
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Fall 2005

Availability modeling and evaluation on high
performance cluster computing systems
Hertong Song
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Song, Hertong, "" (2005). Dissertation. 586.
https://digitalcommons.latech.edu/dissertations/586

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/586?utm_source=digitalcommons.latech.edu%2Fdissertations%2F586&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu


NOTE TO USERS

This reproduction is the best copy available.

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AVAILABILITY MODELING AND EVALUATION 

ON HIGH PERFORMANCE CLUSTER 

COMPUTING SYSTEMS

by

Hertong Song, M.S.

A Dissertation Presented in Partial Fulfillment 
o f the Requirements for the Degree 

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY

November 2005

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3192320

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3192320 

Copyright 2006 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL

November 1 ,2 0 0 5
Date

We hereby recommend that the dissertation prepared under our supervision

by Hertong Song________________________________________________________________

entitled________________________________________________________________________________________

Availability Modeling and Evaluation on High Performance Cluster Computing System s_______

be accepted in partial fulfillment o f the requirements for the Degree of

Doctor of Philosophy in Computational Analysis and Modeling________________________________

I Supertfspr of Dissertation R

,U //y^sLcLuI Head of DepHead of Department

Research

Department

Recommendation concurred in:

Advisory Committee

Dean of the Collei

GS Form 13 
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Cluster computing has been attracting more and more attention from both the 

industrial and the academic world for its enormous computing power, cost effective, and 

scalability. Beowulf type cluster, for example, is a typical High Performance Computing 

(HPC) cluster system. Availability, as a key attribute of the system, needs to be 

considered at the system design stage and monitored at mission time. Moreover, system 

monitoring is a must to help identify the defects and ensure the system's availability 

requirement.

In this study, novel solutions which provide availability modeling, model 

evaluation, and data analysis as a single framework have been investigated. Three key 

components in the investigation are availability modeling, model evaluation, and data 

analysis. The general availability concepts and modeling techniques are briefly reviewed. 

The system's availability model is divided into submodels based upon their 

functionalities. Furthermore, an object oriented Markov model specification to facilitate 

availability modeling and runtime configuration has been developed. Numerical solutions 

for Markov models are examined, especially on the uniformization method. Alternative 

implementations o f the method are discussed; particularly on analyzing the cost of an 

alternative solution for small state space model, and different ways for solving large 

sparse Markov models. The dissertation also presents a monitoring and data analysis 

framework, which is responsible for failure analysis and availability reconfiguration. In

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



addition, the event logs provided from the Lawrence Livermore National Laboratory have 

been studied and applied to validate the proposed techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to reproduce, 

by appropriate methods, upon request, any or all portions o f this Thesis. It is understood that “proper request” 

consists o f the agreement, on the part o f the requesting party, that said reproduction is for his personal use and 

that subsequent reproduction will not occur without written approval o f  the author o f this Thesis. Further, any 

portions o f the Thesis used in books, papers, and other works must be appropriately referenced to this Thesis.

Finally, the author o f  this Thesis reserves the right to publish freely, in the literature, at any time, any 

or all portions o f this Thesis.

Author

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

LIST OF TABLES......................................................................................................................x

LIST OF FIGURES.................................................................................................................. xi

ACKNOWLEDGEMENTS................................................................................................... xiii

CHAPTER 1 INTRODUCTION............................................................................................ 1

1.1 HPC Cluster System Architecture.................................................................... 3

1.2 Overview of the Framework..............................................................................5

1.3 Components of the Framework......................................................................... 6

1.4 Organization of the Dissertation....................................................................... 8

CHAPTER 2 BACKGROUND AND GENERAL CONCEPTS........................................9

2.1 Definition of Terminologies............................................................................9

2.2 System Evaluation Techniques......................................................................12

2.2.1 Lifetesting............................................................................................12

2.2.2 Simulation............................................................................................13

2.2.3 Analytical M odeling...........................................................................14

2.3 Analytical Models...........................................................................................15

2.3.1 Combinatorial M odels....................................................................... 15

2.3.2 Markov Models...................................................................................20

2.3.3 The Other Markov Models.................................................................23

2.4 Model Generation and Existing Software Packages....................................24

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



vii

2.5 Two State Markov M odel................................................................................26

CHAPTER 3 SYSTEM AVAILABILITY MODELING.................................................... 29

3.1 Overview o f the Approach...............................................................................29

3.2 Model Decomposition...................................................................................... 30

3.3 Alternative of Availability Models.................................................................32

3.4 Availability Estimations...................................................................................34

CHAPTER 4 THE OBJECT-ORIENTED SPECIFICATION............................................38

4.1 Introduction....................................................................................................... 38

4.2 Background and Related Work....................................................................... 38

4.3 Overview............................................................................................................40

4.4 Definitions......................................................................................................... 42

4.5 Grammar............................................................................................................43

4.6 Algorithm...........................................................................................................44

4.6.1 The Main Procedure...........................................................................44

4.6.2 Generate States and Transitions........................................................45

4.6.3 Process Transitions............................................................................45

4.6.4 Perform Transition.............................................................................46

4.6.5 Perform Action................................................................................... 46

4.7 Examples............................................................................................................46

4.7.1 Example 1 ...........................................................................................46

4.7.2 Example 2 ...........................................................................................49

4.8 UML Availability Modeling............................................................................52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



viii

CHAPTER 5 NUMERICAL SOLUTIONS OF MARKOV PROCESSES..................... 56

5.1 Introduction...................................................................................................... 56

5.2 Numerical Methods Overview....................................................................... 57

5.2.1 Steady State Solutions......................................................................... 57

5.2.2 Transient Solutions............................................................................. 58

5.3 The Uniformization Procedure...................................................................... 58

5.4 Implementation Analysis................................................................................ 59

5.4.1 Truncation Error...................................................................................59

5.4.2 General Implementation......................................................................61

5.4.3 Multiple Time Intervals......................................................................62

5.4.4 Small State Spaces.............................................................................. 62

5.4.5 Stiffness Models...................................................................................64

5.5 Large Sparse Matrix.........................................................................................64

CHAPTER 6 MONITORING AND ANALYSIS............................................................... 67

6.1 Introduction.......................................................................................................67

6.2 General Terms and Concepts..........................................................................68

6.2.1 Fault, Error, and Failure......................................................................68

6.2.2 General Concepts.................................................................................69

6.3 Related W ork................................................................................................... 71

6.4 Overview o f the Framework........................................................................... 72

6.5 Measuring and Analysis.................................................................................. 79

6.6 Improvement Analysis and Comparison........................................................82

6.7 Reliability and Availability Aware Scheduling............................................ 85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7 CONCLUSION AND FUTURE WORK.....................................................89

APPENDIX A OBJECT-ORIENTED MARKOV MODEL TRANSFORMATION.... 92

APPENDIX B THE UNIFORMIZATION PROCEDURE............................................... 97

REFERENCES....................................................................................................................... 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

Table 3.1 Parameters for availability estimation................................................................33

Table 3.2 Active-Active Markov states and transitions..................................................... 33

Table 3.3 Three active servers..............................................................................................34

Table 4.1 OOMS of two servers in XM L........................................................................... 47

Table 4.2 Markov states for two servers..............................................................................48

Table 4.3 Markov transitions for two servers..................................................................... 48

Table 4.4 XML specification o f three servers.................................................................... 50

Table 4.5 Markov states for three servers............................................................................51

Table 4.6 Markov transitions for three servers................................................................... 52

Table 6.1 Example 1 ..............................................................................................................70

Table 6.2 Example o f failures in W hite...............................................................................79

Table 6.3 Events in node 012 o f White................................................................................ 83

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

Figure 1.1 An HPC Cluster system with two servers.......................................................... 4

Figure 1.2 Overview o f the framework.................................................................................. 5

Figure 1.3 Components in the framework.............................................................................7

Figure 2.1 A RBD example.................................................................................................. 17

Figure 2.2 A Fault tree example...........................................................................................18

Figure 2.3 A two-state Markov model.................................................................................27

Figure 3.1 Modeling framework...........................................................................................29

Figure 3.2 The RBD of system availability model.............................................................31

Figure 3.3 Single server availability estimation................................................................. 35

Figure 3.4 Active vs standby server availability estimation..............................................35

Figure 3.5 Active-Standby server availability estimate..................................................... 36

Figure 3.6 Active-Active server availability estimate....................................................... 36

Figure 3.7 Three-Active servers availability estimate....................................................... 37

Figure 4.1 OOMSE Framework............................................................................................40

Figure 4.2 Statecharts for two servers.................................................................................. 41

Figure 4.3 Availability model o f HA-OSCAR................................................................... 54

Figure 4.4 Statechart diagram for the primary server........................................................ 55

Figure 4.5 Statechart diagram for the standby server.........................................................55

Figure 5.1 Algorithm to compute the T term...................................................................... 63

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



xii

Figure 6.1 Fault, failure and error......................................................................................... 69

Figure 6.2 Monitoring and analysis framework...................................................................73

Figure 6.3 Monitoring and analysis flow diagram.............................................................. 74

Figure 6.4 MT file for a single instance............................................................................... 76

Figure 6.5 System availability m odel.................................................................................. 77

Figure 6.6 Servers availability model...................................................................................77

Figure 6.7 Data analysis flow diagram................................................................................ 78

Figure 6.8 Availability o f each node in the White system................................................. 80

Figure 6.9 Nodes MTTF density........................................................................................... 81

Figure 6.10 Node downtime (in hours)................................................................................ 82

Figure 6.11 MTTF changes o f dynamic and monthly updates.......................................... 84

Figure 6.12 MTTR changes o f dynamic and monthly updates.......................................... 84

Figure 6.13 Availability changes of dynamic and monthly updates................................. 85

Figure 6.14 Completion time for a parallel job impacted by node failure........................86

Figure 6.15 MTTF on various numbers o f nodes............................................................... 88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

There are many people I want to thank for their help and encouragement during 

the period o f my research work. First and foremost, I am grateful to my advisor, Dr. 

Chokchai Leangsuksun, for his direction, wise counsel and endless support through the 

course o f this research; he helped me and taught me more than can be acknowledged in 

these few sentences. Thanks are also extended to Dr. Raja Nassar for his patient academic 

guidance and suggestions.

Many thanks to my committee, Dr. Weizhong Dai and Dr. Ben Choi, and CAM 

director Dr. Richard Greechie, for their support, guidance and helpful suggestions.

I would like to express gratitude to Steve L. Scotts and Christian Engelmann of 

Oak Ridge National Laboratory for their helpful comments and suggestions which 

contributed to my research work. I am in debt to Andy Yoo of Lawrence Livermore 

National Laboratory, who provided the valuable information for the research work to be 

sound.

My appreciation also goes to Professor William Stewart o f North Carolina State 

University, Professor Joanne B. Dugan o f University o f Virginia, and Kishor. S. Trivedi 

of Duke University for their kindness academic support. I also appreciate the anonymous 

reviewers for their constructive criticism.

And finally, I wish to thank some o f my friends, Yumin Zhang, Yingzong Bu, Li 

Wei, Xiangwei Zhao, Wei Long, Zhixin Huang, and the students at Louisiana Tech

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



University for their spiritual encouragement and support during this period. Thanks are 

also extended to Xiaodong Chen, Taiqing Qiu, Yuchen Qiu, Tingyu Lin, Xin Zhou and 

Zhengdong Chen for they are the pilot lights that always inspire me.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1

INTRODUCTION

Cluster computing has become a cost effective and popular High Performance 

Computing (HPC) solution for its enormous computational power. High availability 

features have been increasingly vital to ensure that cluster computing environments can 

provide continuous services. It is imperative to know the dependability parameters during 

the conceptual design stages, since these parameters help in facilitating design trade-off 

and refinement (system cost vs. system reliability). The early evaluation of system 

characteristics, such as dependability [1], timeliness, and correctness, is necessary to 

assess whether the system being developed satisfies its goals and requirements. A typical 

availability modeling method is based on analytical formalisms such as fault tree 

[29][31], Markov chains [32][33][34], Stochastic Petri Net (SPN) [38][39], etc. This skill 

set requirement inevitably creates an issue for software designers, architects, and people 

in management who may be unfamiliar with these theoretical methodologies. 

Consequently, reliability engineers may be required to participate in the design and 

evaluation phases which lead to a two-step approach: system design and availability 

modeling. This situation clearly increases the complexity in team communication and, 

therefore, in product development. Moreover, the analytical models are still primitive; for 

example, a Markov chain consists of only state space and transitions, while SPN has

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

places and transitions. As a consequence, Markov chain and Petri Net models are often 

complex when the systems are non-trivial. These large models may be beyond the 

intuition of modelers, may lose the logic view of the system, and may become error 

prone.

The need for early evaluation demands standardized and well-defined design 

methods and languages. A variety o f software packages exist to facilitate availability 

modeling and specify the models in compact forms [11][12][34][36][43]. The Unified 

Modeling Language (UML) is a widely-adopted standard modeling language used to 

visualize, specify, construct, and document the artifacts of a software system [2]. Using 

UML for availability modeling will reduce the gap between the system architects and 

software developers who are keen on using UML, but are unfamiliar with dependability 

modeling formalisms.

Once the cluster system is in operational stage, monitoring system’s health is a 

must. This is to ensure that the system’s runtime availability meeting its design goal, and 

helping to identify the trouble cause. Moreover, updating the system’s availability 

information dynamically can provide most recent status of the system; which in turn 

enables the system’s scheduler to make a better decision, thus improve the throughput of 

the cluster system.

The objective of this research is to investigate a novel technique that will facilitate 

the availability modeling, monitoring and evaluation on HPC cluster systems. Our 

approach is to create an availability model which is generic enough to simply the users’ 

effort, eliminate the need for manual remodeling, and can be customized dynamically. 

Then, we exploit a systematic way towards generation and solution of the model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

Furthermore, the monitoring process should be able to dynamically update the 

availability information to reflect the most recent failure and repair events.

The outcome o f this study will provide an effective solution for HPC cluster 

systems’ availability modeling and evaluation. The research result will reduce the effort 

of availability modeling, provide most recent availability information, ensure the 

availability requirement, enable the scheduler to make a better decision, and finally will 

improve the overall system performance.

1.1 HPC Cluster System Architecture

Cluster computing technique involves clustering multiple commercial-of-the-shelf 

(COTS) computing nodes to accomplish performance and availability, which deals with 

perceptive and actual outages. With both hardware and software infrastructure 

components, clusters are aimed to achieve application workload sharing and fail-over 

capabilities. Among these, the Beowulf type cluster systems [44] have become popular 

for its price/performance, flexibility of configuration and update, and scalability.

A HPC cluster system consists o f multiple computers communicated via network 

connections. The main HPC objective is normally targeted to achieve the best possible 

completion time and performance while executing a parallel application on as many 

possible nodes within the system. There are two types o f nodes: head nodes (servers) and 

computing nodes (clients). Servers are taking requests and dispatch the tasks to the 

computing nodes, where the actual work processed. The systems are equipped with 

software packages to facilitate massive parallel computing; the MPI (message passing 

interface), for example, is a common programming paradigm. A parallel application runs 

simultaneously on a portion or all o f the computers in the system. Unfortunately, if  one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

computer which the application is running on fails, the application hangs. This issue is 

currently a major drawback of MPI applications on the HPC cluster system.

Cluster systems can be configured based on the need [87][88][90]. For example, 

the servers can be classified as active-cold standby, active-warm standby, and active- 

active servers. Figure 1.1 illustrates an example of an HPC cluster system with two 

servers and multiple computing nodes. The active-active cluster means there are two (or 

more) servers are taking requests from the outside, mastering the cluster system. The 

active-warm standby type of cluster consists of a primary server, which is currently 

handling outside request, and the warm standby server is waiting to take over the control 

once the primary server has failed. The active-cold standby scheme is similar to the 

active-warm standby scheme; they differ in that once the primary fails, the cold standby 

server will be booted and take over the control.

Admir

Figure 1.1 An HPC Cluster system with two servers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

1.2 Overview of the Framework

This dissertation includes three major aspects, namely (1) the modeling, (2) model 

evaluation, and (3) monitoring and analysis. Figure 1.2 shows the overview o f the 

framework included in this dissertation.

Monitoring and 
AnalysisModel Evaluation

Figure 1.2 Overview of the framework

The modeling part investigates the possibility o f using an alternative specification 

of the system availability model, including model decomposition. In this way, the 

availability model is more intuitive to the modeler, and is able to be updated during the 

runtime that facilitates the dynamic monitoring and analysis. An object-oriented 

modeling scheme [81][82][83] is studied for complex component interactions, and k-out- 

of-n structure is employed for independent identical components (i.i.d.) availability 

evaluation.

