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ABSTRACT

A primary goal of semiconductor industry is to improve device performance and 

capability by downscaling feature size and upscaling packaging density. As optical- 

lithography, the mainstream technology for microfabrication, is being stretched to its 

limit, new unconventional fabrication techniques are being explored as alternatives. A 

“Bottom-up” approach for manufacturing is emerging as an answer to limitations posed 

by the traditional “Top-down” approach. Nanowires, bearing the potential of being the 

basic building blocks for such an approach, are gaining tremendous attention in 

nanoelectronics. Metal nanowires fabricated using DNA as templates have potential for 

precise control of length, diameter and positioning. However, wires formed by assembly 

of metal nanostructures were found to have considerably high electrical resistivity. Oxide 

formation, irregular structure and formation of grain boundaries in metal nanostructure 

can be attributed to this problem.

This dissertation is an investigation into factors that affect the formation of DNA 

templated indium nanowires. They could be treated thermally to increase overall 

electrical conductivity by utilizing the low melting point of the metal. We have used 

indium(O), (I) and (III) species as precursors to DNA metallization. Indium(O) in the form 

of nanoparticles was prepared by reducing indium(I) complex to indium(O). A organic 

complex {[HB(3-phpz)3]In} was synthesized to stabilize otherwise highly air-sensitive

iii
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indium(I) species derived from cyclopentadine. Indium(III) species in the form of 

aqueous indium trichloride was also used.

During the interaction studies of indium species with DNA, we found that 

indium(III) binds to DNA in aqueous medium inducing conformal changes and 

considerable coiling and condensation of DNA molecules, making it unsuitable for 

nanowire preparation. Indium nanoparticles did not selectively deposit on DNA, 

indicating that indium(O) has no specific affinity towards DNA molecules. However, 

reduction of {[HB(3-phpz)3]In} using sodium in the presence of DNA shows successful 

metallization of DNA. Even though laterally stretched wires with uniform diameter were 

not formed, selective deposition of indium metal on DNA, forming random network of 

metallized DNA bundles with diameters between 20-100 nm was accomplished. 

Preliminary investigation on electrical resistivity indicates that heat treatment of the 

nanowires reduces the resistivity of these wires by a factor of five.

In the future, it will be possible to assemble nanowires with better orientation, 

higher uniformity and lower diameters by applying the knowledge gained during this 

study to already existing techniques of DNA templated nanowire assembly. Indium 

nanowires thus assembled can be feasibly heat-treated to achieve highly uniform 

structure with low resistively making it compatible as a component for futuristic 

nanocircuits.
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CHAPTER 1

INTRODUCTION

In the modem world, the quest for development of better materials, techniques, 

and ultimately, products, has been driven by the need for continued betterment of 

humankind. From the invention of vacuum diodes, all the way up to the present fastest 

supercomputer (IBM®, capable of performing up to 12.3 trillion operations per second), 

the key for progress has been a scientific problem-solving approach coupled with 

innovation. Systems developed as a result of such a process supersede the previous 

systems and render them obsolete. However, all systems do have certain shortcomings 

which open a large window for improvement. This deficiency eventually leads to to the 

need for development of a more advanced system. Scientific research aims at identifying 

these shortcomings and addressing the problems in a creative and systematic fashion, 

based upon knowledge acquired and documented over time. In the semiconductor 

industry, fabrication in micro-scale has been traditionally carried out using the “top- 

down” approach. This approach basically involves building something by starting with a 

larger component and carving away material until the desired shape and size is achieved. 

This method can be compared with sculpting from a block of stone. This approach has 

evolved significantly over the last few decades enabling continuous miniaturization of the 

devices. However it has its own limitations which will be discussed latter in this chapter. 

In his classic talk titled “There’s plenty of room at the bottom” (December 29, 1959 at

1
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annual meeting of American Physical Society) Richard P. Feynman, the Nobel laureate of 

physics described a field in which little had been done, but in which an enormous amount 

could be done in principle. He proposed a “bottom-up” approach of manufacturing which 

involves manipulation of basic building blocks of matter (atoms and molecules) to 

achieve desired shape and size. In this dissertation, a similar approach towards fabricating 

metal nanowires using DNA molecules as template and metal ions as the basic building 

blocks has been applied. These wires can play a crucial role as interconnects in futuristic 

nanocircuits.

1.1 Micro-Fabrication

Micro-fabrication is a collective term for the technologies applied in fabrication 

of components in the micrometer regime. The applications of micro-fabrication can be 

classified into microelectronics, micromechanics, micro-optics, microfluidics and 

micropackaging. Two or more of these microsystems often come together to form 

advanced functional systems. Fabricating microsystems from silicon wafers is being used 

for developing devices such as transistors, Integrated Circuits (ICs) and Micro Electro 

Mechanical Systems (MEMS). These devices constitute the basic components of almost 

all electronic devices (such as radio, television, computers, etc.) available currently.

A pattern from a master (known as a mask) is transferred onto the silicon wafer 

by a process called photolithography (or optical lithography), enabling mass production 

of components. Optical lithography has been the mainstream technology in 

semiconductor industry since late 1950s, when ICs were first invented. The mask 

contains the details of the devices being fabricated and the layout of the circuit. 

Typically, patterns from more than one mask are superimposed on the wafer to achieve
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the desired configuration. The basic steps involved in the photolithography process are 

as follows: 1) mask printing; 2) coating photoresist on the wafer; 3) exposing; 4) 

developing; and 5) etching. A schematic of exposure, developing and etching steps 

involved in simple pattern transfer from a mask onto a silicon wafer is shown in Figure 

1.1. Basic factors controlling the minimum feature size of the pattern are mask design, 

pattern transfer method, photoresist properties and the wavelength of light. The mask is 

printed using a pattern generator. Commonly-used pattern generators include: 1) 

plotters; 2) optical pattern generators; and 3) electron beam pattern generators. Contact 

printing, proximity printing and projection printing are the three basic types of pattern 

transfer techniques traditionally used. Photoresists are usually photosensitive polymers 

which become either more soluble (positive) or less soluble (negative) in a developer 

solution upon exposure to specific wavelengths of light. The chemical properties of the 

photoresist determine how accurately the transition occurs upon exposure. Finally, the 

wavelength of the exposure light is critical in photolithography process. The smaller the 

wavelength of the light is, the smaller is the feature size that can be achieved.
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UV Exposure rn 'T T T T
Mask

Photoresisl Coated 
Silicon Wafer

Pattern Transferred 
from Mask to the 

Photoresist

Pattern 
Transferred from 
Photoresist to the 

wafer

ysS-’

Developing

Etching

Figure 1.1 Schematic of steps in photolithography (Exposure, developing and etching).

Electron Beam Lithography (EBL) is a technique similar to photolithography. 

