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ABSTRACT

Computational power demand for large challenging problems has increasingly 

driven the physical size of High Performance Computing (HPC) systems. As the system 

gets larger, it requires more and more components (processor, memory, disk, switch, 

power supply and so on). Thus, challenges arise in handling reliability of such large-scale 

systems. In order to minimize the performance loss due to unexpected failures, fault 

tolerant mechanisms are vital to sustain computational power in such environment. 

Checkpoint/restart is a common fault tolerant technique which has been widely applied in 

the single computer system. However, checkpointing in a large-scale HPC environment is 

much more challenging due to complexity, coordination, and timing issues. In this 

dissertation, we present a reliability-aware method for an optimal checkpoint/restart 

strategy. Our scheme aims to address the fault tolerance challenge, especially in a large- 

scale HPC system, by providing optimal checkpoint placement techniques derived from 

the actual system reliability. Unlike existing checkpoint models, which can only handle 

Poisson failure and a constant checkpoint interval, our model can perform a varying 

checkpoint interval and deal with different failure distributions. In addition, the approach 

considers optimality for both checkpoint overhead and rollback time. Our validation 

results suggest a significant improvement over existing techniques.

in
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CHAPTER 1

INTRODUCTION

Computational power demand for large challenging problems has increasingly 

driven the physical size of HPC systems. As witnessed in Top500.org, the volatile top500 

list currently has the LLNL/IBM Blue Gene/L system with 131072 processors as the 

world fastest system. The larger the system gets, the more the number of components 

(processor, memory, disk, switch, power supply and so on). Thus, challenges arise in 

reliability of such large-scale systems. For example, we analyzed the failure data of the 

LLNL ASC White system (512 nodes and 8192 processors) and found that the average 

value of mean time between failures (MTBF) for individual node is over 7000 hours, but 

MTBF of the system (512 nodes) is only around 20 hours due to the combination of 

hardware and software failures of each component.

Since MPI is one of the most popular parallel programming paradigms, we target 

our reliability study on the system running the MPI applications. Normally, a MPI 

application is decomposed and executed among a group of compute nodes, where 

individual subtasks communicate by message passing. Because of a static view of an MPI 

environment [45], a single node failure would cause the whole application to fail and 

require an application restart. In order to minimize the performance loss due to frequent 

failures, fault-tolerance (FT) mechanisms have been intensely studied by the HPC

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



research community. The main objective of this dissertation is to address reliability issues, 

particularly in the area of checkpoint FT mechanisms. Our main goal is to obtain an 

optimal checkpoint/restart model in HPC environments.

1.1 Reliability Challenges in HPC

A large scale HPC cluster system may consist of hundreds or thousands of 

compute nodes communicating via interconnection fabric. The main HPC objective is 

normally targeted to achieve the best possible completion time and performance while 

executing a parallel application on as many nodes as possible within the system. There 

are two types of nodes: head nodes (servers) and compute nodes (clients). A head node 

takes requests and dispatches tasks to the compute nodes, where the actual work is 

processed. Figure 1.1 illustrates a typical architecture of the large-scale cluster.

Compute
Node

Compute
Node

Figure 1.1 Typical architecture of large-scale cluster system.
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Besides the size of hardware components in the HPC cluster, the systems depend 

on software components, such as an operating system (OS) on each node, a parallel 

computing environment, a job scheduling program, a monitoring and management 

subsystem, a fault-tolerance mechanism, and so on. To facilitate parallel computing, a 

parallel application runs simultaneously either on a portion or on all of the nodes in the 

system. Unfortunately, if one node which the application is running on fails, it will render 

an application outage. This issue is currently a major challenge of MPI applications on 

the HPC cluster system.

M
Sh
3O-C
Cu 
03 E— 33

200
180
160
140
120

100

80
60
40
20
0

MTBF of single node
■ 100, 000 hours 
•10,000 hours 
1000 hours

\
System Scale (Number of Nodes)

Figure 1.2 System MTBF and scalability.

Although individual components may be very reliable, the total system mean time 

between failures (MTBF) can be reduced substantially when the number of components

N

IS very large. The aggregate system MTBF is given by (V  /  ) 1, where fxk is the
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MTBF of component k. As an example, Figure 1.2 shows the expected system reliability 

for systems of different sizes when constructed with three different component reliability 

values (i.e., individual MTBF of 1000, 10,000 and 100,000 hours). In this research, we 

also analyzed the failure data of the LLNL ASC White system (512 nodes and 8192 

processors) and revealed that the average value of MTBF for individual node is over 

7000 hours, but MTBF of the system (512 nodes) is less than 20 hours. Therefore, 

reliability-awareness and fault-tolerance mechanism is a critical component for the 

success of large-scale system deployments.

1.2 Checkpoint/Restart Model in HPC

The checkpoint/restart mechanism is a common fault tolerant technique to deal 

with reliability issues in an application runtime environment. However, to perform 

checkpointing on a HPC system is a non-trivial task when compared to an individual 

computer. When a checkpointing parallel application is running on a large number of 

compute nodes, storing application context files and recovering from outages becomes a 

daunting challenge due to issues such as overheads, stable storage, consistency etc. 

Therefore, the checkpoint/restart scheme needs to balance between failure caused lost 

time and checkpoint overhead, in order to find optimal checkpoint placements.

1.3 Organization of the Dissertation

This dissertation is organized as follows: in Chapter Two, we introduce the 

problem domain and background. It includes the basic concepts of reliability theory, 

failure data analysis techniques, and fault-tolerance schemes. In Chapter Three, we 

present the details of failure data analysis and the reliability prediction of a large-scale 

cluster system. The reliability-aware optimal checkpoint/restart model specification is
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5

illustrated in Chapter Four. Chapter Five depicts the analysis and evaluation of the 

checkpoint/restart model. The incremental checkpointing model and validation are 

discussed in Chapter Six. The conclusion and future work is presented in Chapter Seven.
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CHAPTER 2

TERMINOLOGIES AND BACKGROUND

In this chapter, some background knowledge concerning system reliability and 

fault-tolerance techniques are described. To begin, some definitions of terminologies 

relevant to the measure of system failure and reliability are presented. Then we introduce 

the reliability prediction techniques and related works in the area of events log file 

analysis in large-scale distributed platform. Various checkpoint/restart methods and their 

relevant tools are discussed in detail.

2.1 Definitions in Reliability Theory

2.1.1 Definition of Reliability

The reliability R(t) of  a system is the probability that the system will perform its 

intended functions satisfactorily for a length of time under specified operation conditions. 

Based on the definition, reliability is measured as a probability. Probability theory has 

been used to analyze the reliability components, as well as the reliability of system 

consisting of these components. From a mathematical point of view, the reliability R(t) 

of a system S  can be expressed as:

R(t) = Pr(S is fully functioning in \0, t]).

6
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Let X  be the random variable representing the lifetime of a system, let /  be the 

probability density function (PDF), and let F  be the cumulative density function (CDF.) 

of the variable X . Then the system reliability at time t can be depicted as

R(t)= ?r{X > t) = l - F { t ) = l - l ‘0f(x)dx

because

J0°°/(x)rfr = l.

Hence, the reliability of a system can be expressed in

R(t) = J„“  f{x)dx  -  J ' f (x)dx = J “  f ( x ) d x . ^  ^

Normally, it is assumed that the system is working properly at the instant t = 0. 

Yet, it is possible to allow that the system is initially defective with a probability p , 

i.e. F(o) = p . For such a case, the reliability of the system is

R { t )= \ - p - ^f {x ) d x .  ^

2.1.2 Definition off MITE

The expected value or mean of the lifetime T is also called the mean time to 

failure (MTTF) or the expected life of the device. It can be evaluated with the following 

standard equation:

MTTF -  E(t) = tf{t)dt.

A computationally more efficient formula for evaluation of MTTF is

A *(»)*.  p 5 )
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2.1.3 Definition of MTBF

Some systems may go though several failures before they are scrapped. Such a 

system is said to be repairable. For repairable systems, the MTTF represents the mean 

time to the first failure. After the system is repaired and put into operation again, the 

average time to the next failure is indicated by mean time between failures (MTBF). The 

MTBF represents the average operating time from the point that a failed system is 

recovered to operation to the point of time that it fails again. It does not include the 

amount of time needed to repair the failed system.

2.1.4 Definition of MTTR

The average amount of time needed to repair a failed system is called mean time 

to repair (MTTR).

2.1.5 Definition of Availability

For a repairable system, availability is often termed as a measure of its 

performance. The availability is defined as the probability that the device is available 

whenever needed. It can be expressed as

MTBF
~ MTBF + MTTR'  (2-6)

From the definitions of reliability and availability given above, the difference 

between reliability and availability is that reliability requires that at no time within the 

interval [0, t] may the system fail, whereas availability permits the possibility that the 

system may have failed and subsequently may have been repaired one or more times 

before time t.
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2.1.6 Definition of Failure Rate Function

The failure rate function, or the hazard function, denoted by X{t) , is defined as the 

probability that a system will fail in the next time unit, given that it has been working 

properly up to time t:

The lifetime of a system is a random variable of interest in reliability analysis. It 

is continuous and can only be a nonnegative value. As a consequence, reliability analysis 

deals with continuous distributions. In this dissertation, only the continuous distributions 

that have been widely used in reliability analysis are concerned.

2.2.1 Exponential Distribution

A random variable T follows the exponential distribution if and only if its PDF is 

given by

T(0 = l im Pr( r< t  + A t | r > 0  = —w  A^o R(t )
(2.7)

2.2 Commonly Used Lifetime Distributions

(2.8)

The reliability function is

R(t) = e~M, t> 0, ^ > 0 . (2.9)

The cumulative distribution function (CDF) is

F(t) = 1 - e~M, t> 0 , / t>0. (2 .10)

The failure rate function is

A(t) =  A,  t > 0 ,  A > 0 . (2.11)
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2.2.2 Weibull Distribution

A random variable T follows the Weibull distribution if and only if its PDF is 

given by

/ ( 0 = ^ e W , *>0,/?>0,77>0, (2.12;
V

where p is the shape parameter, and rj is the scale parameter.

The reliability function is

(2.13)

The cumulative distribution function (CDF) is

= , t>0, j3>0,T]>0. (2.14)

The failure rate function is

(2.15)

2.2.3 Gamma Distribution

A random variable follows the gamma distribution if and only if its PDF is given

by

(2.16)

where (3 is the shape parameter, and X is the scale parameter.

The reliability function is

(2.17)

The cumulative distribution function (CDF) is

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



11

zp t
F^  = l\p )  dx' t> 0 , f i> 0 ,A > 0 .  (2.18)

The failure rate function is

MO =~z---------------> t > 0,/?> 0,A > 0. (2 19)
f r ' - ' e - ^ d r  { )

2.2.4 Lognormal Distribution

A random variable T follows the lognormal distribution if and only if its PDF is 

given by

A O  =— 7== exp
O t\27 I

1 (In t - n f
2<t

where a>0 is the shape parameter, and p>0 is the scale parameter, 

The reliability function is

, t > 0, (2.20)

= ? > o . (2.21)
V &

The cumulative distribution function (CDF) is

F{t) = 0>| I t >0.  (2.22)

The failure rate function is

M 0  = t> 0 , /3 > 0 ,Z > 0 ,  (2.23)l -0 [ ( ln t - / / ) / c r ]

where d>(x) is the CDF of a standard normal distribution.

2.3 Failure Data Analysis of HPC

One challenge of a large-scale cluster system is that it is vulnerable to unexpected 

failures. Therefore, the failure analysis of a large-scale system is the foundational work
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12

that provides insights how to deal with the performance loss due to the failures. In this 

dissertation, we take a first step in literature surveys in the related works.

2.3.1 Architecture and Failure Data Collection

Typically, a monitoring and management subsystem in a large-scale cluster can 

help gathering the failure information. Most failure events are recorded in the events log 

file, and each failure record includes the failure start time, end time, the host ID, failure 

type, and so on. The details of failure data collection are described in Chapter Three.