The modeling evaluation part is dealing with the solution of the availability 

models. Some models, such as the k-out-of-n structure, is given by formulas, while the 

others such as Markov model need numerical solutions. In this dissertation, the general 

methods of numerical solutions on Markov model are illustrated. This dissertation 

presents the uniformization method in detail for readers without much mathematical 

background, analyzes the possible alternative implementations and the cost of the small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6

state space implementation, and finally proposes a light weight solution on large sparse 

Markov models [84],

The monitoring and analysis is responsible for ensuring the system’s health, 

performing data analysis, and updating the availability during the runtime. Currently, 

each computer in the system is assumed to be a single instance, and the failure and repair 

events are stored in the system’s log file. The monitoring facility is responsible to extract 

these events o f interest from the log file and write them into a maintained configuration 

file. Whenever there is a failure or a repair event happens, the monitoring facility will 

update the configuration file and the system’s availability model [79]. Then it passes this 

information to the evaluation facility to reevaluate the system’s availability. This 

framework can certainly be extended to monitoring applications o f interest and record 

more detailed cause o f the events. The latter needs to classify failures into more detailed 

events, group them into different categories in a tree like structure. This can also help to 

identify the root cause of the failure.

1.3 Components of the Framework

Each of the three major facilities in the framework includes several components. 

Figure 1.3 shows the components inside the framework in a tree like structure.

As stated earlier, the framework has three major facilities: the analytical 

modeling, the model evaluation, and monitoring and analysis. The modeling facility 

includes the modeling specification, in which the k-out-of-n structure and the object- 

oriented Markov model specification is adopted and developed. The UML modeling is 

given as an example and needs to be addressed in the future work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

The model evaluation facility includes the k-out-of-n structure and Markov model 

solutions. The formula for each component’s availability is also given as the fundamental 

aspect in the k-out-of-n structure. The Markov model solution deals with the numerical 

solutions of Markov models. Different solution techniques are illustrated in the 

framework. The uniformization method is the major choice for solving Markov models. 

Alternative implementations of the method are discussed, particularly on the small state 

space and the way o f solving large sparse Markov models. Runge-Kutta method is the 

second choice that can be used for the comparison purpose.

Modal
Specification

OOMS

Framework

Analysis

Evaluation

Mean time 
estimate

Analytical Modal

Markov Model

RungeKuua

Figure 1.3 Components in the framework 

The monitoring and analysis facility has two major functionalities, the monitoring 

and update daemon, and the data analysis feature. The first is used to monitor the 

system’s health and update the system’s availability configuration. The second is 

responsible for data analysis whenever there are failure and repair events. The data

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

analysis includes a mean time estimation and data fitting test. Currently, we propose 

using the goodness-of-fit technique to validate whether the events are fitted into 

exponential distribution. Other distribution such as Weibull distribution and alternative 

testing techniques such as Chapman-Smimov test [71] may be included in the future.

1.4 Organization of the Dissertation

This dissertation is organized as follows: in Chapter Two, we introduce the 

background and general concepts of the reliability and availability modeling. In Chapter 

Three, we present the model decomposition and a variety o f availability models. The 

object-oriented Markov model specification is illustrated in Chapter Four. Chapter Five 

depicts the numerical solution of Markov models. The monitoring and analysis facility is 

discussed in Chapter Six. The conclusion and future work is presented in Chapter Seven.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

BACKGROUND AND GENERAL CONCEPTS

In this chapter, we introduce some background information concerning the 

evaluation o f vulnerability to fault tolerance systems. We begin by introducing some 

definitions of terminologies related to the measure o f system vulnerability. Then we 

illustrate the three alternative measuring techniques, namely lifetesting, simulation, and 

analytical models. Since varieties o f analytical models have been introduced in the past 

decades, a brief overview of the analytical models is depicted and categorized into 

combinatorial model, Markov models, and other models deviated from Markov models. 

We then explore the existing software packages for model generation and solutions. 

Finally, since the steady-state availability of a two-state Markov model is used through 

many parts of this dissertation, a closed form solution is given at the end o f this chapter 

for reference.

2.1 Definition of Terminologies

Definition 2.1 Reliability

The reliability /?(t)of a system is the probability that the system survives until 

time t [31]. From a mathematical point of view, the reliability /?(t) o f a system S  can be 

expressed as:

R(t) = Pr(S is fully functioning in [0, /])

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Let X  be the random variable representing the lifetime of a system, and let /  be 

the probability density function (p.d.f.) and F  be the cumulative density function (c.d.f.) 

of the variable X . Then the system reliability at time t can be depicted as

Rif) = P r(T  >r) = l - JF(f) = l - J o  f{x)dx (2.1)

Because

J "  f(x)tbc = l

Hence, the reliability of a system can be expressed in

r({)=I: / w* - Jo f(x)dx=jr (2-2)
Normally, it is assumed that the system is working properly at the instant t = 0.

Yet, it is possible to allow that the system is defective to begin with a probability p , i.e.,

F(o) = p . For such a case, the reliability o f the system is

R(t)=\-p-\'0f(x)dx (2.3)

Definition 2.2 Availability

The instantaneous availability A(t) o f a system is the probability that the system 

is operating correctly at time t , regardless o f the number of times it may have failed and 

been repaired in the interval (0, t) [31].

The steady-state availability Ass is a measure o f the expected fraction time that 

the system is available for useful computation, and is obtained by taking the limit of A(t) 

as t -» oo, given that the limit exists. Thus,

Ass =\im A(t) (2.4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

Definition 2.3 MTTF

The mean time to failure (MTTF) of a system is the expected time until the 

occurrence of the system failure.

MTTF = £  R(t)dt (2.5)

Definition 2.4 MTTR

The mean time to repair (MTTR) is a measure o f expected time for repair o f a 

failed system.

Definition 2.5 MTBF

The mean time between failure (MTBF) is a measure o f expected mean time 

between failures in a system with repair, and it depends on both failure and repair 

processes, and

MTBF = MTTF + MTTR (2.6)

If both the MTTF and MTTR are available, then the steady-state availability o f

the system may be calculated as:

MTTF MTTF ,
Ass = -------------------- = ---------- (2.7)

“ MTTF + MTTR MTBF v

From the definitions o f reliability and availability given above, the difference

between reliability and availability is that reliability requires that at no time within the

interval [0, t] may the system fail, whereas availability permits the possibility that the

system may have failed and subsequently been repaired one or more times before time t.

In general, the type o f system will determine whether reliability or availability is

the preferred measure for a particular system. Reliability is required for non-repairable

systems. Examples o f such systems are flight control systems, safety control systems of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

nuclear plants, and robots sent to Mars, for which repairs during the mission are 

impossible, or failures are disaster events. On the other hand, availability is usually 

preferred for repairable systems although reliability may also be a useful measure of 

interest. Examples of such systems are telecommunication switching systems and 

business transaction systems. In systems like these, operation often continues in a 

degraded state for a period of time following component failures. Laprie conceptualized 

dependability as a generic concept which covers a range o f concepts including reliability, 

availability, safety, etc. [1], As stated by Laprie, dependability is defined as the ability of 

the system to perform the task that is assigned to it or, more quantitatively, the 

probability that the system fulfills its tasks.

This dissertation considers the cluster computing systems which are repairable 

systems; therefore, availability is the primary measures of interest to us.

2.2 System Evaluation Techniques

When we are trying to evaluate the dependability o f any systems, it is an attempt 

to predict the future safety behavior o f the system based on historical information that is 

available about the system. The system vulnerability to failure evaluation techniques can 

be classified into three categories: lifetesting, simulation, and analytical models. This 

section briefly introduces the basic concepts on the three techniques.

2.2.1 Lifetesting

Lifetesting is to predict the system’s behavior based on the existing technology, 

past experiences and observations. If the historical information o f an existing 

component/system is available about its past performance and failure behavior, one may 

assume that it might continue to behave in the future as it has in the past. For example, if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

a CPU chip is known for its failure rate, then we can assume that other chips 

manufactured with the same technology and under the same condition will exhibit the 

same failure rate. Therefore, lifetesting is the use of historical information to provide an 

estimate of future vulnerability to failure.

The usefulness of lifetesting is limited to systems that are constructed using well 

established technology, and it is not generally suitable for evaluating new systems 

constructed under the state of art technologies.

For highly reliable systems, failures of units in use are rare events. Hence, it 

might take years to get sufficient data to perform useful evaluations for such systems. 

Therefore, other methods must be considered to perform system evaluations, or for the 

purpose of aiding design decisions for systems that have not yet been built.

2.2.2 Simulation

Simulation is another technique to evaluate measures such as reliability, 

availability, and performance. The simulation process consists of three parts: (1) a 

computer representation o f the relevant parts of the real world system is constructed first, 

(2) a series o f random events to which the system must respond is generated to simulate 

the environment in which the system under test is embedded, and (3) observations are 

made o f the system reaction to the events. This process is repeated numerous times in 

order to get statistically a number o f trials at which the behavior o f the model should 

closely resemble the behavior o f the real system. Examples of simulation techniques can 

be found in studying the effect o f a new generation bomb by simulating different 

surrounding environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

Simulation is a useful modeling technique for evaluating measures because the 

computer representation can model the system to virtually any level of detail desired by 

the user. Furthermore, it is a versatile modeling technique, for it can be used to evaluate 

any measure for the system. The drawback is that the number of trials required may be 

large; therefore, the total computational effort required may be expensive.

2.2.3 Analytical Modeling

Analytical models are mathematical models which express particular aspects of 

system behavior that are of interest. A mathematical model is an abstraction from the real 

world system of aspects that relate only to the behavior and characteristics o f the system 

that are o f interest. All remaining details about the system are not considered, for the 

reason that managing the complexity o f representing the system’s behavior exactly in 

every detail is generally intractable. Furthermore, most details o f the system’s 

characteristics and behavior are not relevant to capturing the specific behavior o f interest, 

so there seems little point to include them in the representation under evaluation.

Analytical models can sometimes give closed form results, but often they need to 

be solved using numerical techniques. Model size depends on both the number of 

components and the detail of modeled behaviors. The more components present within 

the system and the more detailed the system behavior, the larger the model size. When 

the model size becomes too large for the calculation of an exact result, suitable 

approximation techniques must be applied to the model to obtain acceptable result. 

Approximation techniques trade solution accuracy for model complexity, allowing the 

modeler to obtain a result within some range of values for a model which would 

otherwise be too large to be solved for any result at all.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

Examples of analytical models are combinatorial models, Markov models, Petri 

Nets, and hierarchical models. Each type of these models requires different solution 

techniques and differs in the range of system behavior that they can model.

2.3 Analytical Models

Analytical models are mathematical models which are abstractions from the real 

world problems that relate only to the behavior and characteristics o f the system that are 

of interest. Analytical models include reliability block diagram (RBD), fault tree (FT), 

reliability graph, Markov model, semi-Markov model, Petri Net, hybrid model, etc. [31]. 

In general, these models can be classified into two categories, namely the combinatorial 

models and Markov models. Reliability block diagram (RBD), fault tree (FT), and 

reliability graph are in the category o f combinatorial models; the rest of the models 

mentioned above are in the Markov models category. The combinatorial models are also 

referred to as the non-state space models, and the Markov models are referred to as the 

state space models.

2.3.1 Combinatorial Models

Combinatorial models were the earliest type o f analytical model in general use for 

system dependability analysis. Combinatorial models apply well to systems in which 

system failure behavior can be characterized by simple combinations of component 

failure. In general, combinatorial models capture the static behavior o f the system. The 

solutions o f these types are simply series-parallel reliability computations. Reliability 

block diagram (RBD), fault tree (FT), and reliability graph are in this category. They are 

similar in the way that they capture conditions that make a system fail in terms of 

structural relationships between the system components. In other words, they are visual

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

representations of so-called network reliability models. A fault tree without repeated 

components is equivalent to a reliability diagram, and both of them are a subset of the 

reliability graph, which is in turn a subset of the fault tree with repeated components.

The solution involves (1) a set of minimal paths (minpath) is generated, (2) all the 

paths are pair wise disjoint, and (3) apply the series-parallel formula. Algorithms for 

generating disjoint minpath are discussed in [15]-[ 19]. The major difference of these 

algorithms is that of using single variable inversion versus multiple variables inversion. 

Reliability Block Diagram (RBD)

A reliability block diagram represents the logical structure of a system in regards 

to how the components’ reliability affects the overall system reliability. Components are 

combined into blocks in series, in parallel or in k-out-of-n configurations. A series 

structure imposed on a set o f components means that for the whole subsystem to work, 

every component has to be functioning. On the other hand, a parallel structure means that 

the whole subsystem can function if any one o f the components is working. A k-out-of-n 

structure means that the whole subsystem can function if  k or more of the components is 

working.

Figure 2.1 shows an example o f a HPC cluster system with two servers and n 

computing nodes. The requirement to keep the system working is that at least one server 

and the computing nodes need to be functioning. Typically, in HPC environments, 

computing nodes model follow a series structure. On the other hand, the server model 

follows a parallel structure. The block diagram shows that the two servers are in parallel, 

and the n computing nodes in series.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

server

node node

server

Figure 2.1 A RBD example 

The distribution function for the failure time of a subsystem with n components is 

given by [29] [31]:

Fault tree is a non-state space reliability modeling technique. A fault tree model 

represents all the sequences o f individual component failures that cause the system to 

stop functioning in a tree like structure. The starting point is the root o f the tree, which is 

the undesirable event of the system. A fault tree is a pictorial representation o f the 

combination o f events that can cause the occurrence o f an undesired event. All of the 

events are combined by means of logic gates. Each gate has inputs and outputs. The input 

is either an event or the output o f another gate. The output of an AND gate is a logic 1 if 

and only if  all o f its inputs are logic 1. On the other hand, the output o f an OR gate is a 

logic 1 if  and only if one or more o f its input are at logic 1. Figure 2.2 shows the fault tree 

model o f the two servers and n nodes cluster computing system as an illustrating 

example.

for a parallel structure 
for a series structure

(2 .8)

Where Ft(t) is the probability for component i to fail at time t .

Fault Tree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Failure

a

(sT) (s?)
1

Figure 2.2 A Fault tree example 

The failure distribution F(t) for the failure time o f a subsystem is computed as:

AND gate 
OR gate

(2.9)

i=i

Where F, (t) is the probability for component i to fail at time

The k-out-of-n structure

A k-out-of-n structure can be in two different forms, k-out-of-n “good”, and k- 

out-of-n “fail”. A k-out-of-n “good” structure means that the whole subsystem can 

function if k or more o f the components is working. On the other hand, a k-out-of-n “fail” 

structure means that the whole subsystem fails if  k or more of the components has failed. 

The backbone o f the k-out-of-n structure is in a form of binomial trials. Thus, the failure 

distribution F(t) for the failure time of a subsystem for a k-out-of-n “fail” structure is

The distribution function for a k-out-of-n “good” structure can be acquired in the 

same way. Note that, Equation 2.10 is applied to a k-out-of-n “fail” structure with n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2 .10)



19

identical components. If the structure constitutes non-identical components, the 

corresponding equation is complicated. Varieties of algorithms [13][14] exist to make the 

calculations faster on this behave, and they are out of the scope of this dissertation. 

Reliability Graphs

A reliability graph is another representation of combinatorial models. It consists 

of a set of nodes and edges. The graph contains a source node and a destination node, and 

the edges are assigned with failure probability or failure rates. A system represented by a 

reliability graph fails when there is no path from the source node to the destination node. 

The reliability or unreliability of the graph is solved by (1) generating the set of minpath 

or mincut [15]-[20], (2) making all the path or cut pair wise disjoint, and (3) summing up 

the probability o f all the minpath or mincut.

Availability Modeling Using Combinatorial Models

Combinatorial models cannot capture the repair event. For this reason, they are 

generally used for reliability measures. However, with certain modifications, and assume 

each components are stochastic independent, combinatorial models can be applied to 

system availability measures.

For a repairable component with failure rate X and repair rate pi , its 

instantaneous availability A(t) is

4 0  =  — T + ~ ^ L 7 e ~(M+*)' ( 2 . H )pi + X px + X 

and its instantaneous unavailability U(t) is

£/(<)= 1-/<(/) = - A -  (2.12)
pi + X pi + X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

The proof is given at the end of this chapter, via a two state Markov model. 

Together with the equations shown above, the combinatorial model can be applied to 

availability modeling, under the assumption that the components are stochastic 

independent.

2.3.2 Markov Models

Dependability models often need to capture the sequence of component failures 

when modeling fault tolerant systems. Combinatorial models have difficulty in capturing 

this type of system behavior because of their combinatorial characteristics. To address 

this type of system behavior, Markov models have been popular techniques applied to a 

variety of fields. A Markov process, which is a special case of stochastic processes whose 

dynamic behavior is such that, the probability distributions for its future development 

depend only on the present state and not how the process arrived in that state. From the 

view o f a system model, a Markov process represents the system as a finite group of 

states in which the system can exist, and a set o f transitions that moves the systems 

between states over time. The following gives the general concepts.

Definition Stochastic Process

A stochastic process is a family o f random variables t e  T},  defined on a 

given probability space, indexed by the parameter t, where t varies over an index set T. 

Definition Markov Process

A stochastic process {x(t)| t e T }  is called a Markov process if  for any 

t0 <tx <---<tn <t  , the conditional distribution of X(t)  for given values of 

X (t0), X (tx), ■ • • X{tn) depends only on X (tn), that is 

p \x { t ) < x  I X ( t , ) = x „  * (< _ ,) = X,-,, ■ - ,  X ( t , ) = *„ ] = p[x{f) < x  I X ( t , ) = x , ] (2.13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

A Markov process is called a Markov chain if the state space is discrete. If the 

parameter time space T  of a Markov chain is discrete, then it is a discrete time Markov 

chain (DTMC). If the parameter space T  is continuous, it is a continuous time Markov 

chain (CTMC), otherwise. In general, a Markov process is referred to as a continuous 

time Markov chain. If the transition rates are constant, the Markov chain is said to be 

homogeneous. This implies that the time spent waiting in any state is exponentially 

distributed. On the other hand, if the rates of transitions are functions of time instead of 

constants, the Markov chain is said to be non-homogeneous. If the distributions of the 

holding time of any states are general distributions other than exponential distribution, 

the Markov model is said to be a semi-Markov model.

