-glucose oxidase (apo-GOx)/dextran based glucose assay,
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encapsulated in microcapsules. This is believed to be superior to the Con A/dextran 

approach, due to the reduced toxicity and higher specificity to P-D-glucose. This work 

was divided into two parts and was published in two peer reviewed journals, (apo- 

enzyme competitive binding assay in Biomacromolecules, 5(5), 1657-1661, 2004; 

microcapsule system for glucose sensing in Analytical Chemistry, 77(17), 5501-5511, 

2005). Chapter Six demonstrates the extension of apo-GOx/dextran based glucose sensor 

into the long wavelength (orange/red) visible light region. This work on the extension of 

the operating region of apo-GOx/dextran assay into longer wavelength regions was also 

submitted to a peer reviewed journal, Diabetes Technology and Therapeutics. Chapter 

Seven demonstrates a novel glucose sensor based on the quenching mechanism using the 

apo-GOx/dextran assay, operating in the NIR region. Also, this assay is encapsulated into 

organo/inorgano microcapsules using glycidyl-silane as the crosslinking element to 

entrap the loading assay elements. As this assay operates in the NIR region, it is superior 

to all the sensors demonstrated in the previous chapters. The successful demonstration of 

the competitive binding assay into NIR region indicates that the assay can be modified to 

meet the requirements of the application. Finally, Chapter Eight summarizes the major 

findings of this work and discusses possibilities of further experiments.
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CHAPTER 2

LITERATURE REVIEW

The main goal of this research is to develop a minimally invasive approach for 

glucose monitoring by designing subcutaneously implantable microcarriers comprising 

glucose sensitive materials. These microcarriers can be excited from outside the body 

using harmless visible or near infrared (NIR) light and the fluorescence light coming out 

of the skin can be collected using suitable detectors — the so-called “smart tattoo” 

concept. This chapter reports on the previous work on non-consuming fluorescent 

glucose sensors for the application as implantable systems. This discussion starts with a 

brief description of the types of glucose sensors (enzymatic and affinity), and then 

focuses more on the different types of affinity (non-consuming) based glucose sensors.

2.1 Types of Glucose Sensors

Frequently used transduction mechanisms in glucose sensors reported to-date, can 

be classified into two groups, electrochemical and optical techniques.1"4’6 Electrochemical 

sensors are the glucose sensors which include one of the following devices: 

amperometric, potentiometric, and conductometric devices, which are based on 

monitoring the electric current associated with the electrons involved in the redox 

processes, concentration of selective ions using ion selective electrodes, and conductance

8
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changes due to changes in the overall ionic environment, respectively.6,29 In spite of good 

in vitro results, long term in vivo glucose monitoring with amperometric sensors has not 

been completely successful due to a gradual loss of sensor function, which indicates that 

the surrounding environment plays an important role in the sensor’s behavior. These 

sensors faced challenges in preventing the biofouling of enzyme-containing membranes, 

frequent replacement of the sensor, insufficient selectivity, and only allowing for 

retrospective data analysis.30 The influences of wound healing, host response to the 

implant, and blood supply in the surrounding tissue on sensor performance need to be 

addressed. Also, more insight is needed in the physiological processes at the sensor- 

tissue interface.31 The sensors based on reverse-iontophoresis have most of the defects 

found in amperometric sensors such as, the need of calibration on a daily-basis. Sensors 

based on optical measurements are an attractive alternative, as they may transduce 

chemical concentration information into an optical signal which may be analyzed

T9 •spectroscopically. Among all the available techniques, fluorescence measurements are 

considered to be superior; the reasons for which, are described below.

Need for fluorescence measurements

Fluorescence spectroscopy is one of the widely used techniques in biomedical 

research. Its sensitivity, which is a thousand times greater than absorption spectroscopy, 

is a major asset of this technique. The high sensitivity is due to the emission intensities 

measured with a lower background level. This technique allows the research at very low 

concentrations, which is very economical when working with expensive reagents.33'35 

Fluorescence measurements cause no damage to the body, as long as sub UV frequencies 

are not used in excitation. As NIR light can pass through several centimeters in tissue, by
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selecting suitable NIR dyes, the sensors can be efficiently interrogated from outside the 

body by sending light in and then collecting the light coming out of the skin. Thus, this 

technique opens the door for minimally-invasive monitoring.

By using different fluorescent dyes, analyte-sensitive structural and micro­

environment changes in a molecule can be monitored in real-time. For example, 

fluorescence intensity of anilino-naphthalenesulfonic acid (ANS) conjugated to glucose 

binding protein decreases with the addition of glucose, as it is exposed to a high polarity 

environment. Also, fluorescence resonance energy transfer (FRET), which is described 

in detail in Chapter Three, is widely used for monitoring the glucose-sensitive distance 

changes (~ few angstroms) between two molecules.22

In the enzymatic sensors (e.g. glucose oxidase, GOx), GOx catalyzes the 

conversion of P-D-glucose and oxygen to D-glucono-1,5-lactone and hydrogen

7/r ->7
peroxide. ’ In these sensors, fluorescent dyes are incorporated in the sensing assay in 

order to indicate the changes in the concentration of the resultant by-products, such as 

change in pH due to the production of acid, and change in oxygen levels during the 

reaction between glucose and GOx. Thus, the fluorescence techniques are widely used all 

over the world for developing glucose sensors and various biomedical applications. The 

fluorescence glucose sensors can be broadly divided into two categories (a) Enzymatic 

sensors, and (b) Affinity sensors. The following section provides a brief description of 

enzymatic sensors, with detailed discussion on affinity sensors, which is the research 

topic of this dissertation.
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2.1.1 Enzymatic Sensors

Most of the currently available glucose sensors are based on a flavo-enzyme, 

GOx. GOx is a homo-dimer, which catalyses the oxidation of p-D-glucose, in a two step

-JO
process. In the first step, two protons and electrons are transferred from glucose to 

GOx, resulting in the oxidation of P-D-glucose to 8-gluconolactone, and reduction of 

GOx to GOxH2 . In the second step GOXH2 is oxidized to GOx by molecular oxygen, 

releasing hydrogen peroxide (H2O2); and 5-gluconolactone is hydrolyzed non- 

enzymatically into gluconic acid.39 The overall reaction is written as,

Glucose + 02 —GluC0seOxldase >H202 + 6 - gluconolactone

All together, there are three ingredients (O2 consumption, H2O2 , and acid 

production) of the glucose oxidation catalyzed by GOx, which can be monitored to 

estimate the changes in glucose concentration. Thus, different fluorescent glucose sensors 

can be designed by incorporating an oxygen-sensitive or pH sensitive fluorophore to 

indicate the changes in glucose, and a reference fluorophore, which is insensitive to 

glucose concentrations, in a sensing chamber. Different variations of GOx based 

fluorescent glucose sensors will be discussed below.

Kopelman et al., proposed ratiometric sensors for real-time biochemical 

monitoring, which are also known as polyacrylamide PEBBLEs (Probes Encapsulated By 

Biologically Localized Embedding). 40 ' 42 They proposed a glucose sensor, by 

incorporating all the sensing elements: the enzyme, GOx, oxygen sensitive fluorescent 

indicator, ruthenium (Ru), and an oxygen insensitive fluorescent dye, Oregon Green 488- 

dextran or Texas Red-dextran, as a reference dye for conducting ratiometric 

measurements, in nanospheres prepared using microemulsion polymerization process.40
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The enzymatic oxidation of glucose to gluconic acid results in the decrease in oxygen 

levels, which is measured by the oxygen sensitive dye, Ru.40 The nanosensors showed a 

linear range of 0.3-5 mM glucose with a response time of 150 seconds. PEBBLEs were 

also used in developing intracellular sensors for pH and calcium,43 oxygen,44 ’45 

potassium,46 magnesium,47 zinc,48 chloride,49 glucose,40 and iron.50 However there are 

some significant disadvantages, such as, the uniformity cannot be maintained from sensor 

to sensor within the same batch and from batch to batch, due to the nature of the emulsion 

process, and the leaching of encapsulated chemistry over time. Since PEBBLEs are 

typically less than 200 nm in diameter, they are not suitable for dermal implantation since 

they are likely to be phagocytosed by macrophages.

Brown et al., proposed a glucose sensor based on the incorporation of enzyme, 

analyte indicator and reference dyes in a microcontainer, which has the potential for 

application as an implantable glucose sensor -  so called “smart tattoo” concept.51,52 In 

this work, calcium alginate microspheres coated with polyelectrolyte multilayers (PEM’s) 

were used as microcarriers for holding GOx, and entrapping an oxygen-quenched Ru- 

compound. A reference dye, Alexa Flour 488 (AF488), was incorporated in the 

multilayer nanofilms on the surface of the microspheres, which can also stabilize enzyme 

entrapment and control glucose diffusion. The confocal microscope image shown in 

Figure 2.1(a) for the completed sensor, shows the indicator dye (red) in the sphere 

interior and reference dye (green) on the sphere walls. The changes in fluorescence 

spectra with varying glucose concentrations are represented in Figure 2.1(b) as a change 

in peak ratio. Rsat is the intensity ratio of Ru to AF488 in (Vsaturated buffer, and Rg is 

the intensity ratio at each glucose concentration. These sensors have a more suitable size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

range (20-3 Opm) as compared to above-mentioned PEBBLE sensors. Also, these sensors 

were made much more sensitive and stable through several advances in modeling and 

fabrication approaches.51,53' 56 However, major limitations in these enzymatic based 

sensors are glucose consumption and high dependence of the measurements on local 

oxgen levels.

i n

on

0.99
o 5 IS 20 23 3010

GIucom  Concentration (mM)

Figure 2.1. (a) Confocal microscopy image of spheres used for glucose sensitivity experiments; (b) 
Plot of experimentally and theoretically obtained fractional fluorescence peak ratio values at 
different glucose concentrations.51

In recent years, there have been several variations of biosensors based on 

nanotubes and their surface modification.57'61 Strano and co-workers reported a single 

walled nanotube (SWNT) based near infrared glucose sensor.61 They showed that the 

surfactant used to suspend the nanotubes can be exchanged with GOx to obtain a single 

layer of GOx on the surface of SWNTs. Ferricyanide, which reduces the inherent 

fluorescence (in NIR region) of nanotubes was irreversibly absorbed onto the nanotube 

sidewall. In the presence of P-D-glucose, hydrogen peroxide is produced due to the 

reaction between glucose and GOx, which then reduces ferricyanide. This reduction 

transfers electrons back into the nanotube, thereby increasing the fluorescence. Therefore,
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by monitoring the changes in fluorescence, glucose concentration can be estimated. In 

order to use biosensors based on SWNTs, the surface of the nanotube must functionalized 

with ligand specificity. This step of surface modification is very complex and hard to 

achieve as the covalent sidewall functionalization of SWNTs diminishes their optical 

properties owing to the disruption of the one-dimensional electronic structure. Therefore, 

non-covalent binding is required for optical SWNT biosensors. In addition, the SWNTs 

must be maintained as individual molecules, otherwise the aggregation may result in loss 

of fluorescence.61,62

Hexokinases, in comparison to GOx, have been less explored as glucose receptors 

for fluorescence-based sensing. These enzymes catalyze the transfer of the y-phosphoryl 

group of ATP to the hydroxyl group at position C6 of glucose:

ATP + D -  glucose ADP + D -  glucose -  6 -  phosphate

Pickup et al., proposed a glucose sensor based on the glucose sensitive changes of the 

intrinsic fluorescence from hexokinase.63 In solution, there was about a 23% (Figure 

2.2(a)) change in fluorescence of hexokinase (at 320nm) with the addition of 1 mM 

glucose solution. However, it was observed that the glucose sensitive changes in 

hexokinase were abolished in the presence of serum, as shown in Figure 2.2(a). To 

overcome this problem, hexokinase was immobilized in tetramethylorthosilicate-derived 

sol-gel. With the entrapment in sol-gel, hexokinase showed 25% change in intrinsic 

fluorescence and the signal saturation was extended to 50 mM glucose (Figure 2.2(b)). 

The linear range was further increased to 110 mM by covering the sol-gel with a 

polymethacyrlate membrane. The effect of serum on the sensitivity was very minimal 

when hexokinase was entrapped in sol-gel, with or without covering membrane, opening
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the doors for in vivo monitoring. However, a major disadvantage of this system is the use 

of UV light for excitation, which requires complex or bulky light sources, and also there 

will be interference from various proteins in the biological samples.
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Figure 2.2. (a) Intrinsic fluorescence of hexokinase in solution with increasing glucose concentration, 
in (•) PBS; (□) serum; (A)low-molecular weight fraction of serum; (b) Change in intrinsic

. 63fluorescence of sol-gel immobilized hexokinase in (■) PBS or (•) serum.

2.1.2 Affinity Sensors

Affinity biosensors are analytical devices comprising a recognition element such 

as an antibody, receptor protein, biomimetic material, or DNA interfaced with a signal 

transduction mechanism to convert the analyte concentration to a measurable signal. 

Several variations of affinity glucose sensors are discussed in the following section.20'23 

Unlike enzymatic sensors, for the case of affinity based glucose sensors, glucose is not 

consumed during the receptor and glucose binding and, therefore, no by-products are 

produced; thus the name “non-consuming” glucose sensors. Also, the measurements are 

more direct, as they are not affected by oxygen and pH variations.

There are different types of glucose sensors that fall into this category, as depicted 

in Figure 2.3. Among all these sensors, competitive-binding based glucose sensing has 

been extensively explored for the last two decades. This concept is discussed in more 

detail in the following sections of this chapter.
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Figure 23. Different types of non-consuming glucose sensors.

2.2 Competitive Binding (CB) -Based 
Glucose Sensors

A competitive binding (CB) based glucose sensing scheme, as depicted in Figure 

2.4, involves three components, (i) receptor/substrate (e.g. Con A), (ii) ligand/analyte- 

analog (e.g. dextran), and (iii) analyte (e.g. glucose). The CB mechanism for glucose is 

based on the fact that the receptor has different binding affinities for various sugars 

(Figure 2.5). When receptor is exposed to ligand and analyte they will compete to occupy 

the binding sites on receptor. As receptor has greater affinity toward analyte over ligand, 

analyte displaces ligand from receptor. This process generates more free-ligand and 

receptor/glucose complexes (Figure 2.4(c)). Generally, free-ligand concentration or the 

distance between receptor/ligand is monitored to estimate glucose concentrations. This 

process is called CB technique, which is generally used in conjunction with several other 

techniques, such as FRET, QCM, SPR, and viscosity to estimate glucose concentration. 

Concanavalin A (Con A) and dextran are widely used as the model receptor and ligand 

molecules during the demonstration of CB process. The structure of Con A and its 

interaction with dextran, will play a significant role in the sensing process.
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Figure 2.4. Illustration of Competitive binding technique: (a) donor molecules, (b) Mixture of donor 
and acceptor molecules, and (c) glucose competes with dextran to occupy binding sites on Con A, and 
displaces dextran from Con A.
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Figure 2.5. Binding affinity of various sugars to Concanavalin A.86

Con A belongs to a group of proteins called lectins, which are known for binding 

to specific sugar molecules. Con A has specific binding sites for a-D-glucose. Native 

Con A is comprised of four subunits each having a molecular weight of 26kDa and one 

sugar binding site. Also, Con A contains bound calcium and manganese ions per subunit, 

which are essential for the occurrence of sugar binding. Depending on the solution 

characteristics and properties, Con A can exist in dimeric, tetrameric, and higher order 

forms.64 It has been observed that Con A recognizes terminal as well as internal
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saccharide residues.64 Because of the sugar specificity of Con A, it has been successfully 

employed in glucose sensors.65 Previously reported Con A based affinity sensors in 

conjunction with different transduction mechanisms are discussed in detail below.

2.2.1 Viscosity Measurements -  CB Assay

Viscosity is the measure of a fluid's resistance to flow. A fluid with large viscosity 

moves slowly, because it experiences a large amount of internal friction, and a fluid with 

low viscosity flows easily because it experiences very little friction when it is in motion. 

Ehwald et al., showed that there are significant changes in the viscosity values of the 

dextran/Con A complexes with the addition of glucose due to the competitive 

displacement of dextran from Con A, as shown in Figure 2.6.66,67
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Figure 2.6. Changes in Viscosity (r)) of dextran and Con A (10 gm/L) dispersions. Dextran 
concentrations were, (o) 190 gm/L, (T) 120 gm/L, (▲) 80 gm/L, (•) 40 gm/L.6

It can be observed from Figure 2.6 that with the increase in glucose concentration, 

there is a decrease in viscosity value, because of the decrease in large complexes of Con 

A/dextran. Also, viscosity values were observed to vary with the change in dextran 

concentration and molecular weight.
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2.2.2 Mass/Thickness Measurements -
CB Assay

Sugar specificity of Con A based on mass/thickness measurements was 

demonstrated in 1991, using layer-by-layer (LbL) assembly process.69 LbL self assembly 

is well known for its simplicity in constructing multilayer thin films of various 

macromolecules. In most cases, this process involves the construction of thin films of

70oppositely charged molecules on a substrate based on electrostatic forces of attraction. 

However, in the present case, multilayers of Con A/glycogen thin films were coated on a 

flat substrate based on the binding affinity between the two molecules. The Con 

A/glycogen assembly process was monitored by measuring frequency changes in a quartz 

crystal microbalance (QCM) resonator. It was observed that the binding constants can be 

varied by controlling the glycolipid concentrations.71 Lvov et al., further demonstrated 

the multilayer assembly of Con A in two modes of interactions, as a polyion and a 

biospecific agent, as shown in Figure 2.7(a).72 This was demonstrated by constructing 

the thin films of Con A (anionic)/poly(ethyleneimine) (PEI, polycation), and Con 

A/glycogen on a QCM resonator in the neutral pH region (Figure 2.7(a)). It was observed 

that there are linear frequency shifts in two modes of assembly. The multireceptor sites of 

Con A are very important in building multilayers of Con A and glycogen.72 The sugar 

specific nature of Con A was further utilized to build a multilayer of Con 

A/glycoproteins73 (GOx, HRP) and Con A/avidin.74 UV-Vis absorption spectroscopy74 

and QCM73,74 measurements were used to monitor the LbL assembly process. This 

research was further developed by Anzai’s group to demonstrate the glucose sensitivity 

of the Con A/glycogen multilayers. It was shown that the Con A/glycogen multilayers 

can be completely disintegrated (Figure 2.7(b)) upon exposure to sugars (D-glucose, D-
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mannose) in the aqueous solution at neutral pH.75 This behavior is observed because of 

the competition between the sugar and glycogen to occupy the binding sites on Con A, 

and since the sugar has greater affinity toward Con A compared to glycogen, glycogen is 

displaced from Con A, thus disintegrating the con A/glycogen multilayers.75 Also, the 

variation in the sensor response with different sugars is shown in Figure 2.7(b).
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Figure 2.7. (a) Layer-by-Layer assembly of Con A/glycogen multilayers using two modes of 
interactions; (b) Disintegration of the Con A-glycogen multilayer film (10 bilayers) in the presence of 
10 mM (a) D-galactose, (b) D-glucose, (c) D-mannose, (d) Methyl-a-D-glucopyranoside, and (e) 
Methyl-a-D-mannopyranoside at pH 7.4.75

2.2.3 Surface Plasmon Resonance
Based Glucose Sensors

Surface plasmon resonance (SPR) is a relatively new technique. It is a powerful 

tool for studying the interactions between high molecular weight molecules, e.g. 

antibody-antigen and nucleic acid interactions. The detection capability of SPR is 

extended to low molecular weight compounds, such as pesticides,76 saccharides,77 etc., 

using indirect or CB approaches. The SPR detection principle relies on the change in 

refractive index and the corresponding shift in the SPR angle that occurs on binding of
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the target-analytes to the immobilized receptor/recognition molecules. Thus, the glucose- 

sensitive dissociation of Con A and dextran was demonstrated using SPR techniques.

Ballerstadt et al., were the first to demonstrate a glucose sensor based on SPR and 

CB techniques. A glucose sensing SPR-probe was constructed by placing a thin layer of

7RCon A/dextran (high viscosity) dispersion on the gold surface of an SPR-probe. The 

changes in viscosity were monitored when the Con A/dextran SPR-probe came in contact 

with different glucose concentrations. By monitoring the shift in SPR angle, as shown in 

Figure 2.8, it can be observed that with the increase in glucose concentration there is a 

decrease in resonance angle due to the separation of dextran and Con A.

A novel technique for glucose monitoring was developed by Geddes et al., based 

on the changes in SPR peak due to the aggregation of dextran coated-gold nanoparticles 

in the presence of Con A and disassociation in the presence of glucose.81'83 Due to the 

binding affinity between Con A and dextran, dextran coated-gold particles form large 

aggregates in the presence of Con A (Figure 2.9), resulting in a significant shift and 

broadening of gold plasmon absorption. As Con A has greater affinity towards glucose 

over dextran in the presence of glucose, dextran coated-gold particles are displaced from 

Con A, which results in the segregation of gold particles (Figure 2.9). This reduction in 

gold particle aggregation will be indicated as a shift in SPR angle. These sensors were 

also optimized in regard to stability, pH effects and dynamic range of glucose

oi 09
sensing. ’ A similar sensor was developed using silver nanoparticles.
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Figure 2.9. Competitive binding and SPR based glucose sensing mechanism: the dissociation of Con 
A-aggregated dextran-coated gold nanoparticles.81

All of the above mentioned Con A-based glucose sensors using viscosity, 

frequency, and SPR techniques were successfully demonstrated. There are some 

disadvantages, such as low sensitivity and need to realize the final goal, which is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

implantable continuous glucose monitoring system. For reaching the final goal 

fluorescence sensors are more practical, because of the high sensitivity and the possibility 

of remote interrogation of the implanted sensors.

2.2.4 CB Based Fluorescence Affinity Glucose Sensors

The combination of CB and fluorescence techniques for glucose sensing is very 

popular because of its simplicity and reliability. This sensing mechanism attracted many 

researchers, because of the non-consumption property and the employment of highly 

sensitive fluorescence measurement techniques. The advantages of fluorescence 

techniques, specifically FRET are discussed in detail in the sections that follow.

Schultz et al., developed the first affinity glucose sensor in 1979, based on the 

binding specificity between Con A and saccharides.84,85 This transduction mechanism 

employs the CB based Con A/dextran system.85 Dextran was conjugated to fluorescein- 

isothiocyanate (FITC) in order to use fluorescence techniques to measure ffee-dextran. 

The sensing system was fabricated by immobilizing Con A on the inner surface of the 

dialysis fiber and filling the interior with freely floating FITC-dextran (FD). Finally, one 

end of the fiber was sealed and an optical fiber was inserted into the other end (Figure 

2.10).85 The molecular weight of the dextran and porosity of the membrane were selected 

such that the fiber can retain dextran in the interior while glucose can move freely. In the 

absence of glucose, certain fraction of FD was bound to the Con A immobilized on the 

fiber. Exposure of the fiber to glucose results in the displacement of FD from Con A. 

This competitive displacement of FD in the presence of glucose will result in the increase 

in number of free-FD molecules. Thus, glucose concentration was estimated by 

measuring free-FD concentration using fluorescence measurements.
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Figure 2.10. Heterogeneous fluorescence affinity sensor.86

In spite of the novelty of this technique there were some disadvantages such as, 

the repeatability of the Con A immobilization on the fiber and the alignment of the 

optical and mechanical fibers.22 Sensor properties were affected by the quenching affects 

on FITC or alterations in the Con A binding activity. The change in fluorescence signal 

due to concentration and instrumental drift, cannot be corrected because of the absence of 

a reference fluorophore. In order to overcome these limitations, the above mentioned 

design was improved using FRET techniques.

2.2.5 CB and FRET Based Glucose Sensors

FRET is a phenomenon between two fluorescent molecules, which involves non- 

radiative energy transfer from one fluorophore (donor) to another (acceptor) when the 

two fluorophores are in close proximity. As the distance between the two fluorophores 

increases, there is a decrease in energy transfer. Thus, the glucose concentrations can be 

by monitored by observing the changes in energy transfer. The FRET phenomenon is 

discussed in detail in Chapter Three.

Glucose Sensors Based on Intensity Measurements. The Schultz group 

demonstrated a FRET based homogeneous glucose sensor as shown in Figure 2.11, by 

eliminating the Con A immobilization step from the above-demonstrated heterogeneous
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system. FITC and Rhodamine (Rh) were used as the donor and acceptor fluorophores, 

conjugated to ligand (dextran) and receptor (Con A), respectively.86
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Figure 2.11. (a) Schematic of homogeneous FRET based glucose sensor; Changes in FITC fluoresnce 
with the addition of (b) Rh-Con A to FD, and (c) glucose to FD/Rh-COn A complexes.86

When FD/Rh-Con A complex was excited at the FITC-excitation wavelength 

(488 nm), energy is transferred non-radiatively from FITC to Rh, which results in the Rh 

emission. It was observed that with the addition of glucose, FD and Rh-Con A were 

dissociated, increasing the distance between them, which in turn resulted in the decrease 

in energy transfer from FITC to Rh, and was indicated as an increase in FITC emission
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peak relative to Rh (Figure 2.11). Thus, the level of FITC fluorescence was used to
or

determine the glucose concentrations.

