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ABSTRACT

The study included in this dissertation assesses the strength, serviceability, and 

economic impact of overweight trucks on Louisiana bridges. Truck load configurations 

FHWA 3S2 and FHWA 3 S3 were applied to bridge models that were originally designed 

for HS20-44 truck configuration to determine the effects of heavy truck loads on bridges. 

Behaviors of bridge components including bridge girder, deck, and diaphragm were 

evaluated separately.

AASHTO linear approach and finite element analysis were employed to evaluate 

bridge girder behaviors under the heavy truck load. Bridge models with different 

geometric configurations were considered. Both short term and long term effects on 

simple span and continuous bridges were determined based on AASHTO LRFD 

specifications. Results indicated that the AASHTO linear approach was more 

conservative than the finite element approach. Results based on finite element analysis 

showed that the short term effect of heavy truck load on selected bridge models was 

limited, while the long term effect was significant.

Finite element analysis was used to perform the bridge deck evaluation. 

Longitudinal, transverse, and shear stress states at top and bottom surfaces of decks were 

obtained and evaluated. The researcher determined that bridge decks were overstressed 

and might experience cracks.

iii
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Statistical methods were introduced to this study in order to evaluate stress data of 

bridge decks. Due to the determinacy of results from finite element models, a modified 

factorial experiment with crossed treatment factors was created to perform the probability 

based statistical analysis. The sequence of significance of analysis parameters was 

observed. Effects of bridge girder types on deck stress performances were discovered 

under different bridge geometric and truck load configurations.

The diaphragm behaviors were assessed based on ratios of axial forces. The 

effects of heavy truck load on diaphragms were determined limited even though the ratio 

exceeded the criteria, since the values of axial forces were not large.

The methodology employed in the evaluation of fatigue cost of bridges was based 

on the following procedures: 1) determine the shear, moment, and deflection induced on 

each bridge type and span; and 2) develop a fatigue cost for each truck crossing with a) 

FHWA 3S2 truck with maximum GVW of 108,000 lb; b) FHWA 3 S3 truck with 

maximum GVW of 120,000 lb; and c) FHWA 3S3 truck with GVW of 100,000 lb. with 

uniformly distributed load.

The researcher recommends that a) for bridges on the routes of timber, lignite coal, 

and coke fuel transporting, do not increase the GVW to 108,000 lb. to avoid the high 

bridge fatigue cost; b) for bridges on the routes of sugarcane transporting, truck 

configuration FHWA 3 S3 is suggested to be used to haul sugarcane with GVW of

100,000 lb. uniformly distributed. This configuration will result in the least fatigue cost 

on the network. It is not recommended that truck configuration 3S3 be used to haul sugar 

cane with GVW of 120,000 lb., which will result in high fatigue cost on the network.
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CHAPTER I

INTRODUCTION

1.1 General

The rapid growth of the economy has lead to a rapid growth in the number of 

heavy vehicles in service, as well as a dramatic increase in the size and weight of heavy 

vehicles. The tug-of-war between the demand of increasing the truck weight to get more 

carrying capacity and reducing the risk and rehabilitation costs of the bridges has existed 

for a long time. Therefore, evaluating the bridge characteristics under heavy truck loads 

is necessary and important.

Generally, commercial vehicle weights and dimension laws are enforced by 

highway agencies to ensure that excessive damage (and subsequent loss of pavement life) 

is not imposed on the highway infrastructure. The axle load and the total load of heavy 

trucks, which can be considered primarily responsible for decreasing the service life of 

bridges, are significant parameters of highway traffic. Currently in Louisiana, Gross 

Vehicle Weight (GVW) on interstate routes has typically been restricted to 80,000 lb, for 

five axle semi-trailer (LA type 6) vehicles with a maximum tandem axle weight of 

34,000 lb, or GVW 83,400 lb, at certain period during the year. Furthermore, the state 

legislature released the restriction to 100,000 lb for several kinds of the trailers with a 

nominal permit fee to meet the increasing growth of economy. Because highways have

1
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traditionally been designed for the legal load of 80,000 lb., permitted trucks of 100,000 

lb., or even heavier than 100,000 lb., decrease the expected service life of the 

infrastructure. The results are increased transportation costs due to high maintenance and 

the need for early rehabilitation.

The performance and design requirements of highway bridges are affected by the 

maximum allowable Gross Vehicle Weight (GVW) that operates on the system. The 

Federal Bridge Formula limits the demands on bridges based on the regulated axle 

spacing, axle weights, and maximum gross vehicle weights of vehicles that operate on the 

highway system. Although the maximum allowable axle loads are in compliance with 

existing regulations, bridges are sensitive to the magnitude and spacing of the axle loads 

they can carry. Furthermore, the span length of the bridge and the support conditions 

(simple or continuous) affect the allowable combinations of axle load and spacing. The 

impact aspects of increasing the maximum allowable truck loads on bridge performance 

are safety, serviceability, and durability. While compromises can be made with respect to 

serviceability and durability in the interest of transportation efficiency, the fundamental 

safety of the existing bridge system must always be maintained.

Prestressed and cast-in-place concrete girders slab bridges are the most common 

type of highway systems used in United States. The main infrastructure includes the 

girder, deck and diaphragm as the most important components. To evaluate the effects of 

heavy truck loads on bridges, the behavior of those components must be investigated.

As part of the on-going effort to determine the bridge behavior under overload 

trucks, the Louisiana Department of Transportation and Development and Louisiana 

Transportation Research Center had co-sponsored several task research programs at
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Louisiana Tech University. Those programs included projects such as “The Effects of 

Hauling Timber, Lignite Coal, and Coke Fuel on Louisiana Highways and Bridges,” in 

which the vehicle GVW was 108,000 lb.; and “Monitoring System to Determine the 

Impact of Sugarcane Truckloads on Non-Interstate Bridges,” in which the vehicle GVW 

was 120,000 lb.. The research presented here included information from the above 

projects.

1.2 Research Objectives

The primary objective of this research is to assess the strength, serviceability, and 

economic impact of overweight trucks on Louisiana bridges. The detail evaluations for 

bridge girder, deck, and diaphragm must be performed to meet the goal. The 

GTSTRUDL finite element software was used to construct the 3-D model to simulate the 

response of the bridge components. The SAS statistic software was used to analyze the 

bridge deck data efficiently. This research program included the following activities:

• Conducted a background review on bridge behaviors, finite element modeling of 

bridge system and related areas.

• Investigated the typical AASHTO tee section bridge girder behaviors under the 

heavy truck load by simplified AASHTO line approach and finite element 

method.

• Investigated the bridge deck performance under the heavy truck load by finite 

element method.

• Conducted a statistic model and used it to evaluate the bridge deck behaviors.

• Investigated the bridge diaphragm performance under the heavy truck load.
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• Constructed a bridge cost model and determine the long term effect on simple 

span and continuous bridges under the heavy truck load.

1.3 Organization of the Study

The background review relevant to the objectives of this research is presented in 

Chapter II. The methodology to construct the finite element model and influence line 

analysis for typical slab-on-girder concrete bridges is presented in Chapter III. The 

parametric studies and evaluations of typical bridge girders is presented in Chapter IV. 

Chapter V and VI include the studies of bridge decks by finite element analysis results 

and statistical methods. The bridge diaphragm performance under the heavy truck load is 

discussed in Chapter VII. Chapter VIII presents the studies of bridge cost model and the 

long term effects on remaining bridge life. The summary, conclusions, and 

recommendations for this study are presented in Chapter IX.
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CHAPTER II

BACKGROUND REVIEW

2.1 Introduction

The heavy load caused by trucks has a great effect on the bridge system. The 

impact and the distribution of the live load now is becoming an important research area, 

especially in those states that are rich in agricultural and forest products. Several methods, 

including finite element analysis, long-term monitoring, and field experiment and so on, 

are used to do the investigation work. The literature review was used to investigate all 

aspects of the work that would be required to complete this study. The following five 

topics were identified as major areas where previous research information could be 

beneficial: (1) behavior of bridge under certain load combination, (2) finite element 

analysis and analytical modeling, (3) behavior of diaphragms, (4) the statistical method 

applied on bridge system evaluation, (5) experimental testing of bridges.

2.2 Behavior of Bridge Under Certain Load Combination

Background information on the development of wheel load distribution factors 

can be found in Hays et al. (1986), Sanders and Elleby (1970), and Stanton and Manock 

(1986). Chen (1995a, 1995b and 1995c) studied load distribution in bridges with 

unequally spaced girders. AASHTO empirical formulas for estimating live load 

distribution factors were compared to results from the refined method. Parametric studies

5
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were conducted with a number of field bridge examples that were simply supported, non­

skewed, and had no diaphragms. Refined load distribution equations were proposed. 

Subsequent work by Chen and Aswad (1996) sought to review the accuracy of the 

formulas for live load distribution for flexure contained in the LRFD Specifications 

(AASHTO 1994) for prestressed concrete I-girder bridges. It was concluded that the use 

of a finite element analysis leads to a reduction of the lateral load distribution factor in I- 

beams when compared to the simplified LRFD guidelines. Fu et al. (1996) conducted 

comparable work by field testing four steel I -girder bridge structures under the effect of 

real moving truck loads. The results indicated that all the code methods, AASHTO and 

LRFD, produced higher distribution factors.

Khan (1996) summarized the historical developments in bridge design going back 

to 1938 with Newmark's distribution procedure where the whole slab of the bridge is 

considered to be an isotropic plate with no composite action with the supporting girders. 

A strip of slab is considered to be a continuous beam over flexible supports and moment 

distributions involving fixed-end moment, stiffness, and carry-over factors, analogous to 

continuous beam.

In 1986, Marx, Khachaturiian, and Gamble developed wheel load distribution 

equations using the finite element analysis of 108 simply supported skew slab-and-girder 

bridges. The research included models for bridge concrete deck and prestressed girders as 

eccentrically stiffened shell assembly.

El-Ali (1986) used the SAP-IV finite element program to study the wheel load 

distribution characteristics of simply supported skew bridges using the discretization 

scheme of Bishara (1986) where each I-beam girder was divided into two T-shaped beam
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elements, and elastic properties of these elements lumped at the centroid of the flanges. 

Truss systems were used to connect the two beam elements and the top beam element to 

the deck plate element. Such a procedure is very lengthy, and because of the limited 

scope of the study, no expressions were developed. In 1987, Nun, Zokaie, and Schamber 

analyzed multi-girder composite steel bridges using equivalent orthotropic plate and 

ribbed plate models and developed simplified equations that were modified and included 

in the 1994 AASHTO LRFD code.

Amiri (1988) did a finite element study on continuous composite skew bridges 

with prestressed girders and proposed some distribution equations based on linear elastic 

theory with a limited range of parameters specific to girder spacing.

Further revisions to load distribution equations were presented by Tarhini and 

Frederick (1995). Contrary to AASHTO assumptions, the finite element analysis revealed 

that the entire bridge superstructure acts as one unit rather than a collection of individual 

structural elements. The effect of cross bracing on the wheel load distribution factor was 

found to be negligible. The research correlated distribution factor results obtained from 

published field test data with the proposed formulae as well as the AASHTO method.

In A. S. Nowak, C. Eamon, and M. A. Ritter’s research of “Structural Reliability 

of Plank Decks” (2001), they reported that given the LRFD code target reliability index is

3.5 is clear that in most cases the codes are overly conservative. That fact is primarily the 

result of two factors: an unrealistic load distribution model and flat-use factors that do not 

adequately predict plank capacity.

The current AASHTO LRFD Bridge Design Specifications (AASHTO 1998) 

provides a set of distribution factor formulas for estimating the distribution of bending
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moment and shear force effects in the interior and exterior girders of highway bridges. 

However, the LRFD Specifications impose strict limits on the use of its live-load 

distribution factor formulas.

In Paul J. Barr, Marc O. Eberhard, and John F. Stanton’s (2001) research, by 

comparing 24 bridge models, they drew the conclusion that the live-load distribution 

factors calculated from the AASHTO LRFD Specifications (2nd edition, 1998) were 

conservative. And the differences among the distribution factors from the various finite- 

element models were attributable to the presence of lifts, intermediate diaphragms, end 

diaphragms, and continuity, where continuity and intermediate diaphragms had less effect 

than others.

It is also proved by the results of Shin-Tai Song, Y. H. Chai, and Susan E. Hida 

(2003), in other conditions outside of the limits of LRFD specifications; the refined 

analyses using 3D models are required for design of bridges. And when the standard 

truck loading from the LRFD specifications was applied on box-girder bridges, the 

formulas from the LRFD specifications generally provide a conservative more estimate 

than those from the finite element analysis.

Harry Cohen, Gongkang Fu, Wassem Dekelbab, and Fred Moses (2003) raised a 

new method for modeling truck load spectra resulting from truck weight-limit changes, 

differentiating weight-out and cube-out truck traffic. The modeling was based on freight 

transportation behavior, and it was flexible for both across-the-board and local changes 

without restriction on the truck types to be impacted.

Hani H. Nassif, Ming Liu, and Oguz Ertekin (2003) studied in the Dynamic Load 

Factors by 3D analysis model; the results confirmed the experimental study by H. H.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Nassif and A. S. Nowak (1995) that the Dynamic Load Factors decreases as the static 

stress increases. For very heavy trucks, the Dynamic Load Factors did not exceed the 

theoretical results. They notified values of Dynamic Load Factors for the purpose of 

design should be based on those obtained from the most loaded interior girders. However, 

for situations where fatigue is the dominant mode of behavior, such as in connections, 

larger values of Dynamic Load Factors need to be considered.

Raid Karoumi (1996) did some research on the dynamic response of cable-stayed 

bridges under moving vehicles. He described a method of evaluating the response by 

idealizing the bridge as a Bemoulli-Euler beam on elastic supports with varying support 

stiffness. The analysis uses the mode superposition technique and calculates the response 

in time domain, utilizing an iterative scheme and providing a numerical example.

In AASHTO LRFD 1994 the load distribution factor is calculated by a new 

equation that is based on parametric studies and finite element analysis. However, this 

equation involves a longitudinal stiffness parameter, which needs an iterative procedure 

to correctly determine the LDF value. By the finite element analysis research of Elisa D. 

Sotelino, Judy Liu, Wonseok Chung, and Kitiapat Phuvoravan (2004), a simpler and 

sufficiently accurate equation for calculation of load distribution was given, and the 

longitudinal stiffness parameter and the slab thickness parameter that appear in the LRFD 

equation are implicitly embedded in the simplified expression, which dramatically 

decreases the work of the designer.

Stuart S. Chen, Amjad J. Aref, Il-Sang Ahn, Methee Chiewanichakom, and Aaron 

F. Nottis (2003) used the experimental method to discover the behavior at service and 

ultimate loads of the continuous composite bridge. By the !4 scale two span bridge
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specimen, they got that the results from the service limit test closely resembled the values 

attained through elastic analysis. Under ultimate loading, good post-yield behavior was 

observed. The researchers found good correlation with previously-developed finite 

element analysis predictions for the specimen behavior under selected test protocol loads.

In 2006 Structures Congress, Zaher Yousif and Riyadh Hindi presented the 

research of a comparison between the moments distribution factors of concrete bridges 

due to live load calculated in accordance with the AASHTO-LRFD (2004) formulas and 

finite-element analysis and gave the recommendations for specific bridge geometries of 

bridges built with AASHTO-PCI girders. Several three-dimensional linear elastic models 

were built using the structural analysis program SAP2000 to obtain the most accurate 

method to model the bridge superstructure.

In the recent research of Mayrai Gindy, Hani H. Nassif, and Joe Davis (2003), 

they tried to find a methodology for comparing the optional live load deflection limit with 

simulated deflections, validated using actual field deflection measurements, extrapolated 

to a 75-year level. They used a long-term defection-measuring system to measure the 

maximum girder deflection. A computer model based on the semi-continuum method was 

also developed and verified using a test truck of known weight and axle configuration. A 

weigh-in-motion system to record the actual live load information, which is used to 

develop statistics regarding normal truck traffic, was applied. Then the Monte-Carlo 

simulation technique is used to simulate truck traffic and predict the 75-year maximum 

girder deflection. The optional code defection limit in terms of a reliability index was 

evaluated by structural reliability theory.
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P. J. Barr and MD. N. Amin (2006) used a full scale, single lane test bridge to 

evaluate a typical slab-on-girder bridge's response to shear force. The results of the shear 

load test provided the means to evaluate the level of detail for a finite element model that 

is required to accurately replicate the behavior of bridges subject to shear loads. More 

than 200 finite element bridge models were evaluated in the study. The finite element 

shear distribution factors were compared with those calculated according to the AASHTO 

LRFD specifications. It was found that the AASHTO LRFD procedure accurately 

predicted the shear distribution factor for changes in girder spacing and span length. 

However, the LRFD shear distribution factor for the exterior girder was found to be 

unconservative for certain overhang distances and overly conservative for the interior 

girder for higher skew angles.

Erin Hughs and Rola Idriss (2006) evaluated the shear and moment live-load 

distribution factors for a new, prestressed concrete, spread box-girder bridge. The shear 

and moment distribution factors were measured under a live-load test using embedded 

fiber-optic sensors and used to verify a finite element model, which was then loaded with 

the AASHTO design truck and used to calculate the maximum girder distribution factors 

and compared to those calculated from both the AASHTO standard specifications and the 

AASHTO LRFD bridge design specifications. Results indicated that for the study bridge, 

the LRFD specifications would result in a safe design, though exterior girders would be 

overdesigned. The standard Specifications, however, would result in an unsafe design for 

interior girders and overdesigned exterior girders.
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2.3 Finite Element Analysis and Analytical 
Modeling of Bridge System

Bakht (1988) reported on a simplified procedure by which skewed bridges could 

be analyzed to acceptable design accuracy using methods originally developed for the 

analysis of straight bridges. The study concluded that beam spacing, in addition to skew 

angle, is an important criterion when analyzing a skew bridge as right. Results from an 

error analysis using experimental data indicated that the process of analyzing a skew 

bridge as equivalent straight bridge is conservative for longitudinal moments but is 

unconservative when dealing with longitudinal shears.

Jaeger and Bakht (1982) initially discussed the use of grillage analogy to conduct 

bridge analyses. A very detailed explanation of the theory and application was included. 

Wilson (1996) also examined the use of finite element models in conducting three- 

dimensional dynamic analyses of structures. Special emphasis was placed on dynamic 

analysis for earthquake engineering.

The lateral stability of prestressed girders was investigated by Saber (1998). The 

analyses were for long span simply supported non-skew bridges. The results indicated 

that the AASHTO 1996 recommendation for T-girder construction, of one intermediate 

diaphragm at the point of maximum positive moment of spans in excess of 40 feet, is 

conservative.

Barth and Bowman (1999) studied the effect of diaphragm details on the service 

life of bridges and found that even though some fatigue cracking might occur in certain 

locations, it did not reduce the service life of the bridge.
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Helwig and Frank (1999) found that the bracing behavior of the shear diaphragms 

was significantly affected by the type of loading and noticed that procedures based upon 

uniform moment solutions often overestimate the capacity of diaphragm-braced beams.

Barr et al. (2000) evaluated live-load distribution factors by testing a series of 

three-span, prestressed concrete girder bridges and comparing to AASHTO and finite 

element analysis. It was found that lifts, end diaphragms, skew angle, and load type 

significantly decreased the distribution factors, while continuity and intermediate 

diaphragms had the least effect.

Yazdani and Green (2000) studied the performance of elastomeric bearing pads in 

precast concrete bridge girders using a parametric study on the interaction of support 

boundary conditions and bridge girders. The researchers found that intermediate 

diaphragms have the positive effect of reducing the overall midpoint deflections and 

maximum stresses for the bridge system, but the reductions in deflections and stresses 

were smaller for increasing skew angles.

L. Kwasniewski, M.M. Szerszen, and A.S. Nowak (2000) tried to create an 

accurate finite element model and tested the model to calibrate the parameters. They 

reported that boundary conditions and modulus of elasticity of concrete were the most 

important parameters in the modeling of the actual bridge under service load. Partial 

constraints at the supports can be modeled using spring element. But when researchers try 

to estimate load-carrying capacity, models without springs and with noncomposite action 

should be used.

After using non-linear finite element models to study the behavior of real 

segmental box girder bridges, G. Rombach and A. Specker (2000) reported that the
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behavior of such type of structure is dominated by the un-reinforced joints. The 

indentation of the shear keys can be neglected in the numerical model if the structure is 

loaded by bending only.

The complexity of reinforced concrete is a major factor that limits the capabilities 

of the finite element method, so to get an accurate finite element analysis model is very 

important. Chen and Aswad (1996), Mabsout et al. (1997), and Paul J. Barr et al (2001) 

did the investigation work, and finally Paul J. Barr et al (2001) used the frame element, 

shell element, and rigid link to build the model and had a better effect.

B. M. Kavlicoglu, F. Gordaninejad, M. Saiidi, and Y. Jiang (2001) did the 

comparative research with analysis and testing of graphite/epoxy concrete bridge girders 

under static loading. The results showed the use of steel stirrups as shear connection 

elements for composite/concrete bridge girders worked effectively, and if using proper 

assumptions, it was possible to model the behavior of the new graphite/epoxy/concrete 

girder.

Kuan-Chen Fu and Feng Lu (2003) built the nonlinear finite-element analysis 

model to investigate the importance of the nonlinear behavior of the concrete to the 

highway bridge design. The performance of the numerical model is far better than the 

current design method. The procedure may cover several types such as box girder bridges, 

cable-stayed bridges, and suspension bridges where concrete deck is constructed as an 

integral part to provide composite action.

Christopher Higgins (2003) used LRFD orthotropic plate model to determine the 

deflection and live load moment in filled grid decks. He reported a closed-form solution 

to the orthotropic plate problem under multiple patch loads and introduced the maximum
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moment envelopes for multiple load patch cases, stiffness ratios, span lengths, and grid 

orientations. After the finite element analysis, he notified the presented equations might 

significantly simplify calculation of maximum live load moment for these types of deck 

systems and facilitate design.

2.4 Behavior of Diaphragms

The National Cooperative Highway Research program (NCHRP) Project No.12- 

26, which produced the truck load distribution factors for the AASHTO LRFD 

Specifications (AASHTO 1994), assumed diaphragms and cross-frames had an 

insignificant effect on load distribution. Despite this acknowledgment, AASHTO still 

requires the inclusion of diaphragms at points of maximum moment for spans over 12.20 

m (40-ft).

Gustafson (1966) performed the analysis of slab and girder bridges using the 

finite element method. The investigation by Sithichaikasem (1972) included the effects of 

the torsional stiffness and warping stiffness of the girders and the effects of in-plane 

forces in the slab. The study recommended that interior diaphragms be eliminated from 

most prestressed I-beam bridges unless they are required for erection purposes. The 

results of the study, by Wong and Gamble (1973), on the effects of diaphragms on load 

distribution of continuous, straight, right slab, and girder highway bridges reported the 

following. The diaphragms may improve the load distribution characteristics of some 

bridges that have a large ratio of beam spacing to span; the usefulness of the diaphragms 

is minimal, and they are harmful in most cases. Based on cost effectiveness, the authors 

recommended that diaphragms be omitted in highway bridges. The study recommended 

that interior diaphragms be eliminated from most prestressed I-beam bridges unless they
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are required for erection purposes. One of the arguments that have been raised for using 

diaphragms in bridges is that diaphragms help limit damage to an overpass structure that 

is struck transversely from below by an oversized load. There appears to be conflicting 

evidence as to whether the diaphragms are damage limiting or damage spreading 

members. However, no analyses were reported relevant to such a claim, and the analyses 

mentioned above were all performed on simply supported bridges.

Sengupta and Breen (1973) studied the effect of diaphragms in prestressed 

concrete girder and slab bridges by varying span length, skew angle, stiffness, location, 

and number of diaphragms. It was found that interior diaphragms were good only to 

distribute the load more evenly while never significantly reducing the governing design 

moment. The conclusion reached was that it is more economical to provide increased 

girder strength than to rely on improved distribution of load due to provision of 

diaphragms. Furthermore, the distribution factors of the 1969 AASHO specifications for 

live loads were found to be conservative even without diaphragms. Also, interior 

diaphragms made the girders more vulnerable to damages from lateral impacts. It was 

recommended that interior diaphragms should not be provided in simply supported 

prestressed concrete girder and slab bridges, and that provision of exterior diaphragms 

was considered necessary for reliable serviceability.

Cheung et al. (1986) reported on the apparent lack of previous research to deal 

with the actual increases or decreases of longitudinal moments due to diaphragms. For 

example, most published papers concentrated on the alleged effectiveness, or lack of a 

particular arrangement of diaphragms. Kennedy and Soliman (1982) had reached similar 

conclusions four years earlier. Based on experimental findings and parametric studies
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using the finite element method, reearchers observed that the effective moments of 

resistance along failure yield lines in the positive and negative moment regions depended 

on the position of the load and on the nature of the connection between the transverse 

steel diaphragms and the longitudinal steel beams or girders.

Much of the present design criteria on load distribution are based on the results of 

simply supported bridges. The provisions for the design of negative moment regions are 

inferred from the behavior of the positive moments. It is difficult to make direct 

comparison between the results of an analysis of a simply supported bridge and 

continuous bridge because of the effective span length due to the negative moment at the 

interior support. Since most highway bridges are continuous bridges, analyses of the 

effects of diaphragm on continuous bridges will undoubtedly provide new data and 

supplement the data on the design of slab and girder bridges.

Kostem and deCastro (1977) studied the effect of diaphragms on the lateral 

distribution of live load in simple-span non-skewed beam-slab bridges with prestressed 

concrete I-beams. Based on a finite element analysis of two bridges with spans of 21.8 

and 20.9 m (71.5 and 68.5 ft), they found that reinforced concrete diaphragms contribute 

only about 20 to 30 percent of their stiffness to load distribution. They also found that 

when all design lanes are loaded, the contribution of the diaphragms is negligible. When 

maximum bending moments are produced, an increase in the number of diaphragms 

along the span does not necessarily correspond to a more even distribution of loads at 

midspan. It was also found that, if  all the design lanes are loaded, the contribution of 

diaphragms is negligible regardless of the number of diaphragms used. A
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recommendation was made that vehicle overload and large skew effects be considered 

before eliminating the use of intermediate diaphragms.

In 1983, Kennedy and Grace studied the effects of diaphragms in skew bridges 

subjected to concentrated loads. They concluded that diaphragms enhance the distribution 

of point loads specifically in bridges with large skew angles.

Griffin, J.J. (1997), researched the influence of intermediate diaphragms on load 

distribution in prestressed concrete I-girder bridges. The studies included two bridges that 

were constructed with a 50 degree skew angle along the coal haul route system of 

Southeastern Kentucky. One of the bridges has concrete intermediate diaphragms, while 

the other bridge has no intermediate diaphragms. Bridges of similar design along coal 

haul routes have experienced unusual concrete spalling at the interface of the diaphragms 

and the bottom flange of the girders. The intermediate diaphragms appeared to be 

contributing more to the increased rare of deterioration and damage than reducing the 

moment coefficient and distributing the traffic loads. Experimental static and dynamic 

field testing was conducted on both bridges. All field tests were completed prior to the 

opening of the bridges. Once the calibration of the finite element models was completed 

using the test data, analyses were conducted with actual coal haul truck traffic to 

investigate load distribution and the cause of the spalling at the diaphragm-girder 

interface. Based on the results obtained in the research study, a significant advantage in 

structural response was not noted due to the presence of intermediate diaphragms. 

Although large differences were noted percentage wise between the responses of the two 

bridges, analyses suggested that the bridge without intermediate diaphragms would 

experience displacements and stresses well within AASHTO and ACI design
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requirements. The finite element analyses also revealed the cause of concrete spalling 

witnessed in the diaphragm-girder interface region. The tendency of the girders to 

separate as the bridge was loaded played a large role in generating high stress 

concentrations in the interface region. Other mitigating factors were the presence of the 

diaphragm anchor bars and the subjection of the bridge to the overloads of coal trucks. 

However, the total elimination of intermediate diaphragms was not recommended since 

they were required during construction and would be needed in the event the deck was to 

be replaced. The use of steel diaphragms was recommended as substitutes for the 

concrete intermediate diaphragms.

Abendroth et al. (1995) summarized research conducted by various investigators, 

and they reported that Sengupta and Breen investigated the role of end and intermediate 

diaphragms in typical prestressed concrete girder and slab bridges in 1973. Experimental 

variables in that study included span length; skew angle of the bridge; and number, 

location, and stiffness of the diaphragms. The elastic response of the bridge was studied 

under static, cyclic, and impact loads-with and without diaphragms. Overload and 

ultimate load behavior was also documented from various static load and impact load 

tests. Experimental results were used to verify a computer program, which in turn was 

used to generalize some of the results. Sengupta and Breen concluded that under no 

circumstances would the presence of intermediate diaphragms significantly reduce the 

design girder moments. In fact, in certain situations the presence of intermediate 

diaphragms might even increase the design moment. A recommendation that intermediate 

diaphragms be excluded in prestressed concrete girder and composite slab bridges was 

made. Abendroth et at. (1995) cited other research by Kostem and deCastro which found
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that when all traffic lanes were loaded, diaphragms were ineffective in distributing loads 

laterally. Based upon independent research work, Abendroth et al. a(1995) studied the 

effect of overweight vehicles on diaphragms of prestressed concrete bridges. Cases with 

and without diaphragms were investigated using the finite element method considering 

both pinned and fixed-end conditions. It was found that vertical load distribution is 

independent of the type and location of the intermediate diaphragms; however, the 

horizontal load distribution was a function of the intermediate diaphragm type and 

location. It was also shown that construction details at the girder supports created 

considerable rotational-end restraint for both vertical and horizontal loading. They also 

found that fabricated intermediate structural steel diaphragms provided the same type of 

response as reinforced-concrete intermediate diaphragms used by the Iowa Department of 

Transportation.

2.5 Previous Studies on Truck Weight Regulations

The truck industry is faced with the demand of increasing the truck weight to get 

more carrying capacity. On the other hand, bridge owners can control the loading on the 

bridges to limit the deterioration of the existing bridge infrastructure in the United States 

to keep the structure in a safe condition. To solve this problem, regulations allow the 

truck weights to increase to a certain range while guaranteeing the safety and 

serviceability of the bridge systems. The Federal legislation known as Federal-aid 

Highway Act introduced a program regulating truck weights. This legislation restricts the 

gross weights of trucks and weights of different axles and axle groups. The maximum 

gross weight of the vehicle is 80,000 lbs., while the limit for the single axle load is 

20,000 lbs. and 34,000 lbs. for the tandem axles.
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The axle group weights are regulated based on the truck weight formula, also 

known as “Formula B,” given by

BN
W = ————  + 6N  + 18 (2.1)

2(N-1)

Where, W is the overall gross weight (Unit: lbs)

B is the length of the axle group (Unit: ft)

N  is the number of axles in the axle group

By using the Formula B, the overstressing of the bridges with an HS20 design 

load can be avoided by more than five percent and the bridges with an H15 design load 

can be avoided by more than 30 percent.

This formula is based on the principle that overstressing H I5 bridges by 30 

percent is still acceptable for bridge safety and serviceability. Most of the HI 5 bridges 

are built on low heavy-truck volume highways while the HS20-44 bridges are usually 

built on interstate highways. This fact means that if  the bridge is overstressed by more 

than 5 percent, a high risk exists. However, engineering experiences in some states and 

the province of Ontario show that the results of Formula B are very conservative. Many 

states have increased their legal loads above the standard. For example, Minnesota allows 

a winter increase in GVW of 10 percent during dates set by the transportation 

commissioner based on a freezing index. Michigan allows loads up to 154,000 lbs., and 

most western states allow loads up to 131,000 lbs.

The Federal Highway Administration (FHWA) supported research to develop 

another truck weight formula known as the TTI formula, which is based on the same 

overstressing criterion as the Formula B. Compared to the Formula B, the TTI formula
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allows higher weights for shorter vehicles, tandem, and tridem axle groups, but it allows 

smaller gross weights than Formula B for longer vehicles.

The TTI formula is given by

W = 34 + 5  (Kips) for 5  <56 ft
(2.2)

IF =62 + 0.55 (Kips) for B >56 ft

In 1990, the Transportation Research Broad (TRB) finished research on a 

modification of the TTI formula, which reduced the limits on axle loads and allowed the 

higher gross weights. However, the modified TTI formula established stress limits on the 

bridges whose design load is the HS20 truck load without consideration of the HI 5 truck 

load; the modified formula is given by:

W = 26 + 2.0B (Kips) for 5  < 23 ft
(2.3)

IF = 62+ 0.5B (Kips) for B >  23 ft

2.6 Statistical Method for Bridge Analysis

Various analytical and experimental methods have been used to analyze the load 

distribution and deck behavior in highway bridges. Assumptions are made to simplify the 

problem and postulate a manageable solution. Some statistics methods are also 

introduced into the procedure to reduce the high amount of data analysis work. And 

recently, engineers and academics have become much more interested in this field.

The results of the study, by M. Ghosn (2000), on the truck weight regulations 

using the bridge reliability model, reviewed the historical truck regulations, which 

maintained controls on axle and gross weights with legal load formulas based on limiting 

allowable stresses in certain types of bridges. The stress limitations do not usually lead to 

consistent or defensible safety levels and also ignore the cost impact of the weight
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regulations. He illustrated how new truck weight regulations can be developed to provide 

acceptable safety levels, which were derived from the AASHTO bridge evaluations. The 

reliability indices were used to relate the statistics of bridge load effects. A sensitivity 

analysis was also performed to study the effect of errors in the database. The results 

demonstrated that the proposed formula is not sensitive to the assumed database if  the 

target safety index is changed accordingly.

J. A. Laman, J. S. Pechar and T. E. Boothby (1999) did an experiment to evaluate 

the statistics of dynamically induced stress levels in steel through-truss bridges as a 

function of bridge component type, component peak static stress, vehicle type, and 

vehicle speed determined the dynamic load allowance for each of the instrumented bridge 

components for each of several truck crossings. The study examined that the DLA data 

was a function of component type, component location, and truck type, number of axles, 

truck speed, and truck direction. The DLA is dependent on truck location, component 

location, component type, and component peak static stress but appears to be nearly 

independent of vehicle speed. And the normal traffic conditions best reflected the 

variation of truck loading conditions and variables that induced the dynamic effects in the 

bridge members.

M. Schwarz and J. A. Laman (2001) studied the response of prestressed concrete 

I-girder bridges to live load. They presented the results of field tests conducted on three 

prestressed concrete I-girder bridges to obtain dynamic load allowance statistics, girder 

distribution factors, and service level stress statistics. They measured the bridge response 

at each girder for the passage of test trucks and normal truck traffic and observed that the 

dynamic amplification was a strong function of peak static stress and a weak function of
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vehicle speed and was independent of span length, number of axles, and configuration. 

The field based data were also compared to numerical model results and results were 

closely aligned.

An application of field testing for an efficient evaluation and control of live load 

effects on bridges was described by Nowak, A. S., Eom, J. and Sanli, A. (2000). A 

procedure for measuring live load spectra on bridges was developed in the experiment. 

Truck weight was measured to determine the statistical parameters of the actual live load. 

They measured the strain and stress in various components of girder bridges to determine 

component-specific load, and verified the minimum load-carrying capacity by proof load 

tests. Authors drew the conclusions that the live load effects were strongly site specific 

and component specific; the measured strains were lower than analysis results; and the 

dynamic load factor decreased with increasing static load effect. The proof load test 

results indicated that the structural response was linear. Compared with the code, the 

dynamic load factor and girder distribution factor from the experiment were lower.

Mabsout, M. E. et al. (1998) used the finite element method to study the effect of 

continuity on wheel load distribution factors for typical two equal span, two lane, straight, 

composite steel girder bridges. The influence on the bridge continuity was investigated. 

They observed that interior girders carried more live loads than the outside girders. 

Results of two finite element modeling techniques were used to predict wheel load 

distribution factors, which were similar to the results from AASHTO LRFD manual but 

less than the old AASHTO formula.

Fafard, M. et al. (1998) investigated the effect of dynamic loads on the dynamic 

amplification factors of an existing continuous bridge. An 3-D analytical model to
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idealize the vehicle and a FE model to analyze the bridge were developed, and the results 

were compared with the experimental testing results. Researchers concluded that current 

design codes tended to underestimate dynamic amplification factors, especially for long 

span continuous bridges.