Classification o f States

o The state j  is said to be reachable from state i i f  the probability p y > 0.

o Transient state: A state is said to be transient if  and only if there is a positive 

probability that the process will not return to this state, 

o Recurrent state: A state is said to be recurrent if  and only if, starting from a state, 

the process eventually returns to the state with probability one. 

o Periodic and aperiodic state: A recurrent state is periodic with period d if 

Py (0 = 0 except t = d, 2d, • • •. A state that is not periodic is an aperiodic state.

o Absorbing state: A state i is said to be an absorbing state if  and only if  p H = 1

o Ergodic state: An aperiodic recurrent state with a finite mean recurrent time is 

called ergodic.

The majority Markov models of repairable computing systems are ergodic. In this 

dissertation, only homogenous ergodic CTMC is o f interest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22

Continuous Time Markov Chain [50]

Let E  be a countable set of state space, and let {x( t ) \ t  >0} stochastic process

t e R + and x ( t ) e E  . {*(01* >0} is called a continuous time Markov chain if

V /, ,z2, •••,/* e E , V t,s e R +, and V s ,,s2,- ■■,sk e R + with s, < s for all I e  [l,A:],

p[2f(t + 5) = 7 | ^ )  = / ,x (5 1) = i1,- - - ,x ( 5 j  = / j = jp[x(t + 5) = y | x ( 5 )  = /] (2-14)

whenever both sides are well defined. It is called homogeneous if Equation 2.14 is 

independent of s.

Chapman-Kolmogorov Equation

Let P  be the probability transition matrix of a CTMC, and P = where

i, j  e E  and py(t)= P[x(t  + s) = j  \ X(s)  = /]. The Chapman-Kolmogorov Equation can

be described as

P(t + s) = P(t)p(s) (2.15)

with the properties of P(o) = I  and P{t)e = e , where /  is the identify matrix and e is a

vector with all elements are Is.

Chapman-Kolmogorov forward differential equation

The infinitesimal generator matrix Q is defined as

e=limM ^ L 4  (2, 6)
[ At J

and the Chapman-Kolmogorov forward differential equation is defined as

-  ( 2 , 7 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

Let 7r(o) and n(t) be the initial probability vector and the probability vector of 

the CTMC at time t , respectively (7r(/) = /r(o).P(f)), then Equation 2.15 can be expressed 

as

(2.i8)

A stationary distribution of continuous time Markov chain is any probability vector n  on 

the state space E  such that V t e R*

n{t)Q = 0 (2.19)

and

ne  = 1 (2.20)

where e is a vector with all elements are 1 s, i.e., e = {l, 1,■ • •, l}.

2.3.3 The Other Markov Models

This section briefly introduces some models deviated from the Markov models, 

include Markov reward model, Petri Nets, and Hybrid models. Because o f the fact that 

they are built on top o f the Markov model, therefore, it is reasonable to place them into 

the Markov models category.

Markov reward model [35] is a Markov model with the reward assigned to each 

states and transitions, and each submodel is linked by mathematical expressions.

Petri Nets [40] consists of places and transitions, and it is more recent than other 

models. A number o f tokens exist in the net and migrate from place to place according to 

the rules upon which each transition becomes enabled. Stochastic Petri Nets permit the 

transitions to require a delay period that has a specified distribution before the transition 

becomes enabled. Petri nets can model system behaviors such as event conflicts,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

concurrency, sequencing, forking, joining, and synchronization. Petri net models may be 

evaluated either by simulation or by reduction to a Markov model. There are several 

kinds of nets, such as generalized stochastic Petri nets (GSPN) [39], stochastic reward 

nets (SRN) [41], etc. [38],

Hybrid models are analytical models that integrate two or more different types of 

analytical models together, often in a hierarchical way. The software packages that 

support hybrid models include CARE [21], HARP [22], and SHARP [23],

Dynamic Fault Tree (DFT) uses the fault tree representation to capture systems 

dynamic behaviors by adding several logical gates [42], such as functional dependency 

gate, sequence enforcing gate, priority AND gate, etc. A software package is necessary to 

host a DFT model, and translate the model into an underlying Markov model. The 

Markov model is then solved and the result is given to the modeler.

2.4 Model Generation and Existing Software Packages

System modeling and analysis is generally a two-step process: (1) abstracting the 

real world problem into an analytical model, and (2) solving the model to produce a value 

for the measure of interest. The first step is to create the model, and it is the task of 

modelers; the second step is almost always solved by using a computer, except for trivial 

problems which can be solved by hand. Thus, analytical modeling is a technique of 

choosing the best way to represent the model (the modeling part), to solve the model (the 

mathematical part). One can also argue that the analytical modeling is a three step 

process: create the model, represent the model into a computer, and solve the model by 

the computer. In this case, the modeler needs to choose the model type, abstract the 

system into the model, and represent the model in the computer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Creating an analytical model needs the modeler to intimately understand the 

system and its behavior, and be well versed in the underlying mathematical theories. 

Experience is the most effective way to increase the skill. It often requires step learning 

curve in one area (the system) or the other (mathematical theory) by a person doing the 

modeling work. Once the system and the underlying mathematics are understood, the 

modeler then needs to capture the relevant behavior o f the system into the model. 

Modeler should consider tradeoffs between complexity and accuracy. The more details 

and more components captured in the model, the larger and more complex the model will 

be. As a consequence, it will take a long time to have a solution, or there is no solution 

for the reason that computer cannot handle such a model. If the model is too complex to 

be solved by computers, the modeler needs either to simplify the model by eliminating 

more detail behavior o f the system such as model decomposition at system level, 

coverage modeling, or use mathematical theories to have a approximate solution such as 

state space aggregation and truncation. Certainly, the system can be modeled in one way 

or another, and an approximation is better than no solution at all.

Therefore, the analytical modeling becomes an iterative process, that is, 

representing the system in a model, solving the model by a computer. If the solution is 

not satisfied, the modeler needs to go back to remodel the system until a desired solution 

is achieved. Sometimes the correctness o f the solution cannot be guaranteed, because the 

system can be modeled in many ways, and the computer may not always give the right 

result due to the algorithm applied and the round off errors. One way to get a good 

feeling on the model is for the modeler to build up different types o f models, and/or to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

use a completely different computer package to evaluate the exact same measure and 

compare the results.

There are a variety of software packages that exist [11][12] to facilitate models 

solving. Some are programs oriented, and some of them are equipped with GUI editors to 

provide modelers with visual means to enter the model into the computer. CARE [21], 

HARP [22], and SHARPE [23] support combinatorial modeling. Dependability modeling 

software packages that solve continuous time homogeneous Markov chains include 

ARIES, SURF, SAVE, and ACE [11]. CARE and HARP support solving homogeneous 

and non-homogeneous Markov models. HARP, SHARPE and SURE are also designed to 

solve semi-Markov models. There are many software tools available for stochastic Petri 

net specification and analysis, which include SPNP [24], GreatSPN [25], ESP [26], and 

UltraSAN [27]. Galileo [28] is the software package for dynamic fault tree modeling.

2.5 Two State Markov Model

This section gives the proof to the availability o f a repairable component via a two 

states Markov model. This concept is used to achieve availability modeling via 

combinatorial models, and will be used in this dissertation later on. Thus, it is necessary 

to lay out the proof herein.

Considering a repairable component with failure rate X and repair rate ju , Figure

2.3 shows the corresponding two-states Markov model o f the component. The model has 

two states, state 1 and state 0. State 1 means the component is functioning, and state 0 

means the component has failed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27

Figure 2.3 A two-state Markov model 

The availability of the component is actually the probability that it is in state 1. 

The generator matrix is:

Q =
- n  n
X - X

(2 .21)

(2.22)

Then the differential equation becomes

710 =  ~  jX K  0 +  X k  j

7 t  | =  h t T q  —  X t c j

Note that x 0 is used here instead o f x 0(t), and n x instead o f n x{t) for the purpose of 

clarity. Because x 0 + n x = 1, so the second equation o f (2.22) can be written as 

n\ = /y(l — 7T,) —Xnx
or

7t\ +  { f l  +  X ) x x =  / /

Multiply both sides by e^M+x̂ ' = e ^ +x̂ ‘ , we get

e(f,+x),7i■; +(/! + X)e{M+x)'7rl = jueifJ+x)‘

(eifl+x},x j  = ^ e ifl+x}'

(eifl+x),x . ) = - ^ - e {fl+x)' +c 
V 17 fi + k

(2.23a)

(2.23b)

(2.24)

7tx = - ^ - + c e ‘M ' 
M + k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



use the initial condition

component at time t is

28

, (0) = 1 , we get c = —- — . Then the availability of the 
fj. + X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

SYSTEM AVAILABILITY MODELING

3.1 Overview of the Approach

In general, this dissertation deals with modeling availability o f a HPC cluster 

[44][45] using familiarized notations, such as UML, as the front end design 

representation [89]. The approach is to embed the statistical parameters and information 

regarding properties that affect the system availability. Then, it exploits these designs in a 

systematic way towards generation o f models that serve as input for reliability and 

availability evaluation. The approach requires minimum user effort and eliminates the 

need for manually remodeling o f the system since the user can change the design in the 

UML front end. Figure 3.1 illustrates our integrated UML availability modeling 

framework.

Intermediate
Specification

UML Availability 
Model

Figure 3.1 Modeling framework

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

The UML based model incorporating the information needed for dependability 

analysis is transformed into an intermediate model which adopts an object-oriented 

specification. Then, the intermediate model is transformed into the analytical model.

In this approach, the intermediate model representation is to mimic the UML class 

and statechart diagrams; thus, it is a one-to-one mapping from the UML model. 

Currently, we have implemented part of the intermediate model, which is represented in 

Chapter Four. This chapter focuses on presenting alternative availability models for 

cluster computing systems. It first presents the model decomposition approach, and then 

describes several possible availability models and their availability estimation.

3.2 Model Decomposition

A HPC cluster system consists o f a server and a set of client nodes. The server 

takes requests and forwards the jobs to a subset o f clients, while the clients handle the 

jobs and respond back to the server once the work is done. The server and clients are 

linked together through a network connection. If the server fails then the whole system is 

down; thus, the system suffers from a single point failure problem. The HA-OSCAR [47] 

introduced a standby server to the system in addition to the primary server.

The HA-OSCAR has a primary server and a warm-standby server. The primary 

server provides the services and processes all the user’s requests. The standby server is 

waiting to take control when a failure in the primary server is detected. When the primary 

server fails, after a certain time, the monitoring facility will detect the failure, and the 

standby server will “wake up” and take over the control. Once the primary server gets 

repaired, it will take back control of the system, and put the standby server back to 

“dormant”. More servers can be added into the system with different configurations to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



31

reduce the downtime, hence, increase the availability of the system.

The availability of the cluster system is assessed normally when there is at least a 

server and a quorum of clients functioning. If there are many processors involved in the 

system, and if the continuous time Markov chain model is chosen to describe the 

system’s dependability, then the resulting availability model could be extremely large. 

Thus, we adopt the “hierarchical composition” technique [29] [30][48] [49]. The system 

availability model is divided into two submodels based on the functionalities of 

subsystems, a server submodel and a client submodel. The availability model can be 

described by using a RBD (Reliability Block Diagram), as shown in Figure 3.2.

server

nodenode node

server

Figure 3.2 The RBD o f system availability model

The system fails when either the server submodel or the client submodel fails.

n n

Since A - l - F , from Equation 2.8, we have A(t) = n o - w ^ n  Ai (t) .  Hence, the
1=1 i=i

system’s availability is:

^sys = d sAN (3.1)

where Asys, As , and AN denote the availability for the system, server, and client

model, respectively. For the simplicity purpose of availability evaluation, we assume that 

the N client nodes are identical and exponentially distributed with failure rate and 

repair rate nn . The client submodel requires at least N  client nodes to keep the system 

functioning. The availability o f the client submodel is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

AN = t l <  (3.2)
1=1

where A„ and A„ are the availability and unavailability of a single client node at 

time t , given by [37]

= + (3.3)
K  + K +

= <3'4)

On the other hand, servers are normally implemented with complex mechanisms, 

leading to a complicated model, hence need to describe more intricate interactions. The 

complicated behavior can be modeled by a continuous time Markov chain 

[29][30][31][32]. We adopt an object-oriented, event generating, and message passing 

technique [36] to specify the interaction between servers. The object-oriented 

specification o f the servers and the transformation that converts the specification into a 

corresponding continuous time Markov model are described in Chapter Four.

3.3 Alternative of Availability Models

This section lists a few alternative availability models based on the cluster system 

configuration. The server’s availability models are specified by Markov models with 

states and transitions listed. The functioning states are marked as Y. We assume the 

servers have the same failure and repair rates, and the system is functioning if there is at 

least one server working. Figure 3.1 lists some parameters that will be used for the 

availability estimation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.1 Parameters for availability estimation

33

Input Parameters Mean
Time

Rate

Prim ary server failure 5,000 hrs 0.0002

Prim ary server repair 4 hrs 0.25

Failure detection 5 min 720

W arm standby server failure 5,000 hrs 0.0002

Active standby server failure 10,000 hrs 0.0001

Standby server activation 5 min 720

Standby server deactivation 5 min 720

Standby server repair 4 hrs 0.25

Single Active Server. The Markov model for a single active server is a simple two 

state model, and it is given by the end of Chapter Two. Thus, the model is omitted here.

Active-Standby Server. The Markov states and transitions o f the active-standby 

servers are given in Chapter Four as an example; thus, the model is not repeated here.

The k-out-of-n Structure. The k-out-of-n structure is based on Formula 2.10.

Active-Active Servers. The Markov states and transitions o f the active-active 

servers are listed in Table 3.2.

Three Active Servers. The Markov states and transitions of three active servers 

are listed in Table 3.3.

Table 3.2 Active-Active Markov states and transitions

# S ource Destination Rate

1 0 1 0.0002
2 0 2 0.0002
3 l 0 0.25
4 l 3 0.0002
5 2 3 0.0002
6 2 0 0.25
7 3 2 0.25
8 3 1 0.25

# States

0: u U Y

1: D U Y
2: U D Y
3 D D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3.3 Three active servers

34

# Source Destination rate

1 0 1 0.0002
2 0 2 0.0002
3 0 3 0.0002
4 1 0 0.25
5 1 4 0.0002
6 1 5 0.0002
7 2 4 0.0002
8 2 0 0.25
9 2 6 0.0002
10 3 5 0.0002
11 3 6 0.0002
12 3 0 0.25
13 4 2 0.25
14 4 1 0.25
15 4 7 0.0002
16 5 3 0.25
17 5 7 0.0002
18 5 1 0.25
19 6 7 0.0002
20 6 3 0.25
21 6 2 0.25
22 7 6 0.25
23 7 5 0.25
24 7 4 0.25

# states

0 u u u Y
1 DUU Y
2 UDU Y
3 UUD Y
4 DDU Y
5 DUD Y
6 UDD Y
7 DDD

3.4 Availability Estimations

In this section, we list some figures o f the evaluation results for the availability 

models presented in the previous section, as shown in Figure 3.3 - Figure 3.7. The 

parameters used are given in Table 3.1. We can see that for a single server, it reaches the 

steady-state availability at 0.9992. Both o f the active-active and active-standby servers 

reach the six-nine (0.999999). The three active servers reach 9-nine.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

Single Server

1.0002

1

0.9998

0.9996

0.9994

0.9992

0.999

0.9988

0 20 40 60 80 100 120 140 160 180 200

time (hour)

—  Single Server

Figure 3.3 Single server availability estimation

Active vs Standby Estimate

1.0000002
1

0.9999998 

^  0.9999996 

< 0.9999994 

0.9999992 

0.999999 

0.9999988 — I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

■ A.A.
■ A.S.

time (hour)

Figure 3.4 Active vs standby server availability estimation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

Active-Standby Estimate

1.0000002

0.9999998

0.9999996

0.9999994

0.9999992

0.999999
0 20 40 60 80 100 120 140 160 180 200

time (hour)

Figure 3.5 Active-Standby server availability estimate

A.S.

Active-Active Estimate

1.0000002
1

0.9999998 

^  0.9999996 

<  0.9999994 
0.9999992 

0.999999 

0.9999988

-A. A.

1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200

time (hour)

Figure 3.6 Active-Active server availability estimate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

3 Active Servers Estimate

<

0.999999999
0.999999999
0.999999999

0 20 40 60 80 100 120 140 160 180 200

time (hour)

Figure 3.7 Three-Active servers availability estimate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4

THE OBJECT-ORIENTED SPECIFICATIONS

4.1 Introduction

Markov processes, also known as continuous time Markov chains (CTMC) 

[50][51], have been widely applied to a variety of fields. A Markov Process {.Y(r),r>o} 

serves as a platform for modeling stochastic systems, particularly for evaluating 

reliability and performance of computing systems. However, complex systems often 

result in large Markov models, which are out of the logic view o f the systems. Hence, it 

becomes a tedious task to insert all o f the Markov states and transitions manually.

