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ABSTRACT

In this study, resistor-type, diode-type, and transistor-type organic memory 

devices were investigated, aiming at the low-cost plastic integrated circuit applications. A 

series o f solution-processing techniques including spin-coating, inkjet printing, and self- 

assembly were employed to fabricate these devices.

The organic resistive memory device is based on a novel molecular complex film 

composed o f tetracyanoquinodimethane (TCNQ) and a soluble methanofullerene 

derivative [6 ,6 ]-phenyl C61-butyric acid methyl ester (PCBM). It has an Al/molecules/Al 

sandwich structure. The molecular layer was formed by spin-coating technique instead of 

expensive vacuum deposition method. The current-voltage characteristics show that the 

device switches from the initial ‘low’ conduction state to ‘high’ conduction state upon 

application o f external electric field at room temperature and return to ‘low’ conduction 

state when a high current pulse is applied. The on/off ratio is over 106. Each state has 

been found to remain stable for more than five months, even after the external electric 

field is removed. The PCBM nanodots wrapped by TCNQ molecules can form potential 

wells for charge trapping, and are believed to be responsible for the memory effects.

A rewritable diode memory device was achieved in an improved configuration, 

i.e., ITO-PEDOT:PSS-PCBM/TCNQ-Al, where a semiconductor polymer PEDOT:PSS 

is used to form p+-N heterojunction with PCBM/TCNQ. It exhibits a diode characteristic 

(low conductive) before switching to a high-conductive Poole-Frenkel regime upon

iii
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applying a positive external bias to ITO. The on/off ratio at +1.0 V is up to 105. 

Simulation results from Taurus-Medici are in qualitative agreement with the experimental 

results and the proposed charge storage model.

The transistor-type memory device is fabricated on a heavily doped n-type silicon 

(n+-Si) substrate with a 100 nm thick thermally-grown oxide layer. The n+-Si serves as the 

gate electrode, while the oxide layer functions as the control gate dielectric. Gold 

nanoparticles as the charge storage units are deposited on the substrate by electrostatic self- 

assembly method. A self-assembled multilayer o f polyelectrolytes, together with a thin 

spin-coated poly(4-vinyl phenol) layer, covers the gold nanoparticles and separates them 

from the poly(3-hexyl thiophene) channel. Conducting polymer PEDOT:PSS is inkjet 

printed to form the source/drain electrodes. The device exhibits significant hysteresis 

behavior in its Ids-Vgs characteristics. The charge storage in gold nanodots (diameter =16 

nm) was confirmed by comparing with devices having no gold nanoparticles, although the 

effects o f interfacial traps may be also significant. The data retention time of the transistor 

memory is about 60 seconds, which needs to be further improved. It appears that this is the 

first demonstration of memory effects in an organic transistor caused by charge storage in 

metal nanodots in the gate dielectric. Therefore, the approach reported in this work offers a 

new direction to make low-cost organic transistor memories.
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CHAPTER ONE

INTRODUCTION: FROM INORGANIC 

TO ORGANIC MEMORY

One important part o f our life is to remember things because it is directly related 

to the probability o f survival. For example, everybody needs to remember the basic 

words in his/her language in order to communicate with others. To some degree, a 

good memory means intelligence. The more you remember, the more powerful you are. 

Therefore, from the very beginning o f human history to now people never stop 

expanding their brain power using external media to remember things. The media 

varies from stone plate, lamb skin, cloth, and paper to film, tape, disc and finally 

semiconductor chips. However, only “a device or a component o f a device in which 

information especially for a computer can be inserted and stored and from which it may 

be extracted when wanted” is defined as “memory”, according to the Webster 

dictionary. Well-known memories in a computer include the CD-ROM, hard disk, 

floppy disk, and semiconductor-based ROM and RAM. In this dissertation, the topic 

will be focused on semiconductor memories.

It is the semiconductor memory that made the information age possible. Usually 

fabricated on a tiny silicon substrate, the semiconductor memory can be found in a lot of 

modem gadgets today, for example, digital camera, cell phone, MP3 player, key drive,

1
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and, of course, the computer. With the rapid development of technologies, it will not be a 

surprise that one day we find a memory chip embedded in our clothes or shoes.

1.1 Traditional Silicon-Based Semiconductor Memory

Silicon-based semiconductor memories fall into two general categories: volatile 

memory and non-volatile memory.

1.1.1 Volatile Memory: DRAM and SRAM

1.1.1.1 DRAM

DRAM is the abbreviation o f Dynamic Random Access Memory. It is the highest 

density semiconductor integrated circuit (IC) products now and usually used as the 

indicator o f the technology level. With the circuit and cell structure shown in Figure 1.1, a 

DRAM cell consists o f one transistor and one capacitor (1T1C) [1]. Charge is stored in the 

capacitor. When the capacitor is charged to a “high” voltage, the DRAM cell stores a “1” 

state; when the capacitor is charged to a “low” voltage, the DRAM cell stores a “0” state.

WOBD LINE WORD LINE

BfTUNE

H

X
(a)

CftPACffOff

M  W fE  _ p *

p a s s  T R A N sisT «M  m m

CAPACITOR LESSi

WL-

write 1 reach

x GND X  v oo-V tv-C~

VDD
BL / '

Vdd/2
sensing

(b) (c)

Figure 1-1 Circuit (a), structure (b) and write/read operation (c) o f  a DRAM  cell [1],

The write/read operation of DRAM is illustrated in Figure 1-lc. When the wordline 

(WL) is selected, the data stored on the bitline (BL) will be stored in the capacitor. To read
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3

out the information, BL is pre-charged to Vdd/2 and WL is selected. As a result, the 

potential at X will be higher than Vde>/2 or lower than Vdd/2 depending on the stored data. 

A sensing amplifier will detect the potential change.

The electrical charge stored in a DRAM cell gradually discharges, causing the 

memory cell to lose its information. In order to preserve the information, dynamic memory 

has to be refreshed periodically by accessing each bit cell at regular intervals. The refresh 

cycles slow down the operation.

1.1.1.2 SRAM

A SRAM (or static random access memory) cell is a bistable transistor flip-flop, or 

two inverters connected back to back [1]. The circuit o f a fiill-CMOS 6 -transistor SRAM 

cell is shown in Figure 1-2.

r~ L -T

T "1L

fine

Mg
*1 r **"C.

-Wort
line

Ime

Figure 1-2 Circuit o f a CMOS 6 -transistor SRAM cell [1].

Write operation (writing “1” as example) is as follows:

• Word line o f the cell is selected (raised to V dd, 5 V ). T5 and T6 turn ON.
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• Bit-bar line must be forced low. Ti turns OFF and T3 turns ON.

• The drain voltage at C5 rises due to the current flowing through T 5 and T3 .

• When T2 has been turned ON, the bitline can be returned to its steady level, leaving 

the cell in the state of storing.

Read operation (reading “1” as example):

•  The word line o f the cell is selected (raised to Vdd)- T5 and T6 turn ON.

• Both the Bit line and Bit-bar line must be biased at some voltage (e.g., 3 V).

• When the cell is selected, currents flow through T6 and T2 to Vss and through T3 

and T5 to the bitline.

• Since T2 remaining ON, the voltage o f bit-bar line is reduced to < 3 V. While the 

voltage of bit line is pulled up >3 V since Ti is OFF but T3 is ON.

• The differential output signal between the bit and bit-bar lines is fed into the sense 

amplifier, differential amplifier capable o f providing rapid sensing.

SRAM is approximately four or five times faster than DRAM. Since every bit cell 

requires six or more transistors to function under SRAM, compared to one transistor per bit 

for DRAM, SRAM modules are relatively larger and more expensive than DRAM.

1.1.2 Non-Volatile Memory

1.1.2.1 ROM

Read-only memory (ROM) is used as a storage medium in computers. Since it 

cannot, at least not easily, be written to, its main uses lie in the distribution o f firmware 

(software that is very closely related to hardware and does not need frequent upgrading).

Classic mask-programmed ROM chips are written to during production and cannot 

change content afterwards. It is the most durable form of memory storage. A drawback of
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using a mask ROM is the significant cost penalty that must be incurred i f  an error in the 

code/data being stored forces a mask set change.

1.12.2 EPROM

The first EPROM (Electrically Programmable Read Only Memory), known as the 

floating gate avalanche-injection metal-oxide-semiconductor memory (FAMOS) [2], was 

developed using a heavily doped polysilicon (poly-Si) as the floating gate material. The 

gate oxide thickness was on the order o f 100  nm to prevent weak spot or shorting path 

between the floating gate and the substrate. EPROM was charged by biasing the drain (12.5 

V or larger) to avalanche breakdown where the electrons in the avalanche plasma were 

injected from the drain into the floating gate. The FAMOS could only be erased by 

ultraviolet (UV) or x-ray. The EPROM was perceived as a tool for system prototyping 

before a design was committed to Read Only Memory (ROM). Today, one can obtain 

EPROMs in either a ceramic package with a quartz window that allows for UV exposure or 

a plastic package without a quartz window. The latter is known as one-time-programmable 

(OTP) EPROM. The OTP-EPROMs are inexpensive; however, additional testing after 

assembly is not possible. EPROMs in ceramic packages with a quartz window are 

expensive but do allow additional testing since the memory can be erased using UV light.

1.1.2.3 EEPROM

In an EEPROM (Electrically Erasable Programmable Read Only Memory), the 

electrical means is used to restore the charged floating gate to its original uncharged status 

instead o f UV emission approach [3]. Cheaper packaging and a greater ease o f use were the 

first advantages o f EEPROMs over their UV-erasable counterparts. The disadvantage of 

EEPROMs was the cell size that was two to three times the size o f an EPROM cell that
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resulted in a larger die size. EEPROM cells consist of two transistors, one, a floating gate 

transistor and the other, a select gate transistor, as shown in Figure 1-3. The select gate 

transistor is used to select or deselect floating gate transistors for programming or erasing. 

Die size was further increased to incorporate error correction circuitry or redundancy 

circuits.

SLO,

Drain

P Substrate

Figure 1-3 An EEPROM cell with select gate transistor.

1.1.2.4 Flash Memory

Flash memory is a form of EEPROM that allows multiple memory locations to be 

erased or written in one programming operation [4]. It offers fast read access times and 

solid-state shock resistance.

Figure l-4a presents a flash memory cell, which looks similar to a standard metal- 

oxide-semiconductor (MOS) field effect transistor, except that it has two gates instead of 

just one. One gate is the control gate (CG) like in other MOS transistors, but the second is a 

floating gate (FG) that is insulated all around by an oxide layer. The FG is between the CG 

and the substrate. Because the FG is isolated by the insulating oxide layer, any electrons 

placed on it get trapped there, and thus store the information. When electrons are on the 

FG, they modify (partially cancel out) the electric field coming from the CG, which 

modifies the threshold voltage (VT) o f the cell. Thus, when the cell is "read" by placing a

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



7

specific voltage on the CG, electrical current will either flow or not flow, depending on the 

V t of the cell, which is controlled by the number o f electrons on the FG. The presence or 

absence of current is sensed and translated into l's and 0 's, reproducing the stored data.

A flash memory cell is programmed by starting up electrons flowing from the 

source to the drain, then a large voltage placed on the CG provides a strong enough 

electric field to suck them up onto the FG, a process called hot-electron injection (Figure 

1-4). To erase, a high electric field (8-10 MV/cm) is present between FG and the channel

[5], which drives the electrons out through Fowler-Nordheim tunneling (Figure 1-5).

“hot” electrons

S i02substrate

Tunnel
oxide

poly-Si

CG

r -V ds=

Source Drain

Figure 1 -4 (a) Flash memory cell structure with typical biases required for writing into 
the cell [5]. (b) Energy band diagram along the dashed vertical line in (a) showing 
channel hot-electron injection.

Tunnel
oxide

substrate
poly-Si

poly-Si

CG

e e e e e

Source Drain

(a) n

Figure 1-5 Uniform Fowler-Nordheim tunneling to erase flash EEPROM. (a) Cell 
structure with typical erase bias [5]; (b) Band diagram showing tunneling o f carriers from 
the FG into the oxide.
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Most modem flash memory components are divided into erase segments, usually 

called either blocks or sectors. All o f the memory cells in a block must be erased at the 

same time. Starting with a freshly erased block, any byte within that block can be 

programmed. However, once a byte has been programmed, it cannot be changed again until 

the entire block is erased. In other words, flash memory (specifically NOR flash) offers 

random-access read and programming operations, but cannot offer random-access rewrite 

or erase operations. When compared to a hard disk drive, a further limitation is the fact that 

flash memory has a finite number o f erase/write cycles, so that care has to be taken when 

moving hard-drive based applications, such as operating systems, to flash-memory based 

devices.

1.2 Emerging Inorganic Memory Technologies

The world’s appetite for integrated circuit (IC) memory seems to never stop 

increasing. The consumer’s need moved from simple mathematical calculations and word 

processing that required only kilobits o f memory to audio and movie downloads needing 

gigabytes o f memory. Therefore, the semiconductor memory industry has been increasing 

the memory density for almost three decades, just as predicted by the famous Moore’s law, 

which states that the number of transistors per integrated circuit would double every 18 

months. But Moore’s law is coming to its end since the IC manufacturing processes 

(lithography, etching, deposition, etc) are being carried out near their resolution limits. All 

traditional memories have the scaling limitation and other serious performance limitations 

mentioned above.
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1.2.1 Magnetoresistive RAM

Magnetoresitive random-access memory (MRAM) is a high-speed, nonvolatile 

memory with unlimited read and write endurance. It combines a magnetic tunnel junction 

(MTJ) device with standard silicon-based microelectronics. A MTJ is usually constructed 

using an ultra-thin dielectric layer sandwiched between two ferromagnetic layers. The 

resistance across the junction is high or low when the magnetic moments of the two 

ferromagnetic layers are antiparallel or parallel [6 ].

Figure 1-6 shows the circuit and the cell structure o f MRAM. A MRAM cell is 

composed of one transistor and one MTJ. To write the bit, a current is applied to each write 

line so that a magnetic field is generated at the bit from both lines simultaneously. To read 

the data, the isolation transistor is turned on and a current is passed through the MTJ.

Figure 1-6 Circuit (a) and cell structure (b) of MRAM (courtesy o f Motorola).

The key attributes o f MRAM are listed as follows:

• High write/read speed competitive with SRAM

• Small size competitive with DRAM

• Nonvolatile with unlimited read-write endurance

Word 
  .....  tine
J L .  Digi*
O F

Flux concenirailng 
elMting lay«r

Isolation
tmMMor

•otr
Interconnects

(a) (b)
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• Low leakage and low voltage

• Immunity to soft error and cosmic rays

The MRAM offers multiple memory capabilities that are currently realized only by 

separate memories. Therefore, it is o f potential to replace all the semiconductor memories 

and become so-called universal memory. However, its manufacturing complexity and high 

cost are still bottle-necks for high-volume production and application.

1.2.2 Phase-Change Chalcogenide RAM

Phase-change chalcogenide RAM is based on an electrically initiated, reversible 

rapid amorphous-to-crystalline phase-change process in multicomponent chalcogenide 

alloy materials similar to those used in rewritable optical disks [7], It was first reported by 

Ovshinsky [8] in 1968. The typical alloy systems include GeSbTe and AglnSbTe. A 

company named Ovonyx Inc. is now commercializing its phase-change memory 

technology, called Ovonic Unified Memory (OUM).

A simplified cell structure of OUM is shown in Figure l-7a. For a cell in the high- 

resistance state (RESET), programming to a low-resistance state (SET), as shown in Figure 

l-7b, requires a voltage pulse exceeding Vth, supplying sufficient dynamic ON-state current 

to achieve the temperature necessary for crystallization. To switch back, a shorter but 

higher current pulse is applied to melt the programmed volume of chalcogenide alloy and 

quench to the amorphous high-resistance state (RESET). In a memory array, MOS 

transistors or diodes should be used in conjunction with OUM cells to achieve random 

access.

OUM has some attractive characteristics such as long cycle life, low programming 

energy and small cell size (less than MRAM cell). These advantages make OUM a
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promising candidate to replace flash memory in future applications. The challenge is to 

demonstrate high volume manufacturability as well as reliability.

/

X  X  X

X  X /  X /
Polycrystaltine
C halcogenide

^Program m able 
^  Volume

H eater

1.5

RESET Curartt 
Regime

Current Regime for 
Dyr’ansir O n S tarsUl

SET Current 
RegimeLU

0.5 -

SET State V thRESET State

Q.B 0.8 1,0 1.2
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(b)

Figure 1-7 (a) Cross-sectional view and (b) current-voltage (I-V) characteristics o f a 
basic phase-change memory cell [7].

1.2.3 Resistive RAM (RRAM1

The concept o f resistive memory is not new. It can be traced back to 1967, when 

Simmons and Verderber [9] reported resistive memory effects in their Au/SiO/Al devices. 

The switching of the device involves neither magnetic moment change as in MRAM nor 

phase change as in OUM.
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It is postulated that the injected Au ions introduce a broad band o f localized 

impurity levels within the normally forbidden band of the SiO insulator. The electrons are 

assumed to move through the insulator by tunneling between adjacent sites within the 

impurity band. Under certain conditions, e.g., a high voltage pulse, the electrons could be 

trapped within the impurity band, distort the band structure o f the insulator, and thus 

increase the resistance o f the device. The memory state could be read out at a small voltage. 

Applying a voltage slightly larger than a threshold VT could drive the trapped electrons out 

and switch the device back to its low-impedance state [9].

The behavior o f the above-mentioned device is called electric bistability, i.e., a 

phenomenon in which a device exhibits two states of different conductivities at the same 

applied voltage. This behavior is ideal for memory applications since the memory cell 

could be constructed using cross-point architecture (Figure 1-8), o f which the cell size 

could be very small, say 4F2, as compared to the 6F2 o f flash memory. Here F refers to 

feature size.

Bottom electrode

Bistable thin film

Top electrode

substrate

Figure 1-8 The schematic structure o f a typical bistable memory cell [10].
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Recently, several resistive memory devices have been reported. The active 

materials include NiO [11-13], TiC>2 [14], PbTiOs [15], Pb(Zro.52Tio.48)03 [16], Cr-doped 

SrZrCb [17], Pro.7Cao.3MnC>3 [18], and SrTi0.99Nb0.01O3 [19, 20]. Samsung Corporation is 

developing the next-generation nonvolatile memory based on NiO thin films [12, 13], 

which has shown promising memory properties.

