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ABSTRACT

Stochastic models were developed that provide important measures related to
retail mortgages and credit cards for the management of a bank. Based on Markov theory,
two models were developed that predict mortgage portfolio size and expected duration of
stay in each of the states, which are defined according to the criteria of Basel Accord II
and the Federal Reserve Bank. Also, to facilitate comparisons among different types of
credit products and different time periods, a model was developed to generate a health
index for a retail mortgage. This model could be easily extended, using multivariate
regression or multivariate time series techniques, to analyze the interaction between a
mortgage and local macroeconomic factors. Furthermore, the models in this dissertation
address decision making on the part of the management of a bank concerning business
strategy such as collection policies and loan officer compensation policies. Extending the
basic assumption of the Markov property to a higher-order Markov model and a
multivariate Markov model, this work also analyzed the correlation between the payment
pattern for retail mortgages and credit cards. To complete this correlation analysis, a
comparison among 3 models (higher-order, multivariate, and a higher-order multivariate
Markov model (HMMM)) has also been provided. Finally, an interaction analysis
between the payment behavior of a retail mortgage and local macroeconomic variables
has been performed using an Interactive Hidden Markov Model (IHMM). For IHMM and

HMMM models, the number of unknown parameters increases exponentially with the

iii
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increase of the order of the models. Hence, to deal with this situation, a linear
programming algorithm has been used to obtain solutions for the HMMM and IHMM.
The models provided in this study are of practical importance to the bank
management. Not only do they give quantitative measures about loan stand-alone
characteristics, but also they provide cr(;ss—section comparisons among different credit
products and multi-period loan performance tracking as well. These models, used to
analyze retail mortgages and credit cards, could be easily applied to other credit products
issued by a commercial bank.
The data used in this study have been obtained from an Ohio local commercial
bank. It includes monthly paid 20-year retail mortgages and personal credit cards. A
contract has also been signed to guarantee that the data would be used only for academic

research.
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CHAPTER 1

INTRODUCTION

In this chapter, we present an overview of the models, based on Markov chain
theory, used for analyzing the transition probability between defined states. These models
are classified into two categories: models for consumer credit analysis and models for
loan analysis. Models in both categories assume that the transition process is between
defined finite states. The finite states of the Markov chain have four absorbing states,
namely the collection of bad debt, prepayment, default, and bankruptcy. Aided by the
dynamic programming technique, these models can either maximize outcome (benefits)

or minimize the cost, including the collection cost and actual losses.

1.1 Literature Review

There are many quantitative methods in credit asset management. White (1993)
surveyed some models employed in the banking industry. The models include
discriminant analysis, decision tree, expert system for static decision, dynamic

programming, linear programming, and Markov chains for dynamic decision models.

Which model is best depends on the situation and the purpose of the analysis.

However, in the analysis of credit risk and selection of optimal policy, the standard

approach is to use stochastic models based on Markov transition matrices, aided by
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dynamic programming. As summarized by White (1993), Markov decision models have
been mainly used in 18 areas, including (1) Finance and Investment, (2) Insurance, and (3)
Credit Analysis. Of the 98 papers discussed by White, 9 papers relate to finance and
investment, 2 to insurance, and 2 to credit analysis. This survey is by no means
comprehensive, but it reveals the fact that Markov chains have been used extensively to

analyze real world data.

1.2 Markov Models

General concepts of Markov processes are presented in Ross (1996). Let 7z,  be

the steady state probability or limiting probability of being in state i and adapting

policy j , 7, ; =lim P {X, =i, 7} , where X,,n=1,2,3..nis defined as the states of a

Markov chain. Then, the expected benefit is given as

2.2 7RG/ - CG )] (1.1)

where, R(i, j),C(i, j) are defined as the reward function and cost function for being in
state/ and adopting policy j, respectively. Also, dynamic programming could be used to
find an optimal policy j to maximize the expected benefit. To this end, one may

maximize

> 7RG, )~ CG, P

i

Subjecttor, ; 20, andZZﬂij =1. (1.2)
i
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Consumer credit analysis 1s used to analyze account receivable, as triggered by
credit sales. The model, based on the transition probability between different states, is
primarily used by a company to adjust its credit sale and collection policy. Absorbing
states could be reached either by collection or bad debt, both of which lead to a decline in

the portfolio size.

On the other hand, by defining a past-due period as a different transient state, and
default as an absorbing state, Markov models are used to analyze the characteristics of a
loan portfolio, namely the estimated duration before an individual default, prediction of
economic portfolio balance, and health index. The primary purpose of this research is to
develop this type of model for banks and other commercial lending institutes in order to

analyze the nature of their products.

1.2.1 Markov Models for Consumer Credit Analysis

Cyert, Davison, and Thompson (1962) developed a finite stationary Markov chain
model to predict uncollectible amounts (receivables) in each of the past due category.
This classic model is referred to as CDT model. The states of the chain (S;,

j=0,1,2,...,J) were defined as normal payment, past due, and bad-debt states. The

probability £, of a dollar in state at time t transiting to state j at time t + 1 is given as

Biz J - ’ (1'3)
ZBim
m=0
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where B, is the amount in state j at time t+1 which came from stateiin the previous

period. S, = S, Q' is the vector whose j th component is the amount outstanding for the j th

past due category at the beginning of thezth period for £=1,2,...,. Here, O is a sub-
o .. . . I 0 o »
matrix, in the transition probability matrix F; = R , which includes transition

probabilities among the set of transient states.

Criticizing the appropriateness of the stationary Markov chain model by Cyert et al.

(1962), and Frydman et al. (1968) applied a mover-stayer Model as an alternative. They
defined the j step transition matrix of this model as P(0,j)=SI+(I-S)M’ , where
M ={m,} is a transition probability matrix for “movers” from itok, and S =
diag (s,,s,,..,s,) represents the probability of “stayers” in state i . The maximum
likelihood estimator for m, is given as i, =(n, —Jn,)/(n, —Jn,) , where n, is the number
of observations that stay continuously in state7 during the period. They concluded that the

mover-stayer model is better for empirical analysis than the stationary Markov chain

model

The model of Cyert, Davison, and Thompson (1962) was also challenged by
Corcoran (1978). He claimed that the representiveness of the transition probability could
be affected by the fact of “dominancy of large accounts”. Therefore, he suggested

grouping the accounts according to their size, and then a transition matrix for each group

was provided by an exponentially smoothed matrix: 4; = 0.8T; +(1-0.8) 4, ,, where 4, is

an exponentially smoothed matrix for month j and T} is the transition matrix for month j .
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Kuelen and Corcoran (1981) published their study on the CDT model and claimed
that there was a flaw in the model because it failed to consider the partial payments for
accounts due. By using the “total balance method”, CDT understated the collection, and
thus overestimated bad debts. A simple remedy, other than model structure modification,
was to treat a partially paid amount and remainder balance separately. As a result, an

exact agreement with total receipts and aging could be achieved.

1.2.2 Markov Models for Loan Analysis

According to Thompson (1965), one of two important related tests for a bank’s
credit asset from the lender’s point of view is the possibility of the loan getting into
trouble, which means the probability of being in a past-due or even charged-off state.
Another test is the extent of loss in the case of being in trouble. This could mean two
things: (1) the recovery from collateral in the case of being charged off, or (2) the ability
for an individual to bring himself back on track. Also, in the same paper, Thompson
provided evidence supporting his claim that the business cycle and the macroeconomic

situation are probably the most significant factors affecting change in bank credit.

Liebman (1972) built a Markov decision model for selecting optimal credit
control policies based on transition probabilities and the costs to correspond to customers
belonging to each of the categories. The basic idea of his model is to select a credit

strategy d,, such that the total discounted expected cost in the next period and all

succeeding periods is as follows:

C= Z;kms Z ion i Zﬂn ])ikm,jlncilcm,jln s (1.4)
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where, B, is the Markov transition probability defined as the probability of an

account moving from age classi, charge volume class k and previous experience class m,

to age class j, charge volume class/and previous experience class 7. c,, ;, s the cost
matrix, 7,,is the steady state probability. A linear program was used to optimize and

solve the optimal credit policiesd,,,, .

Rai, Kirkham, and Clarke (1979), by assuming that new customers behave in a

way similar to existing customers, implemented a Markov Model:
v =Y. y(t=Dp; +u(®),i,j=1,2,.,r;t=12,.,T (1.5)

where y(f)is the observed liability shares of deposit-taking institutes at time ¢, p,is the

Markov transition probability from state i to state j, andu(f)is a disturbance term to
analyze the growth rates of Canadian deposit-taking institutes because of the implication
of the Bank Act in 1967. The authors showed that the model was appropriate whenever

growth was dominated by macro economic factors and technical innovations.

Howard and Matheson (1972) implemented a Markov model which could be
useful in forming optimum buying and selling strategies for a commodity market. They
justified the model by incorporating a risk-sensitivity function. A positive or negative risk
coefficient was assigned to the function based on whether the bank management is risk

aversive or risk preferring, respectively. The exponential function representing the overall

risk preference is given by: u(v) =—(sgny)e””, wherey is the risk aversion coefficient,
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and sgn y denotes the sign ofy . Then, the following iterative scheme was provided to

reach the maximum benefits through optimal policy:

1 1 1
— —y(—;lnM-;ln[—(sgn 7)) N —7(';-,»+—;1n[—(sgn Pl —_
¢ =2 Pie (1.6)

3
. . 1 N 7 (r* yr—In[~(sgn 7 ) )
—— Choose policy & to maximizeV;" = —; ]n[z:j=1 P 4€ Y ],

where, p,is the Markov transition probability.

By taking economic factors into account, Richard (1983) used a finite Markov
chain model to analyze a firm’s market value if the firm follows an optimal policy in
state (x, y) at timez, where x is the condition of the firm, and y is the condition of the
overall economy. He assumed that the changes in state are governed by a stationary

transition function. For instance, if the state is y(¢ —1)at timez —1, then it will be y(¢) at

time ¢ with probability z{y(£)y(t —1)] . However, to calculate ¥* , he used dynamic

programming because direct computation could be very time-consuming.

Jarrow et al. (1997) applied a continuous and a discrete time Markov chains to

describe the default behavior of zero-coupon bonds within a time intervalzn, (0<¢<7).

Furthermore, the default state was defined as an absorbing state. Again, the purpose was
to price the bond based on analysis of credit risk spread. Similar approaches have been
adopted by Liebman (1972) and Zipkin (1993). Lieberman used a Markov chain to model
decision-making for credit card application approval. The states of the chain were
n +1 paid-up states and one default state. The model assumed that the amount of dollars

moved from one state to another follows a Markov chain process. On the other hand,
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Zipkin adopted a simpler model of interest rate, based on a discrete-time, finite-state
Markov chain, to evaluate mortgage-backed securities. Glennon and Nigro (2005) used
the survival analysis approach to measure the default risk of a small business. They
adopted the Cox Proportionally Hazard model. By using a discrete-time hazard procedure,
they found that the default risk peaked in the second year after initiation, increased during

the medium-maturity season, and declined thereafter.

Numerous efforts have been undertaken to analyze the relationship between credit

asset quality and the macroeconomic situation. Lee (1995) built an ARMA model:

l//y (L)yt+] = Gy (L)et+14y ’ l//m (L)mt+1 = em (L)et+1.m 2 (1 '7)

under the assumptions that y, and m, have univariate stationary, invertible finite-order

ARMA representation. The model was used to analyze the linkage between time-varying
risk premia in the term structure and macroeconomic state variables. He concluded that
uncertainties, related to output and the money supply, are important source of time-
varying risk premia in the nominal term structure of interest rate.

Esbitt (1986) provided empirical evidence that a bank’s portfolio quality has close
relationship with the macroeconomic situation. Examples include the state-chartered
banks’ failure and Great Depression in Chicago between 1930 and 1932.

A promising model to link macroeconomic variables to a microeconomic variable
is to use the Markov chain representation. It is also called the State Space representation,
which is based on the idea that the future of a system is independent of its past (Wei

1990).
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The estimation of a state space model’s parameters is difficult. Cooper and Wood
(1981) used Maximum Likelihood to estimate the parameters. Outliers in the series could
make the problem even more complicated. As pointed out by Balke and Fomby (1994),
there are 3 possible outlier patterns: (1) Outliers associated with business cycles, (2)
outliers clustered together, both over time and across series, and (3) a dichotomy between

outlier behaviors of real versus nominal series.

The ETS package in SAS® provides a method to check and remove outliers and to

estimate the parameters of the state space model (SAS Online Doc 2005 version (2005)).

1.3 Extensions of Markov Chains Models

The basic property of a Markov chain, namely

Pr(X,, ,=x|X,=x,,..X, =x,X,=x,)=Pr(X,,, =x|X,=x,), (1.8)

where X, X,,...,X, is a sequence of random variables, has been extended to

accommodate many new applications. Among them are traffic analysis in the network,
speech recognition, DNA sequences analysis, engineering designs, and inventory
management. Also, new theories extending the basic Markov assumption have been
developed in the past 50 years, such as High-order Markov chains, Multivariate Markov
chains, and Hidden Markov chains. These important developments are introduced in the

following subsections.

1.3.1 Higher-order Markov chains

Higher-order Markov chains assume that not only the immediate past random

variable but also the past k variables, or kth order, have significant effects on the current
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one. That is, Pr(X,,,=x|X,=x,,...X,=x,X,=x,) #Pr(X,,=x|X,=x,). It is
difficult to solve the problem directly because the number of parameters to estimate
increases exponentially with the order of the model.
Wang (1992) showed that it needs 7 parameters to completely specify the
transition probabilities of a second-order two state Markov chain:
Pr(X,,=1|X,,=0,X,=0)=q,,
Pr(X,, =1{X_=1LX,=0)=a,,
Pr(X,,=0|X,_,=0,X,=1)=5,
Pr(X, =0| X, =1X,=1)=2,

Pr(X,=0|X, =)=z,
Pr(X, =D =1

(1.9)

Generally, one can verify that an k-th order sequence with S states will have
(S —1)-S* parameters. Thus, industrial application of higher-order Markov chains has

been hampered by this problem. Raftery (1985), however, proposed a higher-order

Markov chain model with only one parameter for each extra lag. By assuming

k
thatZli =14 2Li=12,..,k, his model is expressed as

i=1

k
P[Xt :jO lXt—l :jh""Xt—k :jk]zzliqjoji
P (1.10)

k
0< le"q-’“" <1

Letting X, = (x,(1),...x,(m))’, x,(j)=1, if X, = and equal to O otherwise, and
t t t t t

X , =(%,(1),...x,(m))', where the random variable x,(j) is a function of past values and
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could be represented as: P[.X, = j, | X,_, = Jj,»---»X,_, = J, ], then the model in matrix form

is given as
n k
X, => 20X, (1.11)
i=1

To estimate the parameters, Raftery (1985) applied the maximum log-likelihood

technique

m

k
L= > n . log(Zﬂujqioy,.j) .where n,

fg iy =1 j=

,,,,,

o = 2% ()%, ()%, (i,) . He applied this
!

method to a 4™ order model in analyzing the wind power in a wind turbine design
problem. By comparing model results for different orders, he concluded that the 4™ order
was the best model as it gave the smallest Bayesian information criterion (BIC) value,

where BIC =-2L +klogn.

Another Higher-order model was proposed by Ching and Ng (2006).

k
Assuming A,i=1,2...,k are non-negative and Z/li =1, Ching and Ng generalized

i=1
Raftery’s model by allowing the transition intensity matrix Qto vary with different lags.

Written in matrix form, Ching and Ng’s model could be expressed as

k
X(n+k+1) - Z/liQiX(erﬂ—i) (112)

i=1
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ifweletQ, =Q, =...=Q,, Ching and Ng’s model in (1.12) reduces to Raftery’s model in

(1.11). They used linear programming method to estimate the parameters which could be

done in Microsoft Excel® with the built Solver() function:

Min, {

i,wx XH (1.13)

i=1

k
Subject to »_ 4, =14 >0

i=1

where ||E||l is a vector norm, and [ € {1,2,...,00} .Their model could be used to solve the

well-known Neysbody’s problem in management science.

1.3.2 Multivariate Markov Chains

Multivariate Markov chains are useful in correlation analyses related to data
sequences and for predicting the future outcome of a random variable based on the

identified correlations.

Ching and Ng (2003) applied a Multivariate Markov chain model to a multi-

product demand estimation problem. Their model is expressed as

k
Ay 2L1< k<2, (1.14)

In this model, the parameter 1, gives the direction and magnitude of the

correlation in the model outcome. ¥ is the transition intensity matrix from the states in
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the jth sequence to the states in the kth sequence, and X’ is the observed state

probability distribution of the kth sequence at time n.

Siu and Fung (2005) used a Multivariate Markov chain model to analyze credit

rating. In matrix form, their model is given as

XL (AP AP L Ay
X: A,V S I Sl | . &

Xn+1: f1+1 = 21. 122' ) 25. -n , (115)
X;:H )“sll/s1 /ISZVsz A A’ssVSS X:

where V7 is the transition intensities defined as in Ching and Ng’s model. Also, they

proved that if the intensity matrix V is irreducible, the model in (1.15) could be expressed

Letting O, denote the prior transition matrix, the parameters 4,

n+l*

as > A V*X, - X
k=1

may be estimated based on the following expression:

Min, {Max,{) [Z(’l,lk i + l}ijk)Xk - X] i3}
e (1.16)

Subject to Y (Ay +A3) =14, 20,45 20
k=1

It is possible to combine a multivariate Markov chain with a higher-order Markov
chain. As used by Ching and Ng (2004), the model considers the correlation between

sequences as well as the time lags within a single data sequence.
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1.3.3 Hidden Markov Chains

Although higher-order Markov Models might provide more accurate results (in

S _ 2
the sense that they can generally produce Chi-square statistics, y’ =Z(—E'—E% )
i=1 [

i

where E, is the calculated stationary probability distribution and O, is the observed

probability distribution; Ching and Ng (2006), they fail to take into consideration
underlying forces that may determine observed transition processes in real-world
problems. Examples include speech recognition, stock market analysis, and network
traffic analysis. All these problems could be solved by Hidden Markov Models, or HMM.
A standard HMM has the following elements: (1) N , the number of hidden

states, H ={H,,H,,...,H,}, (2) I, the number of observable states, §={S,,S,,...,S,},
(3) 4, the transition probability distribution within hidden states, 4={q;},q; =

H,

it=n-1

P(H

Jit=n l

),1<i,j<N, (4) B, the emission probabilities matrix, B={b,} ,
where b, =P(S,|H,),1<j<N,<k<l , and (5) II , the initial state
distribution, I1 = {r;}, 7, = P(S,),1<i< N. Thus, an HMM is completely specified by:
A =(4,B,I1). As pointed out by MacDonald and Zucchini (1997), HMM could be used

to answer the following three classic problems:

Problem (1): Given an observation sequence S ={5,,S,,...,5,} and a model A = (4, B,II),

how do we efficiently compute B={b,},
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Problem (2): Given an observation sequence S =1{5,,5,,...,5,} and a model A = (4, B,I1),
how do we choose the corresponding state sequence 4 = {a;} which best explains the

observations,
Problem (3): How do we adjust the model parameters A = (A4, B,I1) to maximize P(S/A).

Many algorithms are used to efficiently solve these problems, including forward
algorithm, backward algorithm, EM algorithm, and a heuristic linear programming
method for higher-order HMM proposed by Ching and Ng (2006). For the sake of
conciseness, we present only the method by Ching and Ng, which is applied to the retail

mortgage model in Chapter 6.

Replacing X by H in Eq. (1.13) one has

k

Min, { AjVjﬁi—ﬁ,.“ bi=12, (1.17)
=1 1

Jj

k
Subject to z A =14 2=0

i=1

where the A, ’s are the expected parameters, H .1s the estimated stationary probability
distribution, and ¥, is the higher-order transition matrix defined as 4 at the beginning of

this subsection.
Comparisons between the EM algorithm and the linear programming method for

different orders are presented in Tables 1.1 and 1.2.
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Table 1.1 Comparison by the number of iterations.

First-Order

Second-Order

Third-Order

Linear Programming

1381

1378

1381

EM Algorithm

1377

1375

1377

Table 1.2 Comparison by computation time in seconds.