EBL uses a focused beam of electrons to form the circuit patterns on the photoresist, as 

opposed to using light for the same purpose in optical lithography. Electron lithography 

uses shorter wavelength (employing 10-50 keV electrons) offering higher patterning 

resolution than optical lithography. EBL traces the pattern directly on to the resist-coated 

wafer using an electron beam as its drawing pen eliminating the requirement of masks. 

However, the high power requirement of the electron beams makes it difficult to control. 

Moreover, this method is slow as compared with photolithography, making it undesirable 

when mass production is required.
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1.2 Lithography Challenges

In 1965, Intel® co-founder Dr. Gordon Moore predicted the trend for 

development of semiconductor industry. His prediction, now popularly known as 

Moore's Law, states that the number of transistors on a chip doubles about every two 

years. Keeping up with this law has been the main goal of semiconductor industry since 

then. Continuous improvement of lithography over the past three decades has been able 

to keep up with the predicted trend so far. Figure 1.2 shows the comparison between 

Moore’s law prediction and actual observed trend.

P ack ag in g  D ensity  of Intel P rocessors

10 , 00 0 .000,000

-  Moore's Law
-  Actual Trend • 1,000,000,000

Itanium® iCL
.c:O
at
Q .
£.BCO

‘cnc£5t—

■ 100 ,000,000

■ 10 , 000,000

Pentium ®
• 1 ,000 ,000

486
Qj■O
E
z

■ 100,000286

8086
■ 10,000

4004
1,000

1970 1980 20101990 200 0
Year

Figure 1.2 Comparison between Moore’s law prediction and actual observed trend.

The world's first single chip microprocessor, the Intel 4004 was marketed in 

1971. It had 2,250 transistors integrated on a single silicon wafer. Advanced 

architecture and lithography techniques allowed ultra-high dense packaging of 

transistors in today’s microprocessors. Intel’s Montecito processor (belonging to
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Itanium 2 processor family, 2006) houses 1.72 billion transistors within a two core die 

of 596 mm2 area [1]. Exposure systems have evolved throughout this period aiming to 

achieve dense packaging using shorter wavelengths. ‘Technology node’, also known as 

‘technology generation’ refers to the size of elements on the chip. Figure 1.3 shows that 

i-line and g-line exposure systems that have dominated over six generations of 

technology nodes over a period of fifteen years [2], Deep Ultra-Violet (DUV) 

lithography has been used up to 130 nm technology node.

Wavelength " Generations"

2000 n 

1800 - 

1600 - 

J ,  1400 - 

|  1200 -| -

-3 800 -a
a  600 -<L>
^  400 -

200  -

1980 1985 1990 1995 2000 2005 2010

Year

Figure 1.3 Trend of downscaling of semiconductors. Redrawn from reference [2], 
Copyright 2002 Intel®.

Immersion lithography is an optical enhancement technique in which a fluid is 

placed between the light source and surface of the wafer. At 90 and 60 nm technology 

nodes, 193/157 nm exposure systems with immersion has been dominantly used. The 

International Technology Roadmap for Semiconductors (ITRS) however, predicts the

i/g-line Steppers

193nm
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requirement of a new generation of exposure systems with even shorter wavelengths at 

the beginning of the 45 nm node [3], Extreme Ultra-Violet (EUV) with 13.5 nm 

wavelength exposure system, also known as Next Generation Lithography (NGL) is 

capable of meeting the requirements of 32 nm node and lower. However, low 

throughput, high defect rate and very high power requirement for such an exposure 

system makes it unsuitable for mass production at this stage. Problems related to mask 

fabrication process control, metrology and defect inspection, and gate critical 

dimension control currently prevent NGL from becoming mainstream technology for 

45 nm node. Development of advanced lithography systems is costly and increases the 

manufacturing cost per chip. Hence, research into alternatives to lithography and more 

cost effective micro-manufacturing techniques should be vigorously pursued.

1.3 Nanotechnology and Nanowires

Nanotechnology, defined as fabrication of devices with atomic or molecular scale 

precision, is mainly based on ‘bottom-up’ approach. Devices with minimum feature sizes 

less than 100 nanometers (nm) are considered to be products of nanotechnology. At these 

dimensions, quantum effects are expected to play a considerable role in performance of 

the device. Techniques developed through nanotechnology are expected to address the 

downscaling issues of present microfabrication technology. Nanotechnology is currently 

in its infantile stage. However, the ability to organize matter on the atomic scale using 

scanning Tunneling Microscope (STM) and Atomic Force Microscope (AFM) has been 

demonstrated. Nanotechnology is projected to find applications in almost all walks of 

life. Its applications in electronics, medicine, aerospace, surface coating, and cosmetics 

are being explored. Novel nanomaterials like carbon nanotubes and bucky balls have
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been shown to have exceptional tensile strength, and electrical and thermal conductivity. 

Even though there has been ‘hype’ in the market for brand names and trademarks 

containing the word “nano”, successful commercial products are still in the early stage of 

development. Sunscreen lotions containing zinc oxide nanoparticles, stain-free fabrics, 

and nanocapsules for drug delivery are some of the emerging nano-tech products in the 

market. There has been a steady increase in total world government investment on 

nanotechnology since 1997 and even steeper raise since 2002 [4],

Nanowires are one-dimensional nanostructures with diameters typically less than 

100 nm. Research on nanowires shows their promising applications as functional 

components in nanoscale electronic devices. An example of such a device with broad 

potential for applications is the nanowire Field Effect Transistor (FET). FETs built on 

silicon [5, 6], germanium [7] and gallium-nitride [8] nanowires have been demonstrated. 

These nanowire FETs were assembled by complemetry n- and p-type doping on 

nanowires using metal-catalyzed chemical vapor deposition. Molecular nanowires 

derived from poly(3-methylthiophene) conducting polymers or organic molecules like 

2,2,6,6-tetramethyl-l-piperidinyloxy (TEMPO) self-assembled on to an underlying 

substrate has been shown to have potential to operate at single-molecule level acting as 

an interconnects in nanocircuits [9-11]. Such interconnects are expected to have 

properties similar to a resonance tunneling diodes.

Nanowires are synthesized using three basic methods [12]: 1) Catalyzed growth 

by Vapor-Liquid-Solid (VLS) mechanism [13]; 2) Template-based electrochemical 

synthesis [14]; and 3) Solvothermal or wet chemistry [15]. Catalyzed growth by VLS 

mechanism promotes vertical growth of nanowires on a substrate using three steps: metal
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alloying, crystal nucleation, and axial growth. Electrochemical synthesis using 

nanoporous template, step-edge template, carbon nanotube template, and 

Deoxyribonucleic Acid (DNA) and polymer template have been synthesize metal and 

metal oxide nanowire.