The physical mechanisms of RRAM are still not very clear, although the common 

driving force—external electric field—is well-known. A few physical models were 

proposed for the corresponding type o f resistive memory elements [2 1 , 2 2 ].

1.2.4 Ferroelectric RAM

Ferroelectric random-access memory (FeRAM) uses a ferroelectric thin film as a 

capacitor for storing data. Currently, PZT [Pb(Zro.3Tioj)0 3 ] or SBT (SrBi2Ta2C>9) is used 

for commercially available FeRAM. New ferroelectric materials, such as BLT [(Bi, 

La)4Ti3 0 i2], have also been developed.

The charge storage of a ferroelectric capacitor is based on the switching of the so- 

called spontaneous polarization, as shown in Figure 1-9 a. When a sufficiently high 

electric field is applied between the plates o f the capacitor, the ferroelectric film is 

polarized in one of the two possible net spontaneous polarization states. After the electric 

field is removed, this electrically written polarization state remains and defines a memory 

state. Application of an electric field with the same magnitude, but in the opposite 

direction, causes the capacitor to switch into a second stable memory state (Figure 1-9).

The process o f electrically defining the orientation of net spontaneous polarization 

states is the basic physical mechanism used to write and store data in a FeRAM memory.
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During the process o f switching between the two stable polarization states, an excess 

charge pulse is drawn from the driving circuit and stored in the capacitor. A FeRAM 

memory state can be read by detecting the presence or absence of this switching charge 

pulse when a switching electric field is applied to the ferroelectric capacitor. This read 

operation is destructive. As a result, refreshing is necessary after each read-out.

Bimiy Stile# 

P w liv eP * riw io n

Binary Slate 1

N*gs*h®Ek*#K FasW 

Negative Polarization ,

(a) (b)

Figure 1-9 (a) Two stable states in a ferroelectric material known as PZT: the orientation 
o f the spontaneous polarization is reversed by applying a proper electric field, (b) 
Hysteresis loop characteristic o f a ferroelectric capacitor. Remanent charge (Qr), 
saturation charge (Qs), and coercive voltage (Vc) are the three important parameters that 
characterize the loop. The + and - signs beside the capacitor symbol represent the applied 
voltage polarity [23].

The FeRAM cell architecture inherits from the DRAM, SRAM and flash memories, 

varying from IT, 1T1C, 2T2C to 6T4C [24], The IT  structure has the smallest cell size but 

shortest data retention time in spite o f its non-destructive read operation. The 1T1C and 

2T2C cells have acceptable data retention (>10 years), but suffer from the limited 

read/write endurance due to the destructive read operation. The 6T4C cell exhibits the best 

performance: access time < 1 0  ns, data retention > 1 0  years, and unlimited endurance to 

read/write cycling owing to its non-destructive readout [25]. Figure 1-10 illustrates the 

schematic circuits of above FeRAM cells.
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BL Bt

WL n r

2T2C MemwyCell

Ferroelectric
Capacitors

(a) IT  (b ) lT lC  (c) 2T2C (d)6T4C

Figure 1-10 Various types o f ferroelectric random-access memory.

FeRAM can achieve high-speed read/write operations comparable to that of 

DRAM, without losing data when the power is turned off. FeRAM cells offer the 

advantages o f easy embedding into large-scale integration logic circuits and low power 

consumption (lower than MRAM and OUM).

1.2.5 Nano-Crystal Memory

Nano-crystal memory is a descendent of flash memory. Its write/read/erase 

operations are very similar to that o f flash memory. But the charge is stored in discrete 

nanoscale particles instead o f a whole piece o f polysilicon (or nitride) floating gate. Figure 

1-11 shows the schematic cross-section o f a nano-crystal memory cell.

Floating
N anocrystals

C o n tro l G a te

I l i S t l l l l l l

Source

p  - body

Figure 1-11 A schematic cross-section o f the nano-crystal memory cell.

In a nano-crystal memory, the charge loss through lateral paths to the contacting 

regions is suppressed by use o f larger inter-nanocrystal spacing. Thus, smaller oxide
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thicknesses (< 5 nm) together with smaller operating voltage become possible [26, 27]. 

Charge storage in a distributed floating gate o f nano-crystals also offers other possible 

benefits such as small cell size, fast writing, small degradation, and long retention time 

[27].

Since its debut in 1995 [28], nano-crystal memory has attracted tremendous 

research efforts. The nano-crystals are usually fabricated by self-assembly methods, of 

which different approaches were reported [26, 28, 29]. Metal nanocrystals [30-33] and 

high-/c gate dielectrics [32] were used to improve the device performance.

The ultimate scalability o f nano-crystal memory is still limited to many tens of 

nanometers due to the electrostatic consequences o f gate stack thickness, the reduced 

statistics which directly affect reproducibility, and the constraints o f voltages [34], To keep 

the scalability going, some new device structures were put forward. Examples include 

front-defect memories, back-gate memories, and back-trapping memory [34].

1.3 Novel Organic Memory Devices

The last two decades have brought discoveries that small molecules and polymers 

can be manipulated so that they may be fashioned into transistors, conductors, and other 

electrical components. A wide variety o f potential applications including transistors [35, 

36], electronic circuits [37], light emitting diodes [38, 39], and advanced photovoltaic 

devices [40], have been reported. The benefits o f polymers and small molecules are 

substantial. In many cases, researchers are finding that they offer a safer, cheaper and 

lighter alternative to silicon. They are cheaper because of the low-cost substrate and 

large-area capability, lighter due to the plastic substrate instead of silicon, and safer
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owing to much less hazardous materials used. Another interesting advantage o f organic 

electronics is the flexibility. For instance, you may roll up a big plastic display and carry 

it with you.

Figure 1-12 shows the potential market value o f organic electronics in 2009. It is 

not surprising that organic memory accounts for a big part. Everything can become 

organic. Why not memory? Even so, the organic memory market is only a small section 

o f the whole market o f solid state memory, which is predicted to be 153.6 billion dollars 

in 2010. But the organic part is expanding with the booming o f organic electronics.

Currently the organic memories are still in its infant stage. No commercial products 

have been sold in the market. Nevertheless, the research and development efforts are huge. 

A lot o f papers and patents have been published. According to the device type of memory 

cell, we can roughly divide the reported organic memories into two categories: the two- 

terminal resistive memory and the three-terminal transistor memory.

Worldwide Total 
Memory Market in 2010

= $153.6 billions

($46 billions in 2004).

Source: BCC, Inc.

Figure 1-12 Predicted market o f organic electronics in 2009. Source: Nano Markets (Feb. 
2005). The worldwide memory market data are also presented for comparison.
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1.3.1 Organic Resistive Memory

Just like its inorganic counterpart, organic resistive memory is also based on the 

electrical bistability. However, it is the molecules or polymers that are used as the active 

materials. The typical organic active materials include charge-transfer complexes, pure 

small molecules, and polymer/molecule-based composites.

1.3.1.1 Molecular memory

TCNQ (7,7,8,8-tetracyanoquinodimethane) is an organonitrile. Various metals (M) 

as electron-rich donors can react with TCNQ to form charge-transfer complex M(TCNQ). 

The metals can be Li, Na, K, Ag, Cu or Fe. Both CuTCNQ and AgTCNQ are frequently 

investigated [10,41-43], since they are readily available.

Some organic materials can also form charge-transfer complex with TCNQ. Xu et 

al. [44] discovered two all-organic complexes, MC+TCNQ and BBDN+TCNQ, with 

bistable switching effect. (MC is the abbreviation of Melamine Cyanurate, while BBDN is 

the abbreviation of bis[2-butene-2,3-dithiolato(2-)-s,,s]-nickel.)

Ma et al. [45, 46] embedded a thin layer o f Al nanoclusters in 2-amino-4,5- 

imidazoledicarbonitrile (AIDCN) thin film and observed encouraging bistability. The 

structure of an electrical bistable device and the chemical structure o f the AIDCN are 

shown in Figure 1-13. Figure 1-14 shows the typical I-V curves for an AIDCN-based 

device. Some results are also listed in Table 1-1. One of the most important features is that 

the initial high impedance state can be recovered by simple application of a reverse voltage 

pulse. In addition, it was found that the devices remained in the ON-state for several days 

to weeks.
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Al/pentacene/Al also has memory effects [47] with on/off ratio up to 10 . And the 

memory effect is dependent on the film thickness. No switching is observed when the film 

thickness is below 150 nm or above 600 nm. Collier et al. [48] have reported a memory cell 

using rotaxane, in which the memory effect is caused by the rapid reversible conductance 

switching of molecules.

m

«
Organic
layers

Cathode

Anode

N\
At

H

Figure 1-13 (a) The structure o f an electrical bistable device and (b) the chemical 
structure o f the organic material [45].

2 51 3 4

Voltage (V)

Figure 1-14 I-V  characteristics of an organic memory cell with the structure 
Al/AIDCN(50nm)/Al (20 nm)/AIDCN(50 nm)/Al. Curves (a) and (b) represent the I - V  
characteristics o f the first and second bias scan, respectively. Curve (c) is the I - V  curve 
of the third bias scan after the application o f a reverse voltage pulse (-3 V). The inset 
shows the I - V  curves o f a device with a 50-nm-thick AIDCN layer as the active medium, 
where these phenomena can no longer be observed [45],
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1.3.1.2 Polymeric memory

Forrest and his co-workers invented a write-once-read-many-times memory using a 

commercially available polymer PEDOTrPSS (Baytron P) [49]. Sandwiched between ITO 

and gold electrodes, the thin polymer film can be permanently switched off. Later on, they 

also reported polymer/silicon hybrid memory cells with lower switch-off voltages [50].

In the last few years, several organic resistive memory devices were reported. It is 

not necessary to review all of them one by one. Some major progresses made by both the 

academia and the industry are listed in Table 1-1.

Table 1-1 Summary of organic resistive memories

Typical device Who/when mechansim Advantages Problems

Cu/CuTCNQ/Al [41] John Hopkins 
(1979)

Charge transfer Easy fabrication Thermal stability; 
Not spin-coatable

Al/rotaxane/TiAl [48]
HP

(2000)
E-field assisted 
structure change

Nanometer
Scale

Slow L-B deposition 
Not spin-coatable

Au/PEDOT:PSS/ITO [49] Princeton (2003) Carrier injection 
induced redox

Spin-coating process Not rewritable, 
Hard to shrink

Al/NanoAu-PS/Al [51] UCLA
(2004) Charge-transfer Spin-coating process

A1-AIDCN/A1/AIDCN-A1
[45]

UCLA
(2002) Charge storage Fast Vacuum deposit 

Not spin-coatable

Al-AIDCN/Cr/AIDCN-Al
[52]

IBM
(2004) Charge storage Fast Similar as above

Al-C/polyester-Ag MIT (2000) Not disclosed Cheap, printable 30min retention 
Hard to shrink

T i/Ag2 S/polydiphenyl- 
acetylene/a-C

Coatue Co. 
(2002) E-field assisted doping Cheap,

printable
Cycle life 

Hard to shrink

1.3.2 Organic Transistor Memory

For the sake of simplicity, the recent development of organic field effect transistor 

(OFET) memory is summarized in Table 1-2. It seems that all the OFET memory reported 

so far are based on the ferroelectric (or ferroelectric-like) behavior o f the gate dielectric. It
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should be noted that the claimed all-organic is not really ‘ALL’ organic in nature since the 

electrode materials are still metals.

Table 1-2 The OFET memory devices reported in literature

Typical device Who/when Mechanism Advantages disadvantages

OFET with MXD6 as 
gate dielectric [53]

U. Sheffield 
(2005)

Polarization of  
ferroelectric polymer

Cheap;
Solution-

processable
High switch voltage

OFET with 
PVDF/TrFE as gate 

dielectric [54]

Xerox Co. 
(2002)

Polarization of 
ferroelectric polymer

Cheap;
Solution-

processable
High switch voltage

OFET with PVA as 
gate dielectric [55]

Johannes 
Kepler U. 

(2004)

charge storage in 
electret polymer

Cheap;
Solution-

processable
High switch voltage

1.3.3 Other Organic Memories

Hybrid CMOS/molecular memory devices [56, 57] have been demonstrated by a 

group from the University o f California at Riverside and North Carolina State University. 

Based on DRAM architecture, the devices have high density, and exhibit low power 

consumption. Each memory cell contains a monolayer of molecules such as porphyrin or 

ferrocene to store charge. The oxidation state o f porphyrin molecules produces charge 

states analogous to a DRAM capacitor. Their main advantages over traditional DRAM are:

(1) High charge density (10 times larger);

(2) Longer charge retention (10000 times longer );

(3) Multiple bits per cell;

(4) Scalable to near-molecular dimensions.

Unfortunately, the operation is rather slow (a few milliseconds), due to the presence o f a 

large liquid solution resistance component.
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Carbon nanotubes were used to construct cross-point memory cells based on the 

their electromechanical deformation [58], A MEMS based memory was also reported [59] 

and is being commercialized. An array of AFM cantilever beams are used to make marks 

(with the AFM tips) on the substrate (usually plastic) for information storage.

1.4 Dissertation Objective

From the above review, we can see problems associated with the reported organic 

memories. For the organic resistive memory, the issues lie in the scalability, the reliability 

and the cost. For example, Ma’s molecular memory [45] is fabricated under vacuum 

environment, which will raise the cost. Moller’s polymer memory [49] is hard to scale 

down. In the case o f the transistor memory, the major problem is the high operational 

voltage.

The ideal memory subsystem optimizes density, preserves critical information in a 

nonvolatile condition, is easy to program and reprogram, can be read fast, and is cost- 

effective for the application. Can we make an organic memory meeting all the requirements 

above? For the time being we cannot answer “absolutely”. But a least we can say 

“possibly”. The purpose of this work is to explore the possibility o f such kind of organic 

memories, while focusing on the low-cost aspects. As a colleague once explained, there are 

three factors that drive memory: cost, cost, and cost. The detailed objectives o f this 

dissertation are:

(1) to design, fabricate, and characterize organic resistor and diode memory devices 

which is both solution-processable and shrinkable;

(2) to design, fabricate, and characterize an OFET memory which can be, at least 

potentially, operated at low voltages;
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(3) to develop physical models for the above memories;

(4) to simulate and optimize the memory devices using TCAD tools.

1.5 Dissertation Outline

This dissertation is focused on the design, modeling and simulation, fabrication, 

and characterization o f organic non-volatile memory devices. Three types of memory 

devices, resistor type, diode type and transistor type, are investigated.

Chapter Two describes the physics o f organic memory devices. First, the 

mechanisms o f charge transport in organic semiconductors and dielectrics are described. 

Then, the memory effect based on charge storage model is theoretically discussed for both 

diode memory and transistor memory.

Chapter Three presents the experimental methods used to fabricate and characterize 

the memory devices. The fabrication involves deposition of organic thin films using spin- 

coating and inkjet printing, deposition of metal nanoparticle film using Layer-by-Layer 

self-assembly, modification o f film surface using self-assembled monolayer. Electrical 

characterization o f the final devices will be discussed.

Chapter Four demonstrates an organic resistive memory devices based on a spin- 

coated organic molecular complex film PCBM/TCNQ. When the complex film containing 

molecular nanodots is sandwiched between two metal electrodes, it exhibits memory 

effects. The fabrication processes, characterization results, and explanations are given in 

this chapter.

Chapter Five illustrates an improved version of the memory devices mentioned in 

Chapter Four. A p-type semiconductor polymer PEDOT:PSS is used to form p+-N 

heterojunction with PCBM/TCNQ. The heterojunction diode exhibits rewritable memory

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



24

effects. A charge storage model is proposed to explain the current-voltage characteristics 

and the memory behavior. The model is qualitatively verified with 2D simulation using 

TCAD tool Taurus-Medici.

Chapter Six presents a nanodot transistor-type memory device based on an organic 

thin film transistor. Gold nanoparticles are integrated in the gate dielectric for charge 

storage. The memory effect o f the charge storage is verified with 3D device simulation 

using Taurus-Tsuprem4 and Taurus-Medici. Device fabrication procedure, measurement 

results and relevant trapping effects are described and discussed.

Chapter Seven summarizes the dissertation and presents suggestions for the future

work.
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CHAPTER TWO

THEORETICAL BACKGROUND 

OF ORGANIC MEMORY

2.1 Organic Semiconductors

2.1.1 Basic Concept-—Conjugation

Semiconductors based on organic molecular components have been the focus of 

intense investigation for the past half century. During most o f that time, these materials, 

primarily consisting of C, H, and O were considered to be merely a scientific curiosity. The 

solid state structure o f these materials is based on individual molecular components bound 

together by weak interactions, principally van der Waals and dipole-dipole forces, 

imparting within them the properties o f both semiconductors and insulators [60].

Up to now, a number of classes o f organic semiconductors have been discovered, 

ranging from small molecules based on (hetero) aromatic rings, conjugated polymers, and 

hybrid organic-inorganic structures, to truly molecular semiconductors such as buckyballs 

and nanotubes. The chemical structure and electrical properties o f some common organic 

semiconductors can be found in Appendix I. All these structures exhibit the common 

feature o f having conjugated bonds, in which the presence of mobile (highly polarizable) x- 

electrons has a dramatic impact on the potential electrical performance. This situation is 

reversed compared to non-conjugated or all-a compounds, such as polyethylene and

25
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Teflon, which are excellent insulators [61]. Figure 2-1 shows some examples o f these 

systems.
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Figure 2-1 7T-conjugated and non-conjugated molecules [61].