First-Order

Second-Order

Third-Order

Linear Programming

1.16

1.98

5.05

EM Algorithm

4.02

12.88

40.15

It is seen from these tables that although there is not much difference between
linear programming and the EM algorithm with regard to the number of iterations, the
linear programming method is better than the EM algorithm regarding computation time,

especially for a higher order. In chapter 6, the linear programming method will be applied

to retail mortgage data provided by an Ohio local commercial bank.
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CHAPTER 2

A MARKOV CHAIN MODEL FOR RETAIL MORTGAGE

LOANS AND CREDIT ASSETS

In this chapter, a continuous time and a discrete time Markov chains are developed
for modeling the duration of retail loans in prepayment, past due, and default states. The
default state is defined as charge-off on the loan due to bankruptcy, death, or other causes.
As such, it uses the economic status of the loan, rather than the accounting assets status.
Prepayment and past due states describe the payment status of a loan. A bank could use
this model to approximate its contingent assets status based on the probability and
duration of being in non-default states. Therefore, the bank can gain a picture of its credit
assets quality. On the other hand, the book amount of a bank’s credit portfolio on its
financial statement seldom reflects its real economic status due to the nature of book
keeping, which only provides a static snap-shot of a bank’s operation result. Furthermore,
the book amount fails to give the management a true picture of the portfolio pool, which
is a function of its contraction and is based on past due rate, default rate, and prepayment
rate. To remedy this situation, a stochastic model based on a Markov Chain is used to
analyze contraction and extension, which gives a true economic picture of a bank’s credit

portfolio and, thus in turn, facilitates the pricing of the bank’s securities.

17
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2.1 Model
In the Markov chain model, let §; be a state of past due, corresponding to the days

of past due. The loan normally requires monthly payment. If a loan is 30 days past due,
denote it by S,. State S, refers to 60 days past due. According to the Basel accord II,

Basel Committee on Banking Supervision (1997), the definition of default is more than

90 days past due, which is represented by S, . However, there have been cases where the

obligations on a loan, which have already been more than 90 days past due, has been paid
off. As a result, the definition of default is modified to be the state of default that is
triggered by a permanent force, such as death or an application of chapter 7 or chapter 13

bankruptcy protections. Let R, be the default state contributed by these permanent events

i i

and let S_; be the state of a prepaid period defined as S _; = —X—Y— , where X, 1s the actual

1

payment at month 1 and Y, is the scheduled payment at monthi. One can see that state
S_, is defined as the extra payment over the scheduled payment, which measures how

many future monthly payments have been made as a current onetime payment. It is not a
precise measurement method, compared with the tools introduced by other papers in the
literature, but it fits best in the context of this model. Definitions for classifying the states

of Markov chain are given in Table 2.1.
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Table 2.1 Definitions of the different states of the Markov chain.

Past Due and Prepayment States Default States R,
S,,j=-3,-2,-1,0,1,2,3 R, k=12734

S, Prepaid More than 91 days R Sold by Bank
S_, | Prepaid 61 days — 90 days R, Foreclosure
S, Prepaid 31 days — 60 days R, Refuse to pay
S, | No more than 30 days past due R, All others

S, | 31 days — 60 days past due

S, | 61 days —90 days past due

S, | More than 91 days past due

The salient feature of this model is the evaluation of loan assets behavior over time,
which is more informative than the traditional accounting financial reports.
First, we define the time interval to be(0,?),f <oo. The transitions within the S-

states are defined by (Chiang, 1980):

v;At= Pr {an individual in state S at timez will be in state S, at time7 +A¢ }, where

i# jii, j==3,-2,-1,0,1,2,3;i # j
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4, At = Pr {an individual in state S;at timez will be in state R, at time7 + Az }, where,

i=-3,-2,-1,0,1,2,3 and & refers to the default states, £k =1,2,3,4.

Furthermore, we assume that future transitions of an individual are independent of

past transitions. In other word, the intensities v; and 4, are assumed to be independent of

time7 . For 0<7<¢. Thus, we are concerned here with a time homogenous Markov

chain.

If an individual stays in its original state, its intensity is defined as

4
vy =—(v; + > u, )i # j,i,j=-3,-2,-1,0,1,2,3,k=1,2,3,4 . By this definition, it is
d=1
obvious that

1+v,;At = Pr {an individual in state S;at timez will be in state S, at timez + Ar }. Within
any single time interval, {7+ Az}, V is the prepayment and past due intensity matrix,

while U is the default intensity matrix:

The matrix of transition intensities between the S-states (prepayment and past due
states) is given by the V matrix in Figure 2.1. Also, the U matrix in Figure 2.1 represents

the transition intensities from the S-states to the default states:
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S
S| Moy Moy Haos Moy
S

U= S8y| Moy HMop Moz Hos
Si| Ha My Hhs o thy
Sy | By Moy My oy
Sy | My My sy My

Figure 2.1 Transition intensities within the S-states and default state (U matrix).

Because that R, is an absorbing state, there is no transition from an R to an S-state.

Also, for a past due state, transition lies only between neighboring states. This result is
obvious since within one month, a loan with no past due payment cannot have a two-
month due payment. On the other hand, because a prepayment can neither be deductible
from nor replaceable by the next payment, a prepayment state can jump to any other

prepayment state. At the same time, any past due state, S,,i > 0, can transfer to §,,i <0

through prepayment.
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2.1.1 A Continuous Markov Model

Let P;(r,t) = Pr {an individual in state §; at time z will be in state S, at

timet },1, j =-3,-2,-1,0,1,2,3 . By definition, we have

P(t,t+At)=v, (DA

2.1)
Py (6,1 + Af) =1+v (1) At
P,(z,t+At)=P,(7,0)P;(t,t + At) + z B,(z,0)P,(t,t +Af) . (2.2)
rj
By substituting Eq. (2.1) in Eq. (2.2) and rearranging, we have
P(r,t+ A= Py(7,1)
’ v = B (DAL + 3 B (5,8, (0)
y#J
. P.(r,t+At)—P(z,0)
q g _
= lim ~ = 72; P, (z,1)v,,(t)
aP =Y P i, J= 2,~-1,0,1,2,3 2.3
== ,.j(r,t)_z 2 (T, 0V, (05, j ==3,-2,-1,0,1,2, 2.3)
Y#J

Equation (2.3) the Kolmogorov Forward Differential Equation, and its solution is

given (Chiang, 1980) as

Py(O,t)=23:3—A—'1(—lLe

=Tl -p.)

m=-3
ml

#L,J =-3,-2,-1,0,1,2,3 (2.4)

Here, A,.J. 'is the characteristic matrix of V', the transpose of the intensity matrix V' ,

defined by
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4" =(pI=V"), (2.5)

where p, = Eigenvalue of the intensity matrix V' .

For an individual in §; at time O, let ¢;(f) = the expected duration of stay
in Sj during the interval (0,7),j=-3,-2,-1,0,1,2,3 . In terms of our process,
e;(t) evaluates the expected duration of the loan before default occurs. This expected

duration, e,(#) , can be expressed (Chiang, 1980) as

e;() = [B(0,m)dx (2.6)
[1]
3 . !
e;(0,)=) 4, (P (" -1),i, j=-3,-2,-1,0,1,2,3 2.7
= I—[ (pl - pj )pl
Jj=-3

Jl

2.1.2 A Discrete Time Markov Chain Approach

Expression (2.7), which represents the expected duration of stay in §;, could be
difficult to evaluate because of its relative complexity. Equivalent estimates could be
reached by alternative methods suggested by Kemeny and Snell (1983).

We use the estimated number of times that the process remains in the non-absorbing

state S;once this state is entered, including the entering step, to approximatee,(z) . If the

expected number of times the process stays in the non-absorbing state S;, which is

defined as a non-default state, is#, , then the approximate duration of stay in S, 1s #,x30,
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where 30 days are the step size of the transition probability matrix. As such, the expected

3
total number of days the process is in the non-default states is z n; x30. To facilitate the

i=-3

computation, we define V as the overall transition matrix, including prepayment, past due,

and default states. The One-step transition probabilities matrix is given in Figure 2.2.

R R R R S,
RI[ 1 0 0 0 0
R,| O 1 0 0 0
Rlo o 1 o 0
R,| O 0 0 1 0
Sa|Har Miay Hay Hias Vi

V= S,|Ha Hay Moz Hay Voo
Sl My My Mas Mg Vo
So | Moy Moo Moz HMos Voo
S| My My My My Vi
Sy | Boy Hop Mz Hha Vs
Sy My My My s Vi

Figure 2.2 One-step transition probabilities.

SZ

0

S, S
0 0]
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Vi, O

Vg Va3

Vip Vi3

Here, v, refers to the probability of transition from §;to S, , u, refers to the

probability of transition from S;to R, . Furthermore, because R, is an absorbing state, the

transition matrix for these states is an Identity matrix and g, =0. In the V matrix, there

are 7 transient states in which each state could be reached from any other state (including

its own), and 4 ergodic states each of which can be reached from any transient state. Once

an ergodic state is entered the process remains in that state and cannot exit. The  matrix

could be rearranged into block matrices as shown in Figure 2.3:
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R, R,
Rl 0
R,|10 1
I,y = rlo 0
3
R, |0 0
R R
S —,U—s,l K,
S, Moy Hap
S| My Mo
Riu=8| toyr  Hoo
Si| My i
Sy| oy Moo
S, | sy s,

5

o = O O

R,

Hs
His
Hoys
Hos
A3
s
s

R

4
My
Moy
Mg
Ho s
My
oy

k|

S,
S,
S
s Oha = S,

S,
S.

o,

[ ]

S

o o o O

Figure 2.3 One-step transition probability matrix and its block matrices.
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Thus, several interesting results could be reached. First, the expected number and

variance of the time the process stays in a non-absorbing state S, n,, before leaving S, are

given by:

where,

E(n)=N¢,
Var(n,) = (2N - Dn, —sq(n;)

N=(-0)", Iisan7x7identity matrix.
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sy <[ wy w wow m a]
E=t111111]

In fact, E,(n,), the expected number of steps needed to transit from state i to state j, is

equalto N, .
Let F1L,ifi=j

d, = ﬁ (2.10)

NO,if D
Thus, it is seen that

Ei(nj) = dy +ZpikEk(nj)

seTl

:>Ei(nj):[+Q'Ei(nj) (2.11)
= E(n)=(~-0)" =N

wheres e T. By summing over i from-3,-2,-1,0,1,2,3, one obtains the total expected
number of steps the process is in a non-absorbing state S;before going to a default

state R, . Then, the expected total days of stay in the non-default states should be:

ZSJE(n,.)x3o (2.12)

i=-3
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2.1.3 A Markov Model for Economic Assets Analysis

In any time interval, the size of a portfolio is a function of contraction and extension.
For the purpose of this study, contraction refers to any process that causes a reduction in
credit assets. On the other hand, extension is defined as any process that causes an

increase in portfolio size.

To use the Markov Chain theory, one must define the states and the transition

matrix. A bank loan normally requires monthly payment. If a loan is 30 days past due,

denote it bys, . Sate s, refers to 60 days past due. According to the Basel II (1992), the

definition of default is more than 90 days past due, which iss, . However, there are cases

where a loan, which has been more than 90 days past due, is eventually paid off. To
adjust for this situation, the definition of default is modified to represent the state of
default that is triggered by a permanent force such as an application of bankruptcy
protections, most of which are Chapters 7 and 13 for retail credit products. This definition
is in accord with the purpose of this model which is to evaluate the economic (instead of
accounting) status of a bank’s credit assets. Let R, be the i-¢k default or prepayment
state. A default state reduces the portfolio value to zero. On the other hand, prepayment
reduces the value by the amount of prepayment. From the definitions of states, it is clear

that the past due states are transitional while the default or prepayment states are

absorbing.
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Past Due and Prepayment States

Default States R,

S;,J=-3,-2,-1,0,1,2,3 R, k=1,2,3,4

S_, | Prepaid More than 91 days R, Sold by Bank

S_, | Prepaid 61 days — 90 days R, All others

S_, | Prepaid 31 days — 60 days R, Prepayment more than 50% of the

remaining loan

S, | No more than 30 days past due

Prepayment less than 50% of the

remaining loan

31 days — 60 days past due

S, | 61 days - 90 days past due

S, | More than 91 days past due

What makes a prepayment state absorbing is the fact that a prepayment cannot be

deducted from the next scheduled payment. For normal operation, one expects the bank’s

credit assets to be in state S,. The following three reasons validate the classification of

prepayment as an absorbing state:

1. The prepaid loan amount (extra payment besides the scheduled normal payment)
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cannot serve as a buffer for future payment.
2. The prepaid loan amount can not be refunded by the bank.
3. The prepaid loan amount reduces the overall portfolio size.

Please note that, at any point of time, the state of no more than 30 days past

due, S, , refers to a health state, and we expect most of a bank’s credit assets to stay in this

state for normal operations.

The purpose of this Markov model is to analyze the portfolio value for a bank
within a time interval (0,7) on an economic basis. This fact implies the evaluation of the
value after taking potential risks into account, instead of the accounting amount based on
the bank’s financial statement. The model can provide a true snap-shot at any given

time £ within a time interval (0,#) for the management, and thus fundamental information

for investors in a trading period interval (0,7) . The model has the following assumptions:

1. A transition an individual might make in the future is independent of those made
in the past.

2. Individuals do not have equal probability of default, which depends on the
specific debt structure, liquidity requirement, and risk taking ability.

3. The bank is under normal operation where the rate of approval of loan
applications is assumed to follow a Poisson process.

For each7,0 <7 <1, a change in the population size of each state S;during a single

time interval (7,7 + At) occurs based on the following probabilities:
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A, At = Probability that state S; (i =-3,-2,-1,0,1,2,3) increases by 1 during a single time
interval (z,7+At) . It is assumed that A (the intensity of the Poisson process) is

independent of time.
v;(z)At = Pr {one individual will move from state §to state §; during the time
interval (7,7 + At),i, j =-3,-2,-1,0,1,2,3}
M, (7)At=Pr {an individual will move from a past due state S;to a prepayment or
default state R, during(z,7 + At),i =-3,-2,-1,0,1,2,3,k=1,2,3,4}
The intensity v, that an individual stays in its original state in the time interval (7,7 +Ar),
is defined as v; =—(y; +Z4:ujk),i¢ J,i,j=-3,-2,-1,0,1,2,3,k=1,2,3,4 . By this
=1

definition, it is obvious that1+v,Az= Pr {an individual in state S, at time r will be
state S, at time 7+ At }. Within any single time interval, {z+A¢ }, V is the past due

intensity matrix, while U is the default and prepayment intensity matrix as shown in

Figure 2.4:

S, S, S, S S 8 S
S, -v—s,--s Vaa Vi, Vao Vs 00 ]
S,(Vas Vaa Voo Voo Yoy 00
S| Vs Vaa Vaa Vae vy 00

V= Sl Y% Yoo Yoa Yoo You 0 0
S1Via Y2 Ya Ve Yu Ve 0
S| Vaa Va2 Vo Voo Var Vazr Wi
S| M3 V2 Vg Vo Wy Vi Vi

Figure 2.4 Past due intensity matrix and default and prepayment intensity matrix.
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R, R, R, R,
S, Hiay Hip, Hiz Hsy,
S| Moy Mo Hos Moy
S| My Mo, Moz Moy,

U=S8,| thoy Hoo Moz Hoa
S| By My M My
S, | My My My My
S;l sy My My My ]

Figure 2.4 Continued.

Due to the fact that the R states are absorbing, there is no transition from U to V or
among the R-states in U.

It is obvious that an increase in a portfolio’s size within a small time interval
{7 ,7+ At} could be regarded as the result of only the migration process. As a result, the

portfolio size at any given time? can be expressed as

X@O)=Y@)+Z(@) (2.13)
X_5(2) Y, () Z,(1)

X() = X, (@) Y() = Y,® Z() = Z,(1)
X, () Y,() Z,(2)

where X,(7),i =-3,-2,-1,0,1,2,3 is defined as the portfolio size in each of the
states, 5_;,5_,,5_1,5,5,,5,,5; at time ¢. Y,(¢), i=-3,-2,-1,0,1,2,3 refers to the portfolio
size in state 1 at time t that survived from the original portfolio in stateiat time zero,

i =( 5,0 5,0 1,0050,0,5) and Z(t),i=-3,-2,-1,0,1,2,3 stands for the portfolio size in
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state i at time t as a result of immigration during the interval (0,7) . One can argue that
Y,(¢)is affected both by contraction and extension, while Z,(¢) , a pure incremental factor,

is merely an extension process.
The extension process is composed of:

1. Immigration or increase in the portfolio size because of approved new
applications for a particular loan offered by a bank.
2. Birth or increase in the value of the original portfolio at time 0 because of the
passage of time.
For simplicity, however, we will consider only immigration in this study. That is,
we consider approval of a new loan as the only factor that plays a role in the extension

process. On the other hand, the contraction process is triggered by three factors:

1. Prepayment, or the additional payment for a loan besides the schedule
payment, reduces the portfolio size prematurely.
2. Default, causing the elimination of the default loan amount from the portfolio,
is considered as another contraction force.
3. Transition, an individual moving from an original state to another state.
Thus, letting m, be the portfolio size at state i,i=-3,-2,-1,0,1,2,3 , at any
time7,0 <7 <t the expected portfolio value is given by

3
E[X;(0]= Y, mp,(0,0)+q,(t),i,j ==3,-2,-1,0,1,2,3 (2.14)

i=—3

and, the variance is given by
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VX, (0)]= 23: m,p, (0,0[1- p,(0,0]+¢,(t),i, j =—3,~2,-1,0,1,2,3  (2.15)

i=-3

where, p,(0,) is the probability of being in state j at time ¢ given that the process was in

statei at time zero.

= A" (o)
py(()’t)zz 3 4 ! €

= H (pl _pm)

m=-3
m#l

Al g j=-3,-2,-1,0,1,2,3 (2.16)

and is obtained from the solution to the Kolmogorov Forward Differential Equation:

d .
P p;(@.0)=) p, (z.0),, ()i, ) =-3,-2,-1,0,1,2,3 (2.17)

r=j

Also, gq;(¢) is the expected portfolio size in state §; at time#, and is given by

qj(t) = Z _';’11' 'pij'(T=t)dT

i=-3

- 23: j;ﬂ,- ' i——ea 45(00) AU,
= =T e-e)
m=-3

e 218)
= Z Zﬂ,’ —ij_/)l__.(eplt —1),1,_] = —3’—-2,—1’0,1,2,3

Here, / is the immigration rate to state S; and 4, 'is the ij" element of the characteristic

matrix of V', the transpose of the intensity matrix V', defined by
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A4, =(pI-V"), (2.19)

where p,= eigenvalue of the intensity matrixJ .

2.1.4 Limiting Probabilities

LetV be the transition probability matrix within a single time interval (7,7 + At), and

V" be the transition probability after » time periods. Furthermore, let y, =lmv", ,

n—»ow

where v, is theithrow and jth column component of matrix V' (Figure 2.4). Then,

2
X =2 AV J=-3,-2,-1,0,1,2
= (2.20)
le =1,,j=-3,-2,-1,0,1,2,3
J

Here, y; is the percentage of individuals in state j .

If we let f(i) be the penalty function for being in the past due state i, then the total
expected proceedings from customers being past due during the period 1,2,...., N is given

as

2=/ @2.21)

i=—3

2.2 Application

Data were provided by a local bank in Ohio, operating in Ohio, Michigan, Kentucky,
and Indiana. By using its monthly paid retail mortgage loan for 16 consecutive months,

from April 2005 to September 2006, one can apply the discrete finite Markov chain
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model and the continuous time model. Also, the continuous version of the Markov chain
model will be used as a decision-making tool for optimizing bank loan officer
compensation and for determining the sensitivity of a loan health index to macro-

economic factors such as GDP, interest rate, unemployment, and consumer price index.

2.2.1 Discrete Time Model

The intensity matrix y, can be divided to 4 sub-matrices. These are an identity

matrix [, ,, a zero matrix O, ;, a R, , matrix which refers to the transitions from transient
to ergodic states, and the O, , matrix which denotes transitions within the transient states.

By the definition of an absorbing state, it is seen that the intensity sub-matrix within the
absorbing states is an identity matrix because once entered into an absorbing state, the
loan will stay there for an infinite period of time. By the same reasoning, the zero

matrix O, . refers to the fact that there is no transition from any absorbing state to any

transient state.

On the other hand, elements of the transient ), , matrix and the ergodic matrix R, ,

are given as

Z ql‘jt z r;kt
Q,=——— R, =i j=-3,-2-10123k=123,4, (222)
qyt Z ’;'kt
t=1 j=-3 t=1 k=1

For example, the intensities between period 1 and period 2 are given by Figure 2.5
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103 4 3 0 00 00 0 0
1 98 1 000 0 0 00
1 151 21 1 00 3000
q, = 3 9327221200 T = 0000
012 6 8 20 012 0 15
000 1 010 0 0110
060 1 003 0410

Figure 2.5 Two consecutive month transition matrices.

The numbers in the matrices represent the number of transitions from statei to
state j (q,.jl) , i,j=-3,-2,-1,0,1,2,3, or from stateito statek(r,, ),k =1,2,3,4 between

period 1 and period 2. The Discrete transition probability matrices are given in Figure 2.6.