1.4 DNA-Templated Nanowires

DNA is being recognized as a nanomaterial and bio-template, in the research field 

of nanotechnology. Recent research on DNA-templated nanowires, DNA 

nanoarchitectures, DNA computing and DNA biocatalysts have shown DNA molecule to 

be one of the most promising functional nanomaterials [16]. Molecular lithography using 

DNA has demonstrated the ability to transfer pattern with feature size as small as 10 nm 

[17]. Specific base-pair recognition between complementary DNA single-strands allow 

them to be used in engineering well-ordered structures at the nano-scale. The inherent 

addressing capabilities, facilitated by specific interactions between complementary single 

strands, are manifested in specific recognition and self-assembly processes. In DNA 

based molecular lithography, the specific DNA sequence is the equivalent of a molecular 

mask, and the DNA-binding protein serves as the resist (Figure 1.4).
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Figure 1.4 DNA molecular lithography using DNA. Redrawn from reference [17].

DNA is a natural template for high aspect ratio (ratio of length of the structure to 

its diameter) nanostructures. The linear polynucleotide chain has a width of 2 nm and a 

length of 0.34 nm per nucleoside subunit (Figure 1.5). A wide range of molecular lengths, 

from nanometres to microns, can be realized with established technology in molecular 

biology, for example DNA ligation, enzymatic digestion, and polymerase chain reaction. 

DNA-templated nanowires could be prepared with an almost unlimited range of aspect 

ratio. A DNA molecule has two classes of binding site: negatively charged phosphate 

groups and aromatic bases. Figure 1.5 shows a schematic diagram of the structure of 

double-stranded DNA. The polyanionic backbone of the molecule, composed of 

alternating sugar and phosphate groups, binds to metal cations or cationic nanoparticles 

through electrostatic interaction. Various transition metal ions bind to the nitrogen atoms 

of the DNA bases to form metal-DNA complexes by coordination coupling involving 

two d-orbitals. For example, the N7 atoms of the bases guanine (G) and adenine (A)
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binds strongly with Pt(II) and Pd(II) ions [18] to form complexes, and the N3 atoms of 

the bases Thymine (T) and Cytosine (C) also strongly interact with Pd(II) ions [19]. Both 

binding sites have been utilized in nanowire fabrication [20-28]. DNA is uniquely suited 

to molecular recognition: Specifically A pairs with T, and G with C (Figure 1.5). Loweth 

et al [29] have used this so-called Watson-Crick base pairing to assemble two or three 

individual Au nanocrystals on specific sites of single-stranded DNA (ssDNA) molecules. 

DNA-templated metallic nanowires tend to have different structural properties compared 

with semiconductor nanowires fabricated by various approaches (latter discussed in 

Chapter 4), because metal nanoparticle arrays on DNA prepared by wet chemistry lack 

crystallinity and uniformity [20-25].

To control the orientation and length of the DNA-templated nano wires in the 

required position inside the device, the DNA molecules need to be manipulated on the 

surface before further processing. Individual DNA molecules must be synthesized with 

specific number of base pairs, separated, and stretched on a substrate to serve as 

templates for nanowire fabrication. The number of base pairs and the stretching process 

will determine the length of DNA template and the nanowire formed. In addition, 

appropriate ‘interfacing’ of DNA with conductive elements using chemical modification 

or adjustment of conditions will be required to connect the DNA-templated nanowires to 

devices in a nanoscale electronic circuit. Interconnection can be realized by a number of 

different approaches to the specific coupling of DNA to a conductive surface. Therefore, 

advanced manipulation of DNA before the metallization process can be important for the 

precise positioning of nanowires.
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Figure 1.5 Schematic diagram of the structure of double-stranded DNA. Two classes of 
binding site for DNA-templated metallic nanowire fabrication are shown: negatively 
charged phosphate groups in the polymer backbone, and N7 atoms of bases G and A and 
N3 atoms of bases C and T.
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The metal nanostructures in DNA-templated platinum, palladium and silver 

nanowires prepared by metallization of DNA have a heterogeneous crystal structure and 

high degree of roughness [20-25], As a result of structural defects, these nanowires 

exhibit only a fraction of electrical conductivity of the bulk metal. The two common 

sources of high and non-linear resistance of DNA-metallized nanowires are non-ideality 

of nanowire shape [20] and inter-grain boundaries [20, 30], It is reported [31, 32] that 

electrical conductivity of metal structures with defects can be enhanced through heat 

treatment. It has been observed [23] that annealing metallized nanowires assembled on 

single DNA molecules by chemical deposition of a thin continuous palladium film, 

reduces the resistance by up to a factor of four. Indium has a considerably low melting 

point of 156.60 °C as compared with other metals (silver m.p. 961.78 °C; gold, m.p. 

1064.18 °C; copper, m.p. 1084.62 °C; palladium, m.p. 1554.9 °C; platinum, m.p. 1768.3 

°C) used for DNA-templated nanowire assembly. The lower melting point facilitates the 

heat treatment of indium nanowires assembled in nanocircuits without damaging the 

substrate and other components. However, the electrical resistivity of indium (83.7 n!2 m, 

at 20 °C) is five times higher than that of the most common conductor copper (16.78 

n!2 -m, at 20 °C). DNA-templated silver nanowires have been observed [20] to exhibit 

ohmic behavior. Electrical resistance of a 16 pm silver nanowire was measured [20] to be 

7 MQ ,  which is much higher compared to bulk silver (0.2544 12 for 16 pm of bulk silver, 

assuming resistivity of bulk silver as 1.59 x 10"8 12 m). This difference in resistivity 

implies that heat treated DNA-templated indium nanowires could exhibit resistivity close 

to bulk indium and can have electrictical conductivity values higher than other DNA- 

templated metal nanowires.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2

PRECURSORS TO DNA TEMPLATED NANOWIRES

2.1 Introduction

DNA-templated metal nanowires have been fabricated using various kinds of 

metal salts and complexes. Acetate salts of palladium [30] and platinum [26] have been 

used as precursors in assembly of nanowires on DNA templates. DNA-templated 

copper nanowires [33] and silver nanowires [34] have also been synthesized from 

copper sulfate and silver nitrate, respectively. Indium(I) salts are highly unstable and 

tend to dispropotionate to indium(II) and indium(III); however, it is possible to stabilize 

indium(I) by incorporating the indium ion into a stable organic indium coordination 

complex. We have synthesized a stable indium(I) complex as a precursor for 

fabricating DNA-templated indium nanowires.

2.2 Synthesis of f(Hvdroboratotris( 3‘-phenvlpyrazolvP lindium

2.2.1 Literature Review

2.2.1.1 Metal Complex Chemistry

A metal or coordinated metal complex is a product of a Lewis acid-base reaction 

in which neutral molecules or anions (called ligands) bond to a central metal atom (or 

ion) by coordinate covalent bonds. A ligand is an atom, ion, or a molecule that generally 

donates one or more of its electron pairs to form a coordinate covalent bond that shares

14
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its electrons through a covalent bond with one or more central metal atoms [35], In an 

organometallic coordination complex, the metal atom coordinates with one or more 

carbon atoms of the ligand. The properties of coordinated metal compounds, whether in 

classical inorganic coordination complexes or in organometallic compounds, are 

determined in large measure by the type of atoms coordinating to the metal and the steric 

factors [36].