It is well known that aggregation is one of the main problems associated with Con 

A, mostly when it is bound to dextran. While it is also known that the aggregation can be 

prevented by maintaining optimal pH (6 to 7) and temperature (< 40°C), this is not 

always possible, especially for in vivo measurements. To overcome this problem, the 

Schultz group proposed the idea of replacing Con A with succinyl (succ)-Con A, which 

will not aggregate at high temperatures and pH.87,88

Succ-Con A is prepared by reacting lysine residues on Con A with succinic 

anhydride, which results in the conversion of the positively charged lysine side chains 

into negative charges. These changes in the charge distribution of the Con A and the 

sterical interactions will result in two identical dimers from one tetramer that do not re­

aggregate into the tetramers even at high temperatures.88 Dextran and succ-Con A were 

labeled with FITC and TRITC respectively. This assay is similar to the above-mentioned 

system,86 with the variation in the type of Con A and acceptor fluorophore. Glucose 

concentrations of up to 1600mg/dL could be detected with a time response of 

-lOmin.87’88

In all of the above described sensing mechanisms, Con A must be either 

chemically modified or otherwise labeled with a fluorophore, which is time consuming. 

In addition, these procedures on Con A could affect the binding activity between 

ligand/analyte. In order to overcome these concerns, Schultz lab proposed the idea of
OQ

fluorescence quenching of ligands held in close proximity by a multivalent receptor. In 

order to reduce this idea into practice, some fraction of the ligand (dextran) molecules
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was labeled with FITC (donor) and the rest was labeled with RITC (acceptor). In the 

absence of any Con A-specific sugars (e.g. a-D-glucose), Con A binds to FITC and RITC 

labeled dextrans bringing them into close proximity, which results in the energy transfer 

from FITC to RITC. With the addition of glucose, two dextran molecules are displaced 

resulting in the increase in FITC fluorescence due to the decrease in RET.89

In all the above demonstrated sensing systems, changes in fluorescence intensities 

were measured to estimate the changes in glucose concentration. Even though this 

method is highly sensitive, allowing one to work at very low concentrations, there are 

some disadvantages when the issue of non-invasive monitoring is considered. There will 

be significant loss in intensities when the measurements are performed in a scattering 

media (skin). To avoid these problems, lifetime measurements were proposed by 

Lakowicz et al., using the same transduction mechanism. Also, the lifetime 

measurements are not affected by the concentration and optical properties of the 

sample.90 Several variations of lifetime measurements based glucose sensors are 

discussed below.

Glucose Sensors Based on Lifetime Measurements. Based on the same CB and 

FRET transduction principle, several methods for glucose sensing were demonstrated 

using fluorescence lifetime measurements.90'95 In one of the sensor designs, Con A was 

labeled to Ru (donor), and malachite green (MG, acceptor) was labeled to insulin and 

maltose (MIMG) to provide binding affinity for Con A. With the addition of Ru-Con A to 

MEMG, there was a decrease in the fluorescence intensity and decay time of Ru, due to 

the energy transfer from Ru to MG. However, with the addition of glucose, MIMG was 

displaced from Ru-Con A, resulting in the increased intensity and decay time of Ru.90
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Another sensor design was reported on similar grounds by replacing Ru with Cy5, as 

shown in Figure 2.12.91 By comparing the results from Ru-Con A and Cy5-Con A, it was 

observed that the reversibility was significantly improved in the case of Cy5-Con A. It is 

noteworthy that Cy5 has a smaller stokes shift and lifetime, but relatively high quantum 

yield. Also, the use of Cy5 allows excitation with red laser diodes.
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Figure 2.12. Excited state decay of CyS-Con A with the addition of (a) MIMG, and (b) glucose.91

Another FRET based glucose sensor operating in the NIR region was developed 

using allophycocyanin (APC, donor) labeled Con A and MG (acceptor) labeled dextran.96 

As glucose competitively displaces MG-dextran, there was a reduction in FRET as shown 

in (Figure 2.13), which was assessed by fluorescence lifetime measurements. This assay 

showed significant changes in the range of 2.5-30 mM glucose levels. It was observed 

that albumin and serum inhibit FRET significantly (Figure 2.13(a)), but the interference 

was prevented by removing high molecular weight substances using filters, as shown in 

Figure 2.13(b). Thus, APC showed promise for use in a glucose sensor, which can be 

interrogated remotely.96
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Figure 2.13. Changes in FRET between APC-Con A and MG dextran in the presence of (a) PBS, 
Serum and BSA; (b) PBS, serum passed through lOkDa and 30kDa filters, and unfiltered serum.96

Most of the above-mentioned intensity and lifetime measurements based sensing 

systems were successfully demonstrated in solution. The potential disadvantage of these 

fiber-based approaches is the risk of infection at the site of optical fiber intrusion into the 

skin. However, in order to implement these sensors for non-invasive monitoring, the 

sensing elements must be encapsulated in a microcarrier, e.g. microcapsules, 

microspheres, etc., which have the ability to display changes in fluorescence for varying 

glucose concentrations. The following section will discuss all the previously reported 

fluorescence affinity sensing systems for transdermal monitoring.

2.2.6 Transdermal Glucose Sensing

PEG hydrogel based glucose sensor. To overcome the difficulties with currently 

available non-invasive monitoring systems, a novel system based on the “smart tattoo” 

concept was proposed, which could be implanted in the skin and interrogated remotely 

using harmless visible or NIR light excitation.26,27 The feasibility of this concept has 

been demonstrated for the short wavelengths of the FITC-TRITC RET pair, by modeling 

and experimental studies of tissue.24'27 Prototypes consisting of poly(ethylene glycol) 

(PEG) hydrogel microspheres with covalently-immobilized TRITC-Con A molecules and
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physically entrapped FD in the gel matrix were constructed, and the glucose response for 

the system was further controlled by varying the Con A:dextran ratio inside the hydrogel. 

In vitro experiments of hydrogel spheres showed an optimum fluorescent intensity

'inchange between 0-800mg/dL with a linear response up to 600mg/dL. Despite the 

encapsulation of Con A/dextran assay into microspheres, there still remain some critical 

problems in maintaining the stability of the response and the production of uniform and 

strongly responsive glucose-sensitive microspheres.

Sephadex bead based affinity glucose sensor. The Schultz group proposed a 

minimally-invasive approach for glucose monitoring based on the implantation of the 

semi-permeable membrane chamber containing glucose-sensitive assay elements.97 In 

this sensing system, AF 488-Con A molecules were bound to the glucose residues on the 

interior of the sephadex beads (Figure 2.14(a)), which were made up of dextran tagged to 

an absorption dye. The excitation light cannot excite AF 488-Con A molecules residing 

inside the beads as the absorption spectrum of the dye conjugated to dextran overlaps 

with the fluorescence excitation spectrum of the fluorophore labeled to Con A. But, with 

the addition of glucose, the AF 488-Con A is displaced from the dextran matrix, and 

diffuses out of the colored beads into the outside space (Figure 2.14(b)) where it is 

exposed to light, thus resulting in a fluorescence increase corresponding to AF 488 peak, 

as shown in Figure 2.14(c). This sensor featured a glucose detection range extending 

from 0.15 to 100 mM, exhibiting the strongest dynamic signal change from 0.2 to 30 

mM. It showed a reasonably fast response time of 4-5 min.97 In order to use the affinity 

sensor in vivo, it is desirable to replace the visible range fluorescent dyes with NIR 

fluorophores to compensate for the high tissue scattering losses.
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Figure 2.14. Fluorescence affinity glucose sensor, (a) In the absence of glucose, AF 488 labeled Con A 
is bound to fixed glucose residues inside porous beads, (b) In the presence of glucose, Con A is 
displaced from the beads and diffuses out of them, and (c) Changes in Fluorescent intensity of AF 
488-Con A with the addition of glucose.97

The above mentioned sephadex bead based affinity sensor system was further 

extended into the NIR region by conjugating Con A with AF647 dye.98 From the long 

term performance studies conducted on this system, it was observed that the signal levels 

were dropping after 3-4 weeks, due to the leakage of Con A through the sealed 

membrane.98 Thus, there are some issues to be resolved in this design.

Glucose sensor based on quenching mechanism. Ballerstadt et al., proposed 

another design for a glucose sensor operating in the NIR region. In this system, Con A 

and dextran were linked to NIR dyes, such as QSY21™, Alexa Fluor® 647 (AF647), and
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LD800, which were used as acceptor/quencher, donor and reference dyes, respectively." 

QSY21 quenches AF647 when they are in close proximity, but it will not fluoresce, 

resulting in the non-ratiometric measurements. Therefore a glucose-insensitive dye 

(reference dye), LD800 was incorporated in the sensing system for correcting varying 

concentrations, instrumentation drifts, etc. The sensor system was fabricated by making a 

hollow fiber-based capsule using regenerated cellulose, which is comprised of three 

fibers filled with QSY21™ ConA-Sepharose and AF 647-dextran, and two fibers 

containing the reference dye LD800. The size of the completed sensor was estimated to 

be 2mm in diameter and 6mm in length. In the absence of glucose, AF-dextran and QSY- 

Con A are closely spaced, which results in low donor fluorescence due to acceptor 

quenching. However, the quenching is reversed by competitive displacement of dextran 

from Con A by glucose. It can be observed that the quenching is reduced with the 

addition of glucose, which is indicated as an increase in the AF647 peak normalized to 

the LD800 reference peak, as shown in Figure 2.15." Thus, a glucose sensor operating in 

the NIR region is successfully demonstrated.
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Figure 2.15. Fluorescence emission spectra from the fiber (comprised of QSY-Con A and AF 647 
dextran) during its exposure to different glucose concentrations."
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However, it is important to note that all of the above mentioned Con A/dextran 

based affinity sensing systems carry the disadvantages of Con A, such as toxicity, 

aggregation, and non-specific binding. Therefore, it is necessary to find a replacement for 

Con A. One such molecule, is apo-glucose oxidase (apo-GOx), which was previously 

used as a biosensor based on its ability to reconstitute into a holoenzyme with the 

addition of semi-artificial cofactors.20’21 In order to overcome the limitations of Con A, 

D’Auria et al., proposed the idea of using a deactivated enzyme, which retains the 

binding ability towards glucose without any catalytic activity and shows a decrease in 

intrinsic fluorescence upon binding to glucose, thus acting as a sensor by itself. The 

details of these sensors based on deactivated enzymes are given below.

2.3 Glucose sensors Based on 
Apo-Enzvmes

2.3.1 Apo-Glucose Oxidase

Glucose oxidase (GOx) is an oxidoreductase enzyme, highly specific for P-D- 

glucose. GOx catalyzes the conversion of P-D-glucose and oxygen to D-glucono-1,5- 

lactone and hydrogen peroxide. GOx is a flavoprotein which is widely used for the 

estimation of glucose concentration in blood or urine samples and is based on the 

production of hydrogen peroxide in the reaction.36 To overcome the problems associated 

with the consumption of glucose in GOx based sensors, such as production of by­

products, instability, and irreversibility, a glucose sensor was proposed based on the 

intrinsic fluorescence changes in apo-GOx with the addition of glucose. Apo-GOx is 

produced by completely deactivating the native enzyme, GOx, by removing the FAD 

cofactor. The intrinsic fluorescence peak of apo-GOx at 340 nm is the characteristic of
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partially shielded tryptophan residues. Although apo-GOx showed an 18% decrease in 

the fluorescence at 340 nm with the addition of 20 mM glucose, indicating retention of its 

ability to bind P-D-glucose, there is no indication of catalytic reaction.23,100,101

The intrinsic fluorescence from proteins cannot be used for realistic clinical 

applications because of the huge background signal from the biological samples and the 

need for complex or bulky light sources. To overcome this problem, a visible dye (ANS) 

is linked to apo-GOx. ANS is known as a polarity-sensitive fluorophore, and displays an 

increasing quantum yield in low polarity environments. It was observed that the addition 

of apo-GOx to an ANS solution resulted in an approximate 30-fold increase in the ANS 

intensity, suggesting that it is exposed to a lower polarity environment. However, this 

effect was reversed, as apo-GOx showed a decrease in intensity upon glucose addition, 

indicating that ANS is being exposed to an increasing polar environment with glucose

O'Xaddition, as shown in Figure 2.16(a).
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Figure 2.16. (a) Emission spectra, and (b) Average lifetime of apo-glucose oxidase-1,8-ANS in the 
presence of varying glucose concentrations.23
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Fluorescence lifetime studies of ANS-labeled apo-GOx showed that the addition 

of glucose shifts the frequency response to higher frequencies due to a decreased ANS 

lifetime. The shorter lifetime of ANS in the presence of glucose is consistent with the 

suggestion that glucose displaces the ANS in a more polar environment. There was over a 

40% decrease in mean lifetime upon glucose addition, as shown in Figure 2.16(b).23

The apo-GOx based glucose sensor described above showed positive results, but 

the binding ability of GOx can be easily hindered by its low stability to heat, pH changes, 

and organic solvents. To overcome these problems, enzymes isolated from thermophilic 

sources were used, which are very stable and active at higher temperatures. A sensor 

based on the enzyme from a thermophilic source is demonstrated below.

2.3.2 Apo-Glucose Dehvdrogense
(apo-GD)

Glucose dehydrogenase (GD) from the thermoacidophilic archaeon 

Thermoplasma acidophilum, is used as the glucose binding protein in this sensing system. 

GD is a tetramer (160 kDa) composed of four similar subunits of about 40 kDa each. GD 

shows full activity at 55°C after 9 hrs and at 75°C the half-life is approximately 3 hrs. 

Also, the incubation of enzyme with 50% (v/v) methanol, acetone or ethanol for up to 6 

hrs, at room temperature showed no appreciable loss of activity.102

The transduction mechanism in apo-GD is similar to the above-demonstrated apo- 

GOx sensor. 103 As the thermophilic proteins show increased activity at higher 

temperatures and in the presence of non-polar solvents, all the experiments were 

conducted in the presence of 3% acetone. A drastic increase in ANS intensity values was 

observed with the addition of apo-GD. Also, with the addition of glucose, ANS showed a 

25% decrease in the intensity values.103 The lifetime studies showed modest changes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Therefore, glucose induced changes were more carefully studied using polarization 

techniques, which indicated that the ANS-apo-GD system can sense glucose 

concentrations up to 20 mM with an accuracy of ±2.5 mM (Figure 2.17).103 The 

dissociation constant was observed to be 10 mM. In spite of its robustness, apo-GD based 

sensors respond better in the presence of acetone, which is not the ideal case for 

implantable glucose sensors.
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Figure 2.17. Polarization spectra of ANS-labeled GD in the presence of 3% acetone, and at different 
concentrations of glucose.1 3

2.3.3 Glucokinase Based Sensor

As a further development to the above described sensing mechanisms, D’ Auria 

et al., proposed a glucose sensor using glucokinase from the thermophilic microorganism 

Bacillus stearothermophilus. 104 This system has the advantages of CB and FRET 

mechanisms in addition to apo-enzyme based sensors (e.g. specificity, non-consuming). 

These enzymes catalyze the reaction shown below. However, in the absence of ATP, 

glucokinase will not consume any glucose, thus phosphorylation will not occur.

ATP + D -  glucose —G|y°kl.nase/M82— > ADP + D -  glucose -  6 -  phosphate
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Using the idea of carrying on the above reaction in the absence of ATP, a glucose 

sensor based on CB and RET was proposed. The intrinsic fluorescence from glucokinase 

and 0-Nitrophenyl-/?-D-glucopyranoside (ONPG) were used as donor-receptor and 

acceptor-ligand molecules. It was observed that ONPG quenched the intrinsic 

fluorescence from tryptophan residues on glucokinase. This effect was reversed with the 

addition of glucose (Figure 2.18), as glucose has higher affinity towards glucokinase over 

ONPG. The changes in polarization with the addition of glucose to the above described 

glucokinase based sensor system were also reported.104

The wide variety of biosensing schemes that are demonstrated in the previous 

sections are highly-specific towards the analyte, but they are not attractive for practical 

purposes, e.g. noninvasive detection due to the lack of an intrinsic sensing mechanism. 

For example, a variety of well characterized glucose binding proteins (GBPs), do not 

show any change in optical signal with glucose binding which renders them unattractive 

for noninvasive monitoring. Many researchers are working towards the development of a 

transduction mechanism to monitor the binding events in GBPs. The next section will 

focus on the mechanism developed to monitor glucose levels using GBPs.

6»M
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Figure 2.18. Effect of ONPG and glucose on the emission intensity of BSGK.104
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2.4 Glucose Binding Proteins

Hellinga et al., were the first to propose protein engineering techniques to develop a 

transduction mechanism to detect glucose using GBPs.105,106 An optical transduction 

mechanism was designed by incorporating environmental sensitive fluorophores into 

GBPs (Figure 2.19(a)). This technique involved the prediction of potential fluorescent 

allosteric signal transduction (FAST) sites in the periplasmic GBP of Escherichia coli (E. 

coli), and creation of single cysteine mutations at these FAST sites.

To observe the responses of different sites, acrylodan, and (((2- 

(iodoacetoxy)ethyl)methyl)amino)-7-nitrobenz-2-oxa-l,3-diazole (LANBD) were selected, 

based on their environmental sensitive behavior, as the indicator dyes to be covalently 

coupled to the L255 and H I52 cysteine residues, respectively. The glucose sensitivity of 

GBPs coupled with acrylodan and LANBD, in Figure 2.19(b-c), shows that with the 

addition of glucose both samples are showing significant changes in fluorescence 

intensity.105 This technique of introducing FAST sites into analyte-indicator proteins was 

further used by several groups to develop biosensors using proteins from E. Coli.

Based on this approach of introducing sensing elements into GBPs, a simple 

design for glucose sensing was proposed by Tolosa et al., based on a mutant 

glucose/galactose binding protein (GGBP) from E. Coli and phase modulation 

fluoremetry.93 The glutamine 26 in GGBP (Figure 2.19(a)) was mutated to contain a 

single cysteine residue and was conjugated with a sulfhydry 1-reactive probe 2-(4- 

iodoacetamidoanilino)naphthalene-6-sulfonic acid (I-ANS). The labeled protein 

displayed a twofold decrease in intensity in response to glucose, with dissociation 

constant near lpM  glucose (Figure 2.20(a)), but displayed modest lifetime changes.
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Figure 2.19. (a) Tertiary structure of GBP 21’93; Change in fluorescence intensity due to the binding of 
glucose to (b) L255C-acrylodan (c) and H152C-IANBD glucose binding protein conjugates.105
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Figure 2.20. (a) Emission spectra of ANS-Q26 GGBP in the presence of glucose, (b) Modulation at 
2.1MHz with the addition of glucose to ANS-Q26 GGBP.93

In order to overcome this problem, a sensor was created by combining ANS- 

GGBP with Ru metal-ligand complex on the surface of the cuvette. With the addition of
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glucose, there were significant changes in the relative intensity of the ANS26-GGBP and 

Ru complex resulting in a dramatic change in modulation at a low frequency of 2.1 MHz, 

as shown in Figure 2.20(b). Modulation measurements at 2.1 MHz were shown to 

accurately determine the glucose concentration.93

Rao et al., further developed this sensor to overcome the problems associated with 

lifetime measurements. They used an E. coli GBP labeled with two fluorophores, 

acrylodan (environment-sensitive) and metal ligand complex of Ru at the cysteine 

(Leucine 255) mutation and N-terminal, respectively (Figure 2.19(a)). The acrylodan 

emission is quenched in the presence of glucose while the Ru emission remained constant, 

thereby serving as a reference, as shown in Figure 2.21(a). In addition to ratiometric 

measurements, the presence of the long-lived Ru metal-ligand complex allows for low- 

cost modulation-based sensing.21 It can be observed from Figure 2.21(b) that there is 

significant change in modulation with the addition of glucose.
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Figure 2.21. (a) Emission spectra, and (b) Modulation at 1.58Hz with the addition of glucose to Ru- 
GBP-Acrylodan.21

Schultz et al., proposed another variation of a biosensor based on a glucose 

indicator protein (GIP), which was created by conjugating two fluorescent reporter
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proteins to each end of the E. coli GBP, as shown in Figure 2.22(a). In this method, the 

distance between the two fluorescent proteins changes with the addition of glucose 

(Figure 2.22(a)), which can be monitored by measuring the changes in FRET.107 The 

GBP adopts an “open” form in the presence of the glucose, which triggers a 

conformational change, causing GFP and YFP to move apart from the center line of GBP 

leading to the change in FRET, as shown in Figure 2.22(a).

Reduced FRET 4^Glucose^  niiucosc ^  new

%
W  J -Glucose GFPuv

W  (a)

1 •
!i G F P u v
1 * *

1 • •

GFPuv

glucose

Figure 2.22. Design of a (a) glucose indicator protein for glucose sensing based on FRET between two 
green fluorescent proteins, (b) glucose sensor by incorporating Figure 2-15(a) in a hollow-fiber.107

bb

Measurement 1

50 , * •
X

Measurement 2 
Measurement 3

45 - : -Average

40 •
x " ~

X

35
C 10 20 30 40 50 60

Glucose (pM)

Figure 2.23. Fluorescence intensity (average of 3 measurements) at 527 nm (YFP emission) with 
increasing glucose concentration.107

Green (GFPUV) and yellow (YFP) fluorescent proteins were used as donor and 

acceptor molecules, respectively, in the FRET phenomenon. GIP is created by 

conjugating GFPUV and YFP to C terminus and N terminus of GBP, respectively, as
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shown in Figure 2.19. A glucose microsensor was fabricated as shown in Figure 2.22(b), 

by entrapping GIP into the hollow fiber which is accomplished by placing one end of a 

hollow fiber in a GIP solution and sealing the other end. When glucose binds to a GBP, 

there is change in the protein conformation, resulting in the increase in separation 

between GFPUV and YFP and thus producing a reduction in FRET. This sensing system 

showed a response time within lOOsec and an optional range of 10pM of glucose (Figure 

2.23).107 The main disadvantage of the GBP based glucose sensors is the low dissociation 

constant, because of which it cannot be used for glucose monitoring in diabetics.

2.5 Boronic Acid Based Sensors

Boronic acids (BAs) are known to have high affinity for carbohydrates, based on 

which several variations of glucose sensors have been reported by Lakowicz,108-114 

Shinkai,19 and Wang.115 BAs are weak Lewis acids, consisting of one boron (electron- 

deficient) atom and two hydroxyl groups. These acids have the tendency to form anionic 

borate by reacting with strong bases (OH"), with a pKz of ~9. BAs coupled with esters to 

form BA diester groups show a pKa of ~ 6.109

In the last decade, BA containing fluorophores were used to monitor changes in 

sugar concentration by observing the changes in spectral properties of the fluorophores 

due to a charge transfer (CT) mechanism. CT occurs when there is high concentration of 

fluorophores containing BA and electron donor groups on the same fluorophore. For this 

mechanism, BA group (in the absence of sugar) acts as an electron withdrawing group, 

but, in the presence of sugar, BA takes on its anionic form as [-B(OH)(sugar)]- and is no 

longer an electron withdrawing group. Hence, many fluorescent dyes with BA group can 

be used for glucose sensing by monitoring spectral (intensity, peak wavelength) shifts.109
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Lakowicz et al., proposed the idea of non-invasive glucose monitoring by using a 

contact lens as the substrate to dope these glucose-sensitive fluorophores containing BA 

groups.109 4’-Dimethylaminostilbene-4-boronic acid (DSTBA), 4’-cyanostilbene-4- 

boronic acid (CSTBA), l-(p-boronophenyl)-4-(p-dimethyl-aminophenyl)buta-l,2-deine 

(DDPBBA), chalcl, and chalc 2 were used as the glucose sensitive BA containing 

fluorophores, among which the results corresponding to DSTBA and CSTBA are 

demonstrated below. Fluorescence spectra corresponding to DSTBA and CSTBA, with 

the addition of glucose, are shown in Figure 2.24(a-b). It can be observed in the case of 

DSTBA that there is a decrease in the intensity and a blue-shift in the peak wavelength 

with the increase in glucose concentration. Whereas in the case of CSTBA, there is also a 

decrease in intensity but with a red-shift in the peak wavelength.
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Figure 2.24. Change in fluorescence spectra of DSTBA and CSTBA in solution-phase (a,b) and when 
doped in contact lens (c,d).109
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The changes in fluorescence spectra of DSTBA and CSTBA doped contact lenses 

are monitored with the increase in glucose concentrations, as shown in Figure 2.24(c-d). 

By comparing solution phase and contact lens doped results, it can be observed that there 

is a significant decrease in the linear range and sensitivity. It is also noteworthy that these 

fluorophores showed more affinity towards fructose over glucose. Also, there is the 

significant effect of leaching, i.e. ~ 10 -  12 % of the fluorophore concentration is leached 

out in 45min.109 Using similar principles, BA-fluorophores were designed to measure the 

tear glucose levels in hyperglycaemia patients.108 A mono-BA based fluorescent sensor 

was designed using 3-nitronaphthalic anhydride and 3-aminophenylboronic acid. This 

novel saccharide probe exhibited dual emission, enabling ratiometric sensing, and 

displayed a remarkable sensitivity for glucose relative to fructose and galactose.111 In 

spite of the successful demonstration of BA-based glucose sensors, there are unsolved 

problems due to the specificity109,110,115 and leaching that occurs overtime.