0.575949 0.09962 0.164557 0.132911 0 0
0.036496 0.61365 0.156277 0.182482 0.000562 0
0.027559 0.034121 0.677428 0.239895 0.001452 0O
Q:=]| 0.004084 0.009734 0.049125 0.89205 0.010912 0
0.009094 0.008955 0.01403 0.207812 0.206307 0.055224
0 0.003157 0.023684 0.034737 0.085263 0.174737 0.318421

0
0
0
0
0

0 0 0.002105 0.0632 0.09526 0.151053 0.293157
0.019452 0 0 0
0.010451 0 0 0
0.010937 0 0 0
R:=| 0.029017 O 0 0

0.132985 0.152321 0 0.209015
0 0.090526 0.145632 0.122053
0 0.105206 0.150526 0.130526,

0000000

1000

0100 0000000
[:= 0:=

0010 0000000

0001 0000000

Figure 2.6 Discrete transition probability matrices.
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Then, according to Kemeny and Snell (1983), the overall intensity matrix V',

composed of R, ,,Q...,1,,,0,.1s given in Figure 2.7:

R R R R, Sy S, S, S § S, S5

R[ 1 0 0 0 0 0 0 0 0 0 0 ]
R| 0 1 0 0 0 0 0 0 0 0 0
R| 0 0 1 0 0 0 0 0 0 0 0
R|_0 0 0 1 0 0 0 0 0 0 0
5,/001%452 0 0 0 | 0575049 009962 0164557 013911 0O 0 0
V=5,/0010451 0 0 0 | 003649 061365 0156277 0182482 0 0 0
5,10010937 0 0 0 | 0027559 0034121 0677428 0239895 0001452 O 0
510002917 0 0 0 | 0004084 0009734 0049125 0892050 0010912 0 0
50132985 015221 0 020901 0.0090% 0008955 001403 0207812 0206307 005524 0

S, 0 0090526 0145632 01205 0 0031579 0023684 0034737 0085263 0.174737 0318421

S| 0 0010526 0010526 0130526 0 0 0002105 0063200 0.095260 0.151053 0293157

Figure 2.7 Discrete transition probability matrix V.

Thus, by the above reasoning, the expected number of steps required to transition

from transient statei,i = -3,-2,—1,1,2,3 to absorbing state £,k =1,2,3,41is given by E :

E=(-Qy'-£=N-£=

30.16227
29.24377
27.42631
10.12164
6.99529

[29.38866 |

| 6.81304

ek ek ek e pmd et

(2.23)

In this case, one can see that it takes 29.38866 or approximately 30 steps for a loan

initially in state -3 to leave the transient states for any absorbing state. In other words,

since the step is 1 month, a loan more than 3 months prepaid (state 3) could become sold
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or defaulted in approximately 30 months or 2.5 years, while a loan with 3 months past

due could reach the same destiny in approximately half a year.

Also, let b, be the probability that the process transits from transient state i,

i=-3,-2,-1,0,1,2,3 to absorbing state k,k =1,2,3,4:

[0.72337 0.04473 0.00429 0.06121]
0.72953 0.04692 0.0045  0.0642
0.71614 0.04673 0.00448 0.06395
{b,}=B=(-0)"-R=N-R=|0.72809 0.04968 0.00476 0.06798 (2.24)
0.39812 0.22249 0.02133 0.30446
0.1545 0.22566 0.28605 0.2984
| 0.1539  0.23163 02774 0.29573 ]

An element of B, b, represents the probability of transiting from transient statei to
absorbing state k. For example, b,, =0.23163 means that the probability of transiting

from the 3-month past due state to the absorbing state ( foreclosure) is 0.23.163.

2.2.2 Continuous Time Model

For a continuous-time Markov chain, an element v, of the transition matrixV , is

given by the following equation:
_4 [ £ J,i=-3 1 2,3,t=12 16 2.2
vg—E}}(Cw,t)lho,liJ,l-—— ,—2,-1,0,1,2,3,r=1,2,3,...16, (2.25)

where B, (c,,,¢) stands for the 5™order polynomial used to fit the observed transition

probabilities from the data over time. Cyirsbs J =-3,-2,-1,0,1,2,3 ,:=1,2,3,..16 The

polynomials are approximated by the Lagrange numerical method. For instance, using
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MATLAB 7.0 ® Release 14, the transition intensity matrix for the transient state is shown

in Figure 2.8:

0.47368 0.15789 0.21056 0.15789 0 0 0
0.05000 0.45000 0.40000 0.05000 0.05000 0 0
0.01149 0.01149 0.47126 0.47126 0.03448 0 0

= | 0:00383 0.00511 0.04092 0.47126 0.034483 0 0

0 0.03333 0.23333 0.53333 0.20000 0 0
0 014285 0 014285 0 028571 0.42857
L 0 0 0 .0 1 0 0

Figure 2.8 Transition matrix for the transient states in the interval (0, 5).

The computations are done automatically through an access database. Similarly,

the transition intensity matrix from transient to absorbing states in the interval (0,8) is

given in Figure 2.9:
(0 0 0 0
0.00241 0  0.00124 0
0 0 0 0
g™ 0.33333 0 0 0
0.01454 0.00123 0 0
0 0 0 0
0.00145 0 0 0

Figure 2.9 Transition intensities in the interval (0, 8).

The diagonal elements of the intensity matrix V' and U are given by

4
vii = _(v,j + Zuik ),l * j)i5j = —3,_2’—1, 0,15273>k = 1,25394 (2'26)
5=1
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where u,, :‘g;f;k (Fs ) oot = —3,-2,-1,0,1,2,3,£ =1,2,3,...16. Thus, we obtained the
following ¥ ,U transition intensity matrices as presented in Figure 2.10:

-0.9919 0.3455 0.1592 0.2192 0.1207 0.0553
0.3687 -0.9191 0.1314 0.164 0.158 0.0745
0.183 0.2799 -0.9913 0.3933 0.0875 0.0215
V:=| 0.1611 02785 0.3265 -0.9962 0.1141 0.0909 0

0 0.0244 0.1212 0.2513 -1.0263 0.2986 0.1849
0 0.0128 0.0556 0.0526 0.3008 —0.9604 0.3426
0 0 0.0012 0.0904 0.1416 0.3512 -0.9231

o o ©

0 0 0.0460 0.046
0 00225 O 0
0 0 0 0.0261
U:=| 0.0126 0.0125 0 0
0 0.0245 0.1214 0
0 01745 0.0215 0
0 0184201545 0

Figure 2.10 Intensity Matrices V and U.
Hence, one can estimate, from equation (2.7), the transition probability matrix

P;(0,1) and the expected duration of stay in state j (given that the process started in

statei ) during the interval (0,1), e;(1),,j = —3,-2,-1,1,2,3are given in Figure 2.11:

0.08248 0.10673 0.08789 0.11175 0.08431 0.07858 0.05141
0.0858 0.11103 0.09146 0.1163 0.08779 0.08186 0.05359

0.09 0.11643 0.09583 0.12181 0.09181 0.08549 0.05586
Pij(O, 1) :=| 0.08746 0.11318 0.0932 0.1185 0.0894 0.08332 0.05451
0.06219 0.0806 0.0667 0.08496 0.06462 0.06073 0.04014
0.05046 0.06547 0.05438 0.06937 0.05309 0.0502 0.03342
0.04165 0.05407 0.04496 0.05738 0.044 0.04168 0.02781

Figure 2.11 Transition probability matrix and expected durations of stay in state j

(starting in state i) in the interval (0,1).
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0.08683 0.11234 0.09247 0.11755 0.08862 0.08253 0.05394
0.09031 0.11685 0.09622 0.12233 0.09228 0.086 0.05625
0.09476 0.12257 0.10082 0.12814 0.09648 0.08975 0.05857
e.(1) =] 0.09207 0.11912 0.09805 0.12464 0.09396 0.08751 0.05719
0.06531 0.08467 0.07012 0.08935 0.06805 0.06403 0.04238
0.0529 0.06868 0.05715 0.07294 0.05598 0.05308 0.03545
0.04364 0.05669 0.04724 0.06033 0.04641 0.04411 0.02955

Figure 2.11 Continued.

For instance, P, _ (0,1) = 0.09146 represents the probability that a loan in the 2-
month prepaid state will transit to the 1-month prepaid state during the time interval (0,1) .
On the other hand, e, (1) = 0.09622 represents the mean time of stay in the 1-month

prepaid state (given that the loan started in the 2-month prepaid state at t = 0) in the time

interval (0,1) .

2.2.3 Economic Assets

In this subsection, we will use the model to approximate the stochastic retail

mortgages portfolio size of the Ohio bank. Let X (z) be the total stochastic retail mortgage

portfolio size at time¢ . Its expected value can be expressed as

3

E[X()]= D E[X;(]j=-3-2,-1,0,12,3 , (2.27)

Jj=-3

where E[ X ()], the expected portfolio size belonging to state j, is given in Equation

(2.14). The following set of equations were used in applying the algorithm provided by

MathCAD.
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E[X,(0)]= Zm.pij(O,Z)+z [ 4 py(.0ar,

i=-3
- l} (pl

H (01 = Po)

m=-3
m=l

Pt ==3,-2,-1,0,1,2,3 (2.28)

where m, is the retail mortgage portfolio size belonging to stateiin thousands of dollars at
time 0 or April 2005. Using the bank database, we estimated the M = {m,} vector as

shown in Figure 2.12, in thousands of dollars:

S, S, S, S, S, S, S,
M=(5269 629.07 734175 6842891 292.79 267.11 62.31)

Figure 2.12 Retail mortgage distributions in thousand of dollars at time 0
Table 2.3 provides the criteria used to select data in different states.

Table 2.3 States in the Database.

States | Prepayment Indicator | Past Due Days
S, >3 =0

S, =3 =0

S =2 =0

S, =1 >0,<30
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Table 2.3 Continued.

S, <1 >31,<60
S2 <1 >61,<90
S, <1 >91

The definition of immigration rate is given by the following method. For
simplicity, we assume that the immigration intensity or increment rate is homogeneous
over time ( 4,(r)=4, ). Let f, be the polynomial function for 4, from the one step
immigration dollar amount at timet, i, . Thus by taking the first-order derivative of the

function f, , evaluated at time t = 0, we obtain the immigration intensity

df.(4, .
A =i;(l—t—"’—){,zo,t:1,2,...,16,i: ~3,-2,-1,0,1,2,3
2.29
tl tZ t16 ( )
A4 -3 Ay s ’116;3
ﬂ’t,i = : s E PRRET
A A A

where 4, , is the retail mortgage immigration rate between period and periods -1 in state; .

The following vector in equation (2.30) gives the estimates of the immigration rates

between period 1 and period 2 in thousands of dollars:

/1,:2=(5.21 47.08 98.77 547.49 2.14 0 O)T (2.30)
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It is scen that 4,_,, and 4,_,, are zeros because in two consecutive months the

booked loans could not be 2 or more than 2 months past due. Thus, the immigration rates

obtained from Equation (2.30) are given by the following figure.

l,2=(3.04 24.12 159.42 876.45 1.17 O O)T (2.31)

Using the same approach as in subsection 2.2.2, we estimated the transition

intensity matrices, V and U as shown in Figure 2.13:

-0.8519 0.1707 0.1547 0.1387 0.0578 0.0553 0
0.2879 -0.8391 0.1045 0.1278 0.1974 0.0874 0
0.2781 0.2678 -0.9503 0.3578 0.0565 0.0178 0
V:i={ 01378 0.2978 0.2457 -0.9674 0.1584 0.1002 0
0 0.0178 0.1578 0.3047 -0.9912 02784 0.1748
0 0.0147 0.0479 0.0614 0.2947 -0.7843 0.1978
0 0 0.0078 0.1047 0.1687 03314 -0.9047

0 0 0.0613 0.0784
0 00378 0 0
0 0 0 0.0578
U:=| 0.0784 0.0087 0 0
0 00144 0.0947 O
0 0.1547 0.0687 O
0 01574 0.1178 0

Figure 2.13 Transition Intensity Matrices for Stochastic Assets.

Letting InTran(0,t) be the portfolio assets distribution from internal transition
and ExTran(0,t) be the assets from immigration or new booked source, we have the

following results as shown in Figure 2.14 (From Equation (2.29) and the V matrix in

Figure (2.12)) whent =1:
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S, S, S, S, s, S, S,
InTran(0,£)=(1.03 2550 217.81 1829.75 927 5.96 0.41)"
S, S, S, S, S S,8,

ExTran(0,£)=(0.09 278 29.74 20.14 165 0 0)

Figure 2.14 Internal assets and immigrated assets distributions over states.

As one month is the usual measure period of banks, by lettings =30, we can

estimate 4, ,, b

the stochastic assets of the monthly paid retail mortgage assets, by the

following equation:

3

Aoty = Z‘; [InTran,(0,30) + ExTran,(0,30)] 2.32)

= $64,323.9

2.3 Conclusion

The above models, discrete and continuous, confirmed the expected retail
mortgage loan’s behavior. Furthermore, these models provided useful information to
quantify the risks encountered by the banking management. By using these models, the
management can obtain a clear picture of its retail loans. For example, from (2.13), we
know approximately how long the loan could take to enter each absorbing state. Thus, a

corresponding rescue action would be deployed to encounter each situation.

More specifically, flexibility of the continuous model will allow the bank
management to analyze its loans characteristics in any reasonable interval. The following

matrices are obtained by letting¢ = 30 in Figure 2.15:
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0.0045 0.00583 0.00481 0.00612 0.00463 0.00433 0.00284
0.00469 0.00607 0.00501 0.00637 0.00482 0.00451 0.00296
0.00491 0.00636 0.00524 0.00667 0.00505 0.00472 0.0031
P(0,30) :=| 0.00478 0.00618 0.0051 0.00649 0.00491 0.00459 0.00301
0.00343 0.00444 0.00366 0.00466 0.00352 0.00329 0.00216
0.0028 0.00362 0.00299 0.0038 0.00288 0.00269 0.00177
0.00232 0.003 0.00247 0.00315 0.00238 0.00223 0.00146

0.86326 1.11748 0.92138 1.172 0.88602 0.82757 0.54278
0.89831 1.16289 0.95891 1.21978 0.92228 0.86156 0.56519
0.94]12 1.21831 1.00435 1.27745 0.96545 0.90148 0.59105
€(30) ;=] 0.91537 1.18494 0.97701 1.24275 0.9395 0.87752 0.57554
0.65497 0.84828 0.70048 0.8915 0.67567 0.63271 0.41629
0.53398 0.69183 0.57194 0.72822 0.55297 0.5188 0.34214
0.44146 0.57203 0.47307 0.60242 0.45772 0.42969 0.28358

Figure 2.15 Transition probability (0,30).

The value for P, ;(0,30) means that the probability of staying in a 3-month

prepaid state for 30 days is 0.0045, which could be explained as the probability that a

loan will continue to be paid 3-month ahead is 0.0045. Also, e_; ,(30) = 0.86326 tells us
that, during the interval (0,30), staying in 3-month prepaid state is only 0.86326 unit of
time. Furthermore, one can see that a small value for B ;(0,?) is usually accompanied by

a small value fore, ;(¢), which is what one expects based on banking experience.

As can be seen, there is a large difference between the retail mortgage’s book
amount on the bank’s financial statement and the estimated stochastic amount which take
into consideration the prepayment, past due, and default after one month. The latter is

often of most interest to the outside investors because this is the real assets amounts that
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could be used to buffer the liability due to the customer’s deposit. In most cases, it could

be used to evaluate the bank’s operation efficiency as well as its bankruptcy potential.

Nevertheless, the discrete time and the continuous time Markov models are by no
mean the only tools that could be deployed by bank management. In fact, the above
models used only the occurrence frequencies of each state and did not consider the loan
assets which, in a sense, are more important for risk management in the banking industry.
In the next chapter, we provide a method to index a retail mortgage’s health status and

link it to the local macro-economic situation.
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CHAPTER 3

ANALYSIS OF MORTGAGE LOANS STATUS INDEX

This chapter provides an indexing procedure for a mortgage loan by means of a
finite Markov chain approach, which converts the loan health abstract idea into a
workable number system. This method could be easily extended to other banking
products as well. In the model section, a theoretical Stated-Space time series model is
presented to analyze and to predict the loan health index‘s sensitivity to local macro-
economic factors, such as GDP, inflation, unemployment, interest rate, and personal
disposable income. A multivariate regression method is used to analyze the local
macroeconomic factors’ effects on the health index. The management of a bank could use
these procedures to adjust its loan approval policies based on current characteristics and

future prediction of the portfolio.

3.1 Model

A bank’s portfolio pool, say 20 years of mortgage loans, is composed of distinct
individuals, who behave independently. Some of the individual loans, having been
prepaid, past due, or charged off at the beginning of the measuring period, will transfer to
a different state or stay in their respective states. Once a loan being charged off, the

balance is removed and it could never go back to the bank books. The model is based on

48
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the idea that it will measure the expected duration of stay in each state and the probability

of the process going back to the normal payment state.

Table 3.1 Definitions of the different states of the Markov chain.

Past Due and Prepayment States Default States R,
S;;i=-3,-2,-1,0,1,2,3 R.,k=12,3,4

S, | Prepaid More than 91 days R, Sold by Bank

S, | Prepaid 61 days — 90 days R, Foreclosure

S_, | Prepaid 31 days - 60 days R, Refuse to pay

S, | No more than 30 days past due R, All others reasons

S, 31 days — 60 days past due

S, | 61 days— 90 days past due

S, | More than 91 days past due

Health states, S,,i=-3,-2,-1,0,1,2,3 (Table 3.1), are defined as follows:
S ,,S,,S_, are prepayment states, while §,,S,,S, are past due states. S, the only health

state, refers to the normal payment. From the bank’s point of view, although prepayment

is not as adverse as past due, it is still undesirable. Behaviors of prepayment, in spite of
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the fact that they can insure early payback of the principle, reduce the total interests the

bank could possibly earn on the outstanding loan balance at the beginning of the period.

i i

The different prepayment states are determined by the formula, S_; = 0 where X is

the actual payment at monthi, and Y, is the expected payment at monthi. It is seen that
a S, state is defined as the extra payment. On the other hand, once a loan has been

charged off, it would be eliminated from the bank’s portfolio pool and transferred to a

third collection company. As a result, the charge-off states are defined as R, ,k =1,2,3,4,

k referring to different causes of charge-offs.

3.1.1 Loan Health Index Model

Let H bet the index of a portfolio, which at time ¢ has S, j=-3,-2,-1,0,1,2,3

health states and R, , k =1,2,3,4 charged-off or absorbing states. Here, H is given as

H=e,0,,+ e,0,,+ 3_19_1,0 + eOBO’O +el,+ e,0,,+ e303,0 3.1

where, ejrefers to the expected duration of stay in state j, j =-3,-2,-1,0,1,2,3, Gj,o 1S
an intensity function j =-3,-2,-1,0,1,2,3 measuring the transitions to the normal state,
S, . The expected duration of stay in a specific state is based on the Markov transition

intensity matrix as shown in Figure 3.1:
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Figure 3.1 Transition intensities transient states and absorbing states.

The transitions within the S-states are defined as (Chiang, 1980):

My,

i
Hy s
K

R,
Moz
H s
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v;At = Pr {an individual in state S; at time 7 will be state S, at time 7+ Az }, where

[ # .]’l9J = —35_2’—1505192535

(4, At = Pr {an individual in state S;at time r will be state R, at time 7 + At }, where,

k=-3,-2,-1,0,1,2,3 and & refers to the default or absorbing states, k =1,2,3,4.

Furthermore, we assume that future transitions of an individual are independent of

past transitions. In other words, the intensities v, and 4, are assumed to be independent of
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time7 . For 0<7 <t. Thus, we are concermned here with a time homogenous Markov
chain.

If an individual stays in its original state, its intensity is defined by

4

v =—(v; +Zujk),i¢ J,i,j=-3,-2,-1,0,1,2,3,k=1,2,3,4 . By this definition, it is
=1
obviously that

1+v,At = Pr {an individual in state S;at timez will remain in state S;at time 7 +Af }.

Within any single time interval, {z+ Az}, V is the prepayment and past due intensity

matrix.

Thus, the expected duration of stay in state j is given by

L& 74,(p) N
e = ;‘; - Nl {epzf -1,i,j=-3,-2,-1,0,1,2,3 (3.2
== e - e,
j=1
=l

where, 7,'s,i =-3,-2,-1,0,1,2,3 are the proportion of individuals (in the limit) in the
portfolio pool who are initially in S,,i = -3,-2,-1,0,1,2,3. Let ¢, be the number of loans in
statei at the initial starting date. Thus 7, , the steady state probability distribution of loans

at time¢, 1s estimated as

71, =i i=-3,-2,-1,0,1,2,3,t =1,2,..,16 (3.3)

p

i=-3
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Furthermore, 4;'is the characteristic matrix of /", the transpose of the intensity matrix V",

defined by

A;'=(pl -V, (3.4)
where p,= Eigenvalue of the intensity matrix V' .