2.2.1.2 Indium Complexes

Metal complexes have been synthesized by the reactions of ligands with the metal 

salts or metal carbonyls. This method is also known as immediate (direct) interaction of 

ligands and sources of metal centers [37]. Synthesis of several types of indium complexes 

of indium(I), (II) and (III), synthesized using this method have been reported so far. In 

1966, Goggin et al. [38] reported the synthesis of aniline and morpholine complex of 

indium(I) and indium(II) using indium mono, di-halides and morpholine solutions in 

diethylether. However, these complexes were found to be very unstable. Trivalent 

indium(III) complexes of thiocyanate [39], phospholyl [40], dithiocarboxylates [41], 

tricyclopentadienyl [42], dihydrobis(3,5-dimethylpyrazolyl)borate [43], tripodal 

iminophenolate ligand [44] and tridentate, substituted pyrrole ligand [45] have also been 

successfully synthesized and characterized.

Synthesis of monovalent indium(I) complexes has been a significant challenge 

due to extreme sensitivity of indium(I) towards air and moisture. Common synthetic 

routes [46] to indium(I) compounds with indium in the formal oxidation state of +1 are: 

1) substitution of weakly bonded ligands like CO and ligands of the type InR (R=e.g. 

pentamethylcyclopentadiene (Cp*), C(SiMe3)3, Si(t-Bu)3 or sterically hindering aryl
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groups); and 2) salt elimination and insertion reactions. Of these, ligands that exibit 

multihapto (group of contiguous atoms of the ligand are coordinated to a central metal 

atom simultaneously) coordination have gained popularity in nanoparticle synthesis. 

Steric repulsion between ligands is necessary to prevent aggregation into complexes with 

higher coordinated metal centers [47] and increase the stability of the metal ions. 

Organometallic indium complexes based on Tr-systems can be classified into two general 

classes, r/5-cyclopentadienyl and rj6-arene-type derivatives [48].

2.2.1.2.1 Cyclopentadienyl Derivatives

The first rj5-cyclopentadienyl indium complex to be reported [49] was r?5- 

(cyclopentadienyl)indium (i?5-In(C5H5)). The synthesis route for rj5-In(C5H5) was latter 

modified [50]. ^-InfCsHs) was synthesized from LiCCsHs). Li(C5H5) and InCl were 

stirred in ether under vacuum at room temperature for 17 h. Ether was removed by 

vacuum distillation and 775-In(C5H5) was recovered by sublimation under vacuum at 55 

°C. X-ray diffraction studies suggested a zigzag polymeric chain of In(rj5-C5H5) units in 

the solid state [48]. A similar compound, rf- (Monomethylcyclopentadieny)indium(I) 

(T75-In(C5H4Me)) has also been synthesized [48] using method analogous to synthesis of 

T75-In(CsH5). Both ^-InCCsHs) and ^-InCCsfEMe) are highly sensitive to oxygen and 

moisture making it difficult to be synthesized and characterized. An isotropic atomic 

vibration ellipsoids for crystallographic asymmetric units of In(CsH5) and InfCsFLiMe) 

are shown in Figure 2.1. The geometry of these complexes disallows complete 

encapsulation of the indium ions, making them prone to decomposition.
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Figure 2.1 Labeling of atoms and isotropic atomic vibration ellipsoids for 
crystallographic asymmetric units. A) i75-In(CsH5). B) r75-In(CsH4Me). Redrawn after 
reference [48],

2.2.1.2.2 Pyrazolyl Derivatives

Non 7r-system or non arene-type ligands such as poly(pyrazolyl)borates are based 

on complex arrangement of coordinating atoms, exhibiting steric factors protecting the 

metal center. The poly(pyrazolyl)borate family of ligands, were first reported [51] by 

Trofimenko in the 1966. These mono-anionic ligands have facially coordinating N- 

donors that can exibit polydenticity (coordination via multiple coordination sites within 

the ligand) [52]. The steric factor around the metal center can be altered by changing the 

substituents on the pyrazolyl rings of the ligands [43]. The coordination chemistry of 

poly(pyrazolyl)borates has been reviewed [53] extensively.

Prompted by the formal analogy between cyclopentadienyl anion and HB(pz* ) 3  

(where pz* is 3,5-dimethylpyrazole), [bis{(3,5-dimethylpyrazolyl)3hydridoborato}In]I 

was synthesized [54]. It was observed [43] that, slow increase of the temperature of the 

reactants from -30 °C to ambient temperature caused gradual disproportionation of In(I) 

to In(III) and ln(0) in the presence of HB(pz*)~. It was hypothesised [55] that use of a
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more sterically hindered pyrazole than pz* might facilitate the isolation of a stable In(I) 

species. As the 3, 4 and 5 positions of the pyrazole ring are made available for 

substitution, it is possible to synthesize [51] pyrazole ligand with N3 positions substituted 

by bulky groups such as isopropyl [56], tert-butyl [57] or phenyl [55], enhancing its steric 

hindrance to make these complexes more stable.

An air-stable monomeric indium(I) complex, [(hydroboratotris(3’- 

phenylpyrazolyl))indium] have been synthesized [55] by reacting indium iodide with 

HB(3-pz**)3' (where pz** is 3-phenylpyrazol) in tetrahydrofuron at -50 °C. The structure 

[55] of [(hydroboratotris(3’-phenylpyrazolyl))indium] is shown in Figure 2.2. Here, 

indium adopts a pyramidal geometry with respect to the coordinated nitrogen atoms. It 

has also been deduced [55] that there is no In-In interaction in this compound in solid- 

state, making it accessible for further reactions.
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Figure 2.2 Structure of hydroboratotri(3-phenylpyrazolyl)indium with atom-labeling 
scheme. Redrawn after reference [55].

2.2.2 Synthetic Strategy

Pyrazol (also known as 1,2-Diazole, abbreviated as -pz) is a simple aromatic ring 

organic compound of the heterocyclic series characterized by a 5-membered ring 

structure composed of three carbon atoms and two nitrogen atoms in adjacent positions. 

They are synthesized through the reaction of a,/3-unsaturated aldehydes with hydrazine 

and subsequent dehydrogenation. The structure of pyrzol is shown in Figure 2.3A. A 

phenyl group (also known as phenyl ring, abbreviated as -ph) is a functional group with 

the formula CeHs. Ph has a cyclic ring structure with six carbon atoms. The structure of 

phenyl group is shown in Figure 2.3B.
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Figure 2.3 Structural formula of functional groups. A) Pyrazol B) Phenyl.

It has been found [58] that in 3-substituted pyrazoles, alkyl groups prefer to 

occupy position 5 next to NH, while aryl groups seem to prefer position 3 next to N. 

