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From the chart above, it can be inferred that the devices fabricated by LbL/micro-

ring technique have higher sensitivity and lower degradation with time as compared to

other fabrication techniques. Whereas LbL based devices have shorter response and

recovery time as compared to other fabrication techniques.

5.3.3 Micro-ring Array for Vertical 
Channel Field Effect Transistor

5.3.3.1 Design and fabrication of 
vertical channel micro
ring FETs

Step 1: Cleaning/Plasma Treatment

ITO coated PET flexible substrates were used for the fabrication of vertical FETs. 

ITO film which acts as a drain for VFET had a thickness of 120 nm and resistivity of 10 

0  cm, and PET had a thickness of 200 pm. ITO patterned substrate was sonicated in DI 

water, acetone and IP A for 10 min each. Finally the substrate was rinsed in DI water 

followed by drying with nitrogen gun. After cleaning the ITO substrate the next 

important step for improving the work-fixnction of ITO is oxygen plasma treatment. Since 

oxygen is electronegative; it renders negative charge to the surface of ITO which may 

cause depletion of electrons below the ITO surface which induces band bending and 

higher work function. Moreover the negative charge on the ITO surface helps layer-by- 

layer assembly of PAH/PSS/PAH/Si02 . Thus the ITO substrate is loaded into the top 

chamber of the Micro-RIE unit. After pumping down the chamber to 50 mtorr, the RF 

power was turned on (200 W), establishing a pale blue plasma. The inlet valve on the 

chamber was then slowly opened to let in a small stream of oxygen (5.5 seem), turning 

the plasma pink. The substrate was exposed to oxygen plasma for 3 min. After 3 min, the 

RF power was turned off, the chamber was vented and the substrate was removed.
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Step 2: Source/Drain Insulation

Layer-by-layer self-assembly of 3 bilayers of PAH/PSS which act as precursor 

layer were deposited on top of ITO surface. This was followed by 5 bilayers of PAH/Si02 

as shown in Figure 5.41. Si02  nanoparticles have a diameter of 7nm. The total thickness 

of 8 bilayers is about 50 nm. These bilayers act as insulation between source and drain.

PAH/PSS/PAH/Si02
1 ITO ITO

PET

Figure 5.41 Schematic of Si02  nanoparticle insulating layer over ITO

Step 3: Inkjet Printing of Micro
rings for Source

Inkjet printed micro-rings of PEDOT-PSS were dispensed such that the space 

between four drops is minimum. The thickness of the outer ridge is about 130 nm as 

shown in Figure 5.42.
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Figure 5.42 Surface profile of inkjet printed micro-ring spacers

Figure 5.43 shows the schematic of the source patterning using micro-ring

spacers.

, PAH/SiO,
$ ITO ITO 1

PET

Figure 5.43 Schematic of micro-ring spacers for source

Step 4: RIE Plasma Etching of SiC>2

The SiC>2 insulating layer between the micro-ring spacers was etched using SF6 

plasma in RIE chamber. The parameters used for etching were 60sec at a pressure of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



lOOmTorr and power of 200W. Figure 5.44 shows the optical image of inkjet printed 

micro-ring spacers before and after SF6 etching. It also shows that PEDOT-PSS rings act 

as mask in blocking the insulation layer below them.

Unexpos
edtoSF*

J

Exposed
toSF g

Micro-ring
Spacer

PEDOT-PSS

Figure 5.44 Optical image of SF6 plasma etching on micro-rings and Si02

Figure 5.45 shows the schematics of the SF6 etched Si02  insulating layer between 

the micro-ring spacers. The PEDOT-PSS micro-rings act as a mask for protecting the 

insulation of source and drain. These spacers are used as channels and the thickness of 

the insulating layer determines the channel length.

■'■■■ p a h /s i o 2

it o  n

m
O

PET

Figure 5.45 Schematic of SF6 etched Si02  for channel
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Step 5: Spin Coating of Channel 
Material

A 0.6% solution of MEH-PPV in p-xylene is prepared by sonicating the solution 

for more than 3 hrs at 50°C. Approximately 1 ml of MEH-PPV was dispensed on inkjet 

printed micro-rings and spun at speed of 2500 rpm for 30 sec which resulted in 80 nm 

thick film as shown by schematic in Figure 5.46. The samples are kept in vacuum for 15 

hrs for complete drying of the MEH-PPV layer. Thus MEH-PPV acts as a channel 

material for vertical FET. It is in contact with both source (micro-rings) and drain (ITO). 

