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ABSTRACT

Ultrashort-pulsed lasers with pulse durations on the order of sub-picoseconds to
femtoseconds possess the capabilities in limiting the undesirable spread of the thermal
process zone in a heated sample which have been attracting worldwide interest in science
and engineering. Success of ultrashort-pulsed lasers in real application relies on: (1) well
characterized pulse width, intensity and experimental techniques; (2) reliable microscale
heat transfer models; and (3) prevention of thermal damage. Laser damage by ultrashort-
pulsed lasers occurs after the heating pulse is over since the pulse duration time is
extremely short and the heat flux is essentially limited to the region within the electron
thermal diffusion length. In contrast with long-pulse laser, laser damage is caused by
melting temperature resulting from continuous pulse of energy. This dissertation
investigates the mathematical model of heat transport phenomenon in a 3D micro-sphere
exposed to ultrashort-pulsed lasers and presents a numerical method for studying thermal
deformations. The method is obtained based on the parabolic two-step model and implicit
finite difference schemes on a staggered grid. It accounts for the coupling effect between
lattice temperature and strain rate, as well as for the hot electron blast effect in
momentum transfer. In particular, a fourth-order compact scheme is developed for
evaluating those stress derivatives in the dynamic equations of motion. It should be
pointed out that micro-spheres are considered because they are of interest related to micro

resonators in optical applications, such as ultra-low-threshold lasing, sensing,

i1l
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optoelectronic microdevices, cavity quantum electrodynamics and their potential in
quantum information processing.

The numerical method is tested for its applicability by investigating the temperature
rise and deformation in five examples, which are (1) a portion of the upper hemisphere is
irradiated by a single-pulse laser, (2) portions of both the upper hemisphere and the lower
hemisphere are irradiated by a single-pulse laser, (3) the upper hemisphere is irradiated
by a single-pulse laser, (4) a portion of the upper hemisphere is irradiated by a double-
pulse laser, and (5) portions of both the upper hemisphere and the lower hemisphere are
irradiated by a double-pulse laser. Results show that no non-physical oscillations appear
in the solutions and the micro-sphere expands when it is irradiated by ultrashort-pulsed

lasers.
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NOMENCLATURE

C, electron heat capacity, J/(m’K)
C, volumetric heat capacity
C, lattice heat capcity, J/(m’K)
E modulus of elasticity, Pa
G electron-lattice coupling factor, W/(m’K)
J laser fluence, J/m?
K bulk modulus, Pa
k, thermal conductivity, W/(mK)
L radius of micro-sphere, m
m, electron mass, kg
n, atomic number density per unit volume, m™
n, number density per unit volume, m™
N number of grid points
0 volumetric heat source, W/m*
5 heat flux, W/m®
R surface reflectivity
T absolute temperature, K
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T, electron temperature, K
T, lattice temperature, K
t time, s

» laser pulse duration, s

u, displacement in the » direction , m

u, displacement in the & direction , m

u, displacement in the ¢ direction , m

v, velocity component in the » direction , m/s
Vg velocity component in the € direction , m/s
v, velocity component in the ¢ direction , m/s
v, speed of sound , m/s

r,0,¢p spherical coordinates

Greek Symbols

At time increment, s

Ar spatial grid size, m

A@ spatial grid size, m

Ag spatial grid size, m

A, finite difference operator

¢ optical penetration depth, m

a, thermal expansion coefficient

o, finite difference operator
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finite difference operator
finite difference operator
normal strain in the » direction
normal strain in the € direction
normal strain in the ¢ direction
shear strain in the »8 direction

shear strain in the ¢ direction

shear strain in the @@ direction

electron-blast coefficient, J/(m® Kz)
Lame’s constant, Pa

Lame’s constant, Pa
density, kg/m’
Stefan-Boltzmann’s constant

normal stress in the r direction
normal stress in the & direction
normal stress in the ¢ direction
shear stress in the r@ direction
shear stress in the r¢ direction

shear stress in the @@ direction

Subscripts and Superscripts

0

mitial valueat ¢ =0
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D Debye temperature, K

e electron

i grid index in the r direction
j grid index in the 6 direction
k grid index in the ¢ direction
) lattice

n time level
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CHAPTER ONE

INTRODUCTION

1.1 Overview

Ultrafast lasers with pulse durations of the order of sub-picosecond to femtosecond
domain possess exclusive capabilities in limiting the undesirable spread of the thermal
process zone in the heated sample [Tzou 2002]. The application of ultrashort-pulsed
lasers includes structural monitoring of thin metal films [Mandelis 1992, Opsal 1991},
laser micromachining and patterning [Elliot 1989], structural tailoring of microfilms
[Grigoropoulos 1994], and laser synthesis and processing in thin-film deposition
[Narayan 1991]. Recent applications of ultrashort-pulsed lasers have been in different
disciplines such as physics, chemistry, biology, medicine, and optical technology [Liu
2000, Shirk 1998]. The non-contact nature of femtosecond lasers has made them an ideal
candidate for precise thermal processing of functional nanophase materials [Tzou 2002].

Success of high-energy ultrashort-pulsed lasers in real applications relies on three
factors [Tzou 2002]: (1) well characterized pulse width, intensity and experimental
techniques; (2) reliable microscale heat transfer models; and (3) prevention of thermal
damage which is also the most important task in real applications. It should be pointed
out here that ultrafast damage induced by sub-picosecond pulses is intrinsically different

from that induced by long-pulse or continuous lasers. For the latter, laser damage is
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caused by the elevated temperatures resulting from the continuous pumping of photon
energy into the processed sample. The “damage threshold” termed in heating by long-
pulse lasers, therefore, is often referred to as the laser intensity that drives the heated spot
to the melting temperature. Thermal damage induced by ultrashort-pulsed lasers in the
picosecond domain, on the other hand, occurs after the heating pulse is over [Wang
2007]. Field induced multi-photon ionization produces free electrons that are rapidly
accelerated by the laser pulse. By absorbing energy from the impinging photons in the
femtosecond domain, these free electrons mobilize and jonize neighboring atoms through
high-frequency collisions, which generates more electrons. The hot electrons transmit
thermal energy to photons through phonon-electron coupling, resulting in a new thermal
property, called the electron-phonon coupling factor, for microscale heat transfer in
metals [Wang 2007]. This process continues until a critical density of hot electrons is
reached. Under a sufficiently high intensity of heating, in fact, experimental results have
shown that the ultrafast damage involves shattering of a thin material layer (from the
heated surface) without a clear signature of thermal damage by excessive temperature
[Tzou 2002, Wang 2007]. Rather than the melting damage developed at high
temperature, obviously, there exists a new driving force that brings about such ultrafast
damage, probably in only a few picoseconds after heating is applied [Tzou 2002]. This is
our motivation to study the thermal deformation induced by ultrashort-pulsed lasers
because it is important in preventing thermal damage. Particularly, we are interested in
the thermal deformation for micro-spheres because they are of interest related to micro

resonators in optical applications, such as ultra-low-threshold lasing, sensing,
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optoelectronic microdevices, cavity quantum electrodynamics and their potential in
quantum information processing.
1.2 Objective

The research objective is to develop a new finite difference scheme to study the
thermal deformation in a micro-sphere subjected to ultrashort-pulsed lasers based on the
dynamic equations of motion related to two-step parabolic heat transport equations. Our
coordinates of reference will be the spherical coordinates system. To achieve this
objective, five steps should be followed:

(1) Introduce velocity components into the model and re-write the dynamic
equations of motion.

(2) Construct a staggered grid.

(3) Develop a fourth-order compact finite difference scheme for evaluating stress
derivatives and share stress derivatives in the dynamic equations of motion. As
such the third-order derivatives of stress and shear stress are disappeared and
hence non-physical oscillations in the solutions are eliminated.

(4) Develop a finite difference scheme for obtaining temperatures, displacements,
stresses, and strains in a micro-sphere induced by ultrashort-pulsed lasers.

(5) Apply the developed numerical scheme to investigate the temperature,
displacement, stress, and strain distributions in a gold micro-sphere subjected
to ultrashort-pulsed lasers, where a portion of the upper hemisphere is
irradiated by a single-pulse laser, portions of both the upper hemisphere and
the lower hemisphere are irradiated by a single-pulse laser, the upper

hemisphere is irradiated by a single-pulse laser, a portion of the upper
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hemisphere is irradiated by a double-pulse laser, and portions of both the upper
hemisphere and the lower hemisphere are irradiated by a double-pulse laser.

Results of the research will provide a numerically efficient method without non-
physical oscillations to solve the two-step parabolic heat transport in spherical
coordinates and provide us a better understanding about the transport phenomenon in a
micro-sphere. This research result will have an important impact on the development of
short-pulse laser applications in the structural monitoring of thin metal films, laser
patterning, structural tailoring of microfilms, and laser synthesis and processing in thin
film deposition, as well as in other disciplines where high-energy short-pulse lasers are so
important.

1.3 Contents of This Dissertation

In Chapter Two, we will introduce the classical theory of heat transfer at the macro
scale, and then we will discuss process of heat transfer in micro scale, the dual-phase-
lagging behavior, as well as a review of previous work.

In Chapter Three, we will consider a gold micro-sphere irradiated by ultrashort
pulsed lasers. The geometry mathematical model for thermal deformations will be set up.

In Chapter Four, we will develop a staggered finite difference scheme for solving
the governing equation system and design the numerical algorithms for calculating the
temperature, displacement, stress and strain distributions, respectively.

In Chapter Five, we will test the numerical results based on the developed numerical
method for thermal deformation in a gold micro-sphere subjected to an ultrashort pulsed
laser. Five cases including a portion of the upper hemisphere is irradiated by a single-

pulse laser, portions of both the upper hemisphere and the lower hemisphere are
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irradiated by a single-pulse laser, the upper hemisphere is 1rradiated by a single-pulse
laser, a portion of the upper hemisphere is irradiated by a double-pulse laser, and portions
of both the upper hemisphere and the lower hemisphere are irradiated by a double-pulse
laser will be studied. Various mesh sizes will be chosen to test the convergence of the
scheme. The electron temperatures, the lattice temperatures, the displacements, and the
stresses will be calculated and discussed. And in Chapter Six, conclusions and future

work will be discussed.
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CHAPTER TWO

BACKGROUND AND PREVIOUS WORK

2.1 Macroscopic Heat Transfer

In thermodynamics, heat is defined as energy transfer due to temperature gradients
or differences. Consistent with this viewpoint, only two modes of heat transfer are
recognized: conduction and radiation. For example, heat transfer across a steel pipe is by
conduction, whereas heat transfer from the sun to the earth is by radiation. These modes
of transfer occur on a molecular or subatomic scale.

In the atmosphere at normal pressure, conduction is by molecules that travel a very
short distance before colliding with another molecule and exchanging energy. On the
other hand, radiation is by photons, which travel almost unimpeded through the air from
one surface to another. Thus, an important distinction between conduction and radiation
is that the energy carriers for conduction have a shorter mean free path, whereas for
radiation, the carriers have a long mean free path. Additionally, a fluid, by virtue of its
mass and velocity, can transport momentum, and by virtue of its temperature, it can
transport energy. Therefore, convection is defined as the transport of energy by bulk
motion of a medium. We will focus our discussion on the conduction mode of heat

transfer.
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On a microscopic level, the physical mechanisms of conduction are complex,
ranging from molecular collisions in gases to lattice vibration in crystals, and flow of free
electrons in metals. Heat conduction at the macro scale is a description of macroscopic
conditions averaged over many grains. Thus, microscopic behaviors need to be
aggregated over the domain by placing an emphasis on phenomenological laws, more
suitable to the macroscopic level. In the classical theory of heat transfer, the heat
conduction is governed by Fourier’s law. It is a constitutive equation that depicts the way
in which cause varies with effects. It is necessary along with the conservation of energy
law to derive the heat transport equations. Regardless of the assumptions formulated in
th‘e constitutive equation, it must be admissible under the framework of the second law of
thermodynamics [Kaba 2005].

Fourier’s law of heat conduction can be expressed as follows [Kaba 2005, Wang

2007]

4(r, 1) =—kVT(r,2), 2.1)
where 7 denotes the position vector of the material volume, & is the thermal conductivity
of the material, and ¢ is the physical time. The law states that the heat flux vector (;]) and
the temperature gradient (V¢) across a material volume occur at the same instant of time.

The energy equation derived from the first law of thermodynamics is [Kaba 2005, Wang

2007]

- oT
~Vg=C,—--0, 2.2)

where C, is the volumetric heat capacity and Q is the heat source. Taking the

divergence of Eq. (2.1) and substituting it into Eq. (2.2), we obtain the traditional
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heat conduction equation [Kaba 2005, Wang 2007]

Cp%tz:V-(kVTHQ. (2.3)

The immediate response dictated by Fourier’s law results in an infinite speed of heat
propagation, implying that a disturbance applied at a certain location in a solid medium is
immediately sensed anywhere else in the medium. Because the heat flux vector and the
temperature gradient are simultaneous, there is no difference between the cause and the
effect of heat flow [Kaba 2004, Kaba 2005].

2.2 Microscopic Heat Transfer
2.2.1 General Properties

At the micro scale, the process of heat transfer is determined by phonon-electron
interaction in metallic films and by phonon scattering in dielectric films, conductors and
semiconductors [Tien 1998]. The classical theories established at the macro scale, such as
heat conduction subjected to Fourier’s law, are not expected to be informative at the
micro scale as they describe macroscopic behavior aggregated over many grains. They
break down further as the temporal domain becomes extremely small, say, on the order of
picoseconds or femtoseconds. A typical case occurs in the ultrafast laser heating in the
thermal processing of materials. For this case, the quasi-equilibrium assumption
established in Fourier’s law does not hold along with other macroscopic behaviors [Kaba
2004, Kaba 2005].

Regardless of the type of conducting medium, heat transport requires sufficient
collisions among energy carriers. In metals, such energy carriers include electrons and
phonons. In dielectric crystals, insulators and semiconductors, on the other hand, phonons

are the primary energy carriers. The phonon gas can be viewed as a group of “mass
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particles” that characterize the energy state of a metal lattice. For a metal lattice vibrating
at a frequency v at a certain temperature 7, the energy state of the metal lattice, and
hence the energy state of the phonon, is [Tzou 1997]

E=hv, (2.4)
with / being the Planck constant. The lattice frequency is of the order of tens of terahertz
(10" 1/s) at room temperature. It is conceivable that the lattice frequency increases with
the temperature of the metal lattice. Energy transport from one lattice to the other can
thus be thought of as the consequence of a series of phonon collisions in time history, as

illustrated in Fig. 2.1 [Tzou 1997, Kaba 2005].

phonon 2

honon 1

at 1, Phonon 1

at ¢,
Phonon 1
at ¢,

phonon 1 at time ¢

Fig. 2.1 Energy transport through phonon collision [Tzou 1997].

Bearing energy Av at time f,, phonon 1 collides with phonon 2 at ¢z, and with
phonon 3 at time ¢,. In the course of each successive collision, energy is transferred from
phonon 1 to phonons 2 and 3, causing a successive collision, and causing a successive
change of vibrating frequency of phonon 1. To illustrate the phenomenon, the mean free
path (d in space) is defined as the algebraic mean of the distance [Tzou 1997]

_d,+d, +d,
3

d , (2.5a)
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the mean free time 7 is defined similarly as the algebraic mean of the times traveled by

phonon 1 between the two successive collisions with phonons 2 and 3 [Tzou 1997]

_(72 —7) (7, =7,)+(1—7,) _(t—Tl)
- 3 -3

: (2.5b)

to simplify our analysis, two collisions were used in this example. In order to have a
meaningful statistical ensemble space, of course, a “sufficient” number of collisions must
be collected to determine the mean free path and the mean free time.

The macroscopic models assume the physical domain for heat transport is so large
that it allows hundreds of thousands of phonon collisions before an observation or
description is made for the process of heat transport. Since phonon collision requires a
finite amount of time to occur, hundreds of thousands of those collisions would require a
sufficiently long time for the process of heat transfer to occur. It is therefore clear that the
macroscopic models not only require a sufficiently large physical domain for conducting
heat (much larger than the mean free path), but also a sufficiently long time for heat
conduction to take place (much longer than the mean free time). It should be pointed out
that the sufficiently long time for the stabilization of energy transport by phonons should
not be confused with the time required for the steady state to be reached. The sufficiently
long time required in phonon collisions is to provide a statistically meaningful concept in
regards to the mean free path and the mean free time. The heat transport phenomenon can
still be time dependent after phonon transport becomes stabilized. In a phenomenological
sense, the mean free time as illustrated in Fig. 2.1 is parallel to the characteristic time
describing the relaxation behavior in the fast-transient process. For metals, the mean free
time, or relaxation time, is of the order of picoseconds. In dielectrics crystals and

insulators, the relaxation time is longer, roughly of the order of nanoseconds to
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picoseconds. As a rough estimate, any response time being shorter than one nanosecond
should be closely investigated. The fast-transient effect, such as wave behavior in heat
conduction, may activate and introduce unexpected effects in heat transport. Such a
threshold value of nanoseconds, however, depends on the combined effects of geometric
configuration (of the specimen) and thermal loading imposed upon the system. It may
vary by one order of magnitude if the system involves an abrupt change of geometric
curvatures (specifically around a crack or notch tips), or be the subject to discontinuous

thermal loading (irradiation of a short pulse laser, for instance) [Kaba 2005].

The mean free path for electrons is of the order of tens of nanometers (10 m) at
room temperature. As a function of temperature, the mean free path’s value may increase
to the order of millimeters in the liquid helium temperature range, roughly 4 K. The mean

free path in phonon collision or phonon scattering (from the boundaries of the grains) is

much longer. For example, the mean free path is of the order of tenths of a micron (107
m) for a type Ila diamond film at room temperature [Majumdar 1993]. As an
approximation, a physical device with a characteristic dimension in submicrons deserves
special attention. The micro structural interaction effect, such as phonon-electron or
phonon scattering, may dramatically enhance heat transfer in short times. Enhancement
of heat transfer enlarges the thermal processing zone and increases temperature levels,
which in turn may lead to early burnout of micro devices if not properly monitored.

Since the physical dimensions, under consideration at the micro scale, are of the
same order of magnitude as the mean free path, and therefore the response time 1s of the
same order of magnitude as the mean free time, the quantities derived from the concept of

aggregation at the macro scale need to be reexamined for their meaning in a microscopic
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environment. The temperature gradient, which has been simply derived in macro scale
heat transfer, may lose its physical meaning for a thin film of thickness, the same order of
magnitude as the mean free path. As illustrated in Fig. 2.2, while we can still divide the

temperature difference 7, — T, by the film thickness / (=d, the mean free path of phonon

interaction/scattering) to obtain a “gradient like” quantity, the temperature gradient
obtained in this fashion loses its usual physical meaning because of the lack of sufficient
energy carriers between the two surfaces of the film and, consequently, the temperature
field is discontinuous across the film thickness. Therefore, the concept of temperature
gradient fails. Due to this failure, the macroscopic way of ascertaining the heat flux
vector assuming Fourier’s law becomes questionable. Thus, there is an immediate
ambiguity, which exists in both the concept of temperature gradient and the concept of
heat flux, as we introduce the microscopic effects in space in the conventional theories of
macro scale heat transfer [Tzou 1997].

A similar situation appears as the response time for the temperature is analyzed. The
typical response time in the thin film is of the same order of magnitude as the mean free
time, as a result of phonons traveling in the threshold of the mean free path. If the
response time of primary concern (for the temperature or the heat flux vector) is of the
same order of magnitude as the mean free time (relaxation time), the individual effects of
phonon interaction and phonon scattering must be taken into account in the short time
transient of heat transport. Thus, we have another situation that requires a closer look at

the macroscopic assumptions of heat transfer [Tzou 1997].
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a thin film
l=d
t=7 ]

phonon 2

phonon 1 at ¢

Fig. 2.2 Phonon interactions in a film of the same order of magnitude as the mean free

path [Tzou 1997].

From Fig. 2.2, it is evident that the macro scale affect in space interfere with the
macro scale effects in time. They cannot be separated and must be accounted for
simultaneously in any framework seeking to develop a theory of heat transfer at the
microscale. This becomes obvious as the finite speed of phonon transport in short time is

considered. Phonons propagate at the speed of sound, on average, which is of the order of
10* to 10° m/s at room temperature, depending on the type of solid medium. A response
time of the order of picoseconds ( 107 s) thus implies a traveling distance (the

penetration depth of heat by phonon transport) of the order of submicrons (10 to 107
m) [Tzou 1997, Kaba 2005].
2.2.2 Wave Nature of Microscale Heat Transfer

In solids that are not good electrical conductors, the principal mode of conduction

heat transfer is that of vibrational energy transfer from one atom to its neighbors. Atoms
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in solids are constantly at very high frequencies with relatively small applitudes. The
atomic vibrations of adjacent atoms are coupled through atomic bonding. These
vibrations are coordinated in such a way that traveling lattice waves are produced, which
propogates through the lattice at the speed of sound. A single quantum of vibrational
energy is called a phonon.

However, in metals, the free electron mechanism of heat transport is much more
efficient than the phonon mechanism, because phonons are more easily scattered than
free clectrons and because electrons have higher velocities.