This dissertation proposes an object-oriented modeling framework for Markov 

chain specification and generation. The approach aims to facilitate computing systems’ 

availability modeling. An availability model is specified in an XML [8] file, in which 

each component in the system is depicted as an object. Then the XML specification file is 

transformed into a corresponding Markov model, with a list of Markov states and a list of 

Markov transitions. After that, the Markov model is solved by a Markov chain evaluator.

4.2 Background and Related Work

Varieties o f software packages exist to facilitate the reliability modeling and 

specify the models in compact forms [11][12][22][23][24][28]. UML is a widely-adopted 

modeling language used to visualize, specify, construct, and document the artifacts of a

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

software system [2], UML not only encapsulates a rich set of diagrams, but also provide 

features such as stereotypes, tagged values, and constraints that can be customized and 

extended. Therefore, by adopting a subset of UML notations and formalizing them with 

proper semantics, it is feasible to transform the UML model automatically into 

corresponding analytical models.

Recently, researchers have attempted using UML to elaborate systems’ 

dependability and performance aspects. ARAT [3][4] produces the dynamic metrics 

from UML usecase, statechart, and sequence diagrams for risk assessment at the 

architecture level. HIDE [5] [6] supports dependability evaluation by elaboration o f an 

automatic transformation from UML to Timed Petri Nets (TPN). Pai and Dugan [7] 

present an approach to automatically generate Dynamic Fault Trees (DFT) [28][42] from 

a UML system model. These approaches are similar in the way that UML diagrams are 

used to elaborate the systems, together with stereotypes, constraints, and tagged values; 

the difference is in embracing different diagrams, extensions, annotations, and in aiming 

at different systems.

Clearly, there is no unique solution to UML dependability modeling and its 

transformation. Indeed, UML is composed of a series o f diagrams that depict the class 

structure, dynamic properties, and event sequencing for an object-oriented software 

system with no formal semantics attached to the individual diagrams. Therefore, it is 

impossible to apply rigorous automated analysis. However, formalizing a subset of UML 

diagrams to produce semantics to a given domain is feasible. UML formalization and 

transformation are still an ongoing research [8] [9] [10]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

4.3 Overview

An object has a unique event based behavior in relevance to other objects in the 

system. We propose a scheme to describe the system’s availability by adopting a subset 

of the object oriented features, and represent the objects in a XML format file. In this 

way, the XML representation of the system’s reliability can be customized easily and 

configured during the runtime. The framework is depicted in Figure 4.1.

OOMCrOOMS M M

Figure 4.1 OOMSE Framework 

OOMS represents the Markov chain specification in an object oriented fashion. 

The specification is a one-to-one mapping from the UML statechart diagrams. OOMG is 

the Markov chain generator, which transforms the OOMS into a list o f the corresponding 

Markov states and a list of Markov transitions -  a Markov Model (MM). The user can 

view and customize the Markov model. Then the Markov model is passed into the Java 

Markov chain analyzer (JAMACA) to be evaluated, and the result is returned to the user.

In the object-oriented availability specification paradigm, each component in the 

system is treated as an object. The system’s availability model is actually delineated by 

the state changes o f each object and the interactions among these objects. The 

corresponding Markov model is generated by all o f the possible combinations o f states in 

each object, together with the restrictions o f guards, triggers and actions. Figure 4.2 gives 

a simple example of two objects’ interaction.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

| Up Warm

/S.irateup;afler) wakeup

Down Up

(a) Primary Server (b) Stardby Server

Figure 4.2 Statecharts for two servers 

Figure 4.2 shows a computing system with primary server P and a standby server 

S in two statechart diagrams. Figure 4.2 (a) shows primary server and Figure 4.2 (b) 

shows the standby server. Initially, the primary server is working, and the standby server 

is in the warm state waiting to take over the control. The corresponding Markov state is 

specified as UW, where U  denotes up state and W is for warm state. After t i  time, the 

primary server fails, the transition from up to down is fired, and the transition in S labeled 

in wakeup is enabled, which change the state o f S from warm to up in the time o f 12. The 

word “after” given in the parenthesis denotes that the action is taken after the transition. 

The sequence of Markov states is UW DW DU.

A subset of object-oriented structuring is adopted in the approach. We also extend 

the concepts by allowing a sequence o f actions instead a single one. This can be achieved 

in the UML statechart diagram by separating individual actions by a special symbol, i.e., 

a comma. Moreover, an action is preceded with the respond object’s name followed by 

the dot (.) operator. In this way, it speeds up searching for the right trigger. The modeling 

scheme is laid out and regulated in definitions given in the following section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

4.4 Definitions

Definition 4.1 An object is a 4-tuple O = {/V, S, S0, E} where:

N -  the unique name of the object

S -  the set o f possible states for the object

S0 -  the initial state for the object, and S0 e  S

E -  the set of events that can be generated by the object.

An event is defined as a timed event that changes the object from a source state to 

a destination state. Thus, an event is defined by E = {r}, where T is a set of state 

transitions for the event, T = j.

A transition consists o f a source state, a destination state, a firing rate, and may 

optionally be associated with a trigger, a guard, and a sequence o f actions. A transition is 

enabled either by a self generated timed event or triggered by another object’s action. We 

assume all o f the timed events and triggered events are exponentially distributed. A 

transition is regulated as follows.

Definition 4.2 A transition is a 6-tuple t = {s,d,r,tr,g,A} 

where

s -  source state o f the transition 

d -  destination state of the transition 

r -  firing rate of the transition 

tr -  trigger o f the transition 

g -  guard o f the transition 

A a set o f actions, A = , a2, • • • j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

4.5 Grammar

The grammar [68] for the XML representations is presented in this section,

preceded with a list of acronyms for the grammar’s readability.

Acronyms:

S -  the start symbol 
SU -  system up 
OBS -  objects 
OBN -  object name 
OB -  object 
OU -  object up 
STS -  states 
ST -  state
TRANS -  transitions 
TRAN -  transition 
TG -  trigger 
TGN -  trigger name 
GDS -  guards 
GD -  guard 
ACTS -  actions 
ACT -  action

Grammar:

S-* <systemup>SU</systemup >
<objects>OBS</objects>

S U ^(SU O pSU )\O U
OU-* OBN=ST
OBS -» OBS OB\OB
OB -* <object name = String>

<states>STS</states>
<initial state>ST</state>
<events> TRANS</events>
</object>

TR AN S^ TRANS TRAN\TRAN
TRAN-* transition  src=STdst-STrate=Num>

TG GDS ACTS </transition>
TG-* <trigger>TGN</trigger>\ £
GD-* <guard>GD Op GD\G </guard>\e 
G-* <guard>OBN [= =\\=]ST</guard>\ e 
ACTS-* ACTS\ACT
ACT^> <action>OBN.TGN(before\ after)</action> \ e 
OBN ̂  String

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

STS ̂  STS\ST 
ST  -> String 
TGN^> String 
Op^ [& & |||]
S tr in g s  [a-zA-Z0-9]+
Num -> [0-9]+.[0-9]+

Terminals = <, >, /, systemup, objects, object, name, states, state, initial events, 

transition, src, dst, rate, trigger, guard, action, before, after.

4.6 Algorithm

In this section, we briefly illustrate the algorithm that transforms a list of objects 

into CTMC. For the sake o f clarity, the algorithm is broken into five major procedures, 

namely the main procedure, generate states, process transitions, perform transition, and 

perform action. Pseudo -  Java code is used to depict the algorithm for convenience. 

Members of objects are accessed by the dot operator (.), i.e., t.guard; meanwhile, 

members o f lists and strings are accessed via the [ ] operator, as they are in arrays, i.e., 

state[i].

4.6.1 The Main Procedure

The main procedure takes in a list o f objects. It maintains also three lists, namely 

a list of old states, a list o f new generated states, and a list of generated transitions, as 

global variables. The procedure first creates the initial Markov states via synthesis all of 

the objects’ initial states, separated by commas, and adds the initial state to the new state 

list. Then it takes a state from the head of the new list, calls the generate procedure 

(which generates new states and transitions) to handle the state, appends the state to the 

end of the old list, and remove the state from the new list. Finally, it marks the “good” 

states in the old list. The following gives a skeleton of the procedure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45

While the new list is not empty

Do

state = head of the new list 

call generate (state); 

append state to old list; 

remove state from new list;

4.6.2 Generate States and Transitions

The generate state procedure takes a state (a string) as a parameter, and generates 

new states and new transitions whenever it is possible. The procedure traverses the object 

list and the transitions in each object, and then it calls the process transition procedure to 

handle each transition.

4.6.3 Process Transitions

The process transition procedure takes a global state, an object state, the object 

position in the object list, and a transition of the object as parameters. The procedure first 

checks whether the transition meets the three conditions: (1) there is no trigger (a 

transition with a trigger cannot be fired by itself), (2) the guard is satisfied, and (3) the 

transition’s source meets the current object state. Consequently, the procedure checks 

whether there is any actions associated with the transition. If there is no action, the 

transition is fired accordingly. If the action is characterized as “before”, as indicated by 

the action’s parameter, the action is fired before firing the transition. Conversely, the 

transition is fired before the action, provided that the action is marked as “after”.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

4.6.4 Perform Transition

The perform transition procedure first creates a new state by replacing the current 

state’s zth component with the destination of the transition (state[i] = t.dst). Secondly, it 

creates a new Markov state transition by setting the transition’s source to the old state, 

and destination to the new state, together with the transition rate. Furthermore, the 

procedure adds the new state to the new state list, and the new transition to the transition 

list.

4.6.5 Perform Action

The perform action procedure first finds the object position via the object name 

specified in the action, then locates the transition that possesses the trigger, and finally 

calls the perform transition procedure to fire the transition, provided that the guard 

condition is satisfied and the transition’s source meets the current object state.

4.7 Examples

This section gives two examples to illustrate the methodology. The first example 

consists o f two objects, while the second example has three objects interacting with each 

other.

4.7.1 Example 1

We adopt the HA-OSCAR system [47] as a target model, with minor 

modifications for the sake of simplicity. The system has a primary server P and a warm- 

standby server S. The primary server provides the services and processes all the user’s 

requests. The standby server is waiting to take over the control when a failure happens in 

the primary server. When the primary server fails, after a certain time, the monitoring 

facility will detect this failure, and the standby server will be “waken up” and takes over

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

the control. Once the primary server gets repaired, it will take back the control of the 

system, and put the standby server back to “dormant.” Table 4.1 gives the XML 

specification for the two servers.

Table 4.1 OOMS of two servers in XML

<systemup> (P=U || S=U) <systemup>

<objects>
<object name="P">

<states>
<state nam e="U"/>
<state nam e="D"/>

</states>
<initial state="U'7>

<events>
<transition src="U" dst="D" ra te= "tp l7>  

<action>S.wakeup(after)</action> 
</transition>
<transition src="D" dst="U" rate="tp2"> 
<action>S.dormant(before)</action> 

</transition>
</events>

</object>

<object name="S">
<states>

<state nam e="W "/>
<state nam e="U '7>
<state nam e="D"/>

</states>
<initial state="W "/>
<events>

<transition src="W " dst="U" rate="tsl">  
<trigger>wakeup</trigger> 

</transition>
<transition src="W " dst="D" rate="ts2'7> 
<transition src="U" dst=”D" rate="ts3"/> 
<transition src="U" dst="W " rate="ts4"> 

<trigger>dormant</trigger> 
</transition>
<transition src="D" dst="W " rate="ts5"> 

<guard>P==U</guard>
</transition>

</events>
</object>

<objects>____________________________________

In Table 4.1, the first line specifies that the system requires either P or S to be 

functioning. The primary server consists o f two states, up (U) and down (D), while the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

standby server has an additional warm (W) state. Initially, the primary server is 

functioning, and the standby server is in the warm state. Hence, the initial Markov state is 

UW. When the primary server fails after a certain time tpl, it goes to state D, and the 

standby server is brought to state U by the trigger “wakeup” after time tel. The action 

wakeup takes a parameter “after” to indicate the action needs to be performed after the 

transition is fired. The sequence of generated Markov states is UW—»DW—>DU. After it 

gets repaired, the primary server will go to state U again, and leave the standby server to 

state W. The generated Markov states are D U —»D W -»U D . The action dormant takes a 

parameter “before” to indicate the action needs to be performed before the transition 

fired. The standby server can fail when it is in both warm and up states. It can be repaired 

only when the primary server has not failed, and this is guarded by the condition P =  U . 

Table 4.2 and Table 4.3 list the generated Markov states and transitions.

Table 4.2 Markov states for two servers

# States Up
1 U,W Y
2 D,W
3 D,U Y
4 U,D
5 D,D Y

Table 4.3 Markov transitions for two servers

# Source Destination Rate
1 U,W D,W tp l
2 D,W D,U tsl
3 u,w U,D ts2
4 D,W U,W tp2
5 D,W D,D ts2
6 D,U D,W ts4
7 D,U D,D ts3
8 U,D D,D tp l
9 D,D U,D JEI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

4.7.2 Example 2

We use a hypothetical system as the second example, by adding an additional 

“cold” standby server C to the previous example. Initially, C is in the “cold” state. It will 

be brought to the “warm” state whenever the primary server or the warm standby server 

fails. It will be in the “up” state when both the primary server and the standby server 

failed. It will be put back to “sleep” when the first two servers are healthy. The cold 

server can fail in both the “up” and the “warm” state, but no failure will happen when it is 

in the “cold” state.

The difference from the previous example in specification is that when the 

primary server fails or get repaired, it needs to enable the triggers in the “warm” standby 

server and the “cold” standby server, sequentially. While the “warm” standby and the 

“cold” standby servers need to specify guard conditions to prevent unnecessary events to 

happen. For example, if  the Markov state is UDW, and a failure happens to the first server, 

the first state goes from U  to D, and then changes the Markov state to DDW. The 

corresponding actions try to wake up the second or the third server by enabling the 

triggers. However, the second and the third servers are in state D and W, therefore, the 

S . w akeup and C . warmup triggers cannot enable the transitions and are ignored. 

Nevertheless, the C . w akeup trigger changes the Markov states from DDW to DDU. The 

complete specification o f the three servers is given in Table 4.4, and the generated 

Markov states and Markov transitions are given in Table 4.5 and Table 4.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

Table 4.4 XML specification of three servers

<systemup> (P=U || S=U||C=U) <systemup> 

<objects>
<object nam e="P">

<states>
<state nam e="U"/>
<state nam e="D"/>

</states>
<initial state="U"/>

<events>
<transition src="U" dst="D" rate="tpl"/>  

<action>S.wakeup(after)</action> 
<action>C.warmup(after)</action> 
<action>C.wakeup(after)</action> 

</transition>
<transition src="D" dst="U" rate="tp2"> 
<action>S .dormant(before)</action> 

<action>C.dormant(before) </action> 
<action>C.sleep(before) </action> 

</transition>
</events>

</object>

<object nam e="S">
<states>

<state nam e="W "/>
<state nam e="U"/>
<state nam e="D"/>

</states>
<initial state="W "/>
<events>

<transition src="W " dst="U" rate="tsl">  
< guard> P= U < /guard>  

<trigger>wakeup</trigger> 
</transition>
<transition src="W " dst="D" rate="ts2"> 

<action>C.warmup(after) </action> 
<action>C.wakeup(after) </action> 

</transition>
<transition src="U" dst="D" rate="ts3"/> 

<action>C.warmup(after) </action> 
<action>C.wakeup(after) </action> 

<transition src="U" dst="W" rate="ts4"> 
<trigger>dormant</trigger> 

</transition>
<transition src="D" dst="W" rate="ts5"> 

< guard> P= U < /guard>  
<action>C.sleep(before) </action> 

</transition>
</events>

</object>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

Table 4.4 Continued

<object name="C">
<states>

<state name="C"/>
<state name="W "/>
<state nam e="U"/>
<state name="D"/>

</states>
<initial state="W "/>
<events>

<transition src="C" dst="W " rate="tcl">  
<guard>P==D || S==D</guard> 
<trigger>warmup</trigger>

<transition src="W " dst="D" rate="tc2"/> 
<transition src="W " dst="U" rate="tc3"> 

<guard>P!=U && S!=U</guard> 
<trigger>wakeup</trigger> 
<action>C.warmup(after) </action> 

</transition>
<transition src="U" dst="D" rate="tc4"/> 
<transition src="U" dst="W" rate="tc5"> 

<guard> S!=D</guard> 
<trigger>dormant</trigger> 

</transition>
<transition src="W " dst="C" rate="tc6"> 

<guard>P!=D && S!=D</guard> 
<trigger>sleep</trigger>

</transition>
<transition src="D" dst="C" rate="tc7"> 

<guard>P!=D && S!=D</guard> 
</transition>

</events>
</object>

<objects>____________________________________

Table 4.5 Markov states for three servers

# States Up
1 U,W ,C Y
2 D,W ,C
3 D,U,C Y
4 D,U,W Y
5 U,D,C Y
6 U,D,W Y
7 D,D,C
8 D,D,W
9 D,D,U Y
10 D,W ,W
11 d ,u ,d Y
12 U,D,D Y
13 D,D,D
14 D,W ,D
15 U,W ,D Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

Table 4.6 Markov transitions for three servers

# Source Destination Rate
1 U,W ,C D,W ,C tp l
2 D,W ,C D,U,C tsl
3 D,U,C D,U,W tel
4 U,W ,C U,D,C ts2
5 U,D,C U,D,W tel
6 D,W ,C U,W ,C tp2
7 D,W ,C D,D,C ts2
8 D,D,C D,D,W tel
9 D,D,W D,D,U tc3
10 D,U,C D,W ,C ts4
11 D,U,C D,D,C ts3
12 D,U,W D,W ,W ts4
13 D,W ,W D,W ,C tc6
14 D,U,W D,D,W ts3
15 D,U,W D,U,D tc2
16 U,D,C U,W ,C ts5
17 U,D,W D,D,W tp l
18 U,D,W U,D,C tc6
19 U,D,W U,D,D tc2
20 D,D,C U,D,C tp2
21 D,D,W U,D,W tp2
22 D,D,W D,D,D tc2
23 D,D,U D,D,W tc5
24 D,D,U D,D,D tc4
25 D,W ,W D,D,W ts2
26 D,W ,W D,W ,D tc2
27 D,U,D D,W ,D ts4
28 D,W ,D U,W ,D tp2
29 D,U,D D,D,D ts3
30 U,D,D D,D,D tp l
31 U,W ,D D,W ,D tp l
32 U,W ,D U,D,D ts2
33 U,W ,D U,W ,C tc7

4.8 UML Availability Modeling

This section illustrates using UML to specify cluster systems’ availability. In the 

model, all o f components are treated as objects, and transitions are treated as object 

interactions. A subset o f UML notations is adopted, namely class diagram and statechart 

diagrams, to specify cluster systems’ availability. HA-OSCAR is used as an example to 

illustrate the concept.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

The system model is described using a class diagram with the keyword “system” 

as its name to indicate it is the entry point of the model. The system model is divided into 

(composite) submodels, in a “tree like” structure, associated with the aggregation 

relation, which indicates the “has a” relation, between a submodel and its higher model. 