In conclusion, this chapter has provided a broad background of previously 

reported literature on glucose sensors. It was noted from these previous studies that many 

researchers have proposed the idea of developing an implantable fluorescence affinity 

glucose sensor, but there have been limited research articles (~5) where the idea has been 

demonstrated. These sensors were based on Con A, glucose binding proteins, and boronic 

acids, which have major disadvantages such as toxicity, low dissociation constant, and 

very low specificity, respectively. Also, all these systems lack an efficient encapsulation 

technique.

This dissertation work is focused on developing biosensors by encapsulating 

competitive binding based fluorescence sensing assay in microcontainers. The work is
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novel based on the encapsulation of sensing assay into hollow containers where the assay 

molecules are free to move. This kind of free movement is restricted in previously 

demonstrated PEG hydrogel spheres. Due to the toxic nature of Con A, we proposed a 

novel idea of replacing Con A with apo-GOx, which has been previously used as a 

glucose sensor by itself. Using apo-GOx, the problems associated with Con A, such as 

toxicity, low specificity, and aggregation can be eliminated. Thus, this work on the 

incorporation of apo-GOx into a competitive binding assay and the encapsulation of 

sensing assay into hollow microcontainers is unique and is not being pursued anywhere 

else in the world. As described in the following chapters, it has been possible to 

demonstrate (a) the glucose sensitivity of apo-GOx/dextran complexes in solution phase, 

(b) the formation of several embodiments of hollow containers used for the encapsulation 

of sensing assay, and (c) the glucose sensitivity of microcontainers loaded with sensing 

assays from the visible to near-infrared operating region.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

THEORY

One of the most important and extensively explored fluorescence sensing 

techniques is fluorescence resonance energy transfer (FRET). FRET has been employed 

in spectroscopy and microscopy techniques for detecting and imaging various 

biomolecular interactions. Glucose sensors based on FRET in conjunction with the 

competitive binding process, are being continuously explored and are highly promising, 

as detailed in Chapter Two. This chapter discusses the theory behind glucose sensing 

mechanisms, such as FRET, and competitive binding processes. Modeling of the affinity 

sensors, which illustrates the influence of various parameters, e.g. receptor and ligand 

concentrations, dissociation constants, etc., on sensor response, is discussed in detail. 

These modeling results assist in estimating assay concentrations to obtain certain sensor 

parameters. Also, the effect of changing various parameters can assist in speculating the 

sensor response characteristics, thus helping in designing a customized sensing system.

3.1 Fluorescence Resonance Energy 
Transfer (FRET) Phenomenon

FRET is the non-radiative energy transfer of excited state energy from the excited 

state fluorophore (donor, D) to another (acceptor, A). FRET occurs when, (i) the 

fluorophores are in close proximity, (ii) the emission spectrum of donor overlaps with the

46
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excitation spectrum of the acceptor (Figure 3.1), and (iii) the dipoles are properly 

oriented.116 This phenomenon is a non-radiative transition i.e., it does not occur via 

photon emission from excited-state-D and its re-absorption by A. When the donor 

fluorophore is excited at an appropriate wavelength, its electrons jump from the ground 

state (So) to higher vibrational level (Si, S2 , S3 ). Within picoseconds these electrons decay 

to the lowest of these vibrational levels (Si) and then decay more slowly (nsec) to one of 

the So states and a photon is emitted with wavelength longer than the exciting wavelength 

(Figure 3 .2). FRET can be regarded as the interaction of transition dipoles of donor and 

acceptor groups; thus, the name fluorescence resonance energy transfer (FRET).117,118

Wavelength

Figure 3.1. Fluorescence excitation and emission spectra of (a) donor and (b) acceptor molecules.
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Figure 3.2. A simplified Jablonski diagram showing the coupled energy transfer transitions between 
the donor and acceptor molecules during the FRET process.117
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3.1.1 FRET Theory

1 1  77
The FRET phenomenon is a very complex process. ' A simplified theory of

FRET that is sufficient to describe the affinity sensors of this work is described as 

follows. Assuming a single D-A pair is separated by a distance r, the rate of energy 

transfer, kr, from a donor to acceptor molecule is given by:

where, td is the fluorescence lifetime of the donor in the absence of the acceptor, and Ro 

is the Forster distance, i.e, the distance at which half the donor molecules are quenched 

by the acceptor molecules. Ro is proportional to several parameters, according to

In this Equation 3.2, A" is a numerical constant, which depends on the units used. 

The term k 2 refers to the relative spatial orientation of the dipoles of D and A. Based on 

the relative orientation of donor and acceptor, k 2 value can range from 0 to 4. For

sixth root of k 2 is considered in the Equation 3.2, the variation of k 2 from 1 to 4 results 

in 26% error in r (in Equation 3.1) value. For the random orientation case (as is usually 

assumed, especially for solution phase measurements), k 2 value is taken as 2/3. Though 

this value is debatable, it was previously reported that the uncertainty in intra-molecular 

distance as determined using FRET is only 10%'18. The remaining terms, n, <j)D, and J[RJ 

correspond to the solvent refractive index, quantum yield of D in the absence of A, and 

the overlap integral, which measures the degree of overlap between the emission 

spectrum of D and the absorption spectrum of A, respectively. A key point from this

T
T D \ r )

(3.1)

(3.2)

collinear and parallel transitional dipoles k 2 =  4, and for parallel dipoles k 2 -  1. As the
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discussion is that there must be significant spectral overlap for the dipoles to interact and 

for the proper excitation of A by D. Also, the energy transfer efficiency is directly 

proportional to the spectral overlap, and this also directly effects the Forster distance of a 

particular D-A pair. Figure 3.1 shows the D and A excitation and emission spectra in an 

ideal energy transfer system, wherein D and A have very distinct excitation spectra (so 

that A can only be excited by energy transfer, and not by direct photon absorption at the 

wavelengths used to excite D); the D emission and A excitation spectra overlap strongly; 

and the D and A emission maxima are well separated, so that the quenching of D 

fluorescence and the enhancement of A fluorescence can be individually measured.121,122

In Practice, Ro values vary significantly for different D-A FRET pairs, ranging 

from 40-80 A. This distance must be comparable to the size of the proteins or other 

biomacromolecules being used for efficient energy transfer from D to A. The energy 

transfer (E) is given as the fraction of photons absorbed by D that are transferred to A 

and, therefore, is given as the ratio of transfer rate to the total decay rate of the donor,

It should be clear from the above Equation 3.4 that when D and A are separated 

by Forster distance (Ro), the FRET is 50% efficient. However, another noticeable 

property is that the FRET efficiency is highly dependent on the distance between D and 

A molecules, which is shown graphically in Figure 3.3. The notable feature is that FRET

(3.3)

From Equations 3.1 and 3.3, we have, E = 6 0 6
R0 +r

(3.4)

efficiency decreases rapidly when the distance between D and A molecules is greater
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than the Forster distance, because FRET is inversely proportional to the sixth power of 

the distance between D and A molecules (Equation 3.4).

1 0 0  »
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75 -Oc««
£  50 ^
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V)c 25at

0.25 0.5 0.750 1 1.25 1.5 1.75 2

Distance between donor and acceptor molecules (r/RO)

Figure 3.3. Effect of the distance between donor and acceptor molecules (r) on the energy transfer 
efficiency (£); where Ro is the Forster distance.

Energy transfer efficiency (E) is generally measured using relative fluorescence 

intensity of the donor in the absence (Fo) and in the presence of acceptor (Fda), as given 

in Equation 3.5. Fluorescence lifetimes are also used under similar conditions to estimate 

E  value. The relationships are given as,

E = and E = 1 - ^ -  (3.5)
F D  t  D

These mathematical representations highlight the main advantages of using FRET 

as a transduction mechanism; it is highly sensitive to the distance between two molecules, 

and the ratiometric nature allows variations in instrumental parameters, assay component 

concentrations, and measurement configuration to be internally compensated.123 In recent 

years, FRET has been applied in various fields of biochemistry, such as single molecule 

FRET for detecting conformational changes and molecular interactions,124 distance 

measurements in a-helical melittin,125 protein folding measurements,126 orientation of the
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197 • • • 99 19R 19Qprotein bound peptide, nanoscale biosensors using organic, and quantum dot ’ 

FRET donors, etc.

In this project, FRET is used as a transduction mechanism in a glucose sensing 

system, which is based on the competitive binding process. In particular, FRET is used as 

a readout technique for translating the changes in the distance between D and A 

molecules in the absence/presence of glucose. The following sections will demonstrate 

the theory behind a glucose sensing system, which is based on the combination of 

competitive binding and FRET techniques.

3.2 Competitive Binding Process

The competitive binding process, depicted in Figure 3.4, involves three 

components, (i) receptor/substrate (Con A), (ii) competing ligand/analyte-analog 

(dextran), and (iii) analyte (glucose). When a receptor is exposed to a ligand, they will be 

in close proximity because of the binding affinity (Figure 3(a)). However, in the presence 

of glucose the receptor/ligand complexes will be dissociated (Figure 3.4(b)), as the 

receptor has greater affinity toward the target-analyte over ligand. This process generates 

relatively more free ligand and receptor/glucose complexes. Generally, free ligand 

concentration (or the average distance between receptor/ligand) is monitored to estimate 

glucose concentrations.
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FITC-dextran
(Donor-ligand)

X
TRITC-Con A
(Acceptor - Receptor)

Glucose
(Analyte)

Figure 3.4. Schematic representation of the combination of FRET and competitive binding 
techniques: (a) FITC-dextran/TRITC-Con A complexes, and (b) displacement of dextran from Con 
A in the presence of glucose; (c) strong donor and acceptor peaks (d) strong donor peak relative to 
acceptor peak in the presence of glucose.

3.2.1 Competitive Binding Theory

Theoretical models for the above described sensing system were developed to 

hypothesize the effects of different parameters.130' 135 Different heterogeneous models 

were generated for two different cases, (a) immobilized receptor, ’ and (b) 

immobilized ligand.131 The theoretical modeling of the receptor-immobilized competitive 

binding system is given below. The only difference in this model compared to the above 

described competitive binding mechanism is that the receptor is immobilized on the solid 

gel. However, this is of little consequence when taking the assumptions of this model into 

consideration. The assumptions in this system are: (1) the single binding site on receptor 

molecules is available even after the immobilization process, (2) both the ligand and 

analyte are competing for the same binding site on a receptor molecule, (3) only 

monovalent interactions occur between receptor and ligand, and (4) equilibrium exists at 

all times. As mentioned above, with the addition of more analyte there is an increase in 

the free ligand concentration in the solution. Thus, the free ligand concentration can be 

measured independent of the analyte concentration. A calibration curve can be obtained

$Addition

of glucose

(d v
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for this sensor system by plotting bulk free ligand concentration with respect to the 

increasing analyte concentration.130,133

The competitive binding reactions between the analyte (A), immobilized receptor 

(/?), and ligand (L ), and the corresponding association constants (Kj  &  K 2) are given as,

L  + R  — >LR , AT, = ; where LR  is the ligand/receptor complex (3.6)

A  + R  ——— > A R , K 2 = 5 where AR  is the analyte/receptor complex (3.7)

In the current model design, all the sensing elements are conserved with in the 

transducer, as given below,

o s )

[ I ,  ] =  [ ! ] + [ M ]  (3 .9 )

k b M + M  <31°)

where R, L,  and A  represent the concentrations of free acceptor-labeled receptor, donor-

labeled ligand, and analyte, respectively, and subscript Y denotes total concentrations.

The free receptor concentration [/?], which is not bound to either ligand or 

analyte, can be written in terms of dissociation constant, and total and free (unbound) 

ligand concentrations as given below.

From Equations 3.6 and 3.9, we have, [/?] = \  (3.11)

The analyte/receptor complex concentration [/I/?] can be written in terms of 

dissociation constant and free analyte and receptor concentrations as given below,

From Equation 3.7, we have [/I/?] = (3.12)

From Equation 3.9 and 3.8, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

, W  . [ * , ] - [ * ] - 1 « ]
[i,]  [ i,l

Substituting Equation 3.12 into Equation 3.13, we have

i

(3.13)

This can be reduced as shown below,

(3.14)

1 (3.15)

Substituting Equation 3.11 into Equation 3.15 and reducing the equation, we obtain 

Equation 3.18,

[i,] h i  M k l V
1

[L] . . [ R , ]  [ l] ,- [ l]  _ 0

t , ]  Ia I ' M a K ' H a K , 1

1 + 1 _ M * 2 + M * 2 =0
f c]  H  W l  k \ l ,] \l ,]k x

(3.16)

(3.17)

(3.18)

Multiplying the above Equation 3.18 by [L\l[Lt], we obtain a dimensionless equation,

( M V  M + M w ]  _ ! _  M _ L _  U K l + M E K - o (319>
U i,]J  ' w w w ' h n  + [£ ,]* ,[ i , ] " [ £ ,k + [i , ] [ i ,K ,  ( *

By further simplification, we obtain the below equation, 

f  r , i \ 2Ml +M M i + U K -  r—T ~ ( t^ K . + 0  = 0 (3.20)

The above equation can be simplified further,

MY+M
[A]J [4]

R [a ^ 2 +1

e t t  f e f c
T - l 1

[4 K ,
= 0 (3.21)
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([L]/[X(]) and (([A]K2 +I)/([Lt\Ki)) give the ratio of free to total ligand and 

dimensionless analyte concentration, respectively. A plot of Equation 3.21, which gives 

the relationship between dimensionless analyte and fraction of free ligand, is shown in 

Figure 3.5. It can be observed that the fraction of free ligand is dependent on the analyte 

concentration, and also on the ratio of total ligand/receptor concentration. For example, if 

the required dimensionless analyte concentration range is from 0 to 40, then the total 

ligand/receptor ratio must be maintained in the range of 0.01-0.1 to obtain good 

sensitivity across the range of interest. This information, which is critical in tailoring the 

sensor parameters according to specified applications, is used in optimizing sensor 

response characteristics, such as sensitivity, detection range, etc.

0.8

o.i
jj 0.6

0.2
<l<

0.0 100

'Dimensionless analyte concentration'

Figure 3.5. Effect of dimensionless analyte concentration and the total ligand/receptor (L,/ R,) ratio 
on the response of competitive binding based assay.134

Effect of total assay concentration

From the above discussion, it is obvious that the ratio of ligand to receptor has a 

significant effect on the sensor response. Apart from this, the total assay concentration 

may also have a considerable effect on the sensitivity, though this point was not
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previously appreciated. In order to study this variation in total assay concentration, while 

maintaining the constant ligand to receptor ratio, we have simplified Equation 3.21 to

y 2+ y [ c - l  + Ad] - A d =0  (3.22)

where relative sensor response = y  = {L/Lt), constant = c = (R,/L,), and dimensionless 

analyte concentration = [Ad] -  ((Kai[A]+l)/(LtKa2)).

The effect of total assay concentration on sensor response was tested by plotting 

sensor response versus dimensionless analyte concentration at different total ligand and 

receptor concentrations. The results are given in Table 3.1. It is important to note that the 

ratio between ligand/receptor is maintained constant in all cases. It can be observed that, 

for each case, a quadratic equation is derived (Table 3.1) and the corresponding plots are 

shown in Figure 3.6. From these results, the concentrations of the assay elements needed 

for any application can be estimated based on the required detection range.

Table 3.1. Parameters used to study the effect of total assay concentration on sensor response.

Receptor,/?, Ligand, Lt Constants Equation
1 *R, \* L t c=10; A(f= 20 /+ y [ 2 9 ] - 2 0  = 0
2* R, 2* Lt c=10; Ad=20 y 2 +y[76]-40 = 0
10* Rt 10* Lt c=10; Ad=20 y 2 + y [ll0 0 ]-200 = 0
29* Rt 29* Lt c=10; Ad=20 y 2 +y[8149]-580 = 0
100* R, 100* Lt c=10; Aj= 20 y 2 + y [92000]- 2000 = 0
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Figure 3.6. Effect of the total assay concentration on sensor response.

Hsu et al., further extended this work on theoretical modeling of affinity sensors, 

to study the effect of various parameters on the sensor response, such as ligand and 

receptor concentrations, variation in the ratio between ligand/receptor, type of receptor, 

etc. In this system, the receptor is assumed to be immobilized in a resin with volume Vr. 

They derived a cubic equation (Equation 3.23) instead of quadratic, for analyzing the 

sensor response due to the variations in several parameters.

and r = -y- where V, is the total volume (resin + buffer).

The above Equation 3.23 is derived similar to the quadratic equation (Equation 

3.21), using Equations 3.6 to 3.13, and writing A in terms of A0, K2, and R, which can be

Y 3 + Y 2( \ /a  + \ / a b - l - ( l  + X ) / ( \ - c ) }  +
Y{(X + \ - \ / a - \ / a b ) / ( \ - c ) - \ / a b }  + \ / a b ( \ - c )  = 0

(3.23)

where, Y
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obtained from Equations 3.7 and 3.10. The variable signal that is being measured in this 

system is the concentration of ligand in the bulk solution ([Z,]). Using the above cubic 

Equation 3.23, the dimensionless signal, defined as Y (L/L,) can be obtained as a function 

of varying analyte concentration X  (A /L ,), for any given values of a, b, and c.

Equation 3.23 was used to build calibration curves (Figure 3.7) for the proposed 

affinity sensing system. The asymptotic minimum values of the signals represent the 

initial condition, where, in the absence of the analyte, the equilibrium concentration of 

the ligand produces the background. However, with the addition of analyte, ligand is 

displaced from the receptor and thus, the ligand concentration in the bulk increases with 

the increase in analyte concentration, which can be observed in Figure 3.7. Eventually, 

the dimensionless signal (or ligand in the bulk) reaches saturation indicating the 

displacement of all the ligand molecules with the addition of analyte. All the graphs 

shown in Figure 3.7 are produced using the cubic Equation 3.23, thus they are influenced 

by the three parameters, a, b, and c. The effect of these individual parameters on sensor 

response was studied by varying one parameter at a time and holding the other two 

parameters constant.

The effect of changing parameters a, b, and c (Equation 3.23) one at a time, while 

holding the other two parameters constant, is shown in Figure 3.7. In practice, parameters 

a, b, and c, can be tailored by changing the initial concentration of the loaded ligand (Lt), 

the amount of the immobilized receptor or by choosing the receptor with different 

binding affinity (Kd), and by choosing a receptor, which has different (more or less) 

affinity towards ligand compared to analyte, respectively. In this system, sensitivity is 

considered as the change in the dimensionless signal resulting from changes in analyte
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concentration. Detection range is the range of analyte concentration in which there will 

be a significant change in the dimensionless signal with an increase in analyte 

concentration.

It can be observed from Figure 3.7(a) that the background signal generated was 

observed to increase with a, but the sensitivity and detection range were correspondingly 

decreasing. Also, the calibration curve is shifting to the right (a<l .0), which indicates that 

the senor is suitable for detecting high analyte concentrations. Also, when a>10, there is a 

significant drop in sensitivity and detection range rendering the system unsuitable for 

practical cases. It is obvious from these results that a compromise must be made between 

the signal strength and the sensitivity of the sensor when choosing the initial 

concentration of the ligand.130 It is noteworthy that the results obtained in this section 

(Figure 3.7(a)), match with the results obtained by the Schultz group using a quadratic 

equation (Figure 3.5). In both the cases, it is shown that with the increase in ligand 

concentration (i.e., increase in ligand/receptor ratio), there is an increase in background 

signal and a drop in sensitivity and detection range values.

It can be observed from Figure 3.7(b) that the effect of parameter b on the sensor 

response is contrary to the effect of parameter a. The increase in b results in lower signal, 

but increased sensitivity and detection range.130 Again, the compromise must be made 

between the signal strength, detection range, and the sensitivity of the sensor when 

choosing the concentration of the receptor.130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

0 9  -

0.8

1
0.7

mw
■a.3a

0 5

0 3 0.1
0 2

0.1

0.0

4

0.1
0.9

1
0.7

*» 0.8 -
0.5 -

1000.1
1000

o.o - 10000

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4
Log (Dimensionless A nalyte C oncentration) Log (Dimensionless A nalyte C oncentration)

1.0
o.oi.

0. 9 -

0 8 -

I
/ i o  / ioo/ iooo0. 7

«
•a.3a

0. 5

0. 4 -

1 “
0.1

0 . 0  -

-6

Log (Dimensionless A nalyte C oncentration)

Figure 3.7. Effect of (a) parameter a, with constant b=100 and c=1.01; (b) parameter b, with constant 
a=l and c=1.01; (c) parameter c, with constant a=land b=100; on the calibration curves obtained 
from the theoretical model (Equation 3.19). Values of the variable parameters are given in the 
corresponding graph.130

Unlike the previous two cases, the asymptotic minimum signal value is 

independent of the parameter c, which can be observed in Figure 3.7(c). It can be 

observed that sensors designed with a lower c value will be useful for detecting lower 

analyte concentrations. In order to increase the range to a higher level, it is highly 

desirable to increase the value of c by choosing a different receptor. Also, the results 

obtained in this section (Figure 3.7(c)) appear to be similar to the results shown in Figure

3.6 (obtained using quadratic Equation 3.22), even though the variables in both cases are
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not identical. The response curves in Figure 3.7(c) were obtained by varying the 

parameter c (or choosing a different receptor), whereas the response curves in Figure 3.6 

were obtained by varying the total assay concentrations. Thus, the detection range of the 

sensor can be controlled by varying two different parameters, total assay concentrations 

and choosing different receptor protein.

Thus, these theoretical models for competitive binding based sensing systems are 

essential for choosing the initial assay element concentrations and are also very helpful 

during the optimization of the sensor response characteristics.

3.3 Combination of FRET and Competitive Binding
Techniques

In order to combine the FRET and competitive binding (CB) techniques, ligand 

and receptor were labeled with donor and acceptor fluorophores (FRET pair), 

respectively. This process is demonstrated in Figure 3.4. In the absence of analyte, ligand 

and receptor will be in close proximity (Figure 3.4(a)), which results in significant energy 

transfer from donor to acceptor, and is indicated by the strong emission peaks 

corresponding to donor and acceptor molecules (Figure 3.4(c)). With the addition of 

analyte, ligand is displaced from the receptor increasing the distance between two 

fluorophores (Figure 3.4(b)), and eventually reducing the energy transfer from donor to 

acceptor; this is indicated by a strong donor peak relative to acceptor (Figure 3.4(d)). The 

combination of competitive binding and FRET techniques is very attractive as it can 

retain the advantages of both techniques, such as the non-consumption of analyte, 

absence of reaction by-products, and the ratiometric nature of the FRET analysis.
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3.3.1 Theorv-Combination of FRET 
and CB Techniques

The information obtained in section 3.2 regarding the change in the fraction of 

free ligand concentration with the increase in analyte concentration can be converted into 

the relative amount of fluorescence that is being transferred from donor to acceptor 

molecules, by using FRET efficiency values.133 The relation between the relative 

fluorescence and the ratio of free to total ligand concentration is given as,

Relative Fluorescence = 1 1 -  x efficiency
. w

(3.24)

The combined results of competitive binding and FRET are shown in Figure 3.8. 

It can be observed that at constant ligand/receptor ratio, FRET efficiency has significant 

effect on the sensor response characteristics. In Figure 3.8, the sensitivity curves are 

shown for two different ligand/receptor ratios. It can be observed that with the increase in 

FRET efficiency, there is increase in linear response. The main parameters influencing 

FRET efficiency, other the necessary conditions (such as, overlap integral, distance 

between the fluororphores, etc.,), are the labeling ratios of acceptor and donor molecules. 

Thus, the fluorophore conjugation can have significant effect on the sensor response 

characteristics.

These modeling results emphasize the importance of each parameter in achieving 

the desired sensor parameters, mainly sensitivity and detection range. It helps in deciding 

the labeling ratio of the donor and acceptor molecules and sensing assay concentrations, 

in order to obtain the required sensor response characteristics. Thus, these theoretical 

models for competitive binding and FRET based sensing systems are very helpful in 

hypothesizing and optimizing the sensor response characteristics.
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fluorescence when the total ligand/receptor ratio is (a) 0.01, and (b) 0.1.133

In conclusion, this chapter discussed the theoretical modeling involved in energy 

transfer based competitive binding based sensing systems and has highlighted the 

significance of the individual and total assay concentrations and binding affinities in 

determining the sensitivity and detection range of the sensors. Chapters four to seven will 

discuss experimental work for several variations of the energy transfer based competitive 

binding sensors which involves the demonstration of the design, fabrication, and 

characterization of microcapsule based sensors.
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CHAPTER 4

LECTIN/SACCHARIDE BASED 

GLUCOSE SENSOR

Since 1988, several variations of Concanavalin A (Con A)-based fluorescence 

resonance energy transfer (FRET) glucose sensors have been reported in the literature. 

However, most of the reports demonstrated Con A-based glucose sensitivity in solution 

phase, which will not achieve the final goal of an implantable glucose sensor, because the 

sensing assay chemistry is not enclosed in any microcontainer. Schultz et al., proposed 

several variations of Con A/dextran based fiber-optic glucose sensors. However, the 

length and diameter of a completed sensor are ~ 6cm and ~0.4mm, respectively, making 

them inappropriate for transdermal monitoring. After a decade of investigation into this 

transduction mechanism, in 1999, Russell et al., proposed a sensing design close to the 

clinical application, which involves the encapsulation of sensing assay in hydrogel 

microspheres.27 There was also another report in 2003 by the Schultz group based on the 

changes in fluorescence intensity due to the exposure of Con A loaded sephadex beads to 

glucose.97 Nevertheless, even this system requires microdialysis tubing. Other than the 

above-mentioned sensing mechanisms with the potential for achieving transdermal 

sensing, there were no previous reports on Con A-based implantable sensors.