The mean free path of an electron in a bulk material is typically on the order of 10 to
30 nm, where the electron-lattice is dominant. However, when the film thickness is on the
order of the mean free path, boundary scattering becomes important [Tzou 1996]. Thin
films are manufactured using a number of methods and a wide variety of conditions. The
manufacturing method and environmental conditions during manufacture can have a
serious influence on the microstructure of the film, which in turn influences defect and
grain boundary scattering. Also, when heated by ultrashort pulses, the electron system
becomes so hot that electron-electron scattering can become significant. Thus, microscale
heat transfer requires consideration of the microscopic energy carriers and the full range
of possible scattering mechanisms [Barron 2005].

2.2.3 Dual Phase Lagging Behavior of Microscale Heat Transfer

Qiu and others [Qiu 1993c] have proposed a phase lag model to explain the wave-
like propagation of heat on a microscale. This model expresses two primary phases for
heat conduction. The first involves the deposition of energy on electrons while the second

involves the transfer of this energy from electrons to the lattice of the material. As early
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as 1957, Kaganov et al. proposed that free electrons can be heated to a temperature much
higher than the lattice temperature in certain situations [Kaganov 1957]. This high
heating results in a double phase heating of the material. According to Qiu’s research,
there exists two characteristic times for the transfer of heat: thermalization time and
relaxation time [Qiu 1993c]. Thermalization time represents the time for electrons and
the lattice to reach thermal equilibrium. It represents the time necessary to convert heat
energy to the internal lattice. Relaxation time represents the time for electrons to change
their states.

During a relatively slow heating process, the thermalization time can be thought of
as instantaneous. This process is modeled well by a Fourier’s law model. However, for
very short laser-pulse heating, these assumptions are subject to question [Qiu 1993c]. In
fact, because the physical dimension in microscale heat transfer is of the same order of
magnitude as the electron free path, the response time is of this same magnitude. This
fact indicates that the temperature gradient is not descriptive for a thin film of the same
thick ness as the mean free path [Tzou 1996].

2.2.4 Mathematical Model of Microscale Heat Transfer

The model in Eq. (2.3) can be described as a parabolic one-step equation because of
the assumptions it makes that heat energy is converted to lattice energy instantaneously
and that heat energy is assumed to be a diffusive process [Qiu 1993c¢]. Other non-Fourier
models have been proposed to deal with the failings of the Fourier model on a microscale.

One model is based on the modified flux law [Tzou 1993]

-

2}+z%§’— =—kVT, (2.6)
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where 7 is the relaxation time and ;1 is the heat flux. The heat flux vector in this case
maintains a memory of the time-history of the temperature gradient. Relaxation time is

the effective mean free path /, divided by the phonon speed v, . Mathematically, r=I/v,.

In the absence of relaxation time (or 7=0), which implies a mathematical idealization
from either a zero mean free path (/=0) or an infinite phonon speed (v —o0) for phonon
collisions, then Eq. (2.6) reduces to the classical Fourier rate equation. Therefore, an
infinite speed of heat propagation is an assumption made in the classical theory of
diffusion utilizing Fourier’s law [Tzou 1993].

When Eq. (2.6) is combined with Eq. (2.3), we obtain the hyperbolic heat equation

Lo Va0 (2.72)
a
8q -

This equation is known as a hyperbolic equation because of the additional term that
modifies the parabolic Fourier heat Eq. (2.3) [Tang 1996]. This modification predicts a

finite speed of heat propagation because of the relaxation time 7, associated with heat

transfer. Typical wave speeds in metals are on the order of 10° m/s [Ozisik 1994].

While the hyperbolic model answers some issues arising from a microscale
examination of heat transfer, it still leaves some questions. It is not based on the details of
energy transport in the material, such as the interaction of electrons and phonons [Qiu
1993a]. Also, material properties may not be able to be regarded as constant. The

relaxation time and thermal conductivity are generally temperature-dependent [Tzou
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1993]. In addition, the value of thermal conductivity depends on processing parameters,
such as laser pulse duration and intensity, during short-pulse laser heating [Qiu 1993b].

These considerations have led to the dual-phase lagging equation. This equation is
derived from the lagging equation which holds a lag in heat flux behind the temperature
gradient. Compared to the hyperbolic heat equation, this model has an additional mixed
derivative term. Now, as with the hyperbolic model, the time lag associated with heat
flux causes wavelike behavior. However, the additional time lag creates a mixed
derivative term that renders the equation in the form of a parabolic equation. Thus, this
parabolic dual phase equation is modeled as follows [Barron 2005, Wang 2007]

0

T
C(T,)—=
L)

=V- (VL) ~G(T, ~T)+5, (2.84)

o1,
CI(T;)_athG(]; =1). (2.8b)

Here, C,(T,) and C,(7}) are the volumetric electron heat capacity and the volumetric

lattice heat capacity, respectively, and G is the electron-lattice coupling factor. The
coupling factor will be described in detail later. Qiu and Tien [Qiu 1993a] derived a
model described as the hyperbolic two step model from the Boltzmann transport for
electrons. Each of these models has functionality. Each is, however, contingent upon the
interrelatedness of thermalization time and relaxation time.

The complexity of solutions for Eq. (2.8) lies in the temperature-dependent heat
capacity of the electron gas. Tzou argues that for an electron gas temperature lower than

the Fermi temperature, (of the order of 10°K), the electron heat capacity (C,) is

proportional to the electron temperature [Tzou 1996]. This argument makes the equation
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non-linear. In metals, the specific heat can be given by [Barron 1985]

C =T (2.9)

e

where 7, is known as the clectron specific heat coefficient and is experimentally

obtainable.
In the parabolic dual-phase model, the energy exchange between phonons and

electrons is characterized by the phonon-electron coupling factor G [Kaganov 1957]

2 2
G=" Y s, (2.10)
6 T

e e

where m, represents the electron mass, n, represents the number of density

concentration) of electrons per unit volume, and v, represents the speed of sound
p s Tep Y
ko 5 5
12 =—2ﬂh(6ﬂ n,) Ty, (2.11)

with the quantity /4 being Planck’s constant, k& being Boltzmann constant, n, being the
atomic number density per unit volume, and 7}, representing the Debye temperature. The
electron temperature (7,) i1s much higher than the lattice temperature (7)) in the early
time response. The condition 7, >>7, in Eq. (2.10) for the applicability of G is thus valid

in the fast-transient process of electron-phonon dynamics. Within the limits of
Wiedemann-Frenz’s law, which states that for metals at moderate temperatures

(7, >0.48T},), the ratio of the thermal conductivity to the electrical conductivity is

proportional to the temperature and the constant of proportionality is independent of

particular metal, the electron thermal conductivity can be expressed as [Kaganov 1957]
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m'nk’t,T,
k,=—F—%=, (2.12)
3m,
or simply
m’nkt,T,
m, =————"%, (2.13)
3k,
Substituting Eq. (2.12) into Eq. (2.10) for the electron mass yields
4 2
k
G :w' (2.14)
18

This coupling factor is dependent upon the thermal conductivity (k) and the number
density of the electron gas. The coupling factor does not show a strong dependence on
temperature and is not affected by relaxation time [Tzou 1996].

In order to estimate the value of GG, the number density of the electron gas is a key
quantity. Qiu and Tien assumed one free electron per atom for noble metals and
employed the s-band approximation for the valence electrons in transition metals [Qiu
1993c]. Thus, the value for number density of the electron gas is chosen as a fraction of
the valence electrons. The phonon-electron coupling factor is calculated, and

experimentally measured values are listed in Table 2.1 for comparison.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

Table 2.1 Phonon-electron coupling factor (G), for some noble and transition metals

[Tzou 1997].

Metal Calculated, x10" W/(m’K) Measured, x10'® W/(m’K)
Cu 14 48 = 0.7 (Brorsgn et al. 1990)

10 (Elsayed-Ali et al. 1987)

Ag 3.1 2.8 (Groeneveld et al. 1990)
Au 2.6 2.8 = 0.5 (Brorson et al. 1990)

Cr 45 (n_fn, = 0.5) 42 + 5 (Brorson et al. 1990)

W 27 (ng/ng = 1.0) 26 £ 3 (Brorson et al. 1990)
A% 648 (n,/n, = 2.0) 523 + 37 (Brorson et al. 1990)
Nb 138 {n,fre, = 2.0) 387 + 36 (Brorson et al. 1990)
Ti 202 (n fn, = 1.0) 185 + 16 (Brorson et al. 1990)

Eq. (2.8a) is governed by diffusion in the electron gas and heat is transferred to the
lattice in a lumped capacity sense through the coupling factor . In other words, the rate
of energy increase in the metal lattice is proportional to the temperature difference

between the metal lattice and the electrons. By eliminating the electron gas temperature

T,, from Eq. (2.8) for constant thermal properties, one can show that [Barron 2005]

or, o°T,
L LT gy % O, (2.15)
ar o C; o C; ot

where «, is the thermal diffusivity of the electron gas and «; is the equivalent thermal

diffusivity represented by
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oy =——, (2.16)

where C, is the thermal wave speed and is represented by

| kG
c. - |5 2.17
I \fere (2.17)

However, for simplicity of discussion and ease of numerical analysis, this single equation
form 1s seldom utilized. In this work, Eq. (2.8) 1s used.

Researchers determined the parabolic two-step model to be a good estimate [Qiu
1992]. To compare experimental results with a numerical model, the normalized
temperature change in the electron gas is identical to the normalized reflectivity change

on the film surface

AR AL (2.18)
(AR e (AT) e '

where R denotes the reflectivity. The left side of Eq. (2.18) can be measured by the
front-surface-pump and back-surface-probe technique [Tzou 1996]. The right hand side
of Eq. (2.18) represents the solution to the numerical model for estimating heat
propagation.
2.3 Previous Work

Till now, there are many researchers studying heat transfer models related to
ultrashort-pulsed lasers [Tzou 1994, 1995a. 1995b, 1995¢, 1995d, 1997, 1999, 2000a,
2000b, 2001, 2002] [Ozisik 1994] [Chiffell 1994] [Wang 2000, 2001a, 2001b, 2002]
[Antaki 1998, 2000, 2002] [Dai 1999, 2000a, 2000b, 2000c, 2001a, 2001b, 2004a,
2004b] [Qiu 1992, 1993, 1994a, 1994b] [Joshi 1993] [Chen 1999a, 1999b, 2000a, 2000b,

2001, 2003] [Al-Nimr 1997a, 1997b, 1999, 2000a, 2000b, 2000c, 2001, 2003] [Ho 1995,
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2003] [Tsai 2003]. Among these, Tzou and Ozisik [Tzou 1994] considered the heat
equation in only one dimension. They studied the lagging behavior by solving over a
semi-infinite interval. Their solutions were obtained using the Laplace transform method
and the Reimann-sum approximation for the inversion.

Ozisik’s [Ozisik 1994] work gives a thorough overview of the thermal wave theory
emphasizing its applications in the field of engineering applications. Special features in
the thermal wave propagation such as the sharp wavefront and rate effects, the thermal
shock phenomenon, the thermal reasonance phenomenon, and reflections of thermal
waves across a material interface were discussed. Joshi and Majumdar [Joshi 1993]
obtained numerical solutions using the explicit upstream difference method. Antaki and
others [Antaki 1998, 2000, 2002] investigated the heat conduction in a semi-infinite slab.
Tang and Araki [Tang 1999] derived an analytic solution in finite rigid slabs by using
Green’s formula and a finite integral transform technique. Ho and colleagues [Ho 1995,
2003] studied heat transfer in a multilayered structure using the lattice Blotzmann
method. Tsai and Hung [Tsai 2003] studied thermal wave propagation in a bi-layered
composite sphere using the dual-phase-lagging heat transport equation. Recently, Dai and
Nassar [Dai 2004b] have developed a finite difference scheme for solving the parabolic
two-step heat transport equations in a 3D double-layered rectangular thin film. Tzou and
Qiu [Tzou 2001] studied thermal lagging in ultrafast laser heating. This study was
implemented to describe the experimental data of femtosecond (fs) laser heating of gold
films. Wang and associates [Wang 2001b, 2002} showed the dual-phase heat conduction
equation has a unique solution under certain boundary conditions. Al-Nimr and Arpaci

[Al-Nimr 1997a, 1997b, 1999, 2000a, 2000b, 2001, 2003] proposed an approach based
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on the physical decoupling of the hyperbolic two-step model, to describe the thermal
behavior of a thin metal film exposed to picosecond thermal pulse. This approach was
based upon the assumption that the metal film thermal behavior occurs in two distinct
stages. In the first phase, the electron gas transmits its energy to the lattice through
electron-phonon coupling. In the second phase, the electron gas and lattice are at thermal
equilibrium. In this phase diffusion dominates the transfer of energy within the system.

This method, which eliminates the coupling of energy equations to simplify the system,

2
applies to metal films with the parameter ~ much less than one. Chen and Beraun

[Chen 1999a, 1999b, 2000a, 2000b, 2001, 2003] used a corrective smoothed particle
method to find a numerical solution to the interaction of short laser bursts and thin
metallic films. Dai and Nassar [Dai 1999, 2001, 2002, 2004] have developed many finite
difference models for examining a numerical solution for a dual thin film system
irradiated by an ultrashort laser burst.

Thus, there is considerable research covering the dual-phase model for heat
conduction. However, only a few mathematical models for studying thermal deformation
induced by ultrashort-pulsed lasers have been developed [Tzou 2002, Chen2002a, Chen
2002¢, Chen 2003]. Tzou and his colleagues [Tzou 2002] presented a one-dimensional
model in a double-layered thin film. The model was solved using a differential-difference
approach. Chen and his colleagues [Chen 2002a] considered a two-dimensional
axisymmetric cylindrical thin film and proposed an explicit finite difference method by
adding an artificial viscosity term to eliminate numerical oscillations, and in [Chen
2002c] they applied the method developed in [Chen 2002a] to investigate the deformation

of metals subjected to ultrashort-pulsed laser heating, and in [Chen 2003] they developed
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a combined finite difference/finite element method to solve the coupled
thermomechanical equations. Recently, Dai and Wang [Wang 2006a, Wang 2006b] have
developed a finite difference method for studying thermal deformation in 2D thin films
exposed to ultrashort pulsed lasers. However, thermal deformation in a 3D micfo-sphere
has not been studied yet since micro-spheres are of interest related to micro resonators in
optical applications, such as ultra-low-threshold lasing, sensing, optoelectronic
microdevices, cavity quantum electrodynamics and their potential in quantum
information processing. Thus, in this disseratation, we will study thermal deformation
about a 3D micro-sphere exposed to ultrashort pulsed lasers by developing a fourth-order
compact finite difference scheme for solving the dynamic equations of motion to

eliminate non-physical oscillation.
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CHAPTER THREE

METHEMATICAL MODEL

3.1 Problem Description

In this chapter, we will investigate the mathematical model of heat transport
phenomenon in a micro-sphere subjected to an ultrashort-pulsed laser. As described in
Chapter Two, the hot-electron blast is found to be significant under intensified heating,
and thus ultrafast deformation needs to be addressed in non-equilibrium heating of
electrons and phonons. Because the magnitude of deformation may easily reach a
fraction of the micro-sphere’s thickness on the microscopic level, it is important to
investigate the thermal deformation and stress in the microscale levels. And from a
microfabrication standpoint, a micro-sphere is an important component in the fabrication
of microelectronic devices, and understanding the temperature, displacement, stress
distribution at the sub-atomic level as well as in the metal lattice is the subject of
important investigations. Geometrically, since the dimensions of a micro-sphere relate
favorably to those of elementary physical particles, the micro-sphere can be used to
model the heat transport phenomenon in physical particles. Thus, a clear understanding of
the temperature, displacement, stress distribution in this microelectronic device is of vital

importance.To the end, the well-posedness of the problem is investigated; the numerical

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

schemes are proposed to solve the governing equations.
3.2 Model for a Micro-Sphere
3.2.1 Geometry Description
Figure 3.1 shows a micro-sphere in a three-dimensional coordinates system which is
exposed to ultrashort-pulsed lasers. Consider the spherical coordinates system, the point

P is defined by the following spherical coordinates: r,8,¢, where r is the length of OP,

ranging from 0 to oo; @ is the angle between the projection of OP on the XY-plane with

the positive X-axis ranging from 0 to 27 ; ¢ is the angle between OP and the positive Z-

axis ranging from 0 to 7.

Ultrashort-pulsed lasers

Fig. 3.1 A 3D micro-sphere with three-dimensional coordinate systems
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3.2.2 Governing Equations
The governing equations for studying thermal deformation in the micro-sphere can
be expressed as follows:
(1) Dynamic equations of motion [Tzou 2002, Chen 2002a, Brorson 1987, Wang

2006a, Reismann 1980]:

azur ao-’ l aO-r(/) 1 agr(} aT;
p—F = +— +— +-(20,-0,-0, , (3.1)
ot or r Op rsing 00 r or
o'u, 0o, 100 1 0o, oT,
p—s = T4 [(J ! (3.2)
ot or r Op rsing 00 r “rop’
o’ o oo 0 T
L;"’ _ 9% 19w | 1 e +l(20¢9 cotp+30,)+2AT, 1 oL, . (3.3)
ot or r Op rsing 00 r rsing 06
o, =Me, +¢,+&)+2ue, —(CA+ 2, (T, - T), (3.4)
o, =Me, +e,+&,)+2us, —BA+2wa (T, - T,), (3.5)
= Me, +&, +e5)+2ue, ~GA+ 2wy (T, ~ Ty), (3.6)
- zlugrgoa 2/,&(;‘,9, O-(p6‘ = zlug(pg’ (37)
ou
& =—=, 3.8
F TS (3-8)
1 ﬁu(p
&, =—(u, +—), 3.9
, r( , a(p) (3.9)
¢ L Mo | cinon +cosou.) (3.10)
rsm(p 06 P P '

1 1ou, Ou, u,

S a0 3.11
Ero 2(r op  Or r) G11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

1 1 Ou, ou,
Epp = — (= +
2r sing 060  Ogp

—1u, coty), (3.12)

1 1 ¢ Ou
e T Mo Moy (3.13)
2 rsing 08  oOr r

g/'& =

Here, u, ,u,,u , are the displacements in the r, 8, ¢ directions, respectively;
£, 8y, €, ArC the normal strains in the r, 8, ¢ directions, respectively; &, is the shear
strain in the r¢ direction, ¢,, is the shear strain in the r¢ direction, and ¢, is the shear
strain in the @@ direction; o,,0,, 0, are the normal stresses in the r, 8, ¢ directions,

respectively; o, is the shear stress in the r¢ direction, o, is the shear stress in the 70

re

direction, and o, is the shear stress in the @8 direction; 7, and 7, are electron and

lattice temperatures, respectively; 7, is the initial temperature; p is density; A is the
. 2 ) , .
electron-blast coefficient; A=K 3 4 [Reismann 1980] and u are Lame’s coefficients;

K is bulk modulus; and «, is the thermal expansion coefficient.

(2) Energy equations [ Tzou 2002, Kaba 2005, Chen 2005, Qiu 1992, Tzou 1996]:

oT, 1 0 1
¢ == (k (T, T)r’ —=%)+ —(k
ot r? 8r(e(e 2 ar) r* sin (p89( e
| (3.14)
*(k( Tz)sincv e)—G(Te_TI)JrQ,
r* sing 0¢ op
C,QT-_C(T ~T)~(BA+2u)a, a(,9,+g +e,), (3.15)
ot ot v
where the heat source is given by
1-R -2,
o(r,0,p,t) =0.94J ; exp ——7)*cose. (3.16)

P P
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T . . T\ .
Here, CC(TC):C(ZO(—TLJ i1s the electron heat capacity, k (7, ?,T,):k()(?e] is the

] i

thermal conductivity, G is the electron—lattice coupling factor, C, is the lattice heat

capacity, respectively; Q is the energy absorption rate; J is laser fluence; R is surface

reflectivity; ¢, is laser pulse duration; L is the radius of the micro-sphere; ¢ is the

optical penetration depth; Egs. (3.14) and (3.15) are often referred to as the parabolic
two-step heat transport equations.
3.2.3 Boundary Conditions and Initial Conditions

The boundary conditions are assumed to be stress free and thermally insulated [Tzou

2002, Chen 2002}:

0,=0, 0,=0, 0,=0 at r=1L (3.17)
Oy =O0gs2z> 9r9 = 001270 Fpo = Opgarn (3.18)
Mo, Tico  atr=1 (3.19)
or or
T.(r,0,0,0) = T,(r,0+27,0,1), T,(r,8,0,) = T,(r,0+27,,1) (3.20)

Without loss of generality, we assume for simplicity:

0 oo oT
90, _0,9%0 _0, %% 0% _0 % _o 4 =0 (3.21)
or or or or or
oo oo oo, oT oT,
-0, —2=0,—2=0,—2=0,—=0 at p=0,7 (3.22)
O o O op o

It should be pointed out that insulated boundaries are imposed due to the assumption
that there are no heat losses from the sphere surfaces in the short time response [Tzou

1996].
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The initial conditions are assumed to be:

ou ou ou
T =T=T,u =u =u,=0,—=—4=—2=0 ar t=0. 3.23
e li 0 § ] [ 61‘ 6t 81 ( )

3.3 Conclusion

In this chapter, we have set up the governing equations for the model of a micro-
sphere for studying thermal deformation. However, the mathematical complexity of the
coupled, nonlinear, transient governing Egs. (3.1) — (3.16) make it impossible to derive
closed—form solutions to the present model because of the temperature—dependent
thermophysical properties such as C,(7,), C,(1,), k,(T,,T,) and because of the nonlinear
hot—electron blast force. Hence, the numerical methods are needed to find out for solving

these mathematical models.
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CHAPTER FOUR

FINITE DIFFERENCE METHOD

In this chapter, we will develop finite difference methods for solving those
governing equations set up in the previous chapter. In view of the fact that the numerical
difficulty caused by a grid mesh having a high aspect ratio 1s less for finite difference
methods than for finite element methods, the hyperbolic-parabolic partial differential
equation system combined with the initial and boundary conditions is solved with finite
difference methods.