A submodel can have submodels or “leaves”. The “leaves” are object entities defined 

either by a statechart diagram or a predefined formula. Failure rate and repair rate are 

defined as tag-value pairs. “Siblings” relations are denoted by associations, which are 

stereotyped as “series” or “parallel” optionally with a predefined formula as its name.

The servers are modeling by using state chart diagrams. A statechart diagram 

consists of states and transitions, and has the following properties:

■ The state from the UML initial state is represented as a filled black circle to 

indicate the system’s initial state.

■ A state has a name and a tag to indicate the component’s state status, namely,

Good: true or false.

■ A transition is associated with two tags: failure rate and repair rate.

■ A transition may consist of guards and actions.

■ Actions are denoted further by regular expressions.

Figure 4.3 shows the Availability Model o f HA-OSCAR as an example. The 

system is divided into a client submodel and a server submodel, with the “series” relation. 

The client submodel consists a clientnodes model, which is denoted as the k-out-of-n 

formula in the method field o f the class diagram. The server submodel “has” the PServer 

and the SServer submodels, with the “parallel” and the “CTMC” relation. Then two 

server submodels are needed to be defined in statechart diagrams.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

System

ClientModel
«  se r ie s  »

ServerModel

I
ClientNodes

-failure-rate: float 
-repair-rate: float 
-mrirint

CTMC

PS etver
: parallel >

1
SS enter

+k-out-of-nOvoid

Figure 4.3 Availability model of HA-OSCAR 

Figure 4.4 shows the primary server in a statechart diagram. Initially, the primary 

server is in the up state. After a period o f time, it can fail; thus, it goes to fail state. The 

monitor will detect this event and bring the primary to down state and “wake up” the 

standby server. The “wake up” transition can only happen if the standby server is in the 

warm state (w). This is denoted by the “guard” followed by the action, which will change 

the standby server to the up state. Once the primary server is in the down state, it 

undergoes the repairing process. After it gets repaired, the system will reconfigure, put 

the standby server into the “dormant” state, and bring the primary server to the up state. 

The transition to “dormant” can only happen if the standby server is in the up state.

Figure 4.5 shows the statechart diagram for the standby server. Initially, the 

standby server is in the “warm” state (W), waiting to take over control o f the system. The 

transition from W to U and from U to W are denoted as guard “prohibit” to indicate the 

transition cannot happen by itself. The transition from down state (D) to warm state (W) is 

also guarded since the primary server has the priority to get repaired.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

^  w
J

\ t
F

V J

detection

W ake Up 
[SS erver .stat e = ^ V  J/SS erver .stat e=U V/

SS erver

/

Dormant

repairing

_ T T _
[SS eiver .State == U ]/SS erver .State == W

Figure 4.4 Statechart diagram for the primary server

w

[prohibit]

repair
[PServer.state==U]

U --------> ’ F ' — Hf Dt. J ^ J V- J

Figure 4.5 Statechart diagram for the standby server

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5

NUMERICAL SOLUTIONS OF 

MARKOV PROCESSES

5.1 Introduction

Markov processes, also known as continuous time Markov chains (CTMC), have 

been widely applied to a variety of fields. A Markov Process serves as a platform for 

modeling stochastic systems, particularly for evaluating dependability and performance 

o f computing systems. When the transition matrix o f a Markov process is large, it 

becomes very difficult to obtain a closed form solution for the transient state probability. 

In this case, a numerical approach is normally the choice. There are fruitful numerical 

methods for this purpose [53][60]. Among these, the uniformization (or randomization) 

method attracts more interests for its series computing and bounded error control 

properties.

In this chapter, we first review some existing numerical methods, formalize and 

simplify the uniformization procedure, then discuss several alternative implementations 

and pitfalls o f the procedure, and finally propose a light-weight model for solving large 

sparse Markov processes.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

5.2 Numerical Methods Overview

The numerical solutions of the Markov models can be classified into two 

categories: methods for solving the steady state and methods for the transient solution. 

This section gives an overview of the numerical methods in these two categories.

5.2.1 Steady State Solutions

The steady state solution of a Markov model may or may not exist. It depends on 

the structure of the matrix Q. If the steady state solution of a Markov model exists, it 

follows that the rate change of the probability vector n(t) at the steady state is zero, i.e.,

= 0 . Therefore, for a homogeneous CTMC, from Equation 2.18, the following
dt

equation holds [31][50][51][54]

nQ  = 0 (5.1)

where Q is the infinitesimal generator matrix.

For a discrete time Markov chain (DTMC), let P  be the probability transition

matrix, then from Equation 2.17, the steady state solution can be written as

n P  = n  (5.2)

which is equivalent to

7 t{l-P ) = 0 (5.3)

The stationary probability distribution vector n  also satisfies

ne  = 1 (5.4)

as shown in (2.20), where e is a vector with all elements are 1 s, i.e., e = {l, 1, • • •, l} .

The Equation 5.1 and 5.3 can be solved by the direct methods, iterative methods 

[53][54], Direct methods include Gaussian elimination, LU decomposition, etc. Iterative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

Methods include Jacobi method, Gauss-Seidel method, SOR method, and a family of 

projection methods.

5.2.2 Transient Solutions

The transient solution of a Markov model is to find the probability vector n{t) at

the above equation [50][51][52][54][69], such as matrix decomposition, matrix scaling 

and powering, uniformization, ordinary differential equation (ODE) solvers, and Krylov 

subspace method. Currently, most o f the existing software packages include multiple 

methods inside, and the most suitable method can be chosen either by the modeler [23] or 

automatically detected by the software itself [55],

5.3 The Uniformization Procedure

A continuous time Markov chain (CTMC) {x(/),t>0} on a finite state space, 

with the probability transition matrix P  and the infinitesimal generator matrix Q , can be 

described by the forward Kolmogorov differential equation [50][54]:

the CTMC at time t ,  respectively {n(t) = ^■(o)p(t)), then Equation 5.5 can be expressed 

as

time t, by solving the Chapman-Kolmogorov differential equation = n{t)Q . The
dt

explicit solution is in the form of n{t) = 7r(o)eQl. There are many different ways to solve

dt
(5.5)

Let ;r(o) and n (t) be the initial probability vector and the probability vector of

(5.6)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59

and the solution to Equation 5.6 is [54]

n{t)=7r{ 0)eQl (5.7)

The matrix exponential eQ' is defined by the Taylor series as

Let T > max,.^., ] , where qu denotes the diagonal element of the infinitesimal 

generator matrix Q , and P  be a discretized stochastic probability matrix, such

thatP = I + ^ Q  ■ Together with Equations 5.5 and 5.6, the transient probability vector at

time t can be obtained by computing the following formula:

The above procedure that discretized the continuous time Markov chain is known 

as the uniformization method [61] [62] [63]. The transient solution is computed from the 

discrete time Markov chain, which is embedded in a Poisson process with rate Tt . The 

uniformization procedure establishes the equivalency between continuous and discrete 

time Markov chain.

5.4.1 Truncation Error

In implementation, the infinite series o f Equation 5.8 needs to be truncated at a 

certain point to meet the desired error tolerance. The error bound formula is given by [54]

(5.8)

5.4 Implementation Analysis

[57]:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

(5.9)

where s  is the error tolerance, and k is the truncation point of that is large 

enough to satisfy the desired error control e .

Therefore, the actual formula (5.8) is reduced to compute the finite series as 

follows:

As shown in [57][58][59], choosing the error tolerances betweenlO’11 and 10”12 

will achieve the maximum accuracy.

The truncation point k  is referred to as the “right truncation point” for the 

Poisson process [59]. Some researchers [60][61][62] suggest also “left truncation” on the 

series, as given in the following formula

where / is the left truncation point.

The reason for performing the left truncation is that the Poisson distribution 

becomes thin as H  grows, and the terms on the left side are small and less significant, 

therefore, they can be “omitted”. Reibman [57] gives a formula for calculating the left 

bound in the appendix o f the paper. However, this technique is not adopted in our 

solution for the following reasons:

a) As Ft is small, so will the left truncation point; then there will be no need 

for the left truncation. As indicated in [57], fo rf = 1010, left truncation is not used if

4 ) = * ( o ) £ / v r' M
1= 0  l '

(5.10)

(5.11)

Ft <25.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

b) There is no better way to compute the initial matrix power P 1 than by 

vector matrix multiplication. As a result, the truncation simply ignores the

5.4.2 General Implementation

With a given error tolerance, the right side truncation point k  o f the infinite series 

in Equation 5.8 is computed. The procedure is naturally implemented by vector matrix 

multiplication instead of computing the matrix power, for the sake o f reducing 

computation complexity. This is done by simply moving the initial probability vector 

7r(o) inside the summation, in which case formula 5.10 becomes

The rest of the procedure is to compute the vector matrix multiplication iteratively 

and add the result to the previous one.

The term e-r' , referred to as “scalar”, may be applied to n  after the iteration 

[54][59] rather than applied to ;r(o) at the initialization step. Nevertheless, when ft  is

consequence, the computation either encounters an exception or increases result 

inaccuracy, depending on the platform the program is executing. Introducing e~T‘ to the 

procedure at the very beginning will keep the intermediate results growing slower, 

although the results of the beginning iterations steps are small. However, it will not be 

troublesome if Ft is small, as for example in partitioning the time line into multiple time 

intervals.

e r' ( n ) ' //! factor. Therefore, there is no advantage in doing so.

(5.12)

large, the term ( r ?)' may grow fast and potentially cause an overflow problem. As a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

5.4.3 Multiple Time Intervals

When the time t is large, difficulty arises as e~rAl is too small and (n ) ' is too 

large, causing the computation to underflow and overflow. For such a case, it is necessary 

to divide the time into multiple time intervals [54], then calculate the probability vector at 

each time interval, and use the results as the initial value for the next iteration.

For example, the total time (0,t) is partitioned into / +1 steps = t with

equal length A t, and ti+] -  t t + A t , then the probability vector at time tM is computed as 

follows:

(5.13)
U  j\

The error control used for computing the truncation point k should also be 

adjusted to reflect the fact. Stewart [54] suggests using e/l  as the error control value for 

each time interval, so that the overall error is bounded by the desired error tolerance s .

5.4.4 Small State Spaces

For a system with a small state space, i.e., a system with several hundred states, 

the infinitesimal matrix can be implemented in a two dimensional array. With the time 

partitioned into equal time intervals, the right truncation point k should be the same for

k
each time interval. The term T  = ^TiP i e~l Al (TAt)J/ j \  is a common factor and can be

7=0

stored in memory, thus it can be used in all the time steps [54][63]. The probability vector 

at time tM is simply computed by n(tM ) -  n{ti )T . We give an analysis on the 

complexity of this method as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

Calculating the matrix power P ' for each term is unrealistic. A better way to solve 

T  is to use the iteration method as shown in Figure 5.1.

Let r  = e“rA'

for j  = 1 to k do

T = T + TP

Figure 5.1 Algorithm to compute the T term 

It will requires o{k  -«3) multiplications to solve T and o [ n 2) multiplications 

t o r n i t ^ T . Hence, it requires o{l ■ n 2 + kn2) multiplications to reach the final solution at 

t . If the method is implemented as described in Section 5.3, it will need o(lkn2) 

multiplications. To find out if  this approach is efficient or not, we compare the operation 

cost with the vector-matrix multiplication approach. The storing T  approach is more 

efficient than then the vector-matrix multiplication if  it satisfy the following

l - n 2 +kn3 <lkn2 (5.14)

By canceling the common factor n 2, we get

I+ kn< Ik (5.15)

and finally we have

/ > ^ n ~ n (5.16)
k - 1

Therefore, we conclude that for a system with a small state space, and the 

infinitesimal generator is implemented in a two dimensional array, storing the common

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

factor matrix T for computing the probability vector is more efficient if  the divided time 

interval / is larger than the system state space.

5.4.5 Stiffness Models

Stiffness problem often arises in dependability and performance models, causing 

numerical instability in solution methods. A Markov model is said to be stiff when 

max, »  min, |Re(/l,.)j, where Xt are the eigenvalues of the infinitesimal generator

matrix Q [54]. A stiff Markov process often has one or more states with greatly different 

rates. To solve the problem, Reibman and Trivedi [57] suggest choosing small time-scale 

as a function of the slow rate. The experiment in [57][58][59] shows that the calculation 

is more expensive for stiff Markov models.

5.5 Large Sparse Matrix

For system availability and performance models, the infinitesimal generator 

matrix Q of the corresponding Markov chain is generally large with thousands o f states 

where most elements are zeros [55]. This is especially true when the Markov model is 

generated automatically from a higher level description, i.e. Stochastic Petri Net [22], In 

the M/M/1 [31] [52] queuing system, for example, the corresponding infinitesimal 

generator matrix Q contains three elements in each row (with two elements off the 

diagonal) and the rest are zeroes. For a large sparse Markov model, the two-dimensional 

array approach is infeasible because o f the limited storage and enormous computing 

operations. Sparse storage and preserving methods are used to solve the storage problem 

and computational complexity, normally by utilizing sparse matrix implementation 

techniques. There are numerous software packages, such as Linpack [65], JMP [66] for 

this purpose. Jin and Ziavras [64] present a parallel programming technique for large

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

sparse matrix multiplication. These packages and techniques are normally equipped with 

full matrix operational features. Hence, utilizing these packages will inevitably increase 

the computing code size, resulting too complex to be deployed and distributed. 

Furthermore, these general purpose matrix packages may not be efficient for such 

specific computing process. A better way is to tailor these packages to suit the 

uniformization method.

SERT [63] stores the state space, events, and transition rates into vectors, and 

traverse these vectors when computing Markov models. It does solve the large and sparse 

problem. The shortcoming of this approach is its lack of modularity, from the point of 

view of software development and maintenance. It smears the interface between the 

algorithm and the matrix computation. This makes it difficult to implement the algorithm 

and to upgrade the software package thereafter.

We propose our Light Weight Markov Chain solution (LWMC). Our goal is to 

create a LWMC calculator, which can be used to handle large sparse Markov models. In 

our approach, the transition matrix consists of n column vectors, where n is the number 

o f states o f the Markov model. Only nonzero elements are stored in each column vector 

together with their position. The approach is based on the following observation.

Let Cj denote the j  th column vector o f the discretized probability generator

matrix p , and {nP)j is the j  th component of the vector-matrix multiplication 7tP , 

then {nP) . = n c j . When performing the multiplication, only nonzero components of 

Cj are used, indicated by the indexes of the nonzero components o f c] . The operation can 

be expressed as (nP)j  = , for all /'and ctj * 0 .  Our solution is to implement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

Equation 5.13 and a column-wised sparse matrix equipped with a vector-matrix 

multiplication operation only. In this way, the algorithm and the matrix implementations 

are separated, leading to a convenient development and maintenance of the software 

package.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

MONITORING AND ANALYSIS

6.1 Introduction

In this chapter, we discuss a reliability-aware monitoring and modeling 

framework which provides near real-time system availability/reliability analysis and 

information for high performance cluster computing systems. Our work aims to address 

issues in existing solutions in which HPC system management only considers 

performance aspects and leaves reliability to a reactive (i.e. addressing issues after they 

happen) or manual recovery approach. Our proposed framework dynamically obtains 

availability information such as failure and repair events of the individual nodes and is 

able to model and evaluate system availability for the overall and partial HPC system. 