On the other hand, it is obvious that#, ;measures an individual’s ability to recover
from the semi-health prepayment and past due state S, j =-3,-2,-1,1,2,3, j # O to a pure

health state, S, . Thus, a Maximum Likelihood Estimate [Chiang (1975)] of 4, is given as

N

n Z ni,O,r

0, =—,i=-3,-2,-1,0,1,2,3 (3.5)

N

Ztt’,r

r=1

where, o, is the number of transitions from §,,i=-3,-2,-1,0,1,2,3 to §, by the rth

N
individual. As such, Z n,,, is the total number of transitions made by all N individuals in

r=1

N
the portfolio. By the same reasoning, Zti’, is the total length of time that all individuals

r=1
in the portfolio stay inS,,i =-3,-2,-1,0,1,2,3. Therefore, the portfolio health index is

given as
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N
303 ”iAg,' '(pz)(eplt "DZ Mo,
H= ZZ 3 ;vzl 7i’j=“3:_2,_1,0,1,2,3, (36)
== T -e)et,

Jj==3 r=1
J#l

3.1.2 State-Space Prediction Model

The macroeconomic environment is long believed to play a central role in the
analysis of loan payment behaviors and the index alone cannot provide adequate

information unless it has linkage to some benchmarks.

The health index discussed above will provide banking management a snap-shot of
its portfolio quality. To predict the future health index under different economic
conditions, we need a time series state-space mode to analyze the sensitivity of the health

index to local macroeconomic factors.

The state space model represents a multivariate time series through auxiliary
variables, some of which may not be directly observable (SAS Online Doc, 2005). These
auxiliary variables constitute the state vector. The state vector summarizes all the
information from the present and past values of the time series relevant to the prediction
of future values of the series. The observed time series is expressed as a linear
combination of the state variables. The state space model is also called a Markovian
representation, or a canonical representation, of a multivariate time series process. The
state space approach to modeling a multivariate stationary time series is summarized in

(Wei, 1990).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

The state space form encompasses a very rich class of models. Any Gaussian
multivariate stationary time series can be written in a state space form, provided that the
dimension of the predictor space is finite (Box and Jenkins, 1994). In particular, any
autoregressive moving average (ARMA) process has a state space representation and,

conversely, any state space process can be expressed in an ARMA form (Wei, 1990).

Let X, be the r x1 vector of observed variables, after differencing (if differencing is
specified) and subtracting the sample mean. Let H, be the state vector of dimension s, r,

where the first r components of H, consist of X, . Let X

1, D€ the conditional expectation

(or prediction) of X,,, based on the information available at time t. Then, the last s - r

elements of H, consist of elements of X where k > 0 is specified or determined

t+kit >

automatically by the procedure (SAS Online Doc, 2005).

Various forms of the state space model are in use. The form of the state space
model used by the STATESPACE procedure is based on Wei (1990). The model is

defined by the following state transition equation:

H_ =FxH +Ge (3.7
f+1 t t+1

In the state transition equation, the s x s coefficient matrix F is called the transition
matrix. It determines the dynamic properties of the model. The s xr coefficient matrix G
is called the input matrix. It determines the variance structure of the transition equation.

For model identification, the first r rows and columns of G are set to an r X r identity

matrix (SAS Online Doc, 2005). The input vector e, is a sequence of independent
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normally distributed random vectors of dimension r with mean 0 and covariance matrix.

The random error e, is sometimes called the mnovation vector or shock vector (SAS

Online Doc, 2005).

3.1.3 Multivariate Regression Model

Although it is optimal to use the state space model to link the retail mortgages’
health index to local macroeconomic factors, the stated space model produces accurate
estimates of the parameters when more than 40 consecutive periods of data are available.
Thus, a multivariate regression model would be an alternative because of its less strict
requirement. We assume that the relation between retail mortgages’ health and local
macroeconomic factors is linear. This assumption seems realistic as most nonlinear
models could be simply transferred to linear ones by taking the log transform. Thus, the

model is given as

H = b, +bIr +b,Un +b,In+b,Dpi, (3.8)

where, H, the health index, is the dependent variable. The 4 independent variables
include Ir ,interest rate, Un ,unemployment, /n , inflation, and Dpi ,disposable person

income. The SAS software was used to fit the model to the data.

3.2 Application

The data of 18 periods of retail mortgage loans, provided by the Ohio local bank
mentioned in chapter 2, were used in the regression model given in equation (3.6) to
estimate the health index of the loans. Then, because there are no sufficient data to utilize

efficiently the stated space procedure, or Markovian representation, we used the SAS
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multivariate regression procedure to analyze the relationship between the macroeconomic
factors and the retail mortgages health index of this bank. The SAS output for the

regression model results are presented in subsection 3.2.2.

3.2.1 Chiang’s Health Index Model

For practical reasons, further modification must be made to deal with the data
series structure. The numerator of equation (3.5) is actually the expected number of

transitions from statei to state O for all individuals.

. p.N
= Pl i 3 5 1,0,1,2,3,0=1,2,..,16, (3.9)
° " 30N,

where éfo is the intensity function at periodz, N, is the total number of retail mortgages at

53
period?, N, = Z N , . Thus, N, represents all individuals in the transient states. Also,

§=-3
P;oN, is the total number of transitions made by all individual loans, where, p,, is the

transition probability from S, to S, , and S, is the column vector of the transition

matrix {F, ;} with
3 A (
E’j(o,t)=z3—”(-€-l)—e”",i,j=—3,—2,—1,0,1,2,3 (3.10)
= l—[ (pl ~pm)
m=-3

m=l

In equation (3.9), 6, is defined as
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1, if an individual is in state S,

0, otherwise

We use 30N,6,to approximate the total length of time that all individuals in the
portfolio stay inS,,i =-3,-2,-1,0,1,2,3. As a result,30N,0, gives the expected length of
time for all individuals staying in state S; during the two month period between check

points. The following table gives N,, the total number of retail mortgages in transient

states at timef .

Table 3.2 Number of retail mortgages in transient state at time?.

timet |1 2 3 4 5 6 7 8
N, 917 875 836 821 805 786 742 741
timetr |9 10 11 12 13 14 15 16
N, 680 668 641 634 598 563 521 517

Also, the transition probabilities and expected duration withs=1, calculated by

equation (3.10) and (3.2), respectively, are given in Figure 3.2:
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0.08248 0.10673 0.08789 0.11175 0.08431 0.07858 0.05141
0.0858 0.11103 0.09146 0.1163 0.08779 0.08186 0.05359
0.09 0.11643 0.09583 0.12181 0.09181 0.08549 0.05586
PU.(O,I) =1 0.08746 0.11318 0.0932 0.1185 0.0894 0.08332 0.05451
0.06219 0.0806 0.0667 0.08496 0.06462 0.06073 0.04014
0.05046 0.06547 0.05438 0.06937 0.05309 0.0502 0.03342
0.04165 0.05407 0.04496 0.05738 0.044 0.04168 0.02781

0.65951 0.8416 0.72246 0.88976 0.70713 0.64828 0.42881
0.68767 0.87756 0.75341 0.9279 0.73757 0.6763 0.44743
0.72122 0.92029 0.78987 0.97272 0.77282 0.7083 0.46834
e(1):=| 0.7006 0.89404 0.76747 0.9452 0.75119 0.68867 0.45552
0.49428 0.6311 0.5426 0.6686 0.53282 0.48972 0.32494
0.40626 0.5189 0.44659 0.55049 0.43949 0.40463 0.26903
0.3362 0.42946 0.36974 0.45581 0.36412 0.33541 0.22316

Figure 3.2 Transition probability matrix and expected duration of stay.

As an example, the intensity function, 8_,,, in equation (3.1) for the health index
at timef =1, is estimated as

0. = PV,
=30 =
30N,6 .,
_0.11175%x917
30x20

=0.1708

(3.11)
Table (3.3) presents estimates of the intensity functions, 63;1_,0 (1=-3,-2,-1,0, 1,2,

3) and expected duration of stay in a transient state, e,, forz =1, based on the calculation

from Excel’s function:
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Table 3.3 Estimates of the intensity functions.

State S, S, S, S, S, S, S,
Dio 0.11175 ] 0.1163 0.1218 0.1185 0.0849 0.0693 0.0573
Nl5 20 19 75 778 19 2 4

913 . 0.1708 | 0.1871 |0.0496 |0.0047 |0.1366 |1.0591 |0.4379

e 4.89753 | 5.10785 | 5.35356 |5.20269 | 3.68406 | 3.0354 |2.5139

3
Here, ¢, = Zeij, from e(1) in Figure 3.2 and p,,is the element of transition
j==3

probability matrix given in Figure 3.2 at row S, and column §,. From the data in Table
(3.3), the health index in equation (3.1) is estimated to be 6.9009. By the same method,
we calculated the health indexes from period 1 to period 16 which are given in Table

(3.4).

Table 3.4 Health indices from period 1 to period 16.

timer |1 2 3 4 5 6 7 8

N, 6.9009 | 6.5848 | 7.6233 | 7.2478 | 7.0647 | 6.4571 | 6.6478 | 6.2145
timef |9 10 11 12 13 14 15 16

N, 6.1784 | 6.0658 | 5.4783 | 59847 |5.8473 | 5.8741 |5.6478 | 5.3421
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3.2.2 Multivariate regression model

The purpose of the multivariate regression model is to find the relationship
between the retail mortgage payment behaviors indicated by the loans’ health indexes and
the local macroeconomic factors. Although regression might not be the optimal method,
it is perhaps best to use under the circumstance where the data set is too small for the
state space analysis. The local macroeconomic data extracted by econmagic.com, the

commercial economic database is given in Table (3.5).

Table 3.5 Local macroeconomic variables.

Un, Ir, In, Dp,
2005 04 5.90 5.86 5.74 4.93
2005 05 5.60 5.72 4.62 4.78
2005 06 6.10 5.58 5.62 4.63
2005 07 5.80 5.70 7.69 4.48
2005 08 5.50 5.82 6.98 4.30
2005 09 5.60 5.77 5.71 4.20
2005 10 5.30 6.07 3.06 3.90
2005 11 5.60 6.33 7.56 3.80
2005 12 5.50 6.27 6.05 430
2006 01 6.10 6.15 8.18 3.30
2006 03 5.30 6.32 4.30 3.20
2006 04 5.40 6.51 7.45 2.70
2006 05 4.90 6.60 5.51 2.50
2006 06 5.20 6.68 2.40 2.50
2006 07 5.80 6.76 5.47 2.50
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Thus, using the SAS regression procedure, we have the following multivariate
regression model, representing the relation between a retail mortgage loan health index
and local macroeconomic factors. Figure 3.3 gives the SAS output for the multivariate

regression model

H =17.49997 - 0.41195xUn—1.51859x Ir + 0.02949x In + 0.08064 x Dpi (3.12)

The SAS System 22:52 Tuesday, Feb 2, 2007 1
The REG Procedure
Model: MODEL1
Dependent Variable: h
Number of Observations Read 16

Number of Observations Used 16

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Pr>F
Model 4 5.22384 1.30596  12.27 0.0005
Error 11 1.17096 0.10645

Corrected Total 15 6.39479

Root MSE 0.32627 R-Square 0.8169
Dependent Mean  6.32246 AdjR-Sq 0.7503
Coeff Var 5.16046

Figure 3.3 SAS output for the multivariate regression model.
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Parameter Estimates
Parameter  Standard
Variable DF  Estimate Error tValue Pr> [t

Intercept 1 17.49997 461002 3.80 0.0030

un 1 -0.41195 0.30259 -1.36  0.2006
ir 1 -1.51859 0.54755 -2.77 0.0181
n 1 0.02949 0.05867 050 0.6251
dp 1 0.08064 0.23900 034 0.7422

Figure 3.3 Continued.

The most important indications of model performance as a whole are the P-value of
the F test for the model and Rﬁdi , or adjusted R-square, which are 0.0005 and 75.03%,
respectively. Because the critical value isa = 0.05and the P-value for the F test is far
smaller than 0.05, the model is highly significant as a whole. Also, R’ 4 = 75.03% means

that 75.03% of the total variation of the dependent variable, which is the loan health
index, could be explained by the model. The parameter estimates, however, are not

significant except for the independent variable ir (p = 0.0181).

3.3 Conclusion

The models presented in this chapter include a health index model and a multivariate
regression model. The former provide a stochastic measurement for the loan payment
behavior and the latter could be used to analyze and predict the behavior under different

macroeconomic environments. Also, the sign of the parameters given in equation (3.11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



64

confirm the empirical evidence of the macroeconomic effects on the loans payment

behavior, which is summarized in the following table:

Table 3.6 Macroeconomic effects on the loans payment behavior.

Unemployment | Interest Rate Inflation Disposable
Income
Health Index Negative Negative Positive Positive

Although effects of unemployment and Disposable income require little
explanation, the rising of interest rate requires more mortgage payment because of the
increasing financial charges if the mortgage rate is not fixed (use market rate as a
reference). The direct effect of inflation is to decrease the money value and increase the
real estate value. Thus, using less worthy money to pay off more worthy property might

be a good idea under the circumstance.
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CHAPTER 4

A MARKOV CHAIN DECISION MODEL WITH

REGARD TO LOAN OFFICER COMPENSATION

AND LOAN COLLECTION

In this chapter, two Markov decision models would be used to estimate the
appropriate compensation for loan officers and optimal credit collection policies. The
appropriate compensation for an individual loan officer should be based on a
sophisticated balance between benefits and costs for the bank that he or she is
representing. Benefits refer to the investment returns from the different Markov states in
the portfolio, such as past due, prepayment, and default.. Costs include the collection
costs for the portfolio, associating with each Markov state, and compensations for the

loan officer.

The effect of credit risk asset management calls for the use of dynamic stochastic
techniques for optimizing decision making. In this chapter, a stochastic transition model
is presented to analyze the balance between the recovered credit assets from a variety of
collection policies and the collection cost associated with each policy. Thus, a Markov
decision model is used to identify the optimal policy package to maximize benefits for

the bank. A policy package is defined as a series of actions to be taken corresponding to
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each of the past due and default states. Without loss of generality, it is assumed there is
no delay of customers’ reaction on reception of a collection notice from the bank and the
prepayment is generally in the best interest of the bank inspite of interest losses because

of prepayment.

One purpose of this study is to analyze the duration of the loan system in an "up”
or "down" state where “up” or “down” refers to the bank’s stochastic portfolio value
being larger or smaller than the bank’s liability balance, which is the customers deposit in
the bank. For predicting the rate of the loan system breakdown, other stochastic models
are used to estimate the portfolio value and the lability balance, respectively. These
models are useful to approximate the bank’s ability to take risk and to avoid bankruptcy

due to over-issuing of loans.

4.1 The Models

In this section, we present two Markov decision models to analyze the optimal loan
officer compensation policies and optimal credit collection policies. In the former model,
we need to maintain a sensitive balance between the benefits of stochastic credit asset
contributed by each of the loan officers and the bonus plan or compensation policies to
motivate the loan officers. Generally speaking, with more aggressive compensation
policies for loan officers, one expects more credit assets that could earn more interest for
the bank. However, the purpose for the optimal credit collection model is to choose a
feasible policy package such that the positive difference between the benefits from the
collected credit assets and the cost of the collection policy is maximal. In subsection 4.1.1

we present the model for optimal loan officer compensation while the optimal loan
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collection policy is introduced in subsection 4.1.2. Finally, the model to analyze the

duration of the loan system ups and downs is given in subsection 4.1.3

4.1.1 A Dynamic Model for Loan Officer Compensation

We use continuous time Markov chain theory to build a stochastic model in order
to estimate the portfolio values belonging to each of the states, prepayment, past due, and
default. Combined with the cost estimate model, including the collection cost and
compensation cost, the dynamic model is used to find the optimal policy so that
maximum profits could be achieved. The validity of the model depends on the following

assumptions:

1. The investment return rate is independent from state to state.

2. The relationship between the performance of a loan officer and his compensation could
be represented by a linear regression function, namely R(r) =a+br . This assumption

was confirmed by Magnan and St-Onge (1997)

3. The portfolio asset under analysis is associated with only one loan officer. Thus, the
flexibility of the model presented in this paper would let the bank’s management to
specify the optimal compensation policy for each officer. As a result, the compensation
policy could be optimized and benefits could be achieved for the bank as a whole.

4. The collection cost is associated only with assets in past due states. Due to the fact that
the defaulted asset would be transferred to a third independent party for collection, the
costs for collecting defaulted assets would not therefore be encountered by the bank

which issues the portfolio.
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4.1.1.]1 Benefits Associated with Each State

Following the state definition given in Table 2.2, the expected portfolio size in

state S at time, and is given as

q;(=>. _E/I,.-Ei(r,t)dr (4.1)

i=-3

Here, 4 is the immigration rate to state S; and F,(z,)is the probability of being in state
S, at time t given that the process was in state §; at time 7. The solution of

P, (r,t)depends on 4,', the ijth element of the characteristic matrix of V', the transpose

of the intensity matrix 7, defined as
A;'=(pI-V"), (4.2)

where p,= eigenvalue of the intensity matrix V', which is given as

S,

SalVas Vas Vi 0
S, Vas Vo Vaa Vao Vay 0
S| Ve Voo Vaa Vi Vo 0
Vos Yoo Vo1 Yoo Vo 0

Via Y2 VYia Ve Y M2 0

S
S,
S;{Vs Vo Vi Vo Vo Vap V.
S;

3,3 v3,-—2 v3,—l v3,0 v3,l V3,2 v3,3 N
The intensity v, that an individual stays in its original state in the time interval

4
(z,7+At), is defined as:v, =—(v; + Y u,),i # j,i,j =-3,-2,-1,0,1,2,3,k =1,2,3,4. By
5=1
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this definition, it is obvious thatl+v,At = Pr {an individual in stateS;at time 7 will be

state S.at timez + Az }. The transition probability in the time interval (0,¢) , is given as

3 A
I)ij(ost):Z_—U'SQL)_'eplt’i,jz_3,_29—190’132’3 (43)
== H(pl —-pm)

m=-3
m=l

Thus, equation (4.1) becomes

q;(t) Z J; -B(r,0)dr
i (4 i A5() _ piog,. (4.4)
=3 H (o, —Pn)

m;el
3 3 A'
=> >4 +(P) (™ -1)j,j=-3,-2,-1,0,1,2,3

=
i H(pl pm

m=-3
mstl

Letr, be the investment return rate from the portfolio asset belonging to state.S
Hence, the total expected investment benefits can be expressed as

R= f:E(Xjrj) = iE(Xj)E(rj)
a 70 (4.5)

6

6
> r> bp;(0,0)+q;(O1,i,j=0,1,2,3,4,5,6

j=0 =0

where X ., the portfolio asset , is given in equation (2.13), and b;is the loan balance in

state 1.
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4.1.1.2 Cost Associated with Each State

6
The expected portfolio value for each state S; is E[.X;(#)]= Zi,. p;(0,6)+q,(t),

i=0
i,j=0,1,2,3,4,5,6 . Suppose that the bank has a collection policy for each of the states,

C(c;) . Thus, the total expected collection cost will be

E[CIX(D]]= E[X ()C(c))]
6 (4.6)
=c,[> b,p,;(0,0)+q,®)],i,j=0,1,2,3,4,5,6

4.1.1.3 Optimal Compensation Policy

Let x,,7=0,1,2,3,4,5,6 be the additional portfolio asset because of the

implementation of the loan officer compensation policy, £, presented as a percentage of
the extra portfolio asset the loan officer brings to the bank. If e is the discount factor,
whereiis the discount rate, then the estimated benefits from implementing policy %, is

given as

'EQ R) =3 E(R) =) El(X; +x)r;]1=3 E(X, +x)E(r)

6 6

=™y rj.xj[z i,p; (0,0)+q;(0)]

J=0

4.7)

By including the compensation policy as cost in the total cost in equation (4.6),

we have the discount total cost equation, including compensation and collection costs,

which can be expresses as
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¢ E[CIX (O] = e ELX,()C(c,)]

| ) (4.8)
=e" {Cj[ziipij(O,t) +q,;(O)]+xk},i,7=0,1,2,3,4,5,6
i=0

Here, x k is the compensation cost to the bank. As a result, the dynamic equations for

obtaining an optimal compensation policy is given as

Maximize:

S = ralY i, 0,0+ 4,01 1Y 2, 0.0+ 4,01+ X6} (4.9)

Jj=0

Subject to: p,(0,£)20 ;
i

4.1.2 Loan Collection Policy

The purpose for building this model is to find the optimal loan collection policy
package. The package includes letters, emails, phone calls, corresponding to each of the
state. In practice, there is no collection method for the prepayment state. Also, for
completeness, the collection method for the normal state is included. In practice, this
could be defined as sending a statement letter, which is normal operation for banks. The

model is given as:

B, = f ¢ R(t) - e C(t)]dt
= E(B_,) = E{fe-"[R(t) —e"C(t)]dt} (4.10)

— E(B_,) = f e " E[R(t)]dt - f e E[C(t)]dt
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where B_ (k) is the benefits function of policy package £ at time =0, R(k) is the

recovered credit asset, C(k)is the cost function for each policy package, and ¢ *is the

continuous discount factor.