4.1 Notations

We denote u/(i+1/2,),k), uy(i,j+1/2,k), and u,(i,j,k+1/2) as numerical
approximations of u, ((i+1/2)Ar, jAG,kAp,nAt), u,(iAr,(j+1/2)A0,kAp,nAt), and
u,(iAr, jAO,(k +1/2)Ap,nAr), respectively, where Af,Ar, A0 and Agp are time
increment and spatial grid sizes, respectively. And i, j,k are indices with
1<i<N, +1, 1<j<N,+1 and 1<k<N, +1 so that N Ar=L, N,A0 =27 and
N,Ap = 7 . Similar notations are used for other variables. Furthermore, we introduce the

finite difference operators A_,, 5,, 5, and &, as follows:

A_u"(i, jk)y=u"(i, j,k)—u""(i, j,k), 4.1
Su"(i,j,k)=u"(i+1/2,j,k)—u"(i-1/2, j,k), (4.2)
31
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Ou" (i, j, k) =u"(i, j+1/2,k)y—u"(i,j—1/2,k), (4.3)
S, u" (i, j, k) =u"(i, j,k+1/2) —u"(i, j,k—1/2), (4.4)
4.2 Finite Difference Scheme and Algorithm

4.2.1 Conversion of the Governing Equations

In order to prevent the solution from oscillations, using a similar argument as that in
[Wang 2006a, Wang 2006b], we introduce three velocity components v,, v, and v, into
the model and re-write the dynamic equations of motion, Egs. (3.1) — (3.13) as follows:

Ou Ou, ou,,
¥ > Vo =" v(p =T
ot ot ot

(4.5)

r r

oT,
P— = + +— +l(20', -0,-0,+0,,cote)+2AT, —=, (4.6)
ot or r Op rsing 00 r v v or

ov, 9o, 100, 1 oo,

ov, 0o, 100 1 Oo oT,
p—L=-l o Ty i +l[(0'¢ —0'67)cotg0+3<)'r¢,]+2AT€l <, (4.7)
ot or r Op rsing 060 r r OQ
ov, 0 100 1 0 oT,
p e _ Crg ¥ - L. +l(20¢9 cotp+30,,)+2AT, 1 <, (4.8)
ot or r Op rsing 060 r rsing 00
O, = e, + &, +,) +2ue, — A+ 2, (T, ~T), (4.9)
o,=Ae, +e,+&)+2ue, —-GA+2p)a (1, - T,), (4.10)
o, =Me, +e,+8,)+2ue, - GBA+2u)a, (I, - T,), (4.11)
O,y =2UE,,, O =2UE 5, Oy =2UE,,, (4.12)
og, Ov,
=, (4.13)
o Oor
o¢ ov
<" :1(\/, +—2, (4.14)
o r op
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%o L (o ,y sinp+v, cosp) (4.15)
o rsimp 0g O Vet '

o¢ ov, v
o :l(lﬁJr_fﬂ__fﬂ)’ (4.16)
o0 2rop or r

O¢ 1 1 Ov, ov
o :—‘(.———(P+—9—v(, cot@), (4.17)
ot  2r sing 06 O

0
O L L V. O Vo 4.18)
o 2 rsinp o8 or r

4.2.2 Staggered Grid

To develop the finite difference schemes, we need to construct a staggered grid
shown as Fig. 4.1, where v, and u, are placed at (,,,,,,0,,¢,), v, and u, are placed at
(#:50,1259,) » v, and u, are placed at (r,,0,,0,,,,), &, and o,, are placed at
(111/2:0;10/2-94)» €., and o, are placed at (r,,,,,0,,0,..,,), &, and o, are placed at
(n,9j+,/2,(pk+l/2), while €,,69:8,,0,,04,0,,T, and 7, are at ('?79_;,%)- Here, we
denote v/ (i+1/2,j,k), vo(i,j+1/2,k) and v (i,j,k+1/2) as numerical
approximations of v ((i+1/2)Ar, jAG,kAp,nAt), v,(iAr,(j+1/2)A0,kAp,nAt) and
v, (iAr, jAO,(k +1/2)Ap,nAt), respectively.

It should be pointed out that the staggered-grid method is often employed in
computational fluid dynamics to prevent the solution from oscillation [Patankar 1980].
For example, if v, and ¢, in Eq. (4.13) are placed at a same location, implying a central
finite difference scheme may produce a velocity component v, , a wave solution,

implying oscillation.
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(p,/fl ® T{),T/,O'r,O'H,O'(p,gr,Ee,E(p
f— v ™ U,V
x o > uw,vq)
, u.,v,
5] o'w’gr(p
b o-rH’SVO
a3 O o> Epo
o« ——
/‘: | SRE ) \‘ B oy
‘- . e oo o8
\‘ Q . - N
: ," /‘H‘\""." *J\\).. a
G l" .’ ® ’, \ ® ' v
» L Sl T I R
-~ £ . 5 ‘ o
- ° ° Py e O
< o .

Fig. 4.1 A 3D staggered grid and locations of variables for a micro-sphere.

4.2.3 Finite Difference Scheme

Now we begin to develop the finite difference methods for solving the above
governing equations. To avoid non-physical oscillations in the solution, we further
develop a fourth-order compact finite difference scheme for evaluating stress derivatives

. . aO' ao-r(/; ao_qg(y . .
and shear stress derivatives -, , and etc. in Eqgs. (4.6) — (4.8). To this end,

or  Jde 00

we let

(206D |, 00,0 B0,G+)_0,GH1D=0,G=12) 1y L
or or or Ar 2 2
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where a and b are unknown constants. Here, we omit indices j, k and » for simplicity.
Using the Taylor series expansion, we obtain

Ar oo (z) A 0o (z) A &0, (z) At 0o (z)

+O(A),  (4.20a)

Ar 0o, (i) A P'o () AP Do (i) N 3o (i)
+ 2 3 3 + 4 4
o 22 ot 32 or 42" or

o (i-1/2)=0,()—— +O(A),  (4.20b)

0o,(i+1) _0o,(i) A oo (1) A Do D, AP 8o (i)

4
o or 5 T e T3 gt oW (4.20¢)

aa,(i—l)_aar(i)_N 0(1) N &o,(i) N Do)
o or o’ 2 o 3 ot

+ort, (4.20d)

substituting Egs. (4.20a) — (4.20d) into Eq. (4.19), and comparing the corresponding

terms, we obtain

2a+b '1_ El 2
2’ 24 12

= (4.21)

with truncation error of O(Ar*). It should be pointed out that the dissipative term

can be obtained

0’c (i o . o (i
3 ’3( ) has been eliminated from the truncation error. Hence, ——8’—(2
r r

by solving the following tridiagonal system

100,G=) , 5 00,() , 1 00,GHD) _0,G+U2)=0,(=12) , 1, 1
24 o 12 or 24 or Ar

(4.22)
where

00,(3/2) o0,(2)-0o,() oo, (N, +1/2) o, (N, +1)—0o,(N,) 4.23)
o N or - Ar ' '
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Using the similar argument, we can evaluate other stress derivatives and shear stress

derivatives in Egs. (4.6) — (4.8). Then to Eq. (4.6), by using Taylor series expansion we
: : . NPT B
can obtain following equations at point (i + > J,k)

W2k AT O 12,),)

VG2, 7,k =v i +1/2, j,k) - At +O(AP),
»( Jl)=v.( J»k) Py 5 poe (A7)
thus,
VM G+1/2,5,k) v G+1/2, 5, k) v (i+1/2, ],k
, G Jk) _v, Jyk)—v/ (@ J )+0(N)’ (4.242)
ot At
and then by Mzﬂ-@—,we can obtain
du Ox
oT oT?
AT, —&=A—%, (4.24b)
or or

from Eq. (4.24Db), by using Taylor series expansion again we can obtain

2N\n+l o .
T2, R =@ 12, o+ S CEIRE0

. A OF (T2 (i +1/2,,k)
2

+O(A),
2 > (Ar)

Ar O(TH)™ i +1/2, j,k)

2 or

N A P (TH™ i +1/2,7,k)
8 or’

(TG oy =(T)) " (1 +1/2, k) -

+O0(4r),

which 1s

AT +1/2,j,k) (TG +L /) —(T;)" G, j. k)

- -~ +O(A), (4.24c)
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substituting Eqs. (4.24a) — (4.24c) into Eq. (4.6), we obtain

1 wl g :
p—A—tAf,vr "i+1/2,7,k)

_aO'r(i+l/2,j,k)+ 1 8o,¢,(i+1/2,j,k)+ 1 00, (i+1/2,].k)

or Vi op Vi SO, 06
RN A VRO R AL G 0, (@, j.k) + 0, +1,/.k)
Fivii2 2 2
g;“(l‘,j,k)+gg+‘(i+1,j,k) O':’(;l(i+l/2,j,k+1/2)+0:;1(z'+1/2,‘j,k~1/2)
- + cotg, |
2 2
1
+A—3S (TH™ G +1/2, ],k).
~ (T0)( J,k)
(4.24)

Similarly to Eqgs. (4.7) and (4.8), we can obtain following equations at point (i, j,k + %)
R | .
and point (7, j + E’k) , respectively

| TP
pXt—A_,vw (0,7, k+1/2)

80,,(i, jyk+1/2) 1 00,3, j,k+1/2) 1 80,0, ), k+1/2)
+— +

o 7 o 7, Sing,,, 26
n+l s- - n+l /e o
1.0, (5 k+D)+0," G 1K) o), jk+ D)+ 057, k)
+‘_[( id 4 _ e o )COt(pk+1/2 (425)
F; 2 2
3a:;‘(i+1/2,j,k+1/2)+a;’;‘(i—l/z,j,kﬂ/z)]
+
2

1
+ A——8 (T))"™ (i, j,k +1/2),
A

1
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1 il
— A V(L j+1 2k
pAt -0 ( ] )

_56,(,7(1',141/2,/«)Jrﬁlﬁ5%(1‘,1+1/2,k)+ 1 00,(i,j+1/2,k)
- or v op ¥, SIng, 00

13

] > o (i 1 2,k +1/2) + 00 (i, +1/2,k=1/2)

1%

7 2

i

A oG +1/2, j+1/2,k)+o (—=1/2,j+1/2,k)
2

cotg, (4.26)

+/\»—‘-1—59(Tj)"+l (G, 7 +1/2,k).
r. sing, A6

To Egs. (4.9) — (4.12) we obtain following equations at point (i, j, k)

o, j. k) =AMer G, k) + &) Gy k) + 6,7 (G 7, )N+ 2™ (G, 7, K)

nHl e . (427)
~(3/1+2#)aT[Tl (lajnk)_];)]n

oG, 1, k) =Ae " (L g k) + £, (6 . k) + €57 o )1+ 2 (G oK) (4.28)
~(BA+2wa, (177G, 1, k) - T,

oo G, k) = ALe! " G . K) + €07 (6 ), k) + 57 (G 7, RN+ 2ue ™ (D, ) (4.29)
~BA+2wa, [T G, k) T,

ol i +1/2, jk+1/2) =2uely (i+1/2, j,k+1/2), (4.30)

oI i +1/2, 41/ 2,k) = 2 i +1/2, j+1/2,k), (4.31)

Oy (5, +1/ 2,k +1/2) =25 (i, j +1/ 2,k +1/2). (4.32)

To discretize Eq. (4.13), by using Taylor series expansion at point (i, j, k) we obtain

aE:H (l,], k) N A12 628:1+1 (i,j, k)

e, j.ky=¢€""@,j,k)—
. (1, 1,k) (G, J,k) Py 5 o

+O(A),

that is,

ag;ﬂl (Z’Jak) — 8:+‘(i,j,k)—8:(i,j,k) +
ot At

O(A), (4.33a)
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A v (G, VLN A 3G, o k)

+0(A),
or 8 or’ (&)

VP +1/2, 4, k) =v"" (i, Jk)+

avnﬂ (l _] k) Ar 62 /1+1 (l j, k)
or 8 81/2

VG =1/2, 7, k) =v" (G, j, k) —— +O(AF),

that is,

v, j k) VA2, k) - v i -1/2, j.k)

+O(ND), 4.33b
o ~ (Ar?) ( )

substituting Egs. (4.33a) and (4.33b) into Eq. (4.13), we obtain
—1— ™' (@i, j,k)= —l— SvIG, 7, k). (4.33)
Ar /> J> .
Similarly to discretize Eqs. (4.14) and (4.15) we obtain

v o (GJ,K)], (4.34)

n+1 1/2 k n+1 1
ALA-te;“(u,k)— L €xlU2), );V (i-1/2,/k)

l

n+1 n+l
-}—A £, ) = .1 [ GE+1/2,7,k)+v " (i-1/2, J’k)sm(pk
At v, sing, 2

(4.35)

v Lk + 12wV, Lk —1/2
Y ARNCY) ) os¢)k+Xlg—59v;”(i,j,k)].

2

To Eq. (4.16), we obtain at point (i + %,j,k + %)

el At Oely (i +1/2, 7,k +1/2)
En(i+1/2, jk+1/2) =g (i +1/2, ],k+1/2)——-2— =

Nz el (i+1/2,7,k+1/2)
8 o’

+0(A),

that 1s

Oely (+1/2, 1,k +1/2) &7 +1/2,j.k+1/2) =&, (i +1/2, .k +1/2)
ot At

+O(AY), (4.362)
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v i +1/2, j,k+1/2)
op

v:+‘(i+1/2,_;,k+1)=v;l“(z'+1/2,j,k+1/2)+%

+A(02 OV (i+1/2, j,k+1/2)

+O(A@Y),
. o0 (Ap™)

e 1/2 . k ]/
V,’.H—l(l.+1/2,J.,k):v”_l+l(l'+1/2’j,k+1/2 _A_Zw aV,. (l+ a a_/? + 2)
®

. A@? OV (i+1/2, j,k+1/2)

+O0(AQ),
o o0 (Ap™)

that is

VI +1/2,j,k+1/2) v(i+1/2, jk+ D)=V (i+1/2, k)

+O(AQ?), 4.36b
20 Ap (Ap~) ( )

avn+l l+1/2, ,k+1/2
v;',“(i+1,j,k+1/2):v;',“(i+1/2’j’k+1/2)+§2_r p ( : J )
(4

A2 OV (4172, j,k+1/2)
+ +

8 8!"2 0(Al"3),

ntl g .
wtl e oy ) Ar V(i +1/2, j,k+1/2)
vy (G, ok +1/2)=v, (i +1/2, j,k+1/2 - u 5

2. 0t .
+Ar2 v, (i+1/2,j,k+1/2)

. o~ +O0(A),

that 1s

n+l g- . n+l g . ntlge
6v¢1(1+1/2,],k+1/2)=v¢ (i+1,/,k+1/2)—v, (z,],k+l/2)+
or Ar

O(Ar?), (4.36¢)
then substituting Egs. (4.36a) - (4.36¢) into Eq. (4.16), we obtain

N e i+1/2,j,k+1/2)
At

=t re

L1

2riJrl/ZA(D

1 v;”(z'+1,j,k+1/2)+v;+‘(i,j,k+1/2)]
> :

5¢v;’“(i+1/2,j,k+1/2)+Al5,v;“(i+1/2,j,k+1/2) (4.36)
4

Fivir2
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Using similar argument to discretize Eqs. (4.17) and (4.18), we obtain

Al A&y (6, j+1/2,k+1/2)
t
1 1

=—[-——9, ”*‘(z]+1/2 k+1/2)+—1—5 vl (i, j+ 1/ 2,k +1/2) (4.37)
2r, sing,,,,,A0 Ag

vy U2k ) vy G +12,K)
2

cot (pk+]/2 ]’

; A e (+1/2,j+1/2,k)

—t“rg

1 1
2, sing A0

1 vt G+, +1/2,k)+vi (G, j+1/2,k)
2

Sy i+1/2, j+1/2, k)+—5 Vi +1/2, j+1/2,k) (4.38)

].
Fivii2

To discretize the energy equation Eq. (3.14) presented in the previous chapter at point

(i, j, k) , we obtain following equations

At 8T”+l/2(1 ],k) Atz a Tn+1/2(l J,k)

TG k) =T G, o k) +— 5 Py 2 +0(Ar),
. ” At aTn+1/2 i ,k AtZ 2]-;n+1/2(l-, ,k)
TR =T oy - S Fe D B T2 RD o),
that is
Tn+l .. Tn .. k
Tn+1/2(’J,k): e (la.]:k);_ e (19]9 )+0(At2),
and

O, k) _ TG, j k) =T, (s s )

= +O(A?),
ot JAYS \ar%)
so we can get
aTn+1/2 . k Tn+1 . k +Tn . k Tn+l .. k _Tn . k
Ce(]-ve) e (17.]) ):Ceo e (l7JJ ) e(l’_]:‘ )' e (15]9 ) e(l’_]J ), (4_39&)
ot 2T, At
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then by using Crank-Nicolson method which use both explicit scheme and implicit

scheme together, to discretize three conservative items éa—(ke( T)r’ aaT‘ )
12 (4
—a—(k( T) e) (k (T,,T,)sin o1 <) as follows
00 Y o0
l a (kl1+1/2(~ . k) 2 aT’en—H/z(i’j?k))
— = i, j, k) =
rPor ¢ / or
U RGN+ k) - G T G g k)]
’“riz A2
1 72 LIk G g T G, j k) — K -1, 1, T -1, /. k
__2‘,1/2[3(1)@(1) 2( LR (-1 /,k)] (4.39b)
v 2Ar
Rk G LT G L)~ kG BT )
r? 20
17 rlalky G, T G g k) = K, (=L, T (-1 J»k)]
r[Z 2Ar2
1 a 1/2 aT”+l/2(isjak)
— (k) — )
r*sin’ ¢ 00 06
_ 1 RTGHLTT G+ LR -k G T 0 R)]
- 1} sin’ @, 200?
1 k2 @, )T G, j k)~ K G, j— LT (6, =1, k) 430
1 sin’ @, 200 (4.39¢)
1 [k, G, J+ LT (G, j+ LK) -k (5, ], )T, (0, j, k)]
r’sin’ @, 206°
U KGR R -k G - LT G ) - 1k)]
¥’ sin® @, 2A6°
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1 a . o - aTe’l+1/2(i,j,k)
2 . v‘_(ke l/z(l7j5k)81n¢_—_)
r*sing 0@
UK G gk 4 Dsing TG ok +D = k7 G, k) sing, T G, /6]
¥’ sing, 209
1 KM, j,k)sing, T G, j, k) — k2 (i, j,k = Dsing, T (i, j,k —1)]
- .[g(./) o1, (G, ), k) (2] sing I, (0, ) (4.39d)
¥ sing, 2A¢
N 1 ‘[kc’,’ (i, j, k+Vsing, T, j,k+1) =k} (G, j,k)sing, T (i, j, k)]
1}’ sing, 289"
1 [ken (ia j’ k) Sinq)kTen (lo j) k) - k: (l> J:k B 1) Sin(DkAl Ten (l’ Jak - 1)]
! sing, 2A¢° ’
and
TG, j,k)+T" (G, j, k) TG, j,k)-T"(G, j.k
G0, 0 -1 oy = e LT R0 TR GIE, (4 30c)

2 2

substituting Eqs. (4.392) - (4.39¢) into Eq. (3.14), we obtain

T”@L@+ﬂ@ﬂ@}1

C,[-= AT, 7k
eO[ 2];) At —t"e ( .] )
2
=—2£%;—2—[k:”(i+1/2,j,k)5rTe"“(i+1/2,j,k)+ke”(i+1/2,j,k)5rT8"(i+1/2,j,k)]
}’;.
2
_E%‘Z_zr{[k:”(i—1/2,j,k)5,1;"”(i—1/2,j,k)+ke”(i—1/2,j,k)5,7;"(i—1/2,j,k)]
}"l.
1 n+ls- - n+t e - nye - nys
+m[ke ', 7 +1/2,k)0,T, (i, ] +1/2,k)+ k)3, j+1/2,k)8,T) (i, j +1/2,k)]
i Dy
l ntl g . 723 W nyes - Hys =
~m[ke 1(z,]—1/2,k)c5'9]:2 1(1,1—1/2,k)+ke (0, j-1/2,k)o,T) (i, j—1/2,k)]
; Dr
S i k128, G, k4112 + K Gy j k41128, TG,k +1/2)]
2}"2A¢2 sin(p [ e l’]’ Pe l’.]’ ) e l’.]’ Ppe l’.]’
i k
_SMPen o 128 TG k=12 K G k=11 208, TG,k ~1/2)]
M[ e (l’.]a ) oe (l’]’ ) e(laf’ ple L,/
i k
TG k) + T oK) T G s )+ T oK)y iy
_(;[ — l ]+Q l/z(la.]ak)'