2.3t2 Analytical TerimKmss of Failure Data

After the data collection, we perform failure analysis by considering the empirical 

cumulative distribution function (ECDF) and how well the failure data follows one of 

four probability distributions commonly used in reliability theory: the exponential 

distribution; the Weibull distribution; the gamma distribution; and the lognormal 

distribution. We parameterize the distributions through maximum likelihood estimation 

and evaluate the goodness of fit both by visual inspection and Chi-Squared test and 

Kolmogorov-Smimov test.

For the reliability study of a group of nodes, we consider the most common 

failure behavior in Message Passing Interface (MPI) applications since MPI is the de 

facto parallel programming paradigm. Thus, the failure follows a serial reliability model. 

That is to say when an application is running on a group of nodes, a single node failure 

may cause the overall application to fail. The technical details of failure data analysis are 

described in Chapter Three
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2.3.3 Related Works

There have been numerous research efforts focusing on the failure data analysis 

on a large-scale cluster system [15][16][17][18][2][9][10][13][14]. Y. Liang et al. [19] 

recently presented their failure data analysis on the IBM Blue/Gene supercomputer. In 

[19], the characteristics of event log files, the collection of failure data, and different 

failure prediction models are introduced. B. Schroeder et al [20] performed failure data 

analysis from the point of view in order to improve system dependability and availability. 

In [20], the authors fitted the time between failures (TBF) into four commonly used 

distributions and found the Weibull distribution to be a good fit, in which their finding 

agrees with our results. Heath et al. [2] collected failure data from three different cluster 

systems, ranging from 18 workstations to 89 workstations. They assumed that the times 

between failures are independent and identically distributed, and fitted the failure data 

using a Weibull distribution with a shape parameter less than 1. In addition, they 

employed the reliability property from this Weibull distribution to motivate a new 

resource management strategy. Two other studies [5][13] achieved the same conclusion 

that the Weibull distribution is the best fit for TBF.

2.4 F ault-T oler ance and Checknoint/Restart

In this section, we introduce backgrounds of checkpoint and restart mechanisms. 

The definition of fault-tolerance is the ability of a system to respond gracefully to an 

unexpected hardware or software failure. In a mission critical computer system, for the 

purpose of fault-tolerance, the system mirrors all operations — that is, every operation is 

performed on two or more duplicate systems. Thus, if one fails, the other can take over.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2.4.1 Faiilt-Tolerance Techniques

One of fault tolerance techniques is checkpoint and rollback restart 

(checkpoint/restart). To ensure application survivability, it is important to preserve the 

application’s states in order to save completed computation in the event of a system 

failure. In general, checkpoint-based rollback restart protocols periodically save the 

current computational state of each process involved in a computation. When checkpoint 

creation is signaled, the system records a representation of the memory state of the 

process, so that the process state can be reconstructed at an intermediate state in the 

computation if the process should fail. There are several subcategories in checkpoint 

restart protocols: uncoordinated checkpoint, coordinated checkpoint, communication- 

induced checkpoint, full checkpoint, and incremental checkpoint. Details of these 

techniques can found in [65].

2.4«2..Chfegkpoint/RestartExBerimgnts

For understanding the behaviors of checkpoint/restart, we built a small 

checkpoint/restart enabled cluster as a test bench. In our experiment, we employ BLCR- 

enabled LAM/MPI which is the coordinated checkpoint to implement a transparent fault- 

tolerant MPI mechanism on an HA-OSCAR cluster [90].
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submit Job 
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Figure 2.1 The framework of checkpoint/restart.

Figure 2.1 illustrates the normal working stage of the checkpoint/restart scheme 

on our test bench. This case has no outage in the system. After a user submits an MPI job, 

the primary head node schedules and dispatches the parallel application to compute nodes. 

We set up a checkpointing process that periodically checkpoints the application state on 

the cluster nodes and saves context files to a reliable storage. The standby head node 

keeps monitoring the health of the primary head and compute nodes.

Read checkpoint 
contejst-------

Monitoring

Primary Head

Client
Failedi

Figure 2.2 The checkpoint/restart behaviors of compute nodes failure.
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In a case in which one of the compute nodes fails, as shown in Figure 2.2, the 

MPI job hangs. Normally, when the node failure causes the application to cease, all MPI 

processes must be terminated, and the user loses the computation between the failure and 

the last checkpoint. However, the restart will not succeed in the LAM/MPI environment 

until the failed node is repaired and brought back to the runtime environment. We address 

this issue with our self-healing core, resulting in a rapid repair time by grabbing and 

cloning a spare compute node to impersonate the failed node. Once the head node 

receives the failure information from the cluster management program, it will take the 

failure node out of the service and release its IP and other necessary configuration. Then, 

it applies a recovery mechanism to clone an idle node to be the same as the failed one. 

Consequently, the primary head will clean up and reinitialize the environment by 

executing lamclean and lamboot before restarting the application from the checkpointing 

context files on reliable storage.

Read checkpoint 
contextHead Failed

Takeover

Primary Head

Restart the job

spare nodes

Figure 2.3 The checkpoint/restart behaviors of server nodes failure.
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In the second scenario, we consider the primary head failure, shown in Figure 2.3; 

the standby head node takes over the function and configuration of the primary head. 

After the failover completes, the standby head node reboots the LAM/MPI with the same 

node group, and then restarts the checkpointing context files from the shared reliable 

storage. The job will be successfully restarted from the apparently identical working 

group (the standby that clones the failed primary and compute nodes).

The high level design of our checkpoint/restart implementation is divided into two 

parts: the Intelligent Checkpoint Engine (ICE) in Figure 2.4 and the HA-pulse module in 

Figure 2.5. More details can be found in [90]. However, the optimal checkpoint algorithm, 

which will be discussed in Four and Chapter Five, is the core of the ICE. Since multiple 

parameters are involved in the optimal checkpoint model, the modular design and 

component architecture make it easy for the future extension as well as for promoting 

reusability. Once, the ICE receives system failure information from cluster management 

and monitoring, it updates the failure information database and modifies the reliability 

prediction by the failure prediction module. The details of our failure data analysis and 

reliability prediction can be found in Chapter Three. In some cases, when a failure is 

imminent (e.g. CPU temperature rising rate is above a critical threshold), this high 

priority event can override the optimal checkpoint interval in order to save the application 

state before the failure occurs. This research on imminent failure prediction is not 

included in this dissertation; future work on imminent failure prediction with time series 

technique on IPMI scenario is needed. All these modules are connected to the checkpoint 

algorithm by ICE interface. The ICE sends a request to HA-pulse for performing the
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checkpoint. HA-pulse is a daemon that performs the checkpoint/restart. HA-pulse 

composes of three parts: PulseMaker, PulseMon, and PulseCloner.

IPMI 
HardwareServices

Intel W w i

Figure 2.4 The architecture of intelligent checkpoint engine (ICE).
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Figure 2.5 The flow chart of HA-pulse.
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CHAPTER 3

FAILURE DATA ANALYSIS AND RELIABLITY PREDICTION

3.1 Overview

Research in the area of system reliability by capturing the potential tendency of 

the failure in the real system has gained concerns, especially for high performance 

computing. For example, understanding the failure characteristics can provide insights to 

better resource allocation and enhance the system availability [7]. In a reliability-aware 

runtime system, failure analysis is necessary for setting up the checkpoint interval in 

order to minimize overhead and rollback time.

Nevertheless, the failure analysis is rather complex in a large-scale cluster system. 

The difficulties of failure study lie in various aspects. First, the root causes could be
r

subtle and numerous from various sources such as hardware component outages, software 

errors, network failures, or human mistakes within a multitude of nodes. Second, the 

failure information is a series of statistic data; it is non-trivial to build accurate models for 

studying the features. Last, the system event log files are normally proprietary and not 

easily obtained due to providers’ negativity that may be perceived when their data are 

published in the public forum. It is difficult for the researcher to access such source data. 

Despite existing difficulties, a few studies have focused on failure analysis in the large- 

scale cluster system.

20
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The failure study is a cornerstone for Reliability, Availability, and Serviceability 

(RAS) analysis and management. RAS is a critical issue, especially for the large-scale 

cluster system. The traditional reliability study of cluster system usually makes an 

unrealistic assumption that the failure is the exponential distribution on each node. Such a 

simple solution conceals the complexity and multiplicity of the failure in a large-scale 

cluster system and is detrimental for the RAS management and control.

In this chapter, we discuss methodologies for failure study by analyzing an actual 

system events log file. The raw data came from the events log files of several major HPC 

systems from the Lawrence Livermore National Laboratory. The files contain significant 

system events, from years past, collected from four ASC machines, namely White, Frost, 

Ice, and Snow.

The organization of this chapter is as follows: in Section 3.2 , we discuss the 

failure data collection of a large-scale cluster system. It includes the system environment 

introduction, events log file format, and failure data preprocessing. In Section 3.3 , the 

method to combine failure data of each node to a group of k nodes is introduced. In this 

case, the study follows the reliability of the serial model. Section 3.4 describes the failure 

data processing techniques, and it includes the distribution fitting and goodness-fit-test. 

At last the sample of failure data analysis results and the conclusion are presented in 

Section 3.5.

3.2 Failure Data Collection

The failure analysis and reliability prediction for large-scale cluster system has 

been considered a challenging problem. One of the main reasons is the lack of suitable 

data from large-scale distributed systems. Fortunately in our research work, we have
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obtained event logs containing all the failure information in the period from 7/21/2000 to 

10/01/2004, of four ASC (Accelerated Strategic Computing) machines in LLNL 

(Lawrence Livermore National Laboratory). We perform the analysis on these datasets. 

For the purpose of brevity, only the analysis results of White are presented.

3.2.1 Failure Date Preprocessing

The events log file we have studied ran from July 2000 to October 2004. The raw 

data contain all the events that occur among different system components. Each record 

describes an important event using attributes as described in Table 3.1 below:

Table 3.1 Record attributes in the events log file.

Id Unique number assigned to this event
Pri Priority

Type
Event type: Hardware; Software; Local problem; Cause not 
yet categorized

Subtype Event subtype

Wk-ending
Week ending -- results are binned into weeks ending Friday 
at 24:00 hours

TDT (hr) Total down time (in hours)

LC1 (hr)
LC response time (in hours) - time from start of event until 
LC receives first notification of a problem

LC2 (hr)
LC resolution time (in hours) - time after notification for LC 
to determine how to resolve event

LC3 (hr)
LC verification time (in hours) - time required for LC to 
verify problem fix

VR1 (hr)
Vendor response time (in hours) - time from first notification 
for vendor to start work

VR2 (hr)
Vendor resolution time (in hours) - time for vendor to fix 
problem once work begins

Pid
Parent id - id of parent event for continuing or cascading 
events

V endor id
Vendor id - identifying number assigned to track event by 
vendor

Status Event status
Sect Sector or machine effected (e.g., blue s k y)
Host list List of host name suffixes
Event-start-date Date of event start (MM/DD/YY)
Event-start-time Time of event start (HH:MM:SS)
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Table 3.1 Continued.

LC-notified-date Date of first LC notification (MM/DD/YY)
LC-notified-time Time of first LC notification (HH:MM:SS)
Event-end-date Date of event end (MM/DD/YY)
Event-end-time Time of event end (HH:MM:SS)
Vendor-notified-
date Date of first vendor notification (MM/DD/YY)

Vendor-notified-
time Time of first vendor notification (HH:MM:SS)

V endor-working- 
date Date of vendor start of work (MM/DD/YY)

Vendor-working­
time Time of vendor start of work (HH:MM:SS)

Vendor-done-date Date of vendor end of work (MM/DD/YY)
Vendor-done-
time Time of vendor end of work (HH:MM:SS)

Follow-up-done-
date Date of LC completion of follow-up work (MM/DD/YY)

Follow-up-done-
time Time of LC completion of follow-up work (HH:MM:SS)

LC-dt (hr)
LC dead time (in hours)- time for which LC fails to work on 
event resolution due to choice or lack of capacity

Wight
Weight (in cpus) - effective weighting of event if different 
than the number of CPUs idled

Imp
User impact (YES or NO) - does this event impact user 
availability

Owner
Owner of the event - person assigned responsibility for 
following this event

Short description Short description of the event
Assignee Person last assigned responsibility for actions on this event
Creator Person who created original event record

Table 3.1 shows that there is much redundant information included in the raw data 

of the events log file, and some important information which relate to the failure analysis 

are not directly presented, such as the time between failure (TBF). We recognize that 

such events log information must be carefully filtered and preprocessed before being used 

in decision making, since they contain a large amount of redundant information. We 

present our preprocessing work, which involves three steps:
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The first step is extracting the information we require from the raw data. For the 

purpose of our failure and reliability study, only the information such as the event ID, 

failure type, failure start time, failure end time, failure host and down time are concerned. 