The development of statistical models for wood bridge structures was discussed 

by Eamon, C. et al. (2000). The statistical methods were used to develop rational models 

for loads and resistance. Reliability was used to measure structure performance, which 

also provided a rational basis for comparison of wood and other structural materials. The 

authors determined the structural reliability of selected wooden bridges designed by 

AASHTO codes and identified the inadequacies in load distribution and material 

resistance in the current specifications.

Petrou, M. F., Perdikaris, P. C. and Duan, M. (1996) studied the static behavior of 

noncomposite concrete bridge decks under concentrated loads. Three kinds of decks with 

three different reinforcement combinations were applied in the experiments. The load- 

deflection diagrams, cracking and yielding load level, failure mode, and some other 

results were observed.

Issa, M. A. (1999) investigated the cracking behaviors in concrete bridge decks at 

early ages. Survey, experimental work and analytical study were performed to reach the 

goal. Author indicated that in most cases, cracking of concrete might be attributed to the 

high evaporation rate and high magnitude of shrinkage. Some other factors, like high 

slump concrete, excessive water in the concrete, insufficient top reinforcement cover, and 

so on, were also the key causes of the cracking.
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The effects of material properties on cracking in bridge decks were observed by 

Schmitt, T. R. and Darwin, D. (1999). The information collected from construction 

documents and field books was compared with observed levels of cracking to identify 

correlations between cracking and the variables studied. The results of the evaluation 

indicated that cracking in monolithic bridge decks increases with increasing values of 

concrete slump, percent of concrete volume occupied by water and cement, water content, 

cement content, and compressive strength, and decreasing values of air content.

Boothby, T. E. and Laman, J. A. (1999) evaluated the cumulative damage caused 

by vehicle loading to bridge concrete deck slabs. An analytical model was implemented 

to evaluate the effect of user loads on a statistical sample of bridge deck slabs while an 

extensive literature review was conducted to determine the state of the art for cumulative 

deck slab damage evaluation. Authors found the relationship between environmental and 

mechanical factors in bridge deck deterioration is very important; the damage to bridge 

decks due to mechanical loading is insignificant compared to environmental factors.

Smith-Pardo, J. P. et al. (2006) reported a parametric study about distribution of 

compressive stresses in transversely posttensioned concrete bridge decks. According to 

the study results, authors reported that the distribution of compressive stresses is mainly 

affected by the support conditions of the girders and the axial stiffness of the diaphragms.

Nowak, A. S. et al. (2000) researched the dynamic loads due to truck traffic on 

bridges. Both of analytical and experimental studies were applied. The simulation and 

field measurements indicated that the design dynamic load could be reduced, and the 

values offered by codes were conservative.
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Nassif, H. H. et al. (2003) did some study on the model validation for bridge- 

road-vehicle dynamic interaction system. The study provided an alternate method for the 

development of live load models for bridge design and evaluation by a 3-D computer 

model that was based on the grillage approach and was applied to four steel girder 

bridges.

A reliability based fatigue evaluation of bridge girders was performed by 

Szerszen, M. M. and Nowak, A. S. in 1999. Authors presented the reliability analysis for 

steel and concrete bridge girders. The analysis is based on live load measured in 

conjunction with field tests, and it is described in the load model. The reliability index 

was calculated due to service life of the bridge.

DePiero, A. H. et al (2002) focused the research on details of finite element 

modeling of bridge deck connection. A study for assessing the loading conditions for the 

connection details on the bridge was performed, and the results showed significant 

variation in connection detail stress range, depending on the detail’s longitudinal and 

lateral location.

Kwasniewski, L. et al. (2000) did the sensitivity analysis for slab-on-girder 

bridges via finite element method and reported the following parameters influence the 

bridge structural reliability: live load, material data, boundary conditions for the girders, 

and interaction between girders and the deck slab, in which the boundary condition for 

girders was the important factor and difficult to model.

2.7 Experimental Testing

Aktan el al. (1992) reported on the use of known weight trucks to obtain static 

bridge response as a basis for nondestructive bridge evaluation (NDE). Experimental data
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taken from the static and dynamic testing of the bridge were used to calibrate a finite 

element model. A prestressed flat slab bridge was tested by Cook el at. (1993). The 

experimental and analytical research was conducted with the primary objectives of 

testing the bridge for service, fatigue, and ultimate loads; developing analytical models to 

predict the performance of the system, and verifying the analytical results by comparing 

them with those obtained from experimental data. In Helba and Kennedy (1995), 

equations for the design and analysis of skew bridges were developed from the analysis 

of a prototype composite bridge subjected to Ontario-Highway Bridge Design Code 

(OHBDC) truck loading. One conclusion drawn from the study was that rigidly 

connected diaphragms produce a significant increase in the ultimate load capacity of the 

bridge.

Craig el at. (1994), noted that even when the wheel line was closer to the fascia 

stringer than to the first interior beam, strains measured on fascia stringers under decks 

with integral curbs were significantly lower than those measured on the first interior 

beam.

Law et al. (1995a) studied the effect o f local damage in the diaphragm on the first 

modal frequency. Three types of damage were studied that constituted a reduction in the 

stiffness of the diaphragm(s). The study concluded that there was no noticeable change in 

the first modal frequency in all three cases. Law et al. (1995b) furthered the work with 

model tests and measurements of 13 full scale bridges. Similarly, Paultre et al. (1995) 

initiated a study with the following main objectives: 1) evaluating the dynamic 

amplification factor for different highway bridges, 2) calibrating finite element models of 

the bridges being tested, and 3) examining the effects of changes in the stiffness of
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structural elements and the influence of secondary structural elements on the dynamic 

response. Data from the tests demonstrated that the dynamic amplification factor could 

be influenced by variables such as the vehicle speed and the ratio of the vehicle weight to 

the total weight of the structure.
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CHAPTER III

METHODOLOGY OF FINITE 

ELEMENT ANALYSIS

3.1 Introduction

The methodology used in the finite element analysis phase evaluated the effect of 

the heavy loads on the bridges from the trucks transporting heavy products, based on 

LRFD and LFD design recommendations. The demand on the bridge girders due to the 

heavy truck loads was calculated based on bridge girder type, span type, and the bridge 

geometry.

The effects of heavy truck load on bridges were determined by comparing the 

stress of the longitudinal stress at the top and bottom surface of the girder, the vertical 

deflection of the girder, the stress state of the deck, and the axial force of the diaphragms 

of the bridges under their design load to the conditions under the two types of certain 

FHWA truck configurations. A simplified method based on AASHTO design guidelines 

was determined to be the most prudent approach to meet the short and strict schedule for 

this study.

The short and long term effects of heavy truck loads were determined based on 

the ratio of the stress, force and deflection for each bridge in the sample. The AASHTO 

Line Girder Analysis approach, detailed analysis using finite element models, and 

GTSTRUDL software were used. The design load HS20-44 for the bridge was used. The

30
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heavy track loads used in analysis were based on the FHWA 3S2 track configuration and 

FHWA 3S3 track configuration, with the same steering axle of 12,000 lb., and maximum 

tandem load of 48,000 lb., maximum tridem load of 60,000 lb., respectively.

The first step in the analysis used the influence line procedures to determine the 

critical location of the tracks on the bridges that would result in maximum moment and 

shear forces. Based on the results from the influence line analyses, the further analysis of 

bridge girder, deck, and diaphragm were applied, and the effects of the loads on the 

bridge girders and bridge decks were determined. Next, the ratios of the results for the 

3S2 track, 3S3 track, and the design track (HS20-44) for stresses were calculated. The 

serviceability criteria were evaluated based on their deflections.

3.2 Analysis Variables

Under the whole analysis procedure, seven variables were considered as the 

design factors:

(1) Bridge Width;

(2) Slab Thickness;

(3) Girder Type;

(4) Girder Spacing;

(5) Span Length;

(6) Bridge Skew Angle;

(7) Diaphragm Condition;

(8) Bridge Support Condition;

(9) Track Loads on the Bridge.
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The span length was measured from the center of one support to the center of an 

adjacent support. The girder spacing was measured from the center of one girder to the 

center of an adjacent girder, which was identical and parallel to the previous girder. The 

model considered in this study was non-skewed with end 0° diaphragms. There were two 

types of supports of the bridge structures: simply supported, or three equal spans 

continuous. Based on the girder numbers, the models were divided into two groups. The 

structures of both groups analyzed in this study were thirty feet wide. For first group, the 

girders were spaced at eight feet in the middle and seven feet on the outside. The model 

contained five AASHTO Type IV, V, VI or Bulb-Tee 54, 63, 72 girders with the slab 

thickness kept eight inches as the constant; for the second group, the girders were spaced 

at 5/4.5 feet in the middle and six feet on the outside. The model contained seven 

AASHTO Type IV, V, VI or Bulb-Tee 54, 63, 72 girders with the slab thickness kept 

eight inches as the constant. The geometry of the bridge and its deck are shown in Fig.

3.1 to Fig. 3.3.
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Fig. 3.1 Models Used for Bridge Analysis -  Five Girders Model
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Fig. 3.3 Typical Plate and Girder Elements

The heavy truck loads used in analysis were based on the FHWA 3S2 truck 

configuration, with maximum tandem load of 48,000 lb. and steering axle of 12,000 lb.; 

and FHWA 3 S3 truck configuration, with maximum tridem load of 60,000 lb. and 

steering axle of 12,000 lb. All truck loads were placed on the bridge as shown in Fig. 3.4 

to Fig. 3.6.
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Fig. 3.4 AASHTO HS20-44 Truck Configuration with GVW=72 Kips
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Fig. 3.5 FHWA 3S2 Truck Configuration with GVW=108 Kips
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Fig. 3.6 FHWA 3S3 Truck Configuration with GVW=120 Kips

3.3 Method of Approach

The finite element analysis of the bridge was finished by GTSTRUDL software in 

this study. The finite element models used for bridge in this study simulated the behavior 

of simple span and continuous bridges. The girders were modeled using Type-IPSL
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tridimensional elements available in GTSTRUDL. Type-SBCR plate elements were used 

for the bridge deck. Prismatic space truss members were used to model end diaphragms 

and the connection between the deck plate elements and the girder elements.

3.3.1 Girder Element Type-IPSL

Properties of type tridimensional finite elements were explained in the 

GTSTRUDL user guide analysis. These were used to model the behavior of general 

three-dimensional solid bodies. Three translational degrees of freedom in the global X, Y, 

and Z directions were considered per node. Only force type loads could be applied to 

these tridimensional elements.

The Type-IPSL tridimensional finite element used was an eight-node element 

capable of carrying both joint loads and element loads. The joint loads could define 

concentrated loads or temperature changes, while the element loads could define edge 

loads, surface loads, or body loads. GTSTRUDL results included the output for stress, 

strain, and element forces for type-IPSL tridimensional elements at each node. The 

average stresses and average strains at each node were calculated. The details of the 

Type-IPSL element were shown in Table 3.1.
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Table 3.1 Detail Properties of Type-IPSL Tridimensional Element
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3.3.2 Plate Element Type-SBCR

Properties of type plate finite elements were explained in the GTSTRUDL User 

Guide Analysis. Type plate elements were used to model problems that involved both 

stretching and bending behavior. The element was a two-dimensional flat plate element 

commonly used to model thin-walled, curved structures. These type plate finite elements 

were formulated as a superposition of type plane stress and type plate bending finite 

elements. For flat plate structures, the stretching and bending behavior was uncoupled, 

but for structures where the elements did not lie in the same plane, the stretching and 

bending behavior was coupled.

The Type-SBCR plate finite element was a four-node element capable of carrying 

both joint loads and element loads. The joint loads could define concentrated loads, 

temperature change loads, or temperature gradients, while the element loads could define 

surface loads or body loads. GTSTRUDL provided the output for in-plane stresses at the
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centroid and moment resultants, the shear resultant, and element forces at each node for 

Type-SBCR plate elements. The average stresses, average principal stresses, and average 

resultants at each node were calculated. The details of the Type-SBCR plate element 

were shown in Table 3.2.

Table 3.2 Detail Properties of Type-SBCR Plate Element

Element Output
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3.3.3 Prismatic Space Truss Member

Properties of space truss members were explained in the GTSTRUDL User Guide 

Analysis. Space truss members were used when a member experienced only axial forces 

and where the member was ideally pin connected to each joint. No force or moment loads 

could be applied to a space truss member. Only constant axial temperature changes or 

constant initial strain type loads could be applied. The self weight of these members was 

generated as joint loads, which the member was incident upon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

When the prismatic member property option was used, the section properties were 

assumed to be constant over the entire length of the member. Up to 14 prismatic section 

properties could be directly specified or stored in tables. If not specified, the values 

could be assumed according to the material specified. All 14 member cross-section 

properties were assumed to be related to the member cross-section’s principal axis (local 

y- and z- axes), which had their origin on the centroidal axis (local x- axis) of the member. 

Table 3.3 lists the detailed properties of the prismatic space truss member.

Table 3.3 Detail Properties of Prismatic Space Truss Member

Member Type
Member 

Parallel To 
Global Plane

Direction of Member 
Local x-axis

Beta
Angle

Local Member 
Degree-of-Freedom

Force Moment

X *< N

N>»X

Space Truss N/A N/A N/A X

N/A - Not Applicable

3.4 Finite Element Modeling of Concrete Girder Bridges

3.4.1 Bridge Properties

For the simple span bridges, the girders were considered simply supported at the 

supports; for the continuous bridges, the girders were simply supported at each support 

while the deck was cast continuously above the girders. The properties of the girders 

were defined by certain parameters dependent on the bridge geometry. Seven girders 

were used in models with a 5/4.5 ft spacing. Five girders were used in models with eight 

ft spacing; however, the outside girders on the models had a narrower spacing in order to
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keep the bridge width 30 ft constant. Several assumptions were made in the formulation 

of the bridges in this study as follows:

1) The slab thickness was kept eight inches as a constant.

2) The bridge width was kept 30 ft as a constant.

3) All girders in the models were identical and parallel to each other.

4) The simple span bridge models had one span; the span length was measured 

between two support centers.

5) The continuous bridges were defined as the bridge had three equal spans, the 

girders were simply supported at two adjacent supports, and the deck was 

continuously cast above the girders.

6) Full composite action was assumed between the girder and the slab.

3.4.2 Boundary Conditions

The restraints for all models consisted of four joints across the width of the base 

of the girder at the end and intermediate supports. Also, the two joints that connect the 

plate elements to the rigid members at the end supports behaved as pins.

3.4.3 AASHTO Loading

A uniform volumetric dead load of 150 pcf was applied to all elements and all 

members to account for the self weight of the concrete. The truck loading on the bridge 

was represented by the HS20-44, FHWA 3S2 or 3 S3 truck loading. In addition to the 

dead and truck loads, a future wearing surface loading of 12 psf, and a surcharge 19 psf, 

in total 31 psf, according to LADOTD Bridge Manual, was placed on the deck to account 

for future overlays. Based on AASHTO Chapter III, four kinds of load combinations 

were used in this study, and corresponding loading condition factors were applied to the
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model, as shown in Table 3.4. In the load combination “fatigue,” the impact factor 1.3 

was applied to all trucks, as required by the AASHTO LRFD Bridge Design Manual, 

chapter III.

Table 3.4 AASHTO LRFD Bridge Design Loading Condition Factors

Load
Combination

Dead Load 
(DL)

Vehicular 
Live Load 

(LL)

Live Load 
Surcharge 

(LS)
Wind Load 

(WL)
Strength I Max 1.25 1.75 1.75 0.00
Strength II Max 1.25 1.35 1.35 0.00
Strength III Max 1.25 0.00 0.00 1.40
Strength V Max 1.25 1.35 1.35 0.40

Fatigue 0.75*1.3=0.975 _ ---- —"  '

3.4.4 Finite Element Modeling of the 
Girder Over Interior Supports

Since the girders are simply supported and the deck is continuous over the girders, 

a space will be created between the two girders, over the interior supports, during the 

construction of the bridge. Because the end diaphragm does not provide continuity in 

this case, the girder will require a two inch gap between the girders, as shown in Fig. 3.7 

to Fig. 3.8.

Bridge decks contain longitudinal reinforcing bars for the tensile stresses induced 

by the negative moment over the support. In construction, the combination of the deck 

and the bearing pad will restrict the rotation of the girder over the support. Although the 

girders, when constructed with the end diaphragm, are not joined end to end, the girder is 

not completely free to act as a truly simply supported beam. In modeling the connection 

with a two inch gap between adjoining girders, the girders are free to rotate and act as a
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simply supported beam because the beam is supported by points at the end of the girder 

and not resting on the pad. Tensile and compressive stresses will still exist at the girder 

ends because of the restricted rotation of the girders.

D e c k

G i r d e r

1—  B e a r in g  P a d

S u p p o r t

Column

Fig. 3.7 Elevation View of Girders over Interior Support

N

Fig. 3.8 Plan View of Girders over Interior Support

3.5 Influence Line Analysis

When the truck loads, performed as the concentrated loads, were placed on the 

bridge deck, an influence surface could be generated. Instead of using the influence
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surfaces to find the critical moments, shear, and deflection under certain load conditions, 

the influence line was used. The bending moment and shear for which the influence line 

was to be determined was computed as a unit load placed at different positions over the 

length and the width of the bridge. The maximum deflection was computed by 

superposition.

3.5.1 Modeling in GTSTRUDL

In this study, HS20-44 truck loads, and typical heavy truck loads were used in the 

analysis procedure. Both hand calculations and computer models in GTSTRUDL were 

used to determine the critical load location and the corresponding moment and shear 

forces. Also, associated deflections and stresses in the bridge girders and bridge decks 

were determined.

The influence lines were computed in both the longitudinal and transverse 

direction of the bridge. The models were constructed in GTSTRUDL, and then the unit 

loads were applied to the bridge. GTSTRUDL calculated the ordinates (deflection) of the 

maximum moment of displaced structure due to the unit loading at each joint. The results 

were used to generate the moment produced by each truck loading and determine the 

critical truck locations.

3.5.2 Determination of the 
Critical Truck Load 
Location

For the influence line generated at each joint, the maximum moment and shear 

force was found by moving the selected truck load through the span in one-inch 

increments. The maximum values due to the truck load were calculated by superposition, 

which took the sum of the ordinates multiplied by the magnitudes of the loads. The
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critical truck load location was determined by finding the location where the wheel load 

generated the maximum moment or shear force. Table 3.5 represented the results of 

critical locations of trucks on continuous bridges.

Table 3.5 Critical Location for Trucks on Continuous Bridge Girders

Span
Length

HS20-44 FHWA 3S2
Truck Location X (ft.) 

(From Left Support to Front Tire)
Truck Location X (ft.) 

(From Left Support to Front Tire)
(ft.) Max

Positive
Moment

Max
Negative
Moment

Max 
Absolute 

Shear Force

Max
Positive
Moment

Max
Negative
Moment

Max 
Absolute 

Shear Force
55 8 12 26 6 25 7
60 10 15 31 8 30 12
65 12 18 36 10 34 17
70 14 21 41 11 39 22
75 17 24 46 13 66 (a) 27
80 19 27 51 15 69 (a) 32
85 21 30 56 17 72(a) 37
90 23 32 61 20 75 (a) 42
95 25 35 66 22 78 (a) 47
100 27 38 71 24 81(a) 52
105 29 41 76 26 35 57
110 31 44 81 28 87(a) 62
115 33 47 86 30 90 (a) 67
120 36 50 91 32 93 (a) 72
125 38 53 96 34 96 (a) 77
130 40 56 101 36 99(a) 82

(a) The truck is traveling from 
right to left.

eft side to right side along the bridge. Otherwise from

3.6 Summary

The methodology of finite element analysis in this study was represented in this 

chapter. Variables of analysis and details of model properties were introduced. Factors
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needed for finite element analysis were given and discussed. Influence line analysis was 

performed, and the results were used in the upcoming chapters.
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CHAPTER IV

BRIDGE GIRDER PERFORMANCE UNDER 

THE HEAVY TRUCK LOAD

4.1 Introduction

Bridge girder, is a straight, horizontal beam to span an opening and carry weight 

distributed from the bridge deck. By the difference of the shape of the girder cross section, 

it can be divided into I section, Tee section, box section, and so on. The AASHTO Type 

IV girder, Type V girder, Type VI girder, Bulb-Tee 54, Bulb-Tee 63 and Bulb-Tee 72 are 

typical I section girders and widely used in the United States. To evaluate this girder 

performance under the heavy truck loads, the author used two typical methods described 

in this chapter. In following section 4.2, the simplified AASHTO line girder analysis 

approach was used to evaluate the girder behavior by determining the magnitude of the 

maximum moment and shear forces. The detailed analysis using finite element models by 

GTSTRUDL was performed in section 4.3; both the short term effect and the long term 

effect of the girder under the truck load were evaluated.

4.2 Evaluation Based on AASHTO Linear Approach

The methodology used in this analysis phase evaluated the effect of the heavy 

truck loads on the bridges based on LRFD and LFD design recommendations. The effects

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

of heavy truck loads on bridges were determined by comparing the flexural, shear, and 

serviceability conditions of the bridges under their design load to the conditions under the 

FHWA 3S2 truck configuration, with maximum tandem load 48,000 lb, and steering axle 

load of 12,000 lb.

The first step in the analysis used the influence line procedures to determine the 

critical location of the trucks on the bridges that would result in maximum moment and 

shear forces. Based on the results from the influence line analysis, the effects o f the loads 

on the bridge girders and bridge decks were determined. Also, the magnitude of the 

maximum moment and shear forces were calculated. Next, the ratios of the results for the 

FWHA 3S2 truck and the design truck (HS20-44) for flexural and shear forces or stresses 

were calculated. The serviceability criteria were evaluated based on their deflections.

This part of study included some contents from the Louisiana state project No. 

736-9-1299 (also the LTRC project No. 05-2p). In this project approximately 2,800 

bridges were involved, which were grouped in Table 4.1. The analysis for those bridges 

was performed, and results are presented in this section.

Table 4.1 Considered Critical Bridges and Categories

Critical Bridges for This Study
State Bridges Parish Bridges

Category Number of Bridges Number of Bridges
Simple Beam 998 166
Continuous 149 1

Culvert 435 59
Others 75 20

Posted Bridges 169 302

Design Load Low (5,10 ton) 55 3
Design Load Unknown NA 394

Total 1881 945
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4.2.1 Performance of Simple Span Bridge Girders

The influence line analysis for bridges with simple spans was performed using 

hand calculations and spread sheets. The standard truck configurations for HS20-44, as 

provided in AASHTO Chapter III, were used. The span length for bridge girders between 

20 ft. and 120 ft. (at 2 ft. increments) were considered for this study.

The truck loads were placed on the bridge girder as shown in chapter III, and 

moved on the girder at 1 ft. increments, to calculate the absolute maximum moment and 

shear force. The different load conditions for the corresponding girder span lengths are 

shown in Table 4.2.

Table 4.2 Load Conditions for Simply Supported Bridge Girders

HS20-44 Truck Configuration FHWA 3S2 Truck Configuration
Girder Span (ft.) Load on Girder Girder Span (ft) Load on Girder

20 To 28 P2 (or P3) 20 To 24 PI
20 To 28 PI &P2 20 To 26 P2& P3
20 To 28 P2& P3 20 To 56 P4& P5

33 To 120 PI, P2 & P3 24 To 62 PI, P2 & P3
33 To 120 PI, P2 & P3 50 To 57 PI, P2, P3& P4

52 To 120 PI, P2, P3, P4 & P5

The performance of simple span bridge girders were evaluated by the values and 

ratios of absolute maximum shear, moment, and deflection. The absolute maximum shear 

in simply supported bridge girders occurred next to the supports. Therefore, the loads 

were positioned so that the first wheel load in sequence was placed close to the support. 

The absolute maximum moment in simply supported bridge girders occurred under one 

of the concentrated forces. This force was positioned on the beam so that it and the 

resultant force of the system were equidistant from the girder’s centerline. The maximum
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deflection was determined by the truck location on the bridge girder that caused the 

maximum absolute moment.

The effects of FHWA 3S2 trucks loads on bridges were evaluated by normalizing 

the critical conditions for each bridge span to the design load, which are presented in Fig. 

4.1. The ratio of the absolute maximum moment varied between 0.98 and 1.29. The ratio 

of the shear forces varied between 0.97 and 1.34. Where the bridge span was similar to 

the length of the 3S2 truck, the ratios of the absolute maximum moment and shear were 

within 10 percent. This confirms the findings in the previous studies that focused on 

bridge formula. The studies increased the GVW and the truck length to minimize the 

impact on the stresses in the bridge girders. However, bridge girders with absolute 

maximum moment ratio or shear larger than 1.1 would be overstressed, which could 

experience more cracking in the bridge girders and bridge decks. Such cracks would 

require additional inspections along with early and frequent maintenance.

The ratio for deflection caused by FHWA 3S2 truck loads as compared to HS20- 

44 truck loads varied between 0.94 and 1.42. The above discussion on the ratio of the 

absolute moment was applied to the ratio of deflection. Deflection was a serviceability 

criterion, and high ratios as reported in this study would result in uncomfortable riding 

conditions for vehicles crossing the bridges at the same time as the FHWA 3S2 trucks. 

Also, the high ratios obtained in this study could result in more cracking in the bridge 

girders and bridge decks. Such cracks will require additional inspections along with early 

and frequent maintenance.
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Fig. 4.1 Effects of 3S2 Truck on Simple Span Bridges with HS20-44 Design Loads

The effects of FHWA 3S2 truck loads on simple span bridges designed for HS20- 

44 truck loads are presented in Table 4.3. The span for most of these bridges is 20 ft.; the 

ratio of the absolute maximum moment and shear due to 3S2 and HS20-44 truck loads 

are 1.22 and 1.1, respectively. Previous studies reported that changes in the design codes 

and design practices could cause a margin of safety o f about 5 percent to 10 percent in 

bridges designed for HS20-44 truck loads.

This study included 60 bridges with span lengths between 40 ft. and 66 ft. The 

ratio for the absolute maximum moment was within the margin of safety. There were 57 

bridges with span lengths between 70 ft. and 120 ft., and 38 bridges with span lengths 

between 25 ft. and 35 ft. The ratio for the absolute maximum moment was larger than 1.1, 

or more than the 10 percent margin of safety. Therefore, the bridges in Table 4.3 with 

ratios that are higher than the margin of safety for bridges designed for HS20-44 truck 

loads could experience flexural and shear cracks in the bridge girders and bridge decks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The bridges with span length larger than 120 ft were marked as “outliers,” and were not 

considered in this study.

Table 4.3 Evaluated State Simple Span Bridges

Max Span Length 
(ft.)

Number of Bridges 
Design Load 

HS20-44

Ratio 3 S2/HS20-44

Moment Shear Deflection
20 or shorter 632 1.22 1.10 1.37

25 30 1.23 1.05 1.35
30 1 1.17 1.02 1.21
35 7 1.12 0.98 1.12
40 14 1.07 0.98 1.04
46 15 1.02 1.04 0.99
50 16 1.00 1.08 0.96
56 3 0.98 1.13 0.94
60 12 1.03 1.16 1.00
66 4 1.08 1.20 1.08
70 17 1.11 1.22 1.12
75 7 1.14 1.24 1.17
80 2 1.16 1.26 1.20
85 5 1.19 1.27 1.23
90 5 1.21 1.29 1.26
95 4 1.22 1.3 1.28
100 6 1.24 1.31 1.30
110 5 1.27 1.33 1.33
120 2 1.29 1.34 1.36

125 to 235 13 Outliers
Total (800)

4.2.2 Performance of Continuous 
Span Bridge Girders

GTSTRUDL software was used to calculate the influence line of moment and 

shear at each joint along the length of the bridge girder. The bridge girder models were 

considered as three equal spans. The first support for the girder was considered pin 

support, and the remaining three supports were roller type. The span lengths considered
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for this study varied from 20 ft. to 130 ft. (at 5 ft. increments). All truck loads were 

placed on each girder to perform the analysis. Due to the symmetry of the bridge, only 

the left half part of the bridge girder was considered. The truck loads were applied in both 

directions, from left to right and from right to left.

After generating the influence line for each joint, the position of the truck loads 

on the bridge girder that would result in maximum positive moment, maximum negative 

moment, and maximum shear forces was determined. Those maximum values were 

calculated by moving the truck loads along the bridge girders in 1 ft. increments. The 

magnitudes of the moment and shear force were calculated by taking the sum of the 

ordinates multiplied by the magnitudes of the loads. Then the loads were placed at the 

point which produced the maximum value. The location of the truck load that caused the 

maximum positive moment occurred around 40 percent of the first span, while the 

location of the maximum negative moment occurred close to the first support of the 

bridge. The results showed that the increase in the truck load on the moments in the 

bridge girder was insignificant for girders with spans shorter than 70 ft. However, the 

impact on the girders with long spans was more significant.

The effects of FHWA 3S2 trucks loads on continuous bridges were evaluated also 

by normalizing the critical conditions for each bridge span to the design load, which are 

presented in Figs. 4.2-4.3. The ratio of the maximum positive moment varied between 1.0 

and 1.28. For the maximum negative moment the ratio varied between 1.0 and 1.48. The 

ratio of the shear forces varied between 0.98 and 1.40. Where the bridge span was similar 

to the length of the FHWA 3S2 truck, the ratio of the maximum positive moment and 

shear forces were within 10 percent. This result confirmed the findings in the previous
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studies that focused on bridge formulas. The previous studies increased the GVW and 

minimized the impact on the stresses in the bridge girders by increasing the truck length. 

However, bridge girders with a maximum positive moment ratio or shear larger than 1.10 

would be overstressed.

P o s i t iv e  M o m e n t  3 S 2 /H S  2 0 -4 4  N e g a tiv e  M o m e n t  3 S 2 /H S  2 0 -4 4

1.6

1.5

N 1.4

s

*3otc
£

0.9

0.8
120 14080 100 110 13040 60 70 9020 30 5010

Span Length (ft)

Fig. 4.2 Effects on Moment of 3S2 Truck on Continuous Bridges

Maximum Absolute Shear 3S2/HS 20-44

1.5

1.4 -
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1 . 2  -
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140110 120 13070

Span Length (It)
80 90 10040 50 6010 20 30

Fig. 4.3 Effects on Shear Force of 3S2 Truck on Continuous Bridges
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The effects of 3S2 truck loads on continuous bridges designed for HS20-44 truck 

loads are presented in Table 4.4. This study included 42 bridges with span lengths 

between 40 ft. and 70 ft. The ratios for the maximum moment were within the margin of 

safety. There were three bridges with span length equal to 20 ft., and 81 bridges with 

span length between 70 ft and 130 ft., for which the ratio for the maximum positive 

moment was larger than 1.1, or more than the 10 percent margin of safety. Therefore, 

these bridges could experience flexural and shear cracks in the bridge girders and bridge 

decks. Such cracks would require additional inspections along with early and frequent 

maintenance. The bridges with span length larger than 130 ft were marked as “outliers,” 

and were not considered in this study.

The ratio for the maximum negative moment was higher than the margin of safety, 

except for the three bridges with span lengths equal to 20 ft. The high values in negative 

moment would result in high compressive stresses in the bridge decks. Such conditions 

could result in an increase in the compression cracks and would require additional 

inspections and could result in early and frequent maintenance, also.
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Table 4.4 Evaluated State Continuous Bridges

Max Span 
Length 

(ft.)

Number of Bridges 
Design Load 

HS20-44

Ratio 3S2/HS20-44
Positive
Moment

Negative
Moment Shear

20 3 1.28 0.98 1.07
40 1 1.08 1.57 0.98
45 1 1.05 1.56 1.04
50 14 1.02 1.48 1.08
55 1 1.00 1.41 1.14
60 4 1.02 1.35 1.18
65 6 1.07 1.28 1.22
70 15 1.10 1.23 1.25
75 10 1.13 1.24 1.27
80 2 1.15 1.27 1.29
85 5 1.17 1.29 1.31
90 18 1.19 1.32 1.33
95 3 1.20 1.34 1.34
100 13 1.22 1.35 1.35
105 20 1.23 1.40 1.36
110 2 1.24 1.38 1.37
120 2 1.27 1.40 1.38
125 4 1.28 1.41 1.39
130 2 1.28 1.41 1.40

135 to 375 19 Outliers

Total (145)

4.3 Evaluation Based on Finite Element Analysis

Finite Element Modeling (FEM) is among the most popular methods of analysis. 

Significant advances in computer technology allow for detailed models to be constructed 

and analyzed. The finite element models used in this study simulate the behavior of 

medium span continuous bridges. GTSTRUDL Version 28 software was used for this 

investigation. The modeled bridge girders were formulated using Type-IPSL, 

tridimensional eight node elements. The bridge deck was formulated using Type-SBCR
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for node plate elements. Prismatic space truss members were used to model the continuity

diaphragms, as shown in chapter III.

4.3.1 Short Term Effects of Heavy 
Truck Load on Simple 
Span Bridge Girders

The results of all bridges with girder type AASHTO Type IV, V, VI, BT-54, BT- 

63 and BT-72 were compared to determine the short term effects of FHWA 3 S3 truck 

load on simply supported bridge girders.

In this study, the short term effects of FHWA 3S3 truck loads on simple medium 

span bridges designed for HS20-44 truck loads were evaluated by computing the percent 

change of the maximum stress at both top and bottom surfaces of each girder. Three load 

combinations “Strength I max,” “Strength III max,” and “Strength V max,” based on 

AASHTO LRFD bridge design specifications, were used to evaluate the short term 

performances o f the bridge girders. By comparing the stress state o f bridge girders under 

these three load combinations, the load combination “Strength I max” lead the maximum 

stresses of the girder. Therefore, we could determine that the “Strength I max” is the 

governing load combination for the short term effects analysis, and all the analyses below 

were based on it.

The bridges analyzed in this investigation were 30 ft. wide, simply supported 

bridges. The span length varied from 90 to 120 ft. The slab thickness considered was 

eight-inch. The bridge model may contain five or seven girders; the girder spacing in this 

model was eight or five ft., respectively. The detail models and their properties were 

presented in chapter III.
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In this study, the short-term effects of FHWA 3S3 truck loads on simple medium 

span bridges designed for HS20-44 truck loads were evaluated by computing the percent 

change of the maximum stress at both top and bottom surfaces of each girder. Only the 

compressive stress was considered at top surface of the girder, while both of the tensile 

and compressive stresses were obtained at bottom surface of the girder.

The percent change of maximum stress of each individual girder of the model 

with 8-ft spacing was presented in Figs.4.4-4.9. The results indicated that the change in 

the compressive stress for all types of girders at the top surface of the girder did not 

exceed 10%. The change in the compressive stress for all types of girders at the bottom 

surface of the girder did not exceed 10% except girder three or four of AASHTO Type IV 

and Bulb-Tee models with the percent change less than 12%; the change in the tensile 

stress for all types of girders at the bottom surface of the girder did not exceed 10% 

except girder five of AASHTO Bulb-Tee models with the percent change less than 12%. 

The bridges in this study with stress percent change which was greater than 10% would 

be considered as overstressed and might experience more cracking in the bridge girders. 