Hence, in 3-phenylpyrazol, the phenyl group occupies the 3 position in pyrazol. 3- 

phenylpyrazol is synthesized by substituting the hydrogen in position 3 by a phenyl 

group. Figure 2.4 gives the equations outlining the reactions involved during the 

synthesis of 3-phenylpyrazol.
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Figure 2.4 Schematic chemical equations for synthesis of 3-Phenylpyrazol

Synthesis route for [HB(3-phenylpyrazol)3]In form 3-phenylpyrazol involves 3 

steps as shown in chemical equations listed in Figure 2.5. In the first step, 

potassiumdihydrobis(3-phenylpyrazol-l-yl)borate ([KH2B(3-phpz)2]) is synthesized from 

3-phenylpyrazol and potassium tetrahydroborate. The second step involves addition of 

another 3-phpz group to ([KH2B(3-phpz)2], giving [KHB(3-phpz)3], In the third step, 

KHB(3-phpz)3 reacts with InCl to yield [HB(3-phpz)3]In.
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Figure 2.5 Schematic chemical equations for synthesis of [HB(3-phpz)3]In
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2.2.3 Materials

All chemicals used in the synthesis were reagent grade and were used as received. 

Acetophenone (99% pure), Methanol (98% pure), Potassium Tetrahydroborate (powder, 

98% pure) and Indium (I) Chloride (InCl) (anhydrous, 99.995%) were ordered from Alfa 

Aesar. Ethyl Formate (97% pure), N, N-Dimethylacetamide (DMAc) (99% pure), 

methoxybenzene (Anisole) (98% pure), Toluene (99.8% pure), Sodium Methoxide 

(powder, 95% pure) and Hydrazine Monohydrocholoride (powder, 98% pure) were from 

Sigma-Aldrich. Dichloromethane (98% pure), Hexane (98% pure) and Tetrahydrofluoron 

(THF) (stabilized by 250 ppm BHT, 99.7% pure) were from EM-Science. NMR solvents 

used were spectroscopic grade. Chloroform-d (99.6% atom %D) and Acetone-d6 (99.7% 

%D) were from Sigma-Aldrich. Toluene was dried by refluxing under nitrogen with 

calcium hydride (10 mg per mL) for over 24 h (detailed procedure listed in appendix) and 

then was distilled using the vacuum line (Figure 2.6). It was then degassed using 3 cycles 

of freeze-pump-thaw procedure [59] (detailed procedure listed in section B of the 

appendix). THF was first distilled using vacuum line and then dried by refluxing under 

nitrogen with sodium and benzophenone till the solution turned dark purple color (~24 h). 

THF was then used after subsequent distillation and degassing.

2.2.4 Experimental Techniques

A vacuum line equipped with Welch® DuoSeal® vacuum pump and silicone-oil 

diffusion pump was used for all distillation, degassing and solvent transfer processes. 

Working pressure was less than 10‘5 mm Hg. The pressure was monitored using a 

calibrated Varian® Thermocouple (TC) pressure gauge as well as a McLeod gauge. 

Liquid nitrogen traps were used at various stages to prevent volatile solvents from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

entering into the oil diffusion pump. A schematic sketch and a photograph of the vacuum 

line used is shown in Figure 2.6. A slurry prepared by mixing chlorobenzene and liquid 

nitrogen in flask was used for maintaining a temperature of -50 °C wherever required. 

InCl is a highly air-sensitive compound. Hence, it was stored and manipulated inside a 

nitrogen atmosphere VAC® dry-box equipped with PEDATROL pressure control system 

(Figure 2.7) and was prepared freshly grounded before use. All glassware were 

thoroughly cleaned with KOH/alchol, washed thoroughly, air dried and oven dried (> 4 

h).
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Figure 2.6 Vacuum line setup. A) Schematic sketch. B) Photograph.

Figure 2.7 Photograph of nitrogen atmosphere Dry-Box

General reactions (reactions not critical to air and moisture) were performed in 

beakers of suitable volumes over Coming® PC-351 Hot Plate-Stirrer (Figure 2.8A). 

Reactions requiring refluxing were setup such that evolving gases will pass through a 

water cooled condenser and bubble out of a mercury trap (Figure 2.8B). All setups were 

properly clamped under a Supreme Air LV (Kewaunee® Scientific Corporation, USA) 

fume hood. Reactions involving distillation/sublimation of the product or stripping of 

solvents were performed in a round-bottom flask of suitable volume connected to a 

distillation trap assembly (Figure 2.8C). The reaction temperature was maintained using a 

heated oil bath, heating mantle controlled by J-KEM® Digital Temperature Controller 

(Model 260/Timer) or dewar flask filled with slurry of chlorobenzene and liquid nitrogen 

at -50 °C. The connecting tube was wound with a heating coil to avoid condensation of 

products in the tube. Filtration and washing of precipitates were performed using either 

Buchner funnel and Whatman® filter paper (fine grade, 1 ixm porosity) apparatus or
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Hirsch funnel (fine grade, 1 /xm porosity) with a filter flask connected to a water 

aspirator. Figure 2.8D shows the apparatus used for filtering and washing. A 250 mL 

separatory funnel was used for all solution extraction procedures. Nuclear Magnetic 

Resonance (NMR) spectra were obtained with a JEOL® JNM-GSX 270 FT NMR system. 

3-4 cm long NMR samples were prepared in 5 mm thin-wall NMR tubes. NMR data for 

]H, 13C-decouple and 13C-couple isotopes were collected after 150, 1000 and 3000 scans 

respectively.
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Figure 2.8 Experimental setup for synthesis. A) General reaction. B) Reflux reaction. C) 
Vacuum distillation. D) Filtering and washing.

2.2.5 Synthetic Procedures

Synthesis of [HB(3-phpz)3]In involved 4 stages. The first three stages each 

yielded a stable compound used in subsequent stages as the starting material. Yield from 

more than one trial of each stage were combined. Air-stable [HB(3-phpz)3]In was
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obtained in the final stage. 3-Phenylpyrazol was synthesized in the first stage. The 

procedure outline for synthesis of 3-Phenylpyrazol was from reference [60]. 3- 

Phenylpyrazol was reacted with potassium tetrahydridoborate in the second stage to 

obtain KH2B(3-phpz)2. The third and fourth stage of synthesis procedure yielded KHB(3- 

phpz)3  and [HB(3-phpz)3]In respectively. The procedure outlined for synthesis of 

KH2B(3-phpz)2 and KHB(3-phpz)3 has been reported [57], The synthesis route for 

[(HB(3-phpz)3)2In] from Ini has been demonstrated previously [54], The synthesis 

procedure [HB(3-phpz)3]In from InCl has been derived from Ref [54]. The quantities of 

reactants, temperatures and other miscellaneous parameters have been suitably modified 

to obtain better yield and purity and to adapt to available equipments.