We extract these useful attributes from the raw data and build a smaller dataset.

Secondly, we perform a temporal filtering step to remove duplicate or error 

reports. Some obvious error report and suspected failure events are removed from the raw 

data. For example, in some failure cases, the failure ending time are previous to the 

starting time or the down time is zero.

Thirdly, a categorizing step is performed. Among the failure events, some failures 

are involved by a single node, and some by multiple nodes, and the target of fundamental 

failure analysis is the single node reliability. For the convenience of further analysis to 

access the data, we separate the multiple nodes involved failure from each other.

Therefore, after data preprocessing, the advantages of the new dataset is obvious: 

1) Unwanted information has been removed; the new data size is only 18% of the original 

raw data. 2) Failures can be indexed by node. 3) Failures can be indexed by time. 4) 

Failures can be indexed by type. 5) Time between failures (TBF) of each node is given. 6) 

Downtime of each failure is calculated. After preprocessing, it is easy to collect the 

failure information by node, type, and time period. Table 3.2 is a data example of 

preprocessed failure information.
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Table 3.2 The sample of preprocessed failure data.

M Type TDT(kr) Host list Start-date Start-time End-date End-time

1899 HW 24 225 7/19/2000 16:26:00 7/20/2000 16:21:30
1901 HW 20 113 7/20/2000 14:31:00 7/21/2000 10:26:32
1907 SW 3 129 7/21/2000 9:35:00 7/21/2000 12:35:00
1911 HW 3 210 7/24/2000 11:37:06 7/24/2000 14:27:35
1913 HW 2 287 7/24/2000 13:23:25 7/24/2000 15:00:01
1914 HW 2 265 7/24/2000 13:28:56 7/24/2000 15:20:01
1915 HW 1 026 7/24/2000 14:07:21 7/24/2000 15:45:01
1917 HW 33 275 7/24/2000 23:52:00 7/26/2000 8:00:00
1920 SW 142 099 7/25/2000 13:30:31 7/31/2000 11:35:08

3.3 Failure Data Combination of k Nodes

In this section, we discuss the reliability of a group of k nodes. In the large-scale 

cluster, normally, the system job scheduler submits user jobs to a group of nodes, and in 

such a situation, the group of nodes is treated as a whole system, and each node in the 

group is a component of the system. Each node failure may cause the whole system to 

fail: it is the typical series reliability model. For convenient study, we ignore the failure 

dependency and suppose the failure of each node is independently distributed, so the 

reliability of a group of k nodes can be achieved by the following failure data 

combination method. In fact, this failure independency is a trend of HPC hardware 

architecture design and deployment for which nodes or components are independent and 

can be repaired in a hot swap manner.
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Figure 3.1 Failure data combination of a group of k nodes.

Figure 3.1 shows the method to combine the failure data from individual nodes to

the failure dataset of a group. Fln,F2n,F3n ,Fkn are failure data sets of node 1, 2,

3 k , and they are presented in Equation (3.1), where t is the failure time (for

example, t3l means happen time of the 3rd failure of node 1).

Fn\ = ( ̂ 11 ’̂ 2l/31’ } 0-1)

F„2 =  { ^12 ’^22 ,h l ’......... }

Fnk = {tlk’h kh k ’ }

The combination algorithm of failure data set is in Equation (3.2), and the failure 

data set of a system of k node is Fs, which is the union operation of each node failure set.

After the failure data set Fs is acquired, the time between failures (TBF) can be

calculated by Equation (3.3).

Fs = F„x U Fn2 U Fnt = {tsl ,ts2 ts3, i sm } (3-2)

TBFs ={ts(M)- t J , i  = 1,2,3 m (3.3)
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3.4 Statistical Analysis

After TBF datasets of individual nodes are acquired, we consider statistical 

techniques to analyze the TBF datasets. We calculate empirical cumulative distribution 

function (ECDF) and how well it fits to four probability distributions commonly used in 

reliability theory: the exponential, the Weibull, the gamma, and the lognormal 

distribution. We use a maximum likelihood estimation to parameterize the distributions 

and evaluate the goodness of fit by visual inspection and Chi-square test or Kolmogorov- 

Smimov test.

3.4.1 Distribution Fitting of TBF

Distribution fitting is the procedure of selecting the statistical distribution which 

best fits to a data set generated by some random process. In reliability analysis field, there 

are four commonly utilized distributions: exponential, Weibull, gamma and lognormal. 

The details of their mathematic definition have been introduced in Section 2.2. We 

compared the empirical cumulative distribution function (ECDF) of the TBF dataset with 

these four normally used distributions. The fittings are performed with TBF datasets 

which come from a different node group, and within different time periods. The graphs of 

fitting results are listed in Section 3.5 .

3.4.2 Goodness-Fit-Test

It is difficult to determine the best distribution fitting result from observation or 

visual inspection. We perform the goodness-fit-test, Chi-Squared test and Kolmogorov- 

Smimov test to measure the fitting result in quantitative comparisons. The details of 

goodness-fit-test theories listed in Appendix C.
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3.5 Analysis Results

In this section, some distribution fitting results are presented in Figure 3.2 to 

Figure 3.13. It is based on the TBF dataset of ASC White system from January 2001 to 

October 2004. We fitted the failure dataset in a different time period. Because the White 

system was unstable and got more failure events involved in year 2001 and 2002, we 

separated the failure data in half year periods to make the fitting. In years 2003 and 2004, 

we fitted the data in the whole year. The distribution fitting graphs over different period 

are shown in Figure 3.2 to Figure 3.13.

The parameters of each fitted distribution over different data set are listed in 

Table 3.3, Table 3.5, Table 3.7, Table 3.9, Table 3.11, and Table 3.13. In the goodness- 

fit-test, we did the Chi-square test and Kolmogorov-Smimov Test, and the result shows 

that Kolmogorov-Smimov Test has manifest difference in P-value to identify the best 

fitting distribution; therefore, we only list results of Kolmogorov-Smimov Test of 

different data set in Table 3.4, Table 3.6, Table 3.8, Table 3.10, Table 3.12, and Table 

3.14.

P-values in Kolmogorov-Smimov Test denote that Weibull Distribution is the 

best fit in most cases on the given failure data set. Thus, we will focus our discussion on 

the checkpoint/restart model centered on the Weilbull distribution in Chapter Four.
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Figure 3.2 Histogram of TBF data of White in period Jan. 2001 -Jun. 2001.
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Figure 3.3 CDF Comparison of TBF data of White in period Jan. 2001-Jun. 2001.

Table 3.3 Fitted Distributions of data in period Jan. 2001-Jun. 2001.

Exponential Gamma Lognormal Weibull
mean = 158.25 shape = 0.782987 mean = 329.945 shape = 0.870012

scale = 0.00494779 standard deviation = 1433.69 scale = 148.213
Log scale: mean = 4.30404
Log scale: std. dev. = 1.7291
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Table 3.4 K-S test of the fitting of data in period Jan. 2001-Jun. 2001.

Exponential Gamma Lognormal Weibull
DPLUS 0.228156 0.193604 0.135276 0.190498
DMINUS 0.115434 0.164208 0.245532 0.16395
DN 0.228156 0.193604 0.245532 0.190498
P-Value 0.148168 0.307531 0.0981672 0.326552
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Figure 3.4 Histogram of TBF data of White in period Jul. 2001 -Dec. 2001.
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Figure 3.5 CDF Comparison of TBF data of White in period Jul. 2001-Dec. 2001.

Table 3.5 Fitted distributions of data in period Jul. 2001-Dec. 2001.

Exponential Gamma Lognormal Weibull
mean = 51.1349 shape= 0.859612 mean = 61.2761 shape = 0.875449

scale = 0.0168107 standard deviation = 131.993 scale = 47.4309
Log scale: mean = 3.25045
Log scale: std. dev. = 1.31525

Table 3.6 K-S test of the fitting of data in period Jul. 2001 -Dec. 2001.

Exponential Gamma Lognormal Weibull
DPLUS 0.117513 0.0937095 0.0806108 0.0754125
DMINUS 0.0320601 0.0647599 0.117052 0.0827226
DN 0.117513 0.0937095 0.117052 0.0827226
P-Value 0.191281 0.452011 0.194836 0.605893
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Figure 3.6 Histogram of TBF data of White in period Jan. 2002-Jun. 2002.

1

S  0.8
2an
2 0.6 

CL

3
E
3  0 2

o
0 100 200 300 400 500 600 (hours)

TBF data of period from Jan. 2002 to Jun. 2002

Figure 3.7 CDF Comparison of TBF data of White in period Jan. 2002-Jun. 2002.
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Table 3.7 Fitted distributions of data in period Jan. 2002-Jun. 2002.

Exponential Gamma Lognormal Weibull
mean = 48.1436 shape = 0.600256 mean = 100.322 shape = 0.71623

scale = 0.012468 standard deviation = 576.495 scale = 38.6631
Log scale: mean = 2.8449
Log scale: std. dev. = 1.87803
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Table 3.8 K-S test of the fitting of data in period Jan. 2002-Jun. 2002.

Exponential Gamma Lognormal Weibull
DPLUS 0.18572 0.100186 0.112908 0.0771213
DMINUS 0.0412279 0.0927998 0.172895 0.102403
DN 0.18572 0.100186 0.172895 0.102403
P-Value 0.00431175 0.335838 0.00977668 0.309882
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Figure 3.8 Histogram of TBF data of White in period Jul. 2002-Dec. 2002.
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Figure 3.9 CDF Comparison of TBF data of White in period Jul. 2002-Dec. 2002.
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Table 3.9 Fitted distributions of data in period Jul. 2002-Dec. 2002.

Exponential Gamma Lognormal Weibull
mean = 101.241 shape = 0.740914 mean = 168.113 shape = 0.825671

scale = 0.00731831 standard deviation = 604.122 scale = 91.5017
Log scale: mean = 3.8082
Log scale: std. dev. = 1.62261

Table 3.10 K-S test of the fitting of data in period Jul. 2002-Dec. 2002.

Exponential Gamma Lognormal Weibull
DPLUS 0.105249 0.0857462 0.0666097 0.0761836
DMINUS 0.059705 0.0920687 0.157378 0.103101
DN 0.105249 0.0920687 0.157378 0.103101
P-Value 0.714328 0.849785 0.226341 0.737854
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Figure 3.10 Histogram of TBF data of White in period Jan. 2003-Dec. 2003.
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Figure 3.11 CDF Comparison of TBF data of White in period Jan. 2001-Jun. 2001.

Table 3.11 Fitted distributions of data in period Jan. 2003-Dec. 2003.

Exponential Gamma Lognormal Weibull
mean = 145.922 shape = 1.01495 mean = 216.717 shape = 0.83365

scale = 0.00695545 standard deviation = 524.853 scale = 147.787
Log scale: mean = 4.41535
Log scale: std. dev. = 1.38798

Table 3.12 K-S test of the fitting of data in period Jan. 2003-Dec. 2003.

Exponential Gamma Lognormal Weibull
DPLUS 0.0539832 0.0560491 0.0958043 0.0632786
DMINUS 0.118476 0.115451 0.189113 0.106782
DN 0.118476 0.115451 0.189113 0.106782
P-Value 0.3723 0.405675 0.0273654 0.513283

Distribution
— Exporientiai 
■— Gamma

• Lognormal
— Weibull
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Figure 3.12 Histogram of TBF data of White in period Jan. 2004-Oct. 2004.
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Figure 3.13 CDF Comparison of TBF data of White in period Jan. 2004-Oct. 2004.

Table 3.13 Fitted distributions of data in period Jan. 2004-Oct. 2004.

Exponential Gamma Lognormal Weibull
mean = 126.681 shape = 0.566654 mean = 293.391 shape = 0.687184

scale = 0.00447308 standard deviation = 2019.51 scale = 99.2228
Log scale: mean = 3.74196
Log scale: std. dev. = 1.96954
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Table 3.14 K-S test of the fitting of data in period Jan. 2004-Oct. 2004.