64
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This chapter demonstrates a Con A-based FRET glucose sensing assay 

encapsulated in true microscale capsules. This work expands on previous work by 

elaborating on the precise assembly of Con A/dextran multilayers on planar substrates to

• 72microcapsules, and packaging of these dynamic nanoassemblies within permeable 

polymeric capsules. This study was completed to characterize the self-assembly 

properties and, in particular, the glucose sensitivity of self-assembled Con A/dextran 

multilayer films. Furthermore, the glucose sensitivity of the tetramethylrhodamine 

isothiocyanate (TRITC)-Con A and fluorescein isothiocyanate (FITC)-dextran-coated 

particles and capsules was demonstrated by measuring changes in FRET between FITC 

and TRITC resulting from titration of glucose. Such micro/nano scale systems 

containing Con A/dextran multilayers may potentially be used for in vivo glucose 

sensing, if appropriately designed to eliminate concerns over Con A toxicity.

4.1 Sensor Design

A schematic of the glucose microsensor fabrication process is shown in Figure

4.1. To produce hollow capsules containing the assay components, soluble microparticles 

are coated with multilayers of FITC-dextran and TRITC-Con A thin films, followed by 

sequential deposition of oppositely charged polyelectrolytes. In the final step of 

fabrication, the particle core is dissolved, resulting in hollow capsules with immobilized 

Con A and dextran as the interior wall. The advantage of hollow capsules is the decreased 

diffusion barrier provided by the interior, which should give rise to rapid equilibrium and 

more uniform distribution of glucose in the films. As shown in Figure 4.1, strong 

fluorescence peaks due to both FITC and TRITC are present after assembly of the films, 

indicating there is considerable energy transfer. With the addition of glucose, dextran is
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displaced from Con A, resulting in a decrease in energy transfer efficiency as indicated 

(Figure 4.1) by a stronger FITC peak relative to TRITC. The details of experiments 

investigating these properties are given in the following sections.

Figure 4.1. Fabrication process flow diagram (LbL assembly) of the biosensor (a) Microparticle as 
positively-charged substrate (b) Deposition of dextran (anionic) and Con A layers alternatively (c) 
Adsorption of the polymer multilayers (d) Dissolution of core to yield capsules (e) Titration of glucose 
to displace dextran from Con A.

Materials. Poly(allylamine hydrochloride) (PAH, 15kDa), poly(dimethyldiallyl 

ammonium chloride) (PDDA, MW 200kDa), and poly(styrene sulfonate) (PSS, MW 

70kDa) from Aldrich were used as polyelectrolytes. Solutions of 2 mg/mL in DI water 

were prepared for each polymer, and these were used at neutral pH. An aqueous 

dispersion, 10 wt% of 5 (im diameter melamine formaldehyde (MF) dissolvable resin 

particles, was obtained from Microparticles Gmbh (Germany). FITC Dextran (MW 

9kDa, 150kDa and 2MDa) and Succinyl-Con A (MW 54kDa) were purchased from 

Aldrich and EY Labs, respectively. Aqueous stock solutions of 0.5 mg/mL and 1 mg/mL

PolymersTRITC-Con A
Core
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MF particles O  
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Glucose Wavelength Wavelength

4.2 Experimental Section
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were prepared in DI water for dextran and Con A, respectively, and the pH was adjusted 

to 8.5 by titrating with NaOH. Tetramethylrhodamine isothiocyanate (TRITC) was 

purchased from Molecular Probes to label succinyl-Con A using a standard amine- 

labeling protocol.136 Glucose, from Sigma, was dissolved in DI water at neutral pH, to 

prepare a lOOmg/mL stock solution. All solutions used in the experiments involving Con 

A contained 1 mM concentrations of calcium chloride (CaCy and magnesium chloride 

(MgCb) salts to preserve Con A and glucose binding.64

Instrumentation. A quartz crystal microbalance (QCM, USI-System, Japan) was 

used to study the self-assembly of Con A/dextran thin films. Absorbance spectra were 

collected using a UV-Vis absorbance spectrometer (Perkin Elmer Lambda 45). Zeta- 

potential measurements were taken using a ZetaPlus photon correlation spectroscopy and 

microelectrophoresis instrument (Brookhaven Instruments). A scanning fluorescence 

spectrometer (QM1, Photon Technology International) was used to collect fluorescence 

emission spectra from the sample using excitation at 488 nm. The microparticles and 

capsules containing FITC-dextran/TRITC-Con A were imaged using a confocal 

microscope (Leica Microsystems).

4.3 Methods

4.3.1 Assembly on QCM Resonator

To confirm the ability to form multilayer films from dextran and Con A, the LbL 

assembly of Con A/dextran was first monitored with QCM by constructing multilayer 

films on a quartz resonator. When a mass is adsorbed on the resonator there is a shift in

137resonant frequency, which is related to the adsorbed mass by the Sauerbrey equation.
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According to this relationship, the change in frequency (AF, Hz) is related to the total 

mass of the adsorbed thin film layer (Am, ng) as Am=-0.87AF.

QCM resonators were used as substrates for alternate assembly of FITC-dextran 

/Succinyl-Con A thin films. The resonator was a silver electrode, with a surface area of 

0.16 cm2 and natural resonance frequency of 9 MHz. During the assembly procedure, 

each resonator was dipped in the solution of polymer to be deposited for 15 min. The 

resonance frequency, was measured after rinsing the crystal with water and drying with 

nitrogen. Precursor films of (PAH/PSS)2/PDDA were deposited to obtain a smooth and 

uniformly charged substrate prior to the addition of the polysaccharide/protein 

multilayers. For FITC-dextran (MW 2MDa) and succinyl-Con A deposition, the 

resonator was immersed in bulk solution for 25 min to allow enough time for the 

adsorption. The change in resonance frequency was monitored for each adsorption step.

Following the completion of the layering process, the resonator was used to test 

the sensitivity of the Con A/dextran thin films to glucose by immersing the resonator in 

1.5mL of lOOmg/mL glucose solution. After dipping the resonator in the glucose 

solution, the frequency change was monitored every hour over a period of 7.5 hrs. After 

completing the assembly process on the resonator, absorbance measurements were 

performed on all the solutions used for deposition, including the glucose solution, to 

assess the desorption of the layered thin film components into the bulk solutions.

4.3.2 Assembly on Microspheres

The techniques used for successful assembly of Con A/dextran multilayers on the 

planar surfaces of QCM resonators were applied to form Con A/dextran multilayers on 

the surface of 5 pm MF particles. FITC-dextran (2MDa, 0.5mL) was added to 10 pL of
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the MF particle suspension. After allowing 20 min for complete adsorption saturation, 

the sample was rinsed using DI water and centrifuged at 4000 rpm for 8 min. This rinse 

process was repeated twice for each assembly step. Then, 0.5 mL of 0.5 mg/mL TRITC- 

Con A was added to the sample, and after a 20 min exposure, the sample was again 

rinsed twice. This assembly process was repeated to deposit multiple bilayers of TRITC- 

Con A/FITC-dextran, such that the outer surface was FITC-dextran.

To assess the charge of the adsorbed material and, therefore, determine the 

relative contribution of electrostatic attraction to the assembly process, multiple surface- 

potential measurements were taken after depositing and rinsing each layer. Fluorescence 

emission spectra were also collected from the suspension after depositing each layer, 

allowing tracking of the layering process and observation of FRET efficiency with each 

additional component of the nanofilms. Finally, the layered microparticles were imaged 

using a confocal microscope after each bilayer addition of FITC-Dextran/TRJTC-Con A. 

A 5pL drop of the suspension was pipetted onto a glass microscope slide, and sequential 

confocal images were taken with a 63X oil objective by exciting FITC at 488 nm and 

TRITC at 543 nm using Ar/ArKr and green HeNe lasers, respectively.

4.3.3 Glucose Effect on Con A/Dextran
Coated MF Particles

After completing the assembly of FITC-dextran and TRITC-Con A multilayers, 

fluorescence spectra of the particles and surrounding medium were collected. This was 

performed to determine the relative contribution of particles to fluorescence signals and 

to observe whether significant amounts of fluorophore-tagged macromolecules were 

present in the solution in free form. To assess the glucose-binding properties of the 

assembly, glucose was added to the continuously-stirred particle suspension in an attempt
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to displace FITC-dextran from TRITC-Con A. After each addition, fluorescence 

emission measurements were performed to observe the change in energy transfer. After 

the final step of adding glucose, the particles were centrifuged and the fluorescence was 

observed in order to assess the effect of the dissociation of FITC-dextran from TRITC- 

Con A on film stability. A comparison of the supernatant fluorescence spectra before and 

after addition of glucose was used to demonstrate the sensitivity of the Con A/dextran 

nanoassemblies to glucose. These experiments were completed in parallel to the studies 

with the QCM measurements, such that the two sets of data could confirm the assembly 

and dissociation of dextran/Con A multilayers both on planar surfaces and spherical 

microtemplates.

4.3.4 Encapsulation and Hollow
Capsule Formation

Following the successful demonstration of dextran/Con A multilayer glucose 

sensitivity and observation of the partial decomposition of these films, an ultrathin 

polymer shell was constructed around the Con A/dextran-coated particles to stabilize the 

localization of the polysaccharide and protein molecules. As the outer layer was FITC- 

dextran, and zeta-potential measurements confirmed that the surface charge was anionic, 

the coated microparticles were first suspended in a solution of the polycation PAH. After 

15 min of exposure, the sample was rinsed twice in DI water, and the surface potential 

was measured. This procedure was repeated to deposit a total of four bilayers of PAH 

and PSS plus one additional outer layer of PAH. Thus, the final film architecture on the 

surface of the particles at the conclusion of the assembly was {(FITC-Dextran/TRITC- 

Con A)3/FITC-dextran/ (PAH/PSS)4/PAH}. Following the completion of polymer layer 

deposition, MF core particles were dissolved by adding 0.5mL of HC1 at pH 1.1 to the
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particle suspension.138 Finally, the capsules were centrifuged and rinsed with DI water to 

remove residual MF monomer.

4.3.5 Glucose Effect on Capsules Containing 
Con A/Dextran Multilayers

After encapsulation of the dextran/Con A films within the polymeric shells and 

removal of the solid MF cores, the glucose response of the capsules was studied using the 

same procedures that were applied to the coated particles. The key comparisons made 

between the two cases (dextran/Con A films on solid particles versus hollow capsules 

with dextran/Con A multilayers inside a shell of polyelectrolyte multilayers) were the 

change in FRET following exposure to glucose, and the decomposition of the 

dextran/Con A layers, releasing molecules into the surrounding medium. To observe the 

glucose sensitivity of the microcapsules, 20 pL additions of lOOmg/mL glucose stock 

solution were given to 1 mL of a continuously-stirred capsule suspension (200mg/dL per 

step). To observe the change in energy transfer, fluorescence spectra were collected after 

each addition of glucose by exciting the sample at 488 nm and collecting the emission 

spectra from 500 nm to 650 nm. After the final step of glucose addition, the capsules 

were centrifuged and the supernatant fluorescence was measured to observe if displaced 

dextran was released from the capsules. Confocal microscopy was also used to observe 

the change in FRET within the capsule due to the addition of glucose, and to determine 

whether FITC-dextran was released into the interior of the capsule when displaced from 

Con A.
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4.4 Results and Discussion

4.4.1 QCM Results

Mass measurements performed after depositing each layer are shown in Figure

4.2. This graph presents, in the first phase, the change in adsorbed mass due to deposition 

of the following multilayer architecture: {(PAH/PSS)2/PDDA/(TRITC-Con A/FITC- 

Dextran)3/Glucose}. The precursor polymer layers exhibited the expected linear stepwise 

growth. The average stepwise increase in mass for Con A and dextran addition, which is 

not quite linear, corresponds to an average of -60 ng (-1011 molecules) and -40 ng (-109 

molecules), respectively. In spite of having a higher MW compared to that of Con A, the 

average mass of dextran deposited per step was found to be less. This was expected, 

because the multiple glucose residues of dextran allow association with glucose binding 

sites on multiple Con A molecules. Thus, the dextran may assemble into a configuration 

more parallel to the surface, effectively covering more surface area per molecule.

Addition o f glucose

Precursor layers

Layer Property

Figure 4.2. Mass deposited and released during adsorption of polyelectrolytes, FITC-dextran, and 
succinyl-Con A on the QCM resonator, and exposure of multilayer films to glucose.
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Due to the small number of glucose binding sites on Con A molecules and the 

repulsive electrostatic force present between dextran and Con A, it is expected that the 

adsorption of Con A onto dextran films would be weakly enforced. Thus, it was also 

hypothesized that dextran could pull some Con A from the resonator surface when the 

films with Con A outer layers were exposed to dextran solution. To test this theory, 

absorbance measurements of the solutions used for layering the QCM resonator were 

performed. These measurements, presented in Figure 4.3, show that the absorbance 

spectrum of FITC-dextran assembly solution, after exposure to films with an outer layer 

of Con A, possessed an absorbance peak at 280 nm. This confirms that some protein was 

removed from the surface into the solution during this immersion period. In contrast, the 

Con A solution, following exposure to films containing a FITC-dextran outer layer, did 

not contain an absorbance peak at 490 nm. Thus, the opposite effect (Con A removing 

dextran) was negligible. This is also logical, as the dextran molecules likely bind with 

multiple Con A molecules on the surface, and these multiple parallel associations per 

molecule make the adsorption much more stable.

In experiments to assess the glucose response of the films, the QCM resonators 

with dextran/Con A multilayers were exposed to lOOmg/mL glucose solution for 7.5 hrs, 

which resulted in an increase in resonance frequency corresponding to a decrease in 

adsorbed mass (Figure 4.2). This was expected behavior as glucose has been shown to 

displace dextran in competitive binding,85 and these experiments demonstrate saturation 

of the mass change after -2.5 hours. It is interesting that the response is so slow to 

equilibrate. This cannot currently be explained with confidence, but may be related to the 

diffusion barrier provided by the surface and the total mass of glucose present.
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Figure 4.3. Normalized absorbance spectra of FITC-dextran, succinyl-Con A, and glucose solutions 
used for assembling on QCM resonator, and testing their glucose sensitivity (scaled up with factors of 
12.5X, 25X, and 1000X, respectively).

Quantitatively, the total decrease in the film mass was 78.3 ng, which must 

correspond to the difference in glucose mass bound to the films and the dextran and/or 

Con A removed from the surface. In this case, glucose apparently displaced dextran from 

Con A, as absorbance measurements of the glucose solution after immersion of the QCM 

resonator (shown in Figure 4.3) possessed weak absorbance at 490 nm. In addition, an 

absorbance peak at 280 nm suggests the presence of Con A in solution as well. This was 

also expected, as glucose displacement of dextran from all glucose binding sites of a Con 

A molecule could free it from the film if other attractive forces are negligible. Thus, the 

QCM studies demonstrated that the affinity-binding nanoassemblies of dextran/Con A 

behaved as expected and further investigation was warranted.

4.4.2 Microparticle Coating Results

The surface potential of MF particles was measured to determine the contribution 

of electrostatic forces to dextran-Con A association for deposition of the multilayers with 

the architecture: {(FITC-Dextran/TRITC-Con A)3/FITC-Dextran/(PAH/PSS)4/PAH}. 

The average and standard deviation of the multiple zeta potential measurements for the
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particles after addition of each layer are given in Figure 4.4. The first layer of FITC- 

dextran (anionic) was bound to the MF (cationic) particles’ surfaces, primarily due to 

electrostatic forces of attraction. However, the continuous negative potential values 

measured for Con A/dextran multilayers (1FD to 4FD in Figure 4.4) correspond to the 

adsorption of materials with negative charge. Although these values do not confirm 

successful deposition of the materials, the QCM data (Figure 4.4) suggest film assembly, 

and the fluorescence spectra of the particles (Figure 4.5(a)) directly confirm alternate 

assembly of Con A/dextran in multilayers. Thus, taken together, these data confirm that 

layer-by-layer assembly of FITC-Dextran and TRITC-Con A can be performed under 

neutral conditions in spite of both molecules carrying a net negative charge, and that the 

association between Con A and dextran molecules is due to binding affinity. The 

attractive forces involved in this association are sufficient to overcome electrostatic 

repulsion.
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Figure 4.4. Mean and standard deviation values for zeta potential measurements of coated MF 
particles. Film architecture: {(FITC-Dextran/TRITC-Con A)3 /FITC-Dertran/(PAH/PSS)s}
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It can be observed from Figure 4.5(b) that the FITC:TRITC peak intensity ratio 

decreases with the addition of each layer up to two bilayers of FITC-dextran and TRITC- 

Con A, indicating that there is increase in energy transfer from FITC to TRITC. After 

two bilayers, the peak intensity ratio remained constant, suggesting that a constant level 

of energy transfer is achieved due to consistent association of dextran and Con A 

molecules with similar average distance between FITC and TRITC.
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Figure 4.5. (a) Normalized fluorescence spectra of particle suspension after depositing fluorescent 
materials FITC-dextran (FD) and TRITC-Con A (TC); (b) FITC:TRITC peak intensity ratios after 
adsorbing each layer on MF particles

To observe if free dextran and Con A molecules were present in the sample, the 

fluorescence of the coated particles was compared with the supernatant fluorescence 

following separation by centrifugation. It can be observed from Figure 4.6(a) that the 

supernatant fluorescence had a prominent FITC peak compared to TRITC, and the total
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emission intensity was an order of magnitude less than the suspension fluorescence. In 

comparing the fluorescence of the particles and the supernatant after adding glucose 

(Figure 4.6(b)), the relative FITC fluorescence of the supernatant increased significantly. 

Thus, it is apparent that when glucose was added to the sample, it was bound to Con A 

and displaced dextran into the bulk solution. By combining these observations with the 

QCM data presented earlier, the glucose interaction process may be described as follows: 

as dextran is released, the films partially decompose, and Con A-glucose complexes are 

also released. The absence of TRITC fluorescence in the supernatant after adding 

glucose indicates that the TRITC-Con A released into the supernatant is associated with 

glucose, not dextran, and therefore significant RET is not present.

Because ultrathin films based on electrostatic LbL self assembly are known to

1 TOswell with increasing salt concentration, additional experiments were performed to 

assess whether the observed changes in FRET and the release of FITC-dextran could 

have resulted from nonspecific effects of ionic strength or other properties of the 

environment. Fluorescence spectra of the particles (MF particles with FITC-dextran and 

TRITC-Con A multilayer films, without polymer coatings) and supernatant, following the 

addition of NaCl (up to 0.5 M) and dilution with water showed that there was no change 

in the FITC:TRITC peak intensity ratio. Therefore, the change in FRET observed for the 

nanoassembled Con A/dextran multilayer films likely arises specifically due to glucose 

and, thus, the displacement of dextran from Con A is believed to be a result of the 

competitive binding of glucose rather than a nonspecific change in the films. It is 

expected that these assemblies will have the same selectivity for glucose over other 

sugars as has been shown in other work,85 though this property is not investigated here.
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Figure 4.6. Fluorescence spectra of MF particle suspension coated with {(FrTC-dextran/TRITC-Con 
A)3 /FITC-dextran}, along with supernatant a) prior to addition of glucose, and b) after glucose 
titration.

4.4.3 Polymer-Coated Microcapsules

The charged polymers were deposited on top of the Con A-dextran multilayer 

films via electrostatic self assembly and the charge was varied from positive to negative 

in alternate fashion. The alternation of surface potential values (Figure 4.4, 1PAH to 

5PAH) corresponds to the adsorption of the positive (PAH) and negative (PSS) species, 

respectively. Confocal fluorescence images of the 5-pm capsules formed by MF 

dissolution are shown in Figure 4.7, from which it can be observed that the capsule walls 

remain intact after core dissolution. In addition, there does not appear to be significant 

amounts of free fluorescent molecules inside or outside the capsules indicating that the 

Con A/dextran assemblies remain mostly intact. The fluorescence intensity line scans of 

the capsules show the spatial distribution of fluorescence emitted from the image plane 

for both FITC and TRITC. These data clearly show the dimension of the capsules is 

approximately 5 pm and the fluorescence arising from the walls is much stronger than the 

background from the capsule interior and exterior.
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Figure 4.7. Confocal microscope images of capsules with {(FITC-dextran/TRITC-Con A>4 /FITC- 
dextran/(PAH/PSS)4 /PAH} as shell structure, and corresponding intensity line scans of capsules, 
showing FITC (left) and TRITC (right) intensities

It was hypothesized that the dextran in these capsules would be displaced from 

Con A by glucose. By this process, increasing the glucose concentration in the 

suspension of hollow capsules would result in an increase of free FITC-dextran 

concentration and, hence, increasing of the FITC fluorescence was expected from the 

suspension. Correspondingly, the average distance between dextran and Con A was 

expected to increase resulting in a decrease in the energy transfer between FITC and 

TRITC, due to which the relative fluorescence of TRITC would decrease.87

To test these expectations, fluorescence emission spectra of polymer-coated 

capsules were monitored with increasing glucose concentration. The FITC:TRITC peak 

intensity ratio plotted versus glucose concentration is shown in Figure 4.8. It can be 

observed that the FITC fluorescence did, in fact, increase relative to the TRITC 

fluorescence, up to approximately 1200mg/dL glucose. Over this range, the sensitivity 

curve shows approximately linear increase in FITC:TRITC fluorescence peak intensity 

ratio with glucose concentration. The slope of the sensitivity curve in the linear region 

was calculated to be 4x1 O'4 ratio units/(mg/dL), which corresponds to -7-10% of the total
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ratio change for each step of lOOmg/dL of glucose. Above the linear range, the signal 

appears to plateau, indicating the saturation of Con A binding sites with glucose. This 

sensitivity is near to that of the best case reported in the literature using intensity 

measurements of FRET, and was achieved without any attempt to optimize sensitivity or 

signal-to-noise ratio. Therefore, these results are encouraging and suggest further work 

may lead to improvements in the system properties related to measurement performance.
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Figure 4.8. Effect of glucose titration into suspension of capsules comprising {(FITC-dextran/TRITC- 
Con A)4 /FITC-dextran/(PAH/PSS)4 /PAH} as shell layers

In addition to testing response to glucose measured by changing FRET, the 

stability of the structures was investigated. After completing the addition of glucose, the 

capsules were centrifuged and the supernatant was collected to determine the loss of 

fluorescent molecules from the microcapsules. The emission intensity of the supernatant 

was two orders of magnitude lower than the emission from the capsules and, because the 

peak ratio was identical to that of the capsules, even this small signal can be attributed to 

inefficient separation of capsules from supernatant. This is in contrast to the findings 

when assessing FITC-dextran/TRITC-Con A assemblies on MF particles without the
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polymer shell, as noted above, where significant loss of FITC-dextran was seen in the 

supernatant. These results highlight the improved stability of the polysaccharide/protein 

films encapsulated by polymer nanofilms, and supports further development of this 

technology. However, further investigation will focus on quantitatively determining 

whether FITC-dextran or TRITC-Con A is released from the microcapsules.

The results of the response of the microcapsule suspension to glucose, taken 

together, indicate that the presence of glucose did result in separation of Con A and 

dextran, such that the energy transfer between FITC and TRITC was decreased. Also, this 

result corroborates with the theoretical model results in Chapter Three (Figure 3.5), 

which shows that there is an increase in the fluorescence from free-ligand with the 

increase in analyte concentration. Using the Forster distance for FITC and TRITC 

fluorophores as 5 5A,116 the estimated change in the average distance between FITC and 

TRITC molecules was found to be 3.5A with the addition of -0.1M glucose, which is a 

reasonable number given the size of a glucose molecule (-10 A). These small 

displacements could easily be achieved without significant rearrangement of the ultrathin 

films, and could be a result of the movement of glucose residues on dextran to 

accommodate for glucose molecules binding to the Con A sites.

Further confirmation of the stability of the microcapsules was provided by the 

confocal microscope images of the capsules after adding glucose. Still, these did not 

show any significant fluorescence inside or outside the capsules. There could be several 

reasons for not observing free molecules after the glucose addition. The dextran and Con 

A molecules may be moving apart such that there is a change in FRET, but they remain 

immobilized within the films. Thus, the films are sufficiently deformable that they can
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accommodate this change. This is a reasonable assumption given the previous calculation 

of 3.5A for average displacement which could not be resolved with microscopic 

measurements. Alternatively, the dextran and Con A molecules may be completely 

separated, but the free FITC-dextran molecules may be stuck in the polymer layers due to 

their large size. Regardless of the true physical arrangement of the molecules in the 

films, which will be the subject of further studies, the results here demonstrate the 

concept of FRET-based glucose sensing using dextran-Con A multilayers, and further 

work to investigate these novel nanostructured materials is warranted.