Therefore, most girders did not meet the overstress condition; the short term effects of the 

heavy truck load on those medium span bridges were limited. With the exception of 

bridges built with AASHTO Type IV or Bulb-Tee girders, the end of the interior girder 

on all bridges might need a special attention to their strength.
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■  Change Compressive Stress - Top - AASHTO Type IV 

E3 Change Compressive Stress - Top - AASHTO Type V

■  Change Compressive Stress - Top - AASHTO Type VI
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Fig. 4.4 Short Term Effects on Compressive Stresses at the Top of AASHTO I Type 
Bridge Girders -  Girder Spacing Eight ft
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Fig. 4.5 Short Term Effects on Compressive Stresses at the Top of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Eight ft
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■  Change Compressive Stress - Bottom - AASHTO Type IV 
□  Change Compressive Stress - Bottom - AASHTO Type V
■  Change Compressive Stress - Bottom - AASHTO Type VI
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Fig. 4.6 Short Term Effects on Compressive Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Eight ft
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Fig. 4.7 Short Term Effects on Compressive Stresses at the Bottom of AASHTO Bulb- 
Tee Type Bridge Girders -  Girder Spacing Eight ft
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■  Change Tensile Stress - Bottom - AASHTO Type IV 
0  Change Tensile Stress - Bottom - AASHTO Type V

■  Change Tensile Stress - Bottom - AASHTO Type VI
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Fig. 4.8 Short Term Effects on Tensile Stresses at the Bottom of AASHTO I Type Bridge 
Girders -  Girder Spacing Eight ft
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0  Change Tensile Stress - Bottom - AASHTO BT - 63 
U Change Tensile Stress - Bottom - AASHTO BT - 72

14.00%

12.00%

10.00%

8 .00%

6.00%

4.00%

2 .00%  -

0 .00%
Girder 1 Girder 2 Girder 3 Girder 4 Girder 5

Fig. 4.9 Short Term Effects on Tensile Stresses at the Bottom of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Eight ft
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The percent change of maximum stress of each individual girder of the model 

with 5-ft spacing was presented in Figs. 4.10-4.15. The results indicated that the change 

in the compressive stress for all types of girders at the top surface of the girder did not 

exceed 10%, the change in the compressive stress for all types of girders at the bottom 

surface of the girder did not exceed 10%. The change in the tensile stress for all types of 

girders at the top surface of the girder did not exceed 10%, either. The bridges in this 

study with stress percent change which was greater than 10% would be considered 

overstressed and might experience more cracking in the bridge girders. Therefore, the 

girders did not meet the overstress condition, and the short term effects of the heavy truck 

load on those medium span bridges were limited. It should be noticed that the percent 

change of stresses of those models that contained seven girders and had shorter girder 

spacing were smaller than the models contained five girders, which meant the models 

with shorter girder spacing had better capacity to resist the heavy truck load impact.
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■  Change Compressive Stress - Top - AASHTO Type IV 
Q Change Compressive Stress - Top - AASHTO Type V 
19 Change Compressive Stress - Top - AASHTO Type VI
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Fig. 4.10 Short Term Effects on Compressive Stresses at the Top of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.11 Short Term Effects on Compressive Stresses at the Top of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Five ft
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■  Change Compressive Stress - Bottom - AASHTO Type IV 
H Change Compressive Stress - Bottom - AASHTO Type V 
E3 Change Compressive Stress - Bottom - AASHTO Type VI
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Fig. 4.12 Short Term Effects on Compressive Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.13 Short Term Effects on Compressive Stresses at the Bottom of AASHTO Bulb- 
Tee Type Bridge Girders -  Girder Spacing Five ft
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■  Change Tensile Stress - Bottom - AASHTO Type IV 
B  Change Tensile Stress - Bottom - AASHTO Type V 
B9 Change Tensile Stress - Bottom - AASHTO Type VI
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Fig. 4.14 Short Term Effects on Tensile Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.15 Short Term Effects on Tensile Stresses at the Bottom of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Five ft
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4.3.2 Long Term Effects of Heavy Truck Load 
on Simple Span Bridge Girders

The results of all bridges with girder type AASHTO Type IV, V, VI, BT-54, BT- 

63 and BT-72 were compared to determine the long term effects of FHWA 3S3 truck 

load on bridge girders.

The long term effects of FHWA 3 S3 truck loads on simple span bridges designed 

for HS20-44 truck loads were evaluated also by computing the percent change of the 

maximum stress at both top and bottom surfaces of each girder. Based on AASHTO 

LRFD bridge design specifications, the load combination “Fatigue” was considered as the 

critical load combination for the long term effects analysis.

The percent change of maximum stress of each individual girder of the model 

with eight ft spacing was presented in Figs. 4.16-4.21. Only the compressive stress was 

considered at top surface of the girder, while both of the tensile and compressive stresses 

were obtained at bottom surface of the girder. The results indicated that the percent 

changes in long term stresses for all types of girders were much higher than those 

changes o f short term stresses. The percent changes of stresses were mostly around 60%, 

some of which might be more than 100%. It was observed that the long term girder stress 

values under both 3 S3 and HS20-44 truck loads were smaller than those short-term stress 

values, although the percent changes were significantly higher. This observation 

suggested that even the long-term girder stresses had not exceeded the maximum 

allowable stresses of the components; the effects of heavy truck loads could not be 

neglected. For a long period, the heavy trucks travel on the bridge would have remarkable 

effects on the bridge safety and serviceability. Therefore, such conditions could result in
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an increase in the flexural cracks on bridge girders and would require additional 

inspections and could result in early and frequent maintenance.

■  Change Compressive Stress - Top - AASHTO Type IV 
0  Change Compressive Stress - Top - AASHTO Type V
■  Change Compressive Stress - Top - AASHTO Type VI
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Fig. 4.16 Long Term Effects on Compressive Stresses at the Top of AASHTO I Type 
Bridge Girders -  Girder Spacing Eight ft
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Fig. 4.17 Long Term Effects on Compressive Stresses at the Top of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Eight ft
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■  Change Compressive Stress - Bottom - AASHTO Type IV 

0  Change Compressive Stress - Bottom - AASHTO Type V

■  Change Compressive Stress - Bottom - AASHTO Type VI
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Fig. 4.18 Long Term Effects on Compressive Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Eight ft
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Fig. 4.19 Long Term Effects on Compressive Stresses at the Bottom of AASHTO Bulb- 
Tee Type Bridge Girders -  Girder Spacing Eight ft
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■  Change Tensile Stress - Bottom - AASHTO Type IV 
□  Change Tensile Stress - Bottom - AASHTO Type V
■  Change Tensile Stress - Bottom - AASHTO Type VI
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Fig. 4.20 Long Term Effects on Tensile Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Eight ft
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Fig. 4.21 Long Term Effects on Tensile Stresses at the Bottom of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Eight ft
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The percent change of maximum stress of each individual girder of the model 

with five ft spacing is presented in Figs. 4.22-4.27. Only the compressive stress was 

considered at top surface of the girder, while both of the tensile and compressive stresses 

were obtained at bottom surface of the girder. The results indicated that the percent 

changes in long term stresses for all types of girders were much higher than those 

changes of short term stresses. The percent changes of stresses were mostly around 60%. 

Also, the long-term girder stress values under both 3 S3 and HS20-44 truck loads were 

smaller than those short term stress values, although the percent changes were 

significantly higher, which indicated that even the long term girder stresses did not 

exceed the maximum allowable stresses of the components; the effects of heavy truck 

loads can not be neglected. For a long period, the heavy trucks traveled on the bridge 

would have remarkable effects on the bridge safety and serviceability. Therefore, these 

bridges might experience flexural cracks in the bridge girders. Such cracks would require 

additional inspections and could result in early and frequent maintenance. The percent 

changes of the models with five ft girder spacing were slightly smaller than the changes 

of the eight ft girder spacing models. This difference implied that the models with shorter 

girder spacing had better but limited capacity to resist the long-term heavy truck load 

impact.
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■  Change Compressive Stress - Top - AASHTO Type IV 
0  Change Compressive Stress - Top - AASHTO Type V 
E3 Change Compressive Stress - Top - AASHTO Type VI
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Fig. 4.22 Long Term Effects on Compressive Stresses at the Top of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.23 Long Term Effects on Compressive Stresses at the Top of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Five ft
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■  Change Compressive Stress - Bottom - AASHTO Type IV 
B  Change Compressive Stress - Bottom - AASHTO Type V 
E9 Change Compressive Stress - Bottom - AASHTO Type VI
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Fig. 4.24 Long Term Effects on Compressive Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.25 Long Term Effects on Compressive Stresses at the Bottom of AASHTO Bulb- 
Tee Type Bridge Girders -  Girder Spacing Five ft
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■  Change Tensile Stress - Bottom - AASHTO Type IV 
B  Change Tensile Stress - Bottom - AASHTO Type V 
E3 Change Tensile Stress - Bottom - AASHTO Type VI
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Fig. 4.26 Long Term Effects on Tensile Stresses at the Bottom of AASHTO I Type 
Bridge Girders -  Girder Spacing Five ft
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Fig. 4.27 Long Term Effects on Tensile Stresses at the Bottom of AASHTO Bulb-Tee 
Type Bridge Girders -  Girder Spacing Five ft
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4.3.3 Short Term Effects of Heavy Truck
Load on Continuous Span
Bridge Girders

The results of all bridges with girder type AASHTO Type IV, V, VI, BT-54, BT-63 

and BT-72 were compared to determine the short term effects of FHWA 3S2 truck load 

on continuous span bridge girders.

In this study, the word “continuous” refers to the bridge models which have three 

equal span lengths, simply supported at each span, and with the continuous placed deck 

above the bridge girders. The methodology used in this part is similar to that used in the 

simply supported bridge analysis. The short term effects of FHWA 3S2 truck loads on 

continuous bridges designed for HS20-44 truck loads were evaluated by computing the 

percent change of the maximum stress at both top and bottom surfaces of each girder, 

then finding the maximum rate for each model. Three load combinations “Strength I 

max,” “Strength III max,” and “Strength V max,” based on AASHTO LRFD bridge 

design specifications, were used to evaluate the short term performances of the bridge 

girders. By comparing the stress state of bridge girders under these three load 

combinations, the load combination “Strength I max” lead the maximum stresses of the 

girder. Therefore, we could determine that the “Strength I max” is the governing load 

combination for the short term effects analysis, and all the analysis below were based on 

it.

The bridges analyzed in this investigation were 30 ft. wide continuous bridges. The 

span length ranged from 20 to 105 ft. The slab thickness considered was eight-inch as the 

constant. The bridge model may contain five or seven girders; the girder spacing in this
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model was eight or five ft., respectively. The detail models and their properties were 

presented in chapter III.

In this study, the short-term effects of FHWA 3S2 truck loads on continuous span 

bridges designed for HS20-44 truck loads were evaluated by computing the percent 

change of the maximum stress at both top and bottom surfaces of each girder, then found 

the maximum rate of each model. The truck loads were placed on the deck at critical 

locations where the loads generated maximum positive or negative moments on the 

model. Only the compressive stress was considered at top surface of the girder, while the 

tensile stresses was obtained at bottom surface of the girder.

The percent changes of maximum stress along the bridge span length of the models 

with eight ft spacing were presented in Figs. 4.28-4.31. When the truck load was placed 

on the maximum negative moment location, the results indicated that the change in the 

compressive stress for all types of girders at the top surface of the girder did not exceed 

10% except bridge built with AASHTO Type IV girder at the span length 20 ft.. The 

changes in the tensile stress for all types of girders at the bottom surface of the girder 

were larger than 10% while the span length was from 20 ft. to 30 ft., and less than 10% 

while the span length was from 30 ft. to 105 ft.. When the truck load was placed on the 

maximum positive moment location, the results indicated that the change in the 

compressive stress for all types of girders at the top surface of the girder were larger than 

10% while the span length was from 20 ft. to 35 ft., and less than 10% while the span 

length was from 35 ft. to 105 ft.. The changes in the tensile stress for all types of girders 

at the bottom surface of the girder were larger than 10% while the span length was from 

20 ft. to 40 ft., and less than 10% while the span length was from 40 ft. to 105 ft.. The
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bridges in this study with stress percent change which was greater than 10% would be 

considered as overstressed, and might experience more cracking in the bridge girders. 

Therefore, the bridges with span length 40 ft. to 105 ft. did not meet the overstress 

condition; the short term effects of the heavy truck load on those bridges were limited. 

The bridges with span length 20 ft. to 40 ft. may be overstressed while the FHWA 3S2 

truck traveled on them; those bridge girders might need a special attention to their 

strength.

■ 9 Max. Change Compressive Stress - Top - BT - 54 •  Max. Change Compressive Stress - Top - BT - 63
- -A— Max. Change Compressive Stress - Top - BT - 72 ■ Max. Change Compressive Stress - Top - Type IV
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Fig. 4.28 Short Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Negative Moment Location, Girder Spacing Eight ft
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•  Max. Change Tensile Stress - Bottom - BT - 54 •  Max. Change Tensile Stress - Bottom - BT - 63
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Fig. 4.29 Short Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Negative Moment Location, Girder Spacing Eight ft
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Fig. 4.30 Short Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Positive Moment Location, Girder Spacing Eight ft
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Fig. 4.31 Short Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Positive Moment Location, Girder Spacing Eight ft

The percent changes of maximum stress along the bridge span length of the 

models with five ft spacing were presented in Fig. 4.32 to Fig. 4.35. When the truck load 

was placed on the maximum negative moment location, the results indicated that the 

change in the compressive stress for AASHTO Type IV, V and VI girders at the top 

surface of the girder did not exceed 10%. For bridges built with Bulb-Tee girders, the 

percent changes were larger than 10% when bridge span lengths were 20 ft. to 30 ft.. The 

changes in the tensile stress for all types of girders at the bottom surface of the girder 

were larger than 10% while the span length was from 20 ft. to 30 ft. except bridge built 

with AASHTO Type IV girder, and less than 10% while the span length was from 30 ft. 

to 105 ft. When the truck load was placed on the maximum positive moment location, the 

results indicated that for Type V and VI girder, the changes in compressive stress at the
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top surface of the girder were always smaller than 10%; the change in the compressive 

stress for other types of girders at the top surface of the girder were larger than 10% 

while the span length was from 20 ft. to 35 ft, and less than 10% while the span length 

was from 35 ft. to 105 ft. The changes in the tensile stress for all types of girders at the 

bottom surface of the girder were larger than 10% while the span length was from 20 ft. 

to 40 ft., and less than 10% while the span length was from 40 ft. to 105 ft. The bridges in 

this study with stress percent change which was greater than 10% would be considered as 

overstressed, and might experience more cracking in the bridge girders. Therefore, the 

bridges with span length 40 ft. to 105 ft. did not meet the overstress condition; the short 

term effects of the heavy truck load on those bridges were limited. The bridges with span 

length 20 ft. to 40 ft, built with AASHTO Type IV and Bulb-Tee girders, might be 

overstressed while the FHWA 3S2 truck traveled on them; those bridge girders might 

need a special attention to their strength.
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Fig. 4.32 Short Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Negative Moment Location, Girder Spacing Five ft
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Fig. 4.33 Short Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Negative Moment Location, Girder Spacing Five ft
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Fig. 4.34 Short Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Positive Moment Location, Girder Spacing Five ft
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Fig. 4.35 Short Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Positive Moment Location, Girder Spacing Five ft
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4.3.4 Long Term Effects of Heavy Truck 
Load on Continuous Span 
Bridge Girders

The results of all bridges with girder type AASHTO Type IV, V, VI, BT-54, BT- 

63 and BT-72 were compared to determine the long term effects of FHWA 3S2 truck 

load on bridge girders.

The long term effects of FHWA 3S2 truck loads on continuous bridges designed 

for HS20-44 truck loads were evaluated also by computing the percent change of the 

maximum stress at both top and bottom surfaces of each girder, then finding the 

maximum rate for each model. Based on AASHTO LRFD bridge design specifications, 

the load combination “Fatigue” was considered as the critical load combination for the 

long term effects analysis.

The bridges analyzed in this investigation were 30 ft. wide continuous bridges. 

The span length ranged from 20 to 105 ft. The slab thickness considered was eight-inch 

as the constant. The bridge model may contain five or seven girders; the girder spacing in 

this model was eight or five ft., respectively. The detail models and their properties were 

presented in chapter III.

The percent changes of maximum stress along the bridge span length of the 

models with eight ft spacing were presented in Figs. 4.36-4.39. Only the compressive 

stress was considered at top surface of the girder, while the tensile stress was obtained at 

bottom surface of the girder. The results indicated that the percent changes in long term 

stresses for all types of girders were much higher than those changes of short term 

stresses. The percent changes of stresses were mostly around 50%, some of which might 

be more than 90%. It was observed that the long term girder stress values under both 3S2
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and HS20-44 truck loads were smaller than those short-term stress values, although the 

percent changes were significantly higher. This observation suggested that even the long­

term girder stresses had not exceeded the maximum allowable stresses of the components; 

the effects of heavy truck loads could not be neglected. Another observation was that 

while the span length increased the percent changes went to 50%, no matter what kind the 

girder was. The effects of changing girder types on the long term impact of 3S2 truck 

load on bridges were limited. For a long period, the heavy trucks travel on the bridge 

would have remarkable effects on the bridge safety and serviceability. Therefore, such 

conditions could result in an increase in the flexural cracks on bridge girders and would 

require additional inspections and could result in early and frequent maintenance.

■Max. Change Compressive Stress - Top - BT - 54 •  Max. Change Compressive Stress - Top - BT - 63
■Max. Change Compressive Stress - Top - BT - 72 ■""Max. Change Compressive Stress - Top - Type IV
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Fig. 4.36 Long Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Negative Moment Location, Girder Spacing Eight ft
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Fig. 4.37 Long Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Negative Moment Location, Girder Spacing Eight ft
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Fig. 4.38 Long Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Positive Moment Location, Girder Spacing Eight ft
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Fig. 4.39 Long Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Positive Moment Location, Girder Spacing Eight ft

The percent change of maximum stress of each individual girder of the model 

with five ft spacing is presented in Figs. 4.40-4.43. Only the compressive stress was 

considered at top surface of the girder, while the tensile stress was obtained at bottom 

surface of the girder. The results indicated that the percent changes in long term stresses 

for all types of girders were much higher than those changes of short term stresses. The 

percent changes of stresses were mostly around 50%, some of which might be more than 

100%. Also, the long-term girder stress values under both 3S2 and HS20-44 truck loads 

were smaller than those short term stress values, although the percent changes were 

significantly higher, which indicated that even the long term girder stresses did not 

exceed the maximum allowable stresses of the components; the effects of heavy truck 

loads can not be neglected. For a long period, the heavy trucks traveled on the bridge
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would have remarkable effects on the bridge safety and serviceability. Therefore, these 

bridges might experience flexural cracks in the bridge girders. Such cracks would require 

additional inspections and could result in early and frequent maintenance. The difference 

between two groups of models with different girder spacing was very little. When the 

span lengths were short, the models with five ft girder spacing had a worse performance 

than the eight ft girder spacing models. This difference implied that the girder spacing 

was not a governing parameter to be considered when evaluating the long term heavy 

truck load impact.

•  Max. Change Compressive Stress - Top - BT - 54 ...Max. Change Compressive Stress - Top - BT - 63
1 *  Max. Change Compressive Stress - Top - BT - 72 ■■■■ Max. Change Compressive Stress - Top - Type IV
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Fig. 4.40 Long Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Negative Moment Location, Girder Spacing Five ft
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Fig. 4.41 Long Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Negative Moment Location, Girder Spacing Five ft
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Fig. 4.42 Long Term Effects on Compressive Stresses at the Top of Bridge Girders -  
Positive Moment Location, Girder Spacing Five ft
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Fig. 4.43 Long Term Effects on Tensile Stresses at the Bottom of Bridge Girders -  
Positive Moment Location, Girder Spacing Five ft

4.4 Summary

The girder performance under the heavy truck loads were evaluated in this chapter. 

Simply supported bridges with span length from 20 ft. to 120 ft. and continuous bridges 

with span length from 20 ft. to 130 ft. were analyzed by simplified AASHTO line girder 

analysis approach in section 4.2. Different configurations of medium span simply 

supported bridge girders and continuous bridge girders were analyzed by the finite 

element method via GTSTRUDL in section 4.3.

Results from this chapter would be utilized in chapter VIII to perform the bridge 

costs evaluation.
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CHAPTER V

BRIDGE DECK PERFORMANCE UNDER 

THE HEAVY TRUCK LOAD

5.1 Introduction

The materials in bridges are subject to high cycle fatigue damage. This means that 

after many cycles of stresses, even stresses below the maximum permitting stress, enough 

damage may accumulate to eventually cause the failure of the bridge. This damage would 

especially occur on those bridges that meet with the heavily traveled vehicles. In this 

study, the fatigue behavior of bridge decks was evaluated. The finite element analysis 

was performed using GTSTRUDL, and the load combination included the fatigue factor 

and impact factor to investigate the behavior of the bridge decks. According to the 

AASHTO specification, the fatigue factor 0.75 and the impact factor 1.3 were used. The 

investigation used the same finite element models as described in previous chapters. 

Truck loads for HS20-44, FHWA 3S2 and FHWA 3 S3 were applied at critical locations 

for maximum positive and negative moment in the bridge deck to determine the 

corresponding stresses. The maximum value of longitudinal, transverse, and shear 

stresses in the bridge deck were obtained and then grouped as the tensile stress and 

compressive stress, then to be analyzed.

87
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5.2 Evaluation of Continuous Bridge Decks 
under FHWA 3S2 Truck Load

This subtask focused on the strength and serviceability of bridge decks under the 

impact of the heavy truck loads. The evaluation considered composite and non-composite 

bridge systems. Finite element analysis was used for a typical deck and girder system to 

determine the effects of the trucks on the stresses in the transverse and longitudinal 

directions.

All bridges considered for this study had concrete decks. According to the 

LADOTD Bridge Manual, concrete bridge decks are designed as a continuous span over 

the girders. The bridge deck analyses for this study were performed using finite element 

models and GTSTRUDL software. The finite element models for typical bridge decks 

were generated with a typical 30-ft. bridge-deck width and eight-inch thickness supported 

by five AASHTO type IV girders, the girders are spaced at eight ft. in the middle and 

seven ft. on the outside. The design load for the bridges included in this study and the 

loads from FHWA 3S2 truck configuration were applied to the deck. Only the “fatigue” 

load combination, as presented in AASHTO LRFD, was performed for these typical 

bridge deck models.

The finite element model used for bridge decks in this study simulated the 

behavior of continuous span bridges. The word “continuous” referred to the bridge 

models that had three equal span lengths, simply supported at each span, and with the 

continuous placed deck above the bridge girders. The span lengths of the bridges were in 

the range of 20 to 120 feet. The girders were modeled using Type-IPSL tridimensional 

elements available in GTSTRUDL. Type-SBCR plate elements were used for the bridge 

deck. Prismatic space truss members were used to model end diaphragms and the
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connection between the deck plate elements and the girder elements. The restraints for all 

models consisted of four joints across the width of the base of the girder at the end and 

intermediate supports. Also, the two joints that connected the plate elements to the rigid 

members at the end supports behaved as pins.

The effects of FHWA 3S2 truck loads on continuous bridge decks designed for 

HS20-44 truck loads are presented in Tables 5.1 and 5.2 and Figs. 5.1 to 5.6. The stresses 

were computed separately at the top and bottom surfaces. The ratios of the maximum 

stresses at the surface were grouped based on whether they were tensile or compressive 

stresses.

At the top surface of the bridge deck, the ratio of maximum tensile stress in the 

longitudinal direction varied between 0.91 and 1.74 and between 0.71 and 1.37 in the 

transverse direction. The ratio of shear stress varied between 0.87 and 1.59. For the ratio 

of maximum compressive stress, the ratio of maximum stress in the longitudinal direction 

varied between 0.58 and 1.09, and between 0.90 and 1.10 in the transverse direction; the 

ratio o f shear stress varied between 0.98 and 2.23. The ratio of maximum compressive 

stress was mostly smaller than the ratio of maximum tensile stress. The ratios of 

maximum tensile stress in the longitudinal direction were larger than 1.15 when the span 

length was longer than 30 ft. Therefore, these bridge decks may experience cracks in the 

longitudinal direction. The ratio of maximum shear stress was usually higher than others. 

Thus the decks may experience more cracks in vertical direction. Such cracks would 

require additional inspections along with early and frequent maintenance. The locations 

of maximum stresses due to HS20-44 or FHWA 3S2 truck loads may differ from each
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other. The difference is what makes the ratio of 3S2 to HS20-44 truck for some span 

lengths less than 1.

At the bottom surface of the bridge deck, the ratio of maximum tensile stress in 

the longitudinal direction varied between 0.58 and 1.09, in the transverse direction varied 

between 0.90 and 1.10, the ratio of shear stress varied between 0.98 and 2.23. For the 

ratio of maximum compressive stress, the ratio of maximum stress in the longitudinal 

direction varied between 0.91 and 1.74, in the transverse direction varied between 0.71 

and 1.37; the ratio of shear stress varied between 0.87 and 1.59. The ratio of maximum 

tensile stress was mostly smaller than the ratio of maximum compressive stress. The 

ratios o f maximum compressive stress in the longitudinal direction were larger than 1.15 

when the span length was longer than 30 ft. Therefore, these bridge decks may 

experience cracks in the longitudinal direction. The ratio of maximum shear stress was 

usually higher than others. Thus the decks may experience more cracks in the vertical 

direction. Such cracks would require additional inspections along with early and frequent 

maintenance. The locations of maximum stresses due to HS20-44 or 3S2 truck loads may 

differ from each other. The difference is what makes the ratio of 3S2 to HS20-44 truck 

for some span lengths less than 1.

The results show that the ratio of tensile stresses at the top surface is of the same 

magnitude as the ratio of compressive stresses at the bottom surface. Also, the ratio of 

compressive stresses at the top surface is of the same magnitude as the ratio of tensile 

stresses at the bottom surface. These similarities confirm that the bridge deck is under a 

stable stress state, no matter whether the stresses are in the tension zone or the 

compression zone.
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Table 5.1 Long Term Effects of 3S2 Truck Loads on Top Surface of Continuous Bridge 
Decks

Ratio of Max Value of Stress of FHWA 3S2 to HS20-44
Span Length Max Tensile Stress Max Compressive Stress

(ft.) Longitudinal Transverse Shear Longitudinal Transverse Shear
20 0.912 0.722 1.588 0.719 0.962 2.229
30 1.150 0.707 1.266 0.577 0.896 1.145
45 1.739 1.059 0.870 0.705 1.006 0.975
60 1.599 1.168 0.970 0.711 0.950 0.996
75 1.247 1.284 1.232 0.746 1.025 1.504
90 1.356 1.324 1.348 1.092 1.062 1.295
105 1.385 1.332 1.335 0.813 1.104 1.411
120 1.430 1.371 1.370 0.997 1.093 1.384

Table 5.2 Long Term Effects of 3S2 Truck Loads on Bottom Surface of Continuous 
Bridge Decks

Ratio of Max Value of Stress of FHWA 3S2 to HS20-44
Span Length Max Tensile Stress Max Compressive Stress

(ft.) Longitudinal Transverse Shear Longitudinal Transverse Shear
20 0.719 0.962 2.229 0.912 0.722 1.588
30 0.577 0.896 1.145 1.150 0.707 1.266
45 0.705 1.006 0.975 1.739 1.059 0.870
60 0.711 0.950 0.996 1.599 1.168 0.970
75 0.746 1.025 1.504 1.247 1.284 1.232
90 1.092 1.062 1.295 1.356 1.324 1.348
105 0.813 1.104 1.411 1.385 1.332 1.335
120 0.997 1.093 1.384 1.430 1.371 1.370
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Fig. 5.1 Long Term Effects on Longitudinal Stress at Top Surface of Continuous Bridge
Decks
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Fig. 5.2 Long Term Effects on Transverse Stress at Top Surface of Continuous Bridge 
Decks
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Fig. 5.3 Long Term Effects on Shear Stress at Top Surface of Continuous Bridge Decks
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Fig. 5.4 Long Term Effects on Longitudinal Stress at Bottom Surface of Continuous 
Bridge Decks
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Fig. 5.5 Long Term Effects on Transverse Stress at Bottom Surface of Continuous Bridge
Decks
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Fig. 5.6 Long Term Effects on Shear Stress at Bottom Surface of Continuous Bridge 
Decks
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5.3 Evaluation of Bridge Decks under 
FHWA 3S3 Truck Load

This subtask focused on the strength and serviceability of bridge decks under the 

impact of the FHWA 3 S3 truck load. The evaluation considered composite and non­

composite bridge systems. Similar FEM analysis used in the previous chapter was also 

employed here for a typical deck and girder system to determine the effects of the trucks 

on the stresses in the transverse and longitudinal directions. In this part, both of simple 

span and continuous span bridges were evaluated.

5.3.1 Simply Supported Bridge Decks

All bridges considered for this study had concrete decks. The finite element 

models for typical bridge decks were generated with a typical 30-ft. bridge deck width 

and eight-inch thickness supported by five AASHTO Bulb-Tee 54, or Bulb-Tee 63, or 

Bulb-Tee 72 girders. The girders are spaced at eight ft. in the middle and seven ft. on the 

outside. The span length was fixed as 90 ft. The design load for the bridges included in 

this study and the loads from FHWA 3S3 truck configuration were applied to the deck. 

As presented in AASHTO LRFD specifications, the load combination “Strength I Max” 

was performed for these typical bridge deck models to determine the short term effects of 

3 S3 truck on bridge decks, while load combination “Fatigue” was performed for these 

typical bridge deck models to determine the long term effects.

The effects of FHWA 3S3 truck loads on continuous bridge decks designed for 

HS20-44 truck loads are presented in Table 5.3 to Table 5.6. The stresses were computed 

separately at the top and bottom surfaces. The ratios of the maximum stresses at the 

surface were grouped based on whether they were tensile or compressive stresses.
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Short term  effects At the top surface of the bridge deck, for bridge built with 

Bulb-Tee 54 girder, the ratio of maximum tensile stress varied between 1.13 and 1.41 and 

between 0.76 and 1.31 for the ratio of maximum compressive stress; for bridge built with 

Bulb-Tee 63 girder, the ratio of maximum tensile stress varied between 1.12 and 1.33 and 

between 0.73 and 1.27 for the ratio of maximum compressive stress; for bridge built with 

Bulb-Tee 72 girder, the ratio of maximum tensile stress varied between 1.12 and 1.23 and 

between 0.70 and 1.16 for the ratio of maximum compressive stress. Those ratios 

exceeded 1.1, which means the deck was in an overstressed state and may experience 

cracks in all three directions; even with the larger girder sections, the ratio of maximum 

values become smaller.

Table 5.3 Short term Effects of 3S3 Truck Loads on Top Surface of Simple Span Bridge 
Decks

Girder Ratio of Max Value of Stress of FHWA 3S3 to HS20-44
Type Max Tensile Stress Max Compressive Stress

Longitudinal Transverse Shear Longitudinal Transverse Shear
BT - 54 1 .126 1 .174 1 .413 0 .7 6 0 0 .9 8 5 1 .314
BT - 63 1 .123 1.073 1 .327 0 .7 2 7 0 .9 7 0 1 .269
BT - 72 1 .115 1.091 1 .230 0 .7 0 2 0 .9 5 8 1 .1 5 5

At the bottom surface of the bridge deck, for a bridge built with Bulb-Tee 54 

girder, the ratio of maximum tensile stress varied between 0.76 and 1.31 and between 

1.13 and 1.41 for the ratio of maximum compressive stress. For a bridge built with Bulb- 

Tee 63 girder, the ratio of maximum tensile stress varied between 0.73 and 1.27 and 

between 1.12 and 1.33 for the ratio of maximum compressive stress. For a bridge built 

with Bulb-Tee 72 girder, the ratio of maximum tensile stress varied between 0.70 and 

1.16 and between 1.12 and 1.23 for the ratio o f maximum compressive stress. Those
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ratios exceeded 1.1, which means the deck was under overstress state and may experience 

cracks in all three directions, even with the girder sections grow larger; the ratio of 

maximum values become smaller.

Table 5.4 Short term Effects of 3S3 Truck Loads on Bottom Surface of Simple Span 
Bridge Decks

Girder Ratio of Max Value of Stress of FHWA 3S3 to HS20-44
Type Max Tensile Stress Max Compressive Stress

Longitudinal Transverse Shear Longitudinal Transverse Shear
BT - 54 0.760 0.985 1.314 1.126 1.174 1.413
BT - 63 0.727 0.970 1.269 1.123 1.073 1.327
BT - 72 0.702 0.958 1.155 1.115 1.091 1.230

The locations of maximum stresses due to HS20-44 or FHWA 3 S3 truck loads 

may differ from each other. The difference is what makes the ratio of 3 S3 to HS20-44 

truck for some span lengths less than 1. The results show that the ratio of tensile stresses 

at the top surface is of the same magnitude as the ratio of compressive stresses at the 

bottom surface. Also, the ratio of compressive stresses at the top surface is of the same 

magnitude as the ratio of tensile stresses at the bottom surface. These similarities confirm 

that the bridge deck is under a stable stress state, no matter whether the stresses are in the 

tension zone or the compression zone.

Long term effects At the top surface of the bridge deck, for a bridge built with 

Bulb-Tee 54 girder, the ratio of maximum tensile stress varied between 0.86 and 1.14 and 

between 0.70 and 1.22 for the ratio of maximum compressive stress. For a bridge built 

with Bulb-Tee 63 girder, the ratio of maximum tensile stress varied between 0.49 and 

1.22 and between 0.67 and 1.16 for the ratio of maximum compressive stress. For a 

bridge built with Bulb-Tee 72 girder, the ratio of maximum tensile stress varied between
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0.60 and 1.25 and between 0.65 and 1.11 for the ratio of maximum compressive stress. 

Those ratios exceeded 1.1, which means the deck was under overstress state and may 

experience cracks in all three directions. Such cracks would require additional inspections 

along with early and frequent maintenance.

Table 5.5 Long term Effects of 3S3 Truck Loads on Top Surface of Simple Span Bridge 
Decks

Girder Ratio of Max Value of Stress of FHWA 3S3 to HS20-44
Type Max Tensile Stress Max Compressive Stress

Longitudinal Transverse Shear Longitudinal Transverse Shear
BT - 54 0.858 1.194 1.139 0.704 1.030 1.217
BT - 63 0.485 1.217 1.112 0.674 1.005 1.164
BT - 72 0.602 1.253 1.090 0.652 0.985 1.107

At the bottom surface of the bridge deck, for a bridge built with Bulb-Tee 54 

girder, the ratio of maximum tensile stress varied between 0.70 and 1.22 and between 

0.86 and 1.14 for the ratio of maximum compressive stress. For a bridge built with Bulb- 

Tee 63 girder, the ratio of maximum tensile stress varied between 0.67 and 1.16 and 

between 0.49 and 1.22 for the ratio of maximum compressive stress. For a bridge built 

with Bulb-Tee 72 girder, the ratio of maximum tensile stress varied between 0.65 and 

1.11 and between 0.60 and 1.25 for the ratio of maximum compressive stress. Those 

ratios exceeded 1.1, which means the deck was overstressed and may experience cracks 

in all three directions. Such cracks would require additional inspections along with early 

and frequent maintenance.
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Table 5.6 Long term Effects of 3S3 Truck Loads on Bottom Surface of Simple Span
Bridge Decks

Girder Ratio of Max Value of Stress of FHWA 3S3 to HS20-44
Type Max Tensile Stress Max Compressive Stress

Longitudinal Transverse Shear Longitudinal Transverse Shear
BT - 54 0.704 1.030 1.217 0.858 1.194 1.139
BT - 63 0.674 1.005 1.164 0.485 1.217 1.112
BT - 72 0.652 0.985 1.107 0.602 1.253 1.090

The locations of maximum stresses due to HS20-44 or FHWA 3 S3 truck loads 

may differ from each other. The difference is what makes the ratio of 3 S3 to HS20-44 

truck for some span lengths less than 1. There is no significant difference between the 

long term effects and the short term effects of FHWA 3 S3 truck load on bridge decks. 

Under both situations the bridge deck may experience cracks in all three directions. The 

results show that the ratio of tensile stresses at the top surface is of the same magnitude as 

the ratio of compressive stresses at the bottom surface. Also, the ratio of compressive 

stresses at the top surface is of the same magnitude as the ratio of tensile stresses at the 

bottom surface. These similarities confirm that the bridge deck is under a stable stress 

state, no matter whether the stresses are in the tension zone or the compression zone.

5.3.2 Continuous Bridge Decks

Similar finite element models and analysis methods from chapter 5.2 were applied 

in this chapter, except the heavy truck load traveled on the bridge was changed into an 

FHWA 3 S3 truck. The span lengths of the bridge models were in the range of 20 to 105 

feet. Only the “Fatigue” load combination, as presented in the AASHTO LRFD 

specification, was performed for these typical bridge deck models. Also, the fatigue 

factor 0.75 and the impact factor 1.3 were used.
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The effects of FHWA 3S3 truck loads on continuous bridge decks designed for 

HS20-44 truck loads were presented in Tables 5.7 and 5.8 and. The stresses were 

computed separately at the top and bottom surfaces. The ratios of the maximum stresses 

at the surface were grouped based on whether they were tensile or compressive stresses.