Exponential Gamma Lognormal Weibull
DPLUS 0.17424 0.072916 0.0811963 0.0516248
DMINUS 0.0792948 0.0561746 0.101738 0.0532796
DN 0.17424 0.072916 0.101738 0.0532796
P-Value 0.0492558 0.901922 0.552961 0.99515
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CHAPTER 4

AN OPTIMAL CHECKPOINT/RESTART MODEL

4.1 Introduction

Our analysis of the failure data of LLNL ASC White system (512 nodes and 8196 

processors) shows the average value of mean time between failures (MTBF) for any 

individual node is over 7000 hours, but MTBF of the system is only around 20 hours due 

to the combination of hardware and software failure of each components. Because of the 

characteristics of the parallel applications running in a large-scale system, the reliability 

of the whole system or reliability of k of n nodes is a bigger concern than of any 

individual component. The MPI is the popular parallel environment for scientific 

computing. Normally, the MPI jobs are decomposed and spread over a bunch of nodes, 

and each part of the job cooperates to work by passing the message. Because the job data 

is partitioned over the nodes, single node failure or network connection blockage would 

cause the whole job to be lost. In order to minimize the performance loss due to the 

frequently happened failures, the optimal checkpoint/restart scheme is widely used in 

computing systems. These works, either the cost function models or Markov availability 

models, they theoretically assume that the system failure is Poisson process (with fixed 

failure rate X). But in the practices of a large-scale cluster system, the characteristics of 

system failure are more complicated than for single component systems.

38
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In this chapter, we develop an optimal checkpoint/restart model related to the 

system reliability function. The reliability functions are obtained by analyzing the 

historical failure data from the system events log files. The methods of failure data 

analysis have been discussed in Chapter Three. We then apply a theory of stochastic 

renewal reward process for an optimal solution of our checkpoint/restart model. The 

detailed descriptions for this chapter are organized as follows: Section 4.2 presents 

related works of optimal checkpoint/restart model. In Section 4.3 , we describe the 

checkpoint/restart behaviors in distributed environments. The introduction of applying 

renewal reward process theory to checkpoint/restart model is in Section 4.4 . In Section

4.5 , the mathematical solution of reliability-aware optimal checkpoint/restart model is 

presented.

4.2 Related Works

The checkpoint/restart method is a typical fault tolerant technique in computer 

systems. Works by Chandy [63] [64] and Treaster [65] can serve as good review 

documents for the checkpoint/restart technique. Young [66] presented an optimal 

checkpoint and rollback recovery model, and obtained a constant optimal checkpoint 

interval by which the total waste time was minimized. Based on Young’s work, Daly 

[68][69] improved the solution to an optimal checkpoint placement from a first order to a 

higher order approximation. Both Young’s and Daly’s studies established a principle on a 

cost function through which the whole execution period was considered, and the optimal 

checkpoint interval was derived to minimize the output of the cost function. An alternate 

technique concerning the optimal checkpoint interval is to consider the system 

availability. In [71][72][73], authors presented a Markov availability model, and obtained
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an optimal checkpoint placement that maximizes system availability. Essentially, with a 

particular system failure rate, minimizing the cost function is equivalent to maximizing 

system availability. However, the limitation of existing optimal placement solutions 

(either the cost function or availability model) is the fact that system failure is assumed to 

follow a Poisson process with a fixed failure rate. This implies that the time between 

failures follows an exponential distribution. A more recent study [44] on the reliability- 

aware approach in a BlueGene/L proposed a so-called cooperative checkpointing, which 

is a hybrid checkpointing scheme based on Young’s [66] periodic checkpoint model. The 

cooperative checkpointing scheme may reduce the checkpointing cost, especially in a 

large-scale parallel system. However, it risks of increasing the rollback cost. Our 

technique addresses both overhead and rollback time.

4.3 Checkpoint/Restart in Distributed System

A typical parallel application is divided into subtasks running on multiple nodes. 

In order to deal with the reliability issue, the application states must be periodically saved 

by a well designed checkpoint protocol. There are three common checkpoint protocols: 

uncoordinated checkpointing, coordinated checkpointing, and communication-induced 

checkpointing. In our cost model construction, we experimented and measured actual 

checkpoint overhead based on the Berkeley Lab’s Linux Checkpoint/Restart (BLCR) 

implementation. BLCR is the Linux kernel-based coordinate Checkpoint/Restart 

technique, and is integrated with the LAM/MPI to provide checkpoint and restart for a 

parallel application.
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Figure 4.1 Coordinate checkpointing for parallel application.

Figure 4.1 shows a general idea of the coordinate checkpoint mechanism in the

case of a parallel application. Consider a parallel program running with k processes, Po,

Pi Pk , and coordinate checkpoint placements, Tci,TC2,  Tcm, that represent the

checkpoint intervals between two checkpoints. Let Tsi,TS2,  Tsm be the checkpoint

overhead of each checkpoint. Since the coordinate checkpoint protocol behaves in a 

synchronized fashion, we assume that there is no time difference for each individual 

process checkpoint, and treat it as a single checkpoint overhead, Tsi. Thus, in this study, 

we focus on how to determine a checkpoint interval or placement that minimizes the job 

execution time or total waste time.

Failure Failure Failure

checkpoint

Restart
paint

Restart
point

checkpoint checkpoint

T=
Jl

<1

Figure 4.2 Checkpoint/restart is a stochastic renewal reward process.
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We consider an application failure model that allows more than one failures 

during a lifetime of a given application. The checkpoint/restart model can be shown as in 

Figure 4.2 which represents by a typical stochastic renewal reward process. Ideally, the 

whole checkpoint procedure is divided by random failures, where (ox,<x>2,co3... are

random time intervals between failures, and?,,f2^3 — are the checkpoint placement time. 

In the stochastic renewal process, (0  denotes a renewal interval or repeat cycle. For each 

cycle a) , the behavior of the process is similar. The overall checkpoint/restart procedure 

can be described as Ct in Equation (4.1)

^  (4-1)
Ct = m a x { « 2^,cot < t ) .

i=1

We suppose that execution time lost due to the checkpoints and failure on each 

cycle is W1,W2, W3... (reward), then the total lost time on process Ct is:

A  (4-2)

i =1

Yt is called a renewal reward process. The important theorem of renewal reward 

process is described in Equation (4.3).

EQT,) <43)
t E(® \)

Equation (4.3) represents the total average reward equal to the average reward in 

the first cycle. In the checkpoint/restart model, this fact means that the problem of how to 

minimize the overall time lost is equal to how to minimize the lost time in cycle cox .The 

details of the renewal reward process theory are presented in Appendix A
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4.5 Description of Checkpoint/Restart Model

Failure

- t o i -

— — Tc—....

u i  n f t

Recovery

Tb  )(~Tr~>

Figure 4.3 Behaviors of checkpoint/restart model.

Figure 4.3 shows the behaviors of checkpoint restart scheme on an application 

interrupted by failures. The meaning of each symbol that we use in the model is shown in 

Table 4.1.

Table 4.1 Parameters of checkpoint/restart model.

Parameters Meaning

Tc Checkpoint Interval

Ts Checkpoint Overhead

Tr Recovery Time

Tb Time to rollback to the last checkpoint

n(t) Checkpoint frequency function

m Probability density function of TBF

(Ot The cycle between failure / and failure (7+1)

Consider a checkpoint restart scheme in the first cycle (oi (interval between two 

failures). Figure 4.3 illustrates the model with parameters such as checkpoint interval (Tc),
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checkpoint overhead (Ts), restart (Tr) and rollback time (Tb). Through the rest of the 

paper, our failure model is based on the following assumptions:

1. A running application may be interrupted by a series of random failures Si, (i = 

1,2,3...), where the time between failures has a certain PDF, f(t).

2. The system failure can be detected by a monitoring mechanism.

3. Checkpoint intervals need not be fixed, but can vary.

4. Each checkpoint overhead Ts is a constant. In practice, we can take this 

constant to be the average value of multiple checkpoint overheads.

5. The system can be recovered from the last checkpoint, and the rollback cost Tb 

is a period between the last checkpoint and the present failure.

6. The repair time Tr is a constant.

Remark: Assumption 2 is satisfied, since a well-managed system [45] can be engineered 

with an efficient mechanism to immediately detect the failure. In assumption 3, the 

checkpoint interval may be constant or variable depending on the PDF of system failure. 

Thus, the checkpoint interval can be described by a checkpoint frequency function, n(t). 

The mathematical derivation of n(t) is given in the next subsection. Finally, assumption 6, 

Tr, is satisfied if there is a mechanism in place to replace the failed node with a spared 

node. In fact, HA-OSCAR and its new fault tolerance extension [45] can provide a 

transparent recovery time Tr less than a minute.

In Figure 4.3, ooj is the ith cycle between ith failure and (i+l)th failures. From the 

discussion in Section 4.4 , we recognize that an optimal checkpoint/restart model must 

follow a specific failure distribution. Therefore, we look for the best checkpoint 

placement sequence that minimizes the total waste time. In addition, according to the
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renewal reward process and from Equation (4.3), one can minimize the total waste time 

by minimizing lost execution time in the first cycle, ©1.

Let the sequence of discrete checkpoint placement moments 

areO = t0 < tx <... <tn. l f  the n(t) is the checkpoint frequency function, then

(4.4)

For any given time interval from the beginning of each cycle, denoted by L, the 

number of checkpoint placements is given by

N (L ) = n(r)dr .

In Figure 4.3, let Wj be the time wasted due to the checkpointing in cycle coj,

W,=T,['n(.T)dr + Th+Tr. <4'6)

From assumption 6, Tr is a constant, and from assumption 5, we suppose that the 

system can be successfully recovered from the last checkpoint. The relationship between 

Tb and checkpoint interval is illustrated in Figure 4.4.

Failure

Tb

•M m .
W1 

-1/n(wi}-

Figure 4.4 The relationship of Tb and checkpoint interval.

Since a>i is the value between these checkpoint placements, by Mean Value 

theorem, we can estimate the frequency of this interval by n(a>]). Therefore, 7* can be
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expressed by Equation (4.7), where k is a rollback coefficient variable between (0,1). The 

detailed discussion of k value is explained in Section 5.1 .

The discussion in Section 4.4 suggests that the checkpoint/restart is a renewal 

reward process (4.2). The theorem of renewal reward process in Equation (4.3) shows 

that the mean of overall time lost in the checkpoint/restart process isE(Wx)/E(a>x) . 

Therefore, a process to minimize the total time lost in the checkpoint process is to 

minimize E(WX).  Let f(t) be the probability density function of the system failure, then 

the probability for the system failure within [/, t + At] is / (t) ■ A t . The expected time 

lost during a cycle in the checkpoint process E(WX) is

Tb « k/n(coj), (0 < k < 1). (4.7)

Therefore, (4.6) can be written as

K  = T, f  n(T)dr
(4.8)

k (4.9)

Now we aim for the optimal checkpoint frequency n (t) in order to minimize the

expected time lost, as defined by the Equation (4.9).

Solution: Let x(t) = , and then Equation (4.9) changes to

(4.10)

Let

® ( x ,  x ' , ( )  =  K -  X( t )  +
(4.11)
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Based on the theorem of calculus of variations, if the integral in Equation (4.10) has a 

minimum value, ® (x,x',f) must satisfy Euler’s equation in (4.12) [83],

a® d a®
dx dt dx'

=  0 .
(4.12)

In Equation (4.11), we take the partial derivative of <t> and obtain

a®^  = Ts f i t )  
ox

a®
dx' (x'(t))2 ■fit)

(4.13)

We substitute (4.13) into (4.12)

dt (x'(t))
Taking Integral on both sides of (4.14), we get

T • F(t)  + , 2 •f ( t )  = C .
(x'(t))2

Where C is a constant, and because ifx'(r) = n(t) , then

(4.14)

(4.15)

7 ^ ( 0  +
(n(t)y

■m=c . (4.16)

Since lim F(t) = 1, and lim f ( t )  = 0 , so we have C - T s, Solving for n(t) , we obtain the
/-»oo t—>00

following optimal frequency function:

k - m
Ts( l - F ( t ) )

f i t )
R(t)

(4.17)

1) E xponential D istribution
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For the exponential distribution, f ( t )  = Ae M, and R(t) = e~M, t > 0, A > 0, we

get

(4.18)

So the optimal checkpoint interval for exponential failure distribution is

1 (4.19)

n (t) \ k A

Form (4.19) shows that the optimal checkpoint interval for exponential is fixed value. 