2 2

(4.39)
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To discretize Eq. (3.15) at point (i, j,k) we obtain

1 nl oo
CIEA#T; l(lajak)

L) 0+ T k) T, k) + T oK)

= 2 2

] (4.40)

—<3z+zu>aT§;[A—,ef“ (i )y k) + A &0, R+ A (i )],

. . . . i . 1 1
Finally to discretize the displacement equation Eq. (4.5) at point (7 + > J.ky, (4, ]+ —z—,k) ,

1 . .
i, j,k+ E) by Euler backward scheme, respectively, we obtain

iA_,uf” (i+1/2,7,k)=v"" (i +1/2, },k), (4.41)
zAl—t-A_,u;“ G, j+1/2,k)=v;" (i, j+1/2,k), (4.42)
iAﬂtu;“(i, Jok+1/2)=v" (i, j,k +1/2). (4.43)

To complete the formulation of our numerical method, we now turn our attention to

the approximation of boundary and initial conditions from Egs. (3.17) — (3.23):

(N, +1,j,k)=0, 1<j<N,+L1<k<N, +], (4.442)

(L, j,k) =07 (2,j,k), 1<j<N,+L1<k<N, +], (4.44b)

O'(N, +1/2,j+1/2,k)=0, 1<j<N, 1<k<N, +], (4.44c)

ol (12, J+1/2,k) =002 +1/2, j+1/2,k), 1SNy 1<k=<N,+], (4.44d)
ol (N, +1/2,j,k+1/2)=0, 1<j<N,+L1<k<N,, (4.44¢)

o (1+1/2, j,k+1/2)=0],(2+1/2,j,k+1/2), 1<j<N, +L1<k<N,, (4.441)
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oy, j, k) =0, (i, j+ Np,k), 1<i<N, +L1<Sk<N, +1, (4.45a)
On(i+1/2, j+1/2,k) =0y, +1/2,j+ N, +1/2,k), 1<i<N,,1<k<N, +1, (4.45b)

Ol J + 1/ 2,k +1/2)=0,,(i, j+ Ny +1/2,k+1/2), 1<i<N, +L1<k<N,, (4.45¢)

o i, j) =0, /2), 1Si<N, +L1<j<N, +], (4.462)
(i, j,N, +1)=0"(, j,N,), 1<i<N, +1L1<j<N, +1, (4.46b)
o (i +1/2,j1+1/2) =00, (i +1/2,j.2+1/2), 1<i<N,,1<j<N,+], (4.46¢)

ol (i +1/2,j,N, +1/2)=0l,(i+1/2,j,N,~1/2), 1<i<N,1<jSN,+1,  (4.46d)
Oy(i, j 1/ 2141/ D) =00, j+1/2241/2), 1<i<N, +L1<j<N,, (4.46¢)
o'y j FU 2N, +1/2) =07y, j+1/2,N, =1/2), 1Si<N, +L1<j<N,,  (4.46f)
T, j, k) =T" 2, j, k), T*(N, +1,/,K)=T"(N,, j,k), 1<j<N,+L1Sk<N, +1, (4.472)
', j,k)=T" (i, j + Ny,k), 1<i<N, +L1<k<N, +1, (4.47b)

TG i) =T"G,j2, T"G,j,N, +D =T G j,N,), 1<Si<N, +LI<jSN,+L  (4.47¢)
T (L, k) =T 2, j, k), ' (N, +1,j,K) =T (N,, j,k), 1<j<N, +L1<k<N, +1, (4.482)
TG, j k) =T G, j+ N,y k), 1<i<N, +L1<k<N, +1, (4.48b)

TG i) =T, G2, TG, j, N, +D)=T}" G, j,N,), 1<i<N, +LI<j<N,+1,  (4.48)

where 1<i<N, +1,1<j<N, +L,1<k<N, +1 for any time level n. The initial conditions

are approximated as

u) (i +1/2, j,k) =ug (i, j+1/2,k) =u, (i, j,k +1/2) =0, (4.492)

Vi +1/2,7,k)=vy (G, j +1/ 2,k) =V, (i, j,k +1/2) =0, (4.49b)
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7;0(1.7]'7]{):7;0(1.7].7]{):710’ (449C)

£, (i, j,k) =5, j,k) =&, (i, j,k) =0, (4.494)

), j,k)=0,(, j,k)=0,(, j,k) =0, (4.49¢)
on(i+1/2,j+1/ 2 k)=, (i +1/2, j+1/2,k)=0, (4.49f)
o, ((+1/2, jk+1/ =g, (i+1/2,j,k+1/2)=0, (4.49g)
Oooli, j +1/ 2k +1/2)=,5(i, j +1/ 2,k +1/2)=0. (4.49h)

It can be seen that the truncation error of Eqs. (4.24)(4.26) is
0N+ A +Ap* +A0Y), 0N+ N +AQ +AGY), (A + A + Ap* + AG*), respectively;
the truncation error of Egs. (4.33)(4.35) is O(Af+A), (At +Ap®), At + AO?),
respectively; and the truncation error of Eqgs. (4.36)-(4.38) is O(A+Ar° +Ag@?),
O(M + N +AG%), O(M +AG +Ap?), respectively; the truncation error of Egs. (4.39),
(4.40) is (A2 +Ar? + AG” +Ag?) . Tt should be pointed out that Eqs. (4.24)—(4.26) are
nonlinear since the terms S5.(T°)™"(i+1/2,j,k), J,(T?)*'(i,j+1/2,k) and
5(/)(7;2)”” (4, J,k+1/2) are nonlinear. Also, it can be seen that Eq. (4.39) is nonlinear.

Therefore, the above schemes must be solved iteratively.
4.2.4 Algorithm
An iterative method for solving the above schemes at time level n+1 is developed

as follows:

Step 1. Set the values &/, &,",&,", &/, , &, and &, , solve Eqgs. (4.39), (4.40)

iteratively for 7" and 7,""' .
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Step 2. Solve for 0., 0;", 00", 07! 07! and o), using Eqgs. (4.27)-(4.32).

P 2 Trp 2

. . n+l n+l n+l n+l n+l .
Step 3. Solve for derivatives of o 09 20, 50,5 ,0, and 0,y using Eqgs. (4.22),

(4.23) or similar equations.

Step 4. Solve for v'*', vi* and v(’;” using Egs. (4.24)-(4.26).

Step 5. Update £, "', & 8:'(;1, ™ and £ 0 using Egs. (4.33)-(4.38).

o
Given the required accuracy E, (for temperature) and E, (for strain), repeat the
above steps until a convergent solution is obtained based on the following criteria:
E RORS M (T AUTES S
A R R U A T S A (F N B AN (NS E F
D O B T A VA B (S AT o
| n+1(new) (l J’ k) gn+l(old) (l ,], k)|<E2, |8n+1(new) (l ,], k) gn+1(old) (l j: k)lSEz

4.3 Conclusion

In this chapter, we developed finite difference methods for solving those governing
equations set up in the previous chapter. And to avoid non-physical oscillations in the
solution, we further developed a fourth-order compact finite difference scheme for

oo,, 0
9 £, %9 and etc. In
00

: o o 0
evaluating stress derivatives and shear stress derivatives 5 5
r 4

the next chapter, we will test our numerical methods by five cases.
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CHAPTER FIVE

NUMERICAL EXAMPLES AND DISCUSSIONS

In this chapter, we will show the numerical examples based on the developed
numerical schemes for thermal deformation in a gold micro-sphere subjected to an
ultrashort pulsed laser. Five examples will be used for testing the numerical schemes. In
example one, the laser irradiates a portion (0 < @ <7 /4) of the upper hemisphere; in
example two, the laser irradiates the whole upper hemisphere; and in example three, the

laser irradiates both the top portion ( 0<@<7/4 ) and the bottom portion
(37/4 £ ¢ £ ); in example four and example five, we will change the heat source to the
laser with double-pulse which irradiates the top portion (0 < ¢ < 7/4) and irradiates both
the top portion (0 < ¢ < x/4) and the bottom portion (37/4 < ¢ < 1), respectively. For

each example, the electron temperature, the lattice temperature, the displacement and the
stress will be calculated and discussed.
5.1 Description

To test the applicability of the developed numerical schemes, we will investigate the
temperature rise and thermal deformation in a micro-sphere with the radius 0.1 um, as

shown in Fig. 5.1.

48
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Ultrashort-pulsed lasers

R

Fig. 5.1 A 3D micro-sphere with radius L = 0.1 ym.

The thermophysical properties for gold are listed in Table 5.1 [Tzhou 2002, Chen

2002a, Chen 2002b]. Four meshes of 60x20x20, 40x20x20, 30x20x40, and

20x30x 40 were chosen in order to test the convergence of the solution. The time

increment was chosen to be 0.005 ps, and 7, was set to be 300 K. Three different values
of laser fluence (J= 500 J/m?, 1,000 J/m?, 2,000 J/mz) were chosen to study the hot

electron blast force. The convergence criteria were chosen to be E, =107 for temperature

and E, =107" for deformation.
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Table 5.1 Thermophysical properties for gold [Tzou 2002, Chen 2002a, Chen 2002b]

Properties Unit Value
p kg/m’ 19,300
A J/(m™ K?) 70
K Pa 217 x10°
7 Pa 27x10°
a; K 14.2x107°
C, J/(m® K) 2.1x10*
C J/(m’ K) 2.5x10°
G W/(m® K) 2.6x10'
K, W/(mK) 315
R 0.93
Z, s 0.1x107"
g m 15.3x107
L m 1.0x1077
J J/m? 500; 1,000; 2,000
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5.2 Numerical Examples and Discussions

5.2.1 Example One

In this case, the laser irradiates a portion (0<r < L,0<0 <27, 0<¢p <7 /4).

Fig. 5.2 shows the change in electron temperature ( A7, /(AT,),.. ) at the point

max

(r=L, =0, §=0) for various meshes ( 60x20x20, 40x20x20, 30x20x 40,
20%30x 40 ) with laser fluence J = 500 J/m®. The maximum temperature rise of T, (1e.

(AT)),..) 1s about 3931.22 K, which is close to that obtained in [Qiu 1994]. Fig. 5.3

max

shows the displacement u, at the point (» = L/2, ¢ =0, 8 =0) versus time.

03

—_——— ~ Grid20x30xi0

08

27

0S5

TOEX

05

AT [ (AT)

04

03

TTTT |||I|!III|IIlI|IlII]III!IIIlIIllll’lll|'||l||ll||]|l|\

g e boev o by v by
a5 15 2

(=]

K
t{ps}

Fig. 5.2 Change in electron temperature T, at » = 0.1 pm, 8 = 0, ¢ = 0 versus time for

various meshes with a laser fluence J of 500 J/m”>.
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Fig. 5.3 Displacement i, at 7 = 0.05 pm, & = 0, ¢ = 0 versus time for various meshes

with a laser fluence J of 500 J/m>.

It can be seen from both figures above that the grid size has no significant effect on
the solution and hence the solution is convergent.

Fig. 5.4 shows profiles of electron temperature and lattice temperature along the
diameter at @ =0 and ¢ = 7 with laser fluence J = 500 J/m” and a mesh of 60x20x 20
at different times (a) t = 0.25 ps, (b)) t =0.5ps, (¢) t =1 ps, (d) t =5 ps and (e) t = 20 ps,
respectively. It can be seen that the electron temperature rises to its maximum at the
beginning and then decreases while the lattice temperature rises gradually with time to a
uniform temperature distribution at t = 20 ps. Electron temperature decreases rapidly with
time and lattice temperature rises gradually with time in the gold sphere because of the
effect of the heat diffusion in the electron gas and the constant heat flow from hot

electrons to metal lattices. The uniform electron and lattice temperature are probably due
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to an increased rate of collision between electrons and phonons in the gold layer as
boundary is thermally insulated.

Fig. 5.6 shows normal stress o, along the diameter at ¢ =0 and ¢ = 7 at different
times (a) t =5 ps, (b) t = 10 ps, (c) t = 15 ps, (d) t = 20 ps with a mesh of 60x20x 20
and three different laser fluences (J = 500 J/mz, 1,000 J/m®, 2,000 J/mz). Usually,
numerical oscillations appear near the peak of the curve, as shown in Fig. 5.5 [Chen
2002a]. Tt can be seen from Fig. 5.6 (particularly Fig. 5.5(b)-Fig. 5.5(d)) that the normal
stress does not show non-physical oscillations near the two peaks of the curve. And also
from Fig. 5.5 we can see, with the time increasing, the two peaks become closer and
closer, and finally they will meet together. It shows that the energy is transferred from the
surface of the micro-sphere to the center along the r direction.

Fig. 5.7 shows displacement u, along the diameter at ¢ =0 and ¢ = 7 at different
times (a) t =5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps with a mesh of
60x20x20 and three different laser fluences (J = 500 J/m?, 1,000 J/m?, 2,000 J/mz).
From the figures, we can see the displacement along the r direction. So it shows the fact
again that the thermal energy is transferred along the r direction from the surface of the
micro-sphere to the center along the » direction.

Figs. 5.8-5.15 were plotted based on the results obtained in a mesh of
60x20x20 with a laser fluence J = 500 J/m’. Figs. 5.8 and 5.9 show contours of
electron temperature distributions and lattice temperature distributions in the cross
section of =0 and 6 = 7 at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t =1 ps,
(d) t=5ps, () t =10 ps, and (f) t = 20 ps, respectively. It can be seen from both figures

that the heat is mainly transferred from top surface to bottom. Figs. 5.10-5.15 show
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contours of displacement (u,, u,,u,) and normal stress (o,, 0, 0, ) in the cross section

of =0 and 6 = r at different times (a) t =5 ps, (b) t=10ps, (c)t=15ps, and (d) t =
20 ps, respectively. It can be seen from Fig. 5.10 that the sphere is expanding along the r
direction and the top portion of the sphere expands much more as compared with the
bottom. This is because the laser irradiates from the top portion of the sphere. From Figs.
5.13-5.15 we can see that the blasting forces produce compressive stresses at first, then
as the wave of stress propagates along r direction, severe stresses alteration appear in the
gold sphere. Since metal including gold is weaker in general when resisting tension, the
tensile region of the sphere will be more detrimental. For this reason, it is too hard for a

gold sphere to resist the damage induced by ultrashort laser heating.
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Fig. 5.4 Profiles of (a) electron temperature (T,), and (b) lattice temperature (T;) along 7-

axis at ¢ = 0and ¢ = 7 for various times with a laser fluence J of 500 J/m” and a mesh

60x20x20.

0.3 :_ ———— Chenetal’'s method [Chen 2002a]

X (jm)

Fig. 5.5 Chen et al.’s method in [Chen 2002a] with regard to normal stress o, with

oscillations at two peaks.
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Fig. 5.6 Normal stress (&, ) along the diameter atp = O and ¢ = 7 at different times (a) t =

5ps, (b) t=10ps, (c) t =15 ps, and (d) t = 20 ps with three different laser fluences and a
mesh of 60x20x 20.
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5ps, (b) t=10ps, (c) t =15 ps, and (d) t = 20 ps with three different laser fluences and a
mesh of 60x20x20.
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Fig. 5.8 Contours of electron temperature (T,) distributions in the cross section of § = 0
and 6 = 7 at different times (a) t =0.25 ps, (b)t=0.5ps, (c)t=1ps,(d)t=5ps, (e) t=
10 ps, and (f) t = 20 ps with a mesh of 60x 20x20 and a laser fluence J of 500 J/m’.
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Fig. 5.9 Contours of lattice temperature (T}) distributions in the cross section of § = 0
and 6 = rr at different times (a) t =0.25 ps, (b)t=0.5ps, (c)t=1ps,(d)t=5ps,(e)t=
10 ps, and (f) t = 20 ps with a mesh of 60x20x 20 and a laser fluence J of 500 J/m®.
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Fig. 5.13 Contours of normal stress ( o, ) distributions in the cross section of 8 =0
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a mesh of 60x20x20 and a laser fluence J of 500 J/m®.
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mesh of 60x20x 20 and a laser fluence J of 500 J/m>.
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5.2.2 Example Two
In this case, the laser irradiates both the top portion (0<r<L,0<6<2r7,
0<@ <7z/4)and the bottom portion (0<r<L,0<0<2x,37n/4<¢p<1).

Fig. 5.16 shows the change in electron temperature (A7, /(AT,),.. ) at the point

max

(r=L, p=0,6=0) for various meshes (60x20x20, 40x20x20, 30x20x 40, and

20x30x40) with laser fluence J =500 J/m®. The result is similar to that in Fig. 5.2
except that the temperature is higher since in this case the laser irradiates from both top

and bottom. The maximum temperature rise of 7, is about 3935 K. And Fig. 5.17 shows
the displacement u, at the point (r =L/2, ¢ =0, 8 = 0) versus time. It shows again the

solution is convergent.

11

Grid60x 20220

— — - Gridd0x20x28
<o Grid 30x20x40
—_— — Grid 28x30x48

(R

08

a7

e

08

45

AT, [ (AT))

04

23

02

91

TTTT |1IlIIII|r|lIIIlTTI]rIII‘IlI(I(I]IlIIIIllX||||lIl||TI|

S0 < S T T N T S O O A N R OO

a5 1 15 2
t(ps)

L=

Fig. 5.16 Change in electron temperature T, at » = 0.1 pm, 8 = 0, @ = 0 versus time for

various meshes with a laser fluence J of 500 J/m?.
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Fig. 5.17 Displacement %, at » = 0.05 pum, § = 0, ¢ = @ versus time for various meshes

with a laser fluence J of 500 J/m®.

Fig. 5.18 shows profiles of electron temperature and lattice temperature along the
diameter at ¢ =0 and ¢ = 7 with laser fluence J = 500 J/m* and a mesh of 60x20x 20
at different times (a) t =0.25 ps, (b) t=0.5ps, (c) t =1 ps, (d) t =5 ps, and (e) t = 20 ps,
respectively. Figs. 5.19 and 5.20 show normal stress o, and displacement u, along the
diameter at ¢ =0 and ¢ = 7 at different times (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps,
and (d) t = 20 ps with a mesh of 60x20x20 and three different laser fluences (J = 500
J/m?, 1,000 J/m?, 2,000 J/m%). It can be seen from these figures that all profiles are
symmetric with respect to the original point and no numerical oscillations appear in the

normal stress o, .
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Fig. 5.18 Profiles of (a) electron temperature (T,), and (b) lattice temperature (T) along r-

axis at ¢ =0and ¢ = 7 for various times with a laser fluence J of 500 J/m® and a mesh

60x20x20.
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Fig. 5.20 Displacement (u,) along the diameter at ¢ =0 andg = 7 at different times (a) t
=5 ps, (b) t =10 ps, (c) t =15 ps, and (d) t = 20 ps with three different laser fluences and
a mesh of 60x20x20.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

Figs. 5.21-5.28 were plotted based on the results obtained in a mesh of
60x20x20 with a laser fluence J =500 J/m’. Figs. 5.21 and 5.22 show contours of
electron temperature distributions and lattice temperature distributions in the cross
section of & =0 and 0 = 7 at different times (a) t = 0.25 ps, (b) t =0.5 ps, (c) t =1 ps,
(d) t=5ps, (e) t =10 ps, and (f) t = 20 ps, respectively. It can be seen from both figures

that the heat is mainly transferred from both the top and the bottom to the center.
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10 ps, and (f) t = 20 ps with a mesh of 60x20x 20 and a laser fluence J of 500 J/m?,
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Fig. 5.22 Contours of lattice temperature (7;) distributions in the cross section of § =0
and € = 7 at different times (a) t=0.25 ps, (b)) t=0.5ps, (c)t=1ps,(d)t=5ps,(e)t=
10 ps, and (f) t = 20 ps with a mesh of 60x20x20 and a laser fluence J of 500 J/m?.

Figs. 5.23-5.28 show contours of displacement (u,,u,,u,) and normal stress
(o,,0,,0,) in the cross section of § =0 and 6 = 7 at different times (a) t=57ps, (b) t

=10 ps, (¢) t = 15 ps, (d) t = 20 ps, respectively. It can be seen from Fig. 5.23 that the

upper hemisphere and the lower hemisphere expanding symmetrically along r direction.
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Fig. 5.23 Contours of displacement (u,) distributions in the cross section of § = 0 and

6 =z at different times (a) t = 5 ps, (b) t = 10 ps, (¢) t = 15 ps, and (d) t = 20 ps with a

mesh of 60x20x 20 and a laser fluence J of 500 J/m>.
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mesh of 60x20x 20 and a laser fluence J of 500 J/m’.
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5.2.3 Example Three
In this case, the laser irradiates the top hemisphere (0<r<L,0<6<271,
0<@p=<m/2).