With near-real-time availability evaluation, the framework enables runtime systems such 

as schedulers or resource managers to be aware o f more accurate system reliability and 

hence better utilization and efficiency of the HPC systems. Lastly, we demonstrate 

usefulness of our approach to a scheduling runtime system based on the availability 

information provided by this framework. The failure and analysis model was 

reconstructed from system logs of the Lawrence Livermore National Laboratory 

Advanced Simulation and Computing (ASC) machines. The data set was used to

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

understand system availability and validate how a scheduler can exploit such information 

to improve the overall completion time for parallel jobs in the presence of failures.

Certainly, the framework can be extended to include more features such as more 

detailed error classification, failure correlation, and distributions other than the 

exponential distribution with additional efforts.

6.2 General Terms and Concepts

In this section, we give a brief description on the general terminologies and 

measuring concepts.

6.2.1 Fault Error, and Failure

Definition 6.1 A fault is an anomalous physical phenomena, either internal caused 

by manufacturing problem, fatigue, design flaw or external disturbance, such as 

environmental perturbations, temperature, vibration, etc.

Faults can be classified into transient faults, intermittent faults, and permanent 

faults. A transient fault is a fault resulting from temporary environmental conditions. An 

intermittent fault is a fault that is only occasionally and unexpectedly present due to 

unstable hardware or software states. A permanent fault is a fault that is continuous, 

persistent and stable due to an irreversible change.

Definition 6.2 An error is an undesired system behavior, when the system is not 

able to deliver services complying with what is expected of system. An error is a 

manifestation of a fault.

Definition 6.3 A failure is the occurrence o f an undesired circumstance affecting 

the service o f the system. The system is unable to perform some action that is due or 

expected. It is caused by an effective error that affects the delivered service.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

In general, an error is caused by a fault, and a failure is caused by an effective 

error. Figure 6.1 shows the relationship of the three.

ErrorFault Failure

Figure 6.1 Fault, failure and error 

Since we are interested in system availability analysis, a failure of a component is 

considered to be an event that causes the component out o f service such that the affected 

component cannot response to any request. A failure o f a system means the outage of the 

system.

6.2.2 General Concepts

The sample space o f an experiment, is the set o f all possible outcomes of that 

experiment [70][71][72], Let X i, X 2,-- - ,Xn be the random variables form arandom

sample of size n from some distribution, the sample mean X  is given by

and the sample variance is given by:

s = —n - l t r  n - 1

(6 .1)

" 1 " A

Y . X ' — \ ' L X >
V  1=1 /

(6.2)

It has been proved that X  is the best estimator of the mean and S  is the best 

estimator of the variance [71],

Goodness-of-Fit Test. Let A, i = 1,2,•••,£ be the number o f observations in the

k

random sample, with the sample size N  = '^j N i , and let Ei be the expected value of
i = i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

type i . If the null hypothesis H 0 is true, and the sample size is large, then the distribution

of the statistic Q = ^
i=1

will be approximately a x 2 distribution with k - 1

degree of freedom. It is desired to carry out the test at the significance level o f a 0. The 

null hypothesis H 0 should be rejected if Q is in the 1 - a 0 quantile of the x 2 

distribution with k - 1 degree of freedom. The test is called the j 2 test of goodness-of- 

fit test [12].

If the sample mean X  is used to calculate the statistic Q,  then the approximate 

distribution o f Q when H 0 is true lies between a / 2 distribution with k - 2  degree of 

freedom, and this leads to the following formula:

/=! E. X k-2.\~aQ (6.3)

As an example, consider a component in which the failure time is distributed with 

probability density function f ( t ) .  The observation starts from t0 to tk with k  time 

intervals, At, = t, - t 0, At2 = t2 - t x, Atk = tk - t k_i . And the number o f failures observed 

in each interval N ], N 2,---,Nk accordingly is given in Table 6.1 below.

Table 6.1 Example 1

Time intervals # failures
At,
A t2 n 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



71

The expected number o f failure Ej during interval Ati is

E, = N \  f( t )d t  (6.4)

6.3 Related Work

Availability and reliability are key attributes of computer systems. Event logs that 

are generated by the monitoring facilities provide an effective means of identifying 

defects to improve availability, and they are used in a variety o f ways. The monitoring 

mechanisms were originally developed to meet the needs o f hardware designers who 

wanted to debug their products. These mechanisms have been developed later on to meet 

other needs. Hence, the system logs are the result o f an evolutionary process rather than 

being the result of a predefined plan. Event logs have been used in many ways, including 

long term trend analysis, online diagnosis use for failure prediction, and MTTF 

estimation. The log analysis process is highly dependent upon the quality and 

completeness of the event logs. If the information is incomplete or missing, it will be 

difficult or impossible to interpret the events’ activities.

There is a wide variety o f research that is based upon the analysis o f event logs. 

Lin et al. [73] analyze the error log file on file servers to demonstrate the log is composed 

of at least transient and intermittent processes. Wein and Sathaye [74] present their 

experience with validation of complex computer system availability models. Ram et al 

[75] measures the failure rate in widely distributed software. Chillarge et al. [76] 

presented a failure rate measurement technique on distributed software, based upon 

classifying failure data into “failure windows.” Moran et al. [77] illustrated the 

availability monitoring facility developed at Digital Equipment International. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

approaches are similar in performing data analyses; the difference is the way they classify 

errors, the correlation, distribution, and aims at different models.

The uniqueness of our approach is that our framework automatically performs 

data analysis and availability modeling and repository when there are failure/repair 

events detected to provide near-real time availability information and inventory o f the 

HPC system. Existing approaches either perform the analysis manually or retrieve the 

data from the database (logs) periodically in order to generate the analysis report. We 

envision that reliability-aware runtime system can exploit near-real time availability 

information to improve efficiency and better HPC resource utilization.

6.4 Overview of the Framework

The monitoring framework consists of two major parts, namely reliability-ware 

monitoring and system availability modeling and analysis. The system availability 

modeling module provides a near-real-time availability evaluation for both node-wise and 

overall system. Currently, we constructed a proof-of-concept for each individual module. 

However, we plan to integrate our framework with the availability and system 

configuration and build an availability inventory and configuration database with 

normalization capability for the actual node-wise and system’s mean time to fail (MTTF) 

and mean time to repair (MTTR). Figure 6.2 shows the reliability-aware monitoring and 

modeling framework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

J
N2

/  System
/  log

J
Nh

Machines

Monitor

Ret/Avail 
Analysis & 
Modeling

Availability Models

fa ilure
Data

Record

Availability Inventory in 
ReliablejStorage

Figure 6.2 Monitoring and analysis framework 

In this framework, the monitoring facility is responsible for detecting failures, 

repairing other types o f events, and recording these events into the system log. The 

failure data record (FDR) is stripped from the system log file and contains only the events 

that are necessary to evaluate the system’s availability/reliability. The availability models 

are used to evaluate the system’s availability, which are stored in an XML file. The 

system’s log, failure data record, and the availability model are stored in a reliable disk 

storage. The Analysis & Solution module is responsible for pulling the data from the 

FDR, doing the analysis, and feeding the result into the availability models. The 

framework consists o f three functionalities: (1) detection, which is responsible for 

detecting failure events based on the failure classification, (2) logging, which writes the 

failure events into the system log file and the system failure data record, and (3) analysis

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

and update, which is responsible for failure analysis and normalization of the current 

system’s availability. Figure 6.3 shows the flow diagram inside the monitoring and 

analysis framework.

3 Update with 
new information

Failure
Data

Record

2 Invoke

1 Write Log

Availability Update 
Daemon

4 Anafysis-I 7 Solutlon-

System Log

Analysis Model Solution
5 UpdateMean

Time

-6 Update MTTF—

8 Update Availabilily-

9 Report

Figure 6.3 Monitoring and analysis flow diagram 

In Figure 6.3, each arc in this diagram is associated with a number to indicate the 

flow sequence, and a name to denote the action. The monitoring facility (MON) is 

responsible to watch the system health. Once a failure or repair event is detected, MON 

writes this information into the system log, and invokes the availability update daemon 

(AvailUpd) to update the system’s failure data record (FDR). After that, the 

AvailUpd invokes the analysis module, which queries the FDR to get the recent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75

failure/repair activity, reevaluates the MTTF, MTTR, etc., and then updates the mean 

time (MT) and the specification of the availability model with this new information. 

Finally, the AvailUpd invokes the solution module to solve this availability model. The 

result of availability solution is written back to availability repository on reliable storage.

As mentioned earlier, the monitoring system will maintain the configuration file 

in the system database to describe the availability property for each component. The file 

is a XML output from our design and availability analysis framework. Figure 6.4 shows a 

snippet for a server and a node instances in the availability and mean time file (MT). Each 

instance in the MT file has seven fields: (1) the starting time of the instance t0, (2) the 

current time , (3) the total elapsing time T in hours, which equals to t] - t 0, (3) total

number o f failures TF during this period of time, (4) the total downtime TDT, which 

represents the total repair time, (5) the MTTF, which equals to T/TF, (6) the MTTR, 

which equals to TDT/TF, and (7) the steady state availability o f the instance, which can 

be acquired from Equation 2.12. Among these fields, only f, and TF are recorded for 

each failure, and TDT is recorded for each repair. The rest of the fields are updated based 

on the changes o f /,, TF and TDT.

Once the AvailUpd finishes updating the MT file, it will pass these information 

to the solution engine to have the availability result. Figure 6.5 and Figure 6.6 show the 

system and the server availability model. The AvailUpd daemon first evaluates the 

servers’ availability; it updates the MTTF and MTTR in the servers’ availability model 

with the newly updated information in MT, and then passes the servers’ availability mode 

to the Markov solution engine to have the servers’ availability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

<SystemAvailability>0 999928</SysieniAvailability>

<Servers>
< S erver 1>

<t0>7/21/2000</t0>
<ti>i0M/2004</n/>
< T > 2 7 9 6 0 < /T >
<TF>9</TF>
<TDT*  1392 5--/TDT> 
<MTTF>3106.27/MTTF>
<MTTR>154,72<MTTR> 
<Availability>0.952<yAvallability>

< /S erver 1 >

< /S e rv e rs>

<Nodas>

<VNode435>
<{0>7i'21/2000</t0>
<t1>10/1/2004</t1/>
<T>2796Ck/T>
<TF>33</TF> 
<TDT>1157<TDT> 
<MTTF>>847,27/WTTF> 
<MTTR>35 06</MTTR> 
<Availablll[y>0.952</Avallability> 

<yNode435>

</Nodes>

Figure 6.4 MT file for a single instance

Once the servers’ availability is solved, the A v a ilU p d  evaluates the nodes’

availability. It first takes the mean o f the MTTF and MTTR, invokes the k-out-of-n

computing facility by passing in the number of computing nodes needed, and the total

number of available nodes. The system’s availability is the product o f the servers’ and the

nodes’ availability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

<System>

<Servers>
<Availability>CTMC(serverObjs.xml)<i‘Availability>

<(lServers>

<Nodes>
<Availability>K-OUT-OF-N(K,N) </Avaitability> 

<.'Nodes>

</System>

Figure 6.5 System availability model

<Objects>
<Object Name="Al">

<states>
<state name=*U7> 
<state name=*D7>

</states>
<Good>

•estate name=U7>
</Good>
<StatU5 s ta te=V /‘>

<Events>
<Transition src="U" dst=*D“ rate^O 0003217> 
<Transit»n src="D" dst=*U" rate=t> 0064837>

</Events>
</Object>

<Object Name="A2">
<states>

•estate name*TJ7> 
•estate name»T37>

</states>
<Good>

estate name="U7>
</Good>
<Status state«"U7>

<Events>
<Trar»sitk>n src="U" dst*TD" rate="0.0003577>
<Transition src*"D" dst»*U" rate*"0.007667>

</Events>
</Object>

</Objects>

Figure 6.6 Servers availability model 

The AvailUpd daemon first evaluates the node-wise and system-wise 

availability and then updates the availability slots in the MT file. Once the availability is 

calculated, the AvailUpd evaluates the availability of the nodes and the entire system’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

availability. The update facility performs the data analysis, and updates the MT file. The 

failure and repair events are assumed to be exponentially distributed, and computes the 

mean, variance and does the goodness-of-fit test. Finally, it generates a report and 

updates the system’s availability. Figure 6.7 shows the flow diagram for the data analysis 

module.

Failure
Data

Record

Exponential

Mean

Fit?

Report

Figure 6.7 Data analysis flow diagram

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

6.5 Measuring and Analysis

We analyzed the system logs of major HPC computing infrastructure provided 

from Lawrence Livermore National Laboratory. The system log file contains significant 

system events, from years past, collected from four ASC machines, namely White, Frost, 

Ice, and Snow. We then performed a detailed analysis on these data sets. For the purpose 

of brevity, we present only the analysis result of White. White, the largest among the 

aforementioned systems, is a 512-node, 16-way symmetric multiprocessor (SMP) parallel 

computer. All nodes are o f IBM's RS/6000 POWER3 symmetric multiprocessor 64-bit 

architecture. Each node is a stand-alone machine possessing its own memory, operating 

system (IBX AIX), local disk, and 16 CPUs. Table 6.2 lists a sample o f events in an ASC 

White machine during the four year period, from July 21, 2000 to October 1, 2004.

Table 6.2 Example o f failures in White

Id Type Subtype Wk-endng
TDT
(hr) Sect

Host
list

1914 HW HW-SSA_ADAPTER 7/28/2000 2 whit 265
1917 HW HW-IO 7/28/2000 33 whit 275
1931 HW HW-SWITCH 7/28/2000 72 whit 275
1913 HW HW-SSAADAPTER 7/28/2000 2 whit 287
1968 HW HW-SWITCH 8/4/2000 137 whit 017
1952 HW HW-CPU 8/4/2000 19 whit 025
1938 HW HW-CPU 8/4/2000 23 whit 026
1953 HW HW-MEMORV 8/4/2000 21 whit 067
1954 HW HW-MEMORY 8/4/2000 20 whit 100
1949 HW HW-MEMORY 8/4/2000 21 whit 266
1986 HW HW-CPU 8/11/2000 74 whit 010
1983 HW HW-MOTHERBOARD 8/11/2000 76 whit 026
1969 HW HW-OTHER 8/11/2000 48 whit 032
1970 HW HW-CPU 8/11/2000 21 whit 052
1971 HW HW-MOTHERBOARD 8/11/2000 20 whit 113
1985 HW HW-IO 8/11/2000 74 whit 115
1980 SW SW-COMM_SS 8/11/2000 172 whit 128
1972 HW HW-CPU 8/11/2000 46 whit 194
1973 HW HW-MEMORY 8/11/2000 48 whit 211
1974 HW HW-MEMORY 8/11/2000 144 whit 241
2005 HW HW-CPU 8/18/2000 144 whit 019
2002 HW HW-IO 8/18/2000 188 whit 026

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Table 6.2 shows the failure id, the type and subtype of the failure, date o f the 

failure discovered, total down time (TDT) cost by this event, and the system affected by 

this event. Note that the TDT is the repair time for this failure, which includes the 

response time, resolution time, and the verification time. We analyzed the availability, 

MTTF and MTTR for each node in the system. The MTTF for the a node equals to 

( t o t a l  e l a p s e d  t i m e ) /  (num ber o f  f a i l u r e s )  . The average MTTF for 

each node in the system is approximately 3923.8 hours.

The MTTR is the ( t o t a l  down t i m e )  /  (num ber o f  f a i l u r e s ), which 

implies that it approximately needs this much time to recover from each failure event. 

The average MTTR for each node in the system is approximately 55.3 hours. The steady 

state availability for each node is 0.98. Figure 6.8 shows the availability for each node in 

the White cluster system.

Availability for White

1 2 ,

1 ■
** * * *

0.8 * * * ** * *  *  * * Availability
<  0.6 - ■ A\arage=0.9872

0.4 - STDEV=0.03292

0.2

n - i i i

000 200 400 600

Nodes index

Figure 6.8 Availability o f each node in the White system 

From Figure 6.8, we can see that the majority of the availability o f each node is 

above 0.95, and a few o f them are below 0.8. The reason could be some nodes had been

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

used extensively compared to the others. For the login nodes (assume they are the 

servers), the average MTTF is 1997.5 hours, and the average MTTR is 112.3 hours.

Figure 6.9 and Figure 6.10 show the mean time to fail (MTTF) and total down 

time (TDT) for each node in the cluster White, the means are 3293 and 355 hours, and 

the standard deviation is 1217 and 56, respectively. From Figure 6.9, we observe that the 

MTTF for each node varies, namely, the smallest MTTF is 230 hours, and the maximum 

is 5592 hours. In Figure 6.10, node downtime density indicates that the most o f the total 

downtime for each node are around 100 hours; some failure events cost more time to be 

fixed, thus increasing the total average TDT.