4.5 Conclusion

In conclusion, a novel glucose sensing system based on the LbL self assembly 

competitive binding and FRET techniques is demonstrated in this chapter. Glucose- 

sensitive Con A/dextran multilayer films were successfully assembled on planar 

substrates and microparticles due to the affinity between molecules. Hollow capsules 

containing Con A/dextran multilayers showed a glucose sensitive decrease in FRET with 

a detection range from 0 to 1800 mg/dL and a sensitivity of 4x1 O'4 ratio units/(mg/dL). It 

was estimated from the data that with the addition of -0.1M glucose solution to the 

capsule suspension the Con A and dextran molecules moved apart by an average distance 

of approximately 3.5 A, which corresponds to a 27 % increase in the FITC.TRITC 

intensity ratio. These findings show that the combined use of FRET, competitive binding, 

and LbL principles is a promising approach to build sensors, and this should be a more 

generally useful method for building many other biosensor elements beyond the model 

Con A-dextran system. Depending upon the structural dynamics of the ultrathin films in 

response to the analyte, similar approaches could potentially be used to realize drug
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carriers for controlled delivery. In spite of all the above-mentioned advantages of this 

sensor design, there are some inherent disadvantages of using Con A as one of the 

elements in the sensing assay, such as toxicity, aggregation, and specificity. Therefore, 

there is an urgent need to develop a new sensor design or find a replacement for Con A in 

the existing design. The next chapter demonstrates a sensor design by replacing Con A 

with another glucose binding protein, which is highly specific to glucose and is not toxic.
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CHAPTER 5

FLOURESCENT GLUCOSE SENSORS 

OPERATING IN VISIBLE REGION

To overcome the limitations of Con A, we have developed an alternative 

approach to the regular Con A-based competitive binding assay using an inactive form of 

the enzyme glucose oxidase (apo-GOx) as the glucose-binding protein, which is highly 

specific to P-D-glucose. Apo-GOx was previously used as a biosensor based on its 

ability to reconstitute into a holoenzyme with the addition of semi-artificial 

cofactors.140,141 Apo-GOx was also used for glucose sensing by itself,23 as it was shown 

that there was a decrease in the intrinsic fluorescence of apo-GOx/apo-GOD with the 

addition of glucose. This kind of sensing method cannot be corrected for inner filter 

effects as it is not ratiometric. Furthermore, any decrease in intensity could be partially 

due to the effect of assay dilution. Also, as UV light is used for excitation, complex 

instrumentation may be required, and also there could be interference from different 

proteins in biological samples.

This chapter demonstrates, for the first time, a FRET assay for glucose which 

utilizes the affinity of apo-GOx toward glucose. This system may potentially be used for 

in vivo glucose monitoring, if properly encapsulated. Furthermore, these sensors may be

84
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used in drug delivery applications, wherein the glucose sensitive apo-GOx/dextran 

dissociation results in variable material properties that determine drug release.

5.1 Sensor Design

The working principle of the sensing system is illustrated in Figure 5.1. Briefly, 

apo-GOx is prepared from GOx by removing the FAD cofactor.23 When apo-GOx is 

tagged with TRITC and exposed to FITC-dextran, strong fluorescence peaks due to 

considerable RET between FITC and TRITC are observed. Because of the high affinity 

of the glucose towards apo-GOx, the addition of glucose will result in the displacement 

of dextran from apo-GOx, which is indicated by a decrease in the energy transfer 

efficiency (Figure 5.1) by a stronger FITC peak relative to TRITC. In this study, the 

glucose sensitivity of the TRITC-apo-GOx/FITC-dextran was demonstrated by 

measuring changes in RET between FITC and TRITC resulting from titration of glucose.
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Figure 5.1. Schematic of a glucose assay based on competitive binding between dextran and glucose 
for binding sites on apo-GOx.
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This system retains the advantages of the competitive binding approach: selectivity to the 

analyte of interest, elimination of reaction byproducts, and no consumption of the analyte 

during the sensing process.

5.2 Experimental Section

Materials. FITC-dextran (FD, MW 2MDa, 500kDa), glucose oxidase (GOx, G- 

2133), sodium poly(styrene sulfonate) (PSS, MW -lM Da), poly(allylamine 

hydrochloride) (PAH, MW 70kDa), P-D-glucose, mannose, a-D-glucose, sucrose, 

sodium bicarbonate, dimethyl formamide, ammonium sulfate, peroxidase and sodium 

acetate buffer were obtained from Sigma. Tetramethylrhodamine isothiocyanate 

(TRITC, Molecular Probes) was used to label apo-GOx.136 Diazoresin (Diazo-10, 4- 

diazodiphenylamine/formaldehyde condensate hydrogen sulfate-zinc chloride salt, DAR) 

was purchased from PC Associates, NJ. All reagents were used as received. MnC0 3  

(5 pm) particles were prepared as previously described.142

Instrumentation. A UV-Vis absorbance spectrometer (Perkin Elmer Lambda 45) 

was used to collect absorbance spectra and perform catalytic activity tests. The slit size (4 

nm) and scanning speed (480 nm/min) were held constant throughout all the experiments. 

A scanning fluorescence spectrometer (QM1, Photon Technology International) was used 

to collect fluorescence emission spectra by exciting the sample at 480 nm. A 100-W 

longwave UV lamp (Blak-ray® Model B 100AP, Entela) was used to irradiate the 

microcapsules for photocrosslinking PSS and DAR layers in the capsule walls. Confocal 

images were taken with a Leica TCS SP2, equipped with a 63X objective and Ar/ArKr, 

HeNe lasers. Counts of microcapsules were obtained with a Beckman Coulter counter.
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5.3 Methods

5.3.1 Preparation of Apo-GOx

The basic procedure for apo-GOx preparation was followed as previously 

described.23 GOx (20mg) was dissolved in lmL of sodium acetate buffer and lOmL of 

prepared ammonium sulfate (25% saturated, pH 1.4) solution was added. The sample was 

then incubated in an ice bath with continuous stirring for 2 hrs. Excess (NH4)2 S0 4  salt 

was added to the solution to separate protein and FAD. The protein without FAD cofactor 

(apo-GOx) was precipitated by centrifuging (twice) at 4500 rpm and 4°C. The 

supernatant was then removed and sodium acetate buffer was added to redissolve and 

neutralize. Finally the apo-GOx was labeled with TRITC using a standard amine labeling 

procedure to obtain 1.67 moles of apo-GOx per mole of TRITC.

5.3.2 Assessment of FAD Cofactor Removal

Absorbance measurements were performed on the prepared apo-GOx solution to 

quantify the amount of FAD, which has a characteristic peak at 300 nm. In addition, apo- 

GOx activity measurements were performed to observe the decrease in activity compared 

to native GOx, using a standard colorimetric assay based on the oxidation of o- 

Dianisidine through a peroxidase coupled system on absorbance spectrometer. During 

continuous stirring with a magnetic bar, apo-GOx was added to the assay to achieve 0.17 

pM concentration and the absorbance at 500 nm was monitored as a function of time, 

resulting in a catalytic profile for the apo-GOx. This experiment was repeated for GOx 

and TRITC-apo-GOx.
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5.3.3 Solution Phase Experiments

Observations of RET between FITC-dextran (FD) and TAG were performed with 

a fluorescence spectrometer using 488 nm excitation with emission scans collected across 

the range of 500-625 nm. Initially, ~270pM FD was added to lmL DI water, and 

fluorescence spectra were then collected after each titration of TAG into the sample 

solution. To determine the nature of the energy transfer (non-radiative, radiative, or both), 

fluorescence measurements were also performed after dilution with DI water. Finally, to 

assess the relative affinity of apo-GOx for glucose and FD, RET changes were observed 

during stepwise addition of aliquots of 1 OOmg/mL P-D-glucose solution into the sample 

containing FD/TAG complexes. Sensitivity curves of the fluorescence peak ratio versus 

glucose concentration were constructed.

The effect of dextran molecular weight was studied by performing the same 

sensitivity experiments with equal molar concentrations (270pM) of 500kDa and 2MDa 

FITC-dextrans. The effect of FD/TAG complex concentration on displacement behavior 

was investigated by repeating the same procedure at different total concentrations of FD- 

500kDa/TAG complexes, and maintaining an approximately constant 1:1 ratio of glucose 

moieties on FD-500kDa:TAG. In order to demonstrate the specificity of the sensor for 

glucose, the RET glucose sensitivity measurements were repeated with the titration of 

mannose, a-D-glucose, and sucrose into a solution of (FD-500kDa)/TAG complexes, 

maintaining all other parameters constant.

In Chapter Four, layer-by-layer (LbL) self-assembly was used to entrap Con 

A/dextran multilayers into microcapsules. Unlike Con A, apo-GOx has only one binding 

site, which prevents the construction of the multilayers of apo-GOx and dextran. Hence,
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the procedure used for Con A/dextran assay is not applicable for the encapsulation of 

apo-GOx/dextran assay. Therefore, a new encapsulation technique is developed to 

encapsulate apo-GOx/dextran complexes into microcapsules using photo-sensitive 

materials, which is described in detail below.

5.3.4 Fabrication of Diazoresin-Based
Hollow Microcapsules

This approach employs the elegant LbL self-assembly143 approach for the 

fabrication of microcapsules comprising photocrosslinkable materials (DAR and PSS) in 

the shell structure, which are used for stable entrapment of RET assay elements. 

Solutions of PSS (anionic), PAH (cationic), and DAR (cationic) used for assembling 

{PSS/PAH} and {PSS/DAR} multilayers were prepared in DI water at 2mg/mL. To 

obtain monodispersed samples, MnC0 3  particles (5 pm) dispersed in DI water were 

sonicated for lOmin prior to LbL assembly. As the core particles are positively charged, 

they were coated with one bilayer of {PSS/PAH}, and then three bilayers of {PSS/DAR}, 

followed by one layer of {PSS/PAH/PSS} as the outer layer, as illustrated in Figure 

5.2(a-d). During each adsorption step, the particles were suspended in the polymer 

solution for 15min, followed by rinsing with DI water for three times to remove excess 

polyelectrolyte. The final architecture of the shell structure was 

{(PSS/PAH)(PSS/DAR)3(PSS/PAH/PSS)}.
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Figure 5.2. Fabrication of microcapsules and encapsulation of FD/TAG complexes.

It is noteworthy that the weak interaction between PSS/DAR layers could result in 

the disintegration of the capsule wall during the core dissolution process. To avoid this 

potential problem, initial and final bilayers of PSS/PAH were used to obtain a more 

stable shell structure.144 Hollow microcapsules were obtained by dissolving the MnCC>3 

cores in 0.1M hydrochloric acid (HC1) solution for 20min, followed by rinsing in DI 

water using centrifugation process four times to remove excess HC1 solution, as depicted 

in Figure 5.2(e).

5.3.5 Encapsulation of Sensing Chemistry 
in DAR-Based Microcapsules

Microcapsules prepared as described are permeable to macromolecules, such as 

enzymes, prior to UV irradiation but become impermeable after photocrosslinking.144 In 

order to encapsulate FD-500kDa/TAG and FD-2MDa/TAG complexes in the hollow 

shells, the capsule suspension was split into two different batches with approximately an 

equal number of capsules (~107). In the first case, the microcapsule suspension was 

mixed with the 0.95pM FD-500kDa solution for 5min, followed by the addition of the
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12.5(j.M TAG solution. The capsule suspension was incubated in the mixture of FD/TAG 

solution for 60 min, which allowed enough time for diffusion of the loading molecules 

into the capsule interior (Figure 5.2(f)). Confocal microscopy was used to visualize the 

loading process of the FD/TAG complexes into the microcapsules. A similar procedure 

was followed for complexes containing the larger dextran, with 0.3pM of FD-2MDa and 

12.5pM of TAG. In each case, the capsules were irradiated while still in the FD/TAG 

loading solution, using a UV lamp for 10 min to crosslink the DAR and PSS layers of the 

capsule walls. Ultraviolet exposure was observed to result in a decrease of the 

permeability of the multilayer wall, which stopped the outward diffusion of the 

encapsulated molecules from the microcapsule. The loaded capsules were then rinsed in 

DI water using centrifugation process three times to remove residual loading solution 

(Figure 5.2(g)).

5.3.6 Estimation of the Encapsulation
Efficiency

The procedure outlined below is the standard method used to calculate the loading 

efficiency of sensing assay elements in microcapsules. It is well understood that 

encapsulation of the sensing elements is based on diffusion from the loading solution and 

the loading rate is, therefore, directly proportional to the initial concentration of the 

loading solution. However, estimation of the final amount of loading solution 

encapsulated in the microcapsules is important in order to study the effects of ligand 

molecular weight on sensor response. The FD and TAG concentrations in the loading 

solution (Chad) were determined using UVrVis absorbance spectroscopy prior to the 

addition of hollow microcapsules. As described above, following the suspension of the 

microcapsules in the loading solution and exposing them to UV light, the capsules were
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rinsed thrice in DI water using centrifugation process and the supernatants were collected 

after each rinse. For each component, the concentrations in all the supernatants (e.g. 

Crinse=Crinsei+Crinse2 +Crinses) were determined by UV-Vis and subtracted from Cioa(i to 

estimate the amount of the encapsulated (Cencap) material. Encapsulation efficiency (E) 

was estimated as the ratio of the total number of FD or TAG moles loaded to number of 

capsules N  in the corresponding sample.

C = C - Cencap  lo a d  rinse

C (5.1)„  encap  v  '

is = --------
N

5.3.7 Stability of Encapsulation

For potential use as sensors, it is important for the encapsulated material to be 

retained in the microcapsule over time. An experiment for the assessment of the stability 

of the encapsulated material was performed on two sets of capsules loaded with FD- 

500kDa/TAG and FD-2MDa/TAG complexes, respectively. To estimate the percentage 

of loaded material lost from the capsules, leaching studies were performed by separating 

the supernatant solution from the microcapsules via centrifugation and measuring the 

fluorescence from the supernatant. After each measurement, the supernatant solution was 

placed back with the microcapsule suspension in DI water. In order to reduce 

photobleaching effect and preserve the biomolecule activity all samples were covered and 

stored at 4-8°C under dark conditions, until the completion of all the experiments. Three 

replicate measurements were collected for each sample at 0, 2, 4, 10, 20, 30, and 50 hrs. 

Standard solutions of 26 nM FD-500kDa, 8 nM FD-2MDa, and 333 nM TAG were also 

measured at each point in time to correct for instrumental drifts over time and also to 

estimate the supernatant concentration as a percentage of a standard. The FD peak was
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obtained by exciting the supernatant at 480 nm and collecting emission from 500 to 650 

nm, while the TAG peak was obtained by exciting at 543 nm and collecting from 555 to 

650 nm. FD and TAG peaks of the standard solutions were obtained in a similar manner. 

From loading efficiency and capsule counts, the FD and TAG concentrations present 

were calculated and the percentage of the leached FD and TAG were estimated.

5.3.8 Sensor Response in Microcapsules

A fluorescence spectrum of the microcapsules loaded with the FD/TAG 

complexes dispersed in DI water was collected as the starting point. Fluorescence spectra 

were then collected after each addition of lOOmg/mL glucose to the microcapsules. The 

change in FITC to TRITC peak intensity ratio was calculated from each spectrum and 

plotted with respect to the increments in glucose concentrations. To observe the effect of 

molecular weight on sensor response and also to determine the feasibility of tailoring the 

sensor response, glucose sensitivity experiments were repeated for two different ligand 

sizes and three different concentrations of capsules. In the first case, capsules loaded 

with (FD-500KDa)/TAG and (FD-2MDa)/TAG were assessed. Next, three different 

concentrations of (FD-500KDa)/TAG loaded capsules (~ 106, 2xl06, 3* 106 capsules/mL) 

were considered.

5.3.9 Reversibility

To test the reversibility of these sensors, loaded microcapsules were suspended in 

glucose solutions in random order with respect to concentration. To achieve this, 

FD/TAG-loaded microcapsules (4*105) were dispersed in DI water (0.5mL) and the 

glucose concentration of the suspension was increased by addition of glucose stock 

solution. The glucose levels were changed by rinsing the capsules to remove glucose
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after each measurement and then again adding glucose to reach a new concentration. In 

each case, after addition of glucose to the desired concentration and measurement of the 

fluorescence, the suspension was centrifuged, the supernatant (glucose) solution was 

removed and, finally, an equal volume of fresh DI water was added. The change in 

FITC:TRITC peak ratio was obtained at each step by collecting a fluorescence scan. This 

procedure was repeated to cover the glucose concentration over the range of 0-90 mM, in 

the order of 0, 4.15, 0.35, 9, 2.8, 0.02, 5.5, 19, 13.56, 60, 26.45, and 95 mM.

5.4 Results and Discussion

5.4.1 Assessment of FAD Co-factor 
Removal

The absorbance spectra of GOx and apo-GOx are shown in Figure 5.3(a). The 

absorbance peaks above 300nm in the spectrum corresponding to GOx are due to the 

presence of FAD cofactors. It can be observed that there are no such peaks above 300nm 

in apo-GOx absorbance spectrum, indicating the successful removal of the FAD 

cofactors. Activity measurements were performed at regular time intervals after FAD 

removal to ensure that apo-GOx did not regain activity with time and similar 

measurements were performed with TAG and GOx to determine the relative catalytic rate 

of the molecules. The results of these activity measurements are shown in Figure 5.3(b). 

The catalytic activity of apo-GOx and TAG was observed to be three and four orders of 

magnitude lower than the native GOx, respectively. The activity of apo-GOx 

approximately doubled over four weeks, but remained two orders of magnitude lower 

than the native GOx. The TAG activity was observed to be less than the apo-GOx activity 

which is likely the result of the labeling procedure employed to conjugate TRITC.
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Figure 5.3. (a) Absorbance of GOx and apo-GOx. (b) GOx, apo-GOx, and TRITC-apo-GOx activities 
with respect to time.

5.4.2 Energy Transfer Experiments

Energy transfer from FITC to TRITC was monitored by collecting fluorescence 

spectra after each titration of TAG into FITC-dextran sample solution. Energy transfer 

was observed to increase with each titration of TAG, as shown in Figure 5.4(a). The 

spectra were normalized to the FITC peak at 515 nm to accentuate the changes in the 

TRITC fluorescence. From the data in Figure 5.4(c), it can be observed that the 

FITC:TRITC peak intensity ratio decreases with each addition of TAG. This does not 

directly indicate that energy transfer is non-radiative, as the same effect could be 

observed with radiative energy transfer. To determine that this change in peak intensity 

ratios was affected by radiative energy transfer, the assay was diluted with aliquots of DI 

water after the last addition of TAG. If the energy transfer is radiative, then the peak ratio 

should change with the dilution of the sample. The change in FITC:TRITC peak intensity 

ratios for the spectra after diluting the sample are given in Figure 5.4(c). The constant 

peak intensity ratio seen in Figure 5.4(c) after each addition of DI water confirms that the 

energy transfer between FITC-dextran and TAG is non-radiative.
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The glucose sensitivity of the TAG/FITC-dextran samples was measured three 

separate times. The corresponding fluorescence spectra is shown in Figure 5.4(b) and the 

average FITC:TRITC peak ratio is plotted versus glucose concentration in Figure 5.4(c). 

The data clearly show a decrease in the energy transfer with increasing glucose 

concentration up to approximately 140 mM glucose. A 30% decrease in energy transfer 

was observed for a concentration of 90 mM glucose. These measurements verify that the 

apo-GOx and dextran molecules dissociated in the presence of glucose.

For easier comparison of different experimental results, sensitivity curves were 

obtained in all the RET experiments by plotting the percentage change in FITC:TRITC 

peak ratio versus glucose concentration (Figure 5.5), and the slope of the linear region 

was calculated as a measure of sensitivity response. In the case where FD-500kDa was 

used as the competitive ligand, a total change of 17% in energy transfer was observed due 

to 40 mM glucose, with a sensitivity of 0.5%/mM in the region of interest (0-40 mM). 

The same procedure was repeated with FD-2MDa, from which it was observed that there 

was a 7.5% change in RET with the addition of 40 mM glucose. The increase in dextran 

molecular weight was associated with ~2.5 times decrease in sensitivity and ~3 times 

increase in the dissociation constant, as shown in the inset of Figure 5.5.
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Figure 5.5. FITC: TRITC peak intensity ratio with the addition of glucose to FD/TAG complexes. 
Error bars show one standard deviation of three replicate measurements.

A key point to note for these data is that the calculated dissociation constants 

closely match reported values for glucose oxidase.145 Thus, the processes required for 

cofactor removal and labeling of apo-GOx do not destroy the glucose binding behavior of 

the enzyme. This suggests that the binding of glucose and dextran is occurring in the 

active site as opposed to other regions of the enzyme that may be adhesive for sugars. 

Furthermore, this finding is critical for sensors intended for physiological monitoring, as 

the higher kd values (millimolar range) more closely match the relevant range for glucose 

than the micromolar dissociation constants possessed by glucose binding proteins.

It is also noteworthy that the observed variation in the sensor response with 

different molecular weights of dextran could be due to an overall increase in the FD/TAG 

complex concentration in the sample. To achieve equal RET efficiency with different 

molecular weights of FD, the ratio of the number of glucose residues (proportional to FD- 

MW) on FD to the number of binding sites on TAG must be identical. As the number of 

TAG molecules that can bind to FD is directly proportional to glucose residues on FD,
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the TAG concentration at which the energy transfer saturated during TAG titration 

increases proportionally with dextran molecular weight. This results in a total increase in 

the FD/TAG complexes present in the assay, which translates directly to a change in 

sensor response. This explains why the glucose sensitivity experiments (Figure 5.4(c)) 

show that 80 mM glucose is required to reach the saturation point for the larger dextran, 

whereas the saturation was reached with 40 mM glucose for the smaller molecule. 

Additional experiments conducted with lower FD molecular weights (77kDa and 

250kDa) indicated that the sensitivity was increasing and the saturation concentration 

was lower with decreasing FD molecular weight (results not shown). These findings 

indicate that the sensitivity and range of the system can be “tuned” to some extent by 

controlling FD molecular weight.

5.4.3 Effect o f  Concentration on
Sensor Response

To further explore the tunability of the system, sensitivity experiments were 

repeated at four different concentrations of FD-500kDa/TAG complexes. For these tests, 

the total FD/TAG complex concentration was varied over a wide range, but the ratio of 

FD/TAG mass was held constant in all experiments. An initial fluorescence spectrum 

was collected in each case for FD/TAG complex concentrations of 38pM/106 nm, 

125pM/298 nm, 275pM/694 nm, and 1100pM/2620 nm, respectively. Fluorescence 

spectra were collected after each addition of glucose to the FD/TAG complexes and, as 

expected, there was a change in the FITC:TRITC peak ratio with the addition of glucose, 

which is plotted as percentage change in normalized peak ratio in Figure 5.6. In all cases, 

glucose solution was added until there was no further change in the FITC to TRITC peak 

ratio value indicating a saturated response, except for the highest concentration, where
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the response did not reach saturation even with the addition of 300 mM glucose. The 

sensitivity and dissociation constant (kj) for these four systems are plotted versus 

complex concentration over the range of 0-30 mM glucose concentration in Figure 5.7.

It is evident that the concentration of complexes that are present dramatically 

affects both the sensitivity and the range of the response. With approximately a thirty 

times increase in the FD/TAG complex concentration, the sensitivity was reduced by four 

times and the dissociation constant was increased by approximately five times the value 

for the lowest concentration. The required glucose concentration to reach the saturation 

point was increased approximately 10 times, from 30 mM to 300 mM, when the FD/TAG 

complex concentration was increased approximately 30 times (FD concentration from 38 

to llOOpM).

TO 2
TO 5

»  - T  *
4

‘

A  *

■ FD/TAG:38pM/116nM 

□ FD/TAG: 125pM/278nM 

▲ FD/TAG:275pM/694nM

50 100 150 200
Glucose (mM)

250 300

Figure 5.6. Percentage change in FITC:TRITC peak ratio with the addition of glucose into different 
FD/TAG complex concentrations. Lines are regression curves used only to clearly indicate the trend 
for each set of measurements. Error bars show one standard deviation of three replicate 
measurements.
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These results agree with the previous studies on the effect of receptor:ligand ratio 

on sensor response using a single dimensionless equation (discussed in Chapter Three 

(Figure 3.5)), which shows that there is an increase in the fluorescence from free-ligand 

with the increase in analyte concentration.146 Also, with the increase in the total 

concentration of the assay elements while keeping the ligand/receptor ratio constant, 

there is drop in sensitivity and an increase in the detection range (Figure 3.6), which 

agrees with the results obtained in this particular experiment.

By comparing the results obtained in the current and previous sections, it can be 

concluded that the sensor response follows the same trend with the increase in dextran 

molecular weight and FD/TAG complex concentration, because the final condition in 

both cases is identical, i.e., there is an increase in FD/TAG complex concentration. Thus, 

the sensor properties can be tailored by varying the dextran molecular weight or FD/TAG 

complex concentration.
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5.4.4 Specificity

It is known that glucose oxidase exhibits a high degree of specificity for P-D- 

glucose. It has been reported that a-D-glucose, D-mannose and D-ffuctose are also 

oxidized by the enzyme, but at least at a 20-fold reduced rate.147 This suggests that the 

binding specificity for the molecules is likely to be different. However, in the case of the 

apo-enzyme, the specificity had to be experimentally determined as no previous reports 

were found. To observe the effect of different sugars on the response of the FD/TAG 

glucose assay, the sensitivity experiments were repeated with p-D-glucose, mannose, a- 

D-glucose, and sucrose. For these experiments, the starting concentrations for the assay 

complexes were 270pM:170 nm FD:TAG. To observe the specific nature of the sensor, 

the different sugar solutions were titrated into the sample in a stepwise manner until the 

RET reached saturation. The corresponding percentage change in FITC:TRITC peak 

intensity ratios versus sugar concentration are plotted in Figure 5.8. It can be observed 

from the response curves that the maximum sensitivity was achieved with p-D-glucose, 

and there was -5 -10  times lower sensitivity for mannose, sucrose, and a-D-glucose.