Fig. 5.29 shows the change in electron temperature ( AT, /(AT,),.. ) at the point

(r=L,¢=0,0=0) for various meshes (60x20x20, 40x20x20, 30x20x40, and
20 x 30 x 40 ) with laser fluence J = 500 J/m’. The result is similar to that in Figs. 5.2 and
5.16 except that the temperature is higher. The maximum temperature rise of 7, is about

4119 K. And Fig. 5.30 shows the displacement u, at the point (r =L/2, 9 =0,0=0)

versus time.
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Fig. 5.29 Change in electron temperature T, at » = 0.1 pm, & = 0, @ = 0 versus time for

various meshes with a laser fluence J of 500 J/m”>.
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Fig. 5.30 Displacement i, at » = 0.05 um, § = 0, ¢ = 0 versus time for various meshes

with a laser fluence J of 500 J/m”.

Fig. 5.31 shows profiles of electron temperature and lattice temperature along the
diameter at ¢ =0 and ¢ = 7 with laser fluence J = 500 J/m” and a mesh of 60x 20x 20
at different times (a) t = 0.25 ps, (b) t=0.5 ps, (c) t =1 ps, (d) t = 5 ps, and (e) t =20 ps,
respectively. Figs. 5.32 and 5.33 show normal stress o, and displacement u, along the
diameter at ¢ =0 and ¢ = 7 at different times (a) t =5 ps, (b) t = 10 ps, (¢) t = 15 ps,
and (d) t = 20 ps with a mesh of 60x20x20 and three different laser fluences (J = 500
J/mz, 1,000 J/mz, 2,000 J/mz). It can be seen from these figures that the heat is transferred

from the top to the bottom along the r direction.
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Figs. 5.34-541 were plotted based on the results obtained in a mesh of
60x20x 20 with a laser fluence J = 500 J/m’. Figs. 5.34 and 5.35 show contours of
electron temperature distributions and lattice temperature distributions in the cross
section of & =0 and @ = 7 at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t =1 ps,
(d) t =35 ps, (e) t = 10 ps, and (f) t = 20 ps, respectively. It can be seen from both figures
that the heat is mainly transferred from top to bottom along r direction. Figs. 5.36 — 5.41

show contours of displacement (u,, u,, u ») and normal stress (o, o,, o ,) 1n the cross

section of & =0 and € = 7 at different times (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and

(d) t=20 ps, respectively.
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mesh of 60x20x 20 and a laser fluence J of 500 J/m’.
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5.2.4 Example Four
Now we change the laser from a single-pulse to double-pulse. Thus, the heat source

equation becomes [Kaba 2004]

-2t -4
e ey gy ey

00 0.00=0941 "8 ¢ e 4o " Jeose (5.1)

(¢

In this case, we let the double-pulse laser irradiates a top portion (0<r<L,
0<60<27,0<5p<n/2).

Fig. 5.42 shows the change in electron temperature ( AT, /(AT,),,, ) at the point

max

(r=L, =0,8=0) for various meshes (60x20x20, 40x20x 20, 30x20x 40, and
20 x 30 x 40 ) with laser fluence J = 500 J/m>. It can be seen from Fig 5.42 there are two
peaks in electron temperature distribution due to the repetitive pulse heating. The
maximum temperature rise of 7, at the first peak is about 3931.58 K, which is almost the

same with the maximum temperature in example one. And the maximum temperature rise

of 7, at the second peak is about 4540.33 K, which is a little higher than that at the first

peak. And Fig. 5.43 shows the displacement u, at the point (r=L/2, ¢ =0,8=0)

versus time.

Fig. 5.44 shows profiles of electron temperature and lattice temperature along the
diameter at @ =0 and ¢ = 7 with laser fluence J = 500 J/m® and a mesh of 60x 20 x 20
at different times (a) t = 0.25 ps, (b) t=0.5 ps, (c) t =1 ps, (d) t =5 ps, and (e) t = 20 ps,

respectively. The temperature distribution is similar to those shown in Figs. 5.4 and 5.31.
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Figs. 5.45 and 5.46 show normal stress o, and displacement u, along the diameter
at ¢ =0 and ¢ = 7 at different times (a) t =5 ps, (b) t=10ps, (c) t =15 ps, and (d) t =
20 ps with a mesh of 60x20x20 and three different laser fluences (J = 500 J/m?, 1,000
J/m?, 2,000 J/m®). It can be seen from these figures that the heat is transferred from top to
bottom along the » direction which is similar to those in examples one and three. And
from Fig. 5.45 it can be seen that it does not show any non-physical oscillation.

Figs. 5.47-5.54 were plotted based on the results obtained in a mesh of
60x 20 % 20 with a laser fluence J = 500 J/m®. Figs. 5.47 and 5.48 show contours of
electron temperature distributions and lattice temperature distributions in the cross
section of @ =0 and @ = 7 at different times (a) t = 0.25 ps, (b) t =0.5 ps, (c) t =1 ps,
(d) t =5 ps, (e) t = 10 ps, and (f) t = 20 ps, respectively. It can be seen from both figures
that the heat is mainly transferred from top to bottom along » direction. Figs. 5.49-5.54
show contours of displacement (u,,u,,u,) and normal stress (o,, 0,4, ,) in the cross
section of & =0 and 8 = = at different times (a) t =5 ps, (b) t =10 ps, (c) t = 15 ps, and

(d) t =20 ps, respectively.
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5.2.5 Example Five

Finally, we will study the case that the laser with double-pulse irradiates both the top
portion (0<r<L,0<0<27r, 0<@p<7n/4) and the bottom portion (0<r<L,
0<0<2n, 3n/4<p<T).

Fig. 5.55 shows the change in electron temperature ( AT, /(AT,),., ) at the point

(r=L,9=0,6=0) for various meshes (60x20x20, 40x20x20, 30x20x 40, and
20%30x 40 ) with laser fluence J = 500 J/m®. The result is similar to that in Fig. 5.42
except that the temperature is higher. The maximum temperature rise of T, at the first
peak is about 3935.41 K, which is very close to the maximum temperature in example
two. And the maximum temperature rise of 7, at the second peak is about 4680.57 K,
which is higher than that at the first peak. And Fig. 5.56 shows the displacement «, at the
point (r=L/2, 9 =0, 8 =0) versus time.

Fig. 5.57 shows profiles of electron temperature and lattice temperature along the
diameter at ¢ =0 and ¢ = 7 with laser fluence J = 500 J/m* and a mesh of 60x 20x 20
at different times (a) t = 0.25 ps, (b) t =0.5ps, (c) t =1 ps, (d) t =5 ps, and (e) t = 20 ps,
respectively. Figs. 5.58 and 5.59 show normal stress o, and displacement u, along the
diameter at ¢ =0 and ¢ = 7 at different times (a) t = 5 ps, (b) t = 10 ps, (¢) t = 15 ps,
and (d) t = 20 ps with a mesh of 60x20x20 and three different laser fluences (J = 500
J/m?, 1,000 J/m?, 2,000 J/m?). It can be seen from these figures that all profiles are

symmetric with respect to the center point which is similar to those in example two. And

there is no numerical oscillations appear in the normal stress o, .
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Fig. 5.55 Change in electron temperature T, at » = 0.1 pm, 8 = 0, ¢ = 0 versus time for

various meshes with a laser fluence J of 500 J/m”.
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Fig. 5.56 Displacement u, at » = 0.05 um, & = 0, @ = 0 versus time for various meshes

with a laser fluence J of 500 J/m?.
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axis at ¢ =0and @ = 7 for various times with a laser fluence J of 500 J/m” and a mesh

of 60x20x20.
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Figs. 5.60-5.67 were plotted based on the results obtained in a mesh of
60x20x 20 with a laser fluence J = 500 J/m” Figs. 5.60 and 5.61 show contours of
electron temperature distributions and lattice temperature distributions in the cross
section of 8 =0 and 0 = 7 at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t =1 ps,
(d) t=5ps, (e) t=10 ps, and (f) t = 20 ps, respectively. It can be seen from both figures
that the heat 1s mainly transferred from both the top surface and the bottom surface to the

center.
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Fig. 5.60 Contours of electron temperature (7,) distributions in the cross section of § = 0
and 6 = 7 at different times (a) t=0.25ps, (b)) t=0.5ps, (c)t=1ps,(d)t=5ps, (e) t=
10 ps, and (f) t = 20 ps with a mesh of 60x20x20 and a laser fluence J of 500 J/m?.
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Fig. 5.61 Contours of lattice temperature (T}) distributions in the cross section of § = 0
and @ = r at different times (a) t=0.25ps, (b) t=0.5ps, (c)t=1ps,(d)t=5ps, (e)t=
10 ps, and (f) t = 20 ps with a mesh of 60x20x 20 and a laser fluence J of 500 J/m?.
Figs. 5.62—-5.67 show contours of displacement (u,,u,,u,) and normal stress

(o,,04,0,) in the cross section of & =0 and @ = 7 at different times (a) t =5 ps, (b) t

=10ps, (c) t = 15 ps, and (d) t = 20 ps, respectively. It can be seen from Fig. 5.62 that the
upper hemisphere and the lower hemisphere expanding symmetrically along r direction

which is similar to Fig. 5.23.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

{nm} wirm}
7RG 1.57E-01
.97 1.50E.01
SE-L2 14081
L2EL LIE0
205 a5
03 s | OF 1.23E-01
13 1SE-01
17E0L
-~ — 9.82E-02
£ £ 895802
3 0 3 o= 8.14E-02
ey ol 730E 62
- 6.47E-02
5.63E-02
L48EL2 §.79E-02
4,25 LUEELR | 445 3.85E-02
9 39E33
7.36E-03
281803
2 37E-83
(a) (b)
uinm)
2.55E-01
2.44E.61
2.30E-81
< LTEM
5038 Sower | 093
1L8SE51
1.76E-01
0 ez |5
[ _48E-
3 0 138E-01 g a
bt LHES |
1O7E-01
9.31E.02
7 94E-82
5 63EL2 | o ps
005 s |
38E0
234E-02
LOTEAR

(©) (d

Fig. 5.62 Contours of displacement (u,) distributions in the cross section of & = 0 and
0 = rr at different times (a) t = 5 ps, (b) t =10 ps, (c) t = 15 ps, and (d) t =20 ps with a
mesh of 60x20x 20 and a laser fluence J of 500 J/m’.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



124

0.1 i1 -
| = 2"31"‘)?69
.] = 2.78E09
| 262E

|y
0.03 003 L 3 er o
213808
1.56E-09
1.80E-09
= = LEE09
Z 6 JOEGE |2 9 137E09
— 1.86E-08 [— 1.31E-65
= 150E-08 | 1.15E-09
LAUELS 9.8:E.10
L2E L5 $.21E-10
LO0E4S . 6.38E-10
.03 sotEag | 008 4.95E-10
6.00E-10 3.32E-10
4.60E-10 1.69E.10
2.00E-10 5.56E-12

01 0.1

5.1 B3 G 0.03 .1
r{um}
(a) (b)

2.1 i1
agfmi Wfnm)
23609 1.59E 09
22ESS 1.27E0
206809 $.46E-10
191809 ) LT3E-40
0.05 LwEgs | 003 1.00E-10
16105 17E.15
146E-05 $.45E10
131E0 1.02E 09
- LISESS (o 139E8
S ¢ LeEw |5 ¢ 176E-09
o S6E-10 e 2A3E09
= TIER T 2SIE-09
S.6E-10 2.88E.09
L UE-10 325E0%
261E-10 i 362809
-0.05 Lugde | 003 $.00E.09
S3B1E-11 4.37E-08
LL8FE-10 L E09
3.30E-10 SELD9

41 -4

0.1 01

(c) (d)
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mesh of 60x20x 20 and a laser fluence J of 500 J/m>.
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CHAPTER SIX

CONCLUSION

In this dissertation, we reviewed the fundamentals about the heat transfer for
microscale. And then we developed a mathematical model for micro-sphere subjected by
ultrashort pulsed lasers in spherical coordinates for studying thermal deformation. The
model includes the dynamic equations of motion and the parabolic two-step heat
transport equations. We further developed a finite difference scheme based on the
developed mathematical model. The scheme was obtained by introducing velocity
components to the dynamic equations of motion, and by using a staggered grid, by
developing the forth order compact finite difference for the derivatives of stresses. The
model of its numerical method is tested by several numerical examples. Numerical results
show that the solutions do not appear non-physical oscillation, and the micro-sphere is
spanding when subjected to ultrashort-pulsed lasers.

Further studies will focus on the thermal deformation in a multi-layered micro-

sphere since multi-layered micro-sphere is often encountered in engineering.
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APPENDIX

SOURCE CODE OF THE NUMERICAL METHOD
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Source code for the case that the laser
irradiates a portion ( 0<r<L ,
0<0<27, 0<@p<n/4) with a mesh

of 60x20x20 and a laser fluence J of

500 J/m?:

¢ main

implicit double precision (a-h,1,0-z)

dimension
t(4010),t1(4010),t2(4010),x(150),y(50),2(50),x 1(
150),

$
x2(150),y1(50),21(50),a(150),b(150),c(150),beta
(150)

dimension eto(150,50,50),etn(150,50,50),

$
1to(150,50,50),1tn(150,50,50),etnmax(150,50,50),

$

etm(4010),etm1(4010),1tm(4010),1tm1(4010),

$ ulm(4010),u2m(4010),u3m(4010),

$
vim(4010),v2m(4010),v3m(4010),etm2(4010),

$
xsa0(151,51,51),ysa0(151,51,51),zsa0(151,51,51
)’

$
ssaoxy(151,51,51),ssaoxz(151,51,51),ssaoyz(151
,51,51),

$
xsa00(151,51,51),ysa00(151,51,51),zsa00(151,5
1,51),

3
ssaooxy(151,51,51),ssa00xz(151,51,51),ssa0o0yz(
151,51,51),

3
xsan(151,51,51),ysan(151,51,51),zsan(151,51,51
),

$
ssanxy(151,51,51),ssanxz(151,51,51),ssanyz(151
,51,51),

$
xseo(151,51,51),yseo0(151,51,51),zse0(151,51,51
),

$
sseoxy(151,51,51),sseoxz(151,51,51),sseoyz(151
S1,51),

S
xsen(151,51,51),ysen(151,51,51),zsen(151,51,51
),

$
ssenxy(151,51,51),ssenxz(151,51,51),ssenyz(151
,51,51),

$
difx(151,51,51),dify(151,51,51),difz(151,51,51),

$
difxyx(151,51,51),difxyy(151,51,51),difxzx(151,
51,51),

$
difxzz(151,51,51),difyzy(151,51,51),difyzz(151,
51,51),

$
v10(151,51,51),v20(151,51,51),v30(151,51,51),

$
vIin(151,51,51),v2n(151,51,51),v3n(151,51,51),

$
ulo(151,51,51),u20(151,51,51),u30(151,51,51),
$
uln(151,51,51),u2n(151,51,51),u3n(151,51,51),
$ d(151,51,51),gama(151,51,51)

integer o, counter,l,r

¢ Lame constant
lemta=199.0d+9

¢ Shear modulus
cmiu=27.0d+9

¢ Thermal expansion coefficient
alphat=14.2d-6
open(unit=62, file='etm.txt')

pi=3.14159265359
Ix=1.0D-7
ly=2.0*pi
1z=1.0%pi

n=60

m=20

=20

hl=Ix/n

h2=ly/m

h3=lz/r

0=4000
dt=0.005d-12
counter=0
t(1)=0
x(1)=0
y(1)=0
z(1)=0

¢ initial condition
print *t
k=1
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do I=11+1

do j=1,m

do i=1,n+1
eto(i,j,1)=300.0
1to(i,j,1)=300.0

etnmax(i,j,1)=300.0

print*, eto(i,j,l)
xsao(1,j,1)=0.0
ysao(1,},1)=0.0
zsao(1,),1)=0.0
ssaoxy(i,j,1)=0.0
ssaoxz(1,5,1)=0.0
ssaoyz(1,j,1)=0.0

xs200(1,],1)=0.0
ysa00(1,j,1)=0.0
zsa00(1,j,1)=0.0
ssaooxy(i,},1)=0.0
$sa00xz(1,j,1)=0.0
ssaooyz(i,j,1)=0.0

xseo(i,j,1)=0.0
yseo(1,j,1)=0.0
zseo(i,j,1)=0.0
sseoxy(i,j,1)=0.0
sseoxz(i,j,1)=0.0
sseoyz(i,j,1)=0.0
difxyx(i,j,1)=0.0
difxyy(i,j,1)=0.0
difxzx(i,j,1)=0.0
difxzz(i,j,1)=0.0
difyzy(i,j,1)=0.0
difyzz(i,j,1)=0.0
difx(i,j,1)=0.0
dify(i,},1)=0.0
difz(i,j,1)=0.0
vio(i,j,)=0.0
v20(i,j,1)=0.0
v30(1,j,1)=0.0
ulo(i,j,1)=0.0
1u20(1,j,1)=0.0
u3o(i,j,1)=0.0

end do
end do
end do

etm(k)=300.0
1tm(k)=300.0

do 1=2,r+1
z()=z(1-1)+h3

z1(l)=z(1-1)+1.0/r

end do
do j=2,m
yO)=y(j-1)+h2

y1({)=y1(j-1)+2.0/m
print*, y(j)

end do

do i=2,n+1
x(1)=x(i-1)+h1
x1(1)=(x(i-1)+h1)*1.0d6
x2(i)=-(x(i-1)+h1)*1.0d6
end do

write(*,*) 'start’
do 1 kt=2,0+1
t(k)=t(k-1)+dt

t1(k)=t(k-1)+dt/2.0
2(k)=(t(k-1)+dt)*1.0d12

do I=1,r+1

doj=1,m

do i=1,n+1
xsan(i,),])=xsao(i,j,l)
ysan(i,j,1)=ysao(i,},1)
zsan(1,j,})=zsao(i,j,l)
enddo

enddo

enddo

call
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temp(n,m,r,Ix,h1,h2 h3 x y,z,t1(k),dt,lto,ltn,eto,et

n,

$ XS, ysan,zsan,xsao,ysao,zsao)

tol=1d-12
detuvmax=tol+1d-5

do while (detuvmax.gt.tol)

detuvmax=0.0

¢ Conmpute stress

dok=2r
do j=1,m
doi=2,n

xsen(i,j,k)=(lemta+2.0*cmiu)*xsan(i,j,k)+lemta*
ysan(i,j.k)

$ +lemta*zsan(i,j.k)-

(3.0*lemta+2.0*cmiu)*alphat*(1tn(i,j,k)-300.0)

ysen(i,j,k)=lemta*xsan(i,j,k)+(lemta+2.0*cmiu)*
ysan(i,j,k)

$ +lemta*zsan(i,j,k)-

(3.0*lemta-+2.0*cmiu)*alphat*(ltn(i,j,k)-300.0)
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zsen(i,},k)=lemta*xsan(i,j,k)+(lemta+2.0*cmiu)*
zsan(1,j,k)

$ +lemta*ysan(i,j,k)-

(3.0*lemta+2.0*cmiu)*alphat*(1tn(i,,k)-300.0)

end do
end do
end do

do k=1,r+1

doj=l,m
xsen(1,j,k)=xsen(2,j,k)
ysen(1,j,k)=ysen(2,j,k)
zsen(1,j,k)=zsen(2,j,k)
xsen(n+1,j,k)=0.0
ysen(n+1,j,k)=0.0
zsen(n+1,j,k)=0.0

end do

end do

doj=1,m

do i=1,n+1
zsen(i,],1)=zsen(1,j,2)
ysen(i,j,1)=ysen(i,j,2)
xsen(1,j,1)=xsen(i,),2)
zsen(i,],r+1)=zsen(3,,r)
ysen(i,j,r+1)=ysen(i,j,r)
xsen(i,j,r+1)=xsen(i,},r)
end do

end do

dok=2r

doj=l,m

doi=2,n-1
ssenxy(1,j,k)=2*cmiu*ssanxy(i,j,k)

end do
end do
end do

do k=1r+1

do j=1,m
ssenxy(1,j,k)=ssenxy(2,j,k)
ssenxy(n,j,k)=0

enddo

enddo

do i=1,n-1

do j=1,m
ssenxy(i,j,1)=ssenxy(1,j,2)
ssenxy(i,j,r+1)=ssenxy(i,j,r)
enddo

enddo

do k=2,r-1
doj=1,m

doi=2,n-1
ssenxz(1,],k)=2*cmiu*ssanxz(1,j,k)
enddo

enddo

enddo

do k=1,

doj=1,m

ssenxz( 1,),k)=ssenxz(2,j,k)
ssenxz(n,j,k)=0

enddo

enddo

do i=1,n-1

doj=1,m
ssenxz(i,j,1)=ssenxz(i,j,2)
ssenxz(1,),r)=ssenxz(i,j,r-1)
enddo

enddo

do k=2 -1

doj=1,m

doi=2,n
ssenyz(1,j,k)=2*cmiu*ssanyz(i,j,k)
enddo

enddo

enddo

dok=1r

doj=1,m
ssenyz(1,j,k)=ssenyz(2,j,k)
ssenyz(n+1,j,k)=0

enddo

enddo

doi=1n

do j=1,m
ssenyz(1,),1)=ssenyz(1,j,2)
ssenyz(i,j,r)=ssenyz(i,j,r-1)
enddo

enddo

do j=1,m
difx(1,j,k)=(xsen(2.j,k)-xsen(1,j,k))/h1l
difx(n,j,k)=(xsen(n+1,j,k)-xsen(n,j,k))/hl
end do

end do

b(2)=0.0
a(2)=0.416666667
¢(2)=-0.041666667

do k=1,r+1
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doj=1,m
d(2,j,k)=(xsen(3,j,k)-xsen(2,j,k))/h1-