2.1.2 Charge Carriers in Organic 
Semiconductors

Organic semiconductors can also be p-type (or n-type) doped by (1) adding external 

electron acceptor (or donor); (2 ) incorporating specific (e.g., electron-withdrawing) 

chemical groups into the molecular structure. The vast majority of the organic 

semiconductors exhibit p-type conductivity. The number of high efficiency n-type organic 

semiconductors is extremely limited because these unique materials have a propensity to 

degrade upon exposure to atmospheric conditions. Typically, n-type organic
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semiconductors oxidize when exposed to oxygen and the negative charge carriers within 

the materials are lost. Incorporation o f strong electron-withdrawing chemical groups, for 

example, -F  and -C N , into the molecular structure results in some air-stable n-type organic 

semiconductors such as F i6CuPc, F4TCNQ, and PCBM. This is reminiscent o f doping of 

silicon based semiconductors where silicon is doped with either arsenic or boron. However, 

while the doping o f silicon produces a donor energy level close to the conduction band or 

an acceptor level close to the valence band, this is not the case with conducting polymers. 

The evidence for this is that the resulting polymers do not have a high enough 

concentration of free spins, as determined by electron spin spectroscopy. Initially the free 

spins concentration increases with concentration o f dopant. At larger concentrations, 

however, the concentration of free spins levels off at a maximum.

To understand this, it is necessary to examine the way in which charge is stored 

along the polymer chain and its effect. The polymer may store charge in two ways. In an 

oxidation process it could either lose an electron from one of the bands or it could localize 

the charge over a small section of the chain. Localizing the charge causes a local distortion 

due to a change in geometry, which costs the polymer some energy. However, the 

generation of this local geometry decreases the ionization energy of the polymer chain and 

increases its electron affinity making it more able to accommodate the newly formed 

charges. This method increases the energy of the polymer less than it would if  the charge 

was delocalized and, hence, takes place in preference o f charge delocalization. This is 

consistent with an increase in disorder detected after doping by Raman spectroscopy. A 

similar scenario occurs for a reductive process.
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Typical oxidizing dopants include iodine, arsenic pentachloride, and iron (III) 

chloride. A typical reductive dopant is sodium naphthalide. The main criteria is its ability to 

oxidize or reduce the polymer without lowering its stability or whether or not they are 

capable of initiating side reactions that inhibit the polymers ability to conduct electricity. 

An example of the latter is the doping of a conjugated polymer with bromine. Bromine is a 

strong oxidant and adds across the double bonds to form sp3 carbons.

The oxidative doping of polypyrrole proceeds in the following manner. An electron 

is removed from the 7T-system of the polymer backbone producing free radical and a 

spinless positive charge. The radical and cation are coupled to each other via local 

resonance o f the charge and the radical. In this case, a sequence of quinoid-like rings is 

formed. The distortion produced by this is of higher energy than the remaining portion of 

the chain. The creation and separation of these defects costs a considerable amount of 

energy. This limits the number of quinoid-like rings that can link these two bound species 

together. In the case o f polypyrrole, it is believed that the lattice distortion extends over 

four pyrrole rings. This combination of a charge site and a radical is called a polaron. It 

could be either a radical cation or radical anion. It creates a new localized electronic state in 

the gap, with the lower energy states being occupied by a single unpaired electron. The 

polaron states o f polypyrrole are symmetrically located about 0.5 eV from the band edges. 

Upon further oxidation the free radical o f the polaron is removed, creating a new spinless 

defect called a bipolaron. Formation of a bipolaron is of lower energy than the creation of 

two distinct polarons. At higher doping levels it becomes possible that two polarons 

combine to form a bipolaron. Thus at higher doping levels the polarons are replaced with 

bipolarons. The bipolarons are located symmetrically with a band gap o f 0.75 eV for

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



29

polypyrrole. This eventually, with continued doping, forms into a continuous bipolaron 

bands. Their band gap also increases as newly formed bipolarons are made at the expense 

of the band edges. For a very heavily-doped polymer, it is conceivable that the upper and 

the lower bipolaron bands will merge with the conduction and the valence bands, 

respectively, to produce partially filled bands and metallic-like conductivity. This is shown 

in Figure 2-2.
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Figure 2-2 Polaron and bipolaron in polypyrrole chain.

Conjugated polymers with a degenerate ground state have a slightly different 

mechanism. As with polypyrrole, polarons and bipolarons are produced upon oxidation.
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However, because the ground state structure of such polymers are twofold degenerate, the 

charged cations are not bound to each other by a higher energy bonding configuration and 

can freely separate along the chain. The effect o f this is that the charged defects are 

independent of one another and can form domain walls that separate two phases of opposite 

orientation and identical energy. These are called solitons and can sometimes be neutral. 

Solitons produced in polyacetylene are believed to be delocalized over about 12 CH units 

with the maximum charge density next to the dopant counterion. The bonds closer to the 

defect show less amount of bond alternation than the bonds away from the defect. Soliton 

formation results in the creation of new localized electronic states that appear in the middle 

of the energy gap. At high doping levels, the charged solitons interact with each other to 

form a soliton band which can eventually merge with the band edges to create true metallic 

conductivity.

2.2 Charge Transport in Organic Semiconductors

2.2.1 Intramolecular Transport

Theoretically, charge transport through a single molecule or conjugated polymer 

chain could be ballistic, in that no resistive energy is dissipated on the molecule, as has 

been described for nanosized silicon transistors, carbon nanotubes, and a wide variety of 

other inorganic semiconductor devices [62]. Charge would merely have to hop twice, from 

a contact to a single orbital and then out to another contact again. The realization o f such 

kind of single molecular devices is still elusive [63],

Two major obstacles to observing single molecule mobility are the frequently 

encountered contact resistance at the metal-molecule junction and a defective molecular 

structure that could include twists and oxidized sites that interrupt the conjugation.
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2.2.2 Intermolecular (or Interchain)
Transport

Organic solids are specific in several respects. The basic feature distinguishing 

these solids from their standard inorganic counterparts is the fact that the main building 

units are organic molecules which, in the condensed matter state, preserve their physical 

identity well. Atoms in the individual molecules are bound by forces which have mostly a 

covalent character. But the binding forces among the molecules are usually of the van der 

Waals type. Therefore, the molecules keep behaving as though they were in a gas phase 

even in a perfect molecular crystal. This consequently leads to a marked tendency for 

localization of charge carriers on individual molecules. Although the band-like charge 

transport was observed in some molecular crystals and even polycrystalline thin films 

[64], the carriers’ motion in most organic semiconductors should be described as “hopping 

transport”, a phonon-assisted tunneling mechanism from site to site. In disordered organic 

semiconductors, the hopping rate, kET, can be described with a good approximation as [65]

where T is the temperature, X is the reorganization energy, t is the transfer integral, and h 

and kB are the Planck and Boltzmann constants, respectively. The transfer integrals reflect 

the strength of the interaction between the two molecules; the reorganization energy term 

describes the strength o f the electron-phonon (vibration) interaction and can be reliably 

estimated as twice the relaxation energy o f a polaron localized over a single unit.

Equation (2-1) tells us that the hopping rate is exponentially related to the energy 

required to vibrate the molecule for transferring a polaron. The less energy is required, 

the easier the polaron to be transported. It also tells us that the hopping rate first increases

4 7T2 1
t 2 exp (2-1)
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X
with temperature when the exp( ) term dominates and then decreases when the

4 kBT

1 X, .......... term dominates because exp( ) -> 0  when T-^ infinite.
V W 7 4 k Br ’

The carrier transport in polymer semiconductors is similar. The polymer chain can 

be seen as a sequence o f relatively short conjugated segments o f varying length. In this 

“molecular” picture, excitations and/or charge are localized on such segments (called as 

sites). Because o f the variation in conjugation lengths, the energy levels are distributed. 

Charge transport in such systems, being the result o f interchain (intersite) hopping, has 

been studied in great detail during the last decade. The accepted picture is hopping 

transport between the elementary sites possessing energetic and positional disorder. The 

hopping rate can be described using Miller-Abrahams [6 6 , 67] approximation:

Pw  =exp(r A ) e x p ( - j i ^ . ) e x p [ Jr(;C'  ~ X,)] (2 -2 )

where yis the tunneling rate, Ry distance between sites, a lattice unit size, Ei site energy,

k  Boltzman's constant, T  temperature, F  electric field, (xj-Xj) displacement along field.

This equation indicates that the interchain hopping rate exponentially increases with the

electric field. The effect o f temperature is similar to that in Equation (2-1), depending on

E j - E i F { x j - x i)
which term is dominant, exp(—  ------ ) or exp[  ------- ].

kT kT

2.2.3 Intergrain Transport

Just like in inorganic semiconductors, grain boundaries are energy barriers limiting 

the mobility in almost all organic semiconductor films. The mechanism by which charge 

transport is hindered by grain boundaries can be described by viewing the grain boundary 

either as a site of repelling potential [6 8 ] or as a trap [69,70] (Figure 2-3).
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Figure 2-3 Hole transport band o f a polycrystalline semiconductor [70].

According to Verlaak et al. [70], the intergrain barrier shown in Figure 2-3 can be 

expressed as

a 2y 2
E b = 2— , (2-3)

SsN a V

where E is the trapped charges per unit interfacial area, which can be described as

2  = f ----------- ^ ----- ^ r d E . (2-4)
Jo E B + E P —E

1 + exp(—  ̂ F- )
kT

Here in Equation (2-4) g(E) is the distribution of localized states, EF is the Fermi energy 

level determined by the acceptor-like dopant concentration Na.

The mobility in a polycrystalline organic semiconductor film is controlled by the 

rate of thermionic carrier jump across the grain boundary as

M a Mo exP ( - ^ )  (2-5)kT

with Ho linearly increasing with grain size. Equation (2-3) shows that higher dopant

concentrations screen the charges at the grain boundary more effectively and the barrier is

lower.
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2.3 Electric Current through Insulators and Semiconductors

Charge transport through semiconductors and insulators may involve the 

following mechanisms: ballistic transport, Fowler-Nordheim Tunneling, Poole-Frenkel 

emission, as well as space charge effects.

2.3.1 Ballistic Transport

Ballistic transport is carrier transport without scattering or any other mechanism, 

which would cause a loss o f energy. Ballistic transport is seen in nanosized silicon field 

effect transistors [71] and carbon nanotubes [62], Combining energy conservation, 

current continuity and Gauss's law one finds the following current-voltage relationship 

for a metal/semiconductor/metal structure [72]:

where d  is the thickness o f the material and m* is the effective mass o f the carriers.

2.3.2 Fowler-Nordheim Tunneling

Fowler-Nordheim tunneling has been studied extensively in metal-oxide- 

semiconductor structures where it has been shown to be the dominant charge transport 

mechanism, especially for thick oxides. The basic idea is that quantum mechanical 

tunneling from the adjacent conductor into the insulator limits the current through the 

structure. Once the carriers have tunneled into the insulator they are free to move within 

the valence or conduction band o f the insulator. The calculation o f the current is based on 

the Wentzel-Kramers-Brillouin (WKB) approximation yielding the following relation [73, 

74] between the current density, Jfn, and the electric field in the insulator, E:

(2-6)

(2-7)
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where (f)B is the barrier height at the metal/insulator interface in Volt. To check for this 

current mechanism, experimental I-V  characteristics are typically plotted as ln(JpN/E0X 2) 

versus 1 /Eox, a so-called Fowler-Nordheim plot. Provided the effective mass o f electrons 

in the insulator is known (for SiC>2, mox* = 0.42 mo), one can then fit the experimental 

data to a straight line yielding a value for the barrier height [72],

It is this type o f measurement which has yielded experimental values for the 

conduction band difference between silicon and silicon-dioxide. The same method could 

also be used to determine heterojunction energy band off-sets provided Fowler-Nordheim 

tunneling is indeed the dominant current mechanism. It is important to stress that carriers 

must tunnel through the insulator (or semiconductor), which requires:E - d  >(/)B, which is 

typically the case for thick oxides and high electric fields.

2.3.3 Poole-Frenkel Emission

The expression for Fowler-Nordheim tunneling implies that carriers are free to 

move through the insulator or semiconductor. Whereas this is indeed the case in 

thermally-grown silicon-dioxide, it is frequently not so in deposited materials which 

contain a high density o f structural defects. Silicon nitride (SisN^ is an example o f such 

material. The structural defects cause additional energy states close to the band edge 

called traps. These traps restrict the current flow because o f a capture and emission 

process, thereby becoming the dominant carrier transport mechanism, which is named 

after its theoretical founders Poole and Frenkel [75]. The current is a simple drift current 

described by

J  = qn/jE (2-8)

where [L is the carrier mobility, n is the carrier density depending exponentially on the
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depth of the trap <f)PF which is corrected for the electric field E  [76]:

e x p [ - ~ ( ^ F - (2-9)

The total current then equals:

J PF = qn0juE ex p [ (2-10)

The existence o f a large density o f shallow traps in CVD (chemical vapor deposition) 

silicon nitride makes Poole-Frenkel emission a frequently observed and well- 

characterized mechanism.

2.3.4 Space Charge Limited Current

Both Fowler-Nordheim tunneling and Poole-Frenkel emission mechanisms yield 

very low current densities with correspondingly low carrier densities. For structures 

where carriers can readily enter the insulator and freely flow through the insulator one 

finds that the resulting current and carrier densities are much higher. The high density of 

free carriers causes a field gradient, which limits the current density. This situation occurs 

in lightly doped semiconductors and vacuum tubes. Starting from an expression for the 

drift current J  = qn/uE and Gauss's law

Integrating this expression from 0 to x, where we assume the electric field to be zero for 

ideal ohmic contact at x = 0 , one obtains:

dE _  qn 
dx e

(2-11)

We can eliminate the carrier density, n, yielding:

J  „  dE
—  = E — 2- 12)
£fi dx
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J x _ E ^  

s/d 2
(2 -1 3 )

or

(2-14)

Integrating once again from x  = 0 to x  = d with V(0) = V and V(d) = 0, one finds:

In equation (2-16), the current density is directly proportional to the mobility and to the 

square o f the applied voltage, and inversely proportional to the cube o f the film thickness 

between two electrodes.

2.4.1 Metal-Organic-Metal Diode

The current through a metal-organic-metal (MOM) diode may obey one o f the 

above equations, depending on the properties o f the metals and organic materials. In a 

MOM diode, the energy barrier (metal-organic) and carrier concentration are two key 

factors that affect the diode current.

If charge traps are intentionally introduced into the diode, they will store charges 

when the current flows through the diode upon external bias. On one hand, those trapped 

charges can distort the energy bands o f the organic film and influence the energy barrier at

(2-15)

from which one obtains the expression for the space-charge-limited current:

_  9 sjuV2
(2-16)

M

2.4 Charge Storage and Transport in Organic Diodes
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metal-organic interface (Figure 2-4). On the other hand, the electric field induced by 

trapped charges may also change the hopping rate o f carriers in the surrounding regions, 

according to Equation (2-2). In any case, the conductance of the device may significantly 

change, producing interesting memory effects.
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Figure 2-4 Energy band diagrams distorted by trapped negative charges in the organic 
film under zero bias (a) and 1.0 V bias (b). Zero energy level refers to Fermi level.
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2.4.2 Organic Heteroiunction Diode

Charge storage in an organic heterojunction can result in similar effects mentioned 

above. For example, the charge trapped in the N-region of a p+-N heterojunction could 

bend up the energy band edges and significantly lower the built-in potential barrier, as 

shown in Figure 2-5, so as to change the current-voltage characteristics of the diode. In 

Chapter Five, an organic diode memory device is demonstrated based on this principle.

cN

.C vJV

E vN

Figure 2-5 Ideal energy-band diagram of p+-N heterojunction before (dashed line) and 
after (solid line) negative charge storage at N side.

2.5 Charge Storage in the Floating Gate 
of an Organic Transistor

2.5.1 Organic Thin Film Transistors 
with Nanodot Floating Gate

The schematic structure o f the transistor memory is shown in Figure 2-6a. The 

channel material is a conjugated polymer. Regioregular poly(3-hexylthiophene) (rr-P3HT) 

is used for this work. Metal nanoparticles are integrated into the gate dielectric layer as the 

floating gate. Although the ultimate goal is to fabricate a low-cost all-organic OTFT 

memory, a less difficult approach would be a hybrid version with SiC>2 as the control gate 

dielectric.
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Figure 2-6 Schematic structure (a) and energy band diagrams o f write (b) and erase (c) 
operations o f the p-channel organic transistor memory device.

2.5.2 Basic Operation for 
Charge Storage

The principle o f the transistor memory device in this work is very similar to that of 

the traditional nano-crystal memory. The difference lies in the low mobility o f organic 

semiconductor materials. From v = fiE, the velocity v o f carriers in an OTFT should be 

four orders of magnitude smaller than that in a Si-based transistor, assuming the mobility of 

organic semiconductor is at the level o f 0.01 cm^V'^s"1. As a result, there are few hot 

electrons or holes in the channel to inject into the floating gate of an OTFT. Hence, the 

write/erase mechanisms o f an OTFT memory should be basically F-N tunneling.
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Figure 2-6b and c illustrate the energy band diagrams along the dashed line in 

Figure 2-6a during the write operation and erase operation, respectively. When the writing 

operation is carried out, the gate is negatively biased. The holes are accumulated at the 

interface between the tunnel insulator and the channel. The high electric field results in the 

F-N tunneling of holes through the tunnel insulator to potential wells—the metal nanodots. 

To erase the information, the holes stored in the metal nanodots are driven out to the 

channel by applying a positive gate voltage.
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CHAPTER THREE

EXPERIMENTAL METHODS

3.1 Device Fabrication Techniques

3.1.1 Spin-Coating T echnique

Spin-coating has been used for several decades for the application of thin films. A 

typical process involves depositing a small puddle o f a fluid solution onto the center o f a 

substrate and then spinning the substrate at high speed (typically around 3000 rpm). 

Centrifugal acceleration will cause the solution to spread to, and eventually off, the edge 

o f the substrate leaving a thin film on the surface. Final film thickness and other 

properties depend on the nature o f the solution (viscosity, drying rate, solid content, 

surface tension, etc.) and the parameters chosen for the spin process. Factors such as final 

rotational speed, acceleration, and fume exhaust contribute to how the properties of 

coated films are defined.

For most resin materials the final film thickness will be inversely proportional to 

the spin speed and spin time. Final thickness will also be somewhat proportional to the 

exhaust volume although uniformity will suffer if  the exhaust flow is too high since 

turbulence will cause non-uniform drying o f the film during the spin-coating process.