At the top surface of the bridge deck, the ratio of maximum tensile stress in the 

longitudinal direction varied between 0.95 and 1.78 and between 0.73 and 1.45 in the 

transverse direction. The ratio of shear stress varied between 0.90 and 1.46. For the ratio 

of maximum compressive stress, the ratio of maximum stress in the longitudinal direction 

varied between 0.71 and 1.19, and between 0.94 and 1.16 in the transverse direction; the 

ratio of shear stress varied between 1.04 and 1.57. The ratios of maximum shear stress 

were larger than 1.4 when the span length was 20 ft. Therefore, these bridge decks may 

experience cracks in the vertical direction. The ratios of maximum stress were mostly 

larger than 1.1 when the span length was longer than 30 ft. Therefore, these bridge decks 

may experience cracks in all three directions. Such cracks would require additional 

inspections along with early and frequent maintenance. The locations of maximum 

stresses due to HS20-44 or FHWA 3 S3 truck loads may differ from each other. The 

difference is what makes the ratio of 3 S3 to HS20-44 truck for some span lengths less 

than 1.
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Table 5.7 Long Term Effects of 3S3 Truck Loads on Top Surface of Continuous Bridge
Decks

Ratio of Max Value of Stress of 3S3 to HS20-44
Span Length Max Tensile Stress Max Compressive Stress

(ft.) Longitudinal Transverse Shear Longitudinal Transverse Shear
20 0.9517 0.8306 1.4289 0.7146 0.9447 1.4895
30 1.2263 0.7311 1.2533 0.5691 0.9500 1.0351
60 1.7750 1.1480 0.9000 0.6555 0.9986 1.2015
75 1.3484 1.3849 1.3544 0.7594 1.0506 1.4136
90 1.4248 1.3780 1.4120 1.1893 1.1074 1.4233
105 1.5195 1.4541 1.4636 0.8729 1.1553 1.5655

At the bottom surface o f the bridge deck, the ratio o f maximum tensile stress in 

the longitudinal direction varied between 0.73 and 1.45 and between 0.95 and 1.78 in the 

transverse direction. The ratio o f shear stress varied between 1.04 and 1.57. For the ratio 

of maximum compressive stress, the ratio of maximum stress in the longitudinal direction 

varied between 0.94 and 1.16, and between 0.71 and 1.19 in the transverse direction; the 

ratio of shear stress varied between 0.90 and 1.46. The ratio of maximum shear stress was 

larger than 1.4 when the span length was 20 ft. Therefore, these bridge decks may 

experience cracks in the vertical direction. When the span length is longer than 30 ft., the 

ratios of maximum stress were mostly larger than 1.1, which means the deck was in an 

overstressed state and may experience cracks in all three directions. Such cracks would 

require additional inspections along with early and frequent maintenance. The locations 

of maximum stresses due to HS20-44 or 3 S3 truck loads may differ from each other. The 

difference is what makes the ratio of 3 S3 to HS20-44 truck for some span lengths less 

than 1.
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Table 5.8 Long Term Effects of 3 S3 Truck Loads on Bottom Surface of Continuous
Bridge Decks

Ratio of Max Value of Stress of 3S3 to HS20-44
Span Length Max Tensile Stress Max Compressive Stress

(ft.) Longitudinal Transverse Shear Longitudinal Transverse Shear
20 0.7146 0.9663 1.4895 0.9517 0.8306 1.4289
30 0.5691 0.9500 1.0351 1.2263 0.7311 1.2533
60 0.6555 0.9986 1.2015 1.7750 1.1480 0.9000
75 0.7594 1.0506 1.4136 1.3484 1.3849 1.3544
90 1.1893 1.1074 1.4233 1.4248 1.3780 1.4133
105 0.8729 1.1553 1.5643 1.5195 1.4541 1.4636

5.4 Summary

The bridge deck performances were evaluated in this chapter. Short term and long 

term effects of FHWA 3 S3 truck load on simple span bridges were determined in section 

5.3, while long term effects of FHWA 3S2 and 3S3 truck load on continuous span 

bridges were determined in sections 5.2 and 5.3. As the truck load increased, the short 

term or long term effects of heavy truck load on bridge decks cannot be neglected. In 

most cases the bridge decks are overstressed when a FHWA 3S2 or 3S3 truck traveled on 

them. The deck may experience cracks in longitudinal, transverse, and vertical directions. 

Such cracks would require additional inspections along with early and frequent 

maintenance.
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CHAPTER VI

STATISTICAL ANALYSIS OF SIMPLE SPAN 

BRIDGE DECK DATA

6.1 Introduction

In the slab-on-girder bridge system, the reinforced concrete deck is one of the 

most important elements in distributing the service load into the longitudinal and 

transverse directions. Any deterioration of the deck may cause weakening or even failure 

in other elements, for instance, girders or diaphragms. On the other hand, the deck also 

plays an important role on the bridge serviceability condition. The maintenance and/or 

rehabilitation of the deck have a significant percentage of the bridge life cycle cost.

Two main problems induced by mechanical loading on bridge decks are 

overstressing and fatigue. Based on research works of Fang et al. (1990) and Petrou et al. 

(1994), it has been determined that the overstressing and fatigue of the bridge decks are 

independent phenomena. Thus, these two deterioration modes will be dealt with 

separately in this study.

To analyze the bridge deck stress state and strain state accurately is a complex 

work. Modem technology provides researchers and engineers some effective tools; the 

finite element method is one of the most widely used techniques. Using the finite element 

method, it is easily to obtain the stress and displacement in longitudinal, transverse and 

shear directions at each joint. Along with obtaing accurate results, researchers encounter

103
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another difficulty: a large amount of result data. It takes plentiful time and energy to find 

the useful information from the results, such as the extreme value of the stresses and the 

stress distribution among the deck surface. In this situation, the researchers and engineers

should apply the statistical method to the data. Analyzing the work will give the

researchers and engineers more efficiency.

The objective of this research is to develop a statistical experiment to evaluate the 

stress behavior of the simple span bridge deck, including the stress distribution of the 

bridge deck at the top and bottom surfaces in longitudinal, transverse, and shear 

directions; and to find the interaction between bridge deck stress behavior and other 

parameters, such as bridge support condition, the girders type/number, and other 

secondary load path elements.

6.2 Design Variables of Experiments

In this study, the following parameters were considered in the analysis procedure:

1) Bridge girder type;

2) Bridge girder number;

3) Span length;

4) The sample joints selection;

5) Truck load type.

Also, these parameters were considered as the independent variables in the 

statistic experiment, and the bridge deck stress behavior was considered as the response. 

SAS will be used to perform the statistical experiment, while GTSTRUDL will be used 

for the finite element analysis.
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Since there are several parameters being considered for the analysis, and each 

parameter would influence the deck stress behavior. The statistical experiment was 

designed and analyzed as the factorial experiment with several crossed treatment factors. 

For instance, the standard model for three treatment factors is

Y ijk t =  M  +  T i j k + £ ijkt
9

Tijk = a i + Pj + n +  (aP )y+ (ar)at + (Pr)jk + (aPr)# t (61)

t =  h - , r ukJ  = l,...,a. j  =  m d k = \,...,c

£ijkt ~ N (0, a 2) , Sijk>’s mutually independent.

Where /j. + rijk denotes the true mean response for the treatments; a i,Pj ,yk are 

the effects (positive or negative) on the response of factor A, B, C at levels i, j, k, 

respectively; (aj3)y, (ay)ik, (/3y)Jk are the additional effects of the pairs of factors

together at the specified levels; and (afiy)ijk is the additional effect of all three factors 

together at levels i, j, k. The single variable eijkt is called an error variable, where

7V(0,<r2) ” denotes that it has a normal distribution with mean 0 and variance cr2.

For a factorial experiment with several crossed treatment factors, there are several 

different models that may be appropriate for analyzing, depending on which interactions 

are believed to be negligible. The investigation of the contributions that each of the 

factors make individually to the response were obtained. Since this research is based on 

the finite element method but not the real experiment, there are no observation error 

terms; in order to perform the analysis, some insignificant interactions would be 

neglected from the analysis and used as the error terms. Since these kinds of error terms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

do not contain the true error, we cannot say that the error follows the normal distribution 

with the mean 0 and appropriate variance; correspondingly, the confidence intervals of 

the observation cannot be obtained. The hypothesis tests can not be performed, either. To 

solve this difficulty, the ratio of variance of the independent variables and some 

interaction terms were obtained to show the importance.

6.3 Simply Supported Brid2e Decks Analysis

In this chapter, decks of the simply supported bridges were analyzed via statistical 

methods. The statistical model was developed, then the Analyses of Variance (ANOVA) 

were performed, and corresponding charts were generated to evaluate the deck behavior 

under different bridge configurations.

6.3.1 Statistic Model Setup

For the simply supported bridges, the analyses parameters need to be considered 

are identified as follow:

(1) Bridge span length was fixed as 90 feet.

(2) Bridge deck thickness was fixed as eight inches.

(3) There were six types of girders considered in the analysis: AASHTO Type IV, V, 

VI; AASHTO Bulb-Tee 54, 63 and 72.

(4) There were two kinds o f bridge models: group one included five girders, group 

two included seven girders, and both of them had a fixed bridge width of 30 feet. 

The girders were simply supported and spaced at eight feet in the middle and

seven feet on the outside for the first group, while the girders were simply

supported and spaced at 5/4.5 feet in the middle and six feet on the outside for 

the second group. The details of the models are shown in Fig. 3.1 and Fig. 3.2.
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(5) Two kinds of truck loads were included: HS20-44 and FHWA 3S3 with GVW 

120,000 kips, the HS20-44 truck was the original design truck load, and the 

FHWA 3 S3 truck was used as the heavy truck load to determine the deck stress 

behaviors. All truck loads were placed on the bridge as shown in Fig. 3.4 and Fig. 

3.6.

(6) The model considered in this study was non-skewed with 0° full depth 

diaphragms at the end of the bridge.

The span length was measured from the center of one support to the center of an 

adjacent support. The girder spacing was measured from the center of one girder to the 

center of an adjacent girder, which was identical and parallel to the previous girder.

After the analyses parameters were determined, the finite element model could be 

obtained. GTSTRUDL was used to perform the analysis; the results of deck stress states 

could be obtained. Following Table 6.1 lists the model details in the study.
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Table 6.1 Simple Span Bridge Models and Their Specifications Used in STAT Study

Bridge
Model

Girder
Type

# o f
Girders

Span
Length

# o f
Spans

Support
Condition

Applied 
Truck Load

316
AASHTO 
Type IV 5 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

326
AASHTO 
Type V 5 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

336
AASHTO 
Type VI 5 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

346
AASHTO

BT-54 5 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

356
AASHTO

BT-63 5 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

366
AASHTO

BT-72 5 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

376
AASHTO 
Type IV 7 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

386
AASHTO 
Type V 7 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

396
AASHTO 
Type VI 7 90 ft 1

Simply
Supported

HS20-44 & 
FHWA 3S3

406
AASHTO

BT-54 7 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

416
AASHTO

BT-63 7 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

426
AASHTO

BT-72 7 90 ft 1
Simply

Supported
HS20-44 & 
FHWA 3S3

The statistical model could be determined when the stress state were obtained 

from finite element analysis. For the purpose of reducing the data amount, the deck was 

first meshed into several rectangle areas, and every rectangle area had the same length of 

30 feet and the same width of 10 feet, with the area of the rectangle 300 ft . A typical 

meshed deck was showed in following Fig. 6.1. The maximum stress state in each 

rectangle would be identified as the representative stress state and used in the statistical 

analysis.
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In Chapter V the researcher determined that the bridge deck was in a stable stress 

state. Results from FEM indicated that the difference of stresses at the top and bottom 

surfaces was only the sign of the stress values (positive or negative numbers), thus 

following research was based on the results of stresses at bottom surface of the bridge 

deck.

Bridge Deck
------------ / -------

Area VII Area VIII Area IX

> Area IV Area V Area VI

-------

Area I Area II Area III

Fig. 6.1 Typical Meshed Bridge Deck for Statistical Analysis

Three treatment factors were used to set up the statistic model: girder type, girder 

number, and truck load type. The treatment factors and their details were listed in Table 

6 .2 .

Table 6.2 Treatment Factors and Corresponding Observation Levels

Treatment Factors Abbreviation
Observation

Level
Details of 

Observation Level

Girder Type GT 6
AASHTO Type IV, V, 

VI; BT-54, 63, 72
Girder Number GN 2 5 Girders/7 Girders

Truck Load Type TT 2 FHWA 3S3/HS20-44
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There were four treatment interactions between each of the main factors or three

together. The total statistical model without error terms was defined as follows

YiJk=ju + (<GT), + (GN)j  + (!T T \  + (GTx  GN)y

+{GTxTT)ik +(GNxTT)jk+(G TxG N xTT)iik (g 2)

i = l,. ..,6; j  = 1,2 and k = 1,2.

As mentioned before, the less important treatment interactions or the interactions 

we did not care about would be used as the error term in order to establish the proper

statistical model. In formula 6.2, the component (GT x GN x TT) is used as the initial

error term due to the three effects of interaction normally thought less important than 

other components. The initial analysis of variance table is shown as Table 6.3, and the 

modified statistical model with error terms is listed:

Yijkt=ju + (,GT), + (GN),  + (TT)k + ( G T x G N ) y

+(GTxTT)ik + (GNx TT)jk + sijkt (6.3)

t = 1; i =  1,...,6 ; j  -  1,2 and £ = 1,2.

Table 6.3 ANOVA, Single Rectangle Area

Source of 
Variation

Degree of 
Freedom

Sum of 
Squares

Mean
Square Ratio

GT 5 ss(GT) ss(GT)/5 ms(GT)/msE
GN 1 ss(GN) ss(GN)/1 ms(GN)/msE
TT 1 ss(TT) ss(TT)/1 ms(TT)/msE
GTxGN 5 ss(GTxGN) ss(GTxGN)/5 ms(G TxGN)/msE
GTxTT 5 ss(GTxTT) ss(GTxTT)/5 ms(GTxTT)/msE
GNxTT 1 ss(GNxTT) ss(GNxTT)/1 ms( GNxTT)/msE
Error (GTxGNxTT) 5 ssE ssE/5
Total 23 sstot
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The results obtained from finite element analysis contained three stress 

components, Sxx, Sxy, and Syy. Those stresses needed to be evaluated separately. The 

corresponding ANOVA tables and figures were generated to determine the effects of 

each independent factor and/or combination. The ANOVA tables were obtained from the 

SAS files that only had the data for a single rectangle area, while the figures were 

obtained from a SAS file contained all Sxx or Sxy or Syy data to save the total work load.

6.3.2 Analysis of Variables

SAS was used to perform the statistic analysis in this study; typical SAS codes 

were listed in appendix C. Stress components Sxx, Sxy, and Syy were evaluated 

separately. For each kind of stress components, the evaluations of two factor groups were 

applied. In first group factors GT and GN were included to investigate the deck stress 

performance under different factor combinations; while in the second group treatment 

factors GT and TT were used.

In detailed SAS input files, the analysis procedures to draw the figures of 

relationship between average stresses and GT and GN (or TT) could be described as 

follows: 1) data were inputted by the sequence of GT (six observation levels), GN (two 

observation levels), TT (two observation levels), and AR (nine observation levels, which 

were nine divided areas of deck); 2) the average stresses of each GT and GN (or GT and 

TT) combination of each area were computed, and corresponding figures were generated. 

The SAS input files used to draw the figures were different from files which used to 

generate the ANOVA tables since in these files the divided area AR was added to the 

input and the selected error term was not (GT x GN x TT) but some others. This result 

would create an ANOVA table different from Table 6.3. But the figures still stay the
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same because to derive the figures, the researcher did not use the results from ANOVA. 

The researcher used this method only simply for the purpose of saving work load. The 

ANOVA results were obtained from those rectangular divided areas separately.

The effects of GT and GN combinations on bridge deck stress component Sxx 

were presented in Fig. 6.2 to Fig. 6.10. The GT values one through six represented girder 

type AASHTO Bulb-Tee 54, Bulb-Tee 63, Bulb-Tee 72, Type IV, Type V and Type VI, 

respectively. The GN values one and two represented bridge models containing five and 

seven girders, respectively. The standard was whether the absolute stress value was close 

to zero. From the figures it is easy to determine that when the bridge models contained 

five or seven girders, then which type of girder the bridge was built with would give us 

the minimum Sxx value in the bridge deck.

Plot of AV_S1 ress*GT„ Symbol is value of CH.
AV_Stress j

0. 2 +I
! ii

O. 1

2
2 2 2 1 1  1

2 

1

- 0.3  *

1 2 3 4 5 6

GT

Fig. 6.2 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area I, Stress 
Component Sxx

0.0 |
|
j

-G. 1 +
2

- 0 . 2  -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

A Y _ S t r e s s  

O. 4

P lo t o f A.V_Stxess*GT. Symbol i s  value  of GN.

3 4

GT

Fig. 6.3 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area II, Stress 
Component Sxx

Plot of AY_Str*ss*G7. Symbol is value of GN*
AV_Str»s* | 

0*2 *

0. 1

I 1
-O . 3 -I

1 2  3  4  5 6

GT

Fig. 6.4 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area III, Stress 
Component Sxx
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l e t  of AY 5txess*GT. STaabol i s  value of SSL
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1 2 3 4  3 6

GT

Fig. 6.5 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area IV, Stress 
Component Sxx

Plot of AYjStx«ss»GT. Symbol is value of GN.
A Y _ S t x e s s  j 

G. 9

Fig. 6.6 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area V, Stress 
Component Sxx
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AY_Str«s*

O. 2 7 5  “

Plo t of A Y_S1r*ss*-07. Srsbol is  value of GN.

Fig. 6.7 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VI, Stress 
Component Sxx

AV_Stress
O. 2 5

Plot of AV_5tr es s*GT. Symbol is valuo of GN.

Fig. 6.8 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VII, Stress 
Component Sxx
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Fig. 6.9 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VIII, 
Stress Component Sxx

A Y _ S tre s s  
O. 35 Plot of AV_Stx#sE*GT. Symbol Is vmlut of GN.

O. 10 -*■

Fig. 6.10 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area IX, Stress 
Component Sxx
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Comparisons were made for each divided area. Detailed results were summarized 

in Tables 6.4 and 6.5. In the tables the symbol “>” represented “better”; for instance, 

“BT-63 > Type VI” meant the absolute deck stress value of a bridge built with AASHTO 

Bulb-Tee 63 girder was smaller than that of a bridge built with AASHTO Type VI girder. 

For bridge models containing five girders, in most areas the bridge built with type VI 

girder had the best performance, which indicated that when AASHTO Type VI girder 

was used to construct the bridge, normally the bridge deck stress Sxx could be minimized. 

The differences of stress performances of a bridge built with AASHTO Type V and Bulb- 

Tee 72 were limited. And usually for a bridge built with Type IV girder, the situation was 

remarkably worse than other cases. In most areas, the sequence of deck stress Sxx 

performances was bridges built with Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb- 

Tee 54 and Type IV girders, from better to worse, respectively.

Table 6.4 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Eight ft, 
Deck Stress Component Sxx

Area Comparison Results
Area 1 BT-63 > T ype VI > Type V > BT-72 > BT-54 > T ype IV
A rea II Type VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area III BT-63 > T ype VI > T ype V > BT-72 > BT-54 > T ype IV
Area IV T ype VI > Type V > BT-72 > BT-63 > BT-54 > T ype IV
A rea V Type VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area VI T ype VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area VII T ype VI > Type V > BT-72 > BT-63 > BT-54 > T ype IV
Area VIII Type VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area IX Type VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV

In Table 6.5 the comparisons were made for those bridge models which contained 

seven girders with girder spacing five ft. The results indicated that for most areas, the 

bridges built with AASHTO Type VI girder still had the best performance. The 

differences of stress performances of bridge built with AASHTO Type V and Bulb-Tee
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72 were also limited. In one area type IV girder had the smallest value. But generally the 

sequence of deck stress Sxx performances involved bridges built with Type VI, Type V, 

Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 and Type IV girders, from better to worse, 

respectively.

Table 6.5 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Five ft, 
Deck Stress Component Sxx

Area Comparison Results
Area 1 Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area II Type VI > BT-72 > Type V > BT-63 > BT-54 > Type IV
Area III Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IV Type VI > BT-72 > Type V > BT-63 > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VI Type VI > BT-72 > Type V > BT-63 > BT-54 > Type IV
Area VII Type IV > Type VI > BT-72 > Type V > BT-63 > BT-54
Area VIII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IX Type IV > Type VI > BT-72 > Type V > BT-63 > BT-54

Similar analysis methods were applied to deck stress components Sxy. Fig. 6.11 

to Fig. 6.19 show the effects of GT and GN combinations on bridge deck stress 

component Sxy. The GT values and GN values represented the same meaning as 

described before. The standard was still whether the absolute stress value closed to zero.
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A V _ S * tr  e s s  

--0. 04
P lo t o f  AV_St:res«*CT. Syaabol i s  v s lu s  o f GN.

a 4
GT

Fig. 6.11 The Effects o f Treatment Factors GT and GN on Bridge Deck -  Area I, Stress 
Component Sxy

AV _St:rss* j

0 .03 i
P l o t  o f  AV.jStros*»GT.. S r a b o l  i s  v « l u t  o f  G&.

Fig. 6.12 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area II, Stress 
Component Sxy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

P lo t of AV_Stxess*£T. ST«boX is  value o f  GN.
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Fig. 6.13 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area III, Stress 
Component Sxy
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Fig. 6.14 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area IV, Stress 
Component Sxy
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Fig. 6.15 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area V, Stress 
Component Sxy
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Fig. 6.16 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VI, Stress 
Component Sxy
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AY Stress Plo t of AV_Stx«ss*C7. Syssbol is  value of <JJS.
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ST

Fig. 6.17 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VII, 
Stress Component Sxy

A V _S tr*ss 

O. 06

P l o t  o f  AV_Stre««#GT- Symbol £* v a lu e  o f  SK.

Fig. 6.18 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VIII, 
Stress Component Sxy
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Fig. 6.19 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area DC, Stress 
Component Sxy

Comparisons were made for each divided area. Detail results were summarized in 

Tables 6.6 and 6.7. In the tables the symbol “>” represented the same meaning as before. 

For bridge models containing five girders, in most areas the bridge built with a Type VI 

girder had the best performance, which indicated that when the AASHTO Type VI girder 

was used to construct the bridge, normally the bridge deck stress Sxy could be minimized. 

The differences of stress performances of bridges built with AASHTO Type V and Bulb- 

Tee 72 were limited. And usually for bridges built with Type IV or Bulb-Tee 54 girders, 

the situations were worse than other cases. In most areas, the sequence of deck stress Sxy 

performance was bridges built with Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb- 

Tee 54 (or Type IV) girders, from better to worse, respectively.
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Table 6.6 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Eight ft,
Deck Stress Component Sxy

Area Comparison Results
Area 1 Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area II Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area III Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IV Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area V BT-72 > Type VI > Type V > BT-63 > Type IV > BT-54
Area VI Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VIII Type IV > Type VI > Type V > BT-72 > BT-63 > BT-54
Area IX Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV

In Table 6.7 the comparisons were made for those bridge models that contained 

seven girders with girder spacing five ft. The results indicated that for most areas, the 

bridges built with AASHTO Type VI girders still had the best performance. The 

differences o f stress performances o f bridges built with AASHTO Type V and Bulb-Tee 

72 were also limited. In three areas Bulb-Tee 54 or Type IV or Type V girders had the 

smallest value. But generally the sequence of deck stress Sxy performance was bridges 

built with Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Type IV and Bulb-Tee 54 girders, 

from better to worse, respectively.

Table 6.7 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Five ft, 
Deck Stress Component Sxy

Area Comparison Results
Area 1 Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area II Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area III Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area IV Type VI > Type V > Type IV > BT-72 > BT-63 > BT-54
Area V Type IV > Type VI > Type V > BT-72 > BT-63 > BT-54
Area VI Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area VII Type V > Type VI > BT-63 > BT-72 > BT-54 > Type IV
Area VIII Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area IX BT-54 > Type VI > Type V > BT-63 > BT-72 > Type IV
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Similar analysis methods were applied to deck stress components Syy. Fig. 6.20 

to Fig. 6.28 show the effects of GT and GN combinations on bridge deck stress 

component Sxy. The GT values and GN values represented the same meaning as 

described before. The standard was still whether the absolute stress value was close to 

zero. In some figures the difference of stress between models built with five or seven 

girders was very small, thus some observations were hidden, and only one symbol was 

displayed in the figure.

Plot of AV_Strtss*GI. Syabol i s  vmlu» of G$i.

AV_Str»ss j
O. 25 ~

Fig. 6.20 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area I, Stress 
Component Syy
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Fig. 6.21 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area II, Stress 
Component Syy

Plot of AV_Str«ss*GT. Syabol is valu® of GN.
AV_Stress 

O. 25

Fig. 6.22 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area III, Stress 
Component Syy
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Plot of AV_Stress*OT. Srabdl i s  value of OK.

Fig. 6.23 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area IV, Stress 
Component Syy
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Fig. 6.24 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area V, Stress 
Component Syy
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Fig. 6.25 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VI, Stress 
Component Syy
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Fig. 6.26 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VII, 
Stress Component Syy
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AV Stress Plot o f AV__5tress^G?. Srabol is  value of OK.

3 4

<JT

Fig. 6.27 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area VIII, 
Stress Component Syy

AV_Str»s s

0. 25

P lo t  o f  AV_5tr*s**GT. S rs b o l i*  v a lu e  o f  GN.

Fig. 6.28 The Effects of Treatment Factors GT and GN on Bridge Deck -  Area IX, Stress 
Component Syy
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Comparisons were made for each divided area. Detailed results were summarized 

in Tables 6.8 and 6.9. In the tables the symbol “>” represented the same meaning as 

before; while the symbol’ - ” represented that there was not too much difference. For 

bridge models containing five girders, in most areas the bridge built with Type VI and 

Bulb-Tee 72 girders had the best performance, which indicated that when those two kinds 

of girders were used to construct the bridge, normally the bridge deck stress Syy could be 

minimized. In some areas the differences of stress performances of bridge built with 

AASHTO Type V and Bulb-Tee 63 were limited. And usually for bridge built with Type 

IV or Bulb-Tee 54 girders, the situations were worse than other cases. In most areas, the 

sequence of deck stress Syy performance was bridges built with Type VI, Bulb-Tee 72, 

Type V, Bulb-Tee 63, Bulb-Tee 54 (or Type IV) girders, from better to worse, 

respectively.

Table 6.8 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Eight ft, 
Deck Stress Component Syy

Area Comparison Results
Area 1 BT-72 = Type VI > BT-63 = Type V > BT-54 > Type IV
Area II Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area III BT-72 > Type VI > BT-63 = Type V > BT-54 > Type IV
Area IV BT-72 > Type VI > BT-63 = Type V > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area VI Type VI > BT-72 > BT-63 = Type V > BT-54 > Type IV
Area VII BT-72 > Type VI > BT-63 = Type V > BT-54 > Type IV
Area VIII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IX Type VI > BT-72 > BT-63 = Type V > BT-54 > Type IV

In Table 6.9 the comparisons were made for those bridge models that contained 

seven girders with girder spacing five ft. The results indicated that for most areas, the 

bridges built with AASHTO Type VI girder still had the best performance. The 

differences of stress performances of bridge built with AASHTO Type V and Bulb-Tee

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



131

72 were also limited. The stress results of Bulb-Tee 63 and Bulb-Tee 54 girder models 

were worse on whole deck area. Generally, the sequence of deck stress Syy performance 

was bridges built with Type VI, Bulb-Tee 72, Type V, Type IV, Bulb-Tee 63 and Bulb- 

Tee 54 girders, from better to worse, respectively.

Table 6.9 Comparison Results -  Treatment Factor GT and GN, Girder Spacing Five ft, 
Deck Stress Component Syy

Area Comparison Results
Area 1 Type VI > BT-72 > Type V > Type IV > BT-63 > BT-54
Area II Type VI > Type IV > Type V > BT-72 > BT-63 > BT-54
Area III Type VI > BT-72 > Type V > Type IV > BT-63 > BT-54
Area IV Type VI > BT-72 > Type V > Type IV > BT-63 > BT-54
Area V Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area VI Type VI > BT-72 > Type V = Type IV > BT-63 > BT-54
Area VII Type VI > BT-72 > Type V = Type IV > BT-63 > BT-54
Area VIII Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area IX Type VI > BT-72 > Type IV > Type V > BT-63 > BT-54

Based on the above discussions, some suggestions could be given as follow:

1. For those bridge models built with five girders and girder spacing seven ft.

a) To get the best longitudinal deck stress (Syy) performance, it is 

suggested to use an AASHTO Type VI or Bulb-Tee 72 girder to build the 

bridge; this type will give the minimum Syy stress value in the deck. 

Generally the sequence of suggested selection is AASHTO Type VI, 

Bulb-Tee 72, Bulb-Tee 63, Type V, Bulb-Tee 54 and Type IV, from 

better to worse, respectively.

b) To get the best transverse deck stress (Sxx) performance, it is suggested 

to use an AASHTO Type VI girder to build the bridge; this type will give 

the minimum Sxx stress value in the deck. Generally the sequence of the
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suggested selection is AASHTO Type VI, Type V, Bulb-Tee 72, Bulb- 

Tee 63, Bulb-Tee 54 and Type IV, from better to worse, respectively.

c) To get the best shear deck stress (Sxy) performance, it is suggested to use 

an AASHTO Type VI girder to build the bridge; this type will give the 

minimum Sxy stress value in the deck. Generally the sequence of the 

suggested selection is AASHTO Type VI, Type V, Bulb-Tee 72, Bulb- 

Tee 63, Bulb-Tee 54 (or Type IV), from better to worse, respectively.

2. For those bridge models built with seven girders and girder spacing five ft.

a) To get the best longitudinal deck stress (Syy) performance, it is 

suggested to use an AASHTO Type VI girder to build the bridge; this 

type will give the minimum Syy stress value in the deck. Generally the 

sequence of the suggested selection is AASHTO Type VI, Bulb-Tee 72, 

Type V, Type IV, Bulb-Tee 63 and Bulb-Tee 54, from better to worse, 

respectively.

b) To get the best transverse deck stress (Sxx) performance, it is suggested 

to use an AASHTO Type VI girder to build the bridge; this type will give 

the minimum Sxx stress value in the deck. Generally the sequence of the 

suggested selection is AASHTO Type VI, Bulb-Tee 72 (or Type V), 

Bulb-Tee 63, Bulb-Tee 54 and Type IV, from better to worse, 

respectively.

c) To get the best shear deck stress (Sxy) performance, it is suggested to use 

an AASHTO Type VI girder to build the bridge; this type will give the 

minimum Sxy stress value in the deck. Generally the sequence of the
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suggested selection is AASHTO Type VI, Type V, Bulb-Tee 72, Bulb- 

Tee 63 (or Bulb-Tee 54 or Type IV), from better to worse, respectively.

While evaluating the effects of combinations of constructed girder types and 

girder numbers on bridge deck stresses, the effects of combinations of bridge girder types 

and truck loads applied on the bridges on bridge deck stresses were also important and 

need to be investigated. Similar methods described before were also used to evaluate the 

effects. Fig. 6.29 to Fig. 6.37 were used to evaluate the effects of GT and GN 

combinations on bridge deck stress component Sxx. The GT values one through six also 

represented girder type AASHTO Bulb-Tee 54, Bulb-Tee 63, Bulb-Tee 72, Type IV, 

Type V and Type VI, respectively. The TT values one and two represented the truck 

loads HS20-44 and FHWA 3S3, which were applied to the bridge models, respectively. 

The standard was whether the absolute stress value was close to zero. From the figures it 

is easy to determine, when HS20-44 or FHWA 3S3 truck loads traveled on bridges, 

which type of girder would give us the minimum Sxx value in the bridge deck.
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Fig. 6.29 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area I, Stress 
Component Sxx
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Fig. 6.30 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area II, Stress 
Component Sxx
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AV_Stxess
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P lo t of' AV_Str***#ST. STsbol is  value o f TT.

3 4

OT

Fig. 6.31 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area III, Stress 
Component Sxx

A V _5tr*s* 1
C. 20 * P lo t  o f  AV_Stxa***<ST. 5 ? ab o l i s  v a lu e  o f  TT.

Fig. 6.32 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area IV, Stress 
Component Sxx
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Fig. 6.33 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area V, Stress 
Component Sxx
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Fig. 6.34 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VI, Stress 
Component Sxx
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Fig. 6.35 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VII, Stress 
Component Sxx
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Fig. 6.36 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VIII, 
Stress Component Sxx
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Fig. 6.37 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area DC, Stress 
Component Sxx

Comparisons were made for each divided area. Detail results were summarized in 

Tables 6.10 and 6.11. In the tables the symbols “>” and “=” represented the same 

meaning as before. When an HS20-44 truck load was applied to the bridge model, in the 

center areas, the bridge built with a Type VI girder had the best performance; in those 

parts the bridge deck stress Sxy could be minimized. At four comers the models built 

with Bulb-Tee 54 or Type IV girders were governing; while in other parts, usually for 

bridges built with Type IV or Bulb-Tee 54 girders, the situation was worse than other 

cases. In most areas, generally the sequence of deck stress Sxx performance was bridges 

built with Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 and Type IV girders, 

from better to worse, respectively.
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Table 6.10 Comparison Results -  Treatment Factor GT and TT, Truck Load Type HS20-
44, Deck Stress Component Sxx

Area Comparison Results
Area 1 BT-54 > Type VI > Type V > BT-72 > BT-63 > Type IV
Area II Type VI > Type IV > Type V > BT-72 > BT-63 > BT-54
Area III BT-54 > Type VI > Type V > BT-72 > BT-63 > Type IV
Area IV Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VI Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VII Type IV > Type VI > Type V > BT-72 > BT-63 > BT-54
Area VIII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IX Type IV > Type VI > Type V > BT-72 > BT-63 > BT-54

In Table 6.11 the comparisons were made for those bridge models that had 

applied an FHWA 3 S3 truck. The results indicated that for most areas, the bridges built 

with an AASHTO Type VI girder still had the best performance. The differences of stress 

performances of bridges built with AASHTO Type V and Bulb-Tee 72 were also limited. 

At two comers the model built with a Bulb-Tee 54 girder was governing, but generally 

the sequence of deck stress Sxx performance was bridges built with Type VI, Type V, 

Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 and Type IV girders, from better to worse, 

respectively.

Table 6.11 Comparison Results -  Treatment Factor GT and TT, Truck Load Type 
FHWA 3S3, Deck Stress Component Sxx

Area Comparison Results
Area 1 BT-54 = BT-63 > Type VI > Type V > BT-72 > Type IV
Area II Type VI > Type IV > Type V > BT-72 > BT-63 > BT-54
Area III BT-54 > BT-63 > Type VI > Type V > BT-72 > Type IV
Area IV Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VI Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area VIII Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IX Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
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The similar analysis methods were applied to deck stress components Sxy. Fig. 

6.38 to Fig. 6.46 showed the effects of GT and TT combinations on bridge deck stress 

component Sxy. The GT values and TT values represented the same meaning as 

described before. The standard was still whether the absolute stress value closed to zero. 

In some figures the difference of stress between models built with five or seven girders 

was very small, thus some observations were hidden, and only one symbol was displayed 

in the figure.

A V _ S t r e s s  j 
—O. 04 ■*

Plot of AV_Stxes»*GT. Sjnabol is valu» of TT.

-Q. 06 +

-O. It
3 4

GT

Fig. 6.38 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area I, Stress 
Component Sxy
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Fig. 6.39 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area II, Stress 
Component Sxy
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Fig. 6.40 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area III, Stress 
Component Sxy
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Fig. 6.41 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area IV, Stress 
Component Sxy
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Fig. 6.42 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area V, Stress 
Component Sxy
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Fig. 6.43 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VI, Stress 
Component Sxy
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Fig. 6.44 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VII, Stress 
Component Sxy
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Fig. 6.45 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VIII, 
Stress Component Sxy

AV_Str»s* 1
- 0 . 03 1

P lo t  o f  AV_Stx»***GT. Symbol i s  v a lu t  o f  TT.

3 4

GT

Fig. 6.46 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area IX, Stress 
Component Sxy
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Comparisons were made for each divided area. Detailed results were summarized 

in Tables 6.12 and 6.13. In the tables the symbols “>” and “=” represented the same 

meaning as before. When an HS20-44 truck load was applied to the bridge model, in 

most areas the bridge built with a Type VI girder had the best performance; in those parts 

the bridge deck stress Sxy could be minimized. And usually for bridges built with Type 

IV or Bulb-Tee 54 girders, the situations were worse than other cases. In most areas, 

generally the sequence of deck stress Sxy performance was bridges built with Type VI, 

Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 (or Type IV) girders, from better to 

worse, respectively.