2.2.5.1 Synthesis of 3-Phenvlpyrazol

a) A slurry of sodium methoxide (10.8 g, 0.2 mol) in 150 mL of toluene is prepared 

in a 400 mL beaker. Gentle heating and rapid stirring was used.

b) Acetophenone (23.366 g, 0.20mol) and ethyl formate (22.2 g, 0.30 mol) were 

added to the slurry in one portion. Vigorous reaction takes place and solid 

precipitate starts forming.

c) After stirring for 1 h, the solid is filtered and washed with hot toluene and hexane 

to remove excess reactants. Filtrate was thoroughly air-dried (30 min -  1 h). Solid 

was slurried in methanol (100 mL) by stirring and gentle heating.

d) Hydrazine monohydrochloride (13.7 g, 0.20mol) was dissolved in water (100 mL) 

and added to the methanol slurry along with stirring. The reaction was allowed to 

continue for 2 h with slight heating (~50 °C).
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e) Products were extracted with dichloromethane (100 mL). The solvent was 

stripped from the extract using vacuum distillation. The product was then purified 

further by distillation (boiling point 139 °C (0.9 mm Hg)).

2.2.5.2 Synthesis of KH?Bt3-phpzT

a) 3-Phenylpyrazol (3.17 g, 0.022 mol) condensed in the distillation trap was 

dissolved in N,N-dimethylacetamide (DMAc) (100 mL) by gentle heating and 

poured in a 200 mL beaker.

b) Potassium tetrahydridoborate (0.54 g, 0.01 mol) was added along with stirring.

c) The solution was transferred to a 250 mL round bottom flask and was setup under 

the fume hood after attaching the water condenser and mercury trap. The flask 

was stirred and heated to mild boiling so that hydrogen gas bubbling through 

mercury trap is visible. The reaction was allowed to continue till hydrogen 

evolution ceased (~ 12h).

d) All volatile solvents were removed under high vacuum by heating at 130 °C.

e) Part of the product was purified by recrystallization using THF. The purified 

product was used for characterization. The crude product was used in the next 

stage.

2.2.5.3 Synthesis of KHB(3-phpz)j

a) KHaB(3-phpz)2 (3.78 g, 0.011 mol) was dissolved in anisole (80 mL) in a 150 mL 

beaker. 3-phenylpyrazol (1.6 g, 0.11 mol) was added along with stirring.

b) The solution was transferred to a 250 mL round bottom flask and refluxed with 

vigorous stirring for 12 h. Hydrogen gas should bubble through the Hg trap.
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c) The reaction mixture was cooled, filtered, washed with hot toluene and then with 

hexane, and air-dried (30 min-1 h).

d) The product was purified by recrystallization using THF.

2.2.5.4 Synthesis of rHB(3-phpzTlIn

a) InCl (0.375 g, 0.025 mol) was added to KHB(3-phpz)3 (2.42 g, 0.005 mol) in a 

Schlenk vessel in a dry box. The Schlenk vessel was closed and evacuated by 

connecting to the vacuum line. The reactant mixture was cooled to -50 °C using 

chlorobenzene and liquid nitrogen slurry.

b) Dry degassed toluene was transferred to the reactant mixture by distillation. The 

solvent transferred was sufficient to submerge the reactants. The mixture was 

stirred overnight (~ 12 h) and the temperature was allowed to slowly raise from - 

50 C to room temperature.

c) The color of the solution should change from faint gray-white to dark gray as the 

temperature is raised.

d) The solution was filtered and the toluene filtrate was collected.

e) The residue was washed with dry THF. Solvents from toluene filtrate and THF 

washings were evaporated under vacuum.

f) Recrystallization and slow evaporation of THF washing should yield white 

crystals.

2.2.6 Observations and Results

2.2.6.1 3 -Phenvlp vrazol

Reaction of sodium methoxide with acetophenone and ethylformate was

exothermic and accompanied by a change of solution color from milky white to bright
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orange. Precipitation of solids began within 30 seconds. Upon adding hydrazine 

monohydrochloride to the filtered precipitate, the solution turned into bright yellow-green 

from a milky light-brown color. The product was extracted using dichloromethane. The 

extraction was performed 3 times and the extracts were combined. Solvent stripping was 

initially carried out with a water aspirator. It was later determined that the vacuum line 

can be used for this process with proper setup. The crude product had a bright yellow- 

green color. Distillation of the crude product was done at 139 °C under vacuum. 3- 

Phenylpyrazol was distilled and weighed in the distillation trap while temperature was 

controlled using a digital temperature controller.

Percent yield for 3 different trials with minor setup changes is listed in Table 2.1. 

'f l  and 13C NMR spectra for 3-Phenylpyrazol is attached in section C of the appendix 

(Figure 1-3) and a summary of the peaks has been listed in Table 2.2. *13 NMR peak at 

7.34 ppm and 13C NMR peak at 128.45 ppm, confirmed the presence of phenyl group. 'H 

NMR peak at 7.74 ppm and 6.60 and 13C NMR peak at 104.09 and 127.65 ppm 

confirmed the presence of pyrazole group.
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Table 2.1 Yield results for 3-phenylpyrazol.

Trial

Number
Remarks

Theoritical

Yield

(mmols)

Measured

Yield

(mmols)

Percent

Yield

(%)

1

Water aspirator used for stripping 

solvent, no heating used in 

reactions.

207.0 123.9 59.9

2

Water aspirator used for stripping 

solvent, Gentle heating used during 

both reactions.

198.0 131.7 66.5

3

Vacuum line used for stripping 

solvent, Gentle heating used during 

both reactions.

204.0 135.5 66.4
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Table 2.2 NMR results for 3-phenylpyrazol.

NMR Peak Numbers, 8 (ppm)

'H 2.14, 2.33, 6.60, 7.32, 7.34, 7.36, 7.39, 7.42, 7.59, 7.74, 7.77

13C-Coupled 76.68, 77.15, 77.63,101.37, 103.95, 104.09,124.76,127.65

13C-Decoupled 76.68, 77.15, 77.62, 102.73, 125.95, 126.72, 128.13, 128.45, 128.88

2.2.6.2 KH7Bt3-nhpz)7

Potassium tetrahydridoborate and 3-phenylpyrazol were mixed with DMAc in a 

beaker. Large lumps of potassium tetrahydridoborate were initially formed in the 

solution. Rapid stirring accompanied by gentle heating was required to obtain a 

homogenous suspension. This reaction should be set up such that the fluid level does not 

exceed 50% of the total flask volume to avoid bubbling. A higher level of solvent also 

makes it difficult to strip the solvent from the product using vacuum later. Temperature 

should be carefully controlled so that the solution boils moderately. Excess heat should 

be avoided to prevent decomposition of the compound. Evaporation of the solution after 

completion of the reaction yielded an amorphous white solid deposited on the walls of the 

round bottom flask. The product was then dissolved in anisole and stored.

The yields for three different trials of this experiment were comparable and had 

an average yield of 53.4%. ’H and 13C NMR spectra for KH2B(3-phpz)2 is attached in 

section C of the appendix (Figure 4-6) and a summary of the peaks has been listed in
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Table 2.3. NMR results for KH2B(3-phpz)2 indicated the presence of two 3- 

phenylpyrazol groups in the compound.