2) Weibull Distribution

For Weibull distribution, where / it) e (tlr>)(’ , t > 0 and
T

R(t) = e <ll'1)l' , t > 0, then the Equation (4.17) becomes

Form (4.20) satisfies (4.4), i.e.

(4.20)

r Ij K
‘- i r y

kB —
p  t 2 dt = l ,  i = l,2,3....

(4.21)

2 I k/3
f l+ iy  r y

0+1 /?+l
i t ,2 ~ t , 2 ) = 1

(4.22)

t, =
k/3

0+1 
+ t 2

/?+1
(4.23)

B ecau se  t0 =  0 ,  w e  obtain the seq u en ce o f  optim al checkpoin t p lacem ents (tim estam ps)
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where U is the ith checkpoint placement. In the next chapter, we use t  from Equation (4.24) 

in our model evaluation.

In next chapter, we perform model analysis and comparison to current state-of-art 

techniques.
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CHAPTER 5

MODEL ANALYSIS AND VALIDATION

In Chapter Four, we presented an optimal checkpoint/restart model aiming to 

minimize the total applications lost time due to checkpoint overhead and rollback time 

when failure occurs. The solution of the optimal checkpoint frequency (Equation 4.17) is 

a function of system failure rate, checkpoint overhead, and the rollback coefficient k. The 

checkpoint overhead is the time cost for a checkpointing program to take the snapshot of 

the application. In the distributed environment, the checkpoint overhead is affected by 

many factors: the performance of checkpointing program, the node size or process size 

that the application is spread on, the memory usage of the application in the 

checkpointing moment, the system load of the platform, and so on.

In the model evaluation, we assume the checkpoint overhead Ts is a constant for 

the particular execution environment. The main focus of this dissertation is the 

relationship between the checkpoint interval or frequency and system failure. First, we 

present the method to evaluate the rollback coefficient k in the model. Secondly, we 

compare the total cost of our solution vs. other checkpoint models.

5.1 Evaluation of Rollback Coefficient k

In Figure 4.4 in Chapter Four, we consider Tb, a rollback time of the application

after a given failure. Tb is the time interval between the failure and the last checkpoint. It

50
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is a random value which depends on the time when the failure occurs from the last 

checkpoint placement.

Falure

Start

(a) without 
checkpoint

to Tt
Falure

start checkpoint
4>)Mh

dnesckpoint

Tb 3
* *  « *  « *

fo f f  fe ti Tf ti+1

Figure 5.1 Tb in different case, (a) without checkpoint, (b) with checkpoint.

If a failure occurs at time 7}, during an application execution without checkpoint 

(Figure 5.1 (a)), and then the rollback time Tb will be 100% of the time interval!} - t Q. 

With checkpoints (Figure 5.1 (b)), it is obvious that Tb is a random value dependent on 

the time the failure occurs. Therefore, if we know the distribution of the time between 

failures, then Tb can be estimated.

First, let’s define the rollback time coefficient k in Equation (5.1).

T, Tf - t ,  (5.1)
k=  -   k e (0,1)

î+i tl+i —tt

where k 6 [0,1], is the proportion of Tb in the interval tM —tn which depends on

the failure time and the checkpoint time sequence.

For a given system TBF dataset followed Weibull distribution, so the checkpoint 

timestamps tl ,t2 ,tt can be find out by Equation (4.24),
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where Ts , the checkpoint overhead, is a constant that can be figure out from the 

checkpoint program in the actual system. (5 and rj are parameters of fitted Weibull 

distribution on dataset I. In the first step, we know that £ is a value between 0 and 1, for 

example A=0.1, for convenience, we denote the assumed k as£ , and the expected k to be 

presented as k .

Let k= a , 0 < a < 1 , and let the corresponding checkpoint time sequence,

{t1,t2..... , ,  calculated from Equation.(4.24), be as shown in Figure 5.1 (b). We denote

the probability that a failure occurs in the time interval (t0, ) as

P0= P [0 < 7 > < t1]

Therefore, the probability that failure will happen in is

Pi =P[ti<Tf  <t2]

In general, the probability that failure will happen in (tf, tM ) is

P, =/>[/, < 7 )< f ,+1]. (5.2)

Since it is more realistic to assume that the time to failure follows a Weibull distribution 

with F(t) = 1 -  t > 0,

Pi =P[ti <Tf  <ti+l] = P[Tf  < tM] — P[Tf  < / J  (5.3)

j U  J /
= l - e  - ( \ - e  ^  ) .
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The excess life probability function of a Weibull distribution shown in Equation

(5.4), is based on the conditional probability, P(t + s \ t), that the system survives until 

time t + s (s equal or larger than 0), given that it survived to time t.

P [ f + - s ]  l - F ( f  +  s )  ( 5 . 4 )P[t + S | £] = ■
m

  = e * « = e v
-c V  

e 11

Taking the derivative of Equation (5.4) with respect to s, one obtains the PDF of 

the excess life distribution in Equation (5.5)

d  -('+•*/] i tf -it**? (5.5)

CIS 1J

/3-(t+sy~'
TJ0

_ c7  p - { t +sy - '  f f -  

vp

We denote the expected excess life at time t, as E(st) . If a failure occurs within 

the time interval (ti ,tM ) , then on average the rollback time Tb = E(sf), where

|' +‘ (5-6) 
E{s ) = —— -̂------------------

I"1 1/[',+ '■  i ', ] *

_ *________ i f ______

—  a  e* \P -i
e *  t* dsb jjP

,0 ,0 h ‘i,i
\ — er,P

R-1
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From the definition of k in Equation (5.1)

(5.7)

Therefore, the expected k is

rt (5.8)

k -
n

'L r<(=1

where n is the number of checkpoint intervals.

In order to determine p and r\ in Equation (5.6), we fitted the Weibull distribution 

to the actual failure data, in our case, from the LNLL ASC White system during the 

period July, 2004 to September, 2004. The fitted Weibull distribution shown in Figure

5.2 has the shape parameter p= 0.6732 and the scale parameter r)=15.56. We assume the 

checkpoint overhead to be 0.1667 hours. Using these p and r\ values, we estimated k by 

Equations (5.3), (5.7), and (5.8). For each k =a (0<a<l), one has a sequence of 

checkpoints (^,*2/ 3,..... ,t,) and a corresponding k value from Equation (5.8). Figure 5.2

shows a plot of £ (assumed k) vs. expected k. Our objective is to find the k value in 

Equation (5.1) such that it is equal to the point where k  is equal to k . From our data set 

shown in Figure 5.3, the k value is approximately 0.4614.
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Figure 5.2 Fitted Weibull distribution to the failure data set of the ASC White system.
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Figure 5.3 Expected k value of a failure data set from the ASC White system.

5.2 Model Validation Results

For an evaluation purpose, we compared our checkpoint/restart model with three 

existing schemes from a recent large-scale system checkpoint study [44], namely periodic,
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exponential backoff, and risk-based. The detail of these three models can be found in [44]. 

One of our main goals is to identify which technique will result in the least lost time by 

varying the checkpoint overhead. The comparison was performed based on the dataset 

from the LNLL ASC White system in the period July, 2004 to September, 2004. The time 

between failures in this data set has a Weibull distribution with p=0.673189 and 

tl=15.5612.

Table 5.1 The k values for model comparisons.

Ts (hrs) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
k 0.4682 0.4587 0.4519 0.4564 0.4417 0.4375 0.4338 0.4304 0.4273 0.4244

The k values we used in our model are calculated by the method in Section 5.2. 

The values of different checkpoint overhead Ts are listed in Table 5.1.

800
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500

E —  ■ ■ period ic

 ex p o n en tia l backoff

—  — riskbased 

 our model

400i
CDO

300
O

200

100

job completion time 
(hrsj

oGQ QQOo

Figure 5.4 Total waste time against job completion time from 1 to 2,200 hours.
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In our study, we defined the job completion time that includes overall execution 

time, checkpoint overhead, recovery and rollback times. We compared waste time 

improvement results from our model against there existing methods [44]. We then ran a 

simulation with the LLNL failure information by varying job completion times, when the 

checkpoint overhead was 0.1667 hour (i.e. around 10 minutes), and k was 0.4614. 

Moreover, the cooperative checkpoint request interval [44] in the compared methods was 

at every half an hour. In the experiments, we varied the job completion time from 1 hour 

to 2200 hours (i.e. around 3 months). Results in Figure 5.4 clearly show that our model 

produces the least waste time or lost time. Our technique provides significant 

improvement over the existing techniques, especially when the application total 

completion time goes larger. This is due to the fact that the longer job completion time, 

the higher failure probability in the system. In addition, our improvements come from 

optimality interplay among reliability-awareness and a balance between checkpoint 

overhead and rollback time factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

INCREMENTAL CHECKPOINT/RESTART MODEL

6.1 Introduction

Generally, checkpoint/restart on a large-scale distributed system is much more 

challenging than checkpoint/restart on a single system. This difference is caused by the 

multiplicity nature and coordination of state saving and recovery of applications are quite 

complex. Furthermore, the larger system is the more impact by potential failures. For 

example, the analysis of ASC White error log shows that the MTBF of a single node may 

be several thousands hours, but for the whole system with 512 nodes, the MTBF can be 

reduced to only 20 hours. This phenomenon suggests that applications running on a large- 

scale system need more checkpoint placements to reduce lost computational time. Also, 

for checkpointing on a large-scale system, huge memory contexts must potentially be 

transferred through the network and saved on reliable storage, so that the checkpoint 

overhead becomes a critical issue which directly impacts the application execution time 

and disk storage requirement. Therefore, in recent years, research in reducing checkpoint 

overhead has gained significant attentions in the high performance computing community 

[47][48][49] [50][52] [53] [44],

One of the recent checkpoint overhead reduction techniques is cooperative 

checkpointing [44]. The main concept of the cooperative checkpointing schedules the
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basic checkpoint placements following the traditional fixed interval checkpoint model 

(Young’s model). However, in order to reduce the checkpoint cost, the technique skips 

some scheduled checkpoints according to the estimation of system failure risk. The 

performance of cooperative checkpointing depends on the accuracy of risk estimation. 

Nevertheless, an accurate failure prediction or risk estimation is a challenging problem 

[54][55],

On the other hand, incremental checkpoint schemes [47][48][49][52][53] focus on 

reducing the checkpoint overhead by saving only necessary application states or only 

modified states. In contrast to a traditional checkpoint (i.e. full checkpoint) which copies 

all the information (all memory pages related to the running application) to a stable 

storage, the incremental checkpoint takes a full checkpoint the first time, and then 

typically exploits an OS’s page protection mechanism to observe, at checkpoint time, 

which pages have changed since the last checkpoint, and it only saves those pages. One 

of the disadvantages of the incremental checkpoint is that it requires the system first to 

restore the states as captured in the previous full checkpoint, and then to apply all the 

incremental checkpoints in order, before the recovery can be completed. Thus, the restart 

mechanism of an incremental checkpoint is more complex than the full checkpoint.

Some efforts [47][48][52][53] have focused on incremental checkpointing 

algorithm, e.g. how to efficiently implement incremental checkpointing in system level or 

user level. However, not much attention has been given to an optimal incremental 

checkpoint model. Based on our previous reliability-aware full checkpoint/restart model 

in Chapter Four and Five, we extend our study to include incremental checkpoint 

placements in a large-scale distributed system. Because the checkpoint overhead and
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restart mechanism of incremental checkpointing are different from full checkpointing, we 

describe the incremental checkpoint model, derive our solution, and compare it to the full 

checkpoint counterpart in the next sections.