0.041666667*difx(1,j,k)

end do
end do

do i=3,n-2
b(i)=-0.041666667
a(i)=0.416666667
c(1)=-0.041666667
doj=1,m
dok=1,r+1
d(i,j,k)=(xsen(i+1,j,k)-xsen(i,j,k))/h1
end do
end do
end do

b(n-1)=-0.041666667
a(n-1)=0.416666667
c(n-1)=0

do k=1r+1
doj=1,m
d(n-1,j,k)=(xsen(n,j,k)-xsen(n-1,j,k))/h1-

0.041666667*difx(n,j,k)

end do
end do

beta(n)=0
dok=1r+1
doj=1,m
gama(n,j,k)=0
end do

end do

do k1=2,n-1
i=n-k1+1
beta(i)=b(i)/(a(i)-c(i)*beta(i+1))
doj=l,m
do k=1,r+1

gama(1,j,k)=(d(1,j,k)+c(i)*gama(i+1,j,k))/(a(i)-
c(i)*beta(it+1))

end do
end do
end do

doi=2,n-1
doj=l,m
do k=1,r+1

difk(i,j,k)=beta(i)*difx(i-1,j,k)+gama(i,j k)

end do
end do
end do

do i=1,n+1
a(1)=0.0
b(1)=0.0
c(1)=0.0
beta(1)=0.0
doj=1,m
do k=1r+1
gama(1,),k)=0.0
d(1,},k)=0.0
enddo
enddo
enddo

c dify
do k=1,r+1
do i=1,nt1

dify(1,1,k)=(ysen(i,2,k)-ysen(i, 1,k))/h2
dify(i,m,k)=(ysen(1, 1,k)-ysen(i,m,k})/h2

end do
end do

b(2)=0
a(2)=0.416666667
(2)=-0.0416666667

do k=1,r+1

do i=1,n+1

d(i,2,k)=(ysen(i,3,k)-ysen(1,2,k))/h2-
0.041666667*dify(i,1,k)

end do

end do

do j=3,m-2
b(j)=-0.0416666667
a(j)=0.416666667
c(j)=-0.0416666667
do i=1,n+1
do k=1r+1
d(i,j,k)=(ysen(i,j+1,k)-ysen(i,j,k))/h2
end do
end do
end do

b(m-1)=-0.0416666667
a(m-1)=0.416666667
c(m-1)=0

do k=1,r+1
do i=1,n+1
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d(i,m-1,k)=(ysen(i,m,k)-ysen(i,m-1,k))/h2-

0.041666667*dify(i,m,k)

end do
end do

beta(m)=0
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do k=1,r+1

do i=1,n+1
gama(i,m,k)=0
end do

end do

do k1=2,m-1
j=m-k1+1
beta(j)=b(j)/(a(j)-c(j)*beta(j+1))
do i=1,n+1
do k=1,r+1

gama(i,),k)=(d(1,},k)+c(j)*gama(i,j+1,k))/(a(j)-

c(j)*beta(j+1))
end do
end do
end do

do i=1,n+1
do j=2,m-1
dok=1r

dify(i,j,k)=beta(j)*dify(i,j-1,k)+gama(i,j,k)

end do
end do
end do
do i=1,n+1
a(i)=0.0
b(1)=0.0
c(1)=0.0
beta(1)=0.0
doj=1,m
do k=1,r+1
gama(i,j,k)=0.0
d(i,j,k)=0.0
enddo
enddo
enddo

¢ difz
doj=1,m
do i=1,n+1
difz(ij,1)=(zsen(i,j,2)-zsen(i,j,1))/h3
difz(i,j,r)=(zsen(i,j,r+1)-zsen(i,j,r)/h3
end do
end do

b(2)=0.0
a(2)=0.416666667
o(2)=-0.0416666667

do j=1,m

do i=1,n+1

d(i,j,2)=(zsen(i,j,3)-zsen(1,j,2))/h3-
0.041666667*difz(i,j,1)

end do

end do
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do k=3 r-2
b(k)=-0.0416666667
a(k)=0.416666667
c(k)=-0.0416666667
do i=1,n+1
do j=1,m
d(i,j,k)=(zsen(i,j,k+1)-zsen(i,j,k))/h3
end do
end do
end do

b(r-1)=-0.0416666667
a(r-1)=0.416666667
c(r-1)=0

do j=1,m
do i=1,n+1
d(i,j,r-1)=(zsen(i,j,r)-zsen(i,j,r-1))/h3-

0.041666667*difz(i,j,r)

end do
end do

beta(r)=0

do j=1,m

do i=1,n+1
gama(i,j,r)=0
end do

end do

do k1=2-1
k=r-k1+1
beta(k)=b(k)/(a(k)-c(k)*beta(k+1))
do i=1,n+1
do j=1,m

gama(i,j,k)=(d(i,),k)+c(k)*gama(i,j,k+1))/(alk)-
c(k)*beta(k+1))

end do
end do
end do

do i=1,nt+1

do j=1,m

do k=2,r-1
difz(i,j,k)y=beta(k)*difz(i,j,k-1)+gama(i,j k)
end do

end do

end do

do i=1,n+1
a(1)=0.0
b(2)=0.0
c(1)=0.0
beta(i)=0.0
do j=1,m
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do k=1,r+1
gama(i,j,k)=0.0 do k1=3,n-1
d(i,j,k)=0.0 i=n-k1+1
enddo beta(1)=b(i)/(a(1)-c(i)*beta(i+1))
enddo do k=1,r
enddo doj=1,m
¢ difxyx
do k=1,r gama(i,j,k)=(d(i,j,k)+c(i)*gama(i+1,j,k))/(a(i)-
do j=1,m c(i)*beta(i+1))
difxyx(1,j,k)=(ssenxy(2,j,k)-ssenxy(1,j,k))/hl end do
difxyx(n-1,j,k)=(ssenxy(n,j,k)-ssenxy(n- end do
1,j,k))/h1 end do
end do
end do do i=2,n-2
do j=1,m
b(2)=0 dok=1r

a(2)=0.416666667
¢(2)=-0.0416666667

difxyx(i,j,k)=beta(i)*difxyx(i-

Lj.k)+gama(i,j,k)

end do
dok=1r end do
do j=1,m end do
d(2,j,k)=(ssenxy(3,j,k)-ssenxy(2,},k))/hl
$ -0.041666667*difxyx(1,j,k) do i=1,n+1
end do a(1)=0.0
end do b(i)=0.0
¢(1)=0.0
do i=3,n-3 beta(1)=0.0
b(i)=-0.0416666667 do j=1,m
a(1)=0.416666667 do k=1,r+1

c(i)=-0.0416666667

gama(i,j,k)=0.0

do k=1, d(i,j,k)=0.0

do j=1,m enddo

d(i,j,k)=(ssenxy(i+1,j,k)-ssenxy(i,j,k))/h1 enddo

end do enddo

end do difxyy

end do do k=1,r
doi=1ln

b(n-2)=-0.0416666667
a(n-2)=0.416666667

difxyy(i,1,k)=(ssenxy(i,2,k)-ssenxy(i,1,k))/h2
difxyy(i,mk)=(ssenxy(i, 1,k)-

c(n-2)=0.0 ssenxy(i,m,k))/h2
end do

dok=1r end do

doj=1,m

d(n-2,j,k)=(ssenxy(n-1,j,k)-ssenxy(n- b(2)=0

2,3,5k))/hl
$ -0.041666667*difxyx(n-1,j.k)
end do

a(2)=0.416666667
c(2)=-0.0416666667

end do do k=1,
do i=1,n

beta(n-1)=0 d(i,2,k)=(ssenxy(i,3,k)-ssenxy(i,2,k))/h2
$ -0.041666667*difxyy(i, 1 k)

do k=1,r end do

do j=1,m end do

gama(n-1,j,k)=0

end do do j=3,m-2

end do b(j)=-0.0416666667
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a(j)=0.416666667

¢(j)=-0.0416666667

do k=1,

doi=1,n
d(i,j,k)=(ssenxy(1,j+1,k)-ssenxy(1,j,k))/h2
end do

end do

end do

b(m-1)=-0.0416666667
a(m-1)=0.416666667
c(m-1)=0.0

dok=1,r
doi=1n
d(i,m-1,k)=(ssenxy(i,m,k)-ssenxy(i,m-
1,k))/h2
$ -0.041666667*difxyy(i,mk)
end do
end do

beta(m)=0

dok=1r
doi=1,n
gama(i,m,k)=0
end do

end do

do k1=2,m-1

j=m-k1+1
beta(§)=b(j)/(a(j)-c(j)*beta(j+1))
dok=1r

doi=1n

gama(i,j,k)=(d(i,j,k)+c(j) *gama(i,j+1,k))/(a()-
c(j)*beta(j+1))

end do

end do

end do

doi=1,n

do j=2,m-1

dok=1,r

difxyy(i,j,k)=beta(j)*difxyy(i,j-
1,k)+gama(i,j,k)

end do

end do

end do

do i=1,n+1
a(1)=0.0
b(i)=0.0
c(i)=0.0
beta(i)=0.0
doj=1,m
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do k=1,rt1
gama(i,),k)=0.0
d(i,j,k)=0.0
enddo
enddo
enddo
difxzx
dok=1,r

doj=l,m
difxzx(1,),k)=(ssenxz(2,j,k)-ssenxz(1,),k))/h1
difxzx(n-1,j,k)=(ssenxz(n,j,k)-ssenxz(n-

1,5,k))/hl

end do
end do

b(2)=0
a(2)=0.416666667
c(2)=-0.0416666667

dok=1,r

doj=l,m
d(2,),k)=(ssenxz(3,j,k)-ssenxz(2,j,k))/hl
$ -0.041666667*difxzx(1,j,k)

end do

end do

do i=3,n-3

b(1)=-0.0416666667

a(1)=0.416666667

c(1)=-0.0416666667

dok=1r

do j=1,m
d(1,j,k)=(ssenxz(i+1,j,k)-ssenxz(i,j,k))/h1
end do

end do

end do

b(n-2)=-0.0416666667
a(n-2)=0.416666667
c¢(n-2)=0.0

dok=1r
doj=1,m
d(n-2,j,k)=(ssenxz(n-1,j,k)-ssenxz(n-

2,j.k))/hl

$ -0.041666667*difxzx(n-1,j,k)
end do
end do

beta(n-1)=0

do k=2,r
doj=1,m
gama(n-1,j,k)=0
end do

end do
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do k1=3,n-1

=n-kl+1
beta(1)=b(i)/(a(i)-c(i)*beta(i+1))
dok=1r

do j=1,m

gama(1,j,k)=(d(1,j,k)+c(i)*gama(i+1,j,k))/(a(1)-
c(i)*beta(i+1))

end do

end do

end do

do i=2,n-2

do j=1,m

do k=1r

difxzx(i,j,k)=beta(i)*difxzx(i-
1,j,k)+gama(i,j,k)

end do

end do

end do

do i=1,n+1

a(i)=0.0

b(1)=0.0

¢(1)=0.0

beta(i)=0.0

do j=1,m

do k=1,r+1

gama(i,},k)=0.0

d(i,j,k)=0.0

enddo

enddo

enddo
¢ difxzz

do i=1,n

do j=1,m

difxzz(1,j,1)=(ssenxz(i,j,2)-ssenxz(i,j,1))/h3

difxzz(i,j,r-1)=(ssenxz(i,j,r)-ssenxz(i,j,r-
1))/h3

end do

end do

b(2)=0
a(2)=0.416666667
c(2)=-0.0416666667

do i=1,n

do j=1,m
d(i,j,2)=(ssenxz(1,j,3)-ssenxz(i,},2))/h3
$ -0.041666667*difxzz(i,j,1)

end do

end do

do k=3,r-3
b(k)=-0.0416666667

138

a(k)=0.416666667

c(k)=-0.0416666667

doi1=1n

do j=1,m
d(1,),k)=(ssenxz(1,j,k+1)-ssenxz(i,j,k))/h3
end do

end do

end do

b(r-2)=-0.0416666667
a(r-2)=0.416666667
c(r-2)=0.0

doi=1,n

do j=1l,m
d(i,j,r-2)=(ssenxz(i,j,r-1)-ssenxz(i,j,r-2))/h3
$ -0.041666667*difxzz(i,j,r-1)

end do

end do

beta(r-1)=0

do i=1,n
doj=1,m
gama(i,j,r-1)=0
end do

end do

do k1=3r-1

k=r-k1+1
beta(k)=b(k)/(a(k)-c(k)*beta(k+1))
do i=1,n

doj=1,m

gama(1,j,k)=(d(i,j,k)+c(k)*gama(i,j,k+1))/(a(k)-
c(k)*beta(k+1))

end do
end do
end do

do i=1,n

do j=1,m

do k=2r-2
difxzz(i,j,k)=beta(k)*difxzz(i,j k-

1)+gama(i,j,k)

end do
end do
end do

do i=1,n+1
a(1)=0.0
b(1)=0.0
¢(1)=0.0
beta(1)=0.0
doj=1,m
do k=1,r+1
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gama(1,),k)=0.0 do k1=2,m-1
d(i,k)=0.0 j=m-ki+1
enddo beta(j)=b(j)/(a(j)-c(j)*beta(j+1))
enddo do k=1,
enddo do i=1,n
¢ difyzy
do k=1,r gama(i,j,k)=(d(i,},k)+c(j)*gama(i,j+1,k))/(a(j)-
doi=1n c(j)*beta(j+1))
difyzy(i, 1, k)=(ssenyz(i,2,k)-ssenyz(i, 1,k))/h2 end do
difyzy(i,mk)=(ssenyz(i,1,k)- end do
ssenyz(i,m,k))/h2 end do
end do
end do doi=1,n
do j=2,m-1
b(2)=0 do k=1,r

a(2)=0.416666667
c(2)=-0.0416666667

difyzy(i,},k)=beta(j)*difyzy(i,j-

1,k)+gama(i,j,k)

end do
dok=1,r end do
do i=1,n end do
d(i,2,k)=(ssenyz(i,3,k)-ssenyz(i,2,k))/h2
$ -0.041666667*difyzy(i,1,k) do i=1,n+1
end do a(1)=0.0
end do b(i)=0.0
c(1)=0.0
do j=3,m-2 beta(i)=0.0
b(j)=-0.0416666667 do j=1,m
a(j)=0.416666667 do k=1,r+1
c(j)=-0.0416666667 gama(i,j,k)=0.0
dok=1r d(i,3,k)=0.0
doi=1,n enddo
d(i,j,k)=(ssenyz(i,j+1,k)-ssenyz(i,j,k))/h2 enddo
end do enddo
end do difyzz
end do do i=1,n
do j=1.m

b(m-1)=-0.0416666667
a(m-1)=0.416666667

difyzz(i,j,1)=(ssenyz(i,j,2)-ssenyz(i,j,1))/h3
difyzz(1,j,r-1)=(ssenyz(i,},r)-ssenyz(i,j,r-

¢(m-1)=0.0 1))/h3

end do
dok=1,r end do
do i=1,n
d(i,m-1,k)=(ssenyz(i,m,k)-ssenyz(i,m- b(2)=0

1,k))/h2
$ -0.041666667*difyzy(i,m,k)

a(2)=0.416666667
c(2)=-0.0416666667

end do

end do do i=1,n
doj=1,m

beta(m)=0 d(i,j,2)=(ssenyz(i,j,3)-ssenyz(i,j,2))'h3
$ -0.041666667*difyzz(i,j,1)

dok=1,r end do

doi=1,n end do

gama(i,mk)=0

end do do k=3,r-3

end do b(k)=-0.0416666667

a(k)=0.416666667
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c(k)=-0.0416666667

doi=1n

doj=1,m
d(1.,j,k)=(ssenyz(i,j,k+1)-ssenyz(i,j,k))/h3
end do

end do

end do

b(r-2)=-0.0416666667
a(r-2)=0.416666667
c(r-2)=0.0

doi=1n

do j=1,m
d(i,j,r-2)=(ssenyz(i,j,r-1)-ssenyz(i,j,r-2))/h3
$ -0.041666667*difyzz(i,j,r-1)

end do

end do

beta(r-1)=0

doi=1n
doj=1,m
gama(i,),r-1)=0
end do

end do

do k1=3,r-1

k=r-k1+1
beta(k)=b(k)/(a(k)-c(k)*beta(k+1))
doi=ln

doj=1,m

gama(i,j,k)=(d(i,j,k)+c(k)*gama(i,j,k+1))/(a(k)-
c(k)*beta(k+1))

end do
end do
end do

doi=l,n

doj=1,m

do k=2,r-2
difyzz(i,j,k)=beta(k)*difyzz(i,j, k-

1)+gama(i,j k)

end do
end do
end do

do i=1,n+1
a(1)=0.0
b(1)=0.0
c(1)=0.0
beta(1)=0.0

do j=1,m

do k=1,r+1
gama(i,j,k)=0.0
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d(i,j,k)=0.0
enddo
enddo
enddo

C
¢ Calculate velocity
C
c
call

velocity(n,m,r,h1,h2,h3,dt,x,y,z,eto,etn,xseo,yseo,

$ zseo,sseoxy,sse0xz,ss€0yz,

$ xsen,ysen,zsen,ssenxy,ssenxz,ssenyz,

$ vlo,v2o,v30,vin,v2n,v3n,ulo,u2o,u3o,

$
uln,u2n,u3n,difx,dify,difz,difxyx,difxyy,difxzx,
difxzz,

$ difyzy,difyzz)

c
¢ Calculate strain
c
c
do k=2r
doj=1,m
doi=2.n
xsan(i,j,k)=((v1n(ij,k)-v1n(i-1,j,k))/h1)
$ *dt+xsao(i,j,k)
c
zsan(i,),k)=((v1n(i,j,k)+vin(i-
1,j,k))/2+(v3n(i,j,k)
$ -v3n(i,j,k-1))/h3)*dvx(i)+zsao(i,j,k)

if (j.eq.1) then

ysan(i,j,k)=((v2n(i,j,k)-
v2n(i,m,k))/h2+(v1n(i,jk)

$ +vin(i-
1,3,k))*sin(z(k))/2+(v3n(i,j,k)+v3n(i,j,k-1))

$ *dt/(x(i)*sin(z(k)))+ysao(i,j,k)

else

ysan(i,j,k)=((v2n(i,j,k)-v2n(i,j-
1,k))/h2+(v1in(i,j,k)

$ +(v3n(i,j,k)+v3n(ij,k-1))

$

*(cos(z(k)))/2y*dt/(x(1) *sin(z(k)))+ysao(1,j,k)

endif
end do
end do
end do
c
¢ Shear strain
c
do k=2,r
doj=1,m
do i=2,n-1
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if (j.eq.m) then
ssanxy(1,},k)=((v1n(i,1,k)-
vin(i,j,k)/((x(1)+h1/2)
$ *h2*sin(z(k)))+(v2n(i+1,j,k)-v2n(i,j,k))/hi-
(v2n(i+1,j,k)
$

+v2n(i,j k)2*(x(i) +h1/2)))*dt/2+ssaoxy(i,j,k)

else

ssanxy(1,],k)=((v1n(i,j+1,k)-
vIn(1,j,k))/((x(1)+h1/2)

$ *h2*sin(z(k -(v2n(i+1,j,k)

$ +v2n(i,j,k))/(2*(x(i)+h1/2)))*dt/2

endif

enddo

enddo

enddo

do k=2,r-1
doj=1,m
do i=2,n-1

ssanxz(i,j,k)=((v1n(i,},k+1)-
vIn(i,j,k))/((x(i)+h1/2)

$ *h3)+(v3n(it+1,j,k)-v3n(i,j,k))/hl-
(v3n(i+1,j,k)

$

+v3n(i,j,k))/(2*(x(i)+h1/2))y*dy/2 +ssaoxz(ij,k)

enddo
enddo
enddo

do k=2,r-1
doj=1,m
do i=2,n-1

if (j.eq.m) then

ssanyz(i,j,k)=((v3n(i,1,k)-
v3n(i,j,k))/(h2*sin(z(k)+h3/2))

$ +(v2n(i,j,k+1)-v2n(i,j,k))/h3-
(v2n(i,j,k+1)+v2n(i,j,k))