The total percentage changes in peak ratio with the addition of different sugars 

also follows the same trend as the sensitivity, i.e., with the addition of 50 mM P-D- 

glucose, mannose, a-D-glucose, and sucrose solutions there is 16.9%, 6.0%, 5.9%, and 

2.5% change in RET, respectively. The dissociation constants for P-D-glucose, mannose, 

a-D-glucose, and sucrose were observed to be 14 mM, 24 mM, 46 mM, and 3 mM, 

respectively. It can be observed that in the case of sucrose, the linear region is reduced by 

more than 10X compared to glucose. This large difference in sensor response is attributed 

to the significant variation of the sucrose structure (disaccharide) from, that of P-D-
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glucose (monosaccharide), which results in very weak hydrogen bond interactions 

between sucrose and apo-GOx.147 The above results prove that apo-GOx retains its 

binding specificity for p-D-glucose, and the presence of low levels of other sugars will 

not significantly interfere with accurate measurement of glucose concentration.
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Figure 5.8. Percentage change in the normalized FITC:TRITC peak ratio values with the addition of 
different sugars. Error bars denote one standard deviation of three replicate measurements.

5.4.5 Encapsulation of FD/TAG 
Complexes in Microcapsules

Microcapsules with {(PSS/PAH)(PSS/DAR)3 (PSS/PAH/PSS)} shell architecture 

were prepared as previously described and used for encapsulating FD/TAG complexes. 

Both FD-500kDa/TAG and FD-2MDa/TAG complexes were encapsulated in parallel 

experiments. Confocal images of representative polyelectrolyte microcapsules loaded 

with the glucose assay (there was no obvious difference between capsules loaded with 

FD-500KDa and FD-2MDa) are shown in Figure 5.9. It can be observed from the images
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of capsules in loading solution (Figure 5.9(a-b)) and corresponding line scan in Figure 

5.9(g), that there is equal concentration of FD/TAG in the interior and exterior of the 

capsules. This was expected because the semi-permeable capsule walls allow diffusion of 

macromolecules. However, the exposure of the microcapsules to UV light results in the 

crosslinking of the adjacent DAR and PSS layers in the capsule wall, decreasing the 

permeability of the capsule walls to FD/TAG complexes. As the final step, the capsules 

were rinsed to remove excess FD/TAG complexes, yielding microcapsules loaded with 

the sensing assay (Figure 5.9(c-f)). It can be observed from Figure 5.9(c-d) that the FITC 

and TRITC fluorescence is concentrated in the capsule interior and walls, indicating the 

immobilization of FD/TAG complexes inside and on the capsule walls. When UV light 

was not used to irradiate capsules before rinsing in DI water, the resulting capsules 

showed weak fluorescence from the capsule walls with no fluorescence from the solution 

in the interior of the capsules. High encapsulation in the walls could be due to a 

combination of electrostatics (residual charged residues of polyelectrolytes in walls), van 

der Waals forces, different solubility/partitioning, and physical entrapment of the sensing 

elements (upon crosslinking). Due to the relative magnitude of the forces, it is likely that 

electrostatic forces of attraction between negatively charged FD/TAG complexes and 

positive polymer layers in the capsule walls dominate all the other types of interactions. 

It is noteworthy that association with capsule walls is seen without the wall crosslinking, 

so the contribution of the latter effect is expected to be minimal.
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Figure 5.9 Confocal images of the microcapsules (a) & (b) in FD-500KDa/TAG complex loading 
solution; (c) & (d) after UV exposure and rinsing in DI water; (e) phase transmission image of the 
loaded microcapsules; (f) overlay of FITC, TRITC fluorescence and transmission mode image. 
Fluorescence line scan of the capsules (g) during loading process (from a and b) and (h) after 
encapsulation process (from c and d).

From Figure 5.9(e-f), which clearly show the capsule walls before and after 

encapsulation and from the line scans (Figure 5.9(g-h)) of the loaded and rinsed capsules, 

it can be observed that the encapsulated FD/TAG complexes are distributed uniformly in 

the hollow interior and on the capsule walls. The mismatch of the shapes of the line scans 

in Figure 5.9(g-h) is due to the loading protocol used. It can be observed from the 

intensity scales, that the average intensity value inside the capsule is almost the same. 

There are no peaks at capsule walls for FD-line scans because the dextran can readily 

diffuse into capsules without any entrapment in the walls. However, during the 

encapsulation of TAG after loading of FD, it was observed that a much stronger green 

fluorescence signal was associated with the capsule walls, as dextran could be attracted to 

TAG, which was entrapped in the walls due to its structure and charge. Therefore, after
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rinsing, a fraction of the FD and TAG was entrapped in the capsule walls, which resulted 

in the strong peaks in the FD-line scans in Figure 5.9(g). It is noteworthy that the broad 

peaks of TAG in Figure 5.9(g) are due to the presence of TAG, still present when the 

image was collected. However, after the excess TAG was removed high intensity from 

the walls results in apparently sharper edges.

The encapsulation efficiency of FD/TAG complexes was estimated by measuring 

the absorbance of the rinse solutions and obtaining the capsule count using the Coulter

17counter. The results, presented in Table 5.1 prove that each capsule contains ~10" and 

10'15 moles of FD and TAG, respectively, in the capsules loaded with FD-500kDa/TAG 

and FD-2MDa/TAG complexes (the mass of the loaded FD and TAG was in the same 

order of magnitude for the two sets of capsules considered). It can be observed from 

Table 5.1 that the FD/TAG mole ratio is slightly higher in the case of the smaller dextran 

due to encapsulation of more FD-500kDa moles relative to FD-2MDa. Using the 

molecular weights of dextran and glucose molecules, it was estimated that there are 

1.27xl0'13 and 2.16x10 13 total glucose residues in the capsules loaded with FD- 

500kDa/TAG and FD-2MDa/TAG complexes, respectively. The greater number of 

glucose residues provide more binding sites for apo-GOx molecules, which is supported 

by the calculations in Table 5.1. It can be observed that there is a greater number of TAG 

molecules in the capsules loaded with FD-2MDa/TAG (1.07x10"15) as compared to FD- 

500kDa/TAG (7.85* 10"16), because of a larger number of glucose residues in the former 

case. Even though there is a 1.7 times increase in the number of glucose residues in FD- 

2MDa/TAG loaded microcapsules over FD-500kDa/TAG loaded capsules, there is only 

1.3 times increase in the corresponding TAG concentration. While this suggests that the
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apo-GOx/dextran association does not scale linearly with the dextran length, further 

investigation on what factors affect encapsulation efficiency will be required to establish 

a clear mathematical relationship. However, these results do prove that the amount of 

sensing assay in the microcapsules does vary with molecular weight, and the sensor 

response characteristics depend upon the encapsulated assay concentration, ligand size, 

and FD/TAG ratio.

Table 5.1. Encapsulation efficiency parameters for FITC-dextran of two different molecular weights.

Calculated parameters
FITC-Dextran MW (Da)
500k 2M

# o f FD-moles and mass (pg)/capsule
# of TAG moles and mass (pg)/capsule 
FD/TAG mole ratio in a capsule
# of glucose residues/FD molecule
# of glucose moles/capsule

# of glucose residues/ TAG molecule

5 .1xl0‘l7/25.4 
7.9x10'16/125.2 

6.5x1 O'2 
2500

1.3x10"
1.6x10

2.2x10''743.3 
1.1 x 10",5/171.3 

2 .0x l0 '2 
10000 

2.1xl0-13 
2 .0xl02

5.4.6 Leaching of Encapsulated Molecules
from Microcapsules

Loss of FITC-dextran (FD) and TRITC-apo-glucose oxidase (TAG) molecules 

from microcapsules was quantified using fluorescence spectroscopy studies, where 

release of the encapsulated molecules from the microcapsules was observed as an 

increase in the fluorescence intensity of the supernatant. The results obtained from this 

experiment are given in Figure 5.10, where the percentage leached indicates the 

percentage of initially encapsulated FD and TAG molecules lost from the capsules to the 

supernatant solutions. These experiments were performed on capsules loaded with FD- 

500kDa/TAG and FD-2MDa/TAG complexes. It is clear from the data that the leaching 

is higher for the capsules loaded with FD-500kDa/TAG, but still less than 4%. This
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result is intuitive because the diffusivity scales as the inverse of the square root of 

molecular weight, and both free and complexed forms of FD-500kDa will have larger 

diffusivity than the corresponding free and complexed forms of FD-2MDa. It is also 

noteworthy that dextran molecules, which possess a linear structure with branches, are 

expected to diffuse more readily through the capsule walls compared to apo-GOx 

molecules (globular structure) because of the lower hydrodynamic volume. This trend 

can be observed in Figure 5.10, which shows that the amount of FD leached is always 

greater than corresponding TAG concentration. Since the TAG is bound to FD, relatively 

few TAG (2M-TAG) molecules can diffuse out of the capsule in the case where TAG is 

bound to FD-2MDa.

4
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1
'500K-TAG
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Figure 5.10. Percentage of the initially encapsulated FD and TAG in the microcapsules lost to the 
supernatant; (500K-FD and 500K-TAG) and (2M-FD and 2M-TAG) indicate the FD and TAG moles 
in the supernatant corresponding to the capsules loaded with (FD-500kDa/TAG) and (FD- 
2MDa/TAG) complexes, respectively.

It is very likely that the 4% loss in the loaded materials is due in part to molecules 

weakly trapped in or on the capsule walls, because there is no significant barrier present 

to resist diffusion of the assay molecules. It is noteworthy that in all cases there is only a 

small amount of leaching i.e., about 1 -  4% of the initially encapsulated molecules that
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occurs during the first lOhrs of leaching studies, after which there was no change in the 

fluorescence intensities from the supernatant solutions. Thus, the photo-crosslinking 

technique appears to be an appropriate approach for stable encapsulation of the elements 

for the competitive binding assay.

5.4.7 Sensor Response to Glucose
Addition in Microcapsules

Glucose sensitivity experiments were performed on the microcapsules loaded 

with FD-500kDa/TAG and FD-2MDa/TAG complexes. The fluorescence spectrum was 

collected after each addition of P-D-glucose to microcapsules loaded with FD/TAG 

complexes and the corresponding percentage change in the FITC:TRITC peak ratio was 

calculated for each case, as shown in Figure 5.11. It can be seen that there is a linear 

increase in the peak ratio with the addition of glucose up to 30 mM for the capsules 

loaded with FD-500kDa/TAG complexes, with a sensitivity of 2.75%/mM. The signal 

saturation after 30 mM indicates that all the available binding sites on apo-GOx were 

occupied by glucose molecules.

By closely examining the curves in Figure 5.11, it becomes obvious that there is a 

small difference between the glucose responses of the two sets of capsules. The 

sensitivity over the linear region (0-30 mM) for capsules loaded with FD-2MDa/TAG 

complexes was 2.5%/mM. A possible reason for this is the difference in encapsulation 

efficiency, which will be discussed below in more detail. By using the encapsulation 

efficiency and back calculating the number of FD and TAG molecules in both samples, it 

was found that the ratio (no. of glucose moieties/TAG) is approximately equal in the two 

sets of capsules loaded with FD-500kDa/TAG and FD-2MDa/TAG complexes (Table
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5.2). Thus, the minimal variation in the sensor response of the two sets of microcapsules 

is attributed to the insignificant difference in the concentration of sensing assay elements.
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Figure 5.11. Percentage change in the normalized FITC:TRITC peak ratio with the addition of 
glucose to the microcapsules loaded with FD-500kDa/TAG and FD-2MDa/TAG complexes. Error 
bars show one standard deviation of three replicate measurements.

Table 5.2. Details of the sample used for testing sensor response in microcapsules.

Calculated parameters FITC-Dextran MW (Da)
500k 2M

# of FD moles (picomoles) 20.5 6.7
# of TAG moles (picomoles) 315.5 329.5
# of glucose residues/FD 2500.0 10000.0
# glucose moles (picomoles) 51219.5 66659.5
# of glucose residues/TAG 162.3 202.0

It was previously found that there is a considerable variation in the sensitivity and 

dissociation constant with different molecular weights of dextran for solution-phase 

experiments, which is due to the high FD/TAG complex concentrations and not merely

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

due to the increase in molecular weight. In the case of microcapsules, however, the 

encapsulation efficiency is limited by the molecular weight of the loading materials and 

capsule size. Therefore, the loading procedure resulted in the encapsulation of almost an 

equal mass of FD and TAG per capsule in the capsules loaded with FD-500kDa and FD- 

2MDa (Table 5.1). As opposed to solution phase experiments, there is no significant 

variation in the sensing assay concentration with the encapsulation of FD-500kDa/TAG 

and FD-2MDa/TAG into microcapsules (Table 5.2). Thus, there is no significant 

difference in the sensor response of the two sets of capsules. This explanation agrees with 

the solution phase experimental results (Figure 5.4 and Figure 5.6), which show that there 

is a significant change in the sensor response mainly with the variation in FD/TAG 

complex concentration. Thus, it can be concluded that the sensor response is mainly 

dependent on the number of ligand and receptor molecules that are available, and not the 

size of the ligand molecule. The small difference in sensor response of the two sets of 

microcapsules could result from the difference in the encapsulation efficiency or the 

behavior of dextran molecules with different molecular weights due to the conformation 

of dextran chains in the capsule interior.

5.4.8 Effect of Capsule Concentration on
Sensor Response

It was demonstrated in solution phase experiments that the sensor response can be 

tailored by varying the assay concentrations. In order to test the feasibility of tailoring the 

sensor response with the sensing assay encapsulated in microcapsules, the glucose 

sensitivity experiments were performed with FD-500kDa/TAG loaded capsules at three 

different concentrations: lxlO6, 2*106, and 3x 106 capsules/mL. Fluorescence scans were 

collected at each addition of glucose solution to the capsules, and the corresponding
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changes in the FITC:TRITC peak ratios for all three samples are plotted in Figure 5.12. 

It is immediately evident that with a 3X increase in capsule concentration, there is a 

decrease in the total change in the percentage of RET from 73% to 58%, and also a 

higher glucose concentration is required to reach the FITC:TRITC peak ratio saturation 

point. It can be seen from Table 5.3 that a 3X increase in capsule concentration results in 

a 3. IX decrease in sensitivity and a 4X increase in dissociation constant. This trend 

corroborates the solution-phase experimental results. These results prove that the 

sensitivity can be tailored by changing the competitive binding assay concentration, 

regardless of the environment of the assay.
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Figure 5.12. Effect of capsule concentration on the change in FITC:TRITC peak ratio with the 
addition of glucose solution. Error bars show one standard deviation of three replicate 
measurements.
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Table 5.3. Change in sensitivity and dissociation constant with varying capsule concentration.

Capsules/
mL

FD
(moles)

TAG
(moles)

Sensitivity 
(% A 

ratio/mM)

Total change 
in peak 

ratio/lOOmM 
glucose (%)

Linear
range
(mM) (mM)

l.OxlO6 2.1x10" 3.2xl0'10 6.11 73 0-10 5
2.0xl06 4.1x10'" 6.3x10" 2.67 66 0-30 12
3.2xl06 6.7x10'" 1.0x1 O'9 1.95 58 0-40 19

It can be observed from the microcapsule and solution phase glucose sensitivity 

experiments that there is approximately a two-fold increase in the sensitivity for the case 

of the microcapsules. This observation is the result of a low concentration of mobile 

sensing assay elements, due in part to the entrapment of -70% of the total encapsulated 

molecules in the capsule walls. The apo-GOx and dextran molecules that are entrapped in 

the walls may not dissociate in the presence of glucose molecules. Thus, the total number 

of mobile molecules will be far less than in solution phase samples. This low 

concentration (-30%) of freely moving FD/TAG complexes is ultimately reducing the 

active sensing assay concentration which results in the increased sensitivity, as predicted 

by theory, and was experimentally verified by studying the effect of competitive binding 

assay concentration on response (Figure 5.7).

The response time of this system was not measured separately, because the sensor 

response was observed to reach steady-state in approximately 1-2 minutes which is the 

approximate time required for the collection of one fluorescence scan. There was no 

observable change in the response time with the variation in assay elements concentration 

and ligand molecular weight. The response kinetics will be the subject of future studies, 

but clearly the response occurs in a reasonable time and will not be a limiting factor for 

implementation of this system for glucose sensing.
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5.4.9 Reversibility of the Glucose Sensors

The reversibility of the fabricated sensors was tested by exposing FD- 

500kDa/TAG loaded microcapsules to random glucose concentrations. Fluorescence 

spectra were collected after each addition and removal of glucose solution from the 

microcapsules and the corresponding changes in FITC:TRITC peak ratios are plotted in 

Figure 5.13. It is clear that there is a linear response in the 0-10 mM range and a 

decreased yet measurable response up to 20 mM, which covers much of the region of 

interest for glucose monitoring in diabetics. Sensitivity with random glucose 

concentrations was calculated to be 2.5%/mM with a total sensitivity of more than 50%, 

which is comparable to the sensitivity obtained with capsules exposed to a stepwise 

increase in glucose concentrations. These results show that the microcapsule based 

sensors are completely reversible without any significant loss in sensitivity. Further 

assessment of the forward and reverse response kinetics is currently being studied with a 

flow-through system.
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Figure 5.13. Percentage change in the normalized FITC:TRITC peak ratio with the addition of 
random glucose concentrations to the microcapsules loaded with FD-500kDa/TAG complexes. Error 
bars show one standard deviation of three replicate measurements.
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In the above demonstrated system, the use of prefabricated microcapsules for 

carrying the sensing assay is advantageous, because it allows (a) for the free movement 

of sensing elements during competitive binding process, which is critical for proper 

functioning of the sensor that rely upon the equilibrium association and dissociation of 

free molecules, and (b) in maintaining the constant concentrations of the ligand and 

receptor with continuously varying analyte concentration. The generic sensor design 

described here opens the door for a wide variety of analytes to be sensed using the 

versatile sensing technique, which involves selection of analyte-specific enzyme and a 

competing ligand, and can be considered a platform technology for development of 

biosensors based on competitive-binding and fluorescence RET based techniques. 

Potential targets include neurochemicals, such as glutamate and choline, lipids, and 

estrogen.148 The general approach to construction of specific “smart” responsive systems 

may be useful in other applications, such as drug delivery, wherein the apo-GOx/dextran 

dissociation determines release of an encapsulated compound in response to glucose.149

The sensitivity of apo-GOx/dextran system was observed to be 103 times greater 

than Con A/dextran system that was demonstrated in Chapter four. Even though, the 

encapsulation techniques in both the cases are entirely different, we did not try to develop 

a Con A/dextran sensing system using the DAR based encapsulation technique, because 

of the demonstrated advantages of apo-GOx and its excellent sensor response 

characteristics. Even if a Con A/dextran system were to be demonstrated with 

comparable sensitivity to apo-GOx based system using different encapsulation techniques 

or FRET pairs, it would not be of any greater significance because of the disadvantages 

of Con A.
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With specific reference to the glucose-sensing microcapsules described here, the 

sensors employing apo-GOx elements can potentially be used for in vivo glucose sensing 

without the concern of the toxicity associated with Con A. It is also noteworthy that the 

sensors can be easily extended into the NIR region by replacing the FITC-TRITC RET 

pair with an appropriate NIR donor-acceptor combination. It is also appropriate to note 

that these sensors could be interrogated using fluorescence lifetime measurements,21’90’91 

which will be better suited to in vivo monitoring because they are less affected by the 

fluorophore concentration and optical properties of the medium.

5.5 Conclusion

A novel glucose sensing system based on competitive binding, resonance energy 

transfer, and polymer microcapsule technology has been demonstrated. Microcapsules 

containing FD/TAG complexes showed a decrease in RET due to the addition of glucose, 

with the sensitivity ranging from 2 -  6% /mM over the range of 0 to 40 mM. It was found 

that the key variable in tuning the response of the system (sensitivity and dissociation 

constant) to glucose is the concentration of FD/TAG complexes. The assay comprising 

an apo-GOx recognition element showed 5 to 10 times more sensitivity to P-D-glucose as 

compared to other sugars. Based on the sensitivity, specificity, dissociation constant 

values, and reversible response, this sensor system appears to be suitable for glucose 

monitoring in diabetic patients. The apo-enzyme based competitive binding assay 

described in this chapter can be used as a platform technology for developing different 

biosensors to detect several neurochemicals, such as, glutamate, choline and ascorbic acid 

using the respective enzymes (glutamate oxidase, choline oxidase, and ascorbate oxidase) 

as receptor molecules. Also, other analytes such as, cholesterol and lactate may also be
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detected using this technology. These glucose-responsive FD/TAG complexes can also 

potentially be used in the future for controlled drug delivery studies, e.g.: insulin can be 

released due to apo-GOx/dextran dissociation in response to glucose.

In spite of the advantages of this sensor design, it may not be an ideal system for 

subcutaneous implantation, because of the use of dyes which fluoresce in the visible 

region. The main disadvantage of the prototype microcapsule-based glucose sensors is 

the use of FITC and TRITC as the energy transfer pair. While more photostable analogs 

of these dyes are available, these visible excitation/emission systems operate at short 

wavelengths where tissue is highly scattering. Even if fluorescence lifetime 

measurements are used for in vivo interrogation, it is desirable to replace the visible range 

fluorescent dyes with near infrared (NIR) fluorophores to increase penetration depth and 

decrease scattering losses. The next chapter demonstrates a similar sensor design using 

dyes that fluoresce in the orange/red region.
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CHAPTER 6

FLOURESCENT GLUCOSE SENSORS 

OPERATING IN ORANGE/RED REGION

This chapter is the extension of the sensor design demonstrated in Chapter Five in 

to longer wavelength (orange/red) region. This chapter describes the investigation of 

glucose sensitivity of TRITC-dextran/cyanine(Cy5)-apo-GOx complexes encapsulated in 

polyelectrolyte microcapsules using fluorescence spectroscopic and imaging techniques, 

and compares their performance characteristics with those obtained for the FITC:TRITC 

energy transfer pair to determine the sensor response characteristics after replacing the 

green/orange dyes with the orange/red fluorescence RET pair.

6.1 Sensor Design

The transduction mechanism used in this sensor is similar to the one illustrated in 

Figure 5.1. The basic procedure for apo-GOx preparation was followed as previously 

described.23 The apo-GOx prepared by this method was observed to maintain its reduced 

catalytic activity and preserve its binding capacity for at least four weeks. The close 

proximity of Cy5-apo-GOx (CAG) and TRITC-dextran (TD) in the absence of glucose 

results in strong fluorescence peaks due to energy transfer from TRITC to Cy5. As apo- 

GOx has higher affinity for glucose over dextran, the addition of glucose results in the

118
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displacement of dextran from apo-GOx, accompanied by a decrease in the energy 

transfer efficiency, which will be indicated by a stronger TRITC peak relative to Cy5. It 

is noteworthy that this apo-enzyme sensing approach retains the advantages of 

competitive binding assays (no analyte consumption) and RET-based sensors 

(ratiometric, high sensitivity) while adding the high specificity of enzymatic sensors and 

reduced scattering due to the employment of longer wavelength fluorophores.

6.2 Experimental Section 

Materials. Amino-dextran (MW 500kDa), GOx (G-2133), sodium poly(styrene 

sulfonate) (PSS, MW -lM Da), poly(allylamine hydrochloride) (PAH, MW 70kDa), 

P-D-glucose, mannose, a-D-glucose, sucrose, sodium bicarbonate, dimethyl formamide, 

ammonium sulfate, and sodium acetate buffer were obtained from Sigma. 

Tetramethylrhodamine isothiocyanate (TRITC) and Cyanine bis-NHS ester (Cy5) were

obtained from Molecular Probes and conjugated to amino-dextran and apo-GOx,

116respectively, using standard amine labeling procedures. Diazoresin (Diazo-10, 4- 

diazodiphenylamine/formaldehyde condensate hydrogen sulfate-zinc chloride salt, DAR) 

was purchased from PC Associates, NJ. All reagents were used as received. MnC0 3  

(5 pm) particles were prepared as previously described as templates for the polymer 

microcapsules.142

Instrumentation. A UV-Vis spectrometer (Perkin Elmer Lambda 45) was used to 

collect absorbance spectra. The slit size (4 nm) and scanning speed (480 nm/min) were 

held constant throughout all the experiments. A scanning fluorescence spectrometer 

(QM1, Photon Technology International) was used to collect fluorescence emission 

spectra by exciting the sample at 543 nm. A 100-W longwave UV lamp (Blak-ray
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Model B 100AP, Entela) was used to irradiate the microcapsules for photocrosslinking 

the PSS and DAR layers in the capsule walls. Confocal images were taken with a Leica 

TCS SP2 microscope equipped with a 63X oil immersion objective and green and red 

He-Ne excitation lasers. Counts and sizes of microcapsules were obtained with a 

Beckman Coulter counter (Z2) using a 100pm aperture. A YSI biochemical analyzer was 

used to measure the glucose concentrations.