Table 6.12 Comparison Results -  Treatment Factor GT and TT, Truck Load Type HS20- 
44, Deck Stress Component Sxy

Area Comparison Results
Area 1 T ype VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area II Type VI > T ype V > T ype IV > BT-72 > BT-63 > BT-54
Area III T ype VI > T ype V > BT-72 > BT-63 > BT-54 > T ype IV
Area IV Type VI > T ype V > BT-72 > BT-63 > T ype IV > BT-54
Area V T ype VI > T ype V > BT-72 > BT-63 > T ype IV > BT-54
Area VI Type VI > T ype V > BT-72 > BT-63 > T ype IV > BT-54
Area VII BT-63 = BT-54 > T ype VI > Type V > BT-72 > T ype IV
Area VIII T ype VI = T ype V > BT-54 = BT-63 = BT-72 > T ype IV
Area IX BT-54 > T ype VI > T ype V > BT-72 > BT-63 > T ype IV

In Table 6.11 the comparisons were made for those bridge models that had 

applied an FHWA 3 S3 truck load. The results indicated that for most areas, the bridges 

built with AASHTO Type VI girder still had the best performance. The differences of 

stress performance of bridge built with AASHTO Type V and Bulb-Tee 72 were also 

limited. At a comer the models built with Bulb-Tee 54 and Bulb-Tee 63 girders were 

governing, but generally the sequence of deck stress Sxy performance was bridges built
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with Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 (or Type IV) girders, 

from better to worse, respectively.

Table 6.13 Comparison Results -  Treatment Factor GT and TT, Truck Load Type 
FHWA 3S3, Deck Stress Component Sxy

Area Comparison Results
Area 1 Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area II Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area III Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
Area IV Type VI > Type V > BT-72 > BT-63 = Type IV > BT-54
Area V Type VI > Type V > BT-72 > BT-63 = Type IV > BT-54
Area VI Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area VII BT-63 > BT-54 > Type VI > Type V > BT-72 > Type IV
Area VIII Type VI = Type V = BT-54 > BT-63 > BT-72 > Type IV
Area IX Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54

Similar analysis methods were applied to deck stress components Syy. Fig. 6.47 

to Fig. 6.55 showed the effects of GT and TT combinations on bridge deck stress 

component Syy. The GT values and TT values represented the same meaning as 

described before. The standard was still whether the absolute stress value was close to 

zero. In some figures the difference in stress between models built with five or seven 

girders was very small, thus some observations were hidden, and only one symbol was 

displayed in the figure.
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Fig. 6.47 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area I, Stress 
Component Syy
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Fig. 6.48 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area II, Stress 
Component Syy
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Fig. 6.49 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area III, Stress 
Component Syy
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Fig. 6.50 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area IV, Stress 
Component Syy
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Fig. 6.51 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area V, Stress 
Component Syy
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Fig. 6.52 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VI, Stress 
Component Syy
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Fig. 6.53 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VII, Stress 
Component Syy
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Fig. 6.54 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area VIII, 
Stress Component Syy
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Fig. 6.55 The Effects of Treatment Factors GT and TT on Bridge Deck -  Area DC, Stress 
Component Syy

Comparisons were made for each divided area. Detailed results were summarized 

in Tables 6.14 and 6.15. In the tables the symbols “>” and “=” represented the same 

meaning as before. When an HS20-44 truck load was applied to the bridge model, in the 

center areas the bridge built with the Type VI girder had the best performance; in those 

parts the bridge deck stress Sxy could be minimized. Usually for bridges built with Type 

IV or Bulb-Tee 54 girder, the situations were worse than other cases. In most areas, 

generally the sequence of deck stress Syy performances was bridges built with Type VI, 

Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 (or Type IV) girders, from better to 

worse, respectively.
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Table 6.14 Comparison Results -  Treatment Factor GT and TT, Truck Load Type HS20-
44, Deck Stress Component Syy

Area Comparison Results
Area 1 Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area II Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area III Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area IV Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > Type IV > BT-63 > BT-54
Area VI Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area VII Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area VIII Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area IX Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV

In Table 6.15 the comparisons were made for those bridge models that had 

applied an FHWA 3S3 truck load. The results indicated that for most areas, the bridges 

built with an AASHTO Type VI girder still had the best performance. The differences in 

stress performances of bridges built with AASHTO Type V and Bulb-Tee 72 were also 

limited. Usually for bridges built with Type IV or Bulb-Tee 54 girders, the situations 

were worse than other cases. Generally the sequence of deck stress Syy performance was 

bridges built with Type VI, Bulb-Tee 72, Type V, Bulb-Tee 63, Bulb-Tee 54 (or Type IV) 

girders, from better to worse, respectively.

Table 6.15 Comparison Results -  Treatment Factor GT and TT, Truck Load Type 
FHWA 3S3, Deck Stress Component Syy

Area Comparison Results
Area 1 Type VI = BT-72 > Type V > BT-63 > BT-54 > Type IV
Area II Type VI > Type V = BT-72 > BT-63 > Type IV > BT-54
Area III Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area IV Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area V Type VI > Type V > BT-72 > BT-63 > Type IV > BT-54
Area VI Type VI = BT-72 > Type V > BT-63 > BT-54 > Type IV
Area VII Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
Area VIII Type VI > Type V = BT-72 > BT-63 > Type IV > BT-54
Area IX Type VI > Type V = BT-72 > BT-63 > BT-54 > Type IV
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Based on above discussions, some suggestions could be given as follows:

1. When an HS20-44 truck load is applied to the bridge models:

a) To get the best longitudinal deck stress (Syy) performance, it is 

suggested to use AASHTO Type VI girders to build the bridge; this 

girder will give the minimum Syy stress value in the deck. Even at some 

comers, bridges built with Bulb-Tee 63 or 54 girders would give us the 

best values. Generally, the sequence of suggested selection is AASHTO 

Type VI, Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 (or Type IV), 

from better to worse, respectively.

b) To get the best transverse deck stress (Sxx) performance, it is suggested 

to use AASHTO Type VI girders to build the bridge; this girder will give 

the minimum Sxx stress value in the deck. Even at some comers bridges 

built with Bulb-Tee 54 or Type IV girders would give us the best values. 

Generally, the sequence of suggested selection is AASHTO Type VI, 

Type V, Bulb-Tee 72, Bulb-Tee 63, Bulb-Tee 54 and Type IV, from 

better to worse, respectively.

c) To get the best shear deck stress (Sxy) performance, it is suggested to use 

AASHTO Type VI girders to build the bridge; this girder will give the 

minimum Sxy stress value in the deck. Generally, the sequence of 

suggested selection is AASHTO Type VI, Type V, Bulb-Tee 72, Bulb- 

Tee 63, Bulb-Tee 54 and Type IV, from better to worse, respectively.

2. When an FHWA 3S3 truck load is applied to the bridge models:
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a) To get the best longitudinal deck stress (Syy) performance, it is 

suggested to use AASHTO Type VI girders to build the bridge; this 

girder will give the minimum Syy stress value in the deck. Generally, the 

sequence of suggested selection is AASHTO Type VI, Bulb-Tee 72, 

Type V, Type IV, Bulb-Tee 63 and Bulb-Tee 54, from better to worse, 

respectively.

b) To get the best transverse deck stress (Sxx) performance, it is suggested 

to use AASHTO Type VI girders to build the bridge; this girder will give 

the minimum Sxx stress value in the deck. Generally, the sequence of 

suggested selection is AASHTO Type VI, Bulb-Tee 72 (or Type V), 

Bulb-Tee 63, Bulb-Tee 54 and Type IV, from better to worse, 

respectively.

c) To get the best shear deck stress (Sxy) performance, it is suggested to use 

AASHTO Type VI girders to build the bridge; this girder will give the 

minimum Sxy stress value in the deck. Generally, the sequence of 

suggested selection is AASHTO Type VI, Type V, Bulb-Tee 72, Bulb- 

Tee 63, Bulb-Tee 54 and Type IV, from better to worse, respectively.

Generally ANOVA was used for the purpose of determining the importance of 

treatment factors. The outputs generated by SAS had two option tables to be evaluated. 

Information concerning main effects and interactions was provided underneath the table 

under the heading “Type T’ and “Type III” sums of squares. In this study the Type I and 

Type III sums of squares were identical when the sample sizes were equal, since the 

factorial effects were then estimated independently of one another,
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In appendix D detailed ANOVA tables were listed for all areas and stress 

components. The ratio of mean square and MSE is the F value. When the F value is larger, 

the corresponding factor or factor combination is more significant. Tables 6.16 to 6.18 

summarized the comparison results of treatment factors GN, GT and TT. In the tables the 

symbol “>” represented “more significant,” the symbol “=” represented “had the equal

importance,” and the symbol “~” represented “almost equal”.

According to Table 6.16, in total nine areas, there were six areas in which 

treatment factor GN had the most important effects on deck stress component Sxx; while 

treatment factor TT had the least important effects in six areas. This phenomenon 

indicated that in transverse direction, girder number was the most significant factor to 

influence the deck stress behavior.

Table 6.17 showed that in longitudinal direction factor GN was still the key factor. 

It had the largest F values in seven of nine areas. While there were two areas the 

treatment factor TT was governing, in rest areas the F values of factor TT were very 

limited, and some of the values were close to zero. Therefore, the researcher determined 

that the effects of truck types on deck stress in the longitudinal direction were limited.

In Table 6.18 factor GN controlled six outside areas, while in three internal areas 

factor TT was governing. Compared to factor girder number and truck load type, factor 

girder type had the least significance on the shear stress of the bridge deck.
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Table 6.16 ANOVA Results Comparison -  Deck Stress Component Sxx

Area Comparison Results
Area 1 GT > GN > TT
Area II GN > GT > TT
Area III GT > GN > TT
Area IV GN > GT > TT
Area V GN > GT > TT
Area VI TT > GN > GT
Area VII GN > TT > GT
Area VIII GN > GT > TT
Area IX GN > TT > GT

Table 6.17 ANOVA Results Comparison -  Deck Stress Component Syy

Area Comparison Results

Area 1 GN > GT > TT (= 0)
Area II GN > GT > TT

Area III GN > GT > TT (= 0)

Area IV GN > GT > TT (= 0)
Area V TT > GN > GT

Area VI GN > GT > TT (= 0)

Area VII GN > GT > TT (= 0)
Area VIII TT > GN > GT

Area IX GN > GT > TT (= 0)

Table 6.18 ANOVA Results Comparison -  Deck Stress Component Sxy

Area Comparison Results
Area 1 GN > TT > GT
Area II GN > TT > GT
Area III GN > TT > GT
Area IV TT > GN = GT
Area V TT > GN > GT
Area VI TT > GT > GN
Area VII GN > GT > TT
Area VIII GN > TT > GT
Area IX GN > TT > GT
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6.4 Summary

In this chapter, statistical methods were introduced to analysis procedure to 

evaluate the stress behavior of the simple span bridge deck. Factorial experiment design 

was used to construct the statistical models in section 6.2. In section 6.3 the models were 

set up and corresponding evaluations were performed based on the treatment factor 

combinations (Girder Type, Girder Number) and (Girder Type, Truck Type).

Considering the stress behavior of the bridge deck and those two combinations, 

the results of the evaluation showed that 1) normally bridge built with AASHTO Type VI 

girder had the best performance on deck stress behavior; 2) normally bridges built with 

AASHTO Type IV or Bulb-Tee 54 girders had the worst performance on deck stress 

behavior. Detailed results could be referred to section 6.3 and chapter IX.

ANOVA was also performed, and comparisons were made among treatment 

factors GN, GT, and TT at the end of section 6.3. In longitudinal and transverse 

directions, girder number was the most important factor affecting the deck stress behavior, 

then factor girder type, then factor truck load type. For shear stress, both girder number 

and truck load type were the controlling factors, while girder type had less effects on it.
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CHAPTER VII

SIMPLE SPAN BRIDGE DIAPHRAGM PERFORMANCE 

UNDER THE HEAVY TRUCK LOAD

7.1 Introduction

In AASHTO LRFD bridge design specifications, the diaphragm is defined to be a 

transverse stiffener, which is provided between girders in order to maintain section 

geometry. It has been thought to contribute to the overall distribution of live loads in 

bridges. Consequently, most bridges constructed have intuitively included diaphragms. 

Depending on the type of bridge, the diaphragms may take different forms. Cast-in-place 

concrete diaphragms are most common in prestressed concrete I-girder bridge 

construction. A diaphragm terminated at the end of the sloping portion of the bottom 

flange is called “full depth.” Generally, the diaphragm is integral with the deck through 

continuous reinforcement, tied to the I-girder through anchor bars.

In this study, the full-depth diaphragms were terminated at the both ends of bridge 

supports, and two full-depth intermediate diaphragms were added at the distance of 40 

feet to both of the bridge supports. The finite element models of simple span bridges 

presented in chapter IV were employed to generate data for evaluations, which was 

presented in section 7.2.

158
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7.2 Effects of Heavy Truck Load on Simple
Span Bridge Diaphragm

The finite element models of simple span bridges presented in chapter IV were 

employed for evaluation. Models with six types of bridge girders and two types of girder 

spacing were analyzed. In the finite element analysis procedure, prismatic space truss 

members were used to model the end and intermediate diaphragms. In GTSTRUDL, the 

prismatic space truss member was limited to take only the axial forces. The maximum 

values obtained from each model under HS20-44 and FHWA 3S3 truck loads were 

compared to evaluate the impact on the diaphragms. Similar to the stress state of bridge 

deck and girders, for the short time effects of the 3 S3 truck load on the bridges, the load 

combination “Strength I Max” was the governing load combination to give the maximum 

axial forces of the diaphragms, while the load combination “Fatigue” was used to 

determine the long time effects of the 3S3 truck load. The diaphragm members were 

numbered and grouped as shown in Fig. 7.1 and Fig. 7.2.

I Bridge Deck
/

I

Bridge Girder

1

D1 D3 t D4 D2
L-----------------4Q_£J J, J,-----------------4H_£i-----------------,,

Fig. 7.1 Locations of End and Intermediate Diaphragms
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Fig. 7.2 Cross Section of Grouped Diaphragms

The maximum axial forces of each diaphragm under HS20-44 and FHWA 3 S3 

truck loads were computed. The maximum values were selected and the ratios of results 

for those two truck loads were calculated. The detail results were summarized in Table

7.1 and Table 7.2.

Table 7.1 Effects of FHWA 3S3 Truck Loads on Simple Span Bridge Diaphragms -  
Girder Spacing Eight ft

Ratio of FHWA 3S3 to HS20-44
Girder Type Strength 1 Max Fatigue

AASHTO Type IV 1.15 1.59
AASHTO Type V 1.21 1.64
AASHTO Type VI 1.27 1.64
AASHTO BT - 54 1.17 1.63
AASHTO BT - 63 1.17 1.63
AASHTO BT - 72 1.18 1.63

Table 7.2 Effects of FHWA 3S3 Truck Loads on Simple Span Bridge Diaphragms -  
Girder Spacing Five ft

Ratio of FHWA 3S3 to HS20-44
Girder Type Strength 1 Max Fatigue

AASHTO Type IV 1.23 1.63
AASHTO Type V 1.36 1.62
AASHTO Type VI 1.37 1.61
AASHTO BT - 54 1.29 1.64
AASHTO BT - 63 1.29 1.62
AASHTO BT - 72 1.37 1.61
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For the bridges with girder spacing eight ft., the ratio of maximum axial force 

varied between 1.15 and 1.27 on the short term effects, and between 1.59 and 1.64 on the 

long term effects. For the bridges with girder spacing five ft., the ratio of maximum axial 

force varied between 1.23 and 1.37 on the short term effects, and between 1.61 and 1.64 

on the long term effects. Even the bridge models were created with different types of 

girders; the differences of ratios were not very significant. Girder types were not the 

major parameters influencing effects of the heavy truck loads on simple span bridge 

diaphragms.

Even the values of ratios were significant, some of them were larger than 1.5. One 

thing should be noticed was that the maximum compressive axial force in the diaphragm 

was 70.67 kips, which would not lead the large axial stress which might be beyond the 

allowable axial stress of the concrete or reinforcement. The effects of FHWA 3S3 truck 

loads on the bridge diaphragms, which were designed based on the HS20-44 truck loads 

were limited.

Under the load combination “Fatigue,” the ratios were significantly greater than 

those under the load combination “Strength I max,” which means for the long term 

effects of FHWA 3S3 truck loads, the diaphragms would meet more critical situations 

that might need more additional inspections or frequent maintenances.

7.3 Summary

The short term and long term effects of FHWA 3S3 truck loads on simple span 

bridge diaphragms, which were designed based on HS20-44 truck loads, were evaluated 

in this chapter. The effects were determined limited, although the long term effects on the 

diaphragms might be more critical than the short term effects.
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CHAPTER VIII

BRIDGE COSTS STUDY

8.1 Introduction

The long term effects of heavy trucks on bridges and bridge decks play an 

important role in the bridge life evaluation. The selected bridges for this study were 

designed under AASHTO standard HS20-44 truck loads. Overloaded trucks traveling 

across these bridges will increase the cost o f maintenance and rehabilitation. An accurate 

estimate for the cost of the damage is hard to obtain since fatigue damage may lead to 

many actions including repairs, testing, rehabilitations, and replacements.

There were many studies done and methods used to evaluate the remaining lives 

o f bridge structures. These studies were sponsored by federal committees such as 

AASHTO and NCHRP and by State DOTs. The use of these methods in this study is 

hindered by the amount of data needed on trucks. The site-specific information available 

for this study on heavy truck loads was very limited and statistically insufficient for use 

with the NCHRP 495 approach or the other methodologies discussed above. The 

approach used in this study was a similar method that was used in the study prepared for 

OHIO DOT, and approved during the Project Review Committee meeting 2004.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



163

The data used in this study and presented here are based on Louisiana state project 

No. 736-99-1299 (also the LTRC project No. 05-2p) and Louisiana state project No. 736- 

99-1133 (also the LTRC project No. 03-2ST). The long term effects of FHWA 3S2 and 

3 S3 truck loads on Louisiana bridges were evaluated. The details can be referred to Saber 

et al (2005 and 2006).

8.2 Cost Model Setup

Fatigue is an important performance criterion for bridges that are evaluated. Most 

of the bridges in Louisiana are designed for 50 years fatigue life. Overloaded trucks will 

definitely shorten the life of the bridges. The bridges in this study are evaluated for 

fatigue cost based on the flexural and shear results o f the analyses performed in chapter 

IV. The bridge costs used in this study were based on projects completed by LADOTD 

during 2004. The average cost to replace concrete bridge girder and bridge deck was $90 

per square foot. The average daily traffic of the heavy truck is 2500 trucks per day.

The following equation was used to determine the percentage of the life of the 

bridge used when a truck crosses it:

(Ratio from analysis)3
% o f life = ------------------------------------------------------------------------* 100 (8.1)

(2500 trucks per day * 365 days per year * 50 years)

The estimated cost per trip across the bridge was obtained by multiplying the 

percentage of the life o f the bridge by the total cost of the bridge. In this study, the cost to 

replace concrete bridge girder and deck was considered to be $90 per square foot.
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Cost per Trip on Bridge = (% of life) * ($90 per square foot,) (8-2)

The effect of the heavy truck loads on the fatigue life of the bridge was ignored 

when the “ratio from analysis” was equal to or less than one. Therefore, the cost per trip 

for fatigue calculation is zero.

Since the trucks are operating on a broad route structure, the total damage cost 

was estimated on a per bridge basis. This applied to cases with no defined route for the 

vehicle. The weighted average over all spans lengths and number of spans was used.

The procedure used in calculating the weighted average cost per trip is presented 

as follows:

1. Multiply the value of the cost per trip by the number of bridges of certain span

length to get the cost per trip via all certain span length bridges.

2. Multiply the value of the cost per trip by the number of main spans to get the cost 

per trip via all certain span length.

3. Multiply the value of the cost per trip by the number of bridges of certain span 

length by the number of main spans to get the total cost via all certain span length 

bridges.

4. Multiply the values of the number of bridges and number of main spans.

5. Sum the values of the number of bridges, number of main spans, and the value of 

step 4.

6. Sum the values obtained from step 1, step 2, and step 3.

7. Divide results obtained from step 6 by the values obtained from 4 and 5,

respectively, to find the weighted average cost per trip.
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8.3 Long Term Effects on Simple Span Bridges

8.3.1 Long Term Effects of FHWA 3S2 Truck 
Loads on Simple Span Bridges

The long term effects of FHWA 3S2 trucks on simple span Louisiana state 

bridges were calculated based on flexural analyses performed in chapter IV. The span for 

most of these bridges was 20 ft. and the controlling factor was the high ratio of flexural 

moments. This study was originally performed in Louisiana state project No. 736-99- 

1299, “Effects of Hauling Timber, Lignite Coal, and Coke Fuel on Louisiana Highways 

and Bridges.” The bridge data was collected on the state bridges located on the routes 

mostly traveled by heavy trucks carrying those products. The results are presented in 

Table 8.1. The estimated fatigue cost per trip is $5.45.
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Table S.l Fatigue Cost Based on $9Qpsf and FHWA 3S2 Truck Load for Simply Supported Bridges with Design Load HS20-44*

FH W A3S2/H S20-44*

Span Number of Number of Total Total Length *
Ratio from 

Flexure Cost per Trip
Cost per Trip * # 
of Bridges * Total

Lengths Main Spans*3 Bridges*3 Length (ft)*3 # of Bridges*3 Analysis*3 % of Life*3 (Dollars)*3 Length*3
20 ft or 
shorter*3 419*3 630*3 8380*3 90220*3 1.22*3 0.0000039 * I89*3 $190,339*
25 ft*3 100+3 30*3 2500*3 S675*3 f.23*3 0.0000041 * $28* $15,885*
30 ft*3 3*-3 1*3 90*3 90*3 1.17*3 0.0000035 * $1* $77*
35 ft*3 18* 7*-3 630*3 94S*3 1.12*3 0.0000031 *3 $5* $1,157*
40 ft*3 57* 14*3 2280* 3720*3 1.07* 0.0000027 * $16* $12,181*
46 ft*3 86* 15* 3956* 5566*- 1.02*3 0.0000024 * $25* $19,974*
50 ft*3 79* 16*3 3950* 6400* 1.00* 0.0000022 * $24* $17,265*
56 ft*3 S3*3 3* 1848* 1848*3 0.98*3 0.0000000 * SO*3 $0*
60 ft*3 51* 12*3 3060*3 5220*3 1.63*3 0.0000024 *3 $20*> $17 893*
66 ft*3 20*3 4* 1320*3 1782*3 1.08* 0.0000027 * S10*3 $7,836*
70 ft*3 20*3 17* 1400*3 4760*3 1.11* 0.0000030 * S11*3 $11,541*
75 ft*3 15*3 7* 1125* 2400* 1.14*3 0.0000032 * $10* $7,341*
80 ft*3 11*3 2*5 8B0*3 880*3 1.16*3 0.0000035 * S8*3 $3,638*
85 ft*3 43* S*3 3655* 365S*3 1.19*3 0.0000037 * S36*1 $34 466*
90 ft*3 12* 5* 1080*3 1710*3 1.21*3 0.0000038 *3 S11*3 $6 307*
95 ft*3 12*3 4*5 1140*3 1520*3 1.22*3 0.0000040 * $12 ■ $8 022*
100 ft*3 S3*3 6* 5300* 5300*3 1.24* 0.0000042 *3 $60*3 $77,562*
105 ft*3 5* 4* 52S*3 1050*3 1.25* 0.0000043 * S6*3 $3,336*
110 ft*3 8* 1*3 880*3 880* 1.27*3 0.0000044 * S11*3 $9,285*
115 ft*3 4* 1*3 460*3 460*3 1.28*3 0.0000046 * $6*3 $2,605*
120 ft*3 45* 1*3 5400*3 5400*3 1.29*3 0.0000047 * S68+3 $367,746*
Sum*3 *5 * *-3 149481*3 * *5 * $814,457*

weighted averaae cost per trip*3 *5 * $5.45*
n i l

I—*
G\
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8.3.2 Long Term Effects of FHWA 3S3 Truck
Loads on Simple Span Bridges

The long term effects of FHWA 3 S3 trucks on simple span Louisiana state 

bridges were calculated based on flexural analyses performed in chapter IV. Similar to 

the 3S2 truck loads, the controlling factor was the high ratio of flexural moments. This 

study was originally performed in Louisiana state project No. 736-99-1133, “Monitoring 

System to Determine the Impact of Sugarcane Truckloads on Non-Interstate Bridges.” 

The bridge data was collected on the state bridges located on the routes mostly traveled 

by heavy trucks carrying those products. In this part of study, compared with the FHWA 

3S3 truck with GVW 120 kips, an alternative type of FHWA 3S3 truck with GVW 100 

kips, uniformly distributed tandem and tridem loads, was used, as shown in Fig. 8.1. The 

corresponding ratio of flexural moments was computed under this purpose. The results 

are presented in Table 8.2 and Table 8.3. The estimated fatigue costs per trip for those 

two types of FHWA 3S3 trucks are $11.75 and $0.90, respectively.

88t£ 88tf
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K

12 ft A f t , 27 ft 4 ft , 4 ft

i r 1r ' f ' r ir ;

8 8  v  8 8  k - 8 S it

T  T  T

~nr J O r

Fig. 8.1 FHWA 3S3 Truck Configuration with GVW=100 Kips, Uniformly Distributed 
Tandem and Tridem Loads
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Table 8.2 Fatigue Cost Based on $90psf and FHWA 3S3 Truck with GVW 120 Kips for Simply Supported Bridges with Design Load
HS20-44*3

FHWA3S3 (GVW » 120 Kips)/HS2C -44*3

Span
Length*3

Number of 
Main Spans*3

Number of 
Bridges*3

Total 
Length (ft)*3

Total Length * 
# of Bridges*3

Ratio from 
Flexure 

Analysis*3
% of Life*3 

(E-Oh3
Cost per Trip 

(Dollars)*3

Cost per Trip * # 
of Bridges * Total 

Length*3
20*3 L 3 2*3 SO*3 160*3 1.38*3 5.76*3 1.24*3 199.07*3
20*3 S*3 14*3 lOth3 140(h> 1.38*3 5.76*3 1.56*3 2177.34*3
2Q*3 6*3 f*3 120*3 120*3 1.38*3 5.76*3 1.87*3 223 9 5*3
2Q*3 8*7 2*3 160*3 32th3 1.3&*3 5.76*3 2.49*3 796.28*3
2S*3 4*31 2*3 100*3 20th3 1.42*3 6.28*3 1.69*3 338.89*3
5th3 37*3 1*3 1392*3 1392*3 107*3 2.69*3 10.09*3 14047.23*3
60*3 17*3 2*3 1020*3 204th3 1.02*3 2.33*3 6.41*3 13067.48*3
70*3 5*3 1*3 342*3 342*3 1.13*3 316*3 2.92*3 998.73*3
7th3 (h3 1*3 407*3 407*3 1.13*3 3.16*3 3.48*3 1414.44*3
7th3 21*3 1*3 1393*3 1393*3 1.13*3 3.16*3 11.89*3 16569.08*3
7CM 2th3 2*3 1402*3 2804*3 1.13*3 3.16*3 11.97*3 33567.75*3
7th3 28*3 2*3 1886*3 3772*3 113*3 316*3 16.10*3 60744.87*3
7th3 27*3 2*3 1890*3 3780*3 1.13*3 3.16*3 16.14*3 61002.81*3
94*3 20*3 I *3 1458*3 1458*3 126*3 4.38*3 17.26*3 25164.46*3

Sum*3 <3 34*3 *3 19588*3 *3 *3 *3 $230312.3*3
weiqhted averaoe cost per trip*3 *3 *3 $11.75*3

Os
00
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Table 8.3 Fatigue Cost Based on S90psf and FHWA 3S3 Truck with GVW 100 Kips for Simply Supported Bridges with Design Load
HS20-44*3
+j

FHWA 3S3 {GVW = 100 Kips)/HS2C -44*3

Span
Length*'

Number of 
Man Spans*3

Number of 
Bndges*3

Total 
Length (ft)*3

Total Length * 
#  of Bridges*3

Ratio from 
Flexure 

Analysis*3
% of Lif e*-1 

(E-6V3
Cost per Trip 

(Dollars I*3

Cost per Trip * # 
of Bridges * Total 

Length*3
20*3 4*3 2p 80*3 160*3 121*3 3.8&P 0.84*3 134.19*3
20*3 S*3 14*3 1Q0*3 1400*3 1 21*3 3.88*3 1.05*3 1467.73*3
20*3 S*3 1*3 120*3 120*3 1.21*3 3.8S*3 1.26*3 150.97*3
20*3 S*3 a*3 160*3 320*3 1.21*3 3,88*3 1.68*3 536.77*3
2S*3 4*j a*3 100*3 200*3 1.25*3 4.28*3 1.16*3 231.16*3
50*3 37*3 1+3 1392*3 1392*3 0.94*3 0*3 O.OO*3 0(H)*3
60*3 17*3 a*3 1020*3 2040*3 0.89*3 0*3 0.00*3 0.00*3
70*3 S*3 1*3 34a*3 342*-1 0.96*3 0*3 O.OO*3 O.OO*3
70*= S*3 1*3 407*3 407*3 0.96*3 0*3 0.00*3 0.00*3
70*3 21+3 1*3 1393*3 1393*3 0.96*3 0*3 0.00*3 0.00*3
70*3 20*3 a*3 1402+3 2804*3 0.96*3 0*3 0.00*3 0.00*3
70*3 28*3 a*3 m e *3 3T72*3 0.96*3 0*3 0.00*3 0.00*3
70*3 a?*3 2+> 1890*3 3780*3 0 96*3 O*3 0.00*3 0.00*3
94*p 20*3 1*3 1458*3 1458*3 1.06*3 2.61*3 10.28*3 14982.82*3

Sum*3 *5 34*3 *5 19588*3 <3 *3 *3 $17503.64*3
weighted averaoe cost per hip*3 *3 <3 $0.90*3

OnNO
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8.4 Long Term Effects on Continuous Span Bridges

As mentioned before, studies performed in this chapter were based on two 

Louisiana state projects No. 736-99-1299 and No. 736-99-1133. In project 736-99-1133, 

the number of continuous bridges was very limited. Therefore, only FHWA 3S2 truck 

load was used to evaluate the long term effects on continuous bridges. The long term 

effects of FHWA 3S2 trucks on continuous Louisiana state bridges were also calculated 

based on flexural analyses performed in chapter IV. The controlling factor was the high 

ratio of flexural moments. This study was also originally performed in Louisiana state 

project No. 736-99-1299, “Effects of Hauling Timber, Lignite Coal, and Coke Fuel on 

Louisiana Highways and Bridges.” The bridge data was collected on the state bridges 

located on the routes mostly traveled by heavy trucks carrying those products. The results 

are presented in Table 8.4. The estimated fatigue cost per trip is $8.86.
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Table 8.4 Fatigue Cost Based on $90psf and FHWA 3S2 for Continuous Bridges with Design Load HS20-44v

F H W A 3 S 2 / H S 2 0 - 4 4 .

Span Length,

Number 
of Main
Spans.,

Number
of

Bridges,

Total
Length

(ft).

Average 
Length 
of each 
Bridge,

Redo from Flexure 
Analysis , % of Life, Cost per Trip, CostperTrip ‘ Total Length,

.1
Positive
Moment,

Negative
Moment.

Positive
Moment,

Negrtrve
Moment

Posiflve
Moment,

Negative
Moment,

Positive
Moment,

Negtfrve
Moment,

20 or Shorter., 45., 3 , 900, 300, 1J» , 0 5 8 , 4.54E-06, 2.04E-O6 5 4 , s o . 53,313 , SO,

45 ft., 19., 2 , 740, 370, 1195, 1 5 6 , 252E-06, 8.25E-06, S 3 , $ 8 , 51,861 , 56,096 ,

a )  it., 150, 14, 7611, 536.5, 1.02, 1.48, 2.33E-06, 7.13E-06, S3 , 510 , 525,310 , 577,608 ,

55 ft, 3 , 1 , 166, 166, 1, 1.41, 2.20E-06, 6.17E-06, $ 1 , S 3 , 5163 , 5459,

60 ft., 14., 4 , 708, 177, 1.02, 1.35, 2.35E-06, 5.34E-06, $1 , S 3 , S796 , 51,806,

65 ft., 50, 6 , 3300, 550, 1.07, 1.28, 269E-06, 4 65E-06, 5 4 , $ 7 , 513,188 , 522.780 ,

70ft, 126, 15, 8030, 535.33, 1.1, 1.23, 2 92E-06, 4.06E-06, 5 4 , 56 , 533,893 , 547,176,

75 ft., 120, 10, 4765, 476.5, 1.13, 1.24, 3 13E-06, 4.13E-06, $ 4 , 5 5 , 819,195, 525,312 ,

80ft, 11, 2 , 730, 365, 1.15, 1 .27, 332E-06, 4.46E-06, S 3 , 5 4 , 52,392 , 53,212 ,

85 ft., 16, 5 , 1196, 2396, 1.17, 1.29, 350E-06, 4.75E-06, 5 2 , S3 , 52,716 , 53,685 ,

90ft, 85, 18, 6728, 373.78, 1.19, 1.32, 367E-06, 5.01E-06, 5 4 , $ 5 , 524,919 , 533,994 ,

95 ft., 36, 3 , 3044, 1014.67, 1.2, 1.34, 3  82E-06 5.23E-06, 510 , 51 4 , 531,893 , 543,575 ,

'tOO ft. 102, 13, 9251, 711.62, 1.22, 135 , 397E-06 5.42E-06, 5 8 , 5 1 0 , 570,521 , 596,282 ,

105 ft., 83, 20, 8036, 401,8, 1.23, 1.4, 4.10E-06, 6.08E-06, 5 4 , 5 7 , 535,749 , 552,972 ,

110 ft., 19, 2 , 1711, 855.5, 1.24, 1.38, 4.22E-06, 5.73E-06, 5 10 , 513 , $16,696 , 522,660 ,

120 ft., 40, 2 , 3570, 1785, 1.27, 1 .4 , 445E-06, 5.98E-06, 521 „ 5 2 9 , 576.504 , 5102,938 ,

125 ft, 19, 4 , 1558, m 1.28, 1A1, 4 55E-06, 6 09E-06, 5 5 , 5 6 , 57,449 , 59,974 ,

130 ft, 8, 2 , 864, 432, 1.28, 1.41, 4.64E-06, 6.18E-06, 5 5 , 5 7 , 54,676 , 56,229 ,
S u m ^ 4? *3 62,810^ +> 43 43 $371,231  ♦ $5 5 6 ,7 5 9  4

4= Weighted Averaqe Cost per Trip*3 43 +3 4= 4-1 45 $ 5 .9 1 43 $8.86 p
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8.5 Summary

The long term economic effects o f heavy truck loads on Louisiana bridges were 

evaluated in this chapter. The methodology of estimating the weighted average cost for 

truck traveling on the bridges was developed. For simple span and continuous span 

bridges on the routes of the timber, lignite coal, and coke fuel industry, the estimated 

costs for FHWA 3S2 trucks crossing selected bridges were determined. For simple span 

bridges on the routes of the sugarcane industry, the estimated costs for two different load 

configurations of FHWA 3S3 trucks crossing selected bridges were determined and 

compared. The truck configuration FHWA 3S3 with uniformly distributed tandem and 

tridem loads is recommended to be used with GVW of 100,000 lb. This configuration 

will result in the least fatigue cost on the network.
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CHAPTER IX

SUMMARY, CONCLUSIONS, AND 

RECOMMENDATIONS

9.1 Summary

The rapid growth of the economy has led to a rapid growth in the number of 

heavy vehicles in service, as well as a dramatic increase in the size and weight of heavy 

vehicles. The tug-of-war between the demand of increasing the truck weight to get more 

carrying capacity and reducing the risk and rehabilitation costs of the bridges existed for 

a long time. Therefore, evaluating the bridge characteristics under heavy truck loads is 

necessary and important.