6.2 Incremental Checkpoint/Restart Model 

6.2.1 Rehaviors of Incremental Checkpointing Model

The behaviors of incremental checkpoint/restart model are illustrated in Figure 

6.1, and this model is similar to the full checkpoint/restart model as shown in Chapter 

Four Figure 4.3. The difference between these two models is that the incremental 

checkpoint model has two types of checkpoints (full checkpoint and incremental 

checkpoints), whereas the full checkpoint model only has a full checkpoint. The meaning 

of each parameter in the incremental checkpoint/restart model is listed in Table 6.1. 

fflfftFaliire

ffecamty 

(rTr4

Figure 6.1 Incremental checkpoint/restart model.

Table 6.1 Parameters Meaning in Incremental Checkpoint/Restart Model.

Parameters Meaning

Tcl,••.Ten Checkpoint Intervals (they may be different).

Of Full Checkpoint Overhead.

Ot Incremental Checkpoint Overhead.

T„ Time lost between failure and last checkpoint.

Tr Recovery time from an incremental checkpoint.

T'rf Recovery time from a full checkpoint

Full checkpointV -OJh

Increrontal checkpoint 
Oi

tjj-Tef-jl &-Tte2“#s

.Of

-Ten-*n rik'TtH
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a Additional recovery cost per incremental checkpoint.

m Number of incremental checkpoint between two full 

checkpoints.

1u Incremental checkpoint overhead ratio p= Oi /Of.

In our incremental checkpoint model, the first checkpoint is a full checkpoint, 

which saves the entire data section and the stack of the application. The full checkpoint is 

followed by a sequence of incremental checkpoints, which only saves the address spaces 

that have changed since the previous checkpoint. The recovery cost is decided by the 

number of incremental checkpoints. After m incremental checkpoints, a full checkpoint 

may be taken again if a breakeven point indicates that the full checkpoint cost may be 

cheaper than the recovery cost if a failure occurs. The main idea is to balance a cost 

saving function with full and incremental checkpoint overheads and the complexity of the 

recovery that is introduced by the incremental model.

6,2.2 Assumptions

For the clear and convenient discussion, we list the following assumptions in our

model:

1) About failures

An application can be interrupted by a series of unexpected failures 7, and Y 

could be a Poisson process following a frequency function n(t).

2) Checkpoint interval.

The checkpoint interval times Tcj, TC2,  , Tcn may be different.

3) Checkpoint overhead.

Let the full checkpoint overhead be Of .
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The incremental checkpoint overhead Oj, is a constant proportion to the full 

checkpoint overhead, O, = // • 0 F , where fi is the incremental checkpoint overhead 

ratio, 0 < // < 1 .

4) The recovery time.

Let Tr be the recovery time from a incremental checkpoint, and be the

recovery time from a full checkpoint. They are including failure detection time, 

component repair or replace time, and restart time.

Each incremental checkpoint puts additional cost on the restart phase. If the 

application is recovered from a series of m incremental checkpoints between the failure

m

and the previous full checkpoint, then the additional restart time is ^  Sf , where S, is the
i=i

recovery cost of i‘h incremental checkpoint. We assumed that the cost of each incremental

checkpoint is the same, i.e. Sx = S2 = ........= Sm = 8 , then the total additional restart cost

generated by incremental checkpoints is m S , i.e. Tr = Tl f +m-S.

5) The conditions for full checkpoints.

The first checkpoint in an application is a full checkpoint.

After an application is recovered from failure, the first checkpoint is a full 

checkpoint.

After m consecutive incremental checkpoints, a full checkpoint may be performed 

if the overall cost reaches a breakeven point for a choice between incremental vs. full 

checkpoint. We will determine the value of m in the next section.
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6.2.3 Sequential Incremental Checkpoint Number m

We denote the number of incremental checkpoints in the sequence as m between 

two full checkpoints. The value of m is decided by the breakeven cost consideration 

between a choice of the next checkpoint type, either incremental or full after m 

continuous incremental checkpoint. As discussed earlier, the incremental checkpoint aims 

to reduce the checkpoint overhead; on the other hand, the recovery cost will increase as 

the number of subsequent incremental checkpoints (m) increase, when the failure occurs. 

This increase is due to the application state reconstruction phase that requires information 

from each and every incremental checkpoint from the previous full checkpoint.

F t!  chedkpdritl
Of

  5t 6"*“  incremental checkpoint
mm Of

t)

m increm ental checkpoints

f a i l u r e  F f t l
Ful checkpoint 1

O f

Faltclw rtpdw ta |  
O f 1

—» *— i

i i  n

I ncremental checkpoint
Or

■ i . n
Total m incremental checkpoints  

T h e additional recovery cost is mo

Fallow m
Ful checkpoint 1

. Of
—■a r —- Incremental checkpoint

Oi

1̂, llrt -| -4 Sgi-, iww .ii.i.n ■ ■ I . | i  ,i n© /in inciefiieiiigii t
checkpoint

Of

Total m+f Incremental checkpoints 
The additional recovery cost ts (m+lfrt
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Figure 6.2 Sequential incremental checkpoint semerio

From the model description of the incremental checkpoint in Section 6.2.1 , we 

assume that the first checkpoint is a full checkpoint. Thereafter, it is followed by a 

sequence of incremental checkpoints. Let us assume that the number of sequential 

incremental checkpoint placements is m. The key finding of our incremental checkpoint 

model is how to derive m, so that the overall cost, including recovery and rollback time, 

remains minimal when a failure occurs.

Therefore, our purpose of this checkpointing model study is to find an 

incremental checkpoint placement solution which will minimize the total lost time. We 

follow this rule to find m by comparing the lost time in two possible cases. In the first 

case, as shown in Figure 6.2 (2a), m continuous incremental checkpoints are followed by 

a full checkpoint. Alternatively, as shown as in Figure 6.2 (2b), after placing m 

continuous incremental checkpoints, we continue to take the (m+l)th incremental 

checkpoint. In each case, we consider the probability of failure event. The details are 

discussed in the following section.

Case (a>. when the next checkpoint (m+l)th is a full checkpoint.

After placing m continuous incremental checkpoint, a full checkpoint is 

performed next as shown in Figure 6.2. Suppose the probability that a failure will occur 

after the second full checkpoint and before the next incremental checkpoint is P, . Hence 

the probability that failure will not happen in that period is 1 -P ,  .

I f  no failure occurs during th is period, the overall cost Cal is

Ca i = 0 F + mOj + 0 F.
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Alternatively, if the failure occurs, the cost Ca2 is

Oa2 = 0 F + mO, + 0 F +Tlf.

Therefore the total cost is

C . = ( l - J ,, )C .i+ i ,/C.2 (6.1)
= (1 -  Pj )(2 0 F +mO}) + P{ (20F + mO, + 7^ ).

Case (b). when the next checkpoint (m+l),h is another incremental checkpoint. 

After reaching m consecutive incremental checkpoints, another incremental 

checkpoint is performed. We consider that the probability of the failure events is 

approximately the same as in case (a).

When no failure occurs, the cost C M is

Q>i = + (m + tyOj .

If the failure will happen, the cost is

Cj 2 = 0 F + (m + 1 yOj + + (in + 1) .̂

Therefore, the total cost in case (b) is

Cb = ( \ - P 1)Cbl+P!Cb2 (6.2)
= ( \ -P j  )[Of + (m +1 )0,  ] + P2 [Of + (m +1)0, +T^+(m +1 )S].

In order to minimize the time lost in the model, the solution of m is satisfied by 

the following condition

If Cb >Ca, it means the cost of case (b) is larger than the cost of case (a); thus,

we will choose case (a) and perform a full checkpoint after m sequential incremental 

checkpoints.

Therefore, we obtain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

(1 -  Pj )[0F + (m +1)0, ] + Pj [0F + (m +1)0, +Trf+(m +1 )S] 

> (1 -P j  )(2 0 F + mOj) + Pj (20F + mOj +Ttf).

(6.3)

By simplifying the above inequality, we obtain the following:

(6.4)

Inequality (6.4) tells us that if m > 1, the cost in case (b) will be greater than

the cost in case (a). Thus, we take m as in (6.5):

(6.5)

where |_jcJ is the floor function, also called the greatest integer function. Because

O, = fjQF (Assumption 3) in Section 6.2.2, we substitute O, in Equation (6.5) and obtain

^tMathematfcal Solution of the Model

In Chapter Four, we consider that the checkpointing procedure is a renewal 

process. Therefore, whenever the failure occurs, the new cycle starts. We follow the same 

renewal reward theory as in Chapter Four to derive the optimal incremental 

checkpoint/restart model.

Let the sequence of discrete checkpoint placements be 0 = <tx < ...<tn, and 

n(t) be the checkpoint frequency function. Then

(6.6)

J'+l n( t)dr  = 1, i = 0, 1, 2 ... . (6.7)

In Figure 6.1, the total number of checkpoints in cycle ml is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



N(ct)l ) = jP  n(r )dT=  nF + «7 ,

6 7

(6.8)

where ftp is the number of full checkpoints in cycle cox, and tlj is the number of 

incremental checkpoints in the first cycle cox, and n, - m - n F .

l f W x is the time lost due to the checkpointing in cycle (Dx , then

Wt = —  ■ Of r n(r)dr+ » (r)d r + T„ + Tr (6'9)
m +1 •D m +1 -0

_  l  +  / ^ i  F ' t i ( T ) d T  + Tb+Tt .
m +1 J)

We suppose that the system can be successfully recovered from the last 

checkpoint, and the rollback cost Th is the same as what we have discussed in Chapter

Four and Five, i.e.Tb » k/n(o)x), (0 < k  <1) , where n{cox) is the checkpoint frequency 

at time cox, and k  can be evaluated by the same method as in Section 5.2. In assumption 4, 

the recovery time is Tr - T ^ + m - 5  , where Trf is the recovery time from a full 

checkpoint. Therefore, we substitute Tr in Equation (6.9) and obtain:

l + jjm ~ k  _  _ (6.10)
Wj=  - ‘Of I n{r)dr+— —- + Trf+ m d .

m +1 -0 «(®i)

By following the same stochastic renewal reward process theory as described in 

Section 4.4 , the overall checkpoint/restart process can be described as A(t) = .

From the basic limit theorem of renewal reward processes, we obtain

lim * ( z : (y , )  £ g r , )
t E(ct))
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The left hand side of the above equation represents the total average reward (in this 

case, the waste or lost time), and it is a function of the average reward in the first 

cycle, EQVX) . In the checkpoint/restart model, this theorem denotes that minimizing the

overall time lost is equivalent to minimizing lost time in cycle (Dx. Let / (t) be the 

probability density function of the system failure, so that the probability for the system 

failure within \t,t + Af] is f ( t ) - A t  . The expected time lost during a cycle in the

checkpoint process E(W]) is

l ' i r T - 0 r - nw t + i r ) + T 'f + m S

(6 .11)
f ( t ) d t .

We are now looking for the solution of overall checkpoint frequency n* (t) to 

minimize Equation (6.11).

Letx(f) = |  n ( t ) d r . From Equation (6.11) we obtain:

E(W,) = r  ■ 0 F ■ x(t) + - t -  + Tl f+mS]- /(/)<*. (<U2)
m + 1 x ( t )

Let the function in the integral in Equation (6.12) be ®(x, x', t) . Then

<&(*,*',/) = [ ! ± ^  ■ o F ■ * (0  + - L -  + t4  + mS\ ■ m . (6- '3)
m +1 x ( t )

Based on the theorem of calculus of variations, if the integral in Equation (6.12) 

has a minimum value, ® (x,x ',f) in Equation (6.12) must satisfy Euler’s equation in 

(6.14) [83],

a® d a ® _ Q (6.i4)
dx dt dx'

In Equation (6.13), we take the partial derivative of®
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5 0  _ 1 + jum 
dx m +1

(6 .1 5 )

ao  - k
dx' ~ (x'(t))2

fi t) .