Nodes MTTF for White

6000 -i

0

Mean=3923
STDEV=1217

51 101 151 201 251 301 351 401 451
Node index

Figure 6.9 Nodes MTTF density

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Nodes TDT for White

10000 1 

8000 - 

6000
Q
•“ 4000 -

1 51 101 151 201 251 301 351 401 451
Node index

Figure 6.10 Node downtime (in hours)

6.6 Improvement Analysis and Comparison

In this section, we give an example to illustrate the improvement o f our approach 

to provide more up-to-date system availability information.

The monitoring framework presented here updates the availability information 

whenever there is a failure and repair event occurs. Other existing approaches evaluate 

these information during a period o f time, such as once a month. The information 

collected reflects the availability aspects o f the system during this period, and is lagging 

from the actual system’s behaviors. On the other hand, our monitoring framework 

presents more accurate results comparrd with others. The dynamic information can help 

dependability-aware scheduling and check-pointing to perform their tasks more 

efficiently. We will use the events in node 012 of White to illustrate the concepts.

Table 6.3 shows the events happened in node 012 of cluster White. We apply both 

our technique and a typical approach (assume periodically evaluation on the first day of

—— Mean=355 
■ STDEV=56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

each month) with these events. Initially (July 21, 2000), we obtain the MTTF, MTTR and 

Availability for node 012 is 1997, 112, and 0.98, respectively.

Table 6.3 Events in node 012 of White

Failures Id Wk-ending TDT(hr) Node Id
1 2062 9/8/2000 22 012
2 2609 12/22/2000 36 012
3 2724 1/19/2001 12 012
4 3032 3/9/2001 97 012
5 3085 3/16/2001 2 012
6 3299 5/4/2001 22 012
7 3440 6/1/2001 57 012
8 4023 9/7/2001 40 012
9 4060 9/21/2001 37 012

10 4487 1/18/2002 88 012

During the first event happened on September 8, 2000, our approach is able to 

capture this episode immediately, and availability information was updated with MTTF = 

1176, MTTR = 22, and availability = 0.9812. The monthly update technique would still 

have the old information (MTTF is 1997, MTTR is 112 and availability is 0.98) until 

October 1, 2000. From September 8, 2000 to October 1, 2000, the information about 

node 012 is obsolete, because it does not reflect the event happened on September 8, 

2000. The situation is getting worse if there are more events happening during the update 

period, since the availability information is affected more than a single event.

Figure 6.11 shows the MTTF changes for node 012, both for dynamic and 

monthly updates. We can see that there is a lagging for the monthly update. There are a 

few points that are different from the monthly update. It is because there are more than 

one events happening during that period, and the monthly update techniques can not 

reflect this episode. Similarly, Figure 6.12 and Figure 6.13 show the MTTR and 

availability changes on node 012 for both ours approach (referred as dynamic) and 

monthly update techniques.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

MTTF changes

2500

2000

1500 -u.I-
t—
2

1000 -

500 -

1008 3720 4680 6096 7560 10488

T im e  (h o u rs )

— *— Dynamic 

_ . Monthly

Figure 6.11 MTTF changes o f dynamic and monthly updates

MTTR changes

120

100  -

80 -
ccI-I- 60
2

40 -

20

1008 3720 4680 6096 7560 10488

T im e ( h o u r s )

— Dynami c  

Monthly

Figure 6.12 MTTR changes o f dynamic and monthly updates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

Availability changes

0.995

0.99

0.985 - 

£  0.98 

« 0.975

0.965 -

0.96 -

0.955
1008 3720 4680 6096 7560 10488

T im e  (h o u rs)

—*— Dynamic 

Monthly

Figure 6.13 Availability changes o f dynamic and monthly updates

6.7 Reliability and Availability Aware Scheduling

The monitoring framework provides up to date availability and reliability 

information for the overall system and also individual nodes. With this information, job 

scheduling can be improved effectively. In this section, we present an experiment to 

demonstrate the affect o f considering reliability and availability parameters in the 

scheduling algorithm.

We have used the events o f cluster White to develop scheduling algorithms that 

use the availability information to schedule parallel jobs. The parameters MTTF, MTTR, 

and the elapsed time obtained from the information service are dynamically updated 

through a monitoring system. There are various important parameters that are significant 

in developing an effective scheduling algorithm such as job completion time, 

performance, throughput, utilization, reliability, safety, queuing times, etc. Here, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



86

consider reliability as an important attribute for a scheduling algorithm and show how the 

job completion time is affected when choosing such an algorithm, since the reliability 

information can be easily acquired from the MTTF provided from the monitoring system.

Figure 6.14 illustrates a Gantt chart [78] which shows the effectiveness of 

completion time for MPI jobs, in the presence of node failures. As the number o f nodes 

increases, the probability that one of the nodes fails also increases, thus affecting the 

overall job completion time. In the case of parallel programs, the failure will affect the 

job running on all the machines. The MTTF for n nodes is given by the following 

equation:

M TTF(n,A) = —  (6.5)
nX

No Failures

One node fails

Two nodes fail

------- 1 nodel

Ct
■ — 1 1

nodel

■................. ..................... .. ........c

I 1 1
nodel

! ! I
node2 c T

Figure 6.14 Completion time for a parallel job impacted by node failure 

Availability (or reliability) of the computing nodes becomes a very important 

factor in scheduling parallel jobs (such as MPI), because the job must be restarted and/or 

reallocated to a different set o f nodes when failures occur. In this case, the completion 

time o f the job will be affected in the event o f failure, as shown in the Gantt chart above.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

According to Amdahl’s Law, the maximum speedup achievable is limited by a 

serial fraction of the program. The “speedup” of a parallel program is defined to be the 

ratio o f the rate at which job is run on N processors to the rate at which it is executed on 

one node. The speedup S(N) is given by [78]:

(66 )n

S(n)

where p  is the fraction o f code that can be made parallel (therefore, 1-p is the code 

that has to be executed sequentially) and n is the number o f nodes. The expected 

execution time on n nodes T(n) is given by:

(6.7)
S(n)

A job completion time can be described as:

Ct = T(n) + T(f) (6.8)

Where T(n) is the expected completion time and T(f) is the total time spent on the 

nodes that have failed to run the job, p the fraction of code that is made parallel is 

assumed to be 0.891 hereafter.

Node-wise MTTF and the number o f cooperating nodes affect the total system 

availability and reliability as well as a completion time. For a given node-wise failure 

rate, the total system MTTF decreases (i.e. the frequency of failure increases) as the 

number of nodes on which the job runs increases. At some points, scalability will 

approach a break-even point where a long running job will not be able to finish due to its 

completion time being longer than the total system MTTF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

Figure 6.15 shows how the MTTF varies with the increase in the number o f nodes 

for three different failure rates. This phenomenon also elicits a conclusion that runtime 

systems, such as a scheduler aware of system reliability (MTTF), will benefit from 

MTTF information, especially more accurate MTTF information from our near real-time 

modeling approach. Since there are situations where a job will never complete due to a 

relatively short system MTTF, our future work will consider reliability-aware check

pointing technique [80][86] that aims to derive an optimal interval to save application 

contexts based on the runtime system MTTF. In addition, we will investigate a check

point and restart time as one o f the repair events, and its time factor that will influent our 

total system availability model.

Overall MTTF vs No of nodes

10000

1000

100

10

1

0.1

0.01

0.001
No of Nodes

—»— Failure rate=0.002 —•— Failure rate=0.004 — Failure rate=0.000f

Figure 6.15 MTTF on various numbers of nodes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation presents a novel technique to facilitate the availability modeling, 

runtime monitoring, and near real time availability evaluation. The background and basic 

concepts o f modeling techniques were reviewed first. We then characterized HPC system 

modeling as our targeted problem domain. Three key components are described in the 

dissertation, namely availability modeling, model evaluation, and monitoring and 

analysis. The HPC cluster system’s availability model is divided into submodels based on 

their functionalities, and these submodels are either represented by series structures or 

Markov models. An object-oriented Markov model specification has been developed to 

facilitate availability modeling and runtime configuration. We reviewed some numerical 

solution methods for solving Markov models. We also suggested a light weight solution 

for solving large sparse Markov models. The method has certain advantages for its 

modularity, platform independency, and small size.

In the monitoring and analysis chapter, we presented a framework to enable 

automatically data analysis and availability update. This framework not only is an 

important stepping stone to enable runtime systems to be aware o f resource availability, 

but also ensures the more accurate result with dynamic analysis approach, hence making 

better decisions in unleashing HPC power. We analyzed the actual data based on a real-

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

world production system logs from the Lawrence Livermore ASC machines, and fed 

analysis result to validate our approach. We have also demonstrated that an impact to 

runtime system performability is due to system reliability/availability information.

The key contribution of this dissertation is that we developed a new specification 

technique for cluster availability modeling. The specification is more intuitive, comparing 

with other existing solutions. The technique can reduce the burden from the modeler’s 

shoulder. As the result, the availability model specification can be updated easily to 

enable runtime availability evaluation. The technique provides a mile stone for UML 

availability modeling, which is a one-to-one mapping from the intermediate model 

specification.

Currently, we consider each computer as a single instance under the assumption 

such that each instance having an exponential distribution with failure rate X , that means 

aging has no significant effect. The theory of Markov processes assumes that the waiting 

time in a state before a transition to another state occurs, is a random variable having an 

exponential distribution. The future work should extend the model to include aging. This 

can be done by considering semi-Markov model [50], where the failure is not exponential 

but may be Weibull, or Gamma distributions. The modeling framework can also be 

extended to capture more detailed system behaviors, such as software failure. The 

monitoring and analysis facility needs to be able to diagnosis the software defects as well, 

and detailed failure classification. Furthermore, modeling evaluation should include more 

methods, and be able to choose the appropriate method(s) for a particular model. The 

system’s availability model is under the assumption such that, if  the monitoring cannot 

receive the response of any node, it considers that the node to has failed. This deficiency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

can be extended by monitoring and modeling more detailed events and instances in each 

node and probing critical services or applications o f interest. Non-homogeneous Markov 

model and semi-Markov model [71] should also be investigated to represent the system’s 

behaviors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

OBJECT-ORIENTED MARKOV MODEL 

TRANSFORMATION

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

Algorithm: Generate state-spaces and transitions 

Note:

■ The algorithm is written in pseudo -  Java code
■ Members of an object are accessed using the dot operator, i.e., t.guard
■ Members of lists, strings are accessed via the [ ] operator, as they are in arrays, i.e., 

statefi]

Main procedure

Given: a list of objects

Output: a list of Markov states with “good” states are marked, and a list of transitions 

Variables:

state -  a global state (object states separated by commas)
ol -  an old list
nl -  a new list
objl -  an list o f objects
transitions -  a list o f transitions

Procedure:

nl = initialStates(objl); 
while (nl != empty) { 

state = nl[0]; 
generate (state); 
ol.append (state); 
nl.remove (state);

}

mark_goods( o l ); 
output (ol);

Procedure generate(state)

Given:

state -  a global state 

Global variables:

objl -  an list o f objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

Local variables:

t -  a transition
tl -  a list of transitions
s -  an object state
0 -  an object
i, j -  iteration counter

Procedure:

i=j=0; 
s = state[i];

while(i<obj 1. size()) {

0 = objl[i]; 
tl = o.transitions;

for(j = 0; j<tl.size(); j++) {
t = m

processTransition (s, state, t, i); 
}

1 ++;
s = state[i];

}

Procedure processTransition (s, state, t, i)

Given:

s -  an object current state 
state -  a global state 
t -  an transition
1 -  the current object position

Local variables:

src -  a source state

Procedure:

If (t.trigger != null) return; //do nothing

src = t.src; 
if  (src != s) return;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

if(!satisfyGuard(state, t.guard)) return;

if ( t.action == n u ll){
performTransition (state, t, i);

}else{
if (isActionBefore (t.action)) { 

performAction (state, t.action); 
performTransition (state, t, i);

} else {
performTransition (state, t, i); 
performAction (state, t.action);

}
}

Procedure performTransition (state, t, i)

Given
state -  a global state
t -  an transition
i -  the current object position

Global variables

tl -  a list of transitions

Local variables

ns -  a new state

Procedure

ns = replace(state, i, t.dst); //statefi] = t.dst 
if(!transitionExists(s, n, tl)){ 

tl.add(new Transitions, n, t.rate));
}
addNewState(n);

Procedure performAction (state, action)

Given
state -  a global state 
action -  an action

Variable
i -  an integer, indicate an object position 
t -  a transition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

Procedure

//l. find the object position 
i = indexOfObjectByAction (action);

//2. traverse the transitions in the object, find //the correct trigger 
t = fmdTranByAction (i, action);

1/3. check if the t.src = = state[i] 
if( t.src != state[i]) return; 
performTransition (state, t, i);

Other auxiliary procedures:

■ Procedure initialStates (objl) creates the initial Markov state, by grouping the initial 
states of objects together, separated by commas.

■ Procedure satisfyGuard (state, guard) checks if the guard is satisfied or not.
■ Procedure replace (state, i, dst) returns state[i] = dst
■ Procedure transitionExists(s, d, tl) checks if the new transition with source = s, 

destination = d, exists in the transition list or not.
■ Procedure addNewState(n) add the new state n to the new state list nl, if  it is neither 

in ol nor nl.
■ Procedure isActionBefore (action) checks if the parameter in the action is “before” or 

“after”.
■ Procedure indexOfObjectByAction (action) first get the object name from the passed 

in parameter action, then returns the object position in the objects list.
■ Procedure findTranByAction (i, action) first locate the trigger specified in the action, 

and then returns the transition that having this trigger.
■ Procedure mark goods ( o l ) marks the “up” states in the old list.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B 

THE UNIFORMIZATION PROCEDURE

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

Algorithm: Uniformization Procedure 

Given:

Q — infinitesimal generator matrix
n 0— initial probability vector
s  — error tolerance 
t — desired solution time 
At — time interval length.

Variables:

P — discretized transition matrix 
/  — identity matrix 
T — scaling factor 
n  — probability vector 
i, j  — iteration counter 
k  — series truncation point 
I — time intervals

Procedure:

Chose r>m ax(| (̂l j

p = I + - Q
r

/ = t/A t

* (r/VDetermine the largest k  with 1 -  ---- -  < e /l
1=0

Jt = 7t o

for i = 1 to / do {
n = xe~rt
for j  = 1 to k  do {

K = n  + n P —
j

}

}

Vector-matrix-multiplication {n, P) Procedure 

Assume:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99

I. P is implemented in column-wise vectors of size n , with only nonzero 

elements filled in, together with their position stored separately.

II. nPi is the summation of all the nonzero elements of Pi multiplied by the 

corresponding elements in n .

for i = 1 to n do { 
n i = ttP-

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[1] J.C. Laprie, “Dependability: a unifying concept for reliable computing and fault 
tolerance,” Dependability o f  Resilient Computers, T. Anderson Ed., Blackwell 
Scientific Publications Professional Books, 1989, pp. 1-28.

[2] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user guide, 
Addison Wesley, 1999.

[3] K. Goseva-Popstojanova, A. Hassan, A. Guedem, W. Abdelmoez, D. Nassar, H. 
Ammar, and A. Mili, “Architectural-level risk analysis using UML,” IEEE 
Transactions on Software Engineering, vol. 29, no. 10, Oct., 2003, pp. 946-960.

[4] T. Wang, A. Hassan, A. Guedem, W. Abdelmoez, K. Goseva-Popstojanova, and H. 
Ammar, “Architectural level risk assessment tool based on UML specifications,” 
Proceedings o f  the Twenty-fifth International Conference on Software Engineering 
(ICSE03), Portland, Oregon, 2003.

[5] I. Majzik, A. Pataricza, and A. Bondavalli, “Stochastic dependability analysis of 
system architecture based on UML models”, In R. De Lemos, C. Gacek, and A. 
Romanovsky, editors, Architecting Dependable Systems, LNCS 2677, Lecture Notes 
in Computer Science, Springer-Verlag, Berlin, Heidelberg, New York, 2003, pp. 219- 
244.

[6] G. Huszerl and I. Majzik, “Modeling and analysis of redundancy management in 
distributed object-oriented system by using UML statecharts,” Proceedings o f  the 
Twenty-seventh Euromicro Conference, Warsaw, Poland, Sept. 4-6, 2001. pp. 200- 
207.

[7] G. J. Pai and J. B. Dugan, “Automatic synthesis o f dynamic fault trees from UML 
system models,” Proceedings o f  the Thirteenth International Symposium on Software 
Reliability Engineering (ISSRE’02), Annapolis, Maryland, Nov., 2002.

[8] M. Boger, M. Jeckle, S. Muller, and J. Fransson, “Diagram interchange for UML,” 
Proceedings o f  the 5th International Conference on The Unified Modeling Language, 
Dresden, Gennany, Sept. 30-Oct. 4, 2002.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

[9] W. McUmber and B. Cheng, “A general framework for formalizing UML with 
formal languages,” Proceedings o f  the Twenty-third International Conference on 
Software Engineering (ICSE01), Toronto, Ontario, Canada, May 1 2 -  19, 2001.

[10] D. Milicev, “Automatic model transformations using extended UML object diagrams 
in modeling environments,” IEEE Transactions, on Software Engineering, vol. 28, 
no. 4, April, 2002, pp. 413-431.