4.1.2.1 Effective Recovered Economic Assets

The estimation of portfolio value is given again by equation (4.4) as

=3 BAM—- -1, j=-3,-2,-1,0,1,2,3 4.11
qj(t)—zz i 3 (e )919.]'— s s 3 Vs ls &y ( . )
=2 T -e0)

m==3
m=l

For simplicity, we assume that a transition to a lower state is due to the

implementation of a collection policy. Thus, an auxiliary function /(x) is defined as

1, ifi < j, which means the collection policy is effective

I(H)= 4.12)

0, ifi > j, which means the collection policy is not effective

Thus, we have the following derivation:

fX(t)dt =[x
= F LTX(t)dt] = B[ [ X(0)I(5)d]
= & f x()dr)= [ ELXOIELI(0)]de

= £ [ x(@r]= [ ELX (O], Xt
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= B[ [ X(dr]= [ BIXOY 1.,

ol J'TX(t)dt]
E[X(D)]dt =—2 " " 4sT —> (4.13)
= [ ELX(0)dt S asT —

[ ELx@ar

2 asT >
ZZ(K])
i

= f E[X(t)ldt =
Discounting the above equation by the compound discount factor,e™, whereiis
the discreet interest rate available from the market, we have the present value of the

portfolio from the effective collection policy:

. e fE[R(t)]dt
) Zluq)

asT — «© (4.14)

where Z Xe<; could be reached by a limiting method provided by Ross (2002).

Ross (2002) provided a very useful model to predict the long run probabilities in

each of the states. Let ¥’ be the reduced-form transition probability matrix within a single

time interval (z,7+Af), and V' be the transition probability after » time periods.
Furthermore, assume y; =limv;’, where v,fj is theithrow and jth column component of
—>

iq ?
nooj

matrix V' defined in Figure 4.1,
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Sfv, 0o 0 0 0 0 0
S|v, ¥, 0 0 0 0 0
S Vig Yy ¥, 00 0 0
V'=8|vi, ¥ v, % 0 0 0
S, vz’t,o v;,l vz't,z v;,s v:;,4 0 0
S| vse Vi My Vis Vie vss O
S _v:s,o Ve Ver Yoz Vea Vs Vis ]

Figure 4.1 Reduced-Form Transition matrix.

In which,

( v, ;k;, i > j which means the collection policy k;is effective

V=4 (4.15)

L 0, i < j which means the collection policy £, is not effective

Then,

2
X = Zlf"ij’j =-3,-2,-1,0,1,2
i=—3 (4.16)
> x;=1,j=-3,-2,-1,0,1,2,3
J

is the percentage of the individuals in state j , where

(X3 =XVaa T X Vot XaVasH XoVos T Vs T XVa s T XV

X =X Va 0t X Vo ot X Vo T XoVoo T X Vi T Voo T A5V

< .. “4.17)
Ko =X aVan T XaVoar Y X Vo T XoVor T XiVip H XaVan + XaVs,

X Xt Xat Xat Xt it X+ 26 =1
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4.1.2.2 Total Cost

By the same reasoning, we have the expected economic portfolio value for each

6
state S, E[ X, (1)] = Zi,.pij (0,6)+q,(®),i,j =0,1,2,3,4,5,6,, and suppose that the bank has

=0

a collection policy for each of the state, C(c;) . Thus, the total expected collection cost is

given by the following equation:

E[CIX(0]]= E[X,;(1)C(c))]

6 (4.18)
=ck Y i;p;(0,0)+q,;(D)i, j=0,1,2,3,4,5,6
i=0

where C(c;) =c;k;is the cost increments factor from the implementation of collection

policy &;.

4.1.2.3 Dynamic Decision Making

Let x,,j= 0,1,2,3,4,5,6 be the portfolio asset due to the implementation of the

loan officer compensation policy, k , presented as a percentage of the extra portfolio asset

the loan officer brings to the bank. If e™”is the discount factor, whereiis the discrete

discount rate, then the estimated cost from the implementation of policy, k , is given as

e E[CIX(1)]] = "E[X ,(t)C(c;)]

| ] (4.19)
=3P, 0.0+ 4,1} = 0.1,2,3,4.5.6
i=0

As a result, the dynamic approach for obtaining an optimal compensation policy is

given as
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o . LTE[R(t)]dt .
Maximize: B,_, = e {_il—_ —c;k, [ i,p,;(0,0) +q;()]} (4.20)
s A 0<))

i=0

Subject to: p,;(0,)=0,and > > p,(0,£)=0
i

4.1.2.4 Proceedings from the Past Due State

The approach by Ross (2002) could also be used to estimate the proceedings for

past due. LetV be the transition probability matrix within a single time interval (z,7 + Af),
and V" be the transition probability after » time periods. Furthermore, we assume

that y, = limv";, where v, is theithrow and jth column component of the full matrix V.
n—>0

Then,

2
X = Z;{iv,.j,j =1,2,3
== (4.21)
> x;=1,j=123
i

is the percentage of individuals in state S, where

X=X T XoVan T X5Ys,
X2 =XiVip T XaVar T XsVan (4.22)
Xt Xot Xa+tXot i+ 20+ 1 =1

If we let f;be the penalty amount for being in past due statei, then the total

expected proceedings from customers being past due during the period 1,2,...., NV is given

by
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=25 (4.23)

i=-3

4.1.3 Analysis of Loan System Status

The idea here is based on the fact that the bank’s economic assets provide a
warranty for its liability, which means, in the long run, the assets have to be more than
liability to guarantee its insolvency. Thus, if we use the random variables X (¢) and
D(t) to describe the bank’s economic assets and liability, respectively, the expected
system status, S(¢) = X(¢) — D(¢) , should be positive over a long period, although 1t might
be negative from time to time. In reality, the liability of a bank is generally represented
by the deposits from customers, and the economic assets could be considered as its loan
portfolio economic value. By economic, one means the actual value to the bank,
considering its potential risk, other than the numbers on the books.

We will use a continuous time Markov chain model to estimate the economic
portfolio value, X (¢), where ¢ =0,1,2,..,7. As such, the deposit process is represented by
a compound Poisson process, D(¢),t =0,1,2,..,T, in which we assume that the arrival of a
customer follows the Poisson distribution. Also, the deposit or withdrawal amount of
each customer follows an exponential distribution. Finally, a Markov model is used to
estimate the expected rate of the whole loan system as well as the expected duration that

the system stays in an “up” state.

4.1.3.1 Portfolio Value

We will use the estimation of economic portfolio is given by equation (4.4) with

exactly the definition:
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O=3 34200 o pyjj=a2-10123 (424
qj _. i 3 i, ] = > ] s Vs by Ly ( . )
== TTwe-p0)

m==3
m#l

4.,1.3.2 Compound Poisson Model

Ross (2002) and Cummins (1991) provided a method to compute the expectations
by conditioning. We can use this technique to find the expected daily net changes of
deposit balance. For simplicity of the model, we consider all transactions are either
deposits or withdrawals, no matter how the transaction is fulfilled, whether by wire,
direct transfer, or branch operation. Thus, the expected month-end deposit pool balance is

given by:
E[DX)]=E[Y>. y1-E[>.¥,1,i=1,2,3,..,n,j=1,2,3,..,7. (4.25)
i=1 Jj=1

where y, refers to a deposit transaction, y, is a withdraw transaction, and #is the number
of daily transactions. Also, by assumption, n follows a Poisson distribution and y, or y,

an exponential distribution. Using the conditional approach, we have
E[D(x)] = E[E[D(x)]| N(2) = n]
= E[E[Y_ 1| N(®)=n]]- E[E[D_ ¥, | N(t) =7]]
i=1 j=1

= ELELY yl1- ELETY. 3,)

= E[nE[y;]]- E[nE[Y;]]
= JtE[y,1- AtE[7]

(4.26)
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The result follows from the fact thaty,, and y, are independent of N(¢)=rn and

N(@)=7.

4.1.3.3 Loan System Status

After S(¢t)= X(t)— D(¢)is determined for each of the bank’s products, namely

Credit Card, Mortgages, Line of Credit, etc., one can define the Markov states as follows

in Table 4.1:

Table 4.1 Different states of the Markov chain.

S, i ==3,2,-1,0,1,2,3
4 S, E[x())] - E[d ()] > 30
Accepted s, 26 < E[x())] - E[d(i)] < 36
states

S 5 < E[x()] - E[d()] <26

S, ~5 < E[x(i)]- E[dG)] <o

A s, —5 < E[x()]- E[d ()] < -20
Unaccepted s, —26 < E[x(i)] - E[d())] < -36
states

S, E[x()]- E[d()] <36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Let the process be in state §,, if S(),r=0,1,2,..,7 is within the interval

i

. —d.
[i6,(i+1)0], Where5=z—|x’T)’/|2,i=0,l,2,...,T. By assumption, X(¢) and D(¢) are
X, +

Markovian. Thus, each state of S(¢),=0,1,2,..,7 could be represented by a continuous

time Markov chain.

From Table (4.1), it is obvious that the S_,,S,, S, S, states, in which the

economic portfolio provides liability insurance with regard to bank deposits, they may be

defined as the accepted states. On the other hand, S|, S, ,S; refer to the unaccepted states

because they do not provide such insurance or protection.

The matrix of transition intensities, given by the V matrix in Fig 4.2, is regular or

ergodic since the system is a closed set of communicative states.

Syl Vo Vaa Voo Voo Var Var Vas

A Vs Vo Vaa Yape Vg Yoz Vags

V= Vo3 Vo2 Yo Yoo You Vo2 Vo3
Vs Y2 Yia Ve Yu Y2 \3

Figure 4.2 Transition intensities within the S-states (V matrix).

For the time interval (0,¢),z <o, the transitions intensities among the states are

defined as follows:
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v;At = Pr {an individual in state S, at time 7 will be state S, at time 7+ Az }, where

i # ]’171 = _3,_29*1,0315 2’3,
1+v,At = Pr {an individual in state S,at time ¢ will be state S;at timez + Az }.

Furthermore, we assume that future transitions of an individual are independent of

past transitions. In other word, the intensities v, are assumed to be independent of time.

Thus, we are concerned here with a time homogenous Markov chain.

4.1.3.4 Transition Probabilities

Let P(r,t) = Pr {an individual in state S; at time r will be state S, at
timet},i, j =—3,-2,-1,0,1,2,3 .Considering three points,z <t <f+At, by definition we

have

P(t,t+Ar)=v, (1)At

Py(t,t+ A1) =1+v, ()AL (#27)
By(z,t + At)= P (7,0) P; (1, + At) + ZRy (z.0)P,,(t,t + Ar) (4.28)
yi
By substituting Eq. (3) into Eq. (4) and rearranging the equation we have:
R+ AA? A P, (z,t)v; () At + ; P, (z,t)v,;(1)
= lim mt+ AA? 5@ _ S B (5.0, (2) (4.29)

r=J

= i P.(r,t)= ZBy(T,t)v”.(t);i,j =-3,-2,-1,0,1,2,3

i
ot rej
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This is called the Kolmogorov Forward Differential Equation, and its solution is

given by (Chiang, 1980):

3 A
P(0,1)= Z_S_’J_(EI_)_e

= H(p, -P)

m#l

Al i j==3,-2,-1,0,1,2,3 (4.30)

Here, A;'is the characteristic matrix of V', the transpose of the intensity matrix V',

defined by

4= (pI -V, @431)

where p, = Eigenvalue of the intensity matrix V' .

4.1.3.5 Expected duration of Stay in a State

For an individual in state S,at time O, lete,(f) = the expected duration of stay
in §; during the interval (0,7),j=-3,-2,-1,0,1,2,3 . In terms of our process,
e;(t) evaluates the expected duration of the loan before default occurs. This expected

duration, ¢;(?), is given by (Chiang, 1980).

14
e;(t)= [B(0,m)dr (4.32)
0
3 A
Or e;(0,5)=Y —— (2) (e”" =1),i, j=-3,-2,-1,0,1,2,3  (4.33)
= H (L= PP
j==3
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4.1.3.6 Probabilities in the Limit

83

Ross (2002) provided a very useful set of equations to predict the long run

probabilities in each of the states. Let’ be the transition probability matrix within a

single time interval (7,7 + At), and V" be the transition probability aftern time. periods.

Furthermore, assume that y; =limv",

i
w Y

of matrix ¥ . Then,

2
Zj = zxivihj = _3,_29_1s0913273

i=-3

> 2, =1,j=-3,-2,-1,0,1,2,3
J

is the percentage of the individuals in state j , where

( X3 =X sVaat XaVao st X Vast XVos T AVt Ve st XaVs s

X=X Va2t X Vo st X Vast XYoot XViat XaVa s TX3V30

KXo = XVan Y XV VX Vo T XoVor T XVig H X0Va, t X3V,

LZ—3+Z-2+Z-1+Z0+Z1+X2+13 =1

Thus,

1
ied® Xi ied Zi

+
ZieACZieAZipij ZiEACZiEAxiPij

Breakdown Rate =

and
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zieAZf
ZieA‘ZieAZipij
ZieAfZi + eaXi
ZieA" ieaXiPi ZieA‘ iea XiPi

Proportion of Up Time = (4.37)

4.2 Conclusion

The above models are useful in that they provide the management in a bank
practical tools for analyzing a loan status for each single portfolio or financial service.
Also, these models help considerably in decision making and can be easily integrated into
management software packages for the banking industry. Future availability of data will

help in demonstrating the applicability of these models.
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CHAPTER 5§

A HIGHER-ORDER MULTIVARIATE MARKOV

CHAIN MODEL FOR RETAIL MORTGAGES

AND CREDIT CARDS

This chapter presents a high-order multivariate Markov chain model to analyze the
correlation between retail mortgage loans and consumer credit cards (other than
commercial cards). This model provides a quantitatively theoretical evidence for the
empirical phenomenon concerning the historically high correlation between those two
retail financial products. Also, conclusions about the correlation will be presented after

the model is tested by real data provided by the Ohio local bank.

5.1 The Model

Multivariate Markov chain models have been successfully used in representing the
behavior of multiple data sequences generated by the same source. Years of operation
experience convinced the bank management of the importance of the correlation between
retailed mortgage loans and personal credit cards, both of them are usually offered by a
local bank to the same group of consumers in the area. In most cases, credit cards are

used to purchase daily supplies, such as food and consumer goods. Thus, with the

85
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fluctuation of the macro-economic and employment situations, the question becomes:
what is more important, house or food?

To answer this question, we need to have information not only about the direction
of the correlation, but also about its magnitude. The high-order multivariate Markov
chain model introduced by Ching and NG (2006) could be a good candidate to analyze
and quantify the correlation that has been long observed by the credit risk management

personals in banking.

5.1.1 Multivariate Markov Chain

Multivariate Markov chain models have many applications in multi-product
demand estimation, credit rating, DNA sequence, and genetic networks. In this chapter,

we will use the model proposed by Ching and Ng (2006).

y

2
n+l =Zﬂ‘aﬁVaﬂF‘n’ﬁ=152
a=l

s 2L1<a, f<2, (5.1)

In this model, the parameter 4, that gives the direction and magnitude of the
correlation is the model outcome. We define o, f=1,2 as the data sets for retail
mortgage loans and personal credit cards, respectively. F,,, = (F*,F” )" refers to the
probability distribution vector in each of the states. We follow the definition of state in
chapter two. That is,S €(S,,R,),i=-3,-2,-1,0,1,2,3,k =1,2,3,4 (please refer to Table

2.1 for detailed definition of the states). So, F ‘:l = (E ,‘:S ,F z‘l R, Y Li=-3,-2,-1,0,1,2,3;

s i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

k=1,2,3,4at timet =n+1 is the probability distribution vector for the retail mortgage,
while F 'f] is that for personal credit cards at time¢ = n+1. ¥ is defined as the intensity of

transition between states of retail mortgage and personal credit cards. The matrix form of

model (5.1) is given as

F¢ A Ve 2 V¥ Fe L i
FH‘:[ ,,;1}=(;“Vﬂa /{wVﬂﬂj( nﬂ)’w:[ i Oii]’i’jza,ﬂ (5.2)
F, pa 5 F] R' O

n+l

AadVe AV
or, F,=WF, W= fa o5
AgV P AggV
where, F), = (Fu5,Fruz ) »i=-3,-2,-1,0,1,2,3,k=1,2,3,4, j=a,f , while I’ , 0",

RY, Q" are given in Figure 5.1:

R R, R, R, S, S, S, S S S S8
R |1 0 0 0 RO 0 0 0 0 0 0
I R, |:0 1 0 0 o = R,| 0 0 0 0 0 0 0
“ORIO 0 1 of ~* R0 o 0 0 o0 0 0
R,|0 0 0 1 R0 0 0 0 0 0 0
R R R R S; S, S, S S S S,
S, _/‘—31 Hip His Hay | S, _V—s,—3 Vi, Vaq Ve Vi 000 |
Sy Moy Hap Moz Haa Sa|Vas Vo Vo Vae Vay 000
Sy My Mg Mz Hog, Syl Vas Vaa Vi Vae Vg O 0
R =8| thy thy tos Hoa b Q=S Y%s Yz Yo Yo Yu 0 0
S|ty Mo My Mg S Vs Ve VY Ve Yu Ve O
Sy | oy Hhp  bhy Mg S| Yaa Va2 Vaa Voo Y Y2 Va3
S|ty My M My Si{ Vs V2 Via Vo Vi Vi Vs
Lj=a,

Figure 5.1 Transition intensity matrices between retail mortgages and credit cards.
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r,.,,0", are the transitions within transient states and transitions from transient to
absorbing states, respectively. By the definition of an absorbing state, 17, ,,0", , are a

4 x 4identity matrix and a4 x 7 zero matrix, respectively.

Furthermore, lettingc,”,i, j = a, B be the transition probability between state!in

data setiand statek in dataset j, the elements of R’ ,andQ", , are calculated from the

following equations:

i i i i
€33 €34 V33 Vs
i o_ : . : i o_ : -, :
C’ = : . : V., = : . : (5.3)
ij i i ij
C43 C43 V4,3 Vi3
i R
C 4
_3,-3
x , if Z Cpn#0
n=S_,
2
n=58_3
i
vm,n -
0, Otherwise

Based on the assumptions that V¥ =[ ]is irreducible and 4, >1, Ching

RY Ql}
. ) . F*
and Ng (2006) proved that there is a unique stationary vector F =(F ﬂ] , such

R, )
that F = WF, and z | F/ |, j =a, . Thus, (5.4) could also be written as:

=5,
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AV AaﬁV“p
F= pa ps | (5-4)
[ iﬂaV /lﬁﬂV
B B
or S A VPP =F =Y 3, V*F/ -F" =0
a=1 a=1
ao ax
Vi, N
where, e = :
aa aa
Vi3 Ve
v_3,_3aa . v~3’4aa
6] T
ac aa
Vi3 T Vs
ao aa
Vi e Vs
yhe= 1 T
ao ax
Vi3 Va3
aa aa
Vs e Vg,
\Vﬂ/’ =l :
a a
V4,3 SRS V4,—3a

According to Ching and Ng (2006), by letting v = be the

I
Y AVPFP-Fe
a=1

o0

vector norm for measuring the difference in (5.4), wherey is defined as max{y .,y ;} by
Burden and Faires (2001), the parameters of the above model could be solved by linear

programming:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90
Y]

Min {Max{D A,V F’ - F*}} (5.5)
a=1

B
subject to Zlaﬂ =1l and 4,,20,0,=12
a=1

In the next subsection, we will introduce a high-order Markov chain, which, under
a normal macroeconomic environment, could produce more accurate results for analyzing

loans payment behavior.

5.1.2 High-Order Markov Chain

In analysis of real-world problems like retail mortgage loans and credit cards
payments, the behaviors of the payments are supposed to be affected by the prevailed
macro-economic factors like local interest rates and employment. On the other hand, past
payment pattern could also play a role in the current and future payment. When these are
indeed the case, a high-order Markov chain model might give a more accurate description
of the real payment behavior and offer better prediction. Ching and Ng (2004) proved
that a second-order Markov chain model predicted a product’s sale demand with 83%

accuracy while a first-order version provided only 74% accuracy with the same data set.