By substituting (6.15) into (6.14), we obtain

1+ urn _ d  k  r, . .
m + 1 dt (x'(0 )

By integrating both sides of (6.16), we obtain

1 +  um _ . k r . x _
 — • 0 F • F(t)  + -  y  • f ( t )  = C , where C is a constant.
m + 1 (* (0 )

Because x'(0 = n(t) , we have

1 + ̂  ■ 0 F • F(0 + T ^ ry  -/(O = C.
m + 1 K o r

(6.16)

(6.17)

We know that lim F(t) = 1, lim f ( t )  = 0 ,  and C = - — ■ Of ; therefore, we
t - > C O  t -* 00 2

obtain the solution for the incremental checkpoint frequency in Equation (6.18) 

n ( t )  =

II
* - / ( o (6.18)

(!_/■(/))
m + 1

6.3 Model Analysis and Validation

In Section 6.2 , we obtained the general solution, Equation (6.18), for our 

incremental checkpointing model. Equation (6.18) is a checkpoint frequency function 

w h ich  is derived from  a probability  distribution function  o f  system  tim e betw een  failures 

(TBF). In previous chapters, the failure distribution could be obtained from the system 

failure analysis.
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For the purpose of the incremental checkpoint/restart study and evaluation, we 

validate our model results only when the system failure follows the exponential 

distribution. This assumption will help simplify our validation and clearly demonstrate 

the deference between the full checkpoint solution vs. the incremental counterpart. In 

order to manifest the problems of incremental checkpointing model itself, we reduce the 

complexity brought by other distributions, and only perform the model analysis with the 

exponential distribution. However, we plan to use these results as a guidance to further 

our study with other distributions in future works.

6.3.1 Exponential Distribution

For the time between failures (TBF) that follows the exponential distribution, we 

substitute f ( t )  = /ie~M , and R(t) -  e~Al, t >0, A> 0  in Equation (6.18), and then

In Equation (6.20), the full checkpoint overhead Of and incremental checkpoint 

overhead coefficient ju are given as constants. The exponential failure rate fitted from 

the failure data set is X . The number of incremental checkpoints m can be obtained by 

Equation (6.6) in Section 6.2.3 .

obtain

(m + 1)& (6.19)

The optimal checkpoint interval is a fixed value

(6 .20)

m = -----———-1 .
.  Pf S  .
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In the above formula, we can obtain 8 , the recovery cost per incremental 

checkpoint, from an experiment. Therefore, the failure probability P, can be analytically 

derived as follows.

We suppose that the checkpoint placements are at t0,tl ,t2, l n,tn+1, where

tQ = 0, when the application starts, and tn is a time stamp of the nth checkpoint. In the

exponential distribution case, the checkpoint interval does not change over time as 

described in Equation (6.20),

t0 = 0,r, = I , t 2 =21,..... , t„ = n l .

From Equation (6.6), the probability P, of failure during (tn, tn+l) interval is

PI =P[T<tn+l\T>t„] (6.21)
_ P[t„<T<tn+1]

P[T>t„]
F{tn+l)~F {tn)

1 ~F(t„)

For the exponential distribution, the CDF is F(t) = \ - e ~x‘ ,

p  ( l - e ~ ^ ) - ( l - e ~ ^ )  (6.22)
/ _  1-(1 -e~K )

e~K (1 -  e"1'1)

=l-e~M‘.

From Equations (6.19) to (6.22), we can find m based on the following algorithm. 

Figure 6.3 illustrates the flow chart of the algorithm.

Algorithm description:

Step 1. To initialize Of  ,ju,S , and X . Letm = 1.
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Step 2. To calculate checkpoint interval /  by Equation (6.20). 

Step 3. To calculate P, by Equation (6.22).

Step 4. To compare m with -1

If m < —— _ i then m = m +1, and go to Step 2 
Pj 5  e F

Else go to Step 5.

Step 5. To output in = m - 1.

Step 6. End.
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1  __
Initial O . p . a  a n d  > 

L e t  m - 1

m = m + 1
r f r

yes<' m <

no

Output
m=m-1

end

Figure 6.3 Algorithm to find incremental checkpoint number m

6,3,2 Validation Results

In this section, the incremental checkpoint model is studied and compared with 

the full checkpoint technique. For the comparison, we assume the full checkpoint 

overhead 0 F =0.1667 hour, the incremental checkpoint overhead radio //=0.1, and the 

rollback coefficient k is given by same method as in Section 5.1 . In exponential
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distribution case, k equal to 0.5. Our evaluation also employs the failure information 

from which TBF data set is from ASC White system, and its corresponding exponential 

distribution with the failure rate, A , is 0.051876. We compared the total lost time 

between the full checkpoint model and incremental checkpoint model. We also varied the 

job completion time from 1 hour to 2200 hours, and we have taken <5=30 second. The 

result in Figure 6.4 shows that under the same failure scenario, the incremental model 

performs better than the full checkpoint model. We observe that the best case occurs 

when the total lost time less than the half of the full checkpoint is.

160

140 -

120

100

— lost time of he. 

- -lost time of Hill

job completion time (hrs)

Figure 6.4 Lost time comparison between full checkpoint and incremental checkpoint

$.4, Summary

In this chapter, we have discussed the incremental checkpoint/restart model in the 

large-scale distributed system. It is an extension of the full checkpoint/restart model that 

is discussed in Chapter Four and Five. The incremental checkpointing aims to further
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improve overhead reduction, especially for a large-scale distributed system where the full 

checkpoint overhead may be significant. We have built the model for the incremental 

checkpoint/restart solution, and have derived the consecutive incremental checkpoint 

number m between two typical full checkpoints that yields the breakeven cost. The m 

value provides guidance where we can perform additional checkpoints without paying 

much penalty and gain better benefits when the failure occurs. We have also presented 

the comparison between the incremental checkpoint model and full checkpoint model. 

Our results suggest that the total time lost in the incremental checkpoint is significantly 

smaller than the time lost in the full checkpoint model.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we first introduce the problem domain and background. The 

reliability challenges in large-scale cluster, basic concepts of reliability theory, failure 

data analysis techniques and fault-tolerance schemes are described. In Chapter Three, we 

detailed failure data analysis techniques through the process of analyzing actual failure 

data from the Lawrence Livermore ASC White system. Three key techniques are 

described: reliability theory of k of n system, distribution fitting of TBF, and goodness-fit 

test. In Chapter Four, the optimal checkpoint/restart model, we applied the stochastic 

renewal reward process theory to analyze the behaviors of the checkpoint/restart 

procedure, and figured out the optimal checkpoint placement solution to meet the 

requirement of minimum total cost. In model evaluation part, Chapter Five, we present 

our model solution in exponential failure distribution and Weibull failure distribution, 

and provide the method to evaluate the rollback cost ratio k, since it is the significant part 

in the model. We also compare our model with three checkpoint schemes, namely 

periodic, exponential backoff, and risk-based, described in [44]. The comparison is based 

on a TBF dataset which comes from ASC White system. The distribution fitting and 

goodness-fit test results show that the dataset follows Weibull distribution. The

76
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comparison outcome demonstrated that our model has the smallest waste time amongst 

the current state-of-art methods.

One major contribution of this dissertation is that we present a reliability-aware 

optimal checkpoint/restart model in a large-scale distributed cluster environment. In the 

model, the optimal checkpoint placements make use of the system reliability which is 

derived from actual system failure data. Unlike most previous studies of optimal 

checkpoint/restart models, they assume that the system failure follows exponential 

distribution (fixed failure rate X). Thus, the advantage of our model is that the checkpoint 

strategy depends on actual system failure analysis. The analysis is performed on the 

dataset which comes from system events log file. The analysis result shows that the 

failure may follow different distributions: exponential, Weilbull, or gamma distribution. 

Therefore, our model can provide more accurate checkpoint placements and reduce the 

cost in the actual application.

Another contribution is that we present an improved checkpoint solution with an 

incremental checkpoint/restart model in Chapter Six. Although, there are some efforts in 

the area of developing of incremental checkpoint mechanism, but until now, there is no 

effective incremental checkpoint system for the large-scale HPC environment. Therefore, 

our incremental checkpoint model study can be considered a pioneer work in this area. 

However, it is an early foundation that aims to provide a guidance to further performance 

improvement by balancing interplays among a mixed between full and incremental 

checkpoints, and corresponding recovery methods as well as rollback time. The key issue 

of our incremental checkpoint model lies into how to find the number of incremental 

checkpoints between two neighbored full checkpoints that provides a better cost model.
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Because of the computation complexity of other distributions like gamma or 

lognormal, in this dissertation, we only present our model in two failure distributions 

which are popular in the reliability field: exponential and Weilbull. In future study, we 

will extend our findings in the optimal checkpoint solutions in gamma or lognormal 

failure distributions. Another future work should be how to further improve and obtain 

the optimal incremental checkpoint model.
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A class of stochastic processes is renewal processes. It is used to model 

independent identically distributed occurrences with arbitrary distribution.

1) Renewal Processes

Let {Xl,X 2,X i , ...Xn} be a sequence of nonnegative independent random 

variables with a common distribution F, and to avoid trivialities suppose that 

F(0) = P{Xn = 0} < 1. We shall interpret X n as the time between the nth and (n+1)th 

event. Let

p  = E [X J = |°  xdF(x).

Denote the mean time between successive events and note that from the assumptions that 

X n >0 and F(0) < 1, it follows that 0 < p  < oo. Letting

s0=o

S , = f , X ,  n i l
(=1

it follows that Sn is the time of the nth event. As the number of events by time t will 

equal the largest value of n for which the nth event occurs before or at time t, we have 

that N(t) , the number of events by time t, is given by

N(t) = max{n: Sn < t} .

The counting process {N(t), t > 0} is called a renewal process

Since the interarrival times are independent and identically distributed, it follows 

that each renewal process probabilistically starts over.

2) Renewal Reward Processes.
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Consider a renewal process {N(t),t > 0} having interarrival times X n,n >  1 with 

distribution F, and suppose that when each time a renewal occurs, we receive a reward. 

We denote by R„ the reward earned at the time of the nth renewal. We shall assume that

theR„,n > 1, are independent and identically distributed. However, we do allow for the 

possibility that Rn may depend on X n, the length of the nth renewal interval, and so we 

assume that the pair {Xn,Rn),n > 1, are independent and identically distributed. If we let

N( l )

R( 0 = 2>„.
rt=1

then R(t) represents the total reward earned by time t.

Theorem: let

E[R] = E[R„), E[X] = E[X  „].

If£[jR-] < oo and E[X] < <x>, then

•-*” t E[X]

oo
•*> t E[X]

If we define that a cycle is completed every time a renewal occurs, then the 

theorem states that the expected long-run average return is just the expected return earned 

during a cycle, divided by the expected time of a cycle.
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Algorithm 1: The Matlab Code for Distribution Fitting 

function TBFfit(M)
%TBFFIT Create plot of datasets and fits 
% TBFFIT(M)
% Designed by Yudan Liu

% Remove missing values 
t_ = ~isnan(M);
if ~isempty(M), t_ = t_ & ~isnan(M); end 
M = M(t_);
if -isempty(M), M = M(t_J; end

% Set up figure to receive datasets and fits
f_ = elf;
figure(f_);
set(f_,'Units’,'Pixels','Position',[33 147 680 468.45]); 
legh_ = []; legt_ = {}; % handles and text for legend 
ax_ = newplot; 
set(ax_,'Box','on'); 
hold on;

% — Plot data originally in dataset "M data"
M = M(:);
[Y_,X_,yL_,yU_] = ecdf(M,''Function',1'cdf,'’alpha', 0.05... 

,'freq',M...
); % compute empirical function

display(Y_}; 

h_ = stairs(X_,Y_);
set(h_,'Color',[0.333333 0 0.666667],'LineStyle','-', ’LineWidth',1); 
[XX1_,YY1 J  = stairs(X_,yL_);
[XX2_,YY2J = stairs(X_,yUJ;
hb_ = plot([XXl_(:); NaN; XX2_(:)], [YY1_(:); NaN; YY2_(:)],...