The objectives of this research were to determine the effects of heavy truck loads 

on simple span and continuous bridges; to study the detailed effects on bridge 

components, including girders, decks and diaphragms and to investigate the economic 

impact when higher truck loads are applied to existing bridges. In pursuit of these 

objectives, the effects of heavy truck loads on bridges were investigated through 

AASHTO linear approach, finite element analysis, and some statistical analysis. The 

bridge parameters that were considered in this study include support condition, girder 

type, girder spacing, span length, and truck load applied on the bridge model. The bridge 

width and slab thickness remained constant at 30 ft. and 8 in., respectively.

173
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The evaluation of bridge girders were based on two different methods. When 

using AASHTO linear approach, simply supported bridges with span length from 20 ft to 

120 ft and continuous bridges with span length from 20 ft to 130 ft were evaluated under 

FHWA 3S2 truck load. While finite element analysis approach was used, medium span 

length simply supported bridges and continuous bridges with span length from 20 ft to 

105 ft were investigated under FHWA 3 S3 truck load.

Chapter V includes the study of bridge deck performance under the heavy truck 

loads. Short term and long term effects of FHWA 3S3 truck load on simple span bridges 

were determined in section 5.3, while long term effects of FHWA 3S2 and 3S3 truck load 

on continuous span bridges were determined in sections 5.2 and 5.3. As the truck load 

increased, the short term or long term effects o f heavy truck load on bridge decks cannot 

be neglected. In most cases the bridge decks are overstressed when 3S2 or 3 S3 trucks 

traveled on them.

To reduce the heavy work load and investigate the effects of different bridge 

parameters on bridge deck stress performance, the statistical analysis was conducted in 

Chapter VI. Simple span bridge decks were used as the analysis sample. A modified 

factorial experiment with crossed treatment factors was created to perform the probability 

based statistical analysis due to the determinacy of results from finite element models. 

The sequence of significance of analysis parameters was observed. Effects of bridge 

girder types on deck stress performances were discovered under different bridge 

geometric and truck load configurations.

The short term and long term effects of FHWA 3S3 truck loads on simple span 

bridge diaphragms which were designed based on HS20-44 truck loads were evaluated in
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Chapter VII. The effects were determined limited although the long term effects on the 

diaphragms might be more critical than the short term effects.

The economic impact of heavy truck loads on remaining safe life of bridges is 

very important and needs to be investigated since it has more practical meanings. The 

methodology of estimating the weighted average cost for a truck traveling on the bridges 

was developed. The estimated costs for simple span and continuous span bridges on the 

routes of the timber, lignite coal, and coke fuel industries with FHWA 3S2 truck loads 

were determined. The estimated costs for simple span bridges on the route of the 

sugarcane industry with two different load configurations of FHWA 3S3 truck load were 

determined and compared in Chapter VIII.

The original contributions of this research can be summarized as follows: 1) The 

effects of FHWA 3S2 and 3S3 truck configuration that used to haul timber and 

sugarcane products on bridge components were determined. 2) Statistical analyses for 

the evaluations o f simple span bridge decks under FHWA 3S2 truck load and standard 

design truck load were conducted. 3) The fiscal impacts of heavy trucks hauling timber 

and sugarcane products on Louisiana non-interstate bridges were obtained and gave 

recommendations of truck configurations used to haul those agricultural products were 

made.

9.2 Conclusions

From research performed in previous chapters, the following conclusions are

drawn:
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9.2.1 Bridge Girders

Evaluation Based on AASHTO Linear Approach Simply supported bridges 

with span length from 20 ft. to 120 ft., and continuous bridges with span length from 20 ft. 

to 130 ft. were analyzed by simplified AASHTO line girder analysis approach in section 

4.2. All bridges with moment or shear ratios greater than 1.1 would be considered 

overstressed. Results from simplified AASHTO line girder analysis approach indicated

• For simple span bridges, bridges with span length 40 ft. to 50 ft. did not exceed 

this limit; bridges with span length 20 ft. to 40 ft. and 50 ft. to 120 ft. exceeded 

this limit and were overstressed.

• For continuous span bridges, the ratios of positive moments of bridges with span 

length 20 ft. and 75 ft. to 120 ft. exceeded the criteria; ratios o f negative moments 

higher than the criteria for bridges with span length 40 ft. to 130 ft.; while the 

ratios of shear forces o f bridges with span length 55 ft. to 130 ft. exceeded the 

criteria. Those bridges with the higher ratios may have increased chances of 

cracks on systems.

Evaluation Based on Finite Element Approach Medium span length simply 

supported bridges and continuous bridges with span length from 20 ft. to 105 ft. were 

analyzed by finite element analysis approach in section 4.3. The criteria or overstressing 

was if  the ratios of tensile or compressive stresses at top or bottom surface of the bridge 

girders were greater than 1.1.

Based on analysis results described in section 4.3, for simple span bridges, the 

conclusions can be drawn as follow:
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• When the models contained five girders and had the girder spacing eight ft., as 

the truck load increased, the short-term effects of heavy truck load were limited; 

the long-term effects of heavy truck load were significant.

• When the models contained seven girders and had the girder spacing five ft., as 

the truck load increased, the short-term effects of heavy truck load were also 

limited; the long-term effects of heavy truck load were also significant.

• For the short-term effects of heavy truck loads, bridges with narrower girder 

spacing had a better capacity of resisting the impact; while for the long-term 

effects of heavy truck loads, bridges with narrower girder spacing had a better 

but limited capacity for impact resistance.

For those bridge models with three equal span length, simply supported girders, 

and continuous bridge decks on girders, conclusions for those models are given below:

• For those models containing five girders and with the girder spacing eight ft. and 

truck loads placed on the locations that would result maximum negative moment 

on bridge systems, as the truck load increased:

1) The short term effects on compressive stresses at the top of bridge girders 

were limited. The effects could be reduced to minimum when the bridge span 

lengths ranged from 30 ft. to 65 ft.

2) The short term effects on tensile stresses at the bottom of bridge girders were 

limited when the when the bridge span lengths ranged from 30 ft. to 105 ft. 

When the bridge span length varied from 20 ft. to 30 ft, the effects of higher 

truck loads could not be neglected.
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3) The long term effects on compressive and tensile stresses were significant, no 

matter at the top or bottom of bridge girders. In a long time period, those 

bridge girders may experience compressive and tensile cracks and require 

additional inspections along with early and frequent maintenance.

• For those models containing five girders and with the girder spacing eight ft. and 

truck loads placed on the locations that would result in maximum positive 

moment on bridge systems, as the truck load increased:

1) The short term effects on compressive stresses at the top of bridge girders 

were limited when the when the bridge span lengths ranged from 35 ft. to 105 

ft.. When the bridge span length varied from 20 ft. to 35 ft, the effects of 

higher truck loads could not be neglected.

2) The short term effects on tensile stresses at the bottom of bridge girders were 

limited when the when the bridge span lengths ranged from 40 ft. to 105 ft. 

When the bridge span length varied from 20 ft. to 40 ft, the effects of higher 

truck loads could not be neglected.

3) The long term effects on compressive and tensile stresses were significant, no 

matter at the top or bottom of bridge girders. In a long time period, those 

bridge girders may experience compressive and tensile cracks and require 

additional inspections along with early and frequent maintenance.

• For those models containing seven girders and with the girder spacing five ft. and 

truck loads were placed on the locations that would result in maximum negative 

moment on bridge systems, as the truck load increased:
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1) The short term effects on compressive stresses at the top of bridge girders 

were limited when the when the bridge span lengths ranged from 30 ft. to 105 

ft. When the bridge span length varied from 20 ft. to 30 ft, the effects of 

higher truck loads could not be neglected.

2) The short term effects on tensile stresses at the bottom of bridge girders were 

limited when the when the bridge span lengths ranged from 30 ft. to 105 ft. 

When the bridge span length varied from 20 ft. to 30 ft, the effects of higher 

truck loads could not be neglected.

3) The long term effects on compressive and tensile stresses were significant, no 

matter at the top or bottom of bridge girders. In a long time period, those 

bridge girders may experience compressive and tensile cracks and require 

additional inspections along with early and frequent maintenance.

• For those models containing seven girders and with the girder spacing five ft. and 

truck loads were placed on the locations that would result in maximum positive 

moment on bridge systems, as the truck load increased:

1) The short term effects on compressive stresses at the top of bridge girders 

were limited when the when the bridge span lengths ranged from 35 ft. to 105 

ft.. When the bridge span length varied from 20 ft. to 35 ft, the effects of 

higher truck loads could not be neglected.

2) The short term effects on tensile stresses at the bottom of bridge girders were 

limited when the when the bridge span lengths ranged from 35 ft. to 105 ft. 

When the bridge span length varied from 20 ft. to 35 ft., the effects of higher 

truck loads could not be neglected.
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3) The long term effects on compressive and tensile stresses were significant, no 

matter at the top or bottom of bridge girders. In a long time period, those 

bridge girders may experience compressive and tensile cracks and require 

additional inspections along with early and frequent maintenance.

• In general, the short term effects of heavy truck loads on continuous bridge 

girders with span length 40 ft. to 105 ft. were limited; bridge girders with span 

length shorter than 40 ft. might have more chances of cracking and need more 

and frequent inspections. The long term effects of heavy truck loads on 

continuous bridge girders with all evaluated span length were significant and 

cannot be neglected. Bridges with narrower spacing had better but very limited 

capacity of resisting the higher truck loads’ impacts.

• Compared with finite element analysis, results from simplified AASHTO linear 

analyses methods are conservative for typical multi-girder bridges. Since linear 

girder analyses methods are relatively simple and conservative, they can be used 

as a preliminary tool. If the estimated performance of bridges did not meet the 

requirement, then a more detailed method, such as finite element analysis method, 

could be used.

9.2.2 Bridge Decks

Short term and long term effects of FHWA 3 S3 truck load on simple span bridges 

were determined in section 5.3, while long term effects of FHWA 3S2 and 3S3 truck load 

on continuous span bridges were evaluated in sections 5.2 and 5.3. Conclusions related to 

those models are given as follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



181

• While FHWA 3S2 truck load was put on the continuous span bridge models with

three equal span lengths:

1) For span length ranging from 20 ft. to 30 ft., the long term effects on 

longitudinal and transverse directions were limited, but effects on shear stress 

were significant. Those short span continuous bridges might meet more shear 

cracks.

2) For span length ranging from 30 ft. to 60 ft., the long term effects on 

transverse stress and shear stress were limited, but effects on longitudinal 

stress were significant. Continuous bridges with those span lengths might 

meet more cracks in longitudinal direction.

3) For span length ranging from 60 ft. to 120 ft, the long term effects on all three 

directions were significant. Those continuous bridges might meet more 

cracks in all three directions.

• While FHWA 3 S3 truck load was put on the simple span bridge models with

span length 90 ft. and built by AASHTO Bulb-Tee 54, 63 and 72 girders:

1) The short term effects on longitudinal and transverse stresses were not as 

significant as the effect on shear stress. The bridge deck had more chances to 

experience shear cracks and require additional inspections along with early 

and frequent maintenance. The sequence of bridge deck performance were 

bridges constructed with AASHTO Bulb-Tee 72 girders, Bulb-Tee 63 girders, 

and Bulb-Tee 54 girders, from better to worse, respectively.

2) The long term effects on longitudinal stresses were limited. The long term 

effects on transverse and shear stresses were significant and might cause
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more cracks. Such cracks would require additional inspections along with 

early and frequent maintenance.

• While FHWA 3 S3 truck load was put on the continuous span bridge models with 

three equal span lengths:

1) For span length of 20 ft, the long term effects on longitudinal and transverse 

directions were limited, but effects on shear stress were significant. 

Continuous bridges with span lengths of 20 ft. might have more shear cracks.

2) For span length of 30 ft, the long term effect on transverse direction was 

limited, but effects on other two directions were significant. Continuous 

bridges with this span length had a higher chance to experience cracks in 

longitudinal and shear directions.

3) For span length ranging from 60 ft. to 105 ft, the long term effects on all three 

directions were significant. Those continuous bridges might meet more 

cracks in all three directions, which might need additional inspections along 

with early and frequent maintenance.

9.2.3 Statistic Analysis of Bridge Deck Data

Factorial experiment design was used to construct the statistical model and 

corresponding analyses were performed in chapter VI. Conclusions related to this model 

are given below:

• Evaluations based on the treatment factor combinations (Girder Type, Girder 

Number) and (Girder Type, Truck Type). Results indicated that generally bridges 

built with AASHTO Type VI girders had the best performance on deck stress 

behavior, while bridges built with AASHTO Type IV or Bulb-Tee 54 girders had
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the worst performance on deck stress behavior. Detailed results are listed in 

Table 9.1 to Table 9.4. In the tables the symbols “>” and “=” represented the 

same meaning as in chapter VI.

Table 9.1 Statistical Analyses Results -  Treatment Factor GT and GN, Girder Spacing 
Eight ft.

Stress Type Comparison Results
Longitudinal Type VI > BT-72 > BT-63 > Type V > BT-54 > Type IV
Transverse Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV

Shear Type VI > Type V > BT-72 > BT-63 > BT-54 = Type IV

Table 9.2 Statistical Analyses Results -  Treatment Factor GT and GN, Girder Spacing 
five ft.

Stress Type Comparison Results
Longitudinal Type VI > BT-72 > Type V > Type IV > BT-63 > BT-54
Transverse Type VI > BT-72 > Type V = BT-63 > BT-54 > Type IV

Shear Type VI > Type V > BT-72 > BT-63 = BT-54 = Type IV

Table 9.3 Statistical Analyses Results -  Treatment Factor GT and TT, Truck Load Type 
HS20-44

Stress Type Comparison Results
Longitudinal Type VI > Type V > BT-72 > BT-63 > BT-54 = Type IV
Transverse Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV

Shear Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV

Table 9.4 Statistical Analyses Results -  Treatment Factor GT and TT, Truck Load Type 
FHWA 3S3

Stress Type Comparison Results
Longitudinal Type VI > BT-72 > Type V > Type IV > BT-63 > BT-54
Transverse Type VI > BT-72 = Type V > BT-63 > BT-54 > Type IV

Shear Type VI > Type V > BT-72 > BT-63 > BT-54 > Type IV
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• Generally ANOVA was used for the purpose of determining the importance of 

treatment factors. The conclusion was that among three treatment factors, girder 

number had the most significance. Detailed results were listed in Table 9.5.

Table 9.5 Statistical Analyses Results for ANOVA

Stress Type Comparison Results
Longitudinal GN > GT > TT
Transverse GN > GT > TT

Shear GN > TT > GT

9.2.4 Bridge Diaphragms

• The short term and long term effects of FHWA 3 S3 truck loads on simple span 

bridge diaphragms which were designed based on HS20-44 truck loads were 

evaluated in chapter 7.2. The conclusions were drawn as follows:

1) The long term effects on diaphragms might be more critical than the short 

term effects.

2) The results indicated that even ratios of axial forces might be beyond the 

criteria, the effects on diaphragms were limited because the axial forces in 

diaphragms were limited.

9.2.5 Bridge Costs

For simple span and continuous span bridges on the routes of the timber, lignite 

coal, and coke fuel industries, the estimated cost for FHWA 3S2 truck cross selected 

bridges were determined. While for simple span bridges on the routes of the sugarcane 

industry, the estimated cost for two different load configurations of FHWA 3 S3 truck 

cross selected bridges were determined and compared. Evaluation results indicated the 

key findings below:
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• If increasing the truck load into FHWA 3S2 with GVW 108,000 lb, bridge 

fatigue costs for simple span bridges on the route of timber, lignite coal, and coke 

fuel industries is $5.45 per truck per bridge.

• If increasing the truck load into FHWA 3S2 with GVW 108,000 lb, bridge 

fatigue costs for continuous span bridges on the route of timber, lignite coal, and 

coke fuel industries is $8.86 per truck per bridge.

• If increasing the truck load into FHWA 3 S3 with GVW 120,000 lb, bridge 

fatigue costs for simple span bridges on the routes of the sugarcane industry is 

$11.75 per truck per bridge.

• If increasing the truck load into FHWA 3S3 with GVW 100,000 lb, where the 

3 S3 truck load is uniformly distributed and the steering axle is 12,000 lb, bridge 

fatigue costs for simple span bridges on the routes of the sugarcane industry is 

$0.90 per truck per bridge.

9.3 Recommendations

• AASHTO linear girder analysis methods are relatively simple and conservative; 

therefore, they can be used as a preliminary tool. It is recommended using finite 

element analysis approach to get the more accurate and detailed results.

• Based on results of the finite analysis method, for medium span length simply 

supported bridges, which are often traveled by FHWA 3S3 truck configurations, 

it is recommended to have additional inspections along with early and frequent 

maintenance because the long term effects of heavy truck loads on those bridges 

cannot be neglected.
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• For continuous span bridges with girder spacing eight ft. and often traveled by 

FHWA 3S2 truck configurations, it is recommended to have the bridge span 

length varied from 40 ft. to 105 ft. to better resist the short term impact on bridge 

girders.

• For continuous span bridges with girder spacing five ft. and often traveled by 

FHWA 3S2 truck configuration, it is recommended to have the bridge span 

length varied from 35 ft. to 105 ft. to better resist the short term impact on bridge 

girders.

• The long term effects of heavy truck loads on simple and continuous bridges are 

significant. It is recommended to have additional inspections along with early 

and frequent maintenance on bridge girders.

• Continuous span bridges with span length varied from 20 ft. to 105 ft. were 

evaluated in this study. However, bridges with span lengths not in this range need 

to be investigated in further research.

• While truck load increased, all types of bridge decks are overstressed, and bridge 

decks may experience more cracks and require additional inspections along with 

early and frequent maintenance.

• Despite the economic considerations, it is recommended to use AASHTO Type 

VI girders to construct bridges for better deck performance. It is not 

recommended to use AASHTO Type IV or Bulb-Tee 54 girder to construct the 

bridges because of the poor performance

• For those routes used by the timber, lignite coal, and coke fuel industries, it is not 

recommended to increase the GVW on FHWA 3S2 vehicles to 108,000 lb. due to
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the high fatigue cost. If this GVW increase is necessary, the vehicle’s axle 

configuration should be modified

• It is recommended that truck configuration FHWA 3S3 be used to haul sugarcane 

with GVW of 100,000 lb. uniformly distributed. This configuration will result in 

the least fatigue cost on the network.

• It is not recommended that truck configuration FHWA 3S3 be used to haul sugar 

cane with GVW of 120,000 lb. This configuration will result in high fatigue cost 

on the network and could cause failure in bridge girders and bridge decks.

• It is recommended that further cost evaluations of different truck configurations 

on bridges be conducted.
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ACRONYMS, ABBREVIATIONS, & SYMBOLS

3S2 = truck with three axles on tractor and a semi-trailer with two axles 

3 S3 = truck with three axles on tractor and a semi-trailer with three axles 

AASHTO = American Association of State Highway and Transportation Officials 

ADT = average daily traffic, vehicles/day 

ANOVA = Analysis of variance

DOTD = Department of Transportation and Development 

FHWA = Federal Highway Administration 

ft = foot

GVW = gross vehicle weight 

kip -1 ,000  lb.

LA-DOTD = Louisiana Department of Transportation and Development 

lb. = pound

LRFD = Load Resistance Factor Design

LTRC = Louisiana Transportation Research Center

psf = pounds per square foot
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Table A.1 Bridge Models used for Girder Analysis by AASHTO Linear Approach

Support Condition Span Length Range Truck Loads

Simply Supported 20 ft. -  120 ft.
HS20-44 & FHWA 
3S2 (GVW 108 Kips)

Continuous 20 ft. -  130 ft.
HS20-44 & FHWA 
3S2 (GVW 108 Kips)

Table A.2 Bridge Models used for Girder Analysis by Finite Element Approach

Support
Condition

Span Length 
Range

Girder
Number Girder Type Truck Loads

Simply
Supported 90 ft. ~ 120 ft.

5 Girders or 7 
Girders

AASHTO Type IV, Type 
V, Type VI, BT-54, BT- 
63 and BT - 72

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

Continuous 20 ft.-1 0 5  ft.
5 Girders or 7 
Girders

AASHTO Type IV, Type 
V, Type VI, BT-54, BT- 
63 and BT - 72

HS20-44 & FHWA 
3S2 (GVW 108 Kips)

Table A.3 Bridge Models used for Bridge Deck Evaluation

Support
Condition

Span Length 
Range

Girder
Number Girder Type Truck Loads

Simply Supported 90 ft. 5 Girders
AASHTO BT-54, 
BT-63 and BT - 72

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

Continuous
20 ft. -  105 
ft. 5 Girders AASHTO Type IV

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

Continuous
20 ft. -  120 
ft. 5 Girders AASHTO Type IV

HS20-44 & FHWA 
3S2 (GVW 108 Kips)
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Table A.4 Bridge Models used for Statistic Analysis

Girder
Type

# o f
Girders

Span
Length

# o f
Spans

Support
Condition Applied Truck Load

AASHTO 
Type IV 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO 
Type V 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO 
Type VI 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-54 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-63 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-72 5 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO 
Type IV 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO 
Type V 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO 
Type VI 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-54 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-63 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

AASHTO
BT-72 7 90 ft 1

Simply
Supported

HS20-44 & FHWA 
3S3 (GVW 120 Kips)

Table A.5 Bridge Models used for Bridge Diaphragm Evaluation

Support
Condition

Span Length 
Range

Girder
Number Girder Type Truck Loads

Simply
Supported 90 ft. ~ 120 ft.

5 Girders 
or
7 Girders

AASHTO Type IV, Type 
V, Type VI, BT-54, BT-63 
and BT - 72

HS20-44 & 
FHWA 3S3 
(GVW 120 Kips)
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Table A.6 Bridge Models used for Cost Study

Support
Condition

Span Length 
Range Truck Loads

Simply Supported 20 ft. -  120 ft. HS20-44 & FHWA 3S2 (GVW 108 Kips)

Simply Supported 20 ft. -  95 ft. HS20-44 & FHWA 3S3 (GVW 120 Kips)

Simply Supported 20 ft. -  95 ft.
HS20-44 & FHWA 3S3
(GVW 100 Kips, Uniformly Distributed)

Continuous 20 ft.-1 3 0  ft. HS20-44 & FHWA 3S2 (GVW 108 Kips)
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B.l GTSTRUDL Input File of Simple Span Bridge 
with Truck Load FHWA 3S3 and 

AASHTO Bulb-Tee 54 Girder

STRUDL 'Model 326' 'BT-54 GIRDER, 0 BRIDGE SKEW, GIRDER SPACING 8 ft, SPAN LENGTH 90 
ft, 0 DIAPHRAGM SKEW’
UNITS inch
PRINT GENERATE OFF

-   — —  —       --
$ Generate Joints to Connect Girder Brick Elements
$ = -  —  — -  - - =  =  - =  - =  —  - = = =  -

GENERATE 4 JOINTS ID 1000001 1 X  LIST 8 18 24 34 Y  0 Z 0 
REPEAT 1 ID 4 Y  8.5 
REPEAT 1 ID 100 Z -12

GENERATE 2 JOINTS ID 1000009 1 X  LIST 18 24 Y  19.5 Z 0 
REPEAT 2 ID 2 Y  10 
REPEAT 1 ID 100 Z -12

GENERATE 4 JOINTS ID 1000015 1 X  LIST 0 18 24 42 Y  49.5 Z 0 
REPEAT 1 ID 4 Y  4.5 
REPEAT 1 ID 100 Z -12

$= '- ^ —         —  ■ -----------------------------------------------
$ Generate Girder Brick Elements
$ —  —          —   =  -=  =  = ..
TYPE TRIDEMINSIONAL
GENERATE 3 ELEMENTS ID 'G-100011' 1 FROM 1000001 1 TO 1000002 1 TO 1000006 1 TO 
1000005 1 TO 1000101 1 TO 1000102 1 TO 1000106 1 TO 1000105 1
GENERATE 1 ELEMENTS ED 'G-100014' 0 FROM 1000006 0 TO 1000007 0 TO 1000010 0 TO 
1000009 0 TO 1000106 0 TO 1000107 0 TO 1000110 0 TO 1000109 0
GENERATE 2 ELEMENTS ED 'G-100015' 1 FROM 1000009 2 TO 1000010 2 TO 1000012 2 TO 
1000011 2 TO 1000109 2 TO 1000110 2 TO 1000112 2 TO 1000111 2
GENERATE 1 ELEMENTS ID 'G-100017' 1 FROM 1000013 0 TO 1000014 0 TO 1000017 0 TO 
1000016 0 TO 1000113 0 TO 1000114 0 TO 1000117 0 TO 1000116 0 
GENERATE 3 ELEMENTS ID 'G-100018' 1 FROM 1000015 1 TO 1000016 1 TO 1000020 1 TO 
1000019 1 TO 1000115 1 TO 1000116 1 TO 1000120 1 TO 1000119 1

$-—           _ ^ = .—=     --
$ Copy Generated Girder Section and Copy it Down Entire Length o f  Bridge
$= ^ _      ■■ ■  --------
DEFINE OBJECT 'SECTION JOINTS 1000001 TO 1000022 1000101 TO 1000122, ELEMENTS 'G- 
100011’ TO 'G-100020'
COPY OBJECT 'SECTION' REPEAT 89 TIMES JOINT INCR 100 ELEMENT INCR 10 TRANSLATE Z 
-12

$ - = = .  = = -  — ^ = —  — = = = ^ .  ^ ==      - --= ^  ■ ..

$ Copy Generated Girder and Copy it Across The Entire Width o f  Bridge
$ - = =  - = = -  — = ...........- = = -  — —   — =     ■■— -  — — ------------------—  = - =

DEFINE OBJECT ’GIRDER A ’ JOINTS EXISTING 1000001 TO 1009022, ELEMENTS EXISTING 'G- 
100011’ TO'G-100910'
COPY OBJECT 'GIRDER A' REPEAT 1 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X  63
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DEFINE OBJECT 'GIRDER B' JOINTS EXISTING 2000001 TO 2009022, ELEMENTS EXISTING 'G- 
200011'TO 'G-200910'
COPY OBJECT 'GIRDER B' REPEAT 2 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X 96
DEFINE OBJECT 'GIRDER C' JOINTS EXISTING 4000001 TO 4009022, ELEMENTS EXISTING 'G- 
400011 'TO'G-400910'
COPY OBJECT 'GIRDER C' REPEAT 1 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X 63

$ = = = = — = = —  -  — — -------------- — -  —  — —  —  —

$ Generate Joints to Connect Deck Plate Elements
$— — =- ——  — —  == ==^  ==== -_^== —^
GENERATE 2 JOINTS ID 1000023 1 X  LIST 0 42 Y  54.01 Z 0
REPEAT 30 ID 300 Z -36

GENERATE 2 JOINTS ED 2000023 1 X  LIST 63 105 Y  54.01 Z 0 
REPEAT 30 ID 300 Z -36

GENERATE 2 JOINTS ID 3000023 1 X  LIST 159 201 Y  54.01 Z 0 
REPEAT 30 ID 300 Z -36

GENERATE 2 JOINTS ID 4000023 1 X  LIST 255 297 Y  54.01 Z 0 
REPEAT 30 ID 300 Z -36

GENERATE 2 JOINTS ID 5000023 1 X  LIST 318 360 Y  54.01 Z 0 
REPEAT 30 ID 300 Z -36

GENERATE 2 JOINTS ID 2000025 1000000 X  LIST 132 228 Y  54.01 0 Z 0 0 
REPEAT 30 ID 300 Z -36

$= — -  —     —-  -----------------------------------------------------------------
$ Generate Deck Plate Elements
$ — ^ =  , .  ^  =  -    ■       -

TYPE PLATE
GENERATE 5 ELEMENTS ID 'P-100011' 100000 FROM 1000023 1000000 TO 1000024 1000000 TO 
1000324 1000000 TO 1000323 1000000 
REPEAT 29 ID 10 FROM INCR 300 TO INCR 300

GENERATE 1 ELEMENTS ID 'P-100012' 0 FROM 1000024 0 TO 2000023 0 TO 2000323 0 TO 1000324 
0
REPEAT 29 ID 10 FROM INCR 300 TO INCR 300

GENERATE 2 ELEMENTS ID 'P-200012' 100000 FROM 2000024 1000000 TO 2000025 1000000 TO 
2000325 1000000 TO 2000324 1000000 
REPEAT 29 ID 10 FROM INCR 300 TO INCR 300

GENERATE 2 ELEMENTS ID 'P-200013' 100000 FROM 2000025 1000000 TO 3000023 1000000 TO 
3000323 1000000 TO 2000325 1000000 
REPEAT 29 ID 10 FROM INCR 300 TO INCR 300

GENERATE 1 ELEMENTS ID 'P-400012' 0 FROM 4000024 0 TO 5000023 0 TO 5000323 0 TO 4000324  
0
REPEAT 29 ID 10 FROM INCR 300 TO INCR 300
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 —  —   ■  - =
$ Generate Rigid Members to Connect Girder Elements to Plate Elements
S— —    —

TYPE SPACE TRUSS
GENERATE 2 MEMBERS ID 'R-10001' 1 FROM 1000019 3 TO 1000023 1 
REPEAT 4 ID 10000 FROM INCR 1000000 TO INCR 1000000 
REPEAT 30 ID 10 FROM INCR 300 TO INCR 300

$=.     -----------------------------

$ Generate Diaphragm Members at Top o f  Bottom Flange
— — —— —  ...

$ END DIAPHRAGMS 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID 
GENERATE 4 MEMBERS ID

'B-1011' 1 FROM 1000008 
'B-1021' 1 FROM 1000018 
'B-1031' 1 FROM 1009008 
'B-1041' 1 FROM 1009018 
'B-1051' 1 FROM 1004008 
'B-1061' 1 FROM 1004018 
'B-1071' 1 FROM 1005008 
'B-108T 1 FROM 1005018

1000000 TO 2000005 1000000 
1000000 TO 2000015 1000000 
1000000 TO 2009005 1000000 
1000000 TO 2009015 1000000 
1000000 TO 2004005 1000000 
1000000 TO 2004015 1000000 
1000000 TO 2005005 1000000 
1000000 TO 2005015 1000000

$  — — -    —  — —  -  ---------
$ Define Supports
$ ~   —  —  -  - = =   — -  ■ —

STATUS SUPPORT JOINTS -
1000001 TO 5000001 B Y  1000000 1000002 TO 5000002 B Y  1000000 1000003 TO 5000003 B Y

1000000 1000004 TO 5000004 B Y  1000000 -
1009001 TO 5009001 BY  1000000 1009002 TO 5009002 B Y  1000000 1009003 TO 5009003 BY

1000000 1009004 TO 5009004 B Y  1000000

$_            ,  _   „ -----------
$ Set Boundary Conditions
$=:  ^  ^    ^  — —■  —  — ==   
JOINT RELEASES

$ GIRDER BASE  
$ END PIN CONDITIONS
1000001 TO 1000004 2000001 TO 2000004 3000001 TO 3000004 4000001 TO 4000004 5000001 TO 

5000004 MOMENT X Y
1009001 TO 1009004 2009001 TO 2009004 3009001 TO 3009004 4009001 TO 4009004 5009001 TO 

5009004 MOMENT X Y

$= — ■— — — . —  ̂  ̂ ^
$ Define Element Properties
$ =  =    ■-  —  —

MATERIAL CONCRETE ALL ELEMENTS 
ELEMENT PROPERTIES
EXISTING 'G-100011' TO 'G-100910' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-200011' TO 'G-200910' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-300011' TO 'G-300910' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-400011' TO 'G-400910' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-500011' TO 'G-500910' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'P-100011' TO 'P-100303' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-200011’ TO 'P-200303' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-300011' TO 'P-300303' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-400011' TO 'P-400303' TYPE 'SBCR' THICKNESS 8
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EXISTING ’P-500011’ TO 'P-500303' TYPE 'SBCR' THICKNESS 8

$ .... —  = ----
$ Define Member Properties
$ —   —  — _
MATERIAL CONCRETE ALL MEMBERS 
MEMBER PROPERTIES PRISMATIC 
EXISTING 'R-10001' TO 'R-50302' AX 8

MEMBER PROPERTIES PRISMATIC 
EXISTING 'B-1011' TO 'B-1084' AX 330

$   =  -=_==—    --------
$ Define Supports o f  Deck
$ --------— '— ■ —  -  ^  = =  == - — =

STATUS SUPPORT JOINTS -
1000023 TO 5000023 BY  1000000 1000024 TO 5000024 B Y  1000000 - 
1009023 TO 5009023 BY  1000000 1009024 TO 5009024 BY  1000000

$       -------------------------------
$ Set Boundary Conditions o f  Deck
$        _
JOINT RELEASES

$ DECK BASE  
$ END CONDITIONS

1000023 TO 1000024 2000023 TO 2000024 3000023 TO 3000024 4000023 TO 4000024 5000023 TO
5000024 FORCE Y
1009023 TO 1009024 2009023 TO 2009024 3009023 TO 3009024 4009023 TO 4009024 5009023 TO
5009024 FORCE Y
1000023 TO 1000024 2000023 TO 2000024 3000023 TO 3000024 4000023 TO 4000024 5000023 TO
5000024 MOMENT X  Y
1009023 TO 1009024 2009023 TO 2009024 3009023 TO 3009024 4009023 TO 4009024 5009023 TO
5009024 MOMENT X Y

$          „ -----
$ Define Loading
$    —  ^  ,      m      ----------------------------

UNITS LBS FT

LOADING 'DC1' 'DEAD LOAD STRUCTURAL COMPONENTS OF ELEMENTS’
ELEMENT LOADS
EXISTING 'G-100011' TO 'G-100910' BODY FORCES GLOBAL BY -150  
EXISTING 'G-200011' TO 'G-200910' BO DY FORCES GLOBAL BY -150 
EXISTING 'G-300011’ TO 'G-300910' BO DY FORCES GLOBAL BY  -150 
EXISTING 'G-400011' TO 'G-400910' BODY FORCES GLOBAL BY -150  
EXISTING 'G-500011' TO 'G-500910' BO DY FORCES GLOBAL BY -150  
EXISTING 'P-100011’ TO 'P-100303' BODY FORCES GLOBAL BY  -150  
EXISTING 'P-200011' TO 'P-200303' BODY FORCES GLOBAL BY -150  
EXISTING 'P-300011’ TO 'P-300303’ BODY FORCES GLOBAL BY -150  
EXISTING 'P-400011’ TO 'P-400303' BO DY FORCES GLOBAL BY -150  
EXISTING 'P-500011' TO 'P-500303' BODY FORCES GLOBAL BY -150

DEAD LOAD 'DC2' T)EAD LOAD STRUCTURAL COMPONENTS OF MEMBERS' DIRECTION -Y - 
MEMBERS 'B-1011' TO 'B-1014' 'B-1021' TO 'B-1024' 'B-1031' TO 'B-1034' 'B-1041' TO 'B-1044' -
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'B-1051' TO 'B-1054' 'B-1061' TO 'B-1064' 'B-1071' TO 'B-1074' 'B-1081' TO 'B-1084'

LOADING 'LS' 'LIVE LOAD SURCHARGE'
ELEMENT LOADS
EXISTING 'P-100011' TO 'P-100303' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-200011' TO 'P-200303' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-300011' TO 'P-300303' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-400011' TO 'P-400303' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-500011' TO 'P-500303' SURFACE FORCES GLOBAL PY -31

LOADING 'LL1' 'VEHICULAR LIVE LOAD HS20-44'
JOINT LOADS 

$ Truck 1 HS20-44 
3002725 3002723 FORCE Y  -4000 
3004225 3004223 FORCE Y -16000 
3005725 3005723 FORCE Y -16000

LOADING 'LL2' VEHICULAR LIVE LOAD HS20-44 Fatigue’
JOINT LOADS 

$ Truck 2 HS20-44 Fatigue 
3002425 3002423 FORCE Y  -4000 
3003925 3003923 FORCE Y  -16000 
3006925 3006923 FORCE Y -16000

LOADING 'LL3' VEHICULAR LIVE LOAD SugerCane'
JOINT LOADS 

$ Truck 3 SugerCane 
3002125 3002123 FORCE Y -6000 
3003325 3003323 FORCE Y -12000 
3003625 3003623 FORCE Y -12000 
3006325 3006323 FORCE Y  -10000  
3006625 3006623 FORCE Y  -10000 
3006925 3006923 FORCE Y  -10000