Unfortunately, an kth order Markov chain withm states will have (m —1)m* model

parameters, and the number of parameters (the transition probabilities) will increase
exponentially with the increase order of the model. Raftery (1985) introduced a higher-

order Markov chain model with only one additional parameter for each extra lag. By

assuming Q =[g,]is a stationary transition matrix which means it doesn’t change with

different lags, his model could be written as:
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k
PX" = jy | X0 = i XD = ) =Y A, (5-6)
i=1

k k
where, Z A, =10< Z Ay, <1.1t could be also presented in matrix form as
i=1

i=1

k k
P(n+k+1) _ zliVP(rH-kH-i)’Zli =1 (57)

i=1 i=1

where, P(””‘”’:(PS(I_"”‘“))T,i=1,2,..,m is the probability distribution of states at
timen+k+1, S, ={iel,2,..,m}. Ching and Ng (2006) generalized Raftery’s model in
(5.7) by allowing the transition matrix V' =[v,] to vary in different lags, that is,

V.2V,izj. Thus, the model reduces to
k 11
P(n+k+1) - Zl,'ViP(nHHI—’) ) (58)
i=l

It is seen that if V] =V, =...=¥,, Ching and Ng’s model in (5.8) is reduced to

Rafiery’s model in (5.7). Also, Ching and Ng (2002) proved that if ¥, is irreducible

k
and 4, >0 such that 0<4, <1and Zl,. =1, then P"* = (P;l_“"“’)T,i =1,2,..,m is a

i=1

stationary distribution, that is

k
- (n+k+1) __ q: (n+k+1-i)
lim P =lim Z AV.P

H—>0 n—>o0 7 1
i=

k
=P=) AVP (5.9)

i=1

k
==Y AV)P=0

i=1
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where I is amx m identity matrix, and m is the number of transition states. One can also
show thatl" P=1,1" =(1 .. 1),,, . Given the probability distribution matrix P and the
transition intensity matrix ¥ which could be observed from the data sequence and
calculated by the scheme in (5.3), respectively, we can solve 4,,i=1,2,..,m by this linear

system. However, a better way to solve this linear system is use the algorithmic proposed
by Ching and Ng (2006). They used a linear programming technique, similar to the one in

(5.6), defined as

Min, {

zk:,wp P” (5.10)

1

k
subject to Z A=1420

i=1

where ”[]Il is a vector norm, and / € {1,2,0} . For simplicity, we choose/=1. Thus, an

equivalent linear programming technique proposed by Ching and Ng (2006) is as follows:

Mianw, , subject to (5.11)
=1
w, A,
w, 4,

>X -[VX|V,X...|V,X]

m
wy A
W, A,

> X +[VX |V, X...|V,X]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

In the application section, due to the seasonal fluctuation, we will use a fourth order

Markov chain in the hope that it will result in a better representation of the loan behavior.

5.1.3 High-Order Multivariate Markov Chain

By assuming that the state probability distribution of the j-th sequence at

time t =7 +1 depends on the state probability distribution of all sequences at times

t=r,r—1,...,r—n+1, Ching and Ng (2006) proposed a higher-order multivariate Markov

chain model:

F'{fl =Zzﬂj"’knjk1:;k—h+1’j =1,2,..,s

k=1 h=1

A 20,1< jk<s1<h<n (5.12)
lj'.'k =17=12,..,s

k=1 h=1

where ¥/ is the h-th intensity transition matrix indicating the /- intensity transition
from states in the j-th sequence at timez = r—h+1to states in thek -th sequence at time

¢t =r+1.In fact, each¥;* is a mx m matrix represented by

A (5.13)

Via 0 Vaa
Equation (5.11) could also be written in matrix form:

F% =B“F* +B“F’
(5.14)

Fﬂ - BﬂaFra +BﬁﬂFrﬁ

r+l
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4 aoff 3 aff 2 aff 1 aff
ﬂ’aﬂ V4 ]’aﬂ V3 laa, yiji} V2 2’ozﬁ Vl
1 0 0 0
BY = az+p
0 1 0 0
0 0 I 0 T04x 7Y
4 ao, BB 3 aa, B 2 aa,pp 1 aa,.pp
A’aa,ﬂﬂl/zt A’aa,ﬂﬂl/; ﬂ’aa,ﬂﬂn A’aa,ﬂﬂr/]
e _ I 0 0 0
0 1 0 0
0 0 I O TWx74

where F =(FV FY, ., FY Y ,j=12,.,s, and V',V is specified by equation
(5.12). In our case, s {,B} . The model introduced in equation (5.14) is too

complicated to be solved by linear programming. We will use the direct algorithm in

MathCAD® to solve this model in matrix form.

5.2 Application

In this section, we will use the multivariate higher-order model introduced in the
previous section to analyze the correlation between retail mortgage loans and credit cards.
Also, performance comparison of the three models to predict the probability distribution
in the next period, namely, a multivariate model by equation (5.5), a higher-order model
by equation (5.11), and a multivariate higher-order model by equation (5.14) would be

provided for the conclusion in the next section.

An Ohio local bank provided us with 18 months of consecutive data sequences on

retail mortgage loans and credit cards, from April 2005 to September 2006. Based on the
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results, a report will be issued to the bank management. We will deal with each of the
models separately followed by a summary of a model’s performance according to its

prediction ability.

5.2.1 Multivariate Model for Correlation and Prediction

One of the results that the bank wishes to know is the direction and the magnitude
of the correlation between retail mortgage and credit card because, normally, these
services are taken by the same group of people in a local area. Macroeconomic factors
could be common drivers that have effects on payment patterns and behaviors of both
retail mortgage and credit card. The following are the notations we will be using

throughout this chapter for all three models. We will use @, B for retail mortgage and

credit cards dataset, respectively. Following the definition in Table 2.1 of chapter 2, for
each of the dataset, there are 7 + 4 states, 7 for transient states and 4 for absorbing states
which are represented byi, k € {S,, R, }i =-3, -2,-1,0,1,2,3;k =1,2,3,4. Different lags or
orders will be referred to as je{1,2,3,4} . For example, when j = 4, the transition
aff
Vi3 K Vs

intensity matrix: V¥ = M O M is referring to 4-month lagged transition

Vs L Vi),
from retail mortgage states to credit cards states. Thus, the multivariate Markov model
proposed by Ching and Ng (2006) is given as by equation (5.4),

(ﬂaaV"‘“ AogV
or =

F which could also be written as
Ag VP AV

B B
ap f _ o af o f a _
§_IﬂaﬂV FF=F :>§_l,1a,,V F/~F* =0
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The sign and values of the parameters A ={1°“ 1“1 , A"} provide the

direction and the magnitude of the correlation. Also, given the probability distribution at

time ¢ , the model can predict the distribution at time r+1 . For simplicity, we

choose / =11in the vector norm ””1 Thus, the linear programming in equation (5.5)

becomes

B
Min, > A, VP FF —F*} (5.15)
a=1 .

B
subject to Zlaﬂ =1and 4, 20,a,=1,2
a=1

We will provide methods, direct solution of (5.4) and linear programming
solution of equation (5.15), for solving the parameter A ={1°*,A%,1%* 1%} by the
Minerr() method of MathCAD and the Solver() function of Microsoft Excel, respectively.
The models are built based on the datasets 1 — 15 periods, and data of the last period or

period 16 is used to check and compare model performances.

The followings are examples of transition intensities calculated by equation (5.3)

R, R, R, R, S, S5, S, S, S, S, S,
R, 1 0 0 0 0 0 0 0 0 0 0
R, 0 1 0 0 0 0 0 0 0 0 0
R, 0 0 1 0 0 0 0 0 0 0 0
R, 0 0 0 1 0 0 0 0 0 0 0
S_4 0 0 0 0 0 0 0 0 0 0 0
ver =5, [ 0 0 0 0 [} 0 [ [ 0 0
S, 0 0 0 0 0 0 0 0.0014 0.0005 0 0.0012
S, {0.0214 0 0.0012 0 0 0 0.0014 09514 0.0345 0 0.0011
S, 10.0104 0.0014 0.0021 0.0045 0 0.0005 0.0021 0.0285 0.0014 0.9124 0.0024
$,]0.0124 0.0072 0.0017 0.1040 0 0 0 0.0012 0.0041 0.0741 0.0076
S, L 0.0001 0.0017 0.0065 0.0032 0 0.0012 0 0.0034 0 0.0018 0.0015 |

Figure 5.2(A) Transition intensity matrix within credit cards.
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Figure 5.2(B) Transition intensity matrix between retail mortgages and credit cards.

R”,
0.5901
0.0012
0.0651
0.0914

0
0.0012
0.0019
0.0001
0.1025
0.0021

0

R,

0
0.4748
0.1245

0
0.2541

0

0

0

0
0.1721
0.6748

R%,
0.1478
0.1478

0.5684
0.1024

0.0014
0.0014

0.2365
0.0002

R?,
0.0471
0.0014
0.0145
0.4512
0.0142
0.0661
0.0008

0.0874

N

-3

0.1214
0.0142
0.0321
0.1224
0.3871
0.0547
0.1233
0.0025
0.0019
0.0065
0.1781

st

0.0124
0.0301
0.0245
0.0001
0.1748
0.4517
0.4154
0.2345
0.0009
0.1471
0.0014

s?

-1
0.0110
0.0018
0.0781
0
0.1201
0
0.2315
0.7841
0.1269
0
0.0014

s,

0
0.0031
0.0214

0
0.2415
0.1454
0.0594
0.1484
0.1487
0.1475
0.0987

s?,

0.0014
0.0784
0.0321

0

0.0012
0.0047
0.0124
0.0978
0.3412
0.3874
0.1114

S7,

0.0011
0.0145
0.0141
0.2147
0.1457
0.0018
0.0142
0.0014
0.0002
02314
0.1387

s#

3

0.00017]
0.0984
0.0148
0.1473
0.0007
0.0009
0.0005
0.0078
0.4816
0.1673

0.1991 |

97

Figure 5.2(A) and Figure 5.2(A) are examples of transition intensities matrice

given by equation (5.3).

Please note that the transition intensities in¥* between states R,k =1,2,3,4 and

between S,,i =-3,-2,-1,0,1,2,3 are no longer necessarily 1 and 0 because the charge-off

in a retail mortgage loan does not always transit to the charge-off of credit cards and vice

verse. Also, we can find that the prepayment in credit card is not as significant as the

retail mortgage which has also been confirmed by many empirical analyses. The

calculation of its elements is given as

9i = _3,_2,-1,_,1’2,3,i # j’k =172’3’47* <€ {a’ﬂ}
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wherec, is the occurrence frequency counts of the transition between states at time:.

Furthermore, the probability distribution vectors in each of the states are given in Figure

st

F,=(0.0131 0.0286 0.1025 0.7523 0.0246 0.0321 0.0125 0.0098 0.0078 0.0115 0.0051)"
F5 =(0.0000 0.0000 0.0001 0.7958 0.0212 0.0565 0.0814 0.0165 0.0158 0.0107 0.0014)"

5.3:

Figure 5.3 Probability distribution vectors.

Thus, the model in (5.4) solved by the Minerr() method of MathCAD is given as

F2, =0.2955V"F% +0.7045V “F? (5.16)

{ n+l
Ff =0.6077VPF* +0.3923V ¥ FF

n+l

where, 1 ={A1%, A% A% 1%y = {0.2955,0.7045,0.6077,0.3923}and2 A7 =1
B

From the elements of the vector A it is seen that there is a relatively strong
positive correlation between retail mortgage and credit cards payment. Also, the
correlation is not symmetric ( A, =0.7045%=0.6077=4,, ). This result could be
explained by the payment sequence for each month’s bills, or the inelasticity of the
mortgage payments. On the other hand, the function of credit cards could be easily
replaced by cash or other payment method. As a result, credit cards payment seems more

contingent on the payment of the mortgages.
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5.2.2 Higher-Order Model for Prediction

In this subsection, we will apply a " -order Markov chains model, ¢ = 4, to predict

the probability distribution between states defined in Table 2.1. Data for this model are
provided by the same Ohio local bank mentioned at the beginning of this application
section. The parameters in model (5.8) provide information about the correlation between
states of different lags. This correlation will reveal which lag has most influence over
current states. That is, by taking past several transitions into consideration, we hope the

model will offer better predictions.

k k
According to model (5.8), or P"* =N AyprtttD N 2 =1, V=),

i=] i=1
t=1,2,3,4 are the transition matrices from time n —¢ to n where n is referring to the

current time. Please note that whent =1, the model is just a regular first-order Markov

chain.

Equation (5.3) gives us a method to calculate the intensity

matrixV = (V'),t =1,2,3,4, the elements of which represent the transition between states

at time n — to states at time# . The following is an example of intensity matrix ofV?, or

the transition between states at two-month ago to state at the current month.

The transition intensity matrix between two-month-lags is given in Figure 5.4:
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g2 | 0.0001
[}

57, | 0.0894
s, | 0-1021
0.1011

0.
1

0
0
0
0
0
0

0
0.1721
0

R, R°

0 0

0 0

1 0

0 1

0 0
0.0142 0.0024

0 0
0.0541 0

0 0

0 0
0.0048 0

0.0145
0

0.2354
0

0.4571

0.0001 0.0089 0.2001

0.0003 0.0313 0.0065

0
0
0

0
0
0

0
0
0

0.6874

0.1023

04517

0.7942

0.1247

0.1148
0

s S°,
0 0

0 0

0 0

0 0

0 0
0.0100 0

0.0045 0.0002
0.0504 0.0314
0.4872 0.1245
0.3247 0.1055
0.0033 0.1387

Figure 5.4 Transition intensity matrix between two-month-lags.

Please note that

if n

100

[l I = = -

0.0055
0.4011
0.5478
0.7245 |

is the number of available monthly data, we

-1 . : . .
have Mod (f—t—) of transition matrices between time n—t and time n . We took the

average over the corresponding elements to reach the matrix in Figure 5.4.

By the same token, we used only 15 time periods to build the model, and data in

the last period were used to test the performance in subsection 5.2.4. The probability

distribution vector was estimated to give in Figure 5.5:

F=(0.0131 0.0286 0.1025 0.7523 0.0246 0.0321 0.0125 0.0098 0.0078 0.0115 0.0051)"

Figure 5.5 Probability distribution vector.

We can see that the F = F, in Figure 5.3. Thus, by the linear programming of

(5.11), one has the following scheme given in Figure 5.6:

V'F =(0.0002,0.0124,0.1554,0.0147,0.7146,0.0078,0.0065,0.0512,0.0547,0.0101,0.0187)"
V*F =(0.0131,0.0026,0.1025,0.7523,0.0146,0.0100,0.0072,0.0148,0.0083,0.0128,0.0056)"
V*F =(0.0125,0.0457,0.1712,0.0145,0.0897,0.4571,0.2578,0.0547,0.0345,0.0777,0.1463)"
V*F =(0.0784,0.0124,0.1574,0.1244,0.1278,0.4587,0.2144,0.2874,0.0013,0.0784,0.0659)"
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Figure 5.6 Linear programming schemes.
Miny ;a0 (W Wy + Wy W, + Wy + W+ W)

Subject to:

w, 20.0131-0.00024, -0.01314, -0.01254, -0.0784 4,
/ w, 20.0286-0.01244, -0.00264, - 0.04574,-0.01244,

w, 20.1025-0.15544,-0.10254,-0.17124,-0.15744,
w, 20.7523-0.01474,-0.75234,-0.01454, - 0.12444,
ws 20.0246-0.71464, - 0.01464, —0.08971, - 0.12784,
we 20.0321-0.00784,-0.01004, - 0.45714, -0.4587 4,
w, 20.0125-0.00654, - 0.00724, —0.25784, - 0.2144],
wg 20.0098-0.05124,-0.01484, —0.05471, - 0.28744,
wy 2 0.0078 -0.05474, - 0.00834, -0.03454,-0.00134,
W,200115-0.01014,-0.01284, -0.07771, - 0.0784 4,
w,, 20.0051-0.01874,-0.00564, -0.14634, - 0.06594,
w,2-0.0131+0.00024,+0.01314, +0.01254, + 0.07844,
~0.0286 +0.01244, + 0.00264, + 0.04574,+0.01244,
-0.1025+0.15544,+0.10254, +0.17124, + 0.15744,
~0.7523+0.01474,+0.75234,+0.01454, + 0.12442,
-0.0246+0.71464, + 0.01464, + 0.08974, +0.12784,
-0.0321+0.00784,+0.01002, + 0.45714, +0.4587 4,
-0.0125+0.00654, +0.00724, + 0.25784, + 0.21444,
~0.0098+0.05121,+0.01484, +0.05474, + 0.28744,
-0.0078 +0.05474,+0.00834, +0.03454, +0.00134,
w,2-0.0115+0.01012,+0.01284,+0.07774, +0.07844,
w,, > -0.0051+0.01874, +0.00561, +0.14631, +0.06594,
Wi Wos Wy, Wy Ws, We, Wy, We, W, Wi, Wy, 20,
K AM+A,+ A4, +4,=1L1,4,,4,,4, 20

2 =
vV VvV Vv

vV v IV IV

S
v

i1

Figure 5.6 Continued.

Applying the above scheme to the Excel Solver(), the parameters and the higher-

order Markov chain model are given as
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4
A=A, 75,2, 2,) = (0.6387,0.2356,0.1023,0.0234), Y 4, =1 (5.18)

i=1

F" =0.6387V'F"" +0.2356V 2 F" % + 0.1023V°F"~> + 0.0234V ' F"™*,

where V',t=1,2,3,4 is given in Figure 5.4, and F"™ is the probability distribution
observed at time lagz. It is seen that the correlation decreases as the number of time lags

increases.

5.2.3 Higher-Order Multivariate Model for Correlation and Prediction

Before the model is applied, one needs to clarify the transition intensities. Consider

two data sequences, retail mortgages,,t =1,2,...,16 and credit cards 3,,t =1,2,...,16. The

transition patterns are given in Figure 5.7:

tt12 345 678 910 111213 141516

QOO Oy Oy, Ol B, Oy Oy Ol By Oy O, B3, Oy s 55 B

NS 4 Vol
BN L
v R //\

B B> Bas By B> Bss Bes Brs Bes Bos Bros Pris Bras Bizs Bras Biss Prs

Figure 5.7 A high-order multivariate transition example.

(1) Multivariate transition: V% V7

---------------- »
(2) Higher-Order transition: V,,t=1,2,3,4
(3) Higher-Order Multivariate transition: V%,V "%t =1,2,3,4 e
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The model is built based on (1) in 5.2.1, based on (2) in 5.2.2. In this subsection,

the model will analyze the correlation and predict the next period probability distribution

based on (3). Again, the data, provided by that Ohio local bank, will be used up to the

first 15 period, and the last one will be used to compare and test the model in the next

subsection.

Based on the example demonstrated in Figure 5.6, we define the transition intensity

with +=1,2,3,4 time lags between states in retail mortgages @ and credit cards f as

V;“ﬁ , Vtﬁ”‘t =1,2,3,4. We let V,**, V;ﬂﬂ t =1,2,3,4be the higher-order transition within retail

mortgages and credit cards, respectively. As a result, there is a total

of

4x 4 =16 transition intensity matrices. Here, in Figure 5.8, we present?; , the transition

from retail mortgages states to credit cards states with time lags equal to 3.

xR R
o o o X

P

0.5214
0.0002
0
0
0.0005
0.0547
02014
0.1024

K]

N
2

1t
)

VJ U
~

[

&

o

gl

Figure 5.8 ¥, is the higher—order inter transition intensity matrix.

RZ
0.
0.1922

O O o o

0
0.0009
0

R3
0.0014

0.7812
0.0001

0.0002
0.0457

0.0007

R{

0
0.1475
0
0
0
0.0034
0.0005
0
0.0002
0.0065
0.1125

S
0
0
0
0
0.0111

0.0169

0.0087
0
0
0

S

-2

0

0

0
0.0001
0.0042
0.1254
0.0231
0.0987

0

0
0

S,

0
0.0001

0.0072
0.2487
0.3645
0.1032
0.0087
0
0

SO
0.0124
0
0.0004
0.0047
0.0105
0.2347
0.1247
0.9045
0.0657
0.0032
0

Sl
0.4514
0.0045
0.0056
0.0789
0.0078
0.0149
0.0524
0.0124
0.3578
0.1008
0.0148

SZ
0.0014
0.0145
0.0014
0.1247

0
0.0021
0.0007
0.0241
0.1187
0.0008

0
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The construction of the above matrix follows equation (5.3). Also, we note that

there are no absorbing states in V,”‘ﬂ ,a# [,t=1,234. This phenomenon has been

explained in subsection 5.2.1.

The model in (5.14) is too difficult to solve by linear programming. We will apply
the MathCAD’s Minerr() method to solve this problem. Due to the MathCAD’s
maximum limit of the elements a matrix could have, we need to decompose the model in

(5.14) to smaller systems of linear equations:

a _ 11 aa ra 2 oo o 3 aa o 4 ao rra
];’1 _j’aaVl F; +2’aaV2 F2 +/1aaV3 F; +A’aaV4 F4
+ AV PR + AV ES + 2 VP FP + AL VP F/
B _ gl yBBa 2 PR 3 ybpra 4 788 e 5.19
FF = A VPR + A VI F + A VIV ES + A, V' F, (5.19)
+ Ag VPR + A VI F) + A, VP F) + 4, VI F)
4
where Ve(V,"“,V,“ﬂ,V,ﬁ“,V,ﬂﬂ),t=1,2,3,4,22Vt“ﬂ =1 are the 11 by 11 transition
a,B t=1
matrices given by Figure 5.7, and F;“’” ,t=1,2,3,4 are the 4 consecutive observed

probability distribution vector of retail mortgages and credit cards.