[11] A. Johnson and M. Malek, “Survey o f software tools for evaluating reliability, 
availability, and serviceability,” ACM Computing Surveys, vol. 20, no. 4, December, 
1988, pp. 227-269.

[12] K. S. Trivedi and M. Malhotra, “Reliability and performability techniques and tools: a 
survey,” Proceedings o f  Seventh ITG/GI Conference, MMB, Aachen University of 
Technology, Sept. 27 - 48, 1993.

[13] J. Huang and M. J. Zuo, “Generalized multi-state k-out-of-n:G systems,” IEEE 
Transaction on Reliability, vol. 49, no. 1, March, 2000, pp. 105-111.

[14] S. V. Amari, H. Pham, and G Dill, “Optimal design of k-out-of-n:G subsystems 
subjected to imperfect fault-coverage,” IEEE Transaction on Reliability, vol. 53, no. 
4, December, 2004.

[15] J. A. Abraham, “An improved algorithm for network reliability,” IEEE Transactions 
on Reliability, vol. 28, no. 1, April, 1979, pp. 58-61.

[16] M. Veeraraghavan and K. S. Trivedi, “An improved algorithm for symbolic reliability 
analysis,” IEEE Transaction on Reliability, vol. 40, no. 3, Aug. 1991, pp 347-358.

[17] S. Rai, M. Veeraraghavan, and K. S. Trivedi, “A survey of efficient reliability 
computation using disjoint products approach,” Networks, vol. 25, May, 1995, pp. 
147-163.

[18] T. Luo and K. S. Trivedi, “An improved algorithm for coherent-system reliability,” 
IEEE Transaction on Reliability, vol. 47, no.l, March, 1998, pp.73-78.

[19] A. O. Balan, and L. Traldi, “Preprocessing minpaths for sum of disjoint products,” 
IEEE Transactions on Reliability, vol. 52, no. 3, Sept, 2003, pp. 289-295.

[20] J. B. Dugan and K. S. Trivedi, “Coverage modeling for dependability analysis o f fault 
tolerant systems,” IEEE Transactions on Computers, vol. 38, no. 6, June, 1989, pp. 
775-787.

[21] F. P. Mathur, “Automation o f reliability evaluation procedures through CARE-the 
computer-aided reliability estimation program,” Proceedings o f  the AFIPS Fall Joint 
Computer Conference, vol. 41, 1972, pp. 65-82.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

[22] J. B. Dugan, K. S. Trivedi, M. K. Smotherman, and R. M. Geist, "The hybrid 
automated reliability predictor," AIAA J. Guidance, Control, and Dynamics, vol. 9, 
no. 3, May-June, 1986, pp. 319-331.

[23] C. Hirel, R. A. Sahner, X. Zang, and K. S. Trivedi, “Reliability and performability 
modeling using SHARPE 2000,” Proceedings o f  the Eleventh International 
Conference on Computer Performance Evaluation: Modeling Techniques and Tools, 
March 27-31 ,  2000.

[24] C. Hirel, B. Tuffin, and K. S. Trivedi, “SPNP: stochastic petri nets. Version 6.0,” 
Proceedings o f  the Eleventh International Conference on Computer Performance 
Evaluation: Modeling Techniques and Tools, 2000.

[25] G. Chiola, G. Franceschinis and R. Gaeta, M. Ribaudo, “GreatSPN 1.7: graphical 
editor and analyzer for timed and stochastic Petri Nets,” Performance Evaluation, 
24:47-68, 1995.

[26] A. Cumani, “ESP - A package for the evaluation o f stochastic Petri nets with phase- 
type distributed transition times,” In Proceedings International Workshop Timed 
Petri Nets, Torino, Italy, 1985, pp. 144-151.

[27] D. D. Deavours, W. D. Obal, M.A. Qureshi, W.H. Sanders, and A. van Moorsel, 
“UltraSAN version 3 overview,” Sixth International Workshop on Petri Nets and 
Performance Models (PNPM ’95), Durham, North Carolina, USA, Oct. 03 - 06, 1995.

[28] K.J. Sullivan, J.B. Dugan, and D. Coppit, “The Galileo fault tree analysis tool,” In 
Proceedings o f  the Twenty-ninth Annual International Symposium on Fault-Tolerant 
Computing (FTCS'99), IEEE Computer Society Press, Pittsburg, 1999, pp. 232-235.

[29] J. T. Blake and K. S. Trivedi, “Reliability analysis of interconnection networks using 
hierarchical composition,” IEEE Transactions on Reliability, vol. 38, no.l, pp. l l l -  
l l  9, April, 1989.

[30] R. A. Sahner and K. S. Trivedi, “A hierarchical, combinatorial-Markov model of 
solving complex reliability models,” Proceedings o f 1986 ACM Fall joint computer 
conference, Dallas, Texas, United States, pp. 817-825.

[31] Kishor S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer 
Science Applications. John Wiley & Sons, Inc., New York, 2002.

[32] J. Muppala, M. Malhotra, and K. S. Trivedi, “Markov dependability models of 
complex systems: analysis techniques,” Reliability and Maintenance o f  Complex 
Systems, S. Ozekici (ed.), pp. 442-486, Springer-Verlag, Berlin, 1996.

[33] O. C. Ibe, R. C Howe, and K. S. Trivedi, “Approximate availability analysis of 
VAXcluster systems,” IEEE Transactions on Reliability, vol. 38, no.l, April, 1989, 
pp. 146-152.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



103

[34] B. R. Haverkort and K. S. Trivedi, “Specification and generation o f Markov reward 
models,” Discrete-Event Dynamic Systems: Theory and Applications, vol. 3, 1993, 
pp. 219-247.

[35] R. M. Smith, Markov Reward Models: Application Domains and Solution Methods, 
PhD dissertation, Department of Computer Science, Duke University, 1987.

[36] S. Berson, E. Souza e Silva, and R. Muntz, “A methodology for specification and 
generation o f Markov models,” in Proceedings o f  the First Int. Conf. Numerical 
Solution o f  Markov Chains, Raleigh, NC, Jan., 1990.

[37] R.A. Sahner, K.S. Trivedi, and A. Puliafito, Performance and Reliability Analysis o f  
Computer Systems: An Example-Based Approach Using the SHARPE Software 
Package, Kluwer Academic Publishers, New York, 1996.

[38] A. Puliafito, M. Telek, and K. S. Trivedi, “The evolution of stochastic Petri Nets,” 
Proceedings o f the World Congress on Systems Simulation (WCSS '91), Singapore, 
Sept. 1-3, 1997.

[39] J. B. Dugan, Extended Stochastic Petri Nets: Applications and Analysis, PhD 
dissertation, Department o f Computer Science, Duke University, 1984.

[40] M. Malhotra and K. S. Trivedi, “Dependability modeling using Petri-Nets,” IEEE 
Transaction on Reliability, vol. 44, no. 3, Sept., 1995, pp. 428-440.

[41] G. Ciardo, A. Blakemore, P. F. J. Chimento, J. K. Muppala, and K. S. Trivedi, 
"Automated generation and analysis o f  Markov reward models using stochastic 
reward nets," in Linear Algebra, Markov Chains, and Queueing Models (eds. C. 
Meyer and R. J. Plemmons), Heidelberg: Springer-Verlag, 1993, pp. 141-191.

[42] J. B. Dugan, S. J. Bavuso, and M. A. Boyd, “Dynamic fault-trees models for fault 
tolerant computer systems,” IEEE Transactions on Reliability, vol. 41, no. 3, Sept., 
1992, pp. 363-373.

[43] M. A. Boyd, Dynamic fault-trees models: techniques fo r  analysis o f  advanced fault 
tolerant computer systems, PhD dissertation, Department o f Computer Science, Duke 
University, 1991.

[44] T. Sterling, Beowulf cluster computing with Linux, Cambridge, Massachusetts MIT 
Press, 2002.

[45] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak, and C. V. 
Packer, “Beowulf: a parallel workstation for scientific computation,” Proceedings o f  
International Conference on Parallel Processing, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



104

[46] T. Naughton, S. L. Scott, Y. Fang, P. Pfeiffer, B. Ligneris, and C. Leangsuksun, “The 
OSCAR toolkit: current and future developments,” Dell Power Solutions, Nov., 2001.

[47] C. Leangsuksun, L. Shen, T. Liu, H. Song, and S. L. Scott, “Availability prediction 
and modeling of high availability OSCAR cluster,” IEEE International Conference 
on Cluster Computing, Hong Kong, December 1-4, 2003.

[48] M. Lanus, L. Yin, and K. S. Trivedi, “Hierarchical composition and aggregation of 
state-based availability and performability models,” IEEE Transactions on 
Reliability, vol. 52, no.l, March, 2003, pp. 44-52.

[49] J. Lee, S. J. Chapin and S. Taylor, “Reliable heterogeneous applications,” IEEE 
Transactions on Reliability, vol. 52, no. 3, Sept. 2003, pp. 330-339.

[50] P. Bremaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. 
Springer, 1999.

[51] M. Iosifescu, Finite Markov Processes and Their Applications, John Wiley and Sons, 
1980.

[52] A. Riska, Aggregate matrix-analytic techniques and their applications, PhD 
dissertation, Department o f Computer Science, College of William & Mary, 2003.

[53] G. Strang, Introduction to applied mathematics, Wellesley-Cambridge Press, 
Cambridge, 1986.

[54] W. Stewart, Introduction to the numerical solution o f  Markov Chains, Princeton 
University Press, Princeton, 1994.

[55] R. Sidje and W. Stewart, “A numerical study of large sparse matrix exponentials 
arising in Markov Chains,” Computational Statistics & Data Analysis, vol. 29, no. 3, 
Jan. 1999, pp. 345-368.

[56] B. Philippe, Y. Saad, and W. Stewart, “Numerical methods in Markov Chain 
modeling, ” Operations Research, vol. 40, no. 6, 1992, pp. 1156-1179.

[57] A. Reibman and K.S. Trivedi, “Numerical transient analysis o f Markov models,” 
Computer Operations Research, vol. 15, no. 1, 1988, pp. 19-36.

[58] M. Malhotra, J. Muppula, and K. S. Trivedi, “Stiffness-tolerant methods for transient 
analysis o f stiff Markov Chains,” Microelectronics and Reliability, vol. 34, no. 11, 
1994, p p .1825-1841.

[59] C. Lindemann, M. Malhotra, and K. S. Trivedi, “Numerical methods for reliability 
evaluation o f Markovian closed Fault-tolerant systems,” IEEE Transactions on 
Reliability, vol. 44, no. 4, 1995, pp. 694-704.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



105

[60] R.J. Boucherie and E.A. van Doom, “Uniformization for lambda-positive Markov 
chains,” Stochastic Models, vol. 14, 1998, pp. 171-186.

[61] B. L. Fox, P. W. Glynn, “Computing Poisson probabilities,” Communications o f  the 
ACM, vol. 31, no. 4, 1988, pp. 440-445.

[62] E. de Souza e Silva and R. Gail, “Calculating cumulative operational time
distributions of repairable computer systems,” IEEE Transactions on Computer, vol. 
35,1986, pp. 322-332.

[63] D. Gross and D. R. Miller, “The randomization technique as a modeling tool and 
solution procedure for transient Markov processes,” Operation Research, vol. 32, no. 
2, 1984, pp. 343-361.

[64] D. Jin and S. G. Ziavras, "A super-programming technique for large sparse matrix
multiplication on PC clusters," IEICE Transactions on Information and Systems,
Special Issue on Hardware/Software Support fo r  High Performance Scientific and 
Engineering Computing, vol. E87-D, no. 7, July 2004.

[65] Linpack, http://www.netlib.org/linpack/.

[66] JMP - A sparse matrix library for Java, 
http://www.math.uib.no/~bjomoh/jmp/index2.html

[67] B. Verniers, Inside The Java Virtual Machine, McGraw-Hill, 1997.

[68] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, 
Addison-Wesley, Reading, Massachusetts, 1986.

[69] D. M. Daly, Bounded aggregation techniques to solve large Markov models, Ph.D. 
dissertation, Department o f Electrical Engineering, University o f Illinois at Urbana- 
Champaign, 2005.

[70] J. L. Devore, Probability and statistics, the Fifth ed., Brook/Core, New York, 2000.

[71] M. H. DeGroot and M. J. Schervish, Probability and Statistics, the Third ed., 
Addition-Wesley, New York, 2002.

[72] R. V. Hogg and A. T. Craig, Introduction to Mathematical Statistics, the Fourth ed., 
Macmillan Publishing Co., Inc., New York, 1978.

[73] T. Y. Lin and D. P. Siewiorek, “Error log analysis: statistical modeling and heuristic 
trend analysis,” IEEE Transactions on Reliability, vol. 39, no. 4, Oct. 1990, pp. 419- 
432.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.netlib.org/linpack/
http://www.math.uib.no/~bjomoh/jmp/index2.html


106

[74] A. Wein and A. Sathaye, “Validating complex computer system availability 
models,” IEEE Transactions on Reliability, vol. 39, no. 4, Oct. 1990, pp.468-479.

[75] D. Tong and K. Iyer, “Dependability measurement and modeling o f a multicomputer 
system,” IEEE Transactions on Computers, vol. 42, no. 1, Jan, 1993, pp. 62-75.

[76] R. Chillarege, S. Biyani, and J. Rosenthal, “Measurement of failure rate in widely 
distributed software,” Proceedings o f the Twenty-fifth International Symposium on 
Fault-Tolerant Computing (FTCS 25), Sendai, Japan, 1996.

[77] P. Moran, P. Gaffney, J. Melody, M. Condon and M. Hayden, “System availability 
monitoring,” IEEE Transactions on Reliability, vol. 39, no. 4, Oct., 1990, pp. 480-485

[78] T. Mattson, B. Sanders, and B. Massingill, Patterns fo r  Parallel Programming, 
Addison-Wesley, 2005.

[79] H. Song, C. Leangsuksun, N. Gottumukkala, R. Nassar, S. L. Scott, and Andy Yoo, 
“Near-Real-time Availability Monitoring and Modeling for HPC/HEC runtime 
systems,” Symposium o f  Los Alamos Computer Science Institute, Santa Fe, New 
Mexico, October, 2005.

[80] Y. Liu, C. Leangsuksun, H. Song, and S. L. Scott, “Reliability-aware Checkpoint 
/Restart Scheme: A Performability Trade-off,” IEEE International Conference on 
Cluster Computing, 2005.

[81] H. Song, C. Leangsuksun, and R. Nassar, “OOMSE -  An Object Oriented Markov 
Chain Specification and Evaluation Framework,” The Seventeenth International 
Conference on Software Engineering and Knowledge Engineering, Taipei, Taiwan, 
2005.

[82] H. Song, C. Leangsuksun, R. Nassar, Y. Liu, C. Engelmann, and S. L. Scott, “UML- 
based Beowulf Cluster Availability Modeling,” International Conference on Software 
Engineering Research and Practice, Las Vegas, Nevada, 2005.

[83] H. Song, C. Leangsuksun, R. Nassar, and Y. Liu “Availability Specification and 
Evaluation o f HA-OSCAR Servers -  An Object-Oriented Approach,” The Third 
International Conference on Computing, Communications and Control Technologies, 
Austin, Texas, July, 2005.

[84] H. Song, C. Leangsuksun, and R. Nassar, “A Light-Weight Solution for Large Sparse 
Markov Processes,” Proceedings o f  the Forty-third ACM Southeast Conference, 
Kennesaw, Georgia, March 18-20, 2005.

[85] H. Song and C. Leangsuksun, “A Framework for Cluster Availability Specification 
and Evaluation,” Proceedings o f  the Forty-third ACM Southeast Conference, 
Kennesaw, Georgia, March 18-20, 2005.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

[86] C. Leangsuksun, C. Kottapalli, H. Song, and Y. Liu, "Reliability-Aware Intelligent 
Checkpointing o f MPI Programs in Beowulf Clusters," High Availability and 
Performance Computing Workshop, Santa Fe, New Mexico, 2004.

[87] C. Leangsuksun, L. Shen, T. Liu, H. Song and S. L. Scott, “Availability Prediction 
and Modeling of High Availability OSCAR Cluster,” IEEE International Conference 
on Cluster Computing, Hong Kong, December, 2003.

[88] C. Leangsuksun, L. Shen, T. Liu, H. Song and S. L. Scott, “Dependability Prediction 
of High Availability OSCAR Cluster Server,” Proceeding o f the International 
Conference on Parallel and Distributed Processing Techniques and Applications, Las 
Vegas, Nevada, June, 2003.

[89] C. Leangsuksun, H. Song, and L. Shen, “Reliability Modeling Using UML,” 
Proceeding o f  the International Conference on Software Engineering Research and 
Practice, Las Vegas, Nevada, June, 2003.

[90] C. Leangsuksun, L. Shen, H. Song, S. L. Scott, and I. Haddad, “The Modeling and 
Dependability Analysis o f High Availability OSCAR Cluster System,” Proceeding o f  
The Seventeenth Annual International Symposium on High Performance Computing 
Systems and Applications, Sherbrooke, Canada, May, 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Fall 2005

	Availability modeling and evaluation on high performance cluster computing systems
	Hertong Song
	Recommended Citation


	tmp.1563389165.pdf.J7ySc