'Color',[0.333333 0 0.666667],'LineStyle',':’, 'LineWidth',1); 
xlabel('Time Between Failure (TBF)'); 
ylabel('Cumulative Distribution Function (CDF)') 
legh_(end+1) = h_; 
legt_{end+l} = 'TBF data';
legh_(end+1) = hb_;
legt_{end+l) = '95% confidence bounds';

% Nudge axis limits beyond data limits 
xlim_ = get(ax_,'XLim'); 
if all(isfinite(xlim_))
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xlim_ = xlim_ + [-1 1] * 0.01 * diff(xlim_); 
set(ax_,'XLim',xlim_) 

end

x_ = linspace(xlim_(l),xlim_(2),l 1);

% — Create fit "Exponential"

P_ ~ expfit(M, 0.05, [], M);
y_ = expcdf(x_,p_(l)); % compute cdf
nlogLe = explike(p_, M);
display(nlogLe);
display(y_(:»;

h_ = plot(x_,y_,'Color',[l 0 0],... 
'LineStyle','-', 'LineWidth',2,... 
'Marker','none', 'MarkerSize',6); 

legh_(end+l) = h_; 
legt_{end+l} = 'Exponential';

% — Create fit "Weibull"

p_ = wblfit(M, 0.05, [],M);;
y_ = wblcdf(x_,p_(l), p_(2)); % compute cdf
nlogLw = evlike(p_,M);
display(nlogLw);
display(y_(:));
h_ = plot(x_,y_,'Color',[0 0 1],...

'LineStyle','-', 'LineWidth',2,...
'Marker','none', 'MarkerSize',6); 

legh_(end+l) = h_; 
legt_{end+l} = 'Weibull';

% — Create fit "Lognormal"

p_ = lognfit(M, 0.05, [], M);;
y_ = logncdf(x_,p_(l), p_(2)); % compute cdf
nlogLl = evlike(p_,M);
display(nlogLl);
display(y_(:));
h_ = plot(x_,y_,'Color',[0.666667 0.333333 0],... 

'LineStyle','-', 'LineWidth',2,...
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'Marker','none', 'MarkerSize',6); 
legh_(end+l) = h_; 
legt_{end+l} = 'Lognormal';

% — Create fit "Gamma"

p_ = gamfit(M, 0.05, [], M);;
y_ = gamcdf(x_,p_(l), p_(2)); % compute cdf
nlogLg = evlike(p_,M);
display(nlogLg);
display(y_(:»;
h_ = plot(x_,y_,'Color',[0.333333 0.333333 0.333333],... 

'LineStyle',’-', 'LineWidth',2,...
'Marker','none', ’MarkerSize',6); 

legh_(end+l) = h_; 
legt_{end+l) = 'Gamma';

hold off;
h_ = legend(ax_,legh_,legt_,'Location','Northwest'); 
set(h_,'Interpreter','none');

% — Create "Ecdf'
[fix] = ecdf(M); 
display(f);

Algorithm 2: The Matlab Code for excess life time calculation

function evaluek2()

bl=1.5;
al=50;

b2=1.5;
a2=100;

b3=1.5;
a3=200;

Ts=0.167;

k_hatl=0.6;
k_hat2=0.5;
k_hat3=0.9;

CT1(1)=0;
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Esl(l)=0;
Pi(D =i;
K1(1)=0;
A1(1)=0;

CT2(1)=0;
Es2(l)=0;
P2(l)=l;
K2(l)=0;
A2(l)=0;

CT3(1)=0;
Es3(l)=0;
P3(l)=l;
K3(l)=0;
A3(l)=0;

sum 1=0; 
sum2=0; 
m=l;

% calculate group 1

while (Pl(m)>=0.00000001)

CTl(m+l)= ((m*(bl+l)/2)*((Ts*alAbl)/(k_hatl*bl))A0.5)A(2/(bl+l));
tl=CTl(m);
t2=CTl(m+l);
FI = @(s)s.*bl.*(tl+s).A{bl-l)./al Abl.*exp(-(tl+s).Abl./al.Abl);
Q1 = exp(t 1 Ab 1 /a 1 Ab 1 )* quad8(F 1,0 ,(t2-t 1));
Al(m+l)=t2-tl;
Q2 = 1 -exp((t 1 Ab 1 )/(a 1 Ab 1 )-(t2Ab 1 )/(a 1 Ab 1));
Esl(m+1)=Q1/Q2;

P1 (m+1 )=exp(-(t 1 Ab 1)/(a 1 Ab 1 »-exp(-(t2 Ab 1 )/(a 1 Ab 1));
K1 (m+1 )=Es 1 (m+1 )/(t2-tl); 
sum 1 =sum 1+P1 (m+1) * K1 (m+1);
sum2=sum2+P 1 (m+1);
k_bar 1=sum 1/sum2; 
m=m+l; 

end 
m=l;

% calculate group2 
while (P2(m)>=0.00000001)

CT2(m+1 )= ((m*(b2+1 )/2)*((Ts*a2Ab2)/(k_hat2*b2))A0.5)A(2/(b2+1));
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tl=CT2(m);
t2=CT2(m+l);
FI = @(s)s.*b2.*(tl+s) A(b2-l)Va2 Ab2.*exp(-(tl+s) Ab2./a2 Ab2);
Q1 = exp(t 1 Ab2/a2Ab2)*quad8(F 1,0,(t2-t 1));
A2(m+l)=t2-tl;
Q2 = 1 -exp((t 1 Ab2)/(a2Ab2)-(t2Ab2)/(a2Ab2»;
Es2(m+1)=Q1/Q2;

P2(m+1 )=exp(-(t 1 Ab2)/(a2 Ab2))-exp(-(t2 Ab2)/(a2Ab2));
K2(m+1 )=Es2(m+1 )/(t2-t 1); 
sum 1=sum 1 +P2(m+1 )*K2(m+1); 
sum2=sum2+P2(m+l); 
k_bar2=sum 1 /sum2; 
m=m+l; 

end 
m=l;

% calculate group3 
while (P3(m)>=0.00000001)

CT3(m+l)= ((m*(b3+l)/2)*((Ts*a3Ab3)/(k_hat3*b3))A0.5)A(2/(b3+l));
tl=CT3(m);
t2=CT3(m+l);
FI = @(s)s *b3.*(tl+s) A(b3-l)./a3.Ab3 *exp(-(tl4«) Ab3./a3 Ab3);
Q1 = exp(tl Ab3/a3 Ab3)*quad8(F 1,0,(t2-t 1));
A3(m+l)=t2-tl;
Q2 = 1 -exp((t 1 Ab3)/(a3 Ab3)-(t2Ab3)/(a3 Ab3));
Es3(m+1)=Q1/Q2;

P3(m+l)=exp(-(tlAb3)/(a3Ab3))-exp(-(t2Ab3)/(a3Ab3));
K3(m+1 )=Es3(m+1 )/(t2-tl); 
sum 1=sum 1 +P3(m+1 )*K3(m+1); 
sum2=sum2+P3 (m+1); 
k_bar3=sum 1 / sum2; 
m=m+l; 

end

format long

yl=[CTT A l1 Esl' PI' Kl']; 
y2=[CT2' A2' Es2’P2'K2']; 
y3=[CT3' A3' Es3' P3' K3'];

fid = fopen('out.txt','w');
fprintf(fid,' Chkpttime Chkpt Interval E(Si) P(i) K(i)\n'); 
fprintf(fid,'%l2.6f, %12.6f, %12.6f, %12.6f, %12.6f\n',yr>; 
fprintf(fid,'\n\nThe expected k: %12.6f\n',k_barl);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fclose(fid);
% display(y); 
display(k_barl);

%plot weibull pfd
%x=0:a/20:2*a;
x=0:20:600;
w 1 =wblpdf(x,a 1 ,b 1);
w2=wblpdf(x,a2,b2);
w3=wblpdf(x,a3,b3);
subplot(2,2,l);

plot(x,wl,'r',x,w2,'-.b',x,w3,'--g','LineWidth',2);

title('PDF of Weibull Distribution'); 
xlabel('Time (hours)'); 
ylabel('Probability Density');
legend('\beta=1.5 \eta=50','\beta=l,5 \eta=100','\beta=1.5 \eta=200'); 
grid on;

% %plot weibull cfd 
c 1 =wblcdf(x,a 1 ,b 1); 
c2=wblcdf(x,a2,b2); 
c3=wblcdf(x,a3,b3); 
subplot(2,2,2);

plot(x,cl ,'r',x,c2,'-.b',x,c3,'—g','LineWidth',2);

title('CDF of Weibull Distribution'); 
xlabel('Time (hours)'); 
ylabel('Probability');
legend('\beta=1.5 \eta=50',’\beta=1.5 \eta=100','\beta=1.5 \eta=200',4); 
grid on;

% %plot Es(i) 
subplot(2,2,3);
plot(CTl,Esl,'-.r',CT2,Es2,'—b',CT3,Es3,'g','LineWidth',2);

xlim([max(max(CT 1 (2),CT2(2)),CT3(2)) CT3(m)]);
title('E(Si)');
xlabel('Time (hours)');
ylabel('Average excess life time');
legend('\beta=0.5 \eta=150','\beta=1.5 \eta=150','\beta=3.0 \eta=150'); 
grid on;
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% %plot K(i) 
subplot(2,2,4);
plot(CTl,Kl,'-.r',CT2,K2,'—b',CT3,K3,'gVLineWidth',2); 
xlim([max(max(CT 1 (2),CT2(2)),CT3(2)) CT3(m)]); 
title('The expected k-value'); 
xlabel('Time (hours)'); 
ylabel('k-value’);
legend('\beta=0.5 \eta=150','\beta=1.5 \eta=150','\beta=3.0 \eta=150'); 

grid on;
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1) Chi-Squared Test

Chi-Squared test is defined for the hypothesis:

HO: The data follow a specified distribution.

Ha: The data do not follow the specified distribution.

For the chi-square test computation, the data are divided into k bins and the test 

statistic is defined as

X2 =X(0, - E , f  IE,
i=l

where O, is the observed frequency for bin i and Ei is the expected frequency for bin i. 

The expected frequency is calculated by

£ ,= ^ (F (F „)-F (7;))

where F is the cumulative distribution function for the distribution being tested, Yu is the 

upper limit for class /, Y, is the lower limit for class i, and N  is the sample size.

This test is sensitive to the choice of bins. There is no optimal choice for the bin 

width. Most reasonable choices should produce similar, but not identical, results. This 

test is not valid for small samples, and if some of the counts are less than five, then some 

bins in the tails may need to be combined. The test statistic follows, approximately, a chi- 

square distribution with (k-c) degrees of freedom where k is the number of non-empty 

cells and c equal to the number of estimated parameters (including scale parameters and 

shape parameters) for the distribution plus one.

Therefore, the hypothesis that the data are from a population with a specified 

distribution is rejected if %2 > x \a,k-c) > where %fa,k-c) *s the chi-square percent point 

function with k - c  degrees of freedom and a significance level of a .
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2) Kolmogorov-Smimov (K-S) Test

The Kolmogorov-Smimov (K-S) test is based on the empirical distribution 

function (ECDF). Given N  ordered data points YX,Y2,...,YN ECDF is defined as

E n -  n(i) /  N

where n(i) is the number of points less than Yt ,and the Yt are ordered from smallest to

largest value. This is a step function that increases by 1 /  N  at the value of each ordered 

data point.

The Kolmogorov-Smimov test is defined by:

HO: The data follow a specified distribution 

Ha: The data do not follow the specified distribution 

The Kolmogorov-Smimov test statistic is defined as 

D = max(F(Yi) - ^ , f - F ( Y i))
\<i<N

where F  is the theoretical cumulative distribution of the distribution being tested which 

must be a continuous distribution. The hypothesis regarding the distributional form is 

rejected if the test statistic, D, is greater than the critical value obtained from a table. 

There are several variations of these tables in the literature that use somewhat different 

scaling for the K-S test statistic and critical regions. These alternative formulations 

should be equivalent, but it is necessary to ensure that the test statistic is calculated in a 

way that is consistent with how the critical values are tabulated.

The Kolmogorov-Smimov test is another null hypothesis test used to determine 

whether two probability distributions differ, or whether an underlying probability 

distribution differs from a hypothesized distribution. It computes the maximum distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

between the empirical cumulative distribution of failure dataset and the CDF of the fitted 

distribution.

In the goodness-fit-test results, P-value of each fitting distribution is obtained to 

identify the best fit. P-value is the probability of obtaining a finding at least as 

"impressive" as that obtained, assuming the null hypothesis is true, so that the finding 

was the result of chance alone. The fact that p-values are based on this assumption is 

crucial to their correct interpretation. If the p-values are less than 0.05, then that value 

would indicate that the failure datasets do not come from the selected distribution with 

95% confidence.
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