MEH-PPV exhibits ambipolar behavior, but it acts more as a p-type than n-type material.

ITO (b ) |
t l

ITO

PET

Figure 5.46 Schematic of spin coated MEH-PPV channel

Step 6: Deposition of Gate Dielectric

Poly-4-vinylphenol (PVP) acted as gate dielectric layer. PVP was spin coated 

from a solution of isopropyl alcohol which resulted in a thickness of 150 nm. Figure 5.47 

shows the schematic of PVP dielectric layer on top of micro-rings and channel material. 

The dielectric constant of PVP is about 2.8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107

Figure 5.47 Schematic of PVP gate dielectric on top of micro-rings and channel

Step 7: Gate Deposition

PEDOT:PSS was used as gate material for vertical FET. Four layers of 

PEDOT:PSS were inkjet printed on top of the insulator. The thickness of gate was around 

200 nm. Conductive epoxy was used to make contacts to gate. The other contacts to 

source and drain were made by exposing them to oxygen plasma in RIE chamber. Figure 

5.48 shows the schematic of the final device.

PEDOT (Gate)

PVP (G - Dielectric)

PEDOT (Source & Cathode) 

MEH-PPV (Channel) 

PAH/SiOz (S -  D Insulation) 

ITO (Drain & Anode)

PET (Plastic Substrate)

Figure 5.48 Schematic of final vertical FET device
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5.3.2 Results and Discussion

Figure 5.49 shows the output characteristics of the MEH-PPV based 3><4 array of 

vertical channel FETs. The gate voltages were varied from 0 to -8 V.

In the linear region, the drain to source potential Vds is smaller as compared to the 

sum of the gate’s built-in potential Vbi and the gate to source potential Vgs. Thus, the 

drain current Id, increases linearly with the drain voltage Va according to equation 5.1 

[118].

/ , = !  tC ,< y ,- v T)vt  (5.1)

where Z is the channel width, L is the channel length, fl is the charge carrier mobility 

(cm2/Vs), Ci is the capacitance of the insulator per unit area, typically reported in nF/cm2, 

Vg is the applied gate voltage and V j is the threshold voltage.

OV

-2V

-4V

Figure 5.49 la -  Va characteristics of vertical channel polymer FET
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In the saturation region, increasing Vd beyond the cut-off point i.e., Vd > Vdsat 

causes the channel to deplete more and more and Id curves become saturated and the 

drain current does not increase further. The saturation current Idsat, can be described by 

equation (5.2) [115].

(5.2)

However, with negative increase in gate voltage, the drain current decreases. This 

is opposite to the conventional p-channel MOSFET behavior. This phenomena is thought 

to be due to the fact that when negative gate voltage is applied, the holes from 

PEDOT:PSS source (micro-rings) get attracted on the upper part of the ring. Thus on the 

lower part were the source and channel are in contact, the carrier concentration decreases, 

which increases the depletion width. With increasing the negative gate voltage the 

depletion width between source and channel keeps on increasing due to accumulation of 

holes at the interface of PEDOT:PSS (source) and PVP (gate dielectric) and depletion of 

holes at the interface of PEDOT:PSS (source) and MEH-PPV (channel) thus reducing the 

drain current.

Figure 5.50 shows the Idsat - Vg characteristics of vertical channel FET. The 

threshold voltage VT, defined as the minimum gate voltage required to induce the channel 

in a FET, is extracted from the intercept of a line drawn through the linear region of the 

Idsat172 vs. Vg plot shown in the inset of Figure 5.49. The values were calculated at drain 

voltage of -10 V as the device shows saturation in this region. The point of intersection 

gives the threshold voltage Vx of -7 V.
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Figure 5.50 Idsat -  Vg characteristics of vertical channel FET (inset: Idsat - Vg)

The mobility value was extracted from equation 5.2 where Z/L ratio is 5000, C, is 

1.77x10'8 F/cm2 for 150 nm gate-dielectric, gate voltage of 0V and threshold voltage of - 

7 V. The extracted value of mobility is 4.6 x 10'3 cm2/Vs. The Ion/ I0ff current ratio for the 

device is of the order of 10 .