LOADING 'WS' W IN D  LOAD ON STRUCTURE'
ELEMENT LOADS
'G-500013' TO 'G-500903' BY  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13  
'G-500014' TO 'G-500904' B Y  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13 
'G-500015' TO 'G-500905' BY  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13 
'G-500016' TO 'G-500906' BY  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13  
'G-500017' TO 'G-500907' BY  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13  
'G-500020' TO 'G-500910' BY  10 SURFACE FORCES FACE 4 GLOBAL PX -50.13

$  -  - - =  - - =  ■—  --=  —-   —=         ------
$ Factored Loads
$- - = =         - =   -    - =  -== —-
LOADING COMBINATION 11 'STRENGTH I MAXIMUM - HS20-44' SPECS 'DC1' 1.25 T>C2’ 1.25 
'LL1'1 .7 5 'L S'1 .7 5 'W S'0.0
LOADING COMBINATION 13 'STRENGTH I MAXIMUM - SugerCane' SPECS 'DC1' 1.25 T>C2’ 1.25 
'LL3' 1.75 'LS' 1.75 W S ’ 0.0

LOADING COMBINATION 21 'STRENGTH III MAXIMUM - HS20-44' SPECS D C l' 1.25 'DC2' 1.25 
'LLI’ 0.0 'LS' 0.0 'WS' 1.4
LOADING COMBINATION 23 'STRENGTH III MAXIMUM - SugerCane' SPECS D C l' 1.25 'DC2' 1.25 
'LL3' 0.0 'LS' 0 .0  'WS' 1.4
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LOADING COMBINATION 31 'STRENGTH V  MAXIMUM - HS20-44' SPECS 'DCl' 1.25 'DC2' 1.25 
'LL1'1.35 'LS' 1.35 'WS' 0.4
LOADING COMBINATION 33 'STRENGTH V MAXIMUM - SugerCane’ SPECS 'DCl' 1.25 T>C2’ 1.25 
'L L 3'1 .3 5 'L S'1 .3 5 'WS' 0.4

LOADING COMBINATION 42 'FATIGUE - IMPACT 1.3 - FACTOR 0.75 - HS20-44 Fatigue' SPECS 
'LL2' 0.975
LOADING COMBINATION 43 'FATIGUE - IMPACT 1.3 - FACTOR 0.75 - SugerCane’ SPECS 'LL3' 
0.975

$  —   -

$ Prepare and Generate Output
—     -=  —= — -            —= — -=

QUERY
STIFFNESS ANALYSIS 

UNITS KIP INCH

LIST SUMMATION OF REACTIONS 
LIST REACTIONS

CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-100011' 
TO 'G-100910'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-200011' 
TO 'G-200910'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-300011' 
TO 'G-300910'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING ’G -400011’ 
TO ’G-400910’
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-500011' 
TO 'G-500910'

CALCULATE AVERAGE STRESS AT TOP SURFACE FOR ELEMENTS EXISTING 'P-100011' TO 'P- 
500303'
CALCULATE AVERAGE STRESS AT BOTTOM SURFACE FOR ELEMENTS EXISTING 'P-100011' 
TO 'P-500303'

LIST FORCE MEMBERS EXISTING 'B-1011' TO 'B-1084'
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B.2 GTSTRUDL Input File of Continuous Span 
Bridge with Truck Load FHWA 3S2 and 

AASHTO Bulb-Tee 54 Girder

STRUDL 'Model 4041' 'BT-54 GIRDER, 0 BRIDGE SKEW, GIRDER SPACING 9 ft, SPAN LENGTH 
75 ft, 3S2 HS20-44'
UNITS inch
PRINT GENERATE OFF

^ = -  —     —  —  ■—  —

$ Generate Joints to Connect Girder Brick Elements
$ -         — - —  - —  
GENERATE 4 JOINTS ID 1000001 1 X  LIST 8 18 24 34 Y  0 Z 0 
REPEAT 1 ID 4 Y  8.5 
REPEAT 1 ID 100 Z -12

GENERATE 2 JOINTS ID 1000009 1 X  LIST 18 24 Y  19.5 Z 0 
REPEAT 2 ID 2 Y  10 
REPEAT 1 ID 100 Z -12

GENERATE 4 JOINTS ID 1000015 1 X  LIST 0 18 24 42 Y 49.5 Z 0 
REPEAT 1 ID 4 Y  4.5 
REPEAT 1 ID 100 Z -12

     —          ------
$ Generate Girder Brick Elements
$ - -  -- ==  —-  = —   — -
TYPE TRIDEMINSIONAL
GENERATE 3 ELEMENTS ID 'G-100011' 1 FROM 1000001 1 TO 1000002 1 TO 1000006 1 TO 
1000005 1 TO 1000101 1 TO 1000102 1 TO 1000106 1 TO 1000105 1
GENERATE 1 ELEMENTS ID 'G-100014' 0 FROM 1000006 0 TO 1000007 0 TO 1000010 0 TO 
1000009 0 TO 1000106 0 TO 1000107 0 TO 1000110 0 TO 1000109 0
GENERATE 2 ELEMENTS ID 'G-100015' 1 FROM 1000009 2 TO 1000010 2 TO 1000012 2 TO 
1000011 2 TO 1000109 2 TO 1000110 2 TO 1000112 2 TO 1000111 2 
GENERATE 1 ELEMENTS ID 'G-100017' 1 FROM 1000013 0 TO 1000014 0 TO 1000017 0 TO 
1000016 0 TO 1000113 0 TO 1000114 0 TO 1000117 0 TO 1000116 0
GENERATE 3 ELEMENTS ID 'G-100018' 1 FROM 1000015 1 TO 1000016 1 TO 1000020 1 TO 
1000019 1 TO 1000115 1 TO 1000116 1 TO 1000120 1 TO 1000119 1

$     —  ■■"=          —  —
$ Copy Generated Girder Section and Copy it Down Entire Length o f  Bridge
$ —-  —-   —   —  = ■—  — - - -  — — —
DEFINE OBJECT 'SECTION' JOINTS 1000001 TO 1000022 1000101 TO 1000122, ELEMENTS 'G- 
100011'TO 'G-100020'
COPY OBJECT 'SECTION' REPEAT 74 TIMES JOINT INCR 100 ELEMENT INCR 10 TRANSLATE Z 
-12

S —  ^    - " - = ------------------ ---- ------------------------- ----------------; - = = =  '   ^

$ Copy Generated Girder and Copy it Across The Entire Width o f  Bridge
— =  — —  - - - - -  ■ — -    — -  ■= —      —

DEFINE OBJECT 'GIRDER A’ JOINTS EXISTING 1000001 TO 1007522, ELEMENTS EXISTING 'G- 
100011' TO 'G-l 00760'
COPY OBJECT 'GIRDER A ’ REPEAT 1 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X 63
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DEFINE OBJECT 'GIRDER B' JOINTS EXISTING 2000001 TO 2007522, ELEMENTS EXISTING 'G- 
200011’ TO 'G-200760'
COPY OBJECT 'GIRDER B' REPEAT 2 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X 96
DEFINE OBJECT 'GIRDER C' JOINTS EXISTING 4000001 TO 4007522, ELEMENTS EXISTING 'G- 
400011'TO 'G-400760'
COPY OBJECT 'GIRDER C' REPEAT 1 TIMES JOINT INCR 1000000 ELEMENT INCR 100000 
TRANSLATE X 63

$    ^  - _ ^ = —   _ = — =

$ Generate Joints to Connect Deck Plate Elements
$= =̂=^—^==__    = -  ==-   —  — —  -
GENERATE 2 JOINTS ID 1000023 1 X  LIST 0 42 Y  54.01 Z 0 
REPEAT 25 ID 300 Z -36

GENERATE 2 JOINTS ID 2000023 1 X  LIST 63 105 Y  54.01 Z 0 
REPEAT 25 ID 300 Z -36

GENERATE 2 JOINTS ID 3000023 1 X  LIST 159 201 Y  54.01 Z 0 
REPEAT 25 ID 300 Z -36

GENERATE 2 JOINTS ID 4000023 1 X  LIST 255 297 Y  54.01 Z 0  
REPEAT 25 ID 300 Z -36

GENERATE 2 JOINTS ID 5000023 1 X  LIST 318 360 Y  54.01 Z 0 
REPEAT 25 ID 300 Z -36

GENERATE 2 JOINTS ID 2000025 1000000 X  LIST 132 228 Y  54.01 0 Z 0 0 
REPEAT 25 ID 300 Z -36

$  — —-= ■■— = ■ ■    —  —^      : —  ------------
$ Generate Deck Plate Elements

m  ^  ^   ̂  -----------------------------------------------
TYPE PLATE

GENERATE 5 ELEMENTS ID 'P-100011' 100000 FROM 1000023 1000000 TO 1000024 1000000 TO 
1000324 1000000 TO 1000323 1000000 
REPEAT 24 ID 10 FROM INCR 300 TO INCR 300

GENERATE 1 ELEMENTS ID T-100012' 0 FROM 1000024 0 TO 2000023 0 TO 2000323 0 TO 1000324 
0
REPEAT 24 ID 10 FROM INCR 300 TO INCR 300

GENERATE 2 ELEMENTS ID T>-200012' 100000 FROM 2000024 1000000 TO 2000025 1000000 TO 
2000325 1000000 TO 2000324 1000000 
REPEAT 24 ID 10 FROM INCR 300 TO INCR 300

GENERATE 2 ELEMENTS ID 'P-200013' 100000 FROM 2000025 1000000 TO 3000023 1000000 TO 
3000323 1000000 TO 2000325 1000000 
REPEAT 24 ID 10 FROM INCR 300 TO INCR 300

GENERATE 1 ELEMENTS ID T-400012' 0 FROM 4000024 0 TO 5000023 0 TO 5000323 0 TO 4000324  
0
REPEAT 24 ID 10 FROM INCR 300 TO INCR 300
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  ==- - = —  —  . . _ ^ ^ _ = = s = = = _

$ Generate Rigid Members to Connect Girder Elements to Plate Elements
$  ... —         -

TYPE SPACE TRUSS

GENERATE 2 MEMBERS ID 'R-10001' 1 FROM 1000019 3 TO 1000023 1 
REPEAT 4 ID 10000 FROM INCR 1000000 TO INCR 1000000 
REPEAT 25 ID 10 FROM INCR 300 TO INCR 300

$-=—    ==—    —
$ Generate Diaphragm Members at Top o f  Bottom Flange
$        —  =    — -   —   - = = ........................ — -

$ END DIAPHRAGMS

GENERATE 4 MEMBERS ID 'B-1011’ 1 FROM 1000008 1000000 TO 2000005 1000000 
GENERATE 4 MEMBERS ID ’B-1021’ 1 FROM 1000018 1000000 TO 2000015 1000000 
GENERATE 4 MEMBERS ID ’B-1031’ 1 FROM 1007508 1000000 TO 2007505 1000000 
GENERATE 4 MEMBERS ID ’B-1041’ 1 FROM 1007518 1000000 TO 2007515 1000000

$      ^==: — ===   - = =
$ Define Supports
$                 ----------
STATUS SUPPORT JOINTS -
1000001 TO 5000001 BY  1000000 1000002 TO 5000002 BY  1000000 1000003 TO 5000003 BY  

1000000 1000004 TO 5000004 BY  1000000 -
1007501 TO 5007501 BY  1000000 1007502 TO 5007502 BY  1000000 1007503 TO 5007503 BY

1000000 1007504 TO 5007504 BY  1000000

$-— — —  "        —-=======-=^ ===
$ Set Boundary Conditions
$   ■ -      --------------------------------------

JOINT RELEASES

$ GIRDER BASE  
$ END PIN CONDITIONS
1000001 TO 1000004 2000001 TO 2000004 3000001 TO 3000004 4000001 TO 4000004 5000001 TO 

5000004 MOMENT X Y
1007501 TO 1007504 2007501 TO 2007504 3007501 TO 3007504 4007501 TO 4007504 5007501 TO  

5007504 MOMENT X Y
1007501 TO 1007504 2007501 TO 2007504 3007501 TO 3007504 4007501 TO 4007504 5007501 TO 

5007504 FORCE Z

$      ------------
$ Copy Generated Part and Copy it Down Entire Length o f  Bridge
$                 --------
DEFINE OBJECT ’PARTI’ JOINTS EXISTING 1000001 TO 5007524, - 
ELEMENTS EXISTING ’G-100011’ TO ’G-500760’, -
ELEMENTS EXISTING ’P-100011’ TO ’P-500253’, MEMEBRS EXISTING ’R-10001’ TO ’R-50252’, - 
MEMEBRS EXISTING ’B -1011’ TO ’B-1044’
COPY OBJECT TARTT REPEAT 2 TIMES JOINT INCR 100000 ELEMENT INCR 10000 MEMBER  
INCR 1000 TRANSLATE Z -903

$===   ~—= ~ — -  - —=    —===== —
$ Generate Deck Plate Elements Above the Support
$= =              — = =
TYPE PLATE
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GENERATE 5 ELEMENTS ID 'P-1001' 1000 FROM 1007523 1000000 TO 1100023 1000000 TO
1100024 1000000 TO 1007524 1000000
REPEAT 1 ID 100 FROM INCR 100000 TO INCR 100000

GENERATE 1 ELEMENTS ID 'P-1002' 0 FROM 1007524 0 TO 2007523 0 TO 2100023 0 TO 1100024 0 
REPEAT 1 ID 100 FROM INCR 100000 TO INCR 100000

GENERATE 2 ELEMENTS ID 'P-2002' 1000 FROM 2007524 1000000 TO 2007525 1000000 TO
2100025 1000000 TO 2100024 1000000
REPEAT 1 ID 100 FROM INCR 100000 TO INCR 100000

GENERATE 2 ELEMENTS ID 'P-2003' 1000 FROM 2007525 1000000 TO 3007523 1000000 TO
3100023 1000000 TO 2100025 1000000
REPEAT 1 ID 100 FROM INCR 100000 TO INCR 100000

GENERATE 1 ELEMENTS ID 'P-4002' 0 FROM 4007524 0 TO 5007523 0 TO 5100023 0 TO 4100024 0 
REPEAT 1 ID 100 FROM INCR 100000 TO INCR 100000

$ - —  — -     —     = = - -  —  ■ —  ' " =  ---------------

$ Define Element Properties
$ _             ---------------

MATERIAL CONCRETE ALL ELEMENTS 
ELEMENT PROPERTIES
EXISTING 'G-100011' TO 'G-120760' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-200011' TO 'G-220760' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-300011' TO 'G-320760' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-400011' TO 'G-420760' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'G-500011' TO 'G-520760' TYPE 'IPSL' INTEGRATION ORDER 3 
EXISTING 'P-100011' TO ’P-120253’ TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-200011' TO T-220253' TYPE 'SBCR' THICKNESS 8 
EXISTING T -300011' TO 'P-320253' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-400011’ TO 'P-420253' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-500011' TO 'P-520253' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-1001' TO P - l  103' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-2001' TO 'P-2103' TYPE 'SBCR' THICKNESS 8 
EXISTING ’P-3001' TO 'P-3103' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-4001' TO 'P-4103' TYPE 'SBCR' THICKNESS 8 
EXISTING 'P-5001' TO 'P-5103' TYPE 'SBCR' THICKNESS 8

P ------------------------------------- , - _ ^ =  . . - - = ^ = :  — ---------------------------------------------------- =  -    — ------------------- — ^  ----------------- ^

$ Define Member Properties
$ ,    —  ̂ = =  , = = = -     ^  ■ - — -   *  ■— = -------------- =

MATERIAL CONCRETE ALL MEMBERS 
MEMBER PROPERTIES PRISMATIC 
EXISTING 'R-10001' TO 'R-52252' A X 8

MEMBER PROPERTIES PRISMATIC 
EXISTING 'B-1011’ TO 'B-3044' A X 330

$ = - _ ^ = = =  . - _ _ = = = = .           ;   ------------------

$ Define Supports o f  Deck
 -==   —  -           — ------

STATUS SUPPORT JOINTS -
1000023 TO 5000023 BY  1000000 1000024 TO 5000024 B Y  1000000 - 
1207523 TO 5207523 BY  1000000 1207524 TO 5207524 BY  1000000
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$ = = = = -- —  —— — ——    — ^ = -̂ =
$ Set Boundary Conditions o f  Deck
f — r. ------- - — = ^ - ---------------------------------------------------------------------------------------------------------------------------------  ^

JOINT RELEASES

$ DECK BASE  
$ END CONDITIONS

1000023 TO 1000024 2000023 TO 2000024 3000023 TO 3000024 4000023 TO 4000024 5000023 TO 
5000024 FORCE Y
1207523 TO 1207524 2207523 TO 2207524 3207523 TO 3207524 4207523 TO 4207524 5207523 TO 
5207524 FORCE Y
1000023 TO 1000024 2000023 TO 2000024 3000023 TO 3000024 4000023 TO 4000024 5000023 TO 
5000024 MOMENT X Y
1207523 TO 1207524 2207523 TO 2207524 3207523 TO 3207524 4207523 TO 4207524 5207523 TO 
5207524 MOMENT X  Y

$—  —   -==- -==-  —  —   —
$ Define Loading
$—=    — -=  — -==  —         —==== — —  —
UNITS LBS FT

LOADING 'DC1' 'DEAD LOAD STRUCTURAL COMPONENTS OF ELEMENTS'
ELEMENT LOADS
EXISTING 'G-100011' TO 'G-120760' BODY FORCES GLOBAL BY -150 
EXISTING 'G-200011’ TO 'G-220760' BODY FORCES GLOBAL BY -150 
EXISTING 'G-300011' TO 'G-320760' BO DY FORCES GLOBAL BY  -150  
EXISTING 'G-400011' TO 'G-420760' BODY FORCES GLOBAL BY -150  
EXISTING 'G-500011' TO 'G-520760' BODY FORCES GLOBAL BY -150 
EXISTING 'P-100011’ TO ’P-120253’ BO DY FORCES GLOBAL BY  -150  
EXISTING ’P-200011' TO T-220253' BODY FORCES GLOBAL BY -150  
EXISTING 'P-300011' TO T-320253’ BODY FORCES GLOBAL BY -150  
EXISTING 'P-400011’ TO 'P-420253' BODY FORCES GLOBAL BY  -150  
EXISTING 'P-500011' TO 'P-520253' BODY FORCES GLOBAL BY -150  
EXISTING 'P-1001' TO T - l  103' BODY FORCES GLOBAL BY  -150 
EXISTING 'P-2001' TO T-2103' BO DY FORCES GLOBAL BY  -150 
EXISTING 'P-3001' TO 'P-3103' BO DY FORCES GLOBAL B Y  -150  
EXISTING 'P-4001' TO T-4103’ BODY FORCES GLOBAL B Y  -150  
EXISTING T -5001’ TO 'P-5103' BO DY FORCES GLOBAL BY  -150

DEAD LOAD 'DC2' T)EAD LOAD STRUCTURAL COMPONENTS OF MEMBERS’ DIRECTION -Y  - 
MEMBERS 'B-1011' TO 'B-1014' 'B-1021' TO 'B-1024' 'B-1031' TO 'B-1034' 'B-1041' TO 'B-1044' - 
'B-2011' TO 'B-2014' 'B-2021' TO 'B-2024' 'B-2031' TO 'B-2034' 'B-2041' TO 'B-2044' - 
T3-3011' TO 13-3014' 'B-3021' TO 'B-3024' 'B-3031' TO 'B-3034' *B-3041’ TO 'B-3044'

LOADING 'LS' 'LIVE LOAD SURCHARGE'
ELEMENT LOADS
EXISTING 'P-100011' TO 'P-120253' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-200011’ TO 'P-220253' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-300011' TO 'P-320253' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-400011' TO 'P-420253' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-500011’ TO 'P-520253' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-1001' TO 'P-l 103' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-2001' TO 'P-2103' SURFACE FORCES GLOBAL PY -31 
EXISTING 'P-3001' TO 'P-3103' SURFACE FORCES GLOBAL PY -31 
EXISTING T -4001’ TO 'P-4103' SURFACE FORCES GLOBAL PY -31
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EXISTING 'P-5001' TO T-5I03' SURFACE FORCES GLOBAL PY -31

LOADING 'LLT 'VEHICULAR LIVE LOAD HS20-44'
JOINT LOADS 

$ Truck 1 HS20-44 
3002425 3002423 FORCE Y -4000  
3003925 3003923 FORCE Y -16000  
3005425 3005423 FORCE Y -16000

LOADING 'LL2' 'VEHICULAR LIVE LOAD HS20-44 Fatigue’
JOINT LOADS 

$ Truck 2 HS20-44 Fatigue 
3006625 3006623 FORCE Y  -4000  
3005425 3005423 FORCE Y -16000  
3002425 3002423 FORCE Y -16000

LOADING 'LL3' 'VEHICULAR LIVE LOAD 3S2'
JOINT LOADS 

$ Truck 3 3S2
3006625 3006623 FORCE Y -6000  
3005425 3005423 FORCE Y  -12000  
3005125 3005123 FORCE Y -12000  
3002425 3002423 FORCE Y -12000  
3002125 3002123 FORCE Y -12000

$=_   ,.a= ,.,a!  ^   ....------------
$ Factored Loads
$ _ _      , —     ---------------------------------------------------------------------------------------

LOADING COMBINATION 11 'STRENGTH I MAXIMUM - HS20-44' SPECS DC1' 1.25 'DC2' 1.25 
'LL1' 1.75 'LS' 1.75 'WS' 0.0
LOADING COMBINATION 13 'STRENGTH I MAXIMUM - 3S2' SPECS 'DC1' 1.25 'DC2' 1.25 'LL3' 
1 .7 5 'LS' 1.75 W S ’ 0.0

LOADING COMBINATION 42 'FATIGUE - IMPACT 1.3 - FACTOR 0.75 - HS20-44 Fatigue' SPECS 
'LL2' 0.975
LOADING COMBINATION 43 'FATIGUE - IMPACT 1.3 - FACTOR 0.75 - 3S2' SPECS 'LL3' 0.975

$== , „ =  ■= . . ^ = = _ _ =     —        ---------------------

$ Prepare and Generate Output
$ __      , -------------------------

QUERY
STIFFNESS ANALYSIS 

UNITS KIP INCH

LIST SUMMATION OF REACTIONS 
LIST REACTIONS

CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-100011’ 
TO 'G-120760'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-200011’ 
TO 'G-220760'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-300011’ 
TO 'G-320760'
CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-400011' 
TO 'G-420760'
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CALCULATE AVERAGE STRESS AT MIDDLE SURFACE FOR ELEMENTS EXISTING 'G-500011' 
TO 'G-520760'

CALCULATE AVERAGE STRESS AT TOP SURFACE FOR ELEMENTS EXISTING 'P-1001' TO 'P- 
520253'
CALCULATE AVERAGE STRESS AT BOTTOM SURFACE FOR ELEMENTS EXISTING 'P-1001' TO 
'P-520253'
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C.l SAS Input File of Deck Area I,
Stress Component Sxx

Data S x x S t r e s s B l o c k l ;  
I n p u t  GT GN TT S t r e s s ;  
C a r d s ;

1 1 1 0 . 1 3 7 9 7 6
1 2 1 - 0 . 1 1 2 0 1 3
2 1 1 - 0 . 1 2 9 0 4 2
2 2 1 - 0 . 1 0 0 2 6
3 1 1 - 0 . 1 2 2 8 2 8
3 2 1 - 0 . 0 9 1 1 8 5
4 1 1 - 0 . 2 2 8 7 6 9
4 2 1 - 0 . 1 5 0 2 7 5
5 1 1 - 0 . 1 1 2 1 6
5 2 1 - 0 . 0 8 6 8 6 5
6 1 1 - 0 . 1 0 4 5 0 5
6 2 1 - 0 . 0 7 8 7 3 6
1 1 2 0 . 1 7 8 2 2 2
1 2 2 - 0 . 1 5 7 3 1
2 1 2 0 . 1 5 4 9 9 4
2 2 2 - 0 . 1 3 6 2 2 8
3 1 2 - 0 . 1 4 0 2 8 6
3 2 2 - 0 . 1 2 0 6 8 9
4 I 2 - 0 . 2 7 5 6 1 7
4 2 2 - 0 . 1 8 4 6 3 4
5 1 2 - 0 . 1 2 9 4 7 7
5 2 2 - 0 . 1 1 6 6 4 6
6 1 2 - 0 . 1 1 7 7 7 5
6 2 2 - 0 . 1 0 3 0 2

PROC GLM;
CLASS GT GN TT;
MODEL S t r e s s  = GT GN TT GT*GN GT*TT GN*TT;

PROC SORT D A T A = S x x S t r e s s B l o c k l ;
BY GT GN;

PROC MEANS D A T A = S x x S t r e s s B l o c k l  NOPRINT MEAN VAR; 
VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

PROC SORT D A T A = S x x S t r e s s B l o c k l ;
BY GT TT;

PROC MEANS D A T A = S x x S t r e s s B l o c k l  NOPRINT MEAN VAR; 
VAR S t r e s s ;
BY GT TT;
OUTPUT OUT=DATA2 MEAN=AV S t r e s s  V A R = V A R _ S t r e s s ;
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PROC PRINT;
VAR GT TT A V _ S t r e s s  V A R _ S t r e s s ;  

PROC PLOT;
PLOT AV_S t r e s s *  GT=TT;

Run;
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C.2 SAS Input File of Whole Deck, Treatment Factor
GT and GN, Stress Component Sxx

Data S x x S t r e s s w h o l e d e c k ;
I n p u t  GT GN TT AR S t r e s s ;
C a r d s ;

1 1 1 1 0 . 1 3 7 9 7 6
1 2 1 1 - 0 . 1 1 2 0 1 3
2 1 1 1 - 0 . 1 2 9 0 4 2
2 2 1 1 - 0 . 1 0 0 2 6
3 1 1 1 - 0 . 1 2 2 8 2 8
3 2 1 1 - 0 . 0 9 1 1 8 5
4 1 1 1 - 0 . 2 2 8 7 6 9
4 2 1 1 - 0 . 1 5 0 2 7 5
5 1 1 1 - 0 . 1 1 2 1 6
5 2 1 1 - 0 . 0 8 6 8 6 5
6 1 1 1 - 0 . 1 0 4 5 0 5
6 2 1 1 - 0 . 0 7 8 7 3 6
1 1 2 1 0 . 1 7 8 2 2 2
1 2 2 1 - 0 . 1 5 7 3 1
2 1 2 1 0 . 1 5 4 9 9 4
2 2 2 1 - 0 . 1 3 6 2 2 8
3 1 2 1 - 0 . 1 4 0 2 8 6
3 2 2 1 - 0 . 1 2 0 6 8 9
4 1 2 1 - 0 . 2 7 5 6 1 7
4 2 2 1 - 0 . 1 8 4 6 3 4
5 1 2 1 - 0 . 1 2 9 4 7 7
5 2 2 1 - 0 . 1 1 6 6 4 6
6 1 2 1 - 0 . 1 1 7 7 7 5
6 2 2 1 - 0 . 1 0 3 0 2
1 1 1 2 0 . 3 0 5 0 1 1
1 2 1 2 0 . 1 9 8 9 7 9
2 1 1 2 0 . 2 6 4 8 3 3
2 2 1 2 0 . 1 7 0 4 0 6
3 1 1 2 0 . 2 3 4 9 6 8
3 2 1 2 0 . 1 4 9 3 0 4
4 1 1 2 - 0 . 4 4 8 7 7 7
4 2 1 2 0 . 2 8 8 0 1 9
5 1 1 2 0 . 2 1 6 2 7 8
5 2 1 2 0 . 1 4 2 0 6 4
6 1 1 2 - 0 . 2 2 3 9 9 8
6 2 1 2 0 . 1 2 1 6 1 3
1 1 2 2 0 . 3 3 9 8 1 5
1 2 2 2 0 . 2 8 1 0 0 1
2 1 2 2 0 . 2 9 2 6 7 7
2 2 2 2 0 . 2 4 3 7 2 2
3 1 2 2 0 . 2 5 7 8 6
3 2 2 2 0 . 2 1 6 1 4 7
4 1 2 2 - 0 . 4 9 6 0 3 4
4 2 2 2 0 . 3 5 5 4 5 6
5 1 2 2 0 . 2 3 9 6 7 2
5 2 2 2 0 . 1 8 8 4 9 5
6 1 2 2 - 0 . 2 2 5 7 3 5
6 2 2 2 0 . 1 6 2 9 6 4
1 1 1 3 0 . 1 5 6 1 0 6
1 2 1 3 - 0 . 1 2 0 4 0 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 1 1 3 - 0 . 1 4 3 4 6 8
2 2 1 3 - 0 . 1 0 6 8 3 1
3 1 1 3 - 0 . 1 3 4 3 9 9
3 2 1 3 - 0 . 0 9 6 6 4 9
4 1 1 3 - 0 . 2 5 2 4 4 2
4 2 1 3 - 0 . 1 6 5 1 4 8
5 1 1 3 - 0  . 1 2 3 9 5 8
5 2 1 3 - 0 . 0 9 1 5 3
6 1 1 3 - 0  . 1 1 3 7 6 6
6 2 1 3 - 0 . 0 8 2 4 6 4
1 1 2 3 0 . 2 1 6 1 7 8
1 2 2 3 - 0 . 1 7 3 8 7
2 1 2 3 0 . 1 8 3 4 0 5
2 2 2 3 - 0 . 1 4 8 5 6 1
3 1 2 3 - 0 . 1 6 3 6 5
3 2 2 3 - 0 . 1 3 0 4 5 2
4 1 2 3 - 0 . 3 1 8 4 2 4
4 2 2 3 - 0 . 2 0 9 7 5 6
5 1 2 3 - 0 . 1 5 1 5 0 9
5 2 2 3 - 0 . 1 2 4 1 7
6 1 2 3 - 0 . 1 3 4 9 9 8
6 2 2 3 - 0 . 1 0 8 5 4 5
1 1 1 4 0 . 1 3 3 9 7 5
1 2 1 4 0 . 0 8 0 8 9 5
2 1 1 4 0 . 1 1 8 8 0 6
2 2 1 4 0 . 0 6 7 3 1 5
3 1 1 4 0 . 1 0 7 8 1 7
3 2 1 4 0 . 0 5 7 6 3 2
4 1 1 4 0 . 1 3 7 1 0 5
4 2 1 4 0 . 0 8 9 2 5 4
5 1 1 4 0 . 0 9 8 5 6 3
5 2 1 4 0 . 0 5 6 1 3 2
6 1 1 4 0 . 0 8 9 0 6 1
6 2 1 4 0 . 0 4 6 2 8 6
1 1 2 4 0 . 2 1 7 1 5 8
1 2 2 4 0 . 1 2 4 4 3 7
2 1 2 4 0 . 1 8 9 9 2 3
2 2 2 4 0 . 1 0 2 9 6 8
3 1 2 4 0 . 1 6 9 8 3 3
3 2 2 4 0 . 0 8 8 9 6 3
4 1 2 4 0 . 2 3 0 4 6 8
4 2 2 4 0 . 1 4 0 5 3 8
5 1 2 4 0 . 1 6 0 7 2 6
5 2 2 4 0 . 0 9 2 3 0 4
6 1 2 4 0 . 1 4 3 0 3 4
6 2 2 4 0 . 0 7 8 4 9 5
1 1 1 5 0 . 7 7 2 5 5 8
1 2 1 5 0 . 5 6 3 8 5 9
2 1 1 5 0 . 7 2 4 3 8 7
2 2 1 5 0 . 5 3 2 3 8 6
3 1 1 5 0 . 6 8 5 5 2 8
3 2 1 5 0 . 5 0 8 6 7 7
4 1 1 5 0 . 8 6 2 6 2 7
4 2 1 5 0 . 5 9 1 3 5 7
5 1 1 5 0 . 6 4 2 9 8 3
5 2 1 5 0 . 4 6 1 7 1 4
6 1 1 5 0 . 6 0 5 1 0 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 2 1 5 0 . 4 3 8 8 8 3
1 1 2 5 0 . 7 3 5 0 1 5
1 2 2 5 0 . 5 3 8 7 4 7
2 1 2 5 0 . 6 8 3 3 4
2 2 2 5 0 . 5 0 1 4 2 2
3 1 2 5 0 . 6 4 2 7 4 3
3 2 2 5 0 . 4 7 3 2 8 3
4 1 2 5 0 . 8 3 8 5 0 7
4 2 2 5 0 . 5 7 7 3 6 5
5 1 2 5 0 . 6 0 4 4 0 9
5 2 2 5 0 . 4 3 6 5 9 2
6 1 2 5 0 . 5 6 6 3 3 8
6 2 2 5 0 . 4 0 9 2 4 7
1 1 1 6 0 . 1 6 6 6 8 7
1 2 1 6 0 . 0 9 8 7 0 8
2 1 1 6 0 . 1 4 7 1 3 8
2 2 1 6 0 . 0 8 1 6 8 9
3 1 1 6 0 . 1 3 2 4 6 1
3 2 1 6 0 . 0 6 9 2 5 9
4 1 1 6 0 . 1 7 6 3 3 6
4 2 1 6 0 . 1 1 0 7 4 1
5 1 1 6 0 . 1 2 3 6 1 6
5 2 1 6 0 . 0 6 7 2 7 1
6 1 1 6 0 . 1 1 0 8 2 2
6 2 1 6 0 . 0 5 5 1 2 1
1 1 2 6 0 . 3 1 9 1 3 7
1 2 2 6 0 . 1 6 7 9 5
2 1 2 6 0 . 2 7 4 0 2
2 2 2 6 0 . 1 4 0 8 0 1
3 1 2 6 0 . 2 4 0 3 0 7
3 2 2 6 0 . 1 2 1 6 4 9
4 1 2 6 0 . 3 5 0 0 4
4 2 2 6 0 . 2 1 1 7 7 5
5 1 2 6 0 . 2 3 3 8 9 1
5 2 2 6 0 . 1 2 9 7 9 3
6 1 2 6 0 . 2 0 3 9 5 9
6 2 2 6 0 . 1 1 1 5 9 9
1 1 1 7 0 . 1 4 9 7 2 5
1 2 1 7 0 . 0 8 1 3 5 1
2 1 1 7 0 . 1 3 4 4 7 8
2 2 1 7 0 . 0 6 7 5 8 3
3 1 1 7 0 . 1 2 2 7 4 4
3 2 1 7 0 . 0 5 7 6 8 2
4 1 1 7 0 . 2 1 4 1 5 6
4 2 1 7 - 0 . 0 9 2 3 6 1
5 1 1 7 0 . 1 1 4 3 2 4
5 2 1 7 0 . 0 5 6 7 1 4
6 1 1 7 0 . 1 0 3 5 5 3
6 2 1 7 0 . 0 4 6 5 5 9
1 1 2 7 0 . 2 1 3 5 8 9
1 2 2 7 0 . 1 2 5 4 6 8
2 1 2 7 0 . 1 8 8 3 3
2 2 2 7 0 . 1 0 1 9 5 3
3 1 2 7 0 . 1 6 9 2 1 4
3 2 2 7 0 . 0 8 4 8 5 2
4 1 2 7 0 . 2 8 9 6 5 3
4 2 2 7 0 . 1 3 7 9 7 9
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5 1 2 7
5 2 2 7
6 1 2 7
6 2 2 7
1 1 1 8
1 2 1 8
2 1 1 8
2 2 1 8
3 1 1 8
3 2 1 8
4 1 1 8
4 2 1 8
5 1 1 8
5 2 1 8
6 1 1 8
6 2 1 8
1 1 2 8
1 2 2 8
2 1 2 8
2 2 2 8
3 1 2 8
3 2 2 8
4 1 2 8
4 2 2 8
5 1 2 8
5 2 2 8
6 1 2 8
6 2 2 8
1 1 1 9
1 2 1 9
2 1 1 9
2 2 1 9
3 1 1 9
3 2 1 9
4 1 1 9
4 2 1 9
5 1 1 9
5 2 1 9
6 1 1 9
6 2 1 9
1 1 2 9
1 2 2 9
2 1 2 9
2 2 2 9
3 1 2 9
3 2 2 9
4 1 2 9
4 2 2 9
5 1 2 9
5 2 2 9
6 1 2 9
6 2 2 9