42
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3.1.1.1 Spin-coating process stages

As shown in Figure 3-1, the spin-coating process can be divided into four stages. 

The first stage is the deposition o f the coating fluid onto the wafer or substrate. The 

second stage is when the substrate is accelerated up to its final, desired, rotation speed. 

This stage is usually characterized by aggressive fluid expulsion from the wafer surface 

by the rotational motion.

C d u /d i  * o

SPIN-UP

(2)

(3)

SPIH-OFF

(4)

EVAPORATION

Figure 3-1 Stages o f spin-coating process: (1) fluid dispensing; (2) acceleration; (3) 
constant-rate spinning characterized by gradual fluid thinning; (4) evaporation-dominated 
spinning [77],

The third stage is when the substrate is spinning at a constant rate and fluid 

viscous forces dominate fluid thinning behavior. This stage is characterized by gradual 

fluid thinning.
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The fourth stage is when the substrate is spinning at a constant rate and solvent 

evaporation dominates the thinning behavior o f the coated layer. As the prior stage 

advances, the fluid thickness reaches a point where the viscosity effects yield only rather 

minor net fluid flow. At this point, the evaporation o f any volatile solvent species will 

become the dominant process occurring in the coating. In fact, at this point the coating 

effectively "gels" because as solvents are removed, the viscosity o f the remaining 

solution will likely increase, effectively freezing the coating in place. This behavior was 

used in the seminal work of Meyerhofer [78] in which he quantified the coating thickness 

dependence on spin speed and viscosity and its relationship to the evaporation rate.

Clearly the third and fourth stages describe two processes that must be occurring 

simultaneously throughout the entire process (viscous flow and evaporation). However, at 

an engineering level, the viscous flow effects dominate early on while the evaporation 

processes dominate later.

3.1.1.2 Film thickness prediction

The starting point for much o f the spin coating modeling was published by Emslie, 

Bonner, and Peck [79]. Their seminal treatment is based on assuming that flow has 

reached a stable condition where the centrifugal and viscous forces are just in balance 

(this is also the basis for most other modeling work -  note that this does not apply to the 

first stage o f spin-up and excess solvent expulsion). When the centrifugal and viscous 

forces are in balance, the following equation must be satisfied:

- T l ^ T  = p o 2r (3-1)
oz

where z and r define a cylindrical coordinate system aligned with the axis o f substrate 

rotation, v is the fluid velocity in the radial direction (a function o f depth), p is the fluid
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density, u  is the rotation rate in radians per second, and rj is the viscosity in poise. With 

appropriate flow and velocity boundary conditions, and considering a film that is initially 

uniform, the film thickness as a function o f time, h(t), was found to be:

where ho is the film thickness at the starting time (but not physically meaningful because 

o f the first stage o f unstable solution expulsion at early time), and K is a system constant 

defined as:

These equations are strictly valid only when K is constant. However, for spin 

coating o f sol-gel or other complex solutions this may not hold true during all stages of 

spinning. Both viscosity and density are expected to increase as evaporation progresses, 

so caution must be used when applying these equations. In their analysis, Emslie et al. 

[79] also showed that for early stages of fluid thinning (before evaporation becomes 

important), the thinning rate would be defined as:

At longer times, solvent evaporation becomes an important contribution. 

Meyerhofer was the first to estimate the effect o f this on final coating thickness [78], A 

quite reasonable approximation is that evaporation is constant throughout the spinning 

stages, as long as the rotational speed is held constant. Therefore, he simply added a 

constant evaporation term to the equation above. So, the governing differential equation 

became:

1 +  4 Kh20t
(3-2)

(3-4)
dt
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(3-5)
d t

where "e" is the evaporation rate [ml/s/cm2] and this is effectively the contribution to the

interface velocity that is driven by the evaporation process alone.

Instead of solving this equation explicitly, Meyerhofer [78] assumed that early 

stages were entirely flow dominated, while later stages would be entirely evaporation 

dominated. He set the transition point at the condition where the evaporation rate and the 

viscous flow rate became equal. This can be thought o f as the fluid-dynamical "set" point 

of the coating process. When these assumptions are made, the final coating thickness, hy, 

is predicted to be:

where Co is the concentration o f solids in the solution. When the physically applicable 

dependence of the evaporation rate on spin-speed was factored in, this was successful in 

matching the regular exponents for the dependence o f final film thickness on spin speed. 

Research has shown that the evaporation rate should be constant over the entire substrate 

and depend on rotation rate according to:

where the proportionality constant, C, must be determined for the specific experimental 

conditions. This square root dependence arises from the rate-limiting-step being diffusion 

through a vapor boundary layer above the spinning disk. It should be noted that this 

results when airflow above the spinning substrate is laminar.

e
(3-6)

{2(1 - c 0) K j
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3.1.1.3 Fluid flow complications

The flow behavior described above ignores several effects that are important for 

many coating solutions. As noted above, the evaporation step is critical in defining what 

the final coating thickness will be. But, evaporation occurs from the top surface, and only 

some of the solution components are volatile enough to evaporate to any substantial 

degree. Thus, there will necessarily be an enrichment o f the non-volatile components in 

the surface layer o f the coating solution during the spinning process. One of the key 

consequences is that this surface layer will very likely have a higher viscosity than the 

unmodified starting solution. With a higher viscosity, it will then impede the flow 

characteristics set out above, making it a difficult differential equation to solve directly. 

This surface layer may also have the secondary effects o f reducing the evaporation rate. 

So both the evaporation and flow processes are coupled through the behavior of the 

"skin" that develops on the top o f the outwardly flowing solution during spin coating.

Another important effect is that some solutions are not "Newtonian" in their 

viscosity/shear-rate relationships. Some solutions change viscosity depending on what 

shear rate is used, thus depending on the distance from the center, the shear rate will be 

different and thus the flow behavior. This can give radial thickness variation that varies 

rather smoothly in a radial sense, as pointed out by Britten and Thomas [80].

3.1.1.4 Applications and limitations
of spin-coating

Spin-coating technique finds itself useful in a variety o f fields for thin film 

deposition because of its relatively low cost, high throughput and film thickness 

repeatability. In particular, it is very suitable for polymer thin film deposition.
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However, spin-coated films usually suffer from pin-holes. When the film is very 

thin and the atmosphere is not clean, and/or there are bubbles in the solution, this problem 

is even more serious. Spin-coating in cleanroom and minimizing bubbles in the solution are 

usual approaches to cope with this problem. Spin-coating multiple ultra-thin films, if  

possible, may also block some pin-holes.

3.1.2 Inkjet Printing Technique

3.1.2.1 Inkjet printers

An inkjet printer is any printer that places extremely small droplets o f ink onto 

substrates like paper to create a pattern. Those droplets are usually produced by a 

transducer illustrated in Figure 3-2. The transducer can be either a thin film resistor 

(heater) or a piezoelectric driver.

In the former case, a thin film resistor is fabricated on the inner wall o f the ink 

cavity. When a high current is passed through the resistor, the ink in contact with it is 

vaporized, forming a vapor bubble over the resistor. The volumetric change by this vapor 

bubble causes pressure/velocity transients to occur in the fluid and produce a drop that

Transducer
(piez Orifice

1 ISubstrate 
„  T Motion

Data Pulse Train

Substrate

Character Data Fluid at
Ambient Pressure

Figure 3-2 Schematic droplet-producing element o f an inkjet printer.
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issues from an orifice. This type o f printer is usually referred to as a thermal ink-jet 

printer.

In a piezoelectric inkjet system, a volumetric change in the fluid is induced by the 

application o f a voltage pulse to a piezoelectric material that is coupled, directly or 

indirectly, to the fluid. Similarly, a drop is generated by the pressure due to the 

volumetric change. Figure 3-3 shows a piezoelectric inkjet printer that is used in our 

experiments.

le f'.jlaor

Hotplate

Figure 3-3 Microdrop dispensing system based on piezoelectric transducers.

It is a drop-on-demand Microdrop Dispensing System (Microdrop GmbH, Figure 1) 

interfaced with a computer. A piezoelectric nozzle together with a 4 ml ink reservoir is 

installed on the dispensing racket, which is capable o f accommodating four nozzles 

simultaneously. The nozzle is activated by a voltage pulse, of which the voltage amplitude, 

pulse width, and frequency are adjustable through the computer software. A positioning 

system controls the movements o f the nozzle in a XYZ station. The positioning accuracy is
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±10 pm. The repetition accuracy is ±3 pm. The minimum step width o f movement is 1 pm 

in X, Y and Z directions. The substrate stage is a hotplate controlled by a proportional, 

integral, and derivative regulator so that the substrate can be heated up to 150 °C.

3.1.2.2 Factors affecting inkjet printing

The general fluid property requirements for a fluid to be used in a piezoelectric 

drop-on-demand mode ink-jet device are as follows:

Viscosity: 0.5-40 centipoises; surface tension: 20-70 mN/m.

Some fluids with properties outside these ranges may be dispensed using ink-jet devices, 

but with increased difficulty and decreased performance. Combinations o f the extreme 

values may also have poorer performance. If the fluid is heated or cooled, the above 

properties are required at the orifice.

Newtonian behavior is not strictly required, but the fluid properties at the orifice 

flow conditions must be in the above range. Thus, if  the fluid has a low shear rate viscosity 

much higher than 40 centipoises, the viscoelastic behavior will cause significant 

performance problems.

Particle suspensions, such as inks, are acceptable as long as the particle or 

agglomerate size and density do not cause the suspension to depart from the fluid 

properties range given above. Particles that are >5% of the orifice diameter will cause at 

least some instability in drop generation behavior, but still may be acceptable in low 

concentrations.

The values above are appropriate for fluids with a specific gravity close to one. For 

high density fluids, such as molten metals, the values above should be converted to 

kinematical values using the density of water.
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Increasing fluid viscosity acts to dampen the acoustic waves used to create a drop.

Increasing viscosity also causes an increase in drive voltage required to create a drop of

fixed velocity and a decrease in the effective orifice diameter, thus decreasing the drop size

at fixed drop velocity.

Although surface tension and density are a weak function o f temperature, viscosity

is a strong function of temperature. Thus, the effect o f viscosity variation can be shown

most clearly by the operation of a fluid within a range o f temperature.

Finally, viscosity acts to dampen the instabilities that lead to satellite droplets.

Fluids with lower viscosity are more susceptible to satellite drop formation.

Surface tension has a small effect on the drive voltage requirements for a device. As

surface tension increases, the drive voltage required to achieve a constant drop velocity will

increase. Very low surface tension can result in an increased likelihood of air ingestion,

particularly at high drop velocities. Very high surface tension materials require special

consideration in the selection of orifice materials and coatings.

3.1.2.3 Applications and limitations 
o f inkiet-printing

Historically, inkjet printing technique is widely used in the graphic arts printing 

world. Recently, this technique has been heavily explored for fabrication o f polymer 

flexible electronic circuits due to its low cost, low temperature process, direct writing, 

solution processing and rapid prototyping [81]. Both organic and metallic components have 

been manufactured using this novel technique [82-85],

Unlike spin-coated films, the inkjet printed films are usually o f poor uniformity. 

The film thickness variation may be as large as the film thickness value. Due to the coffee 

stain effect [8 6 , 87], the inkjet printed dots may have ring-like structure, i.e., the film in the
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rim region is over 10 times thicker than that in the center. This problem, however, can be 

solved by heating the substrate or using solvents with higher evaporation rate [8 6 ].

3.1.3 Self-Assembly Technique

3.1.3.1 Laver-bv-laver self-assembly

Layer-by-layer (LbL) self-assembly is a novel method for film deposition in 

liquid (usually water) solution that makes use o f the alternate adsorption of oppositely 

charged macromolecules (polymers, nanoparticles and proteins) [88-90]. The assembly of 

alternating layers o f oppositely charged linear or branched polyions and nanoparticles is 

simple and provides the means to form 5 -500 nm thick films with monolayers o f various 

substances growing in a pre-set sequence on any substrates at a growth step o f about 1 

nm. These films have a lower molecular order than Langmuir-Blodgett or free-standing 

films but they have the advantage o f high strength and the easy preparation.

Figure 3-4 illustrates the basic principle and operation of LbL self-assembly. A 

cleaned substrate o f any shape and dimension is immersed into a dilute solution o f a 

cationic polyelectrolyte, for a time optimized for the adsorption o f a single monolayer (ca. 

1 nm thick), and then it is rinsed and dried. The next step is the immersion o f the 

polycation-covered substrate into a dilute dispersion o f polyanions or negatively charged 

nanoparticles also for a time optimized for the adsorption of a monolayer, and then it is 

rinsed and dried. These operations complete the self-assembly o f a polyelectrolyte 

monolayer and monoparticulate layer sandwich unit onto the substrate. Subsequent 

sandwich units are self-assembled analogously. Linear polycation/polyanion multilayers 

can be assembled by similar means. Different nanoparticles, enzymes and polyions may 

be assembled in a pre-planned order in a single film.
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Figure 3-4 Schematic illustration o f layer-by-layer self-assembly.

The forces between nanoparticles and binder layers govern the spontaneous layer- 

by-layer self-assembly of ultrathin films. These forces are primarily electrostatic and 

covalent in nature, but they can also involve hydrogen bonding, hydrophobic and other 

types o f  interactions. The properties o f the self-assembled multilayers depend on the 

choice o f building blocks used and their rational organization and integration along the 

axis perpendicular to the substrate.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



54

3.1.3.2 Self-assembly monolayers

The formation of a well-packed monolayer from aqueous solution surfaces onto 

solid substrates was demonstrated a long time ago by the Langmuir-Blodgett (LB) 

technique [91]. LB-film formation is, however, cumbersome and time-consuming and 

requires a film balance. These problems have been overcome by the spontaneous 

formation o f self-assembled monolayers (SAMs) on substrates [92, 93]. Self-assembly is 

governed by the strong attraction o f an appropriately fimctionalized head group onto the 

substrate surface and by the hydrophobic interaction between the hydrocarbon tails o f the 

molecules constituting the SAM. Formation o f a SAM can be monitored, in situ, by 

electrochemical (quartz crystal microbalance, cyclic voltammetry, and impedance 

spectroscopy) and optical (ellipsometry [94], surface plasmon resonance imaging [95], 

and infrared reflection absorption spectroscopy [96]) measurements. The structure o f the 

SAM formed can be imaged, ex situ, by microscopic techniques (scanning electron 

microscopy and scanning force microscopy).

Two different methods are practiced today for the spontaneous formation of 

SAMs on substrates. The first method involves the silanation o f the substrate (typically 

glass) by surfactant silanes or siloxanes. Formation o f sulfur coinage-metal (most often 

gold) covalent bonds represents the second method o f SAM formation [97]. Both 

methods are attractive since they avoid the complex mechanical manipulation required 

for making LB films and since they are economical and suitable to scale up.

There is an additional important difference between LB films and SAMs. In LB 

film the configuration o f the surfactants, determined by the parameters which are 

responsible for monolayer formation, is retained regardless o f the type o f substrate. In
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contrast, in SAMs the surfactant organization is primarily dependent on the nature o f the 

substrate.

Sagiv and co-workers first demonstrated a silane-based SAM on various 

substrates [98], They immersed scrupulously clean glass, poly(vinyl alcohol), oxidized 

polyethylene, and evaporated aluminum substrates into millimolar solutions o f n- 

octadecyltrichlorosilane (OTS) in an organic (80% n-hexadecane, 12% CCI4, and 8 % 

CHCI3) solvent for a few minutes and obtained a well-packed SAM. The mechanism of 

self-assembly was discussed in terms of chemisorption and hydrolysis o f the Si-Cl bonds 

at the substrate surface and subsequent formation of a network o f Si-O-Si bonds (Figure 

3-5).

POLYMERIZAlfoN
Condensation

Figure 3-5 Schematic OTS SAM formation on a glass substrate.

Recent theoretical and experimental studies established the energy offsets 

between a silicon conduction band and the lowest unoccupied molecular orbital (LUMO) 

to be between 4.1 and 4.3 eV and that between the silicon valence band and the highest
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occupied molecular orbital (HOMO) o f the alkyl chains to be between 4.1 an 4.5 eV in 

siloxane SAM, irrespective o f the alkyl chain length (between C12 and C l8). These 

results validate the concept o f using SAMs as ultrathin insulators. Preferential adsorption 

o f silane surfactant molecules from a mixture depends on the structures o f the 

amphiphiles and the substrate. Self-assembly by physisorption is reversible, while that of 

chemisorption is irreversible. Thus, surfactants physisorbed in monolayers can be 

replaced by surfactants which are able to chemisorb.

Both methods are promising for micro/nano-patteming [99]. On the other hand, 

they are also very useful for the stabilization and/or functionalization of metal 

nanoparticles (e.g., Au, Ag, Cu, Pd, and Pt) [100] and semiconductor quantum dots (e.g., 

CdSe, ZnS, and CdS) [101]. Figure 3-6 presents an example o f surface capping by 

alkanethiol molecules.

Figure 3-6 Schematics for surface capping of a nanoparticle by alkanethiol molecules.

3.1.4 Vacuum Thermal Evaporation

Thermal evaporation is a physical vapor deposition technique. It is conducted in 

the vacuum chamber o f an evaporator (Figure 3-7). Basically, materials (for example, 

aluminum) are put in the tungsten filament bucket, which is then heated to the point

.■■far JL "4^
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where the aluminum will actually evaporate. Aluminum vapor travels through the 

chamber and finally condenses in the form of a thin film on the (relatively) cold sample 

surface (as well as elsewhere in the chamber). The assembly o f the technique is simple. It 

is appropriate for depositing metals and some compounds with low melting temperature 

(Al, Ag, Au, SiO, etc.). For materials with high melting point (W, Ta, Cr, C, etc) 

electron-beam evaporation is a good choice.

V S ubstra tes

Metal vapour ~ _

\
* Vacuum 

cham ber

• -  Hul resitla riue  <yV)

Pow er
cupply

Vacuum system

Figure 3-7 Schematics o f vacuum thermal evaporation.