Thus, we have demonstrated vertical channel FETs using inkjet printed micro

rings as source and the inner part of these overlapping micro-rings as channel. These 

devices can be further optimized in future for integrated vertical FET with polymer 

LEDs, where the electroluminescent channel material can act as inner layer between 

anode and cathode. Thus gate can have control of the LED.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

A novel technique for fabricating micro-rings using drop-on-demand inkjet 

printing has been developed by exploiting the coffee drop effect. The drop dispensing 

parameters and substrate temperatures were modified to influence the drop dynamics in 

such a way that using a same nozzle size both diameter and height of the micro-rings can 

be varied. Micro-rings of diameter varying from 100 pm -  700 pm, and heights varying 

from 100 nm -1 0  pm have been realized.

Factors affecting the transport phenomena of the solute particles moving towards 

the periphery of the micro-ring after being dispensed from the piezoelectric based drop- 

on-demand inkjet printing system have been considered for the fabrication of the micro

rings. Two dispensing techniques used for varying the diameter of height of micro-rings 

are named as “instant dispensing” and “dispense and dry.” A model has been developed 

in the form of flow chart and by varying the parameters such as frequency of drops 

dispensed, substrate temperature and number of drops, desired micro-ring structures of 

varying diameter and height can be fabricated.

These micro-rings found potential application in polymer light emitting diodes, 

humidity sensor and vertical field effect transistors. The use of micro-rings as a single

111
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pixel micro-rings were used for improving the resolution of the polymer light emitting 

diodes to more than 200 pixels/inch.

These micro-rings found potential application in polymer light emitting diodes, 

humidity sensor and vertical field effect transistors. The single pixel micro-rings were 

used for improving the resolution of the polymer light emitting diodes to more than 200 

pixels/inch. Sensitivity enhancement and lower degradation was reported for 

PEDOTrPSS based humidity sensor were micro-rings were used as a platform for layer- 

by-layer self assembled nano films. These devices were compared to devices fabricated 

by other techniques such as spin coating, inkjet printing and layer-by-layer assembly. 

Micro-rings were also used during the fabrication of vertical channel field effect 

transistors where outer periphery of the micro-rings was used as source and the inner 

etched surface between the adjacent drops was used for channel material. The extracted 

value of mobility was 4.6 x 10'3 cm2/Vs and the Ion/ I0ff current ratio for the device is of 

the order of 103.

MEH-PPV is an electroluminescent polymer which was used for both polymer 

light emitting diodes and vertical channel field effect transistors. The degradation of this 

polymer affects the device efficiency to a great extent. Thus degradation of this polymer 

was studied using capacitance -  voltage and ATR-IR spectroscopy.

6.2 Future Work

Besides further improving the performances of the devices such as, polymer light 

emitting diodes, humidity sensors and polymer vertical channel field effect transistors, 

micro-rings can be applied for various other applications in diverse fields.
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1. Micro-rings For Cantilever 
Sensor Arrays

Micro-rings can be inkjet printed on top of cantilever and then made empty using 

RIE. Each micro-ring (Figure 6.1) can then be fdled with different sensing material. So 

instead of using the fabricated device for the detection of single or few gases, many gases 

or biomaterials can be detected simultaneously.

Sensors

Figure 6.1 Micro-ring array for detection of various gases/biomaterials using
cantilever sensor

2. Concentric Micro-rings For 
Polymer Field Effect 
Transistors

Concentric micro-rings as shown in Figure 6.2 can be inkjet printed using both 

techniques i.e. “instant dispensing” for the outer ring and “dispense and dry” for the inner 

ring. Metal can be thermally evaporated to act as source and drain material, whereas 

inkjet printed ring can act as channel. The width of the channel can be varied from 5 pm 

to 50 pm.

Micro-rings

Cantilever
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S  D

Figure 6.2 Concentric micro-ring for polymer field effect transistors

3. Micro-ring Wells for Cell 
Culture Plates

Micro-ring array can be inkjet printed to form different cell culture plates as 

shown in Figure 6.3. The cell culture plates available in the market are quite big and 

expensive. They require a lot of media and cells and thus leads to wastage of cells and 

media. Using the micro-ring plates, very less media and cells will be required. Moreover, 

cells can be inkjet printed inside these micro-rings thus proving to be an inexpensive 

technique.

Metal Evaporation

Inkjet Printed
'Torus’'
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Figure 6.3 Cell culture plates a) commercially available b) inkjet printed in lab

4. Micro-ring Scaffolds For 
Tissue Culture

Figure 6.4 shows the micro-ring arrays fabricated one on top of the other in the 

form of scaffolds. These scaffolds can be used for the growth of tissues. The desired cells 

can be cultured in these scaffolds and thus their growth can be controlled by the shape of 

the scaffolds.

Figure 6.4 Inkjet printed micro-ring scaffolds for tissue culture
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