From the MathCAD analysis, we obtained the following equations:

_ 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 \T
2= (A A s Renars e s A > P P s s R s g s Ao s g s A s A Ao Ao )
=(0.1278,0.0914,0.0311,0.0154,0.3209,0.2365,0.1398,0.0371,
0.2355,0.1165,0.0977,0.0211,0.0098,0.3871,0.0403,0.0920)"
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F&,, =0.1278V," F% + 0.0914V, F,, + 0.031 1/, F, + 0.0154V“ F,
+0.3209/, 7 F/ +0.2365V,2F}, + 0.1398V,* F/, + 0.037W* F/, (5.20)
Ff, =0.23550,F% + 0.1165V/” F}, + 0.0977V* F%, + 0.0211W /7 F},

+0.0098V,7 F7 +0.3871V/“Ff, +0.0403V/F/, +0.0920V/*F/,

4
Here,ZZV,”ﬂ =1. As we can see from the parameters, the correlations within
a,fB t=1

Mortgages are less significant than those within credit cards, while the correlations
between retails and cards are not symmetric as confirmed by the first-order multivariate
model in subsection 5.2.1. The performance of this model is compared with the other two

models in the previous subsections.

5.2.4 Summary of Model Performance

For the multivariate model, the data set observed in periods 1-15 (Figure 5.3) was
used. For the higher-order model, the dataset with 4 consecutive months observations
(Figure 5.5) was required. For the higher-order multivariate model, the dataset is more

complicated and could be represented in Figure 5.9:

F* =(R,Fy  Fy B

1,¢2

B_(pP rpf B pBNT
E —(E,t’F2,t’E,t’F4,t)

Figure 5.9 Observed probability distributions for model (3).

Criteria used for measuring the prediction error was the normalized error:
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» F, ., —F
r - FS,,]G_FS, b - ; Ry .16 Ry
s, = TR T 5.21
Fs,.,w l ZFRk 6 ( )
k=1

i=-3,-2,-1,0,1,2,3,k=1,2,3,4

where Eg and E, are the normalized error for transient stateS;and absorbing states R, ,

respectively. F . is the observed probability distribution of transient states at period 16,

while FS,_ is the predicted probability distribution for the same states. F, ;;and F %, follow

the same notation rules. For predictions of transient states, the normalized errors are
calculated individually, while the normalized error for absorbing states are measured as a
whole because the different types of charge-off sometime are actually at the arbitration of
the bank management. Equation (5.21) gives the percentage of errors in the observed
dataset. Small normalized errors are expected for good model prediction performances.
Comparisons of percent prediction errors among the three models are presented in Table

5.1.

Table 5.1 Comparisons of percent prediction errors among the three models.

S 3 S -2 S——l SO Sl SZ S3 Z R
k

k=

uly

Model (1) | 23.11% | 35.47% | 22.70% | 12.55% | 16.32% | 20.02% | 27.21% | 38.09%

Model (2) | 22.98% | 36.98% | 21.77% | 1037% | 17.87% | 19.68% | 26.97% | 47.51%

Model (3) | 24.57% | 33.98% | 14.78% | 9.54% 15.87% | 16.40% | 29.41% | 50.87%
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Also, the Data in Table 5.1 are presented in Figure 5.10.

60%
-~ 4« = Model (1)

- Mo del (3}

50%

40%

30%

% Error

20%

10%

0%

83 82 &1 80 1 82 83 Sum R}

Figure 5.10 Model comparison.

Generally speaking, model (3) is more accurate in the normal state, S,, and is

better than the other two models in most other cases. Not surprisingly, the best model to
predict the absorbing states is simply the higher-order model. This result could be due to
the fact that the charge-off decisions for retail mortgages have been made independently
of the decisions for credit cards. This result is crucial information for the credit asset
management. In other word, the bank management failed to take this correlation
information into account when they made the charge-off decisions. By charge-off
decisions, we means the bank took one the approaches, mentioned in Table 2.1, to charge
the assets off from the system. Also, although model (2) is not necessarily better than
model (1), there is still a conceivable difference in the prediction performance based on

this dataset.
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5.3 Conclusion

The tested models in section 5.2 offer bank management quantitative methods to
analyze and predict its loans’ behavior, which is required by the Federal Reserve Bank.
This result could help bank management in making strategic decisions. Furthermore, the
measurement of correlation offered by a higher-order Markov chains model offers a
simple and reliable method to analyze data for small-to-medium size local commercial
banks, which, in most case, do not have adequate resources for implementing
comprehensive large computation systems. In the next chapter, models based on hidden
theory of Markov chains will be used to analyze unobservable forces behind observable

behavior.
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CHAPTER 6

A HIGHER-ORDER INTERACTIVE HIDDEN

MARKOV CHAIN MODEL FOR

RETAIL MORTGAGE

This chapter is concerned with Hidden Markov Models or HMM. HMM is very
useful in decoding the unobservable forces affecting the retail mortgages loans by
analyzing the observable state transition behaviors of the loans. Also, a fourth-order
HMM, solved by the Heuristic Method introduced by Ching and Ng (2006), is presented
based on the assumption that the past several periods of payment behavior have an effect
on current behavior. Finally, an Interactive Hidden Markov Model (IMMM) is also
presented in order to capture the interaction between the observable states, loan transition

behavior, and unobservable underlying local macro-economic factors.

6.1 Models

Following MacDonald and Zucchini (1997), a standard HMM has the following

elements: (1) N, the number of hidden states, H ={H ,H,,....H,}, (2) S, the number of
observable states, O ={0,,0,,...,0s},S €(S;,R,),i =-3,-2,-1,0,1,2,3,k=1,2,3,4, 3) 4,

the transition probability matrix within the hidden states, A={q;},q;=

109
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P(H,

jit=n

|H,

i,t=n-1

),1<i,j<N , (4) B, the emission probabilities matrix, B ={by;} ,
where by, = P(Os|H;),1< j<N,Se(S,R,),i=-3,-2,-1,0,1,2,3,k=1,2,3,4 , (5) IT,
the initial state distribution, IT={z,},7, = P(O;). Thus, an HMM could be completely
specified by A =(4,B,11).

The ultimate purpose of the HMM is to better understand and predict the transition
probabilities between the observable states by analyzing the underlying forces that have
influence on the observable behavior. Generally speaking, what people are really
interested in are the observable states. However, to better simulate or estimate the true
pattern of the state transition under different prevailing underlying situations, underlying
forces must be taken into account in the model. Empirically speaking, as more
information is built into the model, more accurate results could be expected, which is the
general idea of the higher-order HMM. From the linear programming scheme proposed
by Raftery and Travare (1994), which was extended by Ching and Ng (2006) by allowing

for non-stationary transition intensity ( Q,,i=1,2,...,T ) overtime, one can avoid the

problem of having to estimate too many parameters in a higher-order Markov model. In
addition, the higher-order model could be further improved by assuming that the
observable states could also have influences on the unobservable or hidden states. As a
result, an HMM will allow for the interaction between these two types of states and might

produce even more accurate prediction results.

6.1.1 Hidden Markov Model (HMM)

In most cases, the observable phenomenon is veiled by invisible forces which

sometimes make physical sense. In this case, these hidden forces are crucial to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

understanding the perceivable pattern. In this subsection, a simple Hidden Markov Model
is introduced to track and predict the transition probabilities of payment states in retail
mortgage loans by taking local macroeconomic situations into consideration. The macro-
economic environment is the main factor influencing business development. In chapter 3,
we also showed that macroeconomic factors affect the retail mortgage health index. It is
desirable to have a measurement which could track hidden macroeconomic transition
processes that have a close relationship with the financial industry. One good candidate is
the state space model concerning the business industry industrial production index by Liu
(2005). The model is given as:

Y, = 0.4096yt 2
-0.987529Irt _

+0.08350r, ) ~0.6258Un, _,-0.0619In, _,-0.0236Dp, _

+0.26377In L1 +0.002143Dp 1

2 (6.1)
i

where, y, is the industrial production index at time t, fr, is interest rate, Un, is

unemployment, In, is inflation, and Dp,is disposable personal income at time lags. We

define an economic environment to be positive if the industrial production index is at
least 100 at that period and negative otherwise. Thus, we have 2 hidden states. From time
to time, the hidden state transits from good to bad or from bad to good. Without loss of
generality, we assume that the probability of the industrial production index being
positive isa , and the probability of it being negative isl—a . Also, we follow the
definition of observable retail mortgage states. That is, S € (S,,R,),i =-3,-2,-1,0,1,2,3,

k=1,2,3,4 (Table 2.1). By the definition of hidden states, we can observe the steady

state  probability distribution (under different hidden states), O,;,i=12,

Se(S,R,),i=-3,-2,-1,0,1,2,3, which are defined as
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Oy, , if observed under a positive economic environment

0, < 62)

g . . . .
OS|2 , if observed under a negative economic environment

A new way for estimating of parameter & has been introduced by Ching and Ng
(2006). Following their method, we need to define a probability distribution at steady

state. Unfortunately, in this dynamic economic environment, there is no such thing as a
steady state. The way we can bypass this dilemma is as follows: Let X be
the S-th element of the steady probability distribution

vector X, Se(S,,R,),i=-3,-2,-1,0,1,2,3,k=1,2,3,4,, we have

=

2
2. 2.0
X =fle=l  §e(S,R,),i=-3,-2,-1,0,1,2,3,k=1,2,3,4,n=16 (6.3)

§

where, O is the S element of the observed probability distribution at the intersection of
two hidden states. Thus, the steady probability distribution is approximated by averaging
all the observed distributions over the intersections, where n is the number of intersections
in the available time series of data. Thus, to estimate ¢ in the hidden Markov chain, we
use Eq (6.4) as suggested by Ching and Ng (2006). Eq (6.4) minimizes the sum of

squared deviations between £, and X .

Min, Ay} = {”fzv _XSHZ}
Se(S,R,)i=-3,-2,-1,0,1,2,3,k=1,2,3,4

(6.4)
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f’s is given by the following matrix manipulation. Let P be so defined such that

0 H
P:[ . lelj (6.5)
P11><2 0 13x13
[« a v (AT r ro.
where, HZX“_[l—a l—alm , and Em—(Osu Os,z)m2 Oy, =1,2,

Se(S,R,),i=-3,-2,-1,0,1,2,3,k =1,2,3,4 are defined in Equation (6.2). Thus,

P2=[ f) HM,}([ (') Hzan=(H2xnxP1'1x2 ’ 0 j (6.6)
P 0 P 0 0 Bie X Hpyy 13x13

11x2 11x2

Therefore,f’s , the probability distribution taking hidden states into consideration with

o known, is defined as

A

Ps = I)I’IXZ XHy %1, (6.7)

2x11
Where 1, = (L1,...,1)".

Based on the assumption thatf’s is a stationary probability distribution, we can

build a Markov prediction model to approximate the probability distribution in the next

period under the consideration of a hidden process. The model is given as:
- Min fyy = {4V, P, P .1 =1.2,00 (6.8)

subject to1 >0

. Se(S,R),i=-3,-2,-1,0,1,2,3,k=1,2,3,4
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whereV is the transition intensities given in equation 6.3 in chapter 6. Once we find the

parameter A, we can use the observable probability distribution observed at times—1to
predict that at time¢. The model in equation (6.8), listed here only for the completeness
of the theory, uses a similar idea of equation (6.3) and, therefore, would not be tested in
the application section. A higher-order Markov prediction model for hidden processes

will be presented in the next subsection.

6.1.2 Heuristic Method for the Higher-Order HMM (HHMM)

Given observed states, a higher-order HMM is believed able to solve the following
three problems: (1) the prediction of the probability distribution of observed
states P(O | A), A = (4, B,T1), (2) the optimal hidden states that best explain the observed
behaviors, (3) the model parameters, A =(A4,B,I1). In the real economic world, we

seldom have the capability to choose underlying factors affecting the observable behavior
of a process. Thus, problem (2) is irrelevant to our case. To solve problems (1) and (3) by
conventional methods require tedious recursive algorithms. As is the case for the forward
algorithm for problem (1), and for the EM algorithm for problem (3). Detailed discussion

of the forward and EM algorithms could be found in MacDonald and Zucchini (1997).

In this subsection, we will present the Heuristic method proposed by Ching and
Ng (2006) for a fourth-order HMM based on the assumption that the emission

probabilities matrix, B={by;} , where b, =P(S,|H;),1<j<N,I<k<i could be
observed, which is generally the case. Let {l;,.} € H,i=1,2be the stationary probability

distribution for the hidden states, and {131.’,}61},,1:1,2,3,4,1':1,2 be the transition
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intensities between the hidden states with different time lags. An equation for estimating

A in a fourth-order hidden Markov model is given as

Mm

(> anm-a
j=t

I i=1,2,k=1,2.34, (6.9)

k
subject to » 4, =14 20

i=1

For practical reasons, we choose/=11in the vector norm ||E]|, Thus, the more

applicable version of equation (6.9) that could be solved by the Excel Solve() function is

4
Min, Z w,, subject to (6.10)
{=1
w, 11
wZ 2’2

>H-[V,H |V,H..|V,H)

;
W] }']
w, A,

>H +[V,H |V,H...|V,H]

Here, H ;» the hidden stationary probability distribution, needs to be approximated since
it cannot be observed directly. Ching and Ng (2006) proposed a method to

calculate A, from the observed probability distribution, Oy ;:

|0; - B ,1=1,2,00,=1,2

, (6.11)
Se(S,R),i=-3,-2,-1,0,1,2,3k=1,2,34
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where B is the emission probability matrix, B ={b,,}, by, = P(Ss | H,),i=1,2, and Oy is

the observed probability distribution. For the accuracy of the model, we choose/ = 2 and

equation (6.11) given in matrix form become

Min“{os $ia = s he 32 5 =12 (6.12)

Se(S,R,),i=-3,-2,-1,0,1,2,3,k=1,2,3,4

Also, in need of estimation are the transition intensities among the hidden
states, {V,,} € V,,t =1,2,3,4,i =1,2. As pointed by Ching and Ng (2006), &,, the hidden

stationary probability distribution estimated by equation (6.12) could be used to estimate

. A
the first-order transition intensity matrix for hidden states, H, , = ({ll J =V = {{ll AZJ.
i by h

2
Thus, as the transition intensity matrix is assumed to be stationary, the second, third, and

fourth order could be estimated by the following  procedures:

>

I
X

[
-

>

(6.13)

>

X

It
NN
X
NN =
X

X
TR Y
X
—»

S

As such, the above estimation provides us a stable method to approximate

different orders of transition intensities.

The following is a summary of the above steps for a higher-order HMM. Step 1:
Use equation (6.12) to find the stationary probability distribution for the hidden states,

where by, is the emission transition from hidden states to observed states given by
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b, =P(S;, | H;),i=1,2 . Step 2: find the transition intensities for various orders by

equation  (6.13). Step 3: Use equation (6.12) to estimate model

parameters 4.,i =1,2,3,4 for a fourth-order HMM.

6.1.3 An Interactive Higher-Order Hidden Markov Model (IHHMM)

The interactive HMM is different from the regular HMM in the sense that hidden
states of an interactive HMM are affected by previous hidden states and by observable
states. In case of retail mortgage analysis, not only local macro-economic factors can
affect the mortgage payments, but the payment behavior also determine the collection
policy deployed by the banks such as high mortgage rate to cover the foreseeable credit
risks of the unusual payment patterns, which, in turn, affect the local businesses in many
ways. Therefore, an interactive higher-order HMM seems to be a good candidate for

capturing the mechanism in this system. Let O, ;be the observed probability distributions

under different hidden states such that:

r Oy, , if observed under a positive economic environment

O, =X (6.14)

O, ,, if observed under a negative economic environment

We define agSe(S;,R,),i=-3,-2,-1,0,1,2,3,k=1,2,3,4 to be the probability

with which the hidden state is positive, given the observable states in S . Thus, the

transition matrix is given as
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P= Ao =1a;,} (6.15)
Ao 13x13
T
o ..o, 0y - O .
where, A= ,0= . Se(S,R),i=-3,-2,-10,1,
l-a, .. 1-a, 0y, - Oy

2,3,k=1,2,3,4. Thus,

0 O 0 O 0. A 0
p? =(A gll]x[A z)xujz( 2x11; 11x2 , o J (6.16)
11x2 11x2 x 13x13

11x2 2x11

Therefore, f’s , the probability distribution under hidden states, is defined as

f)s =A% 0y 1114 (6.17)
where 1,,,, =(1,1,...,1)".

To estimate the parameters a; , we need the steady one-step transition probability

matrix which could be approximated by P, = {Ps},11-S € (S, R,) »i =~3,-2,—1,

0,1,2,3,k=1,2,3,4. Letting c¢,,i=-3,-2,-1,0,1,2,4,k=1,2,3,4 be the transition

frequency between state i and state k, the calculation of p, is given as

Cis-3 -+ Ciya 13—3,—3 ﬁ—3,4
c,=| i . = i o (6.18)

c cse C D .o P
4,-3 4-3 /i Pa-s Pas 11x11
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Ciy &

1, :
- 1if _5_ Cp %0
=8,

Z Cik

i=S_,
Pix =
0, Otherwise

i:izn:A; . Thus, the

=l i=1

We define the Frobenius norm as |4,

parameters a, could be approximated by minimizing the Frobenius norm given as

A ~ |12
PS_.PS" (6.19)

F

Min,

Therefore, the above minimizing algorithm could also be expressed as

(1)0!1 : Minogalg {(13—3,—3 - ]3-3,_3 )2 +...t+ (p—3,4 - ﬁ—3,4)2 };
‘(2)052 :MinOsazg W(Pas —{3—2,—3 )+t (P4 "f’-z,i;)z}Q (6.20)
(1De, : Minosaus] {(Pys— 134,-3 )2 Fot (Pyy— 134,4)2};

The equation to estimate 4, in a fourth order hidden Markov model is given as

Min, { i=1,2, (6.21)

k
D AVP P
J=t

!

k
subject to » 4, =1,4 >0,
i=t

where f’s , the hidden stationary probability distribution, is given by equation (6.17).

Finally, the transition intensities among hidden states could be estimated by exactly the
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same idea of equation (6.13). The only difference is the fact that the transition intensities
are 11x11 matrices to capture the effects between observed processes and hidden

processes. Thus, from Ching and Ng (2006), the higher-order interactive transition

intensities can be calculated as follows: Let{p,} € ﬁs, Se(S,R,),i=-3,

-2,-1,0,1,2,3,k=1,2,3,4:

Py P, Dy
5 _ P, P, D,
1 P - Do
Pe o Do D)y, (6.22)
Az = A1 X A]’
A3 = V; X A1 X I}v

The whole algorithm for an Interactive Higher-Order HMM can be as follows:

Step 1: Use equation (6.20) to find the stationary probability distribution for hidden states,

where by, is the emission transition from hidden states to observed states given by:
by, = P(S,, | H),i=1,2,5 € (S,,R,),i =-3,-2,-1,0,1,2,3,k =1,2,3,4 . Step 2: determine
the transition intensities by equation (6.22). Step 3: Use equation (6.21) to estimate

model parameters 4,,i =1,2,3,4 for a fourth-order HMM.

6.2 Application of HMMs

A bank, providing the retail mortgage services, never operates in a vacuum
environment because the transitions of mortgages payment behaviors and its credit asset

quality are affected by many macroeconomic factors. In a general case, the transition
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pattern of the mortgage payment behavior varies under different macro-economic
environments which, in turn, are presented by a group of indices or factors. HMMs,
however, could provide a way to unveil more accurate transition processes and therefore
provides a probability distribution for mortgage payment states closer to the real

prevailing macro-economic situation.

In this section, 18 consecutive months of monthly paid retail mortgage data,
provided by an Ohio local bank, will be analyzed by the hidden Markov model in section
6.1. That is, a basic first-order HMM given in equation (6.8), a higher-order HMM solved
by the Heuristic method given in equation (6.10), and finally, an interactive HMM in

equation (6.20).

6.2.1 HMM for Unobservable Factors in Retail Mortgages

In this subsection, a basic HMM is used to analyze and predict the probability
distribution among states considering the effects of underlying macro-economic factors.
Due to the lack of an industrial production index in the local Ohio area where the bank
data were obtained, we estimated the index from Equation (6.1) by using macro-
economic data for Ohio from February 2005 to September 2006. The macro-economic
data for Ohio from Feb 2005 to Sep 2006 are presented in Table 6.1.

Table 6.1 Macro-economic data and Index for Ohio.

Index from
Year Month  Un Ir In Dp  Eq.[(6.1)]
2005 02 578 593 352 523
2005 03 580 5.87 420 508
2005 04 590 5.86 574 493 1148
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Table 6.1 Continued.