Usually low pressures, about 10' 6 or 10' 5 Torr, are used, to avoid reaction 

between the vapor and atmosphere. At these low pressures, the mean free path o f vapor 

atoms is about the same order as the vacuum chamber dimensions, so these particles 

travel in straight lines from the evaporation source towards the substrate. This originates 

'shadowing' phenomena with 3D objects, especially in those regions not directly 

accessible from the evaporation source (crucible). Besides, in thermal evaporation 

techniques the average energy o f vapor atoms reaching the substrate surface is generally
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low (on the order of kT, i.e. tenths o f eV). This affects seriously the morphology o f the 

films, often resulting in a porous and little adherent material.

3.2 Electrical Characterization Methods

All the fabricated devices need to be characterized for their current-voltage (I-V), 

capacitance-voltage (C-V) behavior, and sometimes current-time relationship. The basic 

equipment for these measurements is a computer-interfaced Keithley electrical 

characterization system (Figure 3-8). It consists o f three I-V power sources and two C-V 

units. A probe station including four probes, a microscope and a CCD camera facilitates 

the testing of micro-scale devices. The voltage or current stimulus can be set up through 

the software, which also receives data and generates plots.

Figure 3-8 Keithley electrical characterization system.
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CHAPTER FOUR

READ-ONLY ORGANIC RESISTIVE 

MEMORY DEVICE

4.1 Introduction

As mentioned in Chapter one, the charge-transfer complexes o f TCNQ with metals 

or molecules show a wide range of interesting electronic properties. For example, 

Cu/TCNQ and Ceo/TCNQ complexes can switch from ‘low’ conduction state to ‘high’ 

conduction state upon electrical bias, which enables them to be good candidates for data 

storage application.

Until now TCNQ-based complex thin films are either deposited in vacuum chamber 

[42, 43] or grown by immersing the substrate (e.g. Cu strip) in TCNQ solution [41, 102]. 

The former process is expensive while the latter one is not suitable for free-standing films. 

For low-cost applications, it is desirable to fabricate devices using solution-based processes 

like spin-coating. But TCNQ-based complexes are usually insoluble. In this work, we 

developed a soluble molecular complex composed o f TCNQ and a methanofullerene 

derivative, namely [6 ,6 ]-phenyl C61-butyric acid methyl ester (PCBM). An electrically- 

bistable memory device was fabricated and characterized based on the spin-coated 

PCBM/TCNQ complex thin film.

59
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4.2 Device Fabrication

The substrate is a glass slide, coated with a 200 nm thick aluminum by thermal 

evaporation method. The A1 layer serves as the bottom electric contact.

PCBM molecules (structure shown in Figure 4-la, purchased from American Dyes) 

were dissolved in chloroform at 6  mg/ml. The TCNQ solution in N,N-dimethylformamide 

(9 mg/ml) was added into PCBM solution according to the 1:1 molar ratio of 

PCBM/TCNQ. The mixture solution was magnetically stirred overnight. We found that the 

mixture solution o f PCBM/TCNQ is very stable at room temperature. No precipitates were 

observed.

Figure 4-1 Schematic structure o f PCBM (a), TCNQ (b), and the fabricated device(c).

The PCBM/TCNQ complex thin film was deposited by spin-coating the mixture 

solution over the aluminum-coated glass slide. The film thickness was measured to be -100 

nm on a Tencor Alpha step profilometer. Another aluminum layer was deposited on the 

organic thin film as the top electrodes by thermal evaporation through a shadow mask. A 

number o f devices with A1-PCBM/TCNQ-A1 sandwich structure (Figure 4-1 c) were 

obtained. The active area of each device is 0.385 mm .

G la s s

(a) (b) (c)
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4.3 Experimental Results

UV-Visible absorbance spectra were obtained on an Agilent 8453 Absorbance 

Spectrometer. Both the PCBM/TCNQ chloroform solution in a quartz cuvette and the spin- 

coated PCBM/TCNQ film on fused quartz slide were characterized.

Figure 4-2 shows the UV-Visible absorbance spectra of the PCBM/TCNQ 

chloroform solution (upper) and spin-coated thin film (bottom). In chloroform solution, the 

co-presence o f PCBM and TCNQ produces two new peaks (389 nm and 409 nm). As for 

the spin-coated film, the PCBM/TCNQ spectrum is not the linear combination o f PCBM 

spectrum and TCNQ spectrum. We can see the shift of PCBM peaks toward longer 

wavelength. These results indicate the existence of the PCBM/TCNQ molecular complex.

4.0
-o— PCBM in CHCi 

•■-TCN Q  in CHCl 
■o— PCBM/TCNQ in CHCI.

3.5
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—■— TCNQ film 
—»— PCBM film 
— *— Linear combination -
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Figure 4-2 UV-Visible absorbance spectra o f PCBM/TCNQ solution in chloroform 
(upper) and spin-cast thin film on fused quartz slides (bottom).
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The spectrum of PCBM/TCNQ film is similar to that o f PCBM. It seems that the 

absorbance o f TCNQ, as well as the PCBM/TCNQ complex, is overwhelmed and/or 

suppressed in the solid film. This phenomenon can be attributed to the scattering of 

incident light beam by numerous tiny TCNQ crystals [103]. Owing to its much poorer 

solubility in chloroform, non-associated (or separated) TCNQ molecules crystallize much 

more effectively than PCBM. As a result, the dried film is probably a mixture o f PCBM 

molecules, TCNQ crystals, and PCBM/TCNQ complexes. The optical images (Figure 4-3) 

of the films seem to support this description.

Figure 4-3 Optical images (1000 X) o f the complex films with PCBM:TCNQ ratio o f (a) 
1:0, (b) 2:1, (c) 1:1, and (d) 0:1. Inset o f (d) is 50X.
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Figure 4-3 shows the surface morphology of the spin-coated thin films. It can be 

seen that there are black island structures embedded in the bulk film. The amount of black 

phase increases with the content of TCNQ. Therefore, we can identify the black phase as 

the TCNQ-rich structure, probably PCBM/TCNQ complex. The TCNQ film without 

PCBM, formed from the TCNQ in DMF, is not continuous (see inset of Figure 4-3d). The 

needle-like TCNQ crystal structures make the film very rough. SEM image also shows the 

island-like structure in the film (Figure 4-4).

Figure 4-4 SEM image of the PCBM/TCNQ film.

All the devices were characterized using a electrical probe station with a computer- 

interfaced Keithley 236 power source. The current-voltage (I-V) characteristics of the Al- 

PCBM/TCNQ-A1 devices are shown in Figure 4-5. It can be seen that the device switches 

from the initial low-conduction (or ‘0’) state to a high-conduction (or ‘1’) state at -2 .0  V. 

The on/off ratio is 1.76x 106 at 0.5 V, calculated from the data o f curve I and curve II. Then
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the device stays at ‘ 1’ state even after the external electric field is removed. Figure 4-5 also 

shows the I-V curves o f fresh devices versus the I-V curves o f the same devices obtained 

after five months. It can be seen that either state of these devices remain stable in the air 

ambient. The change of ON-state current (at 0.5 V) is about -0.4%.

fc 10

10'
.-11

Voltage (V)

4x10'

2x1 O'

4x10'
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1/Area (mm )-12

Voltage (V)

Figure 4-5 Current-voltage (I-V) characteristics o f A1-PCBM/TCNQ-A1 devices. The 
sequence of measurement is: curve I-> curve II-> curve III. I-V curves o f three fresh 
devices (open circle) in initial OFF state (A), ON state (B) and 2nd OFF state (C), 
respectively, are also presented against the I-V curves o f the same devices obtained five 
months later (solid circle). Inset a: switch-off o f the programmed devices. Inset b: ON 
resistance (open square) and OFF resistance (solid square) versus 1/area. Each data point 
is the average value o f six devices.

The device’s conductivity abruptly drops down to its ‘0’ level at -4.0 V. We believe 

it is the high current density that results in the switch-off. This is similar to Cu/CuTCNQ/Al
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devices [41]. To verify the effect of high current density, a group of devices at ‘1’ state 

were characterized. They all switch off when the current density reaches 5.0 to 25 A/cm2. 

The inset b in Figure 4-4 shows the typical current-voltage characteristics o f these 

programmed devices. The switch-off voltage varies from 1.5 V to 4.0 V. It should be 

mentioned that after switchback the devices do not switch to ‘1 ’ state any more.

Devices of different areas (from 0.138 mm2 to 1.108 mm2) were fabricated and 

characterized. It is observed that the larger the device area is, the harder it is to switch off. 

However, quantitative comparison is difficult since the variation o f switch-off current of 

same size devices is large (Figure 4-5 inset a). Large-area devices, e.g., > 0.7 mm2, do not 

switch off even the current value reaches the limit (100 mA) of Keithley power source.

Considering the scalability, we calculated the nominal resistance (R) from the value 

of V/I at 0.5 V for both OFF state and ON state o f devices with different active areas. The 

resistance versus area dependence is plotted as the inset b of Figure 4-5. Both the ON-state 

resistance and OFF-state resistance o f these studied devices are roughly proportional to the 

reciprocal o f device area. However, the scaling down of this device is obviously limited by 

the size (~1  /xm) o f film microstructures and by the film non-uniformity, as shown in 

Figure 4-3.

The yield of our devices is around 80%. This should be ascribed to the film non­

uniformity, probably caused by TCNQ crystallization, and the pin holes, which are usually 

found in spin-coated films. Due to the same reasons the performance variation between 

devices is also large, as shown in Figure 4-5.
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4.4 Discussion

4.4.1 I-V Curve Fits

To analyze the switching mechanism we plot the LogI-Vm  curve before switching

(inset o f Figure 4-5) and the Log/-LogF curves after switchings (Figure 4-6). The linear

/ /?Log/-F relationship before the transition implies that the current is controlled by charge 

injection [104] from A1 electrode into the PCBM/TCNQ molecular layer. After the first 

switching linear Log/-LogF curves were obtained. The best linear fits o f log/-logF give 

I  oc Vu  for the ‘ON’ state and I  oc V 2 09 for the second ‘OFF’ state, respectively. At ‘ON’ 

state the current is basically ohmic. After switch-off it becomes space-charge-limited 

current, which requires at least one ohmic contact [105]. It seems that the electric switching 

changed the nature o f the Al-organic contact from non-ohmic to ohmic.

1 0 '

1 0 '®

■ switch on 
o switch off

Thermal emission fit on 
initial off current _<1 Q'5
lo g  /  oc V log /  oc log V

,-11 o m

0.01 0.1 1 10Voltage (V)

Figure 4-6 Current-voltage analysis o f the device before switch-on (curve I o f the inset), 
after switch-on (curve II) and after switch-off (curve III).
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4.4.2 Effect o f Film Composition

According to Oyamada et al. [42], no switching was observed of the TCNQ thin 

films. To further understand the switching and memory effect of PCBM/TCNQ films, we 

also studied the electrical behavior o f A1-PCBM-A1 devices, where the PCBM films were 

spin-cast from chloroform solution. As shown in Figure 4-7, bistable switching was 

observed in the device with PCBM film of -100 nm thick. However, the device returns to 

low-conduction state when the voltage drops below 1.6-2.0 V. If the PCBM films are too 

thick (e.g., 200 nm) or too thin (e.g., 30 nm), there is no electrical switching.

PCBM film thickness

— ■ — 30 nm 
—o— i 00 nm 
—•*—200 nm

1 0

t  1 0

12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Voltage (V)

Figure 4-7 Current-voltage characteristics o f A1-PCBM-A1 devices with PCBM film 
thickness o f 30 nm (solid square), 100 nm (open circle), and 200 nm (open triangle). 
Only the device with 100 nm PCBM film shows electrical switching.

Electrical bistability and memory effect were reported in Al-pentacene-Al 

structures [47]. Our A1-PCBM-A1 devices are similar to them in terms of the dependence of
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switching on the film thickness. It is well accepted that A1 atoms can penetrate into the 

organic layer during the thermal evaporation. The electrical behavior o f Al-PCBM (30 

nm)-Al is probably caused by the penetration o f A1 through the PCBM film. If the 

molecular film thickness is appropriate, molecular quantum dot devices may form, as 

predicted by Alexandrov et al [106], Their theoretical study shows that molecular quantum 

dots like fullerene derivatives exhibit electrical bistability in the voltage range Vi< V < V2, 

where V2 is the switch-on voltage and Vi is the switch-off voltage. According to 

Alexandrov et al [106], the thin native oxide on Al is desirable since the device requires 

weakly-coupled electric lead with the molecular quantum dots. The thin oxide is almost 

transparent for electrons while blocking the metal ion diffusion.

Comparing Figure 4-5 with Figure 4-7, we can see that the high-conduction state 

o f PCBM/TCNQ device is non-volatile. PCBM has higher electron affinity (3.75 eV 

[107]) than TCNQ (2.8 eV [108]). In the PCBM/TCNQ complex it is reasonable to 

assume that some PCBM molecules (or clusters) are surrounded by TCNQ molecules. In 

this scenario the PCBM quantum dots become potential wells. Assuming that the 

quantum dot tunneling is still responsible for the switching, the charge trapping in the 

potential wells could be the reason o f non-volatility. The electric field produced by 

trapped charge could work like the external electric field, keeping the device in the ON 

state. The trapped charge can also distort the band structure o f surrounding molecular 

materials. Due to band distortion the energy barrier between the electrode and the 

molecules could become small and/or thin enough to result in ohmic-like behavior o f the 

high-conduction state. High current density may heat some local places o f the molecular 

film so as to damage the organic layer and switch the device off.
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The role o f TCNQ is further confirmed by the I-V curves o f the devices with 

different PCBM/TCNQ molar ratios. Figure 4-8 presents the current-voltage curves o f 

two devices with PCBM/TCNQ molar ratio 1:2 and 1:5, respectively. Both devices 

exhibit memory effects. It is expected that the more TCNQ present in the film, the higher 

switch-on voltage. But the device with PCBM/TCNQ =1 : 5  has the switch-on voltage 

close to that o f the 1:1 device (Figure 4-4). This is possibly caused by the higher degree 

of film non-uniformity due to the higher content o f TCNQ molecules.

1.00E+00 i

1.00E-02 =

1.00E-04 =

o  1.00E-06

1.00E-08 =
PCBM:TCNQ=1:2
PCBM:TCNQ=1:5

1.00E-10 =

1.00E-12
0 1 2 3 4 5

V oltage  (V)

Figure 4-8 I-V curves o f the A1-PCBM/TCNQ-A1 devices with PCBM/TCNQ molar 
ratio o f 1:2 (solid line) and 1:5 (dashed line), respectively.

4.4.3 Effect o f Electrode Materials

To study the effect o f electrode materials, indium tin oxide (ITO) instead of 

aluminum was used for the bottom electrode. Devices are showing similar switching 

behavior. However, the ON state disappears after the external electric field is removed 

(Figure 4-9). That means the device is volatile. Besides, the on/off ratio is also much 

smaller (1.28x 103 at 0.5 V). The interesting thing is that the device becomes non-volatile
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again when a conducting polymer PEDOT:PSS layer is inserted between the ITO contact 

and the molecular layer. The detailed experiments and mechanisms will be discussed in 

Chapter Five.

1.0E-03

1.0E-04

1.0E-05

1.0E-06
<
C
2L.3o

1.0E-07

1.0E-08

1.0E-09

1.0E-10

1.0E-11
0 1 2 3 4 5

Voltage (V)

Figure 4-9 Current-voltage characteristics o f the ITO-PCBM/TCNQ-A1 devices. The 
number refers to the measurement sequence.

4.5 Summary

An organic electrically-bistable memory device based on the spin-coated molecular 

thin film has been demonstrated [109]. Sandwiched between two aluminum electrodes, the 

PCBM/TCNQ molecular film can switch from low-conduction state to high-conduction 

state, upon application o f external electric field. A high current pulse can switch the device 

back to low conduction state. The device can remain at either state for at least five months 

after the external electric field is removed. This device is o f potential use for low-cost 

write-once-read-many-times memory applications.
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CHAPTER FIVE

REWRITABLE ORGANIC DIODE 

MEMORY DEVICE

5.1 Introduction

In Chapter Four, a read-only memory cell based on PCBM/TCNQ complex film is 

demonstrated. However, the device switches only twice. For wider applications it would be 

highly desirable to make the memory device rewritable. In this chapter, a rewritable 

memory device, in which PCBM/TCNQ complex film plays a role, will be presented. A 

theoretical model in terms of charge storage in the PCBM nanodots is proposed to explain 

the experimental results.

5.2 Device Fabrication and Characterization

The starting material is an ITO-coated (120 nm) PET transparency. First, the ITO 

transparency is cleaned by sonicating in acetone for 1 min and then in isopropyl alcohol for 

10 min. Then the ITO surface is treated with O2 plasma for 10 sec in order to obtain a 

hydrophilic surface and to increase the work function o f ITO [110]. After that, a layer of 

conducting polymer poly(ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) 

is deposited on ITO by spin-coating method. The PEDOT:PSS layer is cured by heating the 

sample on a hotplate at 125 °C for 5 min. The thickness of PEDOT:PSS film is measured 

to be 200 nm. The PCBM/TCNQ (with a molar ratio 1:2) solution in a mixture of

71
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chloroform and DMF is prepared as described in Chapter Four. The PCBM concentration is 

about 2 mg/ml. The mixture solution is spun on the PEDOT:PSS and then dried on a 

hotplate at 110 °C for one hour. The thickness of PCBM/TCNQ film is about 50 nm.

Finally, a 200 nm aluminum layer is deposited on top of PCBM/TCNQ film 

through a shadow mask. The active area is 0.385 mm2. The final device has a structure 

schematically shown in Figure 5-1. Since PEDOT:PSS is a p-type material while both 

PCBM and TCNQ are n-type materials, a hetero p+-N junction is expected to form between 

two organic layers. The device is some how similar to an OLED or organic solar cell. All 

devices are characterized using the Keithley electrical characterization system interfaced 

with a computer.

Al

PCBM/TCNQ

ITO

PET substrate

Figure 5-1 Schematic cross-section o f the rewritable organic diode memory device.