$

*(cos(z(k)+h3/2))/(2*sin(z(k)+h3/2)))*dt/(2*x(i))
$ +ssaoyz(ij,k)

else
Ssanyz(iaj 7k):((V3n(i5j+ 1 7k)_
van(i,j,K))/(h2*sin(z(k)+h3/2))
$

*(cos(z(k)+h3/2))/(2*sin(z(k)+h3/2)))*dt/(2*x(i))
$ +ssaoyz(i,),k)
endif

end do
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end do
end do
c
¢ Completion of calculation of strain
c
do k=1,r+1
doj=l,m
do i=1,n+1
deti=xsan(i,j,k)-xsa00(1,),k)
det2=ysan(i,j,k)-ysaoo(i,j,k)
det3=zsan(i,),k)-zsaoo(3,},k)
detd=ssanxy(i,j,k)-ssaooxy(1,},k)
detS=ssanxz(i,j,k)-ssa00xz(i,j,k)
det6=ssanyz(1,},k)-ssaooyz(i,j,k)

det=max(abs(det1),abs(det2),abs(det3),abs(det4),
$ abs(det5),abs(det6))
if( abs(det).gt.detuvmax) detuvmax=abs(det)
if( abs(detl).gt.detlmax) detl max=abs(detl)
if( abs(det2).gt.det2max) det2max=abs(det2)
if( abs(det3).gt.det3max) det3max=abs(det3)
if( abs(det4).gt.detdmax) detdmax=abs(det4)
if( abs(det5).gt.detSmax) detSmax=abs(det5)
if( abs(det6).gt.detbmax) detbmax=abs(det6)
end do
end do
end do

do k=1,r+1

doj=l,m

do i=1,n+1
xsa00(1,j,k)=xsan(i,j,k)
ysaoo(i,j,k)=ysan(i,j,k)
zsaoo(i,j,k)=zsan(i,j,k)
ssaooxy(i,j,k)=ssanxy(i,j,k)
ssaooxz(1,),k)=ssanxz(i,j,k)
ssaooyz(1,j,k)=ssanyz(i,j,k)
end do

end do

end do

write(*,*) 'detuvmax=', detuvmax
¢

¢ End do with detmax

end do

do k=1,r+1
doj=l,m

do i=1,nt1
eto(i,j,k)=etn(i,j,k)
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Ito(i,3,k)=1tn(1,3,k)
xsao(i,},k)=xsan(1,j,k)
ysao(L,),k)=ysan(i,j,k)
zsao(1,j,k)=zsan(i,j,k)
ssaoxy(1,j,k)=ssanxy(i,j,k)
ssaoxz(1,j,k)=ssanxz(i,j,k)
ssaoyz(i,j,k)=ssanyz(i,j,k)
xseo(d,j,k)=xsen(1,j,k)
yseo(i,j,k)=ysen(i,j,k)
zseo(1,j,k)=zsen(i,},k)
sseoxy(1,j,k)=ssenxy(i,j,k)
sseoxy(i,j,k)=ssenxy(i,j,k)
sseoxy(l,},k)=ssenxy(i,j,k)
vlo(i,j.k)=vin(i,j,k)
v2o(L,},k)=v2n(i,j,k)
v3o(i,j,k)=v3n(i,j,k)
ulo(i,j,k)=uln(i,j,k)
u2o(i,j,k)=u2n(i,,k)
v3o(i,j,k)=v3n(i,j,k)

end do

end do

end do

etm(k)=etn(61,1,1)
etml(k)=etn(61,1,21)
Itm(k)=1tn(61,1,1)
Itm1(k)=ltn(61,1,21)
ulm(k)=uln(31,1,1)
w2m(k)=u2n(31,1,1)
u3m(k)=u3n(31,1,1)

c
¢ Output intermediate result
c
c
write(62,1020) t2(k), etm(k)
open(unit=71,file='etm2.txt")
write(71,1020) etm(k)
open(unit=38, file="tk.txt'")
write(8,1020) 12(k)
open(unit=9, file="ttm2.txt")
write(9,1020) ltm(k)
open(unit=10,file="ltm.txt")
write(10,1020) t2(k), Itm(k)
open(unit=11,file="uuln.txt’)
write (11,1020) t2(k),ulm(k)
open(unit=12,file="uu2n.txt")
write (12,1020) t2(k),u2m(k)
open(unit=13,file="uu3n.txt')
write (13,1020) t2(k),u3m(k)

¢ the result at time t=15ps
c

c
if (k.eq.3000) then
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open(unit=14 file="letn15.txt")

do i=1,61
write(14,1010) x1(1),etn(1,1,1)
enddo

open(unit=15 file="2etn15.txt")
do i=1,61

write(15,1010) x2(1),etn(i,1,21)
enddo

open(unit=16,file="11tn15.txt")

do i=1,61
write(16,1010) x1(i),ltn(i,1,1)
enddo

open(unit=17 file="21tn15.txt")

do 1=1,61
write(17,1010) x2(i),1tn(1,1,21)
enddo

open(unit=18 file="1ulnl5.txt")

do i=1,60
write(18,1010) x1(i),uln(i,1,1)
enddo

open(unit=19,file="2ulnl5.txt")
do i=1,60

write(19,1010) x2(i),uln(i,1,21)
enddo

open(unit=20,file='1u2n15.txt")

do i=1,61
write(20,1010) x1(1),u2n(i,1,1)
enddo

open(unit=21,file="2u2n15.txt")
do i=1,61

write(21,1010) x2(i),u2n(1,1,21)
enddo

open(unit=22 file='1u3n15.txt")

do i=1,61
write(22,1010) x1(i),u3n(i,1,2)
enddo

open(unit=23 file="2u3n15.txt")
do i=1,61

write(23,1010) x2(1),u3n(i,1,20)
enddo
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open(unit=24,file='1xsenl5.txt')

do 1i=1,61
write(24,1010) x1(i),xsen(i,1,1)
enddo

open{unit=25 file="2xsen15.txt")
do i=1,61

write(25,1010) x2(1),xsen(1,1,21)
enddo

open(unit=26,file='1ysenl5.txt")

do 1=1,61
write(26,1010) x1(i),ysen(i,1,1)
enddo

open(unit=27 file="2ysen15.txt")
do i=1,61

write(27,1010) x2(i),ysen(i,1,21)
enddo

open(unit=28, file="1zsen15.txt")

do i=1,61
write(28,1010) x1(i),zsen(i,1,1)
enddo

open(unit=29,file="2zsen15.txt)
do 1=1,61

write(29,1010) x2(i),zsen(i,1,21)
enddo

open(unit=30,file='etn15.txt")

do k=1,21
write(30,1010) (etn(i,1,k),i=1,n+1)
enddo

open(unit=31,file="ltn15.txt")

do k=1,21
write(31,1010) (Itn(i, 1 ,k),i=1,n+1)
enddo

open(unit=32,file="ulnl5.txt")

do k=1,21

write(32,1010) (uln(i, 1,k),i=1,n)
enddo

open(unit=33, file="u2n15.txt")

do k=1,21

write(33,1010) (u2n(i,1,k),i=1,n+1)
enddo

143

open({unit=34,file="u3nl5.txt')

do k=1,21

write(34,1010) (u3n(i,1,k),i=1,n+1)
enddo

open(unit=35 file="xsen15.txt")

do k=1,21
write(35,1010) (xsen(1, 1,k),i=1,n+1)
enddo

open(umt=36,file="ysen15.txt")

do k=1,21

write(36,1010) (ysen(i,1,k),1=1,n+1)
enddo

open(unit=37 file='zsen15.txt")

do k=1,21

write(37,1010) (zsen(i, 1,k),i=1,n+1)
enddo

end if

c the result at time t=20ps

C
C

if (k.eq.4000) then
open(unit=38,file="1etn20.txt")

do i=1,61
write(38,1010) x1(1),etn(i,1,1)
enddo

open(unit=39,file="2etn20.txt")
do i=1,61

write(39,1010) x2(i),etn(i,1,21)
enddo
open(unit=40,file="11tn20.txt')
do i=1,61

write(40,1010) x1(1),ltn(1,1,1)
enddo
open(unit=41,file="21tn20.txt")
do i=1,61

write(41,1010) x2(i),ltn(i,1,21)
enddo
open(unit=42,file="1uln20.txt")

do 1=1,60
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write(42,1010) x1(i),uln(i,1,1)
enddo

open(unit=43, file="2uln20.txt")
do i=1,60

write(43,1010) x2(1),uln(i,1,21)
enddo

open(unit=44,file="1u2n20.txt")

do i=1,61
write(44,1010) x1(1),u2n(i,1,1)
enddo

open(unit=45,file="2u2n20.txt")
do 1=1,61

write(45,1010) x2(i),u2n(i,1,21)
enddo

open(unit=46,file="1u3n20.txt")

do i=1,61
write(46,1010) x1(i),u3n(i, 1,2)
enddo

open(unit=47,file="2u3n20.txt")
do i=1,61

write(47,1010) x2(1),u3n(1,1,20)
enddo

open(unit=48,file="1xsen20.txt")

do i=1,61
write(48,1010) x1(i),xsen(i,1,1)
enddo

open(unit=49 file="2xsen20.txt)
do i=1,61

write(49,1010) x2(1),xsen(1,1,21)
enddo

open(unit=64,file="1xsan20.txt")
do i=1,61

write(64,1010) x1(i),xsan(1,1,1)
enddo
open(unit=65,file="2xsan20.txt")
do i=1,61

write(65,1010) x2(i),xsan(i,1,21)
enddo
open(unit=50,file='1ysen20.txt")

do i=1,61
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write(50,1010) x1(i),ysen(i,1,1)
enddo

open(unit=51, file="2ysen20.txt")
do i=1,61

write(51,1010) x2(1),ysen(i,1,21)
enddo

open(unit=52 file='1zsen20.txt')

do i=1,61
write(52,1010) x1(i),zsen(i,1,1)
enddo

open(unit=53_file="2zsen20.txt")
do 1=1,61

write(53,1010) x2(i),zsen(i,1,21)
enddo

open(unit=54 file='etn20.txt")

do k=1,21
write(54,1010) (etn(i, 1,k),i=1,n+1)
enddo

open(unit=55,file="1tn20.txt')

do k=1,21
write(55,1010) (Itn(i, 1,k),i=1,n+1)
enddo

open(unit=56,file="uln20.txt")
do k=1,21

write(56,1010) (uln(i, 1,k),i=1,n)
enddo

open(unit=57,file="'u2n20.txt")

do k=1,21

write(57,1010) (u2n(i, 1,k),i=1,n+1)
enddo

open(unit=58, file="u3n20.txt")

do k=1,21

write(58,1010) (u3n(i,1,k),i=1,n+1)
enddo

open(unit=59,file="xsen20.txt")

do k=1,21

write(59,1010) (xsen(i, 1,k),i=1,n+1)
enddo

open(unit=60,file="ysen20.txt")
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do k=1,21
write(60,1010) (ysen(i, 1,k),1=1,n+1)
enddo

open(unit=61,file="zsen20.txt")
do k=1,21

write(61,1010) (zsen(i,1,k),1=1,n+1)
enddo

c
end if
c
1 end do
C

1010  format(401e15.6)
1020 format(el5.6,2e15.6)
c
end

subroutine
temp(n,m,r,1x,h1,h2,h3,x,y,2,t,dt,1to,ltn,eto,etn,

$ XSa1,ysan,zsan,xsao,ysao,zsao)
C

implicit double precision (a-h,,0-z)

dimension x(150),y(200),z(400)

dimension
et0(150,50,50),etn(150,50,50),1to(150,50,50),

$ 1tn(150,50,50),etnmax(150,50,50),

$
ewetn(150,50,50),0ldet(150,50,50),01d1t(150,50,
50),

$
xsan(151,51,51),ysan(151,51,51),zsan(151,51,51

)’
$

xsao{151,51,51),ysao(151,51,51),zsa0(151,51,51)
integer iteration,l,r

¢

c

¢ Lame constant
lemta=199.0d+9

¢ Shear modulus
cmiu=27.0d+9

¢ Thermal expansion coefficient
alphat=14.2d-6

¢ Electron heat capacity
ce0=2.1d+4

¢ Lattic heat capacity
cl=2.5d+6

¢ Electron - lattic coupling factor
g=2.6d+16

¢ Electron thermal conducitivity
cke0=315.0

¢ Laser fluence
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flu=500.0

¢ Laser pulse duration
tp=0.1d-12

¢ Optical penetration depth
delta=15.3d-9

¢ Surface reflectivity
sur=0.93

iteration=0
d=g*dt/(2.0%*cl)
ee=(3.0*lemta+2.0*cmiu)*alphat/cl

do k=1r+1
doj=1,m

do i=1,nt+1
oldet(i,j,k)=eto(i,},k)
oldlt(i,j,k)=lto(1,j,k)
end do

end do

end do

tol=1e-3
detmax=tol+0.001
do while (detmax.gt.tol)

detmax=0.0

do k=21
do j=1,m
do i=2,n

q=0.94*flu*(1.0-sur)/(tp*delta)
$  Fexp(-(Ix-x(i))/delta

$  -2.77F(t-2.0%tp)*(t-
2.0%tp)/(tp*tp))*abs(cos(z(k)))

if (k.le.6) then
if (j.eq.1) then
a=ce0*(eto(i,j,k)+oldet(i,),k))/(2.0*¥300.0)

bl=cke0*((oldet(i+1,j,k)+oldet(i,j,k))/(oldlt(i+1,j
’k)

$
+oldlt(i,j,k)))/(2.0%h1*h1*x(i)*x(i))*dt*(x(i) +h1/
2)*(x(i)+h1/2)

b2=cke0*((oldet(i-1,j,k)+oldet(i,j,k))/(oldlt(i-
1ik)

$
+oldIt(i,j,k)))/(2.0%h1*h1*x(1)*x (1)) *dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=ckeO*((oldet(i,j+1,k)+oldet(ij,k))/(oldlt(i,j+1
ik)
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$ +oldli(ijk)))
/(2.0*h2*h2*x(i)*x(i) *sin(z(k))*sin(z(k)))*dt

ba=cke0*((oldet(i,j,k) Foldet(i,m,k))/(oldlt(i,j k)
$

+oldlt(i,m,k)))/(2.0*h2*h2*x(i)*x(i) *sin(z(k))*si
n(z(k)))*dt

c
cl=cke0*((eto(i+1,j,k)+eto(1,},k))/(lto(i+1,},k)
$

+1to(1,],k)))/(2.0¥h1 ¥h1*x(1)*x(1))*dt*(x(i)+h1/2

Y*(x(i)+h1/2)
c2=cke0*((eto(i-1,j,k)+eto(1,j,k))/(lto(i-1,3,k)
$ +lto(1,),k))/(2.0*h1*h] *x(1)*x(i)) *dt*(x(3)-

h1/2)*(x(1)-h1/2)
c3=cke0*((eto(i,j+1,k)+eto(1,},k))/(lto(i,j+1,k)
$ +lto(i,j,k)))

/(2.0¥2*¥h2*x(1)*x (i) *sin(z(k)) *sin(z(k))) *dt
cd=cke0*((eto(1,j,k)+eto(i,m,k))/(Ito(i,j,k)
$

+lto(i,m,k)))/(2.0¥h2 *h2 *x (i) *x(iy*sin(z(k))*sin(

z(k)))*dt

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
1,j,k)
+b3*oldet(i,j+1,k)+b4*oldet(i,m k)
+b5*oldet(i,j,k+1)+b6*oldet(i,j,k-1)
+g*d*dt*(eto(i,j,k)-1to(i,j,k))/(2.0*(1.0+d))
+g*dt*Ito(i,j,k)/(2.0%(1.0+d))
- ((xsan(i,j,k)+ysan(i,j,k)+zsan(i,j k))
-(xsao(i,j,k)+ysao(i,j,k)+zsao(i,j,k)))
/(2.0%(1.0+d))
+c1*(eto(it1,j,k)-eto(i,j,k))-c2*(eto(i,j,k)-
eto(i-1,j,k))

$  +c3*(eto(i,jt+1,k)-eto(i,j,k))-c4*(eto(i,j,k)-
eto(i,m,k))

$§  +cS*(eto(i,j,k+1)-eto(i,j,k))-c6*(eto(i,j,k)-
eto(i,j,k-1))

$ -g*dt*(eto(i,j.k)-
Ito(i,j,k))/2.0+q*dt+a*eto(i,j,k))

$ /(atbl+b2+b3+b4+bS+b6+g*dt/2.0-
g*dt*d/(2.0%(1.0+d)))

OB AL AP

else if (j.eq.m) then
a=ce0*(eto(i,},k)+oldet(i,j,k))/(2.0*300.0)

bl=cke0*((oldet(i+1,j,k)+oldet(i,j,k))/(oldlt(i+1,j
)
$
+oldlt(i,j,k)))/(2.0*h1*h1*x(i)*x(i)) *dt*(x(i) +h1/
2)*(x(i)+h1/2)
b2=cke0*((oldet(i-1,j,k)+oldet(i,j,k))/(oldlt(i-
1 7j 7k)
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3
+oldlt(i,j,k)))/(2.0*h 1 *h1*x(i)*x(i)) *dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=cke0*((oldet(1,1,k)+oldet(i,j,k))/(oldlt(i,1,k)
$ +oldlt(i,j,k)))
/(2.0%h2*¥h2*x(1)*x(i)*sin(z(k))*sin(z(k))y*dt
bd=ckeO*((oldet(i,j,k)+oldet(i,}-
1,k))/(oldlt(i,j,k)
$ +oldlt(i,j-
LK)))/(2.0%h2*h2*x(1)*x(i) *sin(z(k))*sin(z(k)))*
dt

cl=cke0*((eto(i+1,j,k)+eto(i,},k))/(Ito(i+1,5.k)
3

+1to(1,j,k)))/(2.0*h1*h 1 *x(1)*x(1) ) *dt*(x(i)+h1/2
Y*(x(1)+h1/2)

c2=cke0*((eto(i-1,j,k)+eto(i,j,k))/(Ito(i-1,j,k)

$ +ito(i,j, kN (2.0%h1 ¥h1*x(i)*x(1))*dt*(x(i)-
h1/2)*(x(i)-h1/2)

c3=cke0*((eto(i,1,k)+etoi,j,k))/(1to(i,1,k)

$ +to(i,j.k)))
/(2.0*h2*h2*x(i)*x(1)*sin(z(k))*sin(z(k))) *dt

cd=cke0*((eto(i,j,k)+eto(i,j-1,k))/(Ito(i,j,k)

$ +lto(i,j-
1,k)))/(2.0¥h2*h2*x(i)*x(i) *sin(z(k)) *sin(z(k))}*
dt

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
Lj.k)

$ +b3*oldet(i,1,k)+b4*oldet(i,j-1,k)

$ +bS*oldet(i,j,k+1)+b6*oldet(i,j,k-1)

$ +g*d*dt*(eto(i,j,k)-lto(i,j,k))/(2.0%(1.0+d))

$ +g*dt*lto(i,j,k)/(2.0%(1.0+d))

$ -
g*dt*ee*((xsan(i,j,k)-+ysan(i,j,k)+zsan(i,j,k))

$ -(xsao(i,j,k)+ysao(i,j,k)+zsao(i,j,k)))

$  /(2.0%(1.0+d))

$ +cl*(eto(it+1,j,k)-eto(i,j,k))-c2*(eto(i,j.k)-
eto(i-1,j,k))

$  +c3*(eto(i,1,k)-eto(i,j,k))-c4d*(eto(i,j,k)-
eto(i,j-1,k))

$ +c5*(eto(i,),kt1)-cto(i,),k))-c6*(eto(1,),k)-
eto(i,j,k-1))

$ -g*dt*(eto(i,j,k)-
Ito(i,j,k))/2.0+q*dt+a*eto(i,j,k))

$ /(atbl+b2+b3+b4+b5+b6+g*dt/2.0-
g*dt*d/(2.0%(1.0+4d)))

else

a=ce0*(eto(1,j,k)+oldet(i,},k))/(2.0*300.0)

bl=cke0*((oldet(i+1,j,k)+oldet(ij,k))/(oldlt(i+1,j
k)

$
+oldlt(i,j,k)))/(2.0*h1*h1*x(i)*x(i))*dt*(x(i) +h1/
2)*(x(i)+h1/2)
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b2=cke0*((oldet(i-1,j.k)+oldet(i,j.k))/(oldli(i-
Ljk)

$
+oldlt(i,j,k)))/(2.0%h 1 *h 1 *x (i) *x (1)) *dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=cke0*((oldet(i,j+1,k)+oldet(i,j.k))/(oldlt(i,j+1
k)

$ +oldlt(ij,k)))
/(2.0%h2*h2*x(i)*x(i)*sin(z(k))*sin(z(k)))*dt

ba=cke0*((oldet(i,j,k) roldet(i,j-
1,k))/(oldlt(ij.k)

$ -+oldlt(ij-
1,K))(2.0*h2*h2*x (i) *x(i)*sin(z(k))*sin(z(k)))*
dt

c1=cke0*((eto(i+1,j,k)+eto(i,j.k))/(lto(i+1,i,k)
$

+1to(1,j,k)))/(2.0*h1 *h 1 *x () *x (1)) *dt*(x(i)+h1/2
Y*(x(i)+h1/2)

c2=cke0*((eto(i-1,j,k)+eto(i,j,k))/(lto(i-1,j,k)

$ +lto(i,,k)))/(2.0*h1*h1*x(i)*x(i) y*dt*(x(i)-
h1/2)*(x(i)-h1/2)

c3=cke0*((eto(i,j+1,k)+eto(1,j,k))/(Ito(1,j+1,k)