6.3 Methods

6.3.1 Solution Phase Experiments

All glucose sensitivity experiments were performed in PBS (0.01M phosphate 

buffer, 0.0027 potassium chloride, and 0.137M sodium chloride) solution maintained at 

pH 7.4. The apo-GOx and amino-dextran used in all experiments were conjugated to Cy5 

and TRITC, with a labeling ratio of 1.14 and 1.12, respectively. In all experiments, the 

changes in energy transfer from TRITC-dextran (TD) to Cy5-apo-GOx (CAG) were 

monitored at every step using a fluorescence spectrometer to collect emission across the 

range of 560-725 nm. Initially, 17 picomoles of TD (donor) were added to 0.4 mL of 

PBS, which was followed by the stepwise addition of 80 picomoles of total CAG into the 

sample solution. To observe the dissociation of dextran and apo-GOx complexes with the 

addition of glucose, RET changes were observed with the titration of 100 mg/mL p-D- 

glucose solution aliquots into the sample containing TD/CAG complexes.

It is known that glucose oxidase (GOx) exhibits at least a 20X higher specificity 

for P-D-glucose over other sugars (e.g. a-D-glucose, D-mannose, D-fructose).147 

Previously in Chapter five (Figure 5.8), the specificity of the glucose sensor based on 

(FITC-dextran, FD)/(TRITC-apo-GOx, TAG) was found to be five to ten times more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

specific to P-D-glucose compared to other sugars. The specificity of the new sensor was 

investigated in this report because the amine conjugation efficiency of Cy5 is much 

greater than TRITC, which could result in a different degree of labeling near glucose 

binding sites and this could ultimately change the binding properties. The specific nature 

of the sensor for glucose was demonstrated by performing similar RET measurements 

with the titration of P-D-glucose, a-D-glucose and mannose into the solution of TD/CAG 

complexes, maintaining all other parameters constant. Sensitivity curves were obtained 

by plotting the percentage change in TRITC:Cy5 peak ratio versus analyte concentration. 

The slope of the linear region was calculated as a measure of response sensitivity.

6.3.2 Formation of Hollow 
Microcapsules

Solutions of PSS (anionic), PAH (cationic), and DAR (cationic) used for 

assembling {PSS/PAH} and {PSS/DAR} multilayers were prepared in DI water at 

2mg/mL. As described in detail in Figure 5.2, the positively-charged manganese 

carbonate (MnCC^) particles were coated with the ionic polymers to obtain a final 

architecture of {(PSS/PAH)(PSS/DAR)3(PSS/PAH/PSS)}. Hollow microcapsules were 

then obtained by dissolving the MnCC>3 cores using 0.1M hydrochloric acid (HC1) 

solution.

6.3.3 Encapsulation of Sensing 
Elements

The microcapsules prepared as described above contain porous walls, which are 

permeable to sensing elements (TD and CAG) prior to UV irradiation, but become 

impermeable after photocrosslinking.144 The microcapsule suspension was incubated in 

the mixture of lpM TD and 6pM CAG for 60min, which allowed sufficient time for
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diffusion of loading molecules into the capsule interior. In order to encapsulate the 

TD/CAG molecules in microcapsules, DAR and PSS layers in the capsule walls were 

crosslinked by exposing the microcapsules in loading solution to UV light. As the final 

step, the capsules were rinsed in DI water three times using centrifugation process to 

remove excess TD/CAG complexes, yielding microcapsules loaded with the sensing 

assay elements, with a final form as illustrated in Figure 6.1.

Capsule wall

fM  ( * j  Polyelectrolytes 
^  Cy5-apo-GOx 
•  TRITC-dextran

Figure 6.1. Schematic of the microcapsules loaded with dextran/apo-GOx complexes.

6.3.4 Sensor Response to Random 
Glucose Concentrations in 
Microcapsules

Glucose sensitivity experiments were performed on the microcapsules loaded 

with TD/CAG complexes to demonstrate a reversible sensor response. The sensing assay- 

loaded microcapsules were exposed to random glucose concentrations, after collecting an 

initial fluorescence spectrum with TD/CAG loaded microcapsules in PBS buffer. The 

random glucose concentrations were achieved by repeating two steps several times: (1) 

increase the glucose concentration with the addition of stock solution to microcapsules in 

buffer, then collect the fluorescence spectrum, and (2) reduce the glucose levels in the 

suspension by centrifuging and removing the supernatant (glucose) solution, measuring 

the actual glucose concentration of this solution with the biochemical analyzer, then
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adding an equal volume of fresh PBS buffer without glucose. Fluorescence spectra were 

collected after each addition and removal of glucose solution from the microcapsules and 

the corresponding changes in TRITC:Cy5 peak ratios are calculated for changing glucose 

concentration. This procedure was repeated to cover the glucose concentration in the 

range of 0-2800mg/dL, in the order of 0, 164, 56, 108, 632, 433, 813, 1980 and 

2800mg/dL.

6.4 Results and Discussion

6.4.1 Solution Phase Glucose Response 
Tests

Titration of TRITC-dextran up to 43 nM into 200 nM of CAG in PBS solution led 

to strong fluorescence emission peaks corresponding to TRITC and Cy5 at 543 nm 

excitation; implying significant energy transfer from TRITC to Cy5. To observe the 

displacement of dextran from apo-GOx with the addition of glucose, spectra were 

measured after the titration of lOOmg/mL P-D-glucose solution aliquots into the sample 

containing TD/CAG complexes. As hypothesized, the glucose in the solution displaced 

dextran from apo-GOx resulting in decreased energy transfer from TRITC to Cy5, as 

indicated by the increase in TRITC peak relative to Cy5 (Figure 6.2(a)). The percentage 

change in TRITC:Cy5 peak ratio (relative to the baseline ratio, at zero glucose) as a 

function of glucose concentration is shown in Figure 6.2(b), from which it can be 

observed that there is a total change of 15% in energy transfer due to 360 mg/dL glucose. 

The data clearly show that the response is linear in the range of 0-540 mg/dL, with a 

sensitivity of 0.06%/(mg/dL). These measurements confirm that apo-GOx and dextran 

molecules were dissociated in the presence of glucose, though the overall change in
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signal is only about one fourth of that observed when FITC and TRITC were used as the 

donor and acceptor, respectively.
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Figure 6.2. (a) Normalized fluorescence spectra with the addition of p-D-glucose to TD/CAG 
complexes in PBS buffer, (b) Percentage change in TRITC: Cy5 peak ratio with the addition of P-D- 
glucose, P-D-glucose, and mannose solutions. Error bars show one standard deviation of three 
replicate measurements.
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6.4.2 Sensor Specificity

To demonstrate the specificity of the TD/CAG based glucose sensor, the RET 

measurements were performed with the titration of P-D-glucose, mannose, and a-D- 

glucose, into solutions of 50 nM:200 nM TD:CAG complexes. The corresponding 

percentage change in TRITC:Cy5 peak intensity ratio versus analyte concentration is 

plotted in Figure 6.2(b), from which it can be observed that the maximum sensitivity was 

achieved with P-D-glucose, and there was -5 -10  times lower sensitivity for mannose and 

a-D-glucose. This agrees with the previous results (Figure 5.8), and proves that the apo- 

GOx retains its binding specificity for P-D-glucose in spite of exposing the sensing 

elements to several chemical processes, such as protein precipitation, conjugation, etc.

6.4.3 Encapsulation o f  Sensing  
C hem istry in M icrocapsnles

Microcapsules with {(PSS/PAH)(PSS/DAR)3 (PSS/PAH/PSS)} shell architecture 

were prepared as described and used for encapsulating TD/CAG complexes. Confocal 

images of polyelectrolyte microcapsules loaded with the glucose assay are shown in 

Figure 6.3, from which it can be observed that the TRITC and Cy5 fluorescence is 

concentrated in the capsule interior and walls, indicating the immobilization of TD/CAG 

complexes inside and on the capsule walls. High encapsulation in the walls could be due 

to a combination of electrostatics (residual charges of polyelectrolytes), van der Waals 

forces, different solubility/partitioning, and physical entrapment of the sensing elements 

(upon crosslinking). It is noteworthy that association with capsule walls occurs prior to 

wall crosslinking, so the contribution of the latter effect is expected to be minimal.
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Figure 6.3. Confocal fluorescence images of typical microcapsules loaded with TRITC-dcxtran and 
Cy5-apo-GOx; (a) TRITC and (b) Cy5 fluorescence; (c) Overlay of the TRITC and Cy5 fluorescence.

6.4.4 Demonstration of Reversible 
Sensor Response

To test the reversibility of these sensors, loaded microcapsules were exposed to 

random glucose concentrations. The fluorescence spectra were collected after each 

addition and removal of glucose solution from the microcapsules, and the corresponding 

changes in TRITC:Cy5 peak ratios are plotted in Figure 6.4. It is clear that there is a 

linear response in the 0-720mg/dL range with a sensitivity of 0.05%/(mg/dL), which is 

comparable to the sensitivity obtained in solution-phase experiments. The dissociation 

constant in the case of TD/CAG was observed to be 202mg/dL, which is comparable to 

that obtained with FD/TAG complexes.

Figure 6.4. Percentage in TRITC: CyS peak ratio with the addition of random p-D-glucose 
concentrations to the TD/CAG loaded microcapsules. Error bars show one standard deviation of 
three measurements.
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After comparing the results obtained with the current sensor design (TD/CAG) 

and previously reported FD/TAG based sensor, it was observed that there is a drop in 

sensitivity by a factor of three to four due to the replacement of FITC:TRITC dyes with 

TRITC:Cy5. This decrease in sensitivity may be attributed to several factors. First, the 

labeling ratio for dextran varied between the commercially-available FITC-dextran (24.5) 

and custom-labeled TRITC-dextran (1.12). Considering equal molar concentrations of 

FD/TAG and TD/CAG complexes, this variation in dextran labeling ratio could logically 

result in a lower average RET efficiency for bound dextran in the latter case. 

Consequently, with the addition of glucose, the total percentage change in energy transfer 

would reduce, translating into lower sensitivity. This reasoning is supported by the theory 

discussed in Chapter Three, which explains the significance of labeling ratio and RET 

efficiency. It was shown in the model that the decrease in RET efficiency, which is 

dependent on the labeling ratio of ligand and receptor molecules, will result in a 

significant drop in the sensitivity and detection range (Figure 3.8). Second, the TRITC- 

dextran used in this study was prepared using amino-dextran (cationic), whereas the 

FITC-dextran (from Sigma) was anionic. Because apo-GOx is anionic at pH 7.4, it is 

possible that a fraction of the cationic dextran used in this study could complex with apo- 

mGOx on the basis of electrostatic forces in addition to affinity forces. If the ionic 

complexes do not dissociate with the addition of glucose, this will contribute a strong 

static baseline signal for all of the measurements, resulting in decreased sensitivity. 

Finally, there is a significant variation in the conjugation reaction of apo-GOx with Cy5 

compared to TRITC. For this study, the Cy5 bis-NHS ester can simultaneously bind to 

two amine groups on apo-GOx, whereas the isothiocyanate group of TRITC can only
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react with a single amine. Binding multiple amine groups on the protein could partially 

disrupt the conformation of the apo-GOx and alter binding properties, resulting in a 

decreased glucose affinity. However, given the agreement between the dissociation 

constants obtained from the two studies, this last possibility is less likely to be a 

significant factor. Determination of the major contributing factors and sensitivity 

optimization will be part of future work.

The system demonstrated here carries the advantages of using (a) prefabricated 

microcapsules for carrying the sensing assay, because it allows for the free movement of 

the sensing elements during the competitive binding process, and in maintaining the 

concentrations of the ligand and receptor constant in the presence of continuously varying 

analyte concentration, and (b) orange/red dyes which will enable the use of longer 

excitation wavelengths where by tissue scattering is reduced making the sensor more 

appropriate for in vivo applications. It is noteworthy that even though there is a 3X drop 

in sensitivity with the use of longer wavelengths, this is not a large concern when the 

expected improvement in signal intensities measured through the skin is taken into 

consideration. It is also appropriate to note that these sensors could be interrogated using 

fluorescence lifetime measurements,90 which will be better suited to in vivo monitoring 

because they are less affected by the fluorophore concentration and optical properties of 

the medium. Ongoing studies include complete sensor response characterization, 

including long-term stability analysis, and careful investigation of the reasons for 

sensitivity loss when longer-wavelength dyes are employed. The successful 

demonstration of apo-GOx/dextran based assay by replacing FITC/TRITC (as
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demonstrated in Chapter five) with TRITC/Cy5 indicate that this assay can be modified 

according to the required application.

6.5 Conclusion

A novel glucose sensing system based on competitive binding, resonance energy 

transfer, and polymer microcapsule technology operating in the long wavelength region 

has been demonstrated. This glucose assay, comprised of apo-GOx/dextran complexes, 

showed -5-10 times more sensitivity to P-D-glucose compared to other sugars. 

Microcapsules containing TRITC-dextran/Cy5-apo-GOx complexes showed a decrease 

in RET due to the addition of glucose, with a sensitivity of 0.06%/(mg/dL) over the range 

of 0-720mg/dL. Based on the sensitivity, specificity, and reversible response in the region 

of interest (0-360mg/dL), this sensing system can be used for glucose monitoring in 

diabetic patients. It is postulated that a 3X loss in sensitivity with the use of longer 

wavelength dyes will be compensated for by an increase in the intensity levels and a 

decrease in the signal to noise ratio. Therefore, future studies will aim at discovering the 

reasons for the sensitivity loss with longer wavelength dyes and focus more on the 

improvement of sensor response characteristics. These glucose-responsive systems can 

also potentially be used in future for “smart” drug delivery studies, e.g.: insulin may be 

released in response to apo-GOx/dextran dissociation.
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CHAPTER 7

FLUORESCENT NEAR INFRARED 

GLUCOSE SENSORS

In previous chapters, FRET based glucose sensors operating in visible and long- 

wavelength regions were demonstrated. In order to further extend this work to clinical 

studies, a glucose sensor operating in the near infrared (NIR) region is more appropriate 

because of the reduced light scattering in the dermis. However, the broad excitation 

spectrum of the available NIR dyes makes it impossible to find an efficient FRET pair for 

the NIR region. Therefore, this chapter employs the apo-GOx/dextran based competitive 

binding assay discussed in previous chapters, but now used in conjunction with a 

different transduction (quenching) mechanism. This chapter describes the investigation of 

an NIR glucose sensor comprised of competitive binding assay encapsulated in 

polyelectrolyte microcapsules, and compares their performance characteristics with those 

obtained for the FITC/TRITC, TRITC/Cy5 energy transfer pair to determine the sensor 

response characteristics with NIR dyes.

7.1 Sensor Design

A schematic of a glucose sensor based on the quenching mechanism is shown in 

Figure 7.1. The dyes used in this sensing mechanism are Alexa Fluor (AF) 647, QSY21,

130
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and AF750. AF647 emits in the range of 650-720nm, which overlaps with the QSY21 

absorbance spectrum. Therefore, when AF647 and QSY21 are in close proximity, QSY21 

significantly quenches the fluorescence of AF647. As QSY21 is not fluorescent, there is 

only one fluorescent peak, preventing ratiometric analysis of the data. Therefore, AF750 

is used as a reference dye, as it can be partially excited at 640nm (which is also the 

excitation wavelength for AF647). Also, AF750 is not influenced by the quenching and 

the presence of glucose. When apo-GOx tagged to AF647 is exposed to QSY21 -dextran 

(QSY-dex), they will be in close proximity due to the binding affinity between apo-GOx 

and dextran. This results in the weak fluorescent peak at 675nm due to the quenching of 

AF647 by QSY21. Because of the high affinity of glucose towards apo-GOx, the addition 

of glucose will result in the displacement of dextran from apo-GOx, decreasing the 

quenching effect on AF647, which is indicated by a stronger AF647 peak (Figure 7.1). In 

this study, the glucose sensitivity of the AF647-apo-GOx (AF-AG)/QSY-dex complexes 

entrapped in microcapsules along with AF750 was demonstrated by measuring the 

changes in fluorescence intensities of AF647 relative to the reference dye (AF750).

Quenching

m
Addition 

of glucose

Apo-GOx (AG)

A Alexa Fluor 
' (AF)-647

QSY21-Dextran
(QSY-dex)

Glucose
•  AF750

A F 750
A F 647

P o st-G lu co se

-i

W av elen g th

Figure 7.1. Schematic of the RET quenching system for glucose monitoring based on the competitive 
binding between dextran and glucose for binding sites on apo-GOx.
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7.2 Experimental Section 

Materials. Glycidyl 3-(trimethoxysilyl)propyl ether (glycidyl-silane), GOx (G- 

2133), sodium poly(styrene sulfonate) (PSS, MW ~lMDa), poly(allylamine 

hydrochloride) (PAH, MW 70kDa), p-D-glucose, sodium bicarbonate, dimethyl 

formamide, ammonium sulfate, sodium acetate buffer were obtained from Sigma. Alexa 

Fluor (AF) 647, AF 750, and QSY21 from Molecular Probes, were used to label apo- 

GOx, PAH, and amino-dextran (500kDa, Molecular Probes), respectively, using a 

standard amine labeling procedure.136 All reagents were used as received. MnC0 3  (5 pm) 

particles were prepared as previously described.150

Instrumentation. A UV-Vis spectrometer (Perkin Elmer Lambda 45) was used to 

collect absorbance spectra. The slit size (4 nm) and scanning speed (480 nm/min) were 

held constant throughout all the experiments. A scanning fluorescence spectrometer 

(QM1, Photon Technology International) along with a new photomultiplier tube (R928) 

was used to increase the sensitivity in the longer wavelengths (650-800nm), and to collect 

fluorescence emission spectra by exciting the sample at 640 nm. Confocal images were 

taken with a Leica TCS SP2 microscope equipped with a 63X oil immersion objective 

and green and red He-Ne excitation lasers. Counts and sizes of microcapsules were 

obtained with a Beckman Coulter counter (Z2) using a 100pm aperture.

7.3 Methods

7.3.1 Solution Phase Experiments

Assay optimization. The glucose assay concentration was optimized by 

performing a simple titration experiment to obtain maximum change in signal for a given 

analyte concentration. The concentrations of the sensing assay elements were optimized
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based on the concentration dependent quenching of AF647 by QSY21. In order to 

observe the quenching pattern, 700nM QSY21-dextran (QSY-dex) was titrated into 

40nM AF647-AG (AF-AG) in a stepwise manner. A fluorescence spectrum of AF-AG 

was collected after each addition of QSY-dex. It was hypothesized that there will be a 

significant drop in fluorescence due to non-radiative quenching compared to radiative. In 

the case of radiative quenching, higher quencher concentrations are required to observe a 

small drop in fluorescence intensity. Thus, the least amount of QSY-dex required to 

significantly (non-radiatively) quench AF-AG fluorescence is determined.

Glucose sensitivity. The apo-GOx and amino-dextran used in all experiments 

were conjugated to AF647 and QSY21, with a labeling ratio of 3.2 and 2.4, respectively. 

The quenching process between AF-AG and QSY-dex was monitored using the 

fluorescence spectrometer by exciting the sample at 640 nm and collecting the emission 

across the range of 650-750 nm. Initially, -16.5 picomoles of AF647-AG were added to 

0.4mL of DI water. The initial fluorescence spectrum was collected after titrating 143nM 

QSY-dex into the sample solution containing 41nM AF-AG. Finally, to assess the 

relative affinity of apo-GOx for glucose and QSY-dex, changes in the quenching 

efficiency were observed during the stepwise addition of aliquots of lOOmg/mL /3-D- 

glucose solution into the sample containing QSY-dex/AF-AG complexes. The effect of 

QSY-dex concentration on the displacement behavior was investigated by repeating the 

same procedure at different concentrations of QSY-dex. The reference dye (AF750) was 

not incorporated in this assay as the experiments were performed in solution phase and 

the dye was showing some anomalous effects on glucose response characteristics, such as 

delayed response (~20min). As there is no reference peak in this assay, fluorescence
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changes in AF647 peak were corrected for dilution effects by diluting QSY-dex/AF-AG 

complexes with aliquots of DI water and subtracting the change due to water from that 

due to glucose. For all the experiments, sensitivity curves were constructed by plotting 

AF647 fluorescence peak intensity (corrected for dilution) versus glucose concentration.

After the successful demonstration of a near infrared glucose sensor using apo- 

GOx/dextran system in solution phase, the next step is to incorporate these assay 

elements into a microcontainer. In order to encapsulate the sensing elements, a new 

approach was used for entrapping the assay elements using glycidyl-silane. This process 

is superior to the DAR based encapsulation technique discussed in Chapter five when one 

considers the disadvantages of DAR such as, toxicity, and the inconvenient assembly 

conditions, as the assembly process must be performed in the absence of UV light.

7.3.2 Fabrication of Silane-Based
Organo-Inorgano
Microcapsuies

The sensing assay along with the reference dye is encapsulated into microcapsuies 

using a facile method based on glycidyl-silane hydrolysis and condensation. The 

permeability of the capsule walls is controlled by incorporating silane in the shell 

structure, wherein silane builds a crosslinking network by undergoing hydrolysis and 

condensation reactions, which is described in detail below.

Silane theory

The formation of interpenetrating network by glycidyl-silane is a two step process 

as shown in Figure 7.2. In step 1, glycidyl groups on silane are conjugated to amine 

groups on PAH upon mixing. During this conjugation step, the ring opening reaction of 

epoxy groups on glycidyl-silane will result in the formation of hydroxyl groups.
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OH
Ring-opening

reaction
Step 1: PAH NH2 + CH2- C H  S i la n e ------------->  P A H .............NHCH2CH........ Silane

Step 2: (a) RSi(OCH)3 + 2H20  H >'d r o l y s i s  > RSi(OH)3 + 3CH3OH

R R R

Figure 7.2. Chemical crosslinking of PAH and silane (step 1); Hydrolysis and condensation of silane 
in the presence of water (step 2).

Step two involves formation of the interpenetrating network through the 

formation of -Si-O- bonds. In the presence of water, silane undergoes hydrolysis which 

releases methanol, and condensation which releases water. It is hypothesized that the 

formation of the interpenetrating network is much slower than the conjugation reaction 

between glycidyl and amine groups. The condensation step may take several days to 

reach saturation, which offers a great opportunity for materials to penetrate into the 

microcapsuies and become encapsulated.

Manganese carbonate (MnCCh) particles, with 5 pm in diameter are used as 

sacrificial core material. Multilayers of PSS (cationic material) and PAH conjugated to 

glycidyl-silane (PAH-silane, anionic material) were deposited based on the LbL self- 

assembly process. The final film architecture (Figure 7.3(b)) on the surface of the 

template particles at the completion of the assembly was {(PSS/(PAH-silane))4/PSS). 

The change in surface potential with the deposition of each layer was measured using a 

zeta-potential analyzer. Following the completion of the polymer layer deposition, 

MnCC>3 core particles were dissolved (Figure 7.3(c)) yielding silane-based hollow 

microcapsuies.

Condensation O -S i-O -S i-O -S i-O
(b) nRSi(OH)3

+ nH20O O O

O -S i-O -S i-O -S i-O

R R R
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Figure 7.3. Fabrication of organic/inorganic hybrid microcapsuies (a -  c); encapsulation of AF647- 
AG/QSY-dextran into hollow microcapsuies (d -  f); and (g) incorporation of reference dye (AF-750).

7.3.3 Encapsulation of Sensing Chemistry
in Oreano/Inorgano Hybrid
Microcapsuies

Microcapsuies with (PSS/(PAH-silane))4/PSS) shell architecture were prepared as 

described and used for encapsulating glucose assay by dispersing microcapsuies in a AF- 

AG:QSY-dex (230pM:990pM) complexes solution (Figure 7.3(d)). The concentration of 

the loading molecules inside the microcapsuies was found to reach equilibrium with the 

exterior loading solution within minutes, because of the semi-permeable nature of the 

capsule walls. However, during the two-day period of the incubation of the microcapsuies 

in the loading solution, there is enough time for the hydrolysis and condensation of silane 

to take place and thus, facilitate the formation of the interpenetrating network (Figure 

7.3(e)). This network within the shell structure will result in a decrease in the 

permeability of the capsule wall, thus suppressing the leaching of the material that was 

loaded into the capsule interior. As the final step, the capsules were rinsed in DI water to 

remove excess loading molecules yielding microcapsuies loaded with AF647-AG and 

QSY21-dextran (Figure 7.3(f)). Finally, the reference dye is incorporated into the
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microcapsule walls by coating the outer layer (PSS) of microcapsuies with PAH-AF750 

(Figure 7.3(g)) by utilizing the electrostatic forces of attraction. The detailed description 

of the effect of silane on the formation of microcapsuies and encapsulation of 

biomolecules is discussed elsewhere.151 Confocal microscopy was used to assess the 

loading of assay elements into microcapsuies. Encapsulation efficiency was estimated as 

described in Chapter five (section 5.3.6). The NIR assay elements were not encapsulated 

into microcapsuies using the DAR technique because the silane based method showed 

good loading efficiency and is not associated with toxicity problems and inconvenient 

assembling conditions.