5.3 Measurement Results and Discussion

The current-voltage characteristics o f the device are shown in Figure 5-2. The 

curves exhibit repeatable hysteresis. When the voltage exceeds +5.0 V, the device switches 

to its ON state. Applying a negative voltage beyond -4.0 V switches the device off. The 

on/off ratio at +1.0 V is calculated to be 105. The switching can be repeated many times 

(>100).
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Figure 5-2 Current-voltage curves o f the rewritable organic diode memory device.

The I-V curves in Figure 5-2 are not smooth, which may caused by two possible 

reasons. The first reason is the so-called Coulomb blockade effect [111], especially for the 

step-like features. In a tunnel junction the capacitance C is small enough that the energy 

associated with the transfer o f one electron from a reservoir to the object is Ec = e /2C. 

When this energy is large compared with the available thermal energy, kT, and the tunnel 

resistance between the object and its surroundings Rt is much greater than the quantum 

resistance h/e2, the transport properties of the system become strongly influenced by the 

discrete nature of the electron charge. The Coulomb blockage effect was observed as the 

steps o f I-V curves, which also occurs in the low-conduction I-V curves o f Figure 5-2. 

Those steps may be caused by the discrete charging and discharging o f PCBM/TCNQ 

nanodots. The second reason is the noises, especially for those spikes o f the I-V curves in
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high-conduction state. For the p-n junction under forward bias, the total mean-square noise 

current (without considering 1/f  noise) is given by [112]

qV

where B is the band width and Is the reverse bias saturation current. However, for the DC 

current measurement, the noise described in Equation (5-1) should be negligible. 

Therefore, the major noise here should be flicker noise or “1 /f’ noise because the 

integration parameter is set as 60 Hz in our I-Y measurement. It was noted that the flicker 

noise was inversely proportional to frequency and consequently was predominant on the 

lower end of the frequency spectrum [113]. One physical origin is the poor contact between 

the probe and the device electrode. If the contact resistance changes due to the external 

reasons, for instance, the mechanical vibration of the probe station, the current level also 

change according to the diode current equation including resistance effect [114]:

( q V - I R \
- 1exp

K nkT  ,

where R the parasitic resistance including contact resistance, n is the ideality factor.

It should be noted that the variation between different scan is relatively large. The 

reason is still not clear. The write-read-erase-read operations can still be realized, though. 

Figure 5-3a shows the cycles with write voltage +5.0 V, read voltage +1.0 V, and erase 

voltage -4.0 V. The current difference o f over three orders of magnitude exists between the 

ON and OFF currents shown in solid circles (Figure 5-3b).

After the devices are programmed, as illustrated in Figure 5-3, the data retention is 

monitored using a probing voltage +1.0 V. Figure 5-4 shows the readout current versus 

time. We can see that both states are stable for over 10 minutes. However, both ON current

(5-1)
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and OFF current decrease by two orders of magnitude after storing the device in air for two 

months. The possible reason is the degradation of organic materials, especially the 

degradation o f PEDOT:PSS.
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Figure 5-3 The write-read-erase-read cycles o f the organic diode memory device.
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Figure 5-4 Data retention of the rewritable organic diode memory. The data were 
obtained by biasing the device at + 1.0  V incessantly.
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In order to understand the carrier transport mechanism in the device, the I-V curves 

of ON state and OFF state were studied using fitting methods. Figure 5-5a is the semilog I- 

V curve of OFF state, a linear Logl-V relationship can be found out, which implies a diode 

behavior of the device. It seems that the OFF current is mainly limited by the p+-N 

heterojunction.

.OE-05

Diode I-V fit logl~V
.0E-06

.0E -07

.0E-08

.0E -09

.0E-10

.OE-11

0 1 2 3 4 5

Voltage (V)

1.0E-03

On state P-F fit log(l/V)~sqrt(V)

r  1.0E-04 :

1.0E-05
0 0.5 1 1.5 2 2.5

Voltage1® (V1®)

Figure 5-5 I-V curve analyses o f the OFF state (a) and the ON state (b).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



77

1F)As for the ON state, the best fitting result gives the linear relationship log(I/V)-V 

(Figure 5-5b), which is the Poole-Frenkel (P-F) emission [115, 116]. P-F emission is 

featured by the structural defects causing additional energy states close to the band edge 

called traps. These traps restrict the current flow because o f the capture and emission 

process, thereby becoming the dominant current mechanism. Therefore, from the I-V fit 

analyses, we can conclude that the current changed from a p+-N heterojunction-limited 

mechanism in the OFF state to a charge capture-emission mechanism in the ON state.

To further understand this transition, the capacitance-voltage (C-V) characteristics 

o f the device were obtained and plotted in Figure 5-6. The arrows show the direction of 

voltage scan.
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Figure 5-6 Capacitance-voltage characteristics o f the ITO-PEDOT:PSS-PCBM/TCNQ- 
A1 device at frequency 100 kHz.

For a p+-N heterojunction diode, the junction capacitance dominates in the reverse 

bias regime. Assuming Nd «  Na and ep is close to e^, we have [112]
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C j = A
qNdN as p£p^N

2{spN a + eNN dW bi- V )

M l

W u - V )
-N,

1/ 2

(5-3)

where A is the device area, Vy is the built-in potential, 6P and 6N are the dielectric

constants o f p+ region and N region, respectively, Na and Nd are the acceptor 

concentration and donor concentration in the p+ region and the N region, respectively.

Considering

x N =
'  2N as ps N(Vbi- V) '

1/2
\ 2 £N{Vbi- V ) \

_qNd{eNN d+£pN a)_ 1 1

1/ 2

(5-4)

we can write Eqation (5-3) as

Cj  ~ A
q£N - N J

1/2

£ N A (5-5)
NW bi -  V)

In our p+-N diode, the junction capacitance before charge storage (curve I in Figure 5-6) 

changes only slightly in the bias range from -5.0 V to +2.0 V. This result verifies the 

assumption that the N-region is completely depleted—depletion width xn equals to the 

thickness o f N-region d—even at positive bias.

In a p-n homojunction diode, the diffusion capacitance dominates in the forward 

bias regime. It can be described as [1, 112]

C d = A -
,2 L  p  L n  sL ̂ P ^ n  +  n kT

(5-6)
k T '  2  2

where Lp (Ln)  is the hole (electron) diffusion length, p n (np)  is the minority hole (electron) 

carrier density.

However, in our device the increase o f diffusion capacitance with the direct

qV_

current level e kT ) is not observed. According to Sheinman and Ritter [117], the
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diffusion capacitance should be omitted from the equivalent circuit o f a p+-N 

heterojunction diode, since the minority carriers in a abrupt p+-N heterojunction do not 

contribute to the charging time of the diode due to the thermionic emission boundary 

condition.

At low forward bias, less than +2.0 V in our case, the differential charge appears 

at the edge o f the depletion region, as expected in the depletion approximation. The 

junction capacitance roughly obeys the Equation (5-3), where xN hardly changes.

Under high forward bias, the dopants near the junction are flooded by mobile 

carriers, the space charge region disappears, and the depletion charge should approach 

zero. The depletion capacitance should thus peak and then fall with increasing forward 

bias. For a high forward bias level, the capacitance can be expressed as [118]

C ki = ------------ d Vl.
1 (  V \ M dV  ’

1 - ^
vv r b J

where Co, V b , and M are constants that depend on the heterojunction structure,

VL (V) = R- Vb ~ — ln(l + e~G(V~R'V/l)) and R and G are adjustable constants.
G

The curve II in Figure 5-6 did not follow the track of curve I. The capacitance 

stays high when the voltage sweeps from +4.0 V to -4.0 V. This implies that the dopant 

ions near the junction are still flooded by charge carriers, and these charge carriers do not 

go away until a high negative voltage, say -5.0 V, is applied. Therefore, we can conclude 

that the charge is stored in the device after the forward bias.

Assuming that the dielectric constant o f the organic films does not change, the 

amount o f charge can be calculated from the C-V hysteresis loop according to the equation:
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eV 2

j y  ( ^  forward ^backw ard  )  d V  (5-8)

where (Vi, V2) is the voltage range, Cforward and Cbackwaid corresponds to the capacitance 

values of forward scan and backward scan, respectively. To approximately calculate the 

charge AQ, equation (5-8) can be written as

A 6  =  Z  [ ( C backward ~  C forward ) ( V i  + 1 _  ^ i ) ]  ( 5 .9 )
/ —0

where Vo = Vi and Vn= V2 define the scan range.

The calculated AQ from the data of Figure 5-6 is 4.366x1 O'9 C for the device with 

area 0.385 mm2. Therefore, the area charge density is 1.134xl0'8 C/mm2. This is equivalent 

to 7.09xl012 electrons/cm2. If all the charge is uniformly trapped in the PCBM/TCNQ layer 

(-50 nm thick), then the volume charge density is 1.42xl018 cm'3. If the charge is 

uniformly trapped in the whole organic layers, from PEDOT:PSS to PCBM/TCNQ, then 

the volume charge density is 2.83xl017cm'3. These values are relatively large as compared 

to the carrier density of PEDOT:PSS (1.17xl017 cm'3), which we experimentally obtained 

from C-V and Hall effect measurements.

Based on the above I-V fit results and C-V measurement results, we can explain the 

electrical transition based on the charge storage model discussed in Chapter Two. The 

PEDOT:PSS/PCBM:TCNQ interface can be treated as a p+-N heterojunction since the 

highly-conductive PEDOTrPSS is heavily-doped p-type semiconductor while PCBM and 

TCNQ are both n-type organic semiconductors with much wider band gaps (Figure 5-7). 

The transition from diode behavior to P-F regime implies the lowering o f energy barrier 

across the p+-N heterojunction.
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We assume that in the organic molecular film some PCBM molecules (or 

nanocrystals) are surrounded by TCNQ molecules. In this scenario, just as mentioned in 

Chapter Four, a lot o f nanosized potential wells (Figure 5-7a) are formed in the molecular 

complex film.

2.8 eV
LUMO

3.75 eV

T PCBM T
C C
N N
L! 6.1 eV N

9.5 eV HOMO

(a)

ITO  
4.8 eV

4.4 eV

PliDT
/PSS

5.0 eV

LUMO

4.3 eV

HOMO

(b)

LUMO

ITO

HOMO

Figure 5-7 Proposed energy-band diagrams showing charge trapping mechanism in the 
film of PCBM/TCNQ. (a) Potential well formed by TCNQ wrapped PCBM; (b) Charge 
trapped in the potential wells; (c) Charge is driven out o f the potential wells.
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When the ITO electrode is positively biased, charge carriers flow across the p+-N 

heterojunction. During this process, part of those charge carriers will be trapped in the 

potential wells, as well as in the defect traps. After the external voltage bias is removed, 

electrons (and/or holes) will be still kept in PCBM quantum dots surrounded by TCNQ 

molecules (Figure 5-7b). Trapped charge in the quantum dots produces electric field, which 

may (1) bend the band so as to lower the junction energy barrier and (2 ) change the 

conductivity of nearby semiconductor materials through the field effect. The lower barrier 

across the p+-N heteijunction results in a P-F emission regime o f the I-V characteristics.

When the ITO electrode is negatively biased, the charge stored in those energy 

wells will be driven out (Figure 5-7c). As a result, the device switches back to its injection- 

limited low-conduction state. The proposed model is consistent with the I-V and C-V 

experimental results.

5.4 Simulation Using Taurus-Medici

The effect o f charge storage is also studied using TCAD tools Taurus. Detailed 

codes can be found in Appendix II. The simulations have been carried out for the p+-N 

heterojunction diode by solving Poisson’s equation and the hole and electron continuity 

equations with the program Taurus-Device [119]. All the tunneling models, including 

direct tunneling, F-N tunneling, and recombination by tunneling, are explicitly turned on.

Cathode and anode work functions are 4.3 eV (Al) and 4.7 eV (ITO) [74], 

respectively. Typical parameters of the organic layers are: For PEDOT:PSS, electron 

affinity x =  3.9 eV, band gap Eg = 1.5 eV, mobilities /Xp=1.0 cm2 -V ’-s'1, /*n=lxl0 ' 7 cm2-V' 

V 1 [49], Nc and Nv are estimated to be 1021 cm'3, active acceptor concentration Na = 

1.2x10 cm' was obtained from C-V and Hall effect experiments. For PCBM, electron
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affinity x = 3.7 eV, band gap Eg = 2.4 eV, mobilities fip= 0.001 cm2 -V '-s'1, /v=0.002 

cm ^V '-s'1, Nc=Nv=2.5xl021 cm'3, active donor concentration Nd = l.OxlO16 cm' 3 [120]. 

For TCNQ, electron affinity x ~  2.8 eV, band gap Eg = 6.7 eV [108], mobilities /Xp=0.002 

cm2 -V ^s'1, Hn=0.003 cm2-V'l-s'', NC=NV=1021 cm'3, active acceptor concentration Nd = 

l.OxlO15 cm ' 3 [121].

The simulated device structure, as shown in Figure 5-8b, is generated using Taurus- 

Process [122]. Nine TCNQ-wrapped PCBM nanodots are placed in the bulk PCBM layer 

(50 nm thick). Three floating gate contacts are defined enclosing the PCBM dots, which are 

required for placing charges onto the dot [119]. The thickness o f PEDOT:PSS is 200 nm.

UT> O .

d

mT- .

o

Ofq1

TCNQ

c m
PCBM

BIB B
PCBM

i i j i i i I | I I i I | I I I I | I I I I | I I I I | I

0 0.05 0.1 0.15 0.2 0.25

Figure 5-8 The simulated p+-N diode device structure with nine PCBM nanodots.

From the C-V curves in Figure 5-6, the charge stored in the device is calculated to

o

be 1.134x10' C/mm . The simulated device in Figure 5-8 has an area o f 70 nmxl pan = 

7xl0 ' 8 mm2. Hence, the charge amount AQ= (1.134xl0'8) x (7xl0 '8) =7.938xl0'16 C is
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intentionally placed on the nano-dots. The currents at low voltages are significantly 

increased due to the effect of introduced charge, as shown in Figure 5-9. The simulated 

on/off ratio at +0.5 V is 2.7xl04, which is close to the experimental result, 3.5xl04, 

calculated from the data shown in Figure 5-2. The shapes of the simulated I-V curves are 

also similar to the experimental I-V curves in Figure 5-2. But the simulated loop size is 

smaller. The deviation is probably caused by the omission of interfacial insulating layer 

PSS.
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Figure 5-9 Simulated I-V curves o f the above p+-N diode.

5.5 Summary

A rewritable organic diode type memory device was realized based on the 

ITO/PEDOT:PSS/PCBM:TCNQ/Al structure. The device exhibits a diode characteristic 

(low conductive) before switching to a high-conductive P-F regime upon a positive 

external bias to ITO. The on/off ratio at +1.0 V is up to 105. After two months, the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



85

resistances of both high-conduction and low-conduction states increase by a factor of two 

orders of magnitude. But the on/off ratio hardly changes, still ~105. A charge storage model 

is proposed to explain the memory effect. Simulation results from Taurus-Device are in 

qualitative agreement with the experimental results and the proposed model.
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CHAPTER SIX

TRANSISTOR-TYPE ORGANIC 

MEMORY DEVICES

6.1 Introduction

To make a memory cell based on an organic field effect transistor (OFET) is an 

interesting option for organic memory. Until now it seems that all successful OFET 

memory devices [53-55, 123-125] are fabricated using a ferroelectric (or ferroelectric- 

like) gate dielectric materials, especially ferroelectric polymers [54], The direction of the 

polarization o f the gate dielectric layer modulates the transistor’s channel conductance.

Another way to make an OFET memory is to introduce charge traps, e.g., 

nanoparticles, into the gate dielectric. This approach has seen a dramatic progress in the 

field o f silicon-based non-volatile memory [26, 30-32], where high temperature processes 

are typically involved. Kolliopoulou et al. [126] integrated the organic insulator and gold 

nanoparticles in silicon-based field effect transistor by chemical processes and thus 

fabricated a hybrid transistor non-volatile memory at room temperature. Their work 

paved the way toward organic transistor memories.

In this chapter, an OFET memory with self-assembled gold nanoparticles as 

charge traps will be presented. The device is fabricated using low-temperature solution-

86
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processing techniques, which are compatible with the usual plastic substrate such as poly 

(ethylene terephthalate) (PET), poly(ethylene naphthalate) (PEN) and polyimide. 

Therefore, the results o f this study could accelerate achievement o f cheap, fast and 

flexible organic non-volatile memories.

6.2 Modeling and Simulation of OFET Memory

The nanodot OFET memory devices are studied using TCAD tools Taurus- 

Tsuprem4 and Taurus-Medici. To reduce the computational load, the device structure is 

dramatically simplified (Figure 6-1). Au nanodots are treated as squares with side length of 

2 0  nm.

902 Au nanodots

Log 1x1 &3Br3)
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5.4_______

| i i i i | i i i i | i i—i i | i i r
M_____  &? OjB

- p r - r r r p
m i r T " r

1.1
r~rr

1.2
T~T~r

1.3
r T ~ r

1.4
rT~r13

r-f-r
1.6

Figure 6-1 The simulated 2D device structure o f the OFET memory cell
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The channel material P3HT, a semiconductor polymer, is treated as Si with 

modified properties (bandgap, mobility, carrier concentration, dielectric constant etc). Here, 

electron affinity 2-7 eV, band gap Eg = 2.2 eV [127], mobilities /Xp=5 .0 x l0"3 cm2 -V^s"1 

[128], /xn=6xl0 "4 cm ^V ’-s' 1 [127], Nc and Nv are estimated to be 1020 cm'3, and the active 

acceptor concentration Na = 1x 1017 cm ' 3 is obtained from C-V measurements.

The source and drain material PEDOT:PSS, a p-type conducting polymer, is 

treated as p+-Si, since the work function o f PEDOT:PSS is 5.1 eV, very close the work 

function o f p+-Si, The floating gate containing random gold nanoparticles is treated as a 

row of spherical nanosized dots (diameter = 1 6  nm). Control gate dielectric is 100 nm 

Si02, which is not presented in Figure 6-1 in order to see the gold nanoparticles. In real 

device, the tunneling barrier (~10 nm) is insulating polymers. Unfortunately, we do not 

have the data about the electronic structure o f insulating polymers such as PVP, PAH and 

PSS. Here we approximately treated them as silicon nitride. The channel length is 1.2 fxm, 

which is quite small compared to those parameters o f the real device. Below is the detailed 

procedure of modeling and simulation:

(1) Construct a device structure model using Taurus-Tsuprem4;

(2) Using Taurus-Medici to simulate the transient process o f charge storage and obtain 

the amount o f charge during a fixed charging time;

(3) Set the amount of floating gate charge as the value obtained in step (2) and simulate 

the Ids-Vgs characteristics o f the OFET. Then compare the results with that of the device 

without floating gate charge.