0 . 1 5 6 1 8 4  
0 . 0 8 5 6 9  
0 . 1 3 9 1 4 5  
0 . 0 7 1 5 0 9  
0 . 8 6 1 8 6 3  
0 . 5 4 9 0 8  
0 . 8 1 8 3 6 4  
0 . 5 2 1 8 9 3  
0 . 7 8 5 4 2  
0 . 5 0 1 6 8 1  
0 . 9 0 9 2 8 2  
0 . 6 2 8 7 1 5  
0 . 7 6 4 6 6 8  
0 . 4 5 6 3 0 6  
0 . 7 3 5 2 1  
0 . 4 3 6 7 6 4  
0 . 8 4 9 0 1 5  
0 . 5 1 7 5 1 1  
0 . 7 9 3 7 9 3  
0 . 4 8 4 5 1 8  
0 . 7 5 2 2 2 4  
0 . 4 6 0 1 4 4  
1 . 0 4 4 8 4  
0 . 5 8 8 8 2 4  
0 . 7 2 1 7 9  
0 . 4 2 5 0 3 5  
0 . 6 8 6 7 8 1  
0 . 4 0 1 2 5 7  
0 . 1 7 4 1 0 2  
0 . 0 9 9 0 6  
0 . 1 5 4 7 9 9  
0 . 0 8 1 8 7 9  
0 . 1 3 9 8 0 5  
0 . 0 6 9 2 5 4  
0 . 2 3 8 8 7 2  
- 0 . 1 1 1 0 2 6  
0 . 1 3 0 4 6  
0 . 0 6 7 7 6 6  
0 . 1 1 6 9 6 5  
0 . 0 5 5 3 1  
0 . 2 8 2 0 3 9  
0 . 1 6 6 0 1 4  
0 . 2 4 4 0 3 5  
0 . 1 3 8 7 2 9  
0 . 2 1 5 3 9 3  
0 . 1 1 8 6 9 4  
0 . 3 6 9 5 8 2  
0 . 2 0 9 1 8 5  
0 . 2 0 0 7 1 1  
0 . 1 2 4 5 9 9  
0 . 1 7 5 9 2 3  
0 . 1 0 6 0 1 1

PROC PRINT;
PROC GLM;
C L A S S  GT GN T T  A R ;
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MODEL S t r e s s  = GT GN TT AR GT*GN GT*TT GT*AR GN*TT GN*AR TT*AR GT*GN*AR;

data o n e ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 1 ;
PROC print;
PROC SORT D A TA =o ne ;

BY GT GN;
PROC MEANS DATA=one NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

data t w o ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 2 ;
PROC print;
PROC SORT DATA=tWO;

BY GT GN;
PROC MEANS DATA=tWO NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 MEAN=A V _ S t r e s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

data t h r e e ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 3 ;
PROC print;
PROC SORT D A T A = t h r e e ;

BY GT GN;
PROC MEANS D A T A = t h r e e  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

data f o u r ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 4 ;
PROC print;
PROC SORT D A T A = f o u r ;

BY GT GN;
PROC MEANS D A T A = f o u r  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT AV S t r e s s * G T = G N ;
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data f i v e ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  AR=5;
PROC print;
PROC SORT D A T A = f i v e ;

BY GT GN;
PROC MEANS D A T A = f i v e  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t  r e  S S * GT=GN;

data s i x ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 6;
PROC print;
PROC SORT D A T A = s i x ;

BY GT GN;
PROC MEANS D A T A = s ix  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 MEAN=A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t  r e  S s  * GT=GN;

data s e v e n ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 7 ;
PROC print;
PROC SORT D A T A = s e v e n ;

BY GT GN;
PROC MEANS D A T A = s e v e n  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT 0UT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

data e i g h t ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  A R = 8 ;
PROC print;
PROC SORT D A T A = e i g h t ;

BY GT GN;
PROC MEANS DATA=eight NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _ S t re ss  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT AV S t r e s s * G T = G N ;
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data n i n e ;  s e t  S x x S t r e s s w h o l e d e c k ;  
i f  AR=9 ;
PROC print;
PROC SORT D A T A = n in e ;

BY GT GN;
PROC MEANS D A TA = ni ne  NOPRINT MEAN VAR;

VAR S t r e s s ;
BY GT GN;
OUTPUT OUT=DATA2 M E A N = A V _S t re ss  V A R = V A R _ S t r e s s  ; 

PROC PRINT;
VAR GT GN A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PLOT A V _ S t r e s s * G T = G N ;

Run;
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C.3 SAS Input File of Whole Deck, Treatment Factor
GT and TT, Stress Component Sxy

Data S x y S t r e s s w h o l e d e c k ;
I n p u t GT GN TT AR S t r e s s /

C a r d s
1 1 1 1 - 0 . 0 8 6 6 5
1 2 1 1 - 0 . 0 6 1 8 0 7
2 1 1 1 - 0 . 0 7 3 9 3 5
2 2 1 1 - 0 . 0 5 4 3 7 7
3 1 1 1 - 0 . 0 6 4 7 1 4
3 2 1 1 - 0 . 0 4 8 3 5 2
4 1 1 1 - 0 . 0 9 9 6 1 4
4 2 1 1 - 0 . 0 6 4 0 0 4
5 1 1 1 - 0 . 0 5 9 0 4 3
5 2 1 1 - 0 . 0 4 3 6 5 4
6 1 1 1 - 0 . 0 5 0 7 2 6
6 2 1 1 - 0 . 0 3 8 7 1 8
1 1 2 1 - 0 . 1 0 7 0 5 9
1 2 2 1 - 0 . 0 8 8 6 4 1
2 1 2 1 - 0 . 0 8 9 0 3
2 2 2 1 - 0 . 0 7 4 7 8 8
3 1 2 1 - 0 . 0 7 6 2 5 4
3 2 2 1 - 0 . 0 6 4 3 1 7
4 1 2 1 - 0 . 1 2 4 8 3 5
4 2 2 - 0 . 0 7 8 8
5 1 2 1 - 0 . 0 6 9 4 7 9
5 2 2 1 - 0 . 0 5 8 8 4 8
6 1 2 1 - 0 . 0 5 8 4 0 3
6 2 2 1 - 0 . 0 5 0 4 5
1 1 1 2 0 . 0 8 3 7 3 2
1 2 1 2 0 . 0 5 8 2 3 2
2 1 1 2 0 . 0 7 9 0 8 2
2 2 1 2 0 . 0 5 3 1 4 8
3 1 1 2 0 . 0 7 5 2 4 7
3 2 1 2 0 . 0 4 9 5 2
4 1 1 2 0 . 0 6 8 6 0 5
4 2 1 2 0 . 0 4 4 7 3 7
5 1 1 2 0 . 0 6 3 5 8 6
5 2 1 2 0 . 0 4 2 6 7 6
6 1 1 2 0 . 0 6 0 0 1 1
6 2 1 2 0 . 0 3 9 9 3 6
1 1 2 2 0 . 0 9 7 3 6 8
1 2 2 2 0 . 0 7 7 3 1 7
2 1 2 2 0 . 0 8 7 3 5 7
2 2 2 2 0 . 0 6 5 1 2
3 1 2 2 0 . 0 8 0 0 2 4
3 2 2 2 0 . 0 5 6 9 2 7
4 1 2 2 0 . 0 9 0 1 8 9
4 2 2 2 0 . 0 7 1 9 1
5 1 2 2 0 . 0 6 9 4 9 7
5 2 2 2 0 . 0 5 1 2 8 8
6 1 2 2 0 . 0 6 3 0 9 1
6 2 2 2 0 . 0 4 4 9 6 2
1 1 1 3 0 . 0 9 6 8 8 8
1 2 1 3 0 . 0 6 8 2 6 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 1 1 3 0 . 0 8 1 6 4 6
2 2 1 3 0 . 0 5 9 4 0 6
3 1 1 3 0 . 0 7 0 5 2 9
3 2 1 3 0 . 0 5 2 3 7 6
4 1 1 3 0 . 1 1 0 9 2 3
4 2 1 3 0 . 0 6 9 5 7 6
5 1 1 3 0 . 0 6 4 4 4 5
5 2 1 3 0 . 0 4 6 9 8 3
6 1 1 3 0 . 0 5 4 6 6 1
6 2 1 3 0 . 0 4 1 3 0 5
1 1 2 3 0 . 1 2 7 3 5 7
1 2 2 3 0 . 1 0 0 1 3 3
2 1 2 3 0 . 1 0 3 6 3 2
2 2 2 3 0 . 0 8 3 0 0 5
3 1 2 3 0 . 0 8 6 9 3 8
3 2 2 3 0 . 0 7 0 3 7 7
4 1 2 3 0 . 1 5 3 9 5 6
4 2 2 3 0 . 0 8 7 7 3 9
5 1 2 3 0 . 0 7 8 9 8 3
5 2 2 3 0 . 0 6 3 6 8 5
6 1 2 3 0 . 0 6 5 1 0 2
6 2 2 3 0 . 0 5 3 7 9 4
1 1 1 4 - 0 . 0 2 5 9 1 4
1 2 1 4 - 0 . 0 3 6 8 1 4
2 1 1 4 - 0 . 0 2 2 3 0 9
2 2 1 4 - 0 . 0 2 9 3
3 1 1 4 - 0 . 0 1 9 7 3 2
3 2 1 4 - 0 . 0 2 4 0 8 9
4 1 1 4 - 0 . 0 3 0 7 6 5
4 2 1 4 - 0 . 0 2 3 6 3 3
5 1 1 4 - 0 . 0 1 8 8 9
5 2 1 4 - 0 . 0 2 2 4 4 8
6 1 1 4 - 0 . 0 1 6 7 7 4
6 2 1 4 - 0 . 0 1 8 5 0 5
1 1 2 4 - 0 . 0 4 0 5 3 5
1 2 2 4 - 0 . 0 5 8 4 6 9
2 1 2 4 - 0 . 0 3 4 2 4 4
2 2 2 4 - 0 . 0 4 6 4 1 6
3 1 2 4 - 0 . 0 2 9 7 5 6
3 2 2 4 - 0 . 0 3 8 0 3
4 1 2 4 - 0 . 0 4 2 9 7 1
4 2 2 4 - 0 . 0 3 7 2 1 7
5 1 2 4 - 0 . 0 2 8 3 9 2
5 2 2 4 - 0 . 0 3 5 4 5 9
6 1 2 4 - 0 . 0 2 4 5 6 4
6 2 2 4 - 0 . 0 2 9 0 4 5
1 1 1 5 0 . 0 3 7 9 7 3
1 2 1 5 0 . 0 3 3 0 5 3
2 1 1 5 - 0 . 0 3 6 6 3 3
2 2 1 5 0 . 0 2 5 6 0 6
3 1 1 5 - 0 . 0 3 6 5 1 5
3 2 1 5 0 . 0 2 0 9 6 4
4 1 1 5 - 0 . 0 4 7 2 1 2
4 2 1 5 0 . 0 2 7 0 7 8
5 1 1 5 - 0 . 0 4 1 9 0 4
5 2 1 5 0 . 0 1 9 3 8 5
6 1 1 5 - 0 . 0 4 1 2 9 9
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6 2 1 5 0 . 0 1 7 1 4 6
1 1 2 5 0 . 0 5 0 3 4
1 2 2 5 0 . 0 4 9 3 3 6
2 1 2 5 0 . 0 4 3 2 1 9
2 2 2 5 0 . 0 3 8 7 5
3 1 2 5 0 . 0 3 8 1 2 9
3 2 2 5 0 . 0 3 1 4 5 4
4 1 2 5 0 . 0 5 2 9 2 2
4 2 2 5 - 0 . 0 3 3 5 6
5 1 2 5 0 . 0 3 8 6 2
5 2 2 5 0 . 0 2 9 8 3
6 1 2 5 0 . 0 3 8 9 5 9
6 2 2 5 0 . 0 2 4 3 5 7
1 1 1 6 0 . 0 3 0 3 9 4
1 2 1 6 0 . 0 4 0 6 6
2 1 1 6 0 . 0 2 6 0 3 6
2 2 1 6 0 . 0 3 2 5 3 4
3 1 1 6 0 . 0 2 2 8 7 3
3 2 1 6 0 . 0 2 6 8 6 7
4 1 1 6 0 . 0 3 1 7 7 9
4 2 1 6 0 . 0 2 7 1 5 3
5 1 1 6 0 . 0 2 2 1 0 9
5 2 1 6 0 . 0 2 5 0 3 2
6 1 1 6 0 . 0 1 9 4 6 4
6 2 1 6 0 . 0 2 0 7 0 4
1 1 2 6 0 . 0 5 3 6 5
1 2 2 6 0 . 0 6 9 5 6 3
2 1 2 6 0 . 0 4 4 7 1
2 2 2 6 0 . 0 5 5 4 4 7
3 1 2 6 0 . 0 3 8 2 7 6
3 2 2 6 0 . 0 4 5 5 9 4
4 1 2 6 0 . 0 5 6 1 9 5
4 2 2 6 0 . 0 4 6 4 7 5
5 1 2 6 0 . 0 3 7 9 6 7
5 2 2 6 0 . 0 4 2 3 3 4
6 1 2 6 0 . 0 3 2 4 9 7
6 2 2 6 0 . 0 3 4 6 9 4
1 1 1 7 0 . 0 7 4 3 1
1 2 1 7 - 0 . 0 2 4 5 9 4
2 1 1 7 0 . 0 6 5 9 1 4
2 2 1 7 - 0 . 0 1 7 9 1 2
3 1 1 7 0 . 0 5 9 5 1
3 2 1 7 0 . 0 1 7 9 3 9
4 1 1 7 0 . 0 7 8 6 6 7
4 2 1 7 0 . 0 4 1 1 9 8
5 1 1 7 0 . 0 5 3 5 2 1
5 2 1 7 0 . 0 1 4 3 8 9
6 1 1 7 0 . 0 4 7 2 4 5
6 2 1 7 0 . 0 1 6 4 9
1 1 2 7 0 . 0 9 4 4 2 9
1 2 2 7 - 0 . 0 3 3 7 2 1
2 1 2 7 0 . 0 8 1 9 9 7
2 2 2 7 - 0 . 0 2 4 4 5 9
3 1 2 7 0 . 0 7 2 6 7 9
3 2 2 7 0 . 0 2 6 0 1 8
4 1 2 7 0 . 0 9 9 0 2 7
4 2 2 7 0 . 0 5 3 3 8 2
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5 1 2 7 0 . 0 6 5 0 8 1
5 2 2 7 0 . 0 2 1 8 6 1
6 1 2 7 0 . 0 5 6 3 7
6 2 2 7 0 . 0 2 3 0 6 8
1 1 1 8 - 0 . 0 7 9 5 0 3
1 2 1 8 0 . 0 4 0 2 9 6
2 1 1 8 - 0 . 0 7 8 2 2
2 2 1 8 0 . 0 3 8 7 8 3
3 1 1 8 - 0 . 0 7 6 7 1
3 2 1 8 0 . 0 3 8 8 0 7
4 1 1 8 0 . 0 9 3 4 6 4
4 2 1 8 - 0 . 0 2 5 5
5 1 1 8 - 0 . 0 6 7 5 3 5
5 2 1 8 0 . 0 3 2 6 0 8
6 1 1 8 - 0 . 0 6 5 9 2 5
6 2 1 8 0 . 0 3 2 4 3 1
1 1 2 8 - 0 . 1 0 3 2 1 5
1 2 2 8 0 . 0 4 9 2 2 1
2 1 2 8 - 0 . 0 9 8 5 9 1
2 2 2 8 0 . 0 3 9 0 5 6
3 1 2 8 - 0 . 0 9 4 3 8 4
3 2 2 8 0 . 0 3 2 8 0 2
4 1 2 8 - 0 . 1 1 4 1 5 8
4 2 2 8 - 0 . 0 4 3 3 3 2
5 1 2 8 - 0 . 0 8 3 2 1 6
5 2 2 8 0 . 0 2 9 9 5 2
6 1 2 8 - 0 . 0 7 9 0 3 6
6 2 2 8 0 . 0 2 5 9 9 2
1 1 1 9 - 0 . 0 8 5 5 8 1
1 2 1 9 0 . 0 2 4 1 1 9
2 1 1 9 - 0 . 0 7 5 0 5 8
2 2 1 9 - 0 . 0 2 0 6 3 9
3 1 1 9 - 0 . 0 6 6 9 3 6
3 2 1 9 - 0 . 0 2 4 1 0 2
4 1 1 9 - 0 . 0 9 0 0 7 4
4 2 1 9 - 0 . 0 4 8 7 5
5 1 1 9 - 0 . 0 6 0 3 4 2
5 2 1 9 - 0 . 0 1 9 3 9 7
6 1 1 9 - 0 . 0 5 2 6 7 3
6 2 1 9 - 0 . 0 2 0 9 7 1
1 1 2 9 - 0 . 1 2 2 4 5 2
1 2 2 9 - 0 . 0 3 7 0 3
2 1 2 9 - 0 . 1 0 3 8 3 7
2 2 2 9 - 0 . 0 4 0 8 9 9
3 1 2 9 - 0 . 0 8 9 9 8 5
3 2 2 9 - 0 . 0 4 2 0 7 6
4 1 2 9 - 0 . 1 2 8 9 2 7
4 2 2 9 - 0 . 0 7 1 9 8 4
5 1 2 9 - 0 . 0 8 0 4 0 2
5 2 2 9 - 0 . 0 3 5 2 4 7
6 1 2 9 - 0 . 0 6 8 2 3 6
6
/

2 2 9 - 0 . 0 3 4 5 9 4

PROC PRINT;
PROC GLM;
C L A S S  GT GN T T  A R ;
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MODEL S t r e s s  = GT GN T T  AR G T *G N  G T * T T  G T *A R  G N *T T  G N *A R  T T * A R  G T * G N * A R ;

data o n e ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 1 ;
PROC print;
PROC SORT D A T A = o n e ;

BY GT T T ;
PROC MEANS D A T A = o n e  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 M E A N = A V _ S t r e s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
P L O T  A V _ S t r e s s * G T = T T ;

data t w o ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 2 ;
PROC print;
PROC SORT DATA=two;

BY GT T T ;
PROC MEANS D A T A = tW O  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 MEAN=A V _ S t r e s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PL O T  A V _ S t r e s s * G T = T T ;

data t h r e e ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 3 ;
PROC print;
PROC SORT D A T A = t h r e e ;

BY GT T T ;
PROC MEANS D A T A = t h r e e  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY G T T T ;
O U TPU T O U T=D A TA 2 MEAN=A V _ S t r e s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
P L O T  A V _ S t r e s s * G T = T T ;

data f o u r ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 4 ;
PROC print;
PROC SORT D A T A = f o u r ;

BY GT T T ;
PROC MEANS D A T A = f o u r  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY G T T T ;
O U TPU T O U T=D A TA 2 M E A N = A V _ S t r e s s  V A R = V A R _ S t r e s s ;

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PL O T  AV S t r e s s * G T = T T ;
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d a t a  f i v e ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 5 ;
PROC print;
PROC SORT D A T A = f i v e ;

BY GT T T ;
PROC MEANS D A T A = five N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 M E A N = A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
P L O T  A V _ S t r e s s * G T = T T ;

data s i x ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 6 ;
PROC print;
PROC SORT D A T A = s ix ;

BY GT T T ;
PROC MEANS D A T A = s ix  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 M E A N = A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR G T  T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PL O T  A V _ S t r e s s * G T = T T ;

data s e v e n ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 7 ;
PROC print;
PROC SORT D A T A = s e v e n ;

BY GT T T ;
PROC MEANS D A T A = s e v e n  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 MEAN= A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
PL O T  A V _ S t r e s s * G T = T T ;

data e i g h t ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 8 ;
PROC print;
PROC SORT D A T A = e i g h t ;

BY GT T T ;
PROC MEANS D A T A = e i g h t  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY G T T T ;
O U TPU T O U T=D A TA 2 M E A N = A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR GT T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
P L O T  AV S t r e s s * G T = T T ;
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data n i n e ;  s e t  S x y S t r e s s w h o l e d e c k ;  
i f  A R = 9 ;
PROC print;
PROC SORT D A T A = n in e ;

BY GT T T ;
PROC MEANS D A T A = n in e  N O P R IN T  MEAN V A R ;

VAR S t r e s s ;
BY GT T T ;
O U TPU T O U T=D A TA 2 MEAN=A V _ S t r e s s  V A R = V A R _ S t r e s s ; 

PROC PRINT;
VAR G T T T  A V _ S t r e s s  V A R _ S t r e s s ;

PROC PLOT;
P L O T  A V _ S t r e s s * G T = T T ;

Run;
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Table D.l ANOVA Results, Stress Component Sxx, Area I

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.24653141 0.01369619 3.44 0.0882
Error 5 0.01992104 0.00398421

Corrected Total 23 0.26645245

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.10884169 0.02176834 5.46 0.0429
GN 1 0.01253981 0.01253981 3.15 0.1362
TT 1 0.00003799 0.00003799 0.01 0.926

GT*GN 5 0.09899854 0.01979971 4.97 0.0516
GT*TT 5 0.01845995 0.00369199 0.93 0.5323
GN*TT 1 0.00765344 0.00765344 1.92 0.2244

Table D.2 ANOVA Results, Stress Component Sxx, Area II

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 1.27309865 0.0707277 284.38 <.0001
Error 5 0.00124353 0.00024871

Corrected Total 23 1.27434218

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.47381693 0.09476339 381.03 <.0001
GN 1 0.12930144 0.12930144 519.9 <.0001
TT 1 0.00796943 0.00796943 32.04 0.0024

GT*GN 5 0.65608456 0.13121691 527.6 <.0001
GT*TT 5 0.00172709 0.00034542 1.39 0.3637
GN*TT 1 0.0041992 0.0041992 16.88 0.0093

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



226

Table D.3 ANOVA Results, Stress Component Sxx, Area III

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.32641528 0.01813418 3.25 0.0982
Error 5 0.02791024 0.00558205

Corrected Total 23 0.35432551

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.14568346 0.02913669 5.22 0.0469
GN 1 0.01389407 0.01389407 2.49 0.1755
TT 1 0.00000469 0.00000469 0 0.978

GT*GN 5 0.13157224 0.02631445 4.71 0.057
GT*TT 5 0.02584972 0.00516994 0.93 0.5325
GN*TT 1 0.0094111 0.0094111 1.69 0.2508

Table D.4 ANOVA Results, Stress Component Sxx, Area IV

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.05587679 0.00310427 198.74 <.0001
Error 5 0.0000781 0.00001562

Corrected Total 23 0.05595489

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.01063688 0.00212738 136.2 <.0001
GN 1 0.02478444 0.02478444 1586.74 <.0001
TT 1 0.01793099 0.01793099 1147.97 <.0001

GT*GN 5 0.00031279 0.00006256 4.01 0.077
GT*TT 5 0.00061715 0.00012343 7.9 0.0203
GN*TT 1 0.00159453 0.00159453 102.08 0.0002
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Table D.5 ANOVA Results, Stress Component Sxx, Area V

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.36094536 0.02005252 16522.2 <.0001
Error 5 0.00000607 0.00000121

Corrected Total 23 0.36095143

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.12102926 0.02420585 19944.3 <.0001
GN 1 0.22620553 0.22620553 186381 <.0001
TT 1 0.0061138 0.0061138 5037.44 <.0001

GT*GN 5 0.00719428 0.00143886 1185.54 <.0001
GT*TT 5 0.00023913 0.00004783 39.41 0.0005
GN*TT 1 0.00016336 0.00016336 134.6 <.0001

Table D.6 ANOVA Results, Stress Component Sxx, Area VI

Dependent Variab e: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.14087669 0.00782648 106.27 <.0001
Error 5 0.00036822 0.00007364

Corrected Total 23 0.14124491

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.02363575 0.00472715 64.19 0.0002
GN 1 0.05152804 0.05152804 699.69 <.0001
TT 1 0.05655803 0.05655803 767.99 <.0001

GT*GN 5 0.00092163 0.00018433 2.5 0.1684
GT*TT 5 0.00272724 0.00054545 7.41 0.0232
GN*TT 1 0.005506 0.005506 74.76 0.0003
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Table D.7 ANOVA Results, Stress Component Sxx, Area VII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.11836186 0.00657566 5.36 0.036
Error 5 0.00612864 0.00122573

Corrected Total 23 0.12449051

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00832161 0.00166432 1.36 0.3727
GN 1 0.05704881 0.05704881 46.54 0.001
TT 1 0.02083046 0.02083046 16.99 0.0092

GT*GN 5 0.02099939 0.00419988 3.43 0.1013
GTTT 5 0.01094084 0.00218817 1.79 0.2701
GN*TT 1 0.00022075 0.00022075 0.18 0.6889

Table D.8 ANOVA Results, Stress Component Sxx, Area VIII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.73481231 0.04082291 31.89 0.0006
Error 5 0.00640037 0.00128007

Corrected Total 23 0.74121269

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.13418712 0.02683742 20.97 0.0023
GN 1 0.58641322 0.58641322 458.11 <.0001
TT 1 0.00247079 0.00247079 1.93 0.2234

GT*GN 5 0.00442266 0.00088453 0.69 0.6525
GTTT 5 0.00580188 0.00116038 0.91 0.5416
GNTT 1 0.00151664 0.00151664 1.18 0.326
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Table D.9 ANOVA Results, Stress Component Sxx, Area IX

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.18741677 0.01041204 5.37 0.0359
Error 5 0.00969834 0.00193967

Corrected Total 23 0.1971151

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.01415065 0.00283013 1.46 0.3443
GN 1 0.07229353 0.07229353 37.27 0.0017
TT 1 0.05355023 0.05355023 27.61 0.0033

GTGN 5 0.02601187 0.00520237 2.68 0.1514
GTTT 5 0.02121607 0.00424321 2.19 0.2052
GNTT 1 0.00019442 0.00019442 0.1 0.7643

Table D.10 ANOVA Results, Stress Component Sxy, Area I

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.01002847 0.00055714 55.28 0.0002
Error 5 0.0000504 0.00001008

Corrected Total 23 0.01007887

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00540959 0.00108192 107.34 <.0001
GN 1 0.00226177 0.00226177 224.4 <.0001
TT 1 0.00158942 0.00158942 157.7 <.0001

GTGN 5 0.00062727 0.00012545 12.45 0.0075
GTTT 5 0.0001316 0.00002632 2.61 0.1578
GNTT 1 0.00000883 0.00000883 0.88 0.3924
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Table D .ll ANOVA Results, Stress Component Sxy, Area II

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.00593229 0.00032957 556.67 <.0001
Error 5 0.00000296 0.00000059

Corrected Total 23 0.00593525

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00195504 0.00039101 660.44 <.0001
GN 1 0.00286052 0.00286052 4831.6 <.0001
TT 1 0.00077678 0.00077678 1312.03 <.0001

GT*GN 5 0.00002582 0.00000516 8.72 0.0164
GTTT 5 0.00029396 0.00005879 99.3 <.0001
GN*TT 1 0.00002019 0.00002019 34.1 0.0021

Table D.12 ANOVA Results, Stress Component Sxy, Area III

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.0161191 0.00089551 30.28 0.0007
Error 5 0.00014787 0.00002957

Corrected Total 23 0.01626698

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00815667 0.00163133 55.16 0.0002
GN 1 0.00371041 0.00371041 125.46 <.0001
TT 1 0.00276692 0.00276692 93.56 0.0002

GTGN 5 0.00114275 0.00022855 7.73 0.0212
GTTT 5 0.0003316 0.00006632 2.24 0.1981
GNTT 1 0.00001074 0.00001074 0.36 0.573
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Table D.13 ANOVA Results, Stress Component Sxy, Area IV

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.00233517 0.00012973 134.6 <.0001
Error 5 0.00000482 0.00000096

Corrected Total 23 0.00233999

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00083217 0.00016643 172.68 <.0001
GN 1 0.00017377 0.00017377 180.29 <.0001
TT 1 0.00101303 0.00101303 1051.05 <.0001

GT*GN 5 0.00024515 0.00004903 50.87 0.0003
GTTT 5 0.00004752 0.0000095 9.86 0.0126
GNTT 1 0.00002354 0.00002354 24.42 0.0043

Table D.14 ANOVA Results, Stress Component Sxy, Area V

Dependent Variab e: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.02314756 0.00128598 1.87 0.2522
Error 5 0.00343446 0.00068689

Corrected Total 23 0.02658202

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00416724 0.00083345 1.21 0.4186
GN 1 0.00145393 0.00145393 2.12 0.2055
TT 1 0.00751592 0.00751592 10.94 0.0213

GT*GN 5 0.0012412 0.00024824 0.36 0.8558
GTTT 5 0.00103483 0.00020697 0.3 0.893
GNTT 1 0.00773444 0.00773444 11.26 0.0202
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Table D.15 ANOVA Results, Stress Component Sxy, Area VI

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.00386881 0.00021493 60.19 0.0001
Error 5 0.00001786 0.00000357

Corrected Total 23 0.00388667

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00117949 0.0002359 66.06 0.0001
GN 1 0.00010883 0.00010883 30.48 0.0027
TT 1 0.00223874 0.00223874 626.91 <.0001

GT*GN 5 0.00023645 0.00004729 13.24 0.0066
GTTT 5 0.00010069 0.00002014 5.64 0.0403
GN*TT 1 0.00000461 0.00000461 1.29 0.3074

Table D.16 ANOVA Results, Stress Component Sxy, Area VII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.03378176 0.00187676 60.08 0.0001
Error 5 0.00015619 0.00003124

Corrected Total 23 0.03393795

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00464962 0.00092992 29.77 0.001
GN 1 0.02251495 0.02251495 720.77 <.0001
TT 1 0.00049554 0.00049554 15.86 0.0105

GTGN 5 0.00581973 0.00116395 37.26 0.0006
GTTT 5 0.00008725 0.00001745 0.56 0.7309
GN*TT 1 0.00021466 0.00021466 6.87 0.047
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Table D.17 ANOVA Results, Stress Component Sxy, Area VIII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.08812125 0.00489562 3.87 0.0701
Error 5 0.00632733 0.00126547

Corrected Total 23 0.09444858

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.0000385 0.0000077 0.01 1
GN 1 0.05397392 0.05397392 42.65 0.0013
TT 1 0.00431762 0.00431762 3.41 0.124

GT*GN 5 0.01778787 0.00355757 2.81 0.1406
GTTT 5 0.00886519 0.00177304 1.4 0.3602
GNTT 1 0.00313815 0.00313815 2.48 0.1761

Table D.18 ANOVA Results, Stress Component Sxy, Area IX

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.02935787 0.00163099 34.97 0.0005
Error 5 0.00023318 0.00004664

Corrected Total 23 0.02959105

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.00407505 0.00081501 17.48 0.0035
GN 1 0.0177634 0.0177634 380.9 <.0001
TT 1 0.00414133 0.00414133 88.8 0.0002

GT*GN 5 0.00259136 0.00051827 11.11 0.0097
GTTT 5 0.00078161 0.00015632 3.35 0.1052
GNTT 1 0.00000512 0.00000512 0.11 0.7538
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Table D.l 9 ANOVA Results, Stress Component Syy, Area I

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.38244525 0.02124696 1654.89 <.0001
Error 5 0.00006419 0.00001284

Corrected Total 23 0.38250944

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.11116291 0.02223258 1731.66 <.0001
GN 1 0.22624261 0.22624261 17621.6 <.0001
TT 1 0.0000009 0.0000009 0.07 0.8013

GT*GN 5 0.04463496 0.00892699 695.31 <.0001
GTTT 5 0.00012143 0.00002429 1.89 0.2505
GNTT 1 0.00028243 0.00028243 22 0.0054

Table D.20 ANOVA Results, Stress Component Syy, Area II

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.1525996 0.00847776 284.55 <.0001
Error 5 0.00014897 0.00002979

Corrected Total 23 0.15274856

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.11221536 0.02244307 753.3 <.0001
GN 1 0.01221444 0.01221444 409.97 <.0001
TT 1 0.00733587 0.00733587 246.23 <.0001

GTGN 5 0.01626188 0.00325238 109.17 <.0001
GTTT 5 0.00418497 0.00083699 28.09 0.0011
GNTT 1 0.00038708 0.00038708 12.99 0.0155
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Table D.21 ANOVA Results, Stress Component Syy, Area III

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.40572839 0.02254047 886.34 <.0001
Error 5 0.00012715 0.00002543

Corrected Total 23 0.40585555

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.11541742 0.02308348 907.69 <.0001
GN 1 0.24196983 0.24196983 9514.76 <.0001
TT 1 0.00001646 0.00001646 0.65 0.4576

GT*GN 5 0.04748114 0.00949623 373.41 <.0001
GTTT 5 0.00021261 0.00004252 1.67 0.2932
GNTT 1 0.00063094 0.00063094 24.81 0.0042

Table D.22 ANOVA Results, Stress Component Syy, Area IV

Dependent Variab e: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.4370695 0.02428164 1059.1 <.0001
Error 5 0.00011463 0.00002293

Corrected Total 23 0.43718413

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.12318387 0.02463677 1074.59 <.0001
GN 1 0.26669658 0.26669658 11632.6 <.0001
TT 1 0.00000324 0.00000324 0.14 0.7224

GTGN 5 0.04630116 0.00926023 403.91 <.0001
GTTT 5 0.00024099 0.0000482 2.1 0.2171
GNTT 1 0.00064367 0.00064367 28.08 0.0032
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Table D.23 ANOVA Results, Stress Component Syy, Area V

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.26043016 0.01446834 612.72 <.0001
Error 5 0.00011807 0.00002361

Corrected Total 23 0.26054823

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.13956593 0.02791319 1182.09 <.0001
GN 1 0.0014282 0.0014282 60.48 0.0006
TT 1 0.10428017 0.10428017 4416.13 <.0001

GT*GN 5 0.01109111 0.00221822 93.94 <.0001
GTTT 5 0.00319014 0.00063803 27.02 0.0013
GNTT 1 0.00087462 0.00087462 37.04 0.0017

Table D.24 ANOVA Results, Stress Component Syy, Area VI

Dependent Variab e: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.46727855 0.02595992 545.98 <.0001
Error 5 0.00023774 0.00004755

Corrected Total 23 0.46751629

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.12711199 0.0254224 534.67 <.0001
GN 1 0.28782426 0.28782426 6053.4 <.0001
TT 1 0.00003425 0.00003425 0.72 0.4348

GT*GN 5 0.0507818 0.01015636 213.6 <.0001
GTTT 5 0.00033463 0.00006693 1.41 0.3584
GNTT 1 0.00119162 0.00119162 25.06 0.0041
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Table D.25 ANOVA Results, Stress Component Syy, Area VII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.4159451 0.02310806 980.13 <.0001
Error 5 0.00011788 0.00002358

Corrected Total 23 0.41606298

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.12258321 0.02451664 1039.88 <.0001
GN 1 0.24490743 0.24490743 10387.8 <.0001
TT 1 0.0000003 0.0000003 0.01 0.9149

GT*GN 5 0.04764992 0.00952998 404.22 <.0001
GTTT 5 0.00024966 0.00004993 2.12 0.2148
GNTT 1 0.00055458 0.00055458 23.52 0.0047

Table D.26 ANOVA Results, Stress Component Syy, Area VIII

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.40649594 0.02258311 576.1 <.0001
Error 5 0.000196 0.0000392

Corrected Total 23 0.40669194

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.15066903 0.03013381 768.72 <.0001
GN 1 0.0748991 0.0748991 1910.68 <.0001
TT 1 0.13331956 0.13331956 3400.99 <.0001

GT*GN 5 0.04179472 0.00835894 213.24 <.0001
GTTT 5 0.00122429 0.00024486 6.25 0.0329
GNTT 1 0.00458924 0.00458924 117.07 0.0001
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Table D.27 ANOVA Results, Stress Component Syy, Area IX

Dependent Variable: Stress
Source DF Sum of Squares Mean Square F Value Pr > F
Model 18 0.44707141 0.0248373 548.34 <.0001
Error 5 0.00022648 0.0000453

Corrected Total 23 0.44729789

Source DF Type III SS Mean Square F Value Pr > F
GT 5 0.12751838 0.02550368 563.05 <.0001
GN 1 0.26636736 0.26636736 5880.67 <.0001
TT 1 0.00006231 0.00006231 1.38 0.2937

GT*GN 5 0.05160068 0.01032014 227.84 <.0001
GTTT 5 0.00037429 0.00007486 1.65 0.2974
GNTT 1 0.00114839 0.00114839 25.35 0.004
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