Stability. This experiment is described in more detail in Chapter five (section 

5.3.7). An experiment for the assessment of the stability of the encapsulated material was 

performed on the capsules loaded with QSY-dex/AF-AG complexes. As opposed to the 

procedure in Chapter five, leaching of the loaded assay elements was estimated at only 

one point, i.e., after five weeks from the day of encapsulation. A standard solution of 50 

nM AF-AG was used to estimate the supernatant concentration as a percentage of a 

standard.

7.3.4 Sensor Response in
Microcapsuies

A fluorescence spectrum of the microcapsuies loaded with the AF-AG/QSY-dex 

complexes and AF750 reference dye dispersed in DI water was collected as the starting 

point. Fluorescence spectra were then collected after each addition of lOOmg/mL glucose 

solution to the microcapsuies. The change in AF647 to AF750 peak intensity ratio was 

calculated from each spectrum and plotted with respect to the increments in glucose 

concentrations. To determine the feasibility of tailoring the sensor response, glucose
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sensitivity experiments were repeated with three different concentrations of capsules, 

(4.3x i o 5, 8.6xl05, 1,72x 106 capsules/mL).

7.3.5 Reversibility

To test the reversibility of these sensors, microcapsuies loaded with sensing assay 

were suspended in glucose solutions in random order with respect to concentration. To 

achieve this, AF-AG/QSY-dex loaded microcapsuies (2.88x 106 capsules/mL) were 

dispersed in DI water and the glucose concentration of the suspension was increased by 

addition of glucose stock solution. The glucose levels were changed by rinsing the 

capsules in DI water to remove the glucose after each measurement followed by adding 

glucose to a new concentration. In each case, after addition of glucose to the desired 

concentration and measuring the fluorescence, the suspension was centrifuged three 

times, the supernatant (glucose) solution was removed and, finally, an equal volume of 

fresh DI water was added. The change in AF647/AF740 peak ratio was obtained at each 

step by collecting a fluorescence scan. This procedure was repeated to cover the glucose 

concentration in the range of 0-60 mM, in the order of 0, 5.3, 0, 13.5, 20, 3.31, 26.6, 32.5, 

5.5,44.6, 6.3,61.6, 10 mM.

7.4 Results and Discussion

7.4.1 Solution Phase Experiments

Assay optimization. Fluorescence spectra collected during the titration of QSY- 

dex into AF-AG is shown in Figure 7.4. Because of the affinity between AF-AG and 

QSY-dex, AF647 and QSY dyes will be in close proximity which will result in the 

quenching of AF647 fluorescence by QSY21, which is indicated by a decrease in the 

AF647 peak. It can be observed from Figure 7.4 that there is a significant decrease in the
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fluorescence corresponding to AF647-AG after adding 200nM QSY-dex, due to the close 

proximity of the AF647 and QSY dyes. Also, further additions of QSY-dex have a small 

quenching effect on the AF647 fluorescence, which could be most likely due to the 

radiative quenching because there is a smaller decrease in AF647 fluorescence with the 

addition of quencher concentrations, greater than 150nM.

100

E
c  80 -
<o
£
£  60 -

AF647-AG
17.5nM

<0
C
4)+*c
-  40

■ 35nM

* 70nM0)O)
§ 20
O

0 200 600 800400 1000

QSY21-dextran (nM)

Figure 7.4. Quenching of AF647-AG due to increasing concentrations of QSY21-dextran.

Therefore, from the quenching pattern, it can be observed that maximum 

quenching (70%) due to non-radiative energy transfer can be obtained with the addition 

of 145nM QSY-dex into 35nM AF-AG. Similar experiments were performed at two 

different concentration of AF-AG (17.5nM and 70nM) to observe the effect of 

concentration on the quenching process. As expected, quenching in the case of higher 

AF-AG concentration required higher QSY-dex concentrations to reach saturation.

Glucose response tests. Taking the optimum assay concentrations obtained from 

the above experiment into consideration, 142 nM QSY-dex was titrated into 42 nM of 

AF-AG in DI water which led to a decrease in the AF647 fluorescence emission peak,
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implying significant quenching of AF647 by the quencher, QSY21. To observe the 

glucose sensitivity of dextran/apo-GOx complexes, fluorescence spectra were measured 

after the titration of lOOmg/mL P-D-glucose solution aliquots into the sample containing 

QSY-dex/AF-AG complexes. As hypothesized, the glucose in the solution displaced 

dextran from apo-GOx resulting in the decrease in quenching, as indicated by the 

increase in AF647 peak (Figure 7.5(a)).
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o
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o
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o
2  0 2 
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Figure 7.5. Normalized (a) Fluorescence spectra and (b) Percentage change in AF647:AF750 peak 
ratio with the addition of glucose into AF-AG/QSY-dex complexes with different dextran 
concentrations. Lines are regression curves used only to clearly indicate the trend for each set of 
measurements. Error bars show one standard deviation of three replicate measurements.
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The percentage change in AF647.AF750 peak ratio (corrected for dilution) as a 

function of glucose concentration is shown in Figure 7.5(b) from which it can be 

observed that there is 25% increase in the AF 647 peak due to 30mM glucose with a 

sensitivity of 0.7%/mM. The data clearly show that the response is linear in the range of 

0-30 mM. The most significant characteristic of this assay is that, in spite of the extension 

of this assay into NIR region, the sensitivity is comparable to the FD/TAG based glucose 

assay (Chapter five).

Effect of quencher concentration on sensor response. To observe the effect of 

quenching molecule concentration, similar glucose sensitivity experiments were 

performed with different concentrations of QSY-dex, while maintaining constant 42nM 

AF-AG concentration. The corresponding sensor response characteristics are shown in 

Figure 7.5(b). It can be observed from these results that the detection range and the 

sensitivity of this sensor can be significantly varied by changing the apo-GOx:dextran 

molar ratio. The reason for this observation is because of the two main consequences of 

an increase in QSY-dex concentration, (a) an increase in the number of dextran molecules 

associated with AF-AG, and (b) the total decrease in AF 647 signal due to quenching 

effect. Therefore, an increase in the total glucose concentration is required to dissociate 

all the QSY-dex/AF-AG complexes, which can be observed in Figure 7.5(b). Also, as the 

initial decrease in AF647 intensity is high for the case of high dextran concentrations, the 

signal reversal is also high with the addition of glucose, as more number of AF-AG 

molecules are being freed. It was calculated that with a 5X increase in QSY-dex 

concentration, there is a 4X times increase in dissociation constant and a 6.6X increase in 

the total percentage change in the signal.
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Thus, the sensitivity in over a wide range of glucose (0-200mM) can be

significantly varied by controlling the quencher concentration. However, the sensitivity in

the region of interest (0-30mM) is almost same in all the experiments. Thus, the main

parameter that can be varied by controlling quencher concentration is the dissociation

constant (kj) of the sensing assay. All these results corroborate with the modeling results

explained in Chapter Three, which show that with the increase in ligand concentration

there is an increase in the linear region and the total change in signal.

7.4.2 Encapsulation of AF-AG/QSY-dex 
Complexes in Microcapsuies

As previously described, oppositely charged polymers were deposited on MnC0 3  

particles via electrostatic self assembly. The reversal of the surface-potential with the 

addition of each layer, as shown in Figure 7.6(a), demonstrates the successful fabrication 

of the shell on the template particles. Microcapsuies with (PSS/PAH-sil)4PSS)} shell 

architecture were prepared by core dissolution and used for encapsulating AF-AG/QSY- 

dex complexes and reference dye (AF750).

Material deposited
(a)

Figure 7.6. (a) Surface potential values obtained after coating each layer on MnC03 particles. Error 
bars show one standard deviation of three replicate measurements; (b) Confocal fluorescence images 
of microcapsuies loaded with AF647-apo-GOx, QSY21-dextran and AF750-PAH with AF647 
fluorescence.
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Confocal images of representative polyelectrolyte microcapsuies loaded with the 

glucose assay are shown in Figure 7.6(b). The encapsulation efficiency of AF-AG/QSY- 

dex complexes was estimated by measuring the supernatant concentrations and obtaining 

the capsule count using the Coulter counter and was found to be lxlO‘I6and 1.34x1 O'16 

AF-AG and QSY-dex moles/capsule, respectively.

From the leaching studies it was estimated that the number of moles of AF-AG in
-j

supernatant is 10 times lower than the AF-AG moles encapsulated in the microcapsuies. 

Thus, it was estimated that only 0.12% of the initially loaded assay molecules have 

leached out over a five week period. Compared to the leaching studies on microcapsuies 

loaded using DAR based encapsulation procedure, this data is highly promising as the 

leaching is reduced by 40 times. However, in order to study the leaching of loaded 

molecules over a period of time, leaching studies must be performed at regular time 

intervals over a five week period. These studies can help in accounting for the loss in 

sensitivity over long period of time.

7.4.3 Sensor Response to Glucose
Addition in Microcapsuies

To demonstrate the sensor response characteristics of microcapsuies loaded with 

sensing assay and to test the feasibility of tailoring the sensor response with the 

microcapsule concentration, glucose sensitivity experiments were performed on three 

different concentrations of microcapsuies (4.3xl05, 8.6xl05, 1.72xl06, 3.87xl06 

capsules/mL) loaded with AF-AG/QSY-dex complexes and reference dye (PAH-AF750). 

Fluorescence spectra were collected after each addition of P-D-glucose to the 

microcapsuies loaded with AF-AG/QSY-dex complexes. The fluorescence spectra are 

normalized to a reference peak (776nm) to account for dilution and instrumentation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



144

drifts, as shown in Figure 7.7. The corresponding percentage change in the AF647:AF750 

peak ratio was calculated for each case, as shown in Figure 7.8.
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Figure 7.7. Fluorescence spectra of the microcapsuies loaded with sensing assay and reference dye 
(AF750) with the addition of glucose solution. All the spectra are normalized to the reference peak at 
776nm.
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Figure 7.8. Effect of capsule concentration on the change in AF647:AF750 peak ratio with the 
addition of glucose solution. Error bars show one standard deviation of three replicate 
measurements.

For the case of the 8.6* 105 caps/mL sample, it can be seen that there is a linear 

increase in the peak ratio with the addition of glucose up to 30mM for the capsules 

loaded with AF-AG/QSY-dex complexes, with a sensitivity of 2.67%/mM. It is 

noteworthy that even after extension the apo-GOx/dextran based competitive binding
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assay from the visible (500-600nm) to the NIR region (650-800nm), there is no 

significant drop in the achievable sensitivity in the region of interest (0-30mM). It is 

immediately evident that with a 4X increase in capsule concentration, there is a decrease 

in the total change in the percentage of RET from 69% to 58%. Furthermore, it is clear 

that a higher glucose concentration is required to reach the AF647:AF750 peak ratio 

saturation point. It can be seen from Table 7.1 that a 3X increase in capsule concentration 

results in a ~ 3X decrease in sensitivity in the region of interest (0-30mM) and ~ 4X 

increase in dissociation constant. This trend corroborates with the previously 

demonstrated theoretical modeling results in Chapter Three. These results prove that the 

sensitivity can be tailored by changing the competitive binding assay concentration.

Table 7.1. Change in sensitivity and dissociation constant with varying capsule concentration.

Sensitivity Linear
Capsules/ QSY-dex AF-AG (% A range kd

mL (moles) (moles) ratio/mM) (mM) (mM)
4 .3 x l0 5 1.8x10'“ 2.3xlO‘10 5.15 0-10 4.1

8.6*105 3.7x10'“ 4 .6 x 1 0 “ 3.09 0 - 3 0 10
1.72xl06 7.3x10'“ 9 .2 x 1 0 “ 1.97 0 - 4 0 20
3 .44xl06 1.84xlO'10 1.46xlO'10 0.8 0 - 8 0 60

7.4.4 Demonstration of Reversible 
Sensor Response

The reversibility of these sensors was tested by exposing the microcapsuies 

(2.88x106 capsules/mL) to random glucose concentrations. Fluorescence spectra were 

collected after each addition and removal of glucose solution from the microcapsuies and 

the corresponding changes in AF647:AF750 peak ratios are plotted in Figure 7.9. It is 

clear that there is a linear response in the 0 - 8 0  mM range, with a sensitivity of 

0.83%/mM, which is comparable to the sensitivity obtained with capsules (same
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concentration) exposed to a stepwise increase in glucose concentrations (Figure 7.8). 

These results show that the microcapsule based sensors are completely reversible, 

without any significant loss in sensitivity.
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Figure 7.9. Percentage change in AF647:AF750 peak ratio with the addition of random P-D-glucose 
concentrations to the AF-AG/QSY-dex loaded microcapsuies. Error bars show one standard 
deviation of three replicate measurements.

It can be observed from microcapsule and solution phase glucose sensitivity 

experiments that there is approximately a two-fold increase in the sensitivity for the case 

of the microcapsuies. As explained in Chapter five, this observation is the result of a low 

concentration of mobile sensing assay elements, due in part to the entrapment of -72% of 

the total encapsulated molecules in the capsule walls. The apo-GOx and dextran 

molecules that are entrapped in the walls may not dissociate in the presence of glucose 

molecules. Thus, the total number of mobile molecules will be far less than in the 

solution phase samples. This low concentration (-27%) of freely moving QSY-dex/AF- 

AG complexes is ultimately reducing the active sensing assay concentration, which 

results in the increased sensitivity as predicted by theoretical modeling of the effect of 

competitive binding assay concentration on response (Chapter Three (Figure 3.6)).
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7.4.5 Photobleaching Effect

The long term functional stability of the above described glucose sensors greatly 

depends on the stability of the encapsulated or immobilized fluorophores. It has been 

previously demonstrated that there is only 0.12% leaching of the encapsulated assay 

molecules. Thus, leaching of the loaded elements is not a concern. However, the 

photostability of the sensors is a major concern, since the transduction scheme (energy 

transfer) involved in this work depends on measuring the intensity of the fluorophores. 

To assess the photobleaching behavior of the sensors in the presence and in the absence 

of glucose, two experiments were performed in which the sample was continuously 

excited at 640nm with 20mM glucose and OmM glucose concentrations. The results of 

these experiments are given in Figure 7.10. It can be observed from the figure that the 

photobleaching rates of AF647 (-2.96%/min) and AF750 (-2.8%/min) are almost 

identical in the absence of glucose. However, with the addition of glucose AF647 (- 

1.12%/min) is bleaching rapidly compared to AF750 (-0.55%/min). This variation in the 

bleaching rates could be the effect of a decrease in energy transfer, which results in the 

observed decrease in the bleaching of AF750 dye. It can be observed from Figure 7.10b 

that there is 10% decrease in peak ratio in the presence of glucose, whereas in the 

absence of glucose there is no change in peak ratio. For example in Figure 7.9, there is 

20% increase in signal with the addition of glucose. But if these sensors are exposed to 

light for 15 min, then there will be 10% decrease in the signal, resulting in the decrease in 

sensitivity. These results indicate that continuous exposure of the sensors to light in the 

presence of glucose may result in the loss of sensitivity. Therefore, in the future, during 

real time monitoring of the sensors this variation in bleaching rates has to be considered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



148

§ £  80 W f
^  c  70 — • —AF647 w/o glucose y = -2.3018x +100
.£ 3
at .£ go . —i— AF750 w/o glucose y =-2.3018 x +100 O)
JS 5 0  —•— AF647 with glucose y = -0.6715x +100 

QQ o AF750 with glucose y = -1 3327x + 100

w ith glucose

-Q— w /o glucose

5  10  15 0 2 4 6  8  10 12 14

Time (min) T,me lmin)

Figure 7.10. Photobleaching of the AF647-AG/QSY-dex and AF7S0 loaded microcapsuies by 
continuously exciting at 640nm (a) with and without glucose, and (b) Change in the peak ratio with 
respect to time, with and without glucose.

7.5 Conclusion

A novel glucose sensing system based on competitive binding, quenching 

mechanism, and polymer microcapsule technology operating in near infrared region has 

been demonstrated. Sensing assay elements were entrapped in microcapsuies using a 

silane based encapsulation procedure which could be less toxic,152 also there is no need 

for exposure of capsules to extreme conditions. Microcapsuies containing QSY- 

dextran/AF-AG complexes showed glucose sensitivity of -2-5%/mM over the range of 0- 

30mM. Thus, this assay is superior to all the other assays demonstrated in the previous 

chapters, because it has the advantages of, (a) non-toxic nature, which was the main 

problem with Con A based assays, (b) the silane based encapsulation procedure 

employed in this system is simple, and is free of toxic materials, (c) comparable and 

better sensitivity to FD/TAG and TD/CAG based assays, respectively, and (d) significant 

increase in the signal levels due to the use of NIR dyes. Based on the sensitivity, 

specificity, and reversible response in the region of interest (0-3 OmM), this sensing 

system can be used for glucose monitoring in diabetic patients.
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Also, the successful demonstration of the extension of the apo-GOx/dextran based 

competitive binding assay into the NIR region indicates the potential to modify this assay 

according to the requirements of an application. By choosing appropriate apo-enzyme 

and competing ligand molecules, various biosensors can also be developed for detecting 

different analytes. Thus, the sensor design demonstrated in this chapter can be considered 

as a platform technology for designing biosensors based on competitive binding and 

energy transfer techniques.
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CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary

This dissertation demonstrated a generic design for developing fluorescent 

biosensors based on the encapsulation of a competitive binding assay into a micro­

container. A model biosensor for glucose monitoring was developed using this approach. 

Initially, a glucose sensor operating in the visible light region was demonstrated, which 

was then followed with the detailed discussion of the approaches pursued for extending 

the sensor operating region from the visible to the near infrared (NIR) region. Also, the 

disadvantages of each sensor prototype and the possible ways to overcome these 

limitations are summarized at the end of each chapter.

The first part of this project was focused on demonstrating a glucose sensor based 

on the encapsulation of previously reported FRET based FITC-dextran (FD)/TRITC-Con 

A (TC) assay in microcapsuies. Even though the hollow microcapsuies comprised of 

FD/TC multilayers showed reasonable glucose sensitivity (Table 8.1), there are some 

inherent disadvantages in using Con A as one of the elements in this assay, such as 

toxicity, aggregation, and specificity. Also, the total obtainable signal in this assay is 

limited by the amount that can be coated on the microparticle surface.

150
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Table 8.1. Sensor response characteristics of different variations of competitive binding assays.

Receptor labeled- 
Ligand molecule

Acceptor labeled- 
Receptor molecules

Reference dye 
labeled 

polycation

Sensitivty 
(% A 

ratio/mM)

Dissociation 
Constant 
(kd, mM)

FITC-Dextran TRITC-Con A - 0.3 50

FITC-Dextran TRITC-Apo-Gox - 2 , 6 . 2 20,5

TRITC-Dextran Cy5-Apo-Gox - 0.83 12

QSY21-Dextran AF647-Apo-Gox AF750-PAH 0.8-5 .2 4 -60

In order to overcome the concerns regarding Con A, a glucose sensing system was 

proposed which replaces Con A in the above described sensing system with a deactivated 

enzyme glucose oxidase (apo-GOx). The use of deactivated enzyme makes this approach 

more generic as different analytes can be detected by choosing the corresponding enzyme 

(which can be deactivated) as the receptor molecule in competitive binding assay. Also, 

as the enzymes are highly specific towards their substrate molecule there will not be any 

concerns over toxicity. In addition, toxicity is not a concern when Con A is removed 

from the assay elements and the aggregation issue can be solved since enzymes bind to 

one substrate molecule at a time.

Another significant achievement is the encapsulation of a competitive binding 

assay comprised of dextran/apo-GOx complexes into microcapsuies by incorporating 

photosensitive materials (diazoresin (DAR) and poly (styrene sulfonate) (PSS)) in the 

capsule wall structure. This encapsulation process resulted in the efficient loading of 

assay elements compared to FD/TC encapsulation. The employment of prefabricated 

microcapsuies for entrapping the competitive binding sensing assay is advantageous, 

because it allows for the free movement of sensing elements during the competitive 

binding process while maintaining the concentrations of the ligand and receptor constant
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in the presence of varying analyte concentration. Therefore, this approach is highly 

appropriate for developing smart tattoo systems.

Microcapsuies containing FD/TRITC-apo-GOx (TAG) complexes showed a 

glucose sensitivity ranging from 2 -  6% /mM (Table 8.1). Also, FD/TAG based glucose 

assay is 10 times more sensitive compared to FD/TC assay and is also highly specific (5 -  

10X more sensitive) towards glucose over other sugars. It was also found that the 

response of this system (sensitivity and dissociation constant) to glucose can be tuned by 

varying the concentration of FD/TAG complexes. In spite of these advantages, this sensor 

design may not be an ideal system for subcutaneous implantation because of the use of 

dyes which fluoresce in visible region, where tissue is highly light scattering.

In order to extend FD/TAG based glucose sensor into the longer wavelength 

region, FITC/TRITC pair was replaced with TRITC/Cy5 FRET pair. Microcapsuies 

containing TRITC-dextran (TD)/Cy5-apo-GOx (CAG) complexes showed a sensitivity of 

0.83%/mM, which is 3 -  4X lower than the sensitivity obtained with the FD/TAG assay. 

This drop in sensitivity could be due to the lower FRET efficiency between TRITC and 

Cy5, different labeling ratios, etc. Also, using the TRITC/Cy5 dyes extended the 

operating region by only lOOnm, which may not result in a significant decrease in tissue 

scattering. In order to carry out implantation studies, it is highly desirable to extend the 

operating wavelength region more into the NIR region.

Another concern in the above mentioned apo-GOx/dextran systems is the use of 

DAR, which is toxic, and the inconvenient assembly conditions, as the assembly process 

must be performed in the absence of UV light. Also, the biomacromolecules which are 

loaded into microcapsuies are exposed to UV light, which may result in the loss of
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activity or binding affinity to certain molecules. Therefore, another approach has to be 

developed in order to improve the stability of the biomolecules in the microcapsuies.

In order to extend the operating region into the NIR, various dyes operating in the 

NIR region were selected. Due to the difficulties in finding an efficient NIR FRET pair, 

quenching is used as the transduction mechanism in the dextran/apo-GOx competitive 

binding assay. The sensing assay elements, quencher (QSY21)-dextran/fluorescent 

(AF647)-apo-GOx and reference dye (AF750), were entrapped in microcapsuies using a 

simple silane based encapsulation procedure. Unlike the DAR based encapsulation 

procedure, this silane based technique is very simple in terms of maintaining proper 

assembling conditions, and it also may not have the toxicity concern. Microcapsuies 

containing labeled dextran/apo-GOx complexes showed glucose sensitivity of ~2- 

5%/mM (Table 8.1). Also, a significant achievement in this assay is that, in spite of the 

extension of the operating region from visible to NIR, its sensitivity to glucose is 

comparable to the assay operating in the visible region. Thus, this assay is superior to all 

the other assays demonstrated in this dissertation, because it has the advantages of, (a) 

non-toxic nature, which was the main problem with Con A based assays, (b) the silane 

based encapsulation procedure employed in this system is simple, and is free of toxic 

materials, (c) The sensitivity of this system is comparable to and better than FD/TAG and 

TD/CAG based assays and (d) a significant increase in the signal levels (signal to noise 

ratio) due to the decrease in light scattering resulting from the use of NIR dyes. Thus, the 

NIR glucose sensor is highly promising for conducting in vivo studies in a rat model.

The generic sensor design described here opens the door for a wide variety of 

analytes to be sensed using this versatile sensing technique which involves the selection
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of an analyte-specific enzyme and a competing ligand. Therefore, this design can be 

considered as a platform technology for the development of biosensors based on 

competitive binding and RET techniques. Potential targets include neurochemicals, such 

as glutamate, choline, lipids, and estrogen. In conclusion, fluorescence affinity sensors 

were shown to be promising for monitoring glucose concentrations in diabetic patients.

8.2 Future Work

Optimization. The sensor response can be further optimized by varying the 

labeling ratio of apo-GOx and dextran molecules with donor and acceptor dyes. Also, 

apo-GOx molecule contains three reactive molecular groups, amine, thiol groups and 

carboxylic acid, that are candidates for conjugation of the FRET donor Alexa Fluor 647. 

This fact can be exploited to determine which molecular group needs to be labeled to 

achieve the desired sensitivity and different concentrations of assay molecules can be 

encapsulated into microcapsuies using different concentrations of loading solutions. The 

stability of the encapsulated sensing elements in microcapsuies should be measured over 

a long period of time.

Stability. The stability of the assay molecules encapsulated in microcapsuies 

using silane based procedure must be tested by performing the leaching experiments as 

described in Chapter five (section 5.3.7). Also, sensor response must be monitored at 

regular intervals over a long time period to observe the magnitude of drift in the response.

Further experiments must be performed on the flow through system to more 

accurately test the reversibility and response time of the sensors. While using the flow 

through system, variations in the photobleaching rates of different dyes have to be 

considered, as the sample is continuously excited which may have significant bleaching
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effect on the dyes. It would be appropriate to conduct fluorescence lifetime studies on 

these sensors because they are not concentration dependent and could also be the best 

approach for future in vivo experiments. Finally, the response of the sensors should be 

evaluated in vivo, first in the rat model, then in larger models with skin similar to that of 

humans (e.g., porcine models).

This work could be further used in detecting different metabolites other than 

glucose. For example, a lactate sensor can be designed by using apo-lactate oxidase and 

poly(lactic acid) as the receptor and ligand molecules, respectively. Also, this sensing 

mechanism can be further extended to develop drug-delivery systems; for example, 

insulin may be released in response to apo-GOx/dextran dissociation.
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