The device structure is constructed using Taurus-Process. First, a row of spherical 

cavities were defined inside the oxide region; then the cavities were filled with metal
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nickel, whose work function is adjusted to be gold’s work function 5.1 eV in the ‘physics’ 

command. A definition o f floating gate contact is required to simulate the charging and 

discharging of metal nanodots. If one region is wrapped by the floating gate contact, the 

Poisson’s equation will be disabled in that region.

The charge boundary condition for the floating region, i.e., metal nanodots, is 

implemented. For each floating electrode specified, a value of the net charge is used in the 

boundary condition. This net charge is either specified (for steady state) or generated by the 

tunneling and injection models in transient analysis and automatically placed on the 

floating electrodes [119]. The charge boundary condition is specified as:

§ D - d S  = Q,  (6-1)

where Q is the total charge on the floating electrode.

The net charge Q can be generated by transient simulation. By default, the hot 

carrier injection model and Fowler-Nordheim tunneling model are automatically turned on 

when transient simulation is performed with charge boundary condition. However, if  the 

direct tunneling model is used in place of F-N tunneling, one needs to turn it on manually. 

During transient simulations, the incremental charge obtained from integrating the 

tunneling current over time is immediately placed on the appropriate electrodes [119].

From the transient simulations the data o f stored charge amount versus time (Q-t) 

can be obtained, as shown in Figure 6-2. We can see that the gold nanoparticles do trap 

charges when the gate is negatively biased. The higher the Vgs is, the more the charge 

amount for a fixed charging time. In Figure 6-2, the effect of tunnel barrier thickness is also 

studied. As expected, the thinner the tunnel barrier is, the easier the gold nanodots are 

charged. The net charge on the floating gate is automatically generated to be -3.5x1 O' 15 C,
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given the program time 0.1 s. The Ids-Vgs characteristics of the OFET is then simulated 

(Figure 6-3). Vt o f the OFET shifts toward negative direction.

0.. a
ttnl= 5 nm .e-'O"'0'.a-' a--.a-"J3~ .0"

„    W= 5,nnf
Vgs= -4 0  V  .a" -0-- ^

,ja-' 10 nm .-o'
.Er- ir> ' * V ' '  ,*8 nm

10 nm

Vgs=-30„V-*'

-9 -6 -S -4
log(Tinie) (seconds)

Figure 6-2 Simulated charging transient o f the floating gate. Vds=0 V.
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Figure 6-3 Simulated transfer characteristics o f nanodot OFET memory. Negative VT 
shift is observed when the floating gate is positively charged.
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Sincere the metal nanodots are intrinsically 3D structures; 3D simulation is 

expected to give more accurate results. In order to compare the simulation results, a 3D 

device structure model (Figure 6-4) is also constructed with Taurus-Process according to 

the similar procedures described before. The program codes can be found in Appendix III.

’“qeartsi

Figure 6-4 Simplified structure model (upper) and 3D mesh (bottom) of the OFET 
memory device.

In Figure 6-4, the random distributed gold nanoparticles are treated as one row of 

spherical gold nanodots (Dia. =20 nm) with 10 nm spacing. The channel length is 1.0 fim 

and the channel width is 30 nm. Other parameters are the same as in the 2D device. Figure 

6-5 shows the normalized Q-t characteristics of the 3D device, together with the 2D
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simulation result. Two Q-t curves are similar. However, the charging processes do not 

saturate in 3D simulation after 0.1 second charging and the final charge amount is two 

orders o f magnitude less than the 2D result.
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Figure 6-5 Comparison between 3D simulation and 2D simulation o f floating gate 
charging. The thickness o f control oxide and tunnel barrier are 100 nm and 10 nm, 
respectively.

Based on the above results, it seems that the 2D simulation gives overestimated 

results for the charge storage. But it still qualitatively agrees with the 3D simulation. 

Hence, considering the much less computation time, 2D simulation is an attractive 

approach for virtual device fabrication.

6.3 Fabrication of Metal Nanodot OFET Memory

6.3.1 Preparation o f  Gold Nanoparticles

Gold nanoparticles with the size o f about 16 nm are prepared by citrate reduction 

method [129]. It is a 2.5 x 10'4 M gold colloid. First, make a stock solution o f -5 .0  x 10' 3 

M HAuCU in deionized (DI) water and store it in dark. Then take 1 ml that solution and
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add it to another 18 ml DI water. Second, make a solution of 0.5% sodium citrate (0.25g 

in 50 ml o f H2O). Third, heat the 19 ml solution o f HAuCU to tender boiling and add 1 

ml of 0.5% sodium citrate solution, as soon as boiling commences. Continue heating (-15 

min) until color change is evident (pale purple). After that, stop heating and continue to 

stir until it has cooled to room temperature. Finally, top the solution with DI water up to 

20 ml to compensate for evaporation loss due to boiling. UV-Visible absorption spectrum 

of the aqueous solution is shown in Figure 6 -6 . The plasmon absorption peak (~527 nm) 

indicates the existence of Au nanoparticles [130].

0.07

527 nm0.06 -

0.05 -=><
o 0.04 - o c  (0 .n 1_-  0.03 - o
V)n
<  0.02 -

0.01 -

200 400 600 800 1000
Wavelength (nm)

Figure 6 -6  UV-VIS absorption o f gold nanoparticles in water.

6.3.2 Device Fabrication

The fabrication procedure o f our OFET memory cell is shown in Figure 6-7. We 

start with a heavily-doped N-type silicon (n+-Si) substrate with thermally-grown oxide 

layer (~100 nm). N+-Si serves as the gate while the oxide layer as the gate dielectric. The 

substrate is cleaned by sonicating in acetone for 10  min and then in isopropyl alcohol for 

another 10  min followed by multiple rinses with deionized (DI) water.
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Figure 6-7 Schematic illustration of the fabrication process flow o f OFET memory.

Gold nanoparticles are deposited on the oxide surface by electrostatic layer-by- 

layer self-assembly using polyions as the binding agents. Driven by electrostatic force 

between Au particles and polyions, one monolayer or even a superlattice of Au 

nanoparticles can be self-assembled on a “positively” charged surface. The polyions we 

used are poly(ethyleneimine) (PEI, MW = 70,000), poly(styrene sulfonate) (PSS, 

MW=65,000), and poly(allyl amine) (PAH, MW=75,000). A PEI/(PSS/PAH)2 precursor 

film (~5 nm thick) is deposited first to reverse the charge of oxide surface and to improve 

the adhesion o f Au nanoparities. The topmost PAH layer is positively charged. Then the 

sample is immersed in the colloidal Au solution for 60 min in order to obtain good 

surface coverage [130]. The Au nanoparticle film is then immobilized with another ~5 

nm polyion film (PAH/PSS)3. The surface morphology of the Au nanoparticle film is 

monitored with a Quesant Atomic Force Microscope.
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A thin poly(4-vinylphenol) (PVP) layer (~10 nm thick) is spin-coated to cover the 

gold nanoparticles, working as the tunneling barrier between the nanoparticles and the 

channel. After that, PEDOT/PSS (Baytron P from H.C. Starck) source/drain electrodes 

are inkjet-printed over the PVP layer. Channel length and channel width are controllable 

via the printer’s computer interface. Finally, the semiconductor polymer poly(3- 

hexylthiophene) (P3HT) is spun on as the channel material (-20 nm). The device is ready 

after drying under vacuum for 12 hours at room temperature.

6.4 Characterization of Gold Nanodot 
OFET Memory Devices

The AFM images o f the surface o f Au nanoparticle film are shown in Figure 6 -8 . 

A PAH layer is self-assembled on the Au nanoparticle layer before the AFM experiment. 

This polyion layer is necessary because it is difficult to obtain sharp AFM picture without 

the immobilizing PAH layer [130]. From the AFM images, we cannot see single discrete 

Au particles with diameter around 16 nm. Instead, we see pebble-like ridges with 

longitude o f 150-200 nm and lateral size o f 80-100 nm, which may be caused by the 

filling and bridging of PAH polyions. The height (-12 nm) o f these features is slightly 

less than the nanoparticle size -16  nm, which could be attributed to the cushion effect of 

precursor layers (-5 nm).
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Figure 6 -8  2D (a) and 3D (b) AFM images o f self-assembled Au nanoparticle film 
capped by one PAH layer.

All devices are characterized using a Keithley system with a probe station. The 

Ids-Vds characteristics o f the transistor are shown in Figure 6-9. The device features a p- 

channel FET with hole accumulation mode with applied negative gate voltage Vgs and 

hole depletion mode with increasing positive Vgs. IdS-VdS plot o f the data taken by 

increasing Vgs is different from that o f the data taken by decreasing Vgs. Data presented in 

Figure 6-4 are recorded when the gate voltage is applied in descending mode.
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Figure 6-9 Ids-Vds characteristics o f the organic memory transistor. Vgs decreases from 
+ 2 0  V to -2 0  V.

Figure 6-10 shows the transfer characteristics (IdS-V gs) o f the transistor. 

Significant hysteresis loops, in anticlockwise direction, are observed when cycling 

voltage is applied to the gate electrode. The larger the range o f V gs becomes, the larger 

the hysteresis loops are. The on/off ratio o f the drain current at V gs=  0 reaches 1500. This 

value is close to normal P3HT-based organic transistors . We also used poly(vinyl 

alcohol) (P V A ) and polyimide (PI) as the thin barrier insulator. Similar results were 

obtained.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



98

1.00E-06

—♦— -10 to 10 V 
—b— -20 to 20 V 

- a - -30 to 30 V 

- x -  -40 to 40 V 

- • - - 5 0  to 50 V

1.00E-07

1.00E-08

1.00E-09

1.00E-10

1.00E-11
-60 -40 -20 0 20 40 60

VG (V)

Figure 6-10 Transfer characteristics o f the OFET memory device.

The effective mobility o f the transistor is estimated based on the -v gs curves 

in saturation region, where the IdS-V gs relation can be described as

1 W
U = ^ c t - ( y r - v T ) \  (6 . 2)

/4ff = 5 x 1 O’4 cm2-V"1-s"1 is obtained. This value is one order less than the OFET we 

fabricated directly on Si0 2  with the same configuration. But it is in accordance with the 

reported mobility value in similar PVP/P3HT device configuration . The low mobility is 

possibly caused by the rough surface o f PVP.

When the sample immersion time in the gold nanoparticle colloid is decreased 

from 60 min to 30 min, the on/off ratio also decreased from 1500 to 140 at Vgs=0 V, as 

shown in Figure 6-11. It seems that less gold nanoparticles are deposited in 30 minutes
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than in 60 minutes. This is consistent with the report o f Schmitt et al [130]. Less gold 

nanoparticles trap less charge. Therefore, the transistor channel is modulated at a lower 

extent.
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Figure 6-11 Effect o f the gold nanoparticle deposition time on transfer characteristics of 
the polymer transistors.

The data retention time is illustrated in Figure 6-12. The ON state is obtained by 

biasing the gate at +40 V for 15 seconds while the OFF state at -40 V for 10 seconds. 

During the Ids-time measurement the drain voltage Vas and the gate voltage Vgs are both 

fixed at -10 V. It can be seen that the data retention time is only ~60 seconds. Such a 

short retention time is attributed to the poor insulating property o f the PVP barrier layer 

and other factors that will be discussed later on.

i— 60 min
30 min
0 min
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Figure 6-12 Data retention o f the OFET memory.

6.5 Discussion on Factors Affecting 
the Device Performance

6.5.1 Effect o f Trans

To confirm the charge storage effect o f gold nanoparticles, a device with the same 

configuration, except that no gold nanoparticles are incorporated, is also fabricated and 

characterized. It is interesting that this device also exhibits similar hysteresis behavior 

(Figure 6-13) leading to two questions: 1) Does the gold nanoparticles work or not? 2) 

Why does the device behave this way?
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Figure 6-13 Transfer characteristics o f OFET with same device configuration but without 
gold nanoparticles.

By comparison we find that the threshold voltage shifts o f two devices are

different. The threshold voltages, extracted from -yJT^ -V9  curves, are presented in Table

6-1. Generally speaking, the Vt shift o f the device with gold nanoparticles is larger than 

that o f the device without gold nanoparticles. Hence, VT shift contributed by gold 

nanoparticles could be extracted from the AVt differences. From Table 6-1, we can see 

that the gold nanoparticles work at relatively higher program voltage. This is in 

agreement with the simulation results.
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Table 6-1 Comparison of the VT shift o f OFETs with and without gold nanoparticles 
(Unit: Volts. Both devices are programmed at Yds =-10 V).

Program
voltage

(V*s)

With gold nanoparticles No gold nanoparticles
AVti-AVt2

Vji AVti Vi2 AV-n

50 48 35 40 26 9

40 40 27 39 25 2

10 15 2 14 0 2

0 13 0 14 0 0

-10 10 -3 12 -2 -1

-20 2 -11 10 -4 -7

-30 -4 -17 5 -9 -8

-40 -14 -27 4 -10 -17

-50 -21 -34 -2 -16 -18

Then what should be responsible for the threshold voltage shift o f the device

without gold nanoparticles? The most probable reason is the charge traps, which usually

exist in thin film transistors, both inorganic and organic. In our devices charge traps may

exist in the organic semiconductor P3HT film, in the PVP film, at the PVP/P3HT

interface and S i02/PVP interface.

6.5.2 Top-Contact Device 
Configuration

We fabricated a top-contact device by inkjet printing PEDOT:PSS on top o f the 

semiconductor layer, as shown in the inset o f Figure 6-14. The retention is significantly 

improved. If the charge is stored in the P3HT layer, then the above configuration change 

will not impart significant effects on the charge retention since PEDOT:PSS electrodes 

are directly contacted with P3HT channel in either case. Therefore, we can claim that the 

effect o f traps in P3E1T film is negligible here.
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Figure 6-14 Data retention improvement using top-contact device configuration.

6.5.3 OFET with PVP-onlv 
Gate Dielectric

The effect o f bulk PVP film is also studied using a PVP-only gate dielectric 

configuration. PVP does not play a role in the formation o f hysteresis. However, the 

direction o f loops is clockwise (Figure 6-15), in contrast to the anticlockwise loops of the 

devices with gold nanoparticles. Park et al. [131] also reported the clockwise loops 

caused by PVP gate dielectric in a pentacene TFT. On the other hand, the PVP films in 

our devices are very thin (-10 nm). According to Park et al [131], the hysteresis is 

suppressed in ultrathin PVP films. Hence, the contribution from bulk PVP film should be 

insignificant.
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Figure 6-15 IdS-Vgs characteristics o f P3HT TFT with PVP-only gate dielectric. The 
hysteresis loops are clockwise.

Based on the above discussion, it seems that the traps at the PVP/P3HT interface 

and/or SiCVPVP interface play an important part in the hysteresis formation. Chua et al. 

[127] demonstrated that the surface OH groups are electron traps in chemistry nature. 

Since both Si0 2  surface and PVP surface are abundant o f OH groups, it is reasonable that 

the electron traps exists at both SiOi/PVP interface and PVP/P3HT interface.

Let us first consider the dielectric/P3HT interface. Hysteresis loops are also 

evident when P3HT layer is directly deposited on the Si0 2  surface with patterned gold 

S/D electrodes. Here, we further disclose the effect o f dielectric/P3HT interface.
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6.5.4 Insulator/P3HT Interface

In this experiment, polyimide (PI) instead o f PVP was used as the tunneling 

barrier layer for the OFET. The reason for choosing PI is its relatively lower etch rate in 

O2 plasma.

Device configuration is still the same except the PI barrier layer. Before spin- 

coating P3HT, PI surface is briefly treated in O2 plasma and then silanylized with 

octadecanyltrichlorosilane (OTS) [132] in a dry box (dew point = -35 °C) filled with N2. 

As a result, the PI surface becomes hydrophobic because OH groups were consumed and 

replaced by OTS molecules with alkyl tails pointing out.

Figure 6-16 shows the transfer characteristics o f the devices with and without 

OTS treatment. It can be seen that the OTS treatment suppresses the electron trapping so 

as to suppress the threshold voltage shift toward the positive direction. This can be 

attributed to the consumption o f OH groups during the silanylization. A further 

conclusion we can draw from the above results is that the gold nanoparticles, and 

probably the Si0 2 /PI interface as well, trap much less electrons; otherwise, the positive 

VT shift should be still significant even when the PI surface is silanylized. This is in 

agreement with the results o f Table 6-1. A probable reason is that the tunneling barrier of 

electrons from channel to traps is higher than that o f holes.
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Figure 6-16 Transfer characteristics o f OFETs without (a) and with (b) OTS treatment on 
the polyimide barrier surface.
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6.5.5 Quantitative Consideration 
of V t  Shift

For an inorganic thin film transistor, the Vt shift is time-dependent and obeys the 

following equation [133,134]:

where t is the gate voltage stress time, B, r, and (3 are fitting parameters that can depend 

on the stress voltage, stress temperature, and the device and material characteristics. We 

can approximately describe B using [133,134]

where VTO is the initial threshold voltage.

The experimental value o f r  is usually at the level of 1000 s [61]. When the stress 

tim et « T ,  for instance, t < 15 s in our devices, equation (6-3) can be approximated to be

In our devices, the V t shift versus program time (Vds= 0) dependence is found to 

roughly obey Equation 6-5, as shown in Figure 6-16. Based on the log(AVr)-log(t) linear 

fit, the B and (3 for positive program voltage are extracted to be 11 V and 0.29, 

respectively. For negative program (stress) voltage, B and /3 are 10 V and 0.066, 

respectively. It seems that the effect o f negative voltage stress is less dependent on the 

stress time. The possible reason is that the tunneling barrier is smaller for holes than for 

electrons.