2005 05
2005 06
2005 07
2005 08
2005 09
2005 10
2005 11
2005 12
2006 01
2006 02
2006 03
2006 04
2006 05
2006 06
2006 07
2006 08
2006 09

5.60
6.10
5.80
5.50
5.60
5.30
5.60
5.50
6.10
6.10
5.30
5.40
4.90
5.20
5.80
5.40
5.00

5.72
5.58
5.70
5.82
5.77
6.07
6.33
6.27
6.15
6.25
6.32
6.51
6.60
6.68
6.76
6.52
6.40

4.62
5.62
7.69
6.98
5.71
3.06
7.56
6.05
8.18
0.61
4.30
7.45
5.51
2.40
5.47
2.99
5.74

4.78
4.63
4.48
4.30
4.20
3.90
3.80
4.30
3.30
3.50
3.20
2.70
2.50
2.50
2.50
2.10
2.10

12.26
14.47
10.51
14.88
11.93
12.13
13.54
16.30
14.48
13.57
16.23
15.17
13.07
14.18
16.64
13.94
15.10

122

Here, Ir is interest rate, Un is unemployment, /n is inflation, Dp is disposable personal

income at different times. For the purpose of this analysis, we refer to the industrial

production index from the model in equation (6.1) as the macro-economic situation in

Ohio. The hidden Markov index sequence is presented in Figure (6.1). The average index

from Table (6.1) is 14.023. If we let a year takes a value of 1 or 0 depending on whether
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the index for that year is larger or smaller than 14.023, respectively, we obtain the hidden

transition sequence in Table (6.2).

Hdden

Figure 6.1 Hidden Markov Data Sequence.

Table 6.2 Hidden transition sequence.
t:1,2,3,4,5,6,7,8, 9,10, 11, 12, 13, 14, 15, 16, 17

H.,0,1,01,000,1, 1, 0 1, 1, 0, 1, 1, 0

From the data sequence in Table (6.2), one can estimate the emission probability

matrix, B ={b,,;} . We define the steady state probability distribution for the positive

2.0

hidden states (1’s in Table 6.2) as: Oy, :’—8——,t =3,5,9,10,12,13,15,16. Similarly, the
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2.0
steady state probability distribution for negative (0’s) hidden states as: O, ='—9—

>

t=1,2,4,6,7,8,11,14,17 . From MathCAD, we obtained the probability distribution as

shown in Figure 6.2:

O, =(0.0052 0.0094 0.0578 09452 0.0547 00412 0.0224 0.0001 0.0378 0.0028 0.0014)T
O, =(0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.0021)T
X, =(0.0038 0.0087 0.0187 0.8012 0.0947 0.0094 0.0145 00300 0.0147 0.0024 0.0019)T

Figure 6.2 Steady state probability distributions.

a ... «
where X; is given by equation (6.3). We let Hzmz(l | ) ,
-a . @ )i

and p' . = (OsTu 03, )“X2 , O; »i=1,2, a is the probability of the hidden state being

11x2

positive and 1- « the probability of being negative. Thus, the parameter o , could be

calculated by equation (6.4) or the following algorithm by letting/ = 2:

{ Min, (B - X)) 623)

subject to 0<a <1

T
bdl

where B, is given by: B =(00073c-+0.0021 00117+0.0023 ... 0.0035x+0.0021)

By the Excel Solver() function, we estimate « to be 0.9143, which means that
91.43% of the time between Apr 2005 to Sep 2006 the macro-economic environment
would stay in a positive state. As a result, the estimated probability distribution affected

by the hidden macro-economic factors is given as
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T
Ix11

1%:(0.0045 0.0083 0.0520 0.8010 0.0455 0.0284 0.0204 0.00248 0.0031 0.0021 0.0011)

In the next subsection, we will apply a Higher-order HMM to test the retail
mortgage data. Figure 6.3 presents the Excel Solver() function interface for solving the

above model:

Set Target Cell:

Equal To: ) Max
By Chanaing Cells:

44415

®min - O value of: Em:mm_ ‘

-Subject to the Constraints: —

$a$15 <=1
$8$15 >=0
$N$3 =1

Figure 6.3 Excel Solver() interface.

6.2.2 A Higher-Order HMM

In this section, we will use a higher-order HMM to track and predict the hidden
transition process. Following the procedures specified at the end of subsection 6.1.2, we
first need to approximate the steady state hidden probability distribution by equation
(6.12) or a more practical version that could be solved directly by the Excel Solver(). For

the solution using excel, we modified equation (6.12) to give
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Minh/ {Z({Os}llxl - {bsﬁ}l]xZ {hi}le)z}ai =12

2
subject to 0<h, <1,Y h =1 (6.24)

i=1

Se(S,R,)i=-3,-2,-1,0,1,2,3k=1,234

where {bg,} € By, , the emission probabilities, are actually the probability distribution

li
vectors under hidden states 1 and 2, respectively, which are given as in Figure 6.4:

by, (00052 0.0094 0.0578 09452 0.0547 0.0412 0.0224 00001 00378 0.0028 0.0014)T
by, (0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.0021)7

S
O, =(0.0038 0.0087 0.0187 0.8012 0.0947 0.0094 0.0145 0.0300 0.0147 0.0024 0.0019)T

Figure 6.4 Input variables for Equation (6.12).
The Excel Solver() gives us H = {h,h,} = {0.4033,0.5967} with the following

report in Figure 6.5:

gile: Edit - View " [nsert Fgrmat  Jools Data - Window Help  Adobe POF

DR %;;mm Mhe Vi e s oy EOE S
» $ )
A B C | Eooool F G H b K]
Microsoft Excel 11.0 Answer Report

1
-2 'Worksheet: [lineat programming.xlIs]Sheet3
:IReport Created: 1/10;2007 8:05:05 PM

3 v
4 Set Target Cell: = |

. ; Equal To: & M
Target Cell (Min) Pt 1 ;Hs:ﬂ”‘ Gmn

$a$1:$0$2
St b the Canstraints?
$A$1 <=1

$A51 >=0
1$0%2 <=1

$CH§9 Target 0.008169915 0.008169915

5
8
7-1 _Cell Name Original Value Final Value
8
9

17 |Adjustable Cells
12/ Cell Name Oviginal Value Final Value

131 $AS1 0 0.403296633 |.|3r2>=0 i
4] $AR2 0 0506704367 | ¥Rt i
16 Bl

17:iConstraints

18 Cell Name Cell Value Formula Status Slack

19 5A83 1.000001 $A$3=1 Not Binding 0

207 $SA$1 0.403206633 $A51 <=1 Not Binding0.596703367

21 5A%1 0.403296633 $A$1>=0 Not Binding 0.403296633

227 3AS2 0596704367 $A$2<=1 Not Binding 0.403295633

$A52 0.595704367 $A$2>=0 Not Binding 0.596704357
W4 v MNBZ 2 {921 ) Answer Report 1 {Sheet3 /-7 LT T Whoei o e il

Point.

Figure 6.5 Excel Solver () report.
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As the above figure indicates, each part of the report is corresponding to each
parameters input controls in the Solver () function interface. In the next step, we will

approximate the transition intensities for different orders by equation (6.13). Please note

~ ~ ~

h h

Thus, the transition intensities for four orders are estimated from MathCAD to give

\ W) s (AR
that the first-order transition intensity matrix is given by: H, , = (h' J =V =[h1 2].

2

2 =

~10.5967 0.4033 0.4813 0.5187

~ (0.4033 0.5967 ~ (0.5187 0.4813
=
A [0.5007 0.4993) p [0.4964 0.5036)

(6.25)

3T 4

B 0.4993 0.5007 0.5036 0.4964

The method to estimate the parameters A,,i =1,2,3,4 for the higher-order HMM

is given by equation (6.10). The linear programming scheme is as follows:

H =(0.4033 0.5967)"

V,H =(0.5187 0.4813)
V,H =(0.4964 0.5036)"
V,H =(0.5007 0.4993)"
v,H =(0.4999 0.5001)"

( Min, ; ;.. (W +w, +w,+w,)

w, 20.4033-0.51874, —0.49644, - 0.50074, — 0.49994,

. < w, > 0.5967 ~ 0.48131, — 0.50364, — 0.49932, —0.50014,
Subject to:
w, 2 -0.4033+0.51874, + 0.49644, + 0.50074, + 0.49994,
w, 2 -0.5967 + 0.48134, + 0.50364, + 0.49931, + 0.50014,
WL w,,w,,w, 20,
\ A+ A+ A+ A4, =1,4,4,,4,,4, 20
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Applying the above scheme to the Excel Solver(), the parameters for the higher-

order Markov chain model are given by A =(0.1876 0.8125 0 0). As a result, the

HHMM is given as
H,, =0.1876V,H, +0.8125V,H (6.26)

equation (6.26) implies that the probability distribution of the hidden states at ¢ = n + 1 are

dependent on only those att =nand atz =n—1.

6.2.3 Interactive Effects Analysis for Retail Mortgages

The observable probability distributions, O, under both positive and negative

states, are given as

s =

0.0052 0.0094 0.0578 09452 0.0547 0.0412 0.0224 0.0001 0.0378 0.0028 0.0014 (6.27)
0.0021 0.0023 0.0098 0.7380 0.0531 0.1078 0.0009 0.0300 0.0424 0.0015 0.0021

Therefore, 13_9 , the probability distribution under hidden states, is given by equation (6.17)

[24 [04 r
as B=A,,%x0, Ll =(01,.,1)" where 4= ' 7 7" | | Thus, B is
-, .. 1-¢q
given as
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1+0.0031g,
1+0.0031e,
1+0.0031ex,
1+0.0031e,
1+0.0031;
1+0.0031c,
1+0.0031e,
1+0.00310
1+0.0031c,
14+0.0031¢,
1+0.0031¢;,

140,007l
1+0.0071e,
1+0.0071a,
1+0.0071e,
1+0.0071eg
14+0.0071a,
1+0.0071e,
1+0.0071g;
1+0.0071e,
1+0.0071e,
1+0.0071,

1+0.048¢;
1+0.048c,
1+0.048cx,
1+0.048a,
1+0.0480
1+0.0480;
1+0.048¢,
1+0.048¢,
14+0.0480,
140.048cr,,
14+0.048cx,,

1+0.2072¢,
1+0.2072¢,
1+0.2072¢c;,
1402072,
14+0.20720
1+0.2072¢;
1402072,
14020720,
14020720,
1+0.2072¢,

14020720,

1+0.0016¢,
1+0.0016a,
1+0.0016c,
1+0.00162,
1+0.0016a;
1+0.0016,
1+0.0016c,
1+0.00162,
1+0.00160;,
1+0.00160;,
1+0.0016¢;,

1-0.06660,
1-0.0666cz,
1-0.06660,
1-0.06662,
1-0.0666c
1-0.06662,
1-0.06660,
10,0666z,
1-0.0666ct,
1-0.0666c%,
1-0.06662,

1+0.0215¢,
1+0.02150,
1+0.0215¢,
1+0.0215¢,
14+0.0215¢
1+0.02150,
1+0.0215,
1+0.02150,
1+0.02150,
1+0.02150;,
1+0.02152,

1-0.0299¢,
1-0.0299¢x,
1-0.0299¢,
1-0.0299¢,
1-0.0299¢
1-0.0299¢,
1-0.0299¢,
1-0.0299¢,
1-0.0299¢,
1-0.0299,,
1-0.0299¢;,

1-0.00460;
1-0.00462x,
1-0.00460
1-0.0046¢,
1-0.0046c,
1-0.00460,
1-0.0046¢,
1-0.0046¢,
1-0.0046¢,
1-0.0046a;,
1-0.00460;,

129

14+0.0013¢,
1+0.0013ct,
1+0.0013¢,
1+0.0013¢,
1+0.0013c
1+0.0013¢,
1+0.0013¢,
1+0.0013c,
1+0.0013¢;
1+0.0013c,
1+0.0013¢;,

Also, the observed one-step transition intensity matrix, calculated from equation (6.18) is

R, R, R, R, S, S, s, S, S, S, s,
R[ 1 0 0 ] 0 0 0 0 0 0 0o
R, 0 1 0 0 0 0 0 0 0 0 0
i)s =R| 0 0 1 0 0 0 0 0 0 0 0
R, 0 0 0 1 0 0 0 0 0 0 0
5.,| 0.0195 0 0 0 0.5759 0.0996 0.1646 0.1329 0 0 0
S_,| 0.0105 0 0 0 0.0365 0.6137 0.1563 0.1825 0.0005 0 0
s_,| 0.0101 0 0 0 0.02756 0.0341 0.6774 0.2399 0.0015 0 0
s, 10.02901 0 0 0 0.0041 0.0097 0.0491 0.8920 0.0109 © 0
5, 100133 01523 0 02090 0.0091 0.0089 0.0140 02078 0.2063 0.0552 0
s, 0 0.0905 0.1456 0.1221 0 0.0031 0.0237 0.0347 0.0853 0.1747 0.3184
S, 0 0.1053 0.1505 0.1305 0 0 0.0021 0.0632 0.0952 0.1510 0.2931 |

By the Frobenius norm defined in equation (6.19), the 11 linear programming

schemes are given as

Min, {(1+0.0031e, - 1)? +(1+0.0071a,)* + (1+0.2072¢,)* +...+ (1 -0.0007,)*}
J[subject to:0<a, <1

Min, {(1+0.003 la,)? + (1+0.0071a, —1)* +(1+0.2072a,)* +...+ (1 - 0.0007,)*}
{subject to:0<a, <1

Min, {(1+0.0031a,,)* + (1+0.0071er,, ~0.1053)" + (1 + 0.2072c,, — 0.1505)*
+ ot (1-0.0007c,, — 2931)%}

subject to:0< a,, <1
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1-0.0007¢,
1-0.0007c,
1-0.0007¢,
1-0.0007¢x,
1-0.0007
1-0.0007¢
1-0.0007c,
1-0.0007¢,
1-0.0007cx,
1-0.0007cx,,
1-0.0007¢;,




Letting 135 =1

130

11 — 1Ds iy to count for the overflow of each element, the probability

distribution under the hidden states is given as

A={as}=(0.0001 0.0001 0.0001 0.0001 0.0047 0.0004 0.0001 0.0008 0.0002 0.0008 0.0001)7‘

Rl
R[ 1
R,| 0©
R| 0
R| o0
5,10.0385
P, =5,]0.0208
5., |0.0218
S, | 0.0572
S, (0.2483
s,| o
s,L o

R

2

coc oo o —~ 9O

0
0.2814

0.1728 0.2700 0.2289
0.1993 0.2784 0.2440

R

S O O O o - O O

0

3

R

o O O = o O O

0

4

0.8202
0.0717
0.0544
0.0081

0.3743 0.0181

0
0

S 1

o o o

0.3019
0.2881
0.8959
0.0958
0.0279
0.0468
0.0042

SO

[ - R )

0.2479
0.3316
0.4222
0.9883
0.3724
0.0682
0.1224

S,

o O o O

0
0.0011
0.0029
0.0217
0.3701
0.1633
0.1814

S2

S O O o o o ©

0
0.1074

0.3189 0.5355
0.2793 0.5004

S;

o O O o o o o O

0

The above matrix is the transition intensities between observable states with the

assumption of an interaction between the local macro-economic situation and retail

mortgage payments. Because elements of the probability vector, 4 = {a;} , are small, we

can conclude that retail mortgage payment behaviors of a single local bank have little to

do with the local macroeconomic factors.

6.3 Conclusion

The models presented in section 6.2 are used to further analyze the relationship

between local macro-economic factors and the payment pattern for a local bank’s retail

mortgages. From the analysis using MathCAD and the Excel Solver(), we conclude the

following;:
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(1) Based on a first-order HMM, the probability of stay in a positive macro-economic
state is 0.9143 For definition of a positive macro-economic state, please refer to Table

(6.2).

(2) For the period from April 2005 to September 2006, the estimated steady state

probability distribution of the hidden macro-economic states is given as:
~ [ (04033
H= If' = (6.28)
i) \0.5967

(3) The effect of the macro-economic states on retail mortgage loans is strong as

indicated by the relatively large differences between corresponding

observation O, and O, , inrows 1 and 2 of the O; matrix in equation (6.27).
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CHAPTER 7

SUMMARY AND FUTURE STUDY

7.1 Summary and Contributions

In this chapter, we present a summary of the models that have been applied to the

banking data which include retail mortgages, credit cards, and local macroeconomic

variables. The data have been provided by an Ohio local commercial bank under the

condition that the data are strictly for academic usage only. The Table 7.1 summarizes the

models that have been used in this study:

Table 7.1 Summary of the models Used in this Study.

Chapter

Models

Chapter 2

1. Discrete and Continuous Time Markov model for expected loan duration

2. Stochastic portfolio estimation model

3. A limiting probability model for expected proceedings from past due

customers.

Chapter 3

1. A continuous Time Markov model for a loan Status

2. A multivariate regression model for analyzing the relation

132
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Table 7.1 Continued

Chapter 4

1. A Markov decision model for a loan officer optimal compensation plan

2. A Markov decision model for optimal credit collection policies.

3. A Markov Model for Analyzing the Loan System Status

Chapter 5

1. A multivariate Markov model for analyzing the correlation between retail

mortgages and credit cards.

2. A higher-order Markov model for retail mortgages

3. A higher-order multivariate Markov model

Chapter 6

1. A Hidden Markov model for retail mortgages

2. A Heuristic Method for the Higher-Order Hidden Markov Model

3. An Interactive Higher-Order Hidden Markov Model

The models presented in chapters 2 and chapters 3 are of practical importance

with regard to credit risk management in a commercial bank. The models provide an

estimate of the retail mortgage expected duration before the loan is charged off. 2. Also,

the models in chapter 3 could be used by the management of the bank to track the loan’s

dynamic status over time. Furthermore, the multivariate regression model introduced in

the same chapter presents a practical tool to estimate the retail mortgage in the presence

of related macroeconomic data.
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On the other hand, the two Markov decision models in chapter 4 are of interest to
a bank’s financial department as they could be used to design operation policies for daily
decisions. A loan officer optimal compensation plan and optimal credit collection policies
are two of the most important decisions the head of the financial department and the bank
management have to make. These models provide bank officials with applicable tools in
this regard. Also, the loan system status model is useful for estimating a retail mortgage
portfolio. Combined with the health index model presented in chapter 3, this model could

be used by the bank management as a tool for assessing financial performance.

Three stochastic models are compared with regard to percent prediction error. A
higher-order multivariate Markov chain model is shown to be the best model for
predicting the internal state, So. Figure 7.1 provides the model comparisons for the

different states as defined in Table 2.1.

Model Comparison
60% o 7 2 R

——t + Model (1)
50% i o~ WO OF (2)

i RO Cl@Y (3)
40%

Percent Prediction Error
@
o
=

b
S
ES

0%

0%

&3 S-2 51 80 S S2 53 Sum {R}

Figure 7.1 Comparisons of percent prediction errors among the three models.
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Note that the lower the value in Figure (7.2), the better the model, since the value is

the prediction error in percent.

A heuristic method has been used in chapter 6 to provide an estimate of the
parameters of the interactive higher-order hidden Markov model, or IHHMM. This
method is, in turn, applied to the solver() function, integrated in Excel®. The Figure 7.2

gives the detailed procedure to work with the Excel solver() function:

Eile Edit ~Yiew. Insert Format . Tools
hd &

Al B C D | E ‘ i i |

1 Microsoft Excel 11.0 Answer Report
Worksheet: [lineat programming.xlIsjSheet3

=:Report Created: 1/10/2007 8:05:05 PM

Data Window: . Help Adobe PDF
7 FI S I

Set Target Cell:

2

3

i

5. - EqualTa:
6 " Target Cell (Min ) L 3 - -
71 _Cell_NameDdginatyatme T Value ? : .
[ 5089 Tagel O UDREO91S O Q0NERGTS
9
10
11
12

thie Constraints:

1 Adjustable Cells jihit
Cell Manme Original Value Final Value :§$A52 <=1
$AS1 0 0.403296634 1§ $A$2>=0

$ASJ 0 osernaRr | P!

17 Constraints
18| ~Tell Name _Cell Value Formula Status  STaCk—

13 383 1000001 $AS3=1__Not Binding )

20, $A%! 0.403296633 $A%1<=1 Not Binding 0.596703367

211 $AR1 0.403296633 $A%1>=0 Not Binding 0.403296533

% AR 0.596704357 $A52<=1___Not Binding_0.403295633

231 $A%2 (.596704367 $A$2>=0 Not Binding 0.596704367

= e
i 4 v wN82278271") Answer Report 1 { Sheet3 / 2

Point NUM

Figure 7.2 Excel Solver () report.

Important conclusions drawn from the models are presented in chapter 6. These
models are useful to a financial department in a bank for studying the effects of
macroeconomic variables on retail mortgages. As a result, reports generated by these

models would be of interest to the bank’s management as well.
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7.2 Future Study

The models presented in this study are by no mean comprehensive. The
assumption of a discrete state process could be relaxed to give rise to a diffusion process.
Also, besides modeling the credit risk from a bank’s management point of view, this
research approach could be readily applied in investment. Thus, more sophisticated
models utilizing Stochastic Differential Equations or Value at Risk methodology could be

applied in this regard.
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