$ +lto(ij,k)))
/(2.0*h2¥h2*x(i)*x(i) *sin(z(k) ) *sin(z(k))) *dt

c4=cke0*((eto(i,j,k)+eto(i,j-1,k))/(lto(i,j k)

$ +lto(i,j-
1.k)))/(2.0*h2*h2*x(iy*x(i)*sin(z(k))*sin(z(k)))*
dt

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
1,j,k)

$ +b3*oldet(i,j+1,k)+bd*oldet(i,j-1,k)

$ +bs*oldet(i,j.k+1)+b6*oldet(i,j,k-1)

$ +g*d*dt*(eto(i,j,k)-1to(i,j,k))/(2.0%(1.0+d))

$  +g*dt*lto(i,j,k)/(2.0*(1.0+d))

g -
g*dt*ee*((xsan(i,j,k)+tysan(i,j,k)+zsan(i,j,k))

$ -(xsao(i,j,k)+ysao(i,j,k)tzsao(i,j,k)))

$ /2.0%(1.0+d))

$ +cl*(eto(i+1,],k)-eto(i,j,k))-c2*(eto(i,j,k)-
eto(i-1,j,k))

$  +e3*(eto(ij+1,k)-eto(i,),k))-c4*(eto(i,),k)-
eto(i,j-1,k))

$  +c5*(eto(l,j,k+1)-eto(i,),k))-c6*(eto(i,j,k)-
eto(ij,k-1))

$ -g*dt*(eto(i,}.k)-
lto(i,).k))/2.0+q*dt+a*eto(i,j,k))

3 /(atbl+b2-+b3+b4+b5+b6+g*dt/2.0-
g*dt*d/(2.0%(1.0+d)))
c

endif

else
if (j.eq.1) then
a=ce0*(eto(i,j,k)+oldet(i,j,k))/(2.0¥300.0)
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bl=cke0*((oldet(i+1,j,k) Foldet(i,j,k))/(oldlt(i+1,]
;K)

$
+oldlt(i,j,k)))/(2.0%h1*h 1 *x(i)*x(i))*dt*(x(i) +h1/
2)*(x(i)+h1/2)

b2=cke0*((oldet(i-1,j,k)+oldet(i].k))/(oldlt(i-
Lik)

$
+oldlt(i,j,k)))/(2.0%h 1 *h 1 *x(i)*x (1) *dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=cke0*((oldet(i,j+1,k) oldet(i,j,k))/(oldlt(ij+1
9k)

$ +oldlt(ij,k)))
/(2.0*h2*h2*x(i)*x(i)*sin(z(k))*sin(z(k)))*dt

ba=cke0*((oldet(i,j,k)+oldet(i,m,k))/(oldlt(i,j k)
$

+oldlt(i,m,k)))/(2.0*h2*h2*x(i)*x(i)*sin(z(k))*si
n(z(k)))*dt

cl=cke0*((eto(i+1,j,k)+eto(i,},k))/(lto(i+1,),k)
$
+1to(i,j,k)))/(2.0*h 1 *h 1 *x(1)*x (1) y*dt*(x(i)+h1/2
)*(x(i)+h1/2)
c2=cke0*((eto(i-1,j,k)+eto(i,j,k))/(lto(i-1,j,k)
$ +lto(i,j,k)))/(2.0*h 1 *h1*x(i)*x(1))*dt*(x(1)-
h1/2)*(x(i)-h1/2)
c3=cke0*((eto(i,j+1,k)+eto(i,j,k))/(lto(i,j+1,k)
$ +ito(i,j,k)))
/(2.0¥n2*h2*x(i) *x (i) *sin(z(k)) *sin(z(k))) *dt
cd=cke0*((eto(i,j,k)+eto(i,m,k))/(lto(i,),k)
$
+lto(i,m,k)))/(2.0*h2 ¥*h2*x (i) *x(i)*sin(z(k))*sin(
z(k)))*dt
c5=cke0*((eto(i,j,k+1)+eto(i,j,k))/(lto(i,j,k+1)
$

+to(1,j,k)))/(2.0*h3*h3*x (1) *x(1)*sin(z(k))) *dt*s
in(z(k)+h3/2)

c6=cke0*((eto(i,j,k-1)+eto(i,j,k))/(Ito(i,),k-1)

$
+1to(1,j,k)))/(2.0*h3*h3*x(i)*x(i) *sin(z(k)) ) *dt*s
in(z(k)-h3/2)

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
1,j.k)

$ +b3*oldet(i,j+1,k)+ba*oldet(i,mk)

$ +bS*oldet(i,j,k+1)+b6*oldet(i,j,k-1)

§  +g*d*dt*(eto(i,j,k)-1to(i,j,k))/(2.0%(1.0+d))

$  +g*dt*lto(i,j,k)/(2.0%(1.0+d))

$ -
g*dt*ee*((xsan(i,j,k)+ysan(i,j,k)+zsan(i,j,k))

$ -(xsao(i,},k)+ysao(i,j,k)+zsao(i,},k)))

$ /(2.0*%(1.0+d))

$ +cl*(eto(it+1,),k)-eto(i,j,k))-c2*(eto(i,j,k)-
eto(i-1,j,k))
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§  +c3*(eto(i,j+1,k)-eto(i,j,k))-c4*(eto(i,j,k)-
eto(i,m,k))

$  +cS5*(eto(i,j,k+1)-eto(i,j,k))-c6*(eto(i,], k)-
eto(i,),k-1))

$§ -g*dt*(eto(i,),k)-1to(i,j,k))/2.0+a*eto(i,j,k))

$  /(atbl+b2+b3+b4+bS5+bo+g*dt/2.0-
g*dt*d/(2.0%(1.0+d)))

else if (j.eq.m) then
a=ce0*(eto(1,j,k)+oldet(i,j,k))/(2.0*¥300.0)

bl=cke0*((oldet(i+1,j,k)roldet(i,j,k))/(oldIt(i+1.j
Dk)

$
+oldlt(i,j,k)))(2.0%h1 *h1*x(1)*x(i))*dt*(x(i) th1/
2)*(x(i)+h1/2)

b2=cke0*((oldet(i-1,j,k)+oldet(i,j,k))/(oldlt(i-
1,i,k)

$
+oldlt(i,j,k)))/(2.0*h1*h1 *x() *x(i))*dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=cke0*((oldet(i, 1,k)+oldet(i,j,k))/(oldlt(i,1,k)

$ +oldlt(i,j,k)))
/(2.0*h2*h2*x(1)*x(i)*sin(z(k))*sin(z(k))) *dt

bd=cke0*((oldet(i,j,k)+oldet(i,j-
1,k))/(oldlt(ij,k)

$ +oldlt(i,j-
1,k)))/(2.0¥h2*h2*x(i)*x(i)*sin(z(k)) *sin(z(k)))*
dt

cl=cke0*((eto(i+1,3,k)teto(i,j,k))/(Ito(i+1,},k)
$
+lto(i,j,k)))/(2.0*%h1*h1 *x(1)*x (1)) *dt*(x(1)+h1/2
Y¥(x(1)+h1/2)
c2=cke0*((eto(i-1,j,k)+eto(i,j,k))/(lto(i-1,j,k)
$ +lto(i,j,k)))/(2.0%h1*h1*x(1)*x(1)) *dt*(x(i)-
h1/2)*(x(i)-h1/2)
c3=cke0*((eto(i, 1,k)teto(i,j,k))/(1to(i,1,k)
$ +lto(i,.k)))
/(2.0*h2*h2*x(i) *x(1)*sin(z(k)) *sin(z(k)))*dt
cd=cke0*((eto(i,j,k)+eto(ij-1,k))/(lto(i,j,k)
$ +lto(i,j-
Lk)/A2.0*h2*h2*x(1) *x(i) *sin(z(k)) *sin(z(k)))*
dt

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
1ik)

$ +b3*oldet(i,1,k)+bd*oldet(i,j-1,k)

$ +b5*oldet(i,j,kt1)+b6*oldet(i,j,k-1)

$  +g*d*dt*(eto(i,j,k)-1to(i,j,k))/(2.0*(1.0+d))

$ +g*dt*lto(i,j,k)/(2.0%(1.0+d))

$ -
g*dt*ee*((xsan(i,j,k)+ysan(i,j,k)+zsan(i,j,k))

$ —(xsao(i,j ak)+ysa0(i9j’k)+zsa0(iaj7k)))

$ /(2.0%(1.0+d))
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$  +cl*(eto(itl,j,k)-eto(i,j,k))-c2*(eto(i,j.k)-
eto(i-1,j,k))

$  +e3*(eto(i,1,k)-eto(i,j.k))-c4*(eto(i,j,k)-
eto(i,j-1,k))

$ +cS*(eto(ij.k+1)-eto(ij.k))-c6*(eto(i,j.k)-
eto(i,j,k-1))

§ -g*dt*(eto(i,j,k)-1to(i,},k))/2.0+a*eto(i,},k))

$ /(atbl+b2+b3+b4+b5tb6+g*dr/2.0-
g*dt*d/(2.0%(1.0+d)))

else

a=ce0*(eto(i,j.k)+oldet(i,j,k))/(2.0*300.0)

bl=cke0*((oldet(i+1,},k)+oldet(i,j,k))/(oldlt(i+1,]
k)
$
+oldlt(i,j,k)))/(2.0*h1 *¥h1 *x(i)*x (1) y*dt*(x(i)+hl/
2)*(x(i)+h1/2)
b2=cke0*((oldet(i-1,j,k)+oldet(i,j,k))/(oldlt(i-
1,3,k)
$
+oldlt(i,j,k)))/(2.0%h1 *h 1 *x(1)*x (1)) *dt*(x(i)-
h1/2)*(x(i)-h1/2)

b3=cke0*((oldet(i,ji+1,k)+oldet(i,j,k))/(oldlt(i,j+ 1
k)

$ +oldlt(ij,k)))
/(2.0%h2*h2*x(i)*x(i) *sin(z(k)) *sin(z(k)))*dt

bd=cke0*((oldet(i,j,k)+oldet(i,j-
1,K))/(oldIt(i,j,k)

$ +oldlt(i,j-
1,K)))/(2.0%h2*h2*x(i)*x(i) *sin(z(K)) *sin(z(k)))*
dt

cl=cke0*((eto(i+1,j,k)+eto(i,j,k))/(lto(i+1,j.k)
$
+to(i,j,k)))/(2.0*h1*h1 *x(1)*x(1)) *dt*(x(1)+h1/2
V*(x(i)+h1/2)
c2=cke0*((eto(i-1,j,k)+eto(i,j,k))/(lto(i-1,},k)
$ +to(i,j,k)))/(2.0%h1 *h1*x(i)*x(1))*dt*(x(i)-
h1/2)*(x(i)-h1/2)
c3=cke0*((eto(i,j+1,k)+eto(i,j,k))/(lto(i,j+1,k)
$ +Hto(i,) k)
/(2.0*h2*h2*x(1) *x(i)*sin(z(k))*sin(z(k))) *dt
c4=cke0*((eto(i,j,k)+eto(i,j-1,k))/(to(i,j,k)
$ +lto(i,j-
1.k)))/(2.0*h2*h2 *x(i)*x(i)*sin(z(k))*sin(z(k)))*
dt

ewetn(i,j,k)=(b1*oldet(i+1,j,k)+b2*oldet(i-
L,j.k)
$ +b3*oldet(i,j+1,k)+bd*oldet(i,j-1,k)
$ +b5*oldet(i,j,k+1)+b6*oldet(i,),k-1)
$ +g*d*dt*(eto(i,),k)-1to(i,j,k))/(2.0*(1.0+d))
$  +g*dt*lto(i,),k)/(2.0*(1.0+d))
$ -
g*dt*ee*((xsan(i,j,k)+ysan(i,j,k)+zsan(i,j,k))
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$  -(xsao(i,j,k)+ysao(i,j,k)+zsao(i,j,k)))

$ /(2.0%(1.0+d))

$  +el*(eto(i+1,j,k)-eto(i,],k))-c2*(eto(i,],k)-
eto(i-1,j,k)) :

$  +c3*(eto(i,j+1,k)-eto(i,j,k))-c4*(eto(i,),k)-
eto(1,j-1,k))

$  +c5*(eto(i,j,k+1)-eto(i,j,k))-c6*(eto(i,j,k)-
eto(i,).k-1))

$ -g*dt*(eto(i,j,k)-lto(i,).k))/2.0+a*eto(i,),k))

$ /(atbl+b2+b3+bd+b5+b6+g*dt/2.0-
g*dt*d/(2.0*%(1.0+d)))
c

endif

endif

det=ewetn(i,j,k)-oldet(i,j, k)

if (abs(det).gt.detmax) detmax=abs(det)
oldet(i,j,k)=ewetn(i,j,k)

end do

end do

end do

do k=1r+1

doj=1,m
oldet(1,j,k)=oldet(2,j,k)
oldet(n+1,j,k)=oldet(n,j,k)
end do

end do

doj=1,m

doi=1,n+1
oldet(i,j,1)=oldet(i,j,2)
oldet(i,j,r-+1)=oldet(i,j,r)
end do

end do

do k=1r+1
doj=1,m
doi=1,n+1

oldIt(i,j,k)=d/(1.0+d)*oldet(i,j k)+d/(1.0+d)*(eto
(i,3.k)
$

-ltO(i,j,k))
$ +1.0/(1.0+d)*1to(1,j,k)
$ -ee/(1.0+d)

$ *((xsan(i,},k)+ysan(i,j,k)+zsan(i,j,k))-
(xsao(i,j,k)
$ +ysao(i,j,k)+zsao(i,j,k)))

end do

end do

end do
c

iteration=iteration+1
c
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end do

do k=1,r+1
doj=1,m

do i=1,n+1
etn(1,j,k)=oldet(1,j,k)
end do

end do

end do

do k=21
do j=1,m
do1=2,n

1tn(i,j,k)=d/(1.0-+d)*etn(i,j,k)+d/(1.0-+d)*(eto(i,j,
k)-lto(i,j,k))

$  +1.0/(1.0+d)*1to(i,j.k)

$  -ee/(1.0+d)

$  *((xsan(i,j,k)+ysan(i,j,k)+zsan(i,j,k))-
(xsao(i,),k)

$  +ysao(i,j,k)+zsao(i,j,k)))

end do

end do

end do

do k=1,r+1

doj=1l,m
1tn(1,j,k)=1tn(2,j,k)
Itn(n+1,j,k)=Itn(n,j k)
end do

end do

do j=1,m

do i=1,nt+1
Itn(i,j,1)=1tn(i,j,2)
Itn(i,j,r+1)=ltn(i,j,r)
end do

end do

return
end

subroutine

velocity(n,m,r,h1,h2,h3,dt x,y,z,eto,etn,xseo,yseo,

$ zseo,sseoxy,sse0xz,8s€0yz,

$ xsen,ysen,zsen,ssenxy,ssenxz,ssenyz,

$ vlo,v2o,v30,vin,v2n,v3n,ulo,u2o,u3o,

$
uln,u2n,uldn,difx,dify, difz, difxyx,difxyy,difxzx,
difxzz,

$ difyzy,difyzz)

implicit double precision (a-h,l,0-z)
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dimension x(150),y(200),z(400)

dimension eto(150,50,50),etn(150,50,50),

$
xseo(151,51,51),yse0(151,51,51),zseo(151,51,51

),

$
sseoxy(151,51,51),sseoxz(151,51,51),sse0yz(151
,51,51),

$
xsen(151,51,51),ysen(151,51,51),zsen(151,51,51

)7

$
ssenxy(151,51,51),ssenxz(151,51,51),ssenyz(151
,51,51),

$
v1o(151,51,51),v20(151,51,51),v30(151,51,51),

$
vin(151,51,51),v2n(151,51,51),v3n(151,51,51),

$
ulo(151,51,51),u20(151,51,51),u30(151,51,51),

$

uln(151,51,51),u2n(151,51,51),u3n(151,51,51),
$

difx(151,51,51),dify(151,51,51),difz(151,51,51),
$
difxyx(151,51,51),difxyy(151,51,51),difxzx(151,
51,51),
$
difxzz(151,51,51),difyzy(151,51,51),difyzz(151,
51,51)
c
integer Lr
¢ Density
lou=1.93d+4
¢ Electron - blast coefficient
tri=70

dok=2r
doj=1,m
doi=1,n
if (j.eq.1) then
vin(i,j,k)= dt*difx(i,j,k)
$ Alow)+dt*difxzz(i,j,k-1)
$ /(lou*(x(1)+h1/2))+dt*difxyy(i,mk)
$

/(low*(x(i)+h1/2)*sin(z(k)))+dt*((xsen(i,j,k)+xse
n(i+1,j,k))

$ -(ysen(ij,k)+ysen(i+1,j,k))/2-
(zsen(i,j,k)+zsen(i+1,j,k))/2

$ +(ssenxz(i,j,k)+ssenxz(i,j,k-

1));(COS(Z(1<)))/ (2*sin(z(k))))

/(loun*(x(1)y+h1/2))+dt*tri*(etn(i+1,j,k) *etn(i+1,j,
k)

$ -etn(i,j,k)*etn(i,j,k))/(lou*hl)

else
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vin(ijk)= dt*difx(ij,k)
$ /Qou)+dt*difxzz(i,j,k-1)
$ /(louw*(x(i)+h1/2))+dt*difxyy(ij-1.,k)
$

/(lou*(x(1)+h1/2)*sin(z(k)))+dt*((xsen(i,},k)+xse
n(i+1,1,k)

$ -(ysen(i,j,k)+ysen(i+1,j,k))/2-
(zsen(i,j,k)+zsen(i+1,},k))/2

$ +(ssenxz(i,j,k)+ssenxz(i,j,k-

1))’;(008(Z(k)))/ (2*sin(z(k))))

/(lou*(x(i)+h1/2))+dt*tri*(etn(i+1,),k)*etn(i+1,j,
k)

$ -etn(i,j.k)*etn(i,j,k))/(lou*ht)

endif

uln(i,j,k)=vin(ijk)*dt-rulo(ij,k)
end do
end do
end do

doi=2,n

doj=1,m

do k=1,

if (j.eq.1) then

v3n(i,j,k)= dt*difxzx(i-1,j,k)
$ /(lou)+dt*difz(i,j,k)

$ /(lou*x(i))+dt*difyzy(i,m,k)
$

/(lou*x(i)*sin(z(k)+h3/2))+dt*(((zsen(i,j,k+1)
$ +zsen(ij,k))/2-(ysen(i,j,k+1)+ysen(i,j.k))/2)
$

*(cos(z(k)+h3/2))/sin(z(k)+h3/2)+3*(ssenxz(i-
1,j,k))/2)/(lou*x(i))+dt*tri*(etn(i,j,k+1)

$ *etn(i,j,k+1)-
etn(i,j,k)*etn(1,j,k))/(lou*h3*x(i))

else

v3n(i,j,k)= dt*difxzx(i-1,j,k)

$ /(lou)+dt*difz(i,j,k)

$ /(ou*x(i))+dt*difyzy(i,j-1,k)

3

/(lou*x(i)*sin(z(k)+h3/2))+dt*(((zsen(ijk+1)
$ +zsen(ij,k))/2-(ysen(ij,k+1)+ysen(ij.k))/2)
$

*(cos(z(k)+h3/2))/sin(z(k)+h3/2)+3*(ssenxz(i,j,k)

$ +ssenxz(i-
1,j,%))/2)/(lou*x(i))y+dt*tri*(etn(i,j,k+1)

$ *etn(i,j,k+1)-
etn(i,j,k)*etn(i,j,k))/(lou*h3*x(i))

endif

u3n(i,j,k)=v3n(i,),k)*dt+u3o(i,j,k)
end do
end do
end do
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dok=2r

do i=2,n

doj=l,m

if (j.eq.m) then

v2n(i,j,k)= dt*difxyx(i-1,,k)

$ /(low)tdt*difyzz(i,j,k-1)

$ A dt*dify(i,j,k)

$ /(lou*x(i)*sin(z(k)))+dt*((ssenyz(i,j,k)

$ +ssenyz(i,j,k-1))*(cos(z(k)))
3*(ssenxy(i,j,k)

$ +ssenxy(i-1,j,k))/2)/(dt*tri*(etn(i, 1,k)

$ *etn(i,1,k)-
etn(i,j.k)*etn(i,j,k))/(Jlou*h2*x(i)*sin(z(k)))

else

v2n(i,j.k)=dt*difxyx(i-1,j,k)

$ /(lou)+dt*difyzz(i,j,k-1)

$ Adeedify(i,j.k)

$ /(lou*x(i)*sin(z(k)))+dt*((ssenyz(i,j,k)

$ +ssenyz(i,j,k-1))*(cos(z(k)))
3*(ssenxy(i,j,k)

$ +ssenxy(i-1,j,k))/2)/(dt*tri*(etn(i,j+1,k)

$ *etn(ij+1,k)-
etn(i,j,k)*etn(i,j,k))/(lou*h2*x(i)*sin(z(k)))

endif

u2n(i,j,k)y=v2n(i,j,k)*dt+u2o(ij.k)
end do
end do
end do

return
end
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