Table 2.3. NMR results for KH2B(3-phpz)2.

NMR Peak Numbers, 5 (ppm)

!h
0.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.32, 2.82, 2.92, 2.98, 3.61, 

6.48, 6.68, 7.28, 7.31, 7.36, 7.39, 7.69, 7.83

13C-Coupled 28.23, 28.52, 28.79, 29.37, 29.65, 29.94, 30.26, 205.73, 205.99

13C-Decoupled
28.20, 28.49, 28.70, 29.06, 29.34, 29.63, 29.91, 125.25, 125.37,126.17, 

128.25,128.63, 205.66, 205.93

2.2.6.3 KHB(3-phpzL

Anisole solution of 3-phenylpyrazol was mixed with anisole solution of KH2B(3- 

phpz)2 in one portion in a 250 mL round-bottom flask. The solutions were miscible. After 

~4 h of refluxing the reactants, solution started turning clear and white precipitates were 

formed. The reaction continued for ~12 h, after which evolution of hydrogen stopped. 

White needle like crystals were obtained after the solution was filtered and the 

precipitates were washed with hot toluene and hexane. The product was further purified 

by recrystallization using THF.

Crystals of KHB(3-phpz)3 were air dried and stored (Figure 2.9A). Average 

percent yield was relatively high for this experiment (67.2 %). 'H and 13C NMR spectra 

for KHB(3-phpz)3 is attached in section C of the appendix (Figure 7-9) and a summary

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

of the peaks has been listed in Table 2.4. NMR results were coherent with the presence of 

three 3-phenylpyrazol groups.

Table 2.4 NMR results for KHB(3-phpz)3.

NMR Peak Numbers, 8 (ppm)

0.00, 2.02, 2.03, 2.04, 2.05, 2.06,2.07, 2.08, 6.46, 6.48, 7.14, 

7.25, 7.28, 7.68, 7.82, 7.

13C-Coupled
28.21, 28.38,28.49, 29.78, 29.07,29.34, 29.63, 29.92, 30.24, 

30.92, 205.37, 205.66, 205.75

13C-Decoupled
0.0, 28.18, 28.46, 28.75, 29.04, 29.32, 29.61, 29.89,100.61, 

125.32,126.10,128.22,135.16, 205.60, 205.75

2.2.6.4 rHBt3-nhpzh1In

This experiment was repeated four times with ~ 0.005 mol of starting material 

(KHB(3-phpz)3 ). All values listed are an average for these four trials. The reaction 

started after the solvent (toluene) was transferred to the reaction flask containing KHB(3- 

phpz)3 and InCl. The initial temperature of chlorobenzene-liquid nitrogen slurry was 46.7 

°C. The temperature was allowed to rise as the reaction progressed. Temperature change 

rate was measured to be -5.5 °C. The reactants were inspected at intervals of 2 h. The 

color of the reactants darkened as the reaction progressed. Room temperature was 

reached within a period of ~14 h. Filtering and washing the solution without exposing it 

to the atmosphere involved a complex procedure. The procedure involved two steps. In
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the first, toluene was filtered out. A Reaction flask was connected to a storage flask 

through a double-ended filter. The assembly was evacuated by connecting to the vacuum 

line. Toluene was transferred to the storage flask by maintaining a temperature difference 

between two chambers. In the second step, the precipitates were washed with THF and 

THF washings collected. The double-ended filter was connected to a flask containing 

THF and an empty flask was connected to the second end of the filter after disconnecting 

the reaction flask. The assembly was evacuated and THF was transferred through the 

residue on the filter into the collection flask.

THF was then evaporated under vacuum to obtain white crystals of [HB(3- 

phpz)3]In (Figure 2.9B). EDX results for sample recrystallized on silicon substrate

1 1-1

suggest an indium composition of -10% by weight in the compound. H and C NMR 

spectra for [HB(3-phpz)3]In is attached in section C of the appendix (Figure 10-12) and a 

summary of the peaks has been listed in Table 2.5. *H and 13C NMR spectra for the 

compound in Acetone-d6 was similar to that of KHB(3-phpz)3.

Figure 2.9 Appearance of the synthesized products. A) KHB(3-phpz)3. B) [HB(3- 
phpz)3]In
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Table 2.5 NMR results for [HB(3-phpz)3]In

NMR Peak Numbers, 8 (ppm)

!h

0.125, 1.75, 1.76, 1.77,1.78, 1.80, 1.82, 2.02, 2.03, 2.04, 2.05, 2.06, 

2.07, 2.08, 2.96, 3.59, 3.61, 2.64, 6.47,6.68, 6.87, 7.17, 7.25, 7.28,

7.31,7.70,7.82, 7.85

13C-Coupled 28.19, 28.47, 28.76, 29.06, 29.33, 29.62, 29.89, 205.65

13C-Decoupled
25.34, 28.16, 28.45, 28.74, 29.02, 29.31, 29.60, 29.88, 100.69, 125.36, 

126.12,128.22,128.59,135.20,136.03, 205.01, 205.57, 205.75
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CHAPTER 3

SYNTHESIS OF INDIUM NANOPARTICLES

3.1 Introduction and Literature Review

Nanoparticles (derived from Greek word “nanos”, meaning dwarf or extremely 

small) refer to small clusters of atoms about 1 to 100 nanometers long. The properties of 

nanoparticles of a material differ from that of its bulk. Nanoparticles have gained 

tremendous attention in the past few decades due to their high surface to volume ratio, 

special optical properties, wear resistance and chemical/heat resistance [61]. These 

particles are finding applications in various fields of technology including cosmetics 

[62], medicine [63], material science[64] and electronics [65].

Indium is a metal with low melting point adopting a tetragonal structure in solid- 

state. The tetragonal structure may or may not be preserved by size reductions [66]. 

While indium nanoparticles have been sparingly used so far, nanoparticles of indium 

oxides, and indium’s oxides with other metals, have been reported to have applications 

in gas sensors [67], lubricants [68], photocatalysis [69], DNA hybridization [70] and 

semiconductor electronics [71]. Indium nanoparticles have been prepared using sodium 

reduction [72], solution dispersion [68], irradiation of bulk indium [73], laser ablation 

[74], metal vapor deposition [66] and decomposition of metallic-organic compound [75].

Khanna et al. have reported [72] a preparation of nanocrystalline indium 

particles by direct reaction of sodium metal with anhydrous indium trichloride in N,N-

37
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dimethylformamide (DMF) or n-trioctylphosphine (TOP) as a solvent at 120 and 360 °C 

under argon atmosphere. In3+ ions were reduced to metallic indium(O) by Na in the 

solvent. The solvent acts as a dispersion medium for the nanoparticles and as a particle 

growth terminator. TOP seems to form an organic-cap on the nanoparticles thus 

controlling particle size. Indium nanoparticles prepared using this method have been 

found to have crystalline nature and a uniform particle-size distribution (15 nm for DMF 

and 50 nm for TOP). Nanoparticle size was found to be solvent dependent but not 

temperature dependent.