(6-3)

B V stress" V TO (6-4)

(6-5)
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Figure 6-17 The VT shift versus program time of the OFET memory.

6.6 Summary

In summary, gold nanoparticles were successfully integrated into the gate 

dielectric layer o f an organic thin film transistor using electrostatic layer-by-layer self- 

assembly technique. The transistor exhibit significant hysteresis behavior in its current- 

voltage characteristics [135]. The charge storage in the gold nanoparticles was confirmed 

by comparing with no-gold-nanoparticle devices, although the effects o f interfacial traps 

are also significant. The data retention time o f the memory transistor is about 60 

seconds. Such a short retention time is attributed to the poor insulating property o f the 

PVP barrier layer and the fast release o f the charge from interfacial charge traps. Using a 

thinner and better barrier insulator, e.g., Langmuir-Blogdett multilayers, should improve 

the device performance in terms o f the data retention and mobility as well.
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CHAPTER SEVEN

CONCLUSIONS AND OUTLOOK

7.1 Conclusions

An organic electrically-bistable memory device based on a spin-coated novel 

molecular complex thin film has been demonstrated. Sandwiched between two aluminum 

electrodes, the PCBM/TCNQ molecular film can switch from low-conduction state to high- 

conduction state upon application o f an external electric field. A high current pulse can 

switch the device back to low conduction state. The device can remain at either state for at 

least five months after the external electric field is removed. This device is of potential use 

for low-cost write-once-read-many-times memory applications.

An improved version o f the above device, a rewritable organic diode type memory 

device, was realized based on the ITO-PEDOT:PSS-PCBM/TCNQ-Al structure. The 

device exhibits a diode characteristic (low conductive) before switching to a high- 

conductive Poole-Frenkel regime under a positive external bias applied to ITO electrode. 

The on/off ratio at +1.0 V is up to 105. Both high-conduction and low-conduction 

resistances increase by a factor of two orders o f magnitude after two months. But the on/off 

ratio hardly changes—still ~105. A charge storage model is proposed to explain the memory 

effect. Simulation results from Taurus-Medici are in qualitative agreement with the 

experimental results and the proposed model.
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A transistor-type memory device is designed and fabricated by integrating gold 

nanoparticles into the gate dielectric layer o f an organic thin film transistor using 

electrostatic layer-by-layer self-assembly technique. The device exhibit significant 

hysteresis behavior in its IdS-V gs characteristics. The charge storage in the gold 

nanoparticles was confirmed by comparing with no-gold-nanoparticle devices, although the 

effects o f interfacial traps are also significant. The data retention time o f the memory 

transistor is about 60 seconds. Such a short retention time is attributed to the poor 

insulating property o f the PVP barrier layer and the fast release o f the charge from 

interfacial charge traps. To the best o f our knowledge, this is the first OFET memory 

device based on the charge storage in metal nanoparticle floating gate. The low- 

temperature solution-based process offers a new option to the achievement o f low-cost 

organic transistor memory.

7.2 Suggestions for Future Work

1.2.1 Solution to the Misread Problem of 
Two-Terminal Memory Device

For two-terminal memory devices, there is one issue that we should pay attention 

to—The simple array o f memory cells, which are exactly the joints o f cross lines, may bring 

the so-called ‘misread’ problem. Figure 7-1 illustrates the problem. If three neighboring 

points (A, B, and C) in a square (or rectangular) matrix are read “1” (low impedance state), 

then the fourth point (D) will also read “1” even it has never been ‘write-in’ (should be 

“0”). The current can flow through the path o f D-A-A’-B’-B-C-C’-D’.
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Figure 7-1 “Misread’ o f a matrix memory: (a) switching elements; (b) the current path.

‘Misread’ can be avoided by adding a diode or a transistor to each joint to block the

unwanted current paths. In our diode memory devices the reverse current also dramatically

increases when the device switches on. Hence, an additional diode or transistor is still

needed in order to make a working memory array. The ideal solution is to make the

memory diode always off in the reverse-bias regime. Another way is to make the additional

diode or transistor also organic for the sake o f low cost.

7.2.2 Improvement to the Performance 
o f OFET memory

The 60 second data retention of the OFET memory is far away from practical 

application. Using a thinner and better tunneling barrier insulator, e.g., Langmuir-Blogdett 

(LB) multilayers or self-assembled monolayers (SAM), may improve the data retention. If 

silane SAM (e.g., OTS) is used as the tunneling barrier, the mobility and on/off ratio of 

P3HT channel may also be dramatically increased [100,136],

Using pentacence may be a good way to improve the mobility of the transistor since 

very high mobility is reported for the OFET with PVP gate dielectric [137].

To lower the operational voltage o f the OFET memory, the control gate dielectric
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layer should be either very thin or of a high dielectric (high-/c) constant. For ultrathin 

organic gate dielectric, self-assembled monolayers of silanes were reported to be an 

effective approach [138-140], For pure high-/c organic dielectrics, there are few reports yet. 

An alternative way is to mix the insulating polymer with high-x nanoparticles such as T1O2

[141], BaTiOs [142] and PCuPc [143],

7.2.3 Improvement to the Device Lifetime

Both the diode-type and transistor-type organic memory devices are suffering from 

the degradation over time. The major reason for degradation is the effects o f oxygen and 

moisture in air. Therefore, sealing and/or encapsulation is necessary for extending the 

device life span.
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(1) Chemical Structures of Organic Semiconductors

(a) Acenes and oligophenvlenes:

[n|-Acenes

Two examples: Pentacene 

(bt Heterocyclic linear oligomers 

Basic Elements—  Heterocyclic rings

Oligophenylenes

General structures

CKXKKK)
p-sexiphenyl

0  A f t  ft 4
Pyridine Pyrrole Thiophene Furan Thiazole

Thiophene oligomers: n=l~3, R=H or CmH2m+i a 6T

^ R f ^.CN S
Ftueiiae Fluorealkyl Cytiw Carbonyl dertrative

Electron-drawing groups

QM3T a6FT
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(c) Two-dimensional fused rings

C«HW

C $\%j  W  V  G

Perylene PTCDI-C8H NTCDA NTCDI (R=H or CmH2m+i)

General Structure CuPc

M=Cu, Zn, Fe, Co, Ni, H2; R=H, F, Cl

(d) Polymeric semiconductors

F16CuPc

f n  ^  / n

P W  FTP

n \  ~ * R 

PSP PT

p * '0 4  M
PTV

n H

PAW PPy

Conjugated polymer family
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{0^4
MeO

MEH-PPY

'n

Poly(8,8-dioctylfluorene)CN-PPV

Hi,
Poly(3-substituted thiophene) P3HT

/ — \ 0

0 0 0 0

•NH
—  CHCH.

m

so3-

PEDOT:PSS 

(el Fullerenes and carbon nanotubes

Sulfonated polyaniline

C60 PCBM

(n,n) |n,0>

senicDBdualing 

carbon nanotubes (Eg = 0.4-0.7 eV)
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(2) Electrical Properties of Organic Semiconductors

Table A-l Electrical properties o f organic semiconductors

Name

O1
1 HOMO

(eV)
H (cm2-V'1-s'1)

er
Film
Deposit. Ref.

Hole electron

TCNQ 2 .8 9.5 3xlO"3 3.4 s ,v [108]
[121]

PCBM 3.7 6.1 0.008 0 .0 0 2 -
0.01

3.9 s [144]

PEDOT:PSS 3.5-3 .6 5.1-5.2 0.1 1.7x10‘6 2 .6 s [49]
rr-P3HT 2.7 4.9 0.1 6x1 O'4 3.0 s [127]
F4TCNQ 5.24 8.34 V ri45]
Pentacene 2.3 4.9 3.0 v ,s

[61]
0 6T 3.5 5.1 0 .0 0 2 V

DH-o6 T 0.05 V

QM3T o 
o

 
o 

o
 

o 
o

V , s

PTCDA 4.5 6.7
PTCDI-C8H 0 .6 V

NTCDA 4.0 8.0

NTCDI 0.005-
0.16 [61]

perylene 0 .0 2 0.017
Alq3 2.1 5.8
CuPc 3.5 5.2 0 .0 2 V [61]
ZnPc 3.34 5.28 [145]
F16CuPc 6.3 0.03 V

[61]polyacetylene 10"1
PTP, PBP, PT, 
PANI

10 's
- io-4 s

PPV 2.7 5.2 10 's
- lo -4 10-4 s

[127]MEH-PPV 2.8 5.0 5xlO"5 3xl0"s s
Poly(8 ,8 -
dioctylfluorene) 2.4 5.7 3 X 1 0 -4 0.01 s

CN-PPV 3.2 5.4 4x10's s
Sulfonated
Poly(aniline) 0.01 s [146]

Poly(pyrrole) 5.66 1.7 [147]
C60 2.65 6.2 0.08 V

Carbon nanotube 1.2 x l0 5 v ,s [1481
Notes: s represents solution-process; v indicates vacuum-process
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#heterojunction PEDT:PSS/PCBM:TCNQ structure

TaurusProcess

DefineDevice ( 
name=heterojunction, 
minX=0.0, maxX=0.03, 
minY=0.0, maxY=0.15, 
x=0.0, dx=0.002, x=0.03, 
y=0.0, dy=0.005, 
y=0.1, dy=0.001, y=0.15, )

DefineRegion (
name="PEDT", material=silicon, 
polygon ( point (x=0,y=0.0) 

point (x=0.03,y=0.0) 
point (x=0.03,y=0.1) 
point (x=0,y=0.1) ) )

DefineRegion ( 
name="TCNQ", material=oxide, 

polygon ( point (x=0.01,y=0.1) 
point (x=0.02,y=0.1) 
point (x=0.02,y=0.11) 
point (x=0.01,y=0.11) 

hole ( polygon ( point (x=0.012,y=0.102) 
point (x=0.018,y=0.102) 
point (x=0.018,y=0.108) 
point (x=0.012,y=0.108)

) ) ) )

# Define PCBM nanocrystal filler 
DefineRegion (

name="PCBM", material-GaAs 
polygon ( point (x=0.0,y=0.1), point (x=0.01,y=0.1) 

point (x=0.01 ,y=0.15), point (x=0.0,y=0.15)
)

polygon ( point (x=:0.012,y=r0.102), point (x=0.018,y=0.102)
point (x=0.018,y=0.108), point (x=0.012,y=0.108) )

polygon ( point (x=0.01,y=0.11), point (x=0.02,y=0.11)
point (x=0.02,y=0.15), point (x=0.01,y=0.15) )

polygon ( point (x=0.02,y=0.1), point (x=0.03,y=0.1)
point (x=0.03,y=0.15), point (x=0.02,y=0.15) )

)

Profile (name=ptype,uniform, (value=0))
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Profile (name=ntype,uniform, (value=0)) 
profile (name=ptype, region=PEDT, uniform,(value=lel7)) 
profile (name=ntype, region=PCBM, uniform,(value=lel6)) 
profile (name-ntype, region=TCNQ, uniform,(value=lel6))

#define contacts
#define anode contact on the top 
DefineContact ( 
name=anode,
polygon ( point (x=0,y=-0.005), point (x=0.03,y=-0.005) 

point (x=0.03,y=0.0), point (x=0,y=0.0)
) )

Regrid (
InAbox ( 

polygon (
point (x=0.0,y=0.1), point (x=0.03,y=0.1) 
point (x=0.03,y=0.11), point (x=0.0,y=0.11)

) ) 
meshspacing=0.001 
criterion(allinterfaces)

)

#define cathode contact at the bottom
DefineContact (
name=cathode,
polygon ( point (x=0,y=0.150), point (x=0.03,y=0.150)

point (x=0.03,y=0.155), point (x=0,y=0.155)
)

)
#define floating contact on the bottom
DefineContact (
name=flt,
polygon ( point (x=0.01 l,y=0.101), point (x=0.019,y=0.101) 

point (x=0.019,y=0.109), point (x=0.01 l,y=0.109)
)

)
save (meshfile=hetero-stru.tdf)

#### Device Simulation Input File: hetero_sim2.pdm ####

Taurus
DefineDevice (meshFile=hetero-stru.tdf)
Include (hetero_physics.pdm)

Contact (name=anode, type=Schottky, workfunction=4.8, barrierlowering=true) #ITO
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Contact (name=cathode, type=Schottky, workfunction=4.28, barrierlowering^true) #A1 
Contact (name=flt, type=floating)

Voltage (electrode=anode value=0)
Voltage (electrode=cathode value=0) 
voltage (electrode=flt, value=0)

Symbolic (carriers=0)
Numerics (iterations=100)
Solve {}

Symbolic (carriers=2)
Numerics (iterations=100)
Solve {}

#charging the floating gate 
#charge (electrode=flt, value=-2.5e-17)

#Symbolic (carriers=2)
#Numerics (iterations=100)
#Solve {}

Save (
meshFile=hetero_simul_0.tdf 
Add (

ConductionBand ValenceBand
ElectronQuasiF ermiEnergy HoleQuasiF ermiEnergy
Recombination DirectRecombination

)
)

Ramp ( 
logFile=hetero_iv_hi.data,
Voltage ( electrode=anode startValue=0.0 endValue=2.6 nSteps=52)

)

Save (
meshFile=hetero_simul_2.tdf 
Add (

ConductionBand ValenceBand
ElectronQuasiF ermiEnergy FloleQuasiF ermiEnergy
Recombination DirectRecombination

)
)
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### define the device structure ###

TaurusProcess

DefineDevice ( 
name=N Cmemory, 
minX=0.0, m axX =l. 10, 
minZ=0.0, maxZ=0.04, 
minY=-0.090, maxY=0.09,)
Refinements ( Regrid (meshspacing=0.050 )

Regrid (meshspacing=0.010, miny=-0.04, maxy=-0.01 )
)

#define P3HT top layer
DefineRegion ( name="P3HT", material=silicon, 

brick (
Point (x=0.0, z=0.00, y=-0.04) , Point (x = l.l, z=0.04, y=-0.09 )

) )

#define PAH/PSS tunneling layer
DefineRegion ( name="PAH_PSS", material=nitride, 

brick (
Point (x=0.0, z=0.00, y=-0.04), Point (x = l.l, z=0.04, y=-0.0301 ) 

) )

#define oxide
DefineRegion ( 

name="PAH_Si02", material=oxide, 
brick (

Point (x=0.0, y=-0.0301, z=0.0), Point (x = l.l, y=0.090, z=0.04),

Hole (
sphere ( Center (X=0.050, Z=0.020,Y=-0.02)

Radius-0.01)

sphere ( Center (x=1.04, Z=0.020,y=-0.02) 
Radius=0.01)

)
)

)

#Regrid (criterion(allinterfaces))

#define nanoAu fill-in 
DefineRegion (
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name="Ni", material=nickel,
sphere ( Center (X=0.05, Z=0.020,Y=-0.02) 

Radius=0.01)

sphere ( Center (x=1.04, Z=0.020,y=-0.02) 
Radius=0.01)

)

Regrid ( criterion(AllInterfaces))
Save ( meshFile=mem_str3d.tdf)

### Simulate the charging transient ###
### and Id-Vg characteristics ###

Taurus {device}

DefineDevice(Name=tft, meshfile=mem_str3d.tdf)

#Defme Contacts
Contact (name=gate, workfunction=4.8) #ITO 
Contact (name=floatinggate, workfunction=5.10) #Au

Physics ( nickel (global (workfunction=5.10))) #Au 
Physics (oxide (

global (permittivity=6.9) #Si02/PAH 
))

Physics (nitride (
global ( ElectronAffinity=0.97 

WorkFunction=5.47 
permittivity=2.22) #PAH/PSS 
))

#.. Define P3HT properties and Turn on surface mobility 
Physics (

Silicon(
global ( ElectronAffinity=3.3,

BandGap(Eg300=l .9),
Permittivity=3.0,
ConductionDensityofStates (AtRoomTemperature= 1 e20), 
ValenceDensityofStates (AtRoomTemperature=le20),) 

ElectronContinuity (
Mobility( constant=false, mun0=6e-4,

LowFieldMobility(SurfModelActive=True) )# from Nature 2005(3) 
)
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HoleContinuity (
Mobility ( constant=false, mupO=5e-3,
LowFieldMobility (SurfModelActive=True) )

)
)

)

# Blank state Id-Vd
#.. Bias contacts and Solve Poisson+Electron 
Voltage( electrode=source, value=0.0)
Voltage( electrode=drain, value=0.0)
Voltage( electrode=gate, value=-10.0 )
Voltage( electrode=floatinggate, value=-0.2 )

Symbolic (carriers=2, newton, direct)
Numerics (iterations=100)
Solve {}

#.. Ramp floatinggate to 6V
#Ramp (ContactVoltage(electrode=floatinggate, startValue=-l, endValue=-3, nsteps=2))

#.. Designate floatinggate as a floating contact and Solve for zero stored charge 
Contact (name=floatinggate, type=floating)
Solve {}

Symbolic (carriers=2)
Ramp (logfile^Vgld-w.data,

Voltage (electrode=gate, startValue=12, endValue=-30, nSteps=42)
)

Extract (Thresholdvoltage (gatecontact=gate, draincontact-drain))
Save (meshfile=FETivl .tdf)

#.. Write operation through transient simulation 
#.. Bias contacts and Solve Poisson+Electron 
Voltage( electrode=source, value=0.0)
Voltage( electrode=drain, value=-5.0)
Voltage( electrode=gate, value=-20.0)
Voltage( electrode=floatinggate, value=-0.2)

Symbolic (carriers=2, newton, direct)
Numerics (iterations^ 00)
Solve {}

#.. Ramp floatinggate to 6V
Ramp (ContactVoltage(electrode=floatinggate, startValue=-l, endValue=-3, nsteps=2))
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#.. Designate floatinggate as a floating contact and Solve for zero stored charge 
Contact (name=floatinggate, type=floating)
Solve {}

Transient (time=0.1, initialTimeStep=le-9, logfile=wrt_trans.data)

Ramp (logfile=VgId-e.data,
Voltage (electrode=gate, startvalue=-30, endValue=12, nSteps=42)
)

Extract (Thresholdvoltage (gatecontact=gate, draincontact=drain))
Save (meshfile=FETiv2.tdf)
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