Zhao et al. have reported [68] a novel method of preparing indium nanoparticles 

from bulk indium involving surface oxidation and dispersion of indium droplets in an oil 

medium. Bulk indium in paraffin oil was stirred vigorously at 180 °C (above the m.p. of 

indium, 156.6 °C) in the presence of oxygen for 6 h. Then the solution was cooled, 

centrifuged and washed with chloroform to obtain nearly monodisperse (characterized 

by particles of uniform size in a dispersed phase) indium nanoparticles of size ranging 

from 15 to 30 nm. The outer layer was oxidized to indium oxide upon cooling. The 

layer of paraffin oil adhered to the outer oxide layer and acts as a surfactant to prevent 

agglomeration of nanoparticles.

Chaudret et al. have synthesized [75] indium nanoparticles by decomposition of 

organometallic precursor [In(rj5-C5H5)] at room temperature in dry anisole containing 

polyvinylpyrolidone (PVP) (a polymer) or tri-n-octylphosphine (a ligand) oxide as 

stabilizer. This method produced indium nanoparticles with size in 2 -  8 nm range 

(normal distribution, mean = 5 ,0  = 3). It was deduced [75] that these nanoparticles have 

body-centered tetragonal phase of In0, and they exhibited semiconducting properties.
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The semiconducting indium nanoparticles are of special interest for applications [67] in 

microelectronic devices and gas sensors.

3.2 Materials

Sodium (>99%, pieces stored under heavy mineral oil), paraffin oil (analytical 

grade), N, N-dimethylacetamide (DMAc) (99% pure), methoxybenzene (anisole) (98% 

pure), toluene (99.8% pure), chloroform (>99% , with amylenes as stabilizer), and 

indium [powder, -100 mesh, 99.99% (metals basis)] were from Sigma-Aldrich and used 

as recieved. Indium (I) Chloride (InCl) (anhydrous, 99.995%) was from Alfa Aesar. 

[HB(3-phpz)3]In was prepared by the procedure described in Section 2.2.4.4 and used. 

Sodium and InCl were stored and handled in nitrogen atmosphere dry box. DMAc and 

anisole were dried by refluxing with calcium hydride overnight under nitrogen. Toluene 

was dried by refluxing overnight under nitrogen with sodium and benzophenone to dry 

and monitor air and moisture. All solvents were distilled before use.

3.3 Preparative Methods

We have synthesized indium nanoparticles from three methods: 1) sodium 

reduction of indium(I) chloride; 2) dispersion of bulk indium in oil medium; 3) sodium 

reduction of indium complex ([HB(3-phpz)3]In ). Indium nanoparticles prepared using 

the three methods were re-dispersed in different solvents (toluene, chloroform and THF 

for method 1, 2 and 3 respectively) for preparing scanning electron microscopy (SEM) 

samples. The dispersions thus obtained were deposited on glass cover slip or oxide 

coated silicon substrate from their respective solvents by slow evaporation for
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characterization. Samples were sputtered with 4 nm thick layer of gold and were 

visualized under Hitachi® SU-70 Ultra High Resolution Schottky FE-SEM.

3.3.1 Sodium Reduction of InCl

We have adopted synthetic route for indium nanoparticle preparation by 

reduction of InCh described in the literature [72], InCl is highly sensitive to air and 

moisture as opposed to relatively stable InCU Hence, the preparation was carried out 

such that indium(I) was not exposed to atmosphere (moisture and air) until indium(I) 

reduced to indium(O). Freshly prepared InCl (1.5 g, 0.01 mol) and freshly cleaved 

sodium (0.23 g, 0.01 mol) were added to a Schlenk vessel in the dry box. Then the 

Schlenk vessel was connected to the vacuum line and was pumped down to 10‘5 mm Hg. 

Dry, distilled DMAc was transferred to the vessel through vacuum distillation. It is 

crucial to avoid any moisture in handling the solution because it could produce hydrogen 

gas on contact with water and cause an explosion. The solution was stirred under 

vacuum at 120 °C for 4 h. The reaction solution was cooled and centrifuged (10 min at 

6000X g) to obtain a light brown suspension. The suspension was stripped from its 

solvent under vacuum, washed with ethanol and water to remove unreacted sodium, and 

NaCl produced. The precipitate was then re-dispersed in toluene. The toluene suspension 

solution was centrifuged (10 min at 6000X g) again to remove any agglomerated 

particle. The experiment was repeated at 160 °C, keeping other parameters constant. 

Both solutions were separately diluted (5X, 10X, 20X and 40X) with toluene and used 

for characterization. 5 pL aliquot of each sample was pipetted on glass cover slip and 

solution was allowed to evaporate under fume hood and then dried by blowing nitrogen
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gas over them. The dried samples were sputtered with 4 nm gold layer and then 

characterized using FE-SEM.

3.3.2 Solution Dispersion of Bulk Indium

Preparation method for indium nanoparticles by solution dispersion method has 

been adopted from reference [68]. Indium powder (5 g) was added to Paraffin oil (30 

mL) in a 100 mL round bottom flask. The setup was maintained at 180 °C (using J- 

KEM® Digital Temperature Controller (Model 260/Timer)) and stirred vigorously for 10 

h. The flask was bubbled with oxygen gas to allow oxidation of the outer layer of the 

particles being formed. The mineral oil solution was cooled and centrifuged (10 min at 

6000 X g) to obtain a light gray suspension. The suspension was washed with 

chloroform several times and the washings were collected. The chloroform solution was 

transferred to a round bottom flask and then dried under vacuum distillation (10-12h) to 

form a fine gray powder deposited on the walls of the flask. The gray powder was then 

redispersed by adding chloroform (1 mL) into the flask by vacuum condensation to 

obtain a stock solution. The stock solution was diluted (5X, 10X, 20X and 40X) with 

chloroform and used for characterization. A 5 pL aliquot of each sample was pipetted on 

thermal oxide coated silicon substrate. The solution was allowed to evaporate under 

fume hood and then dried by blowing nitrogen gas. The SEM samples were sputtered 

with 4 nm gold layer and then characterized using FE-SEM.

3.3.3 Sodium reduction of {[HB(3-phpz)3]In}

The coordination complex {[HB(3-phpz)3]In} (1.130 g, 0.002 mol) and freshly 

cleaved sodium (0.05 g, 0.002 mol) were added to a Schlenk vessel in the dry box. The 

Schlenk vessel was hooked up to the vacuum line and pumped down to 10‘5 mm Hg.
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Dry, distilled DMAc was transferred to the Schlenk through distillation so that the 

compound is submerged in the solvent. The mixture was gently heated until the solvents 

were completely dissolved. The solution was stirred under vacuum at room temperature 

for 4 h. The product was then dispersed by distilling THF (5 mL) into the flask to obtain 

a cloudy suspension. The suspension was centrifuged for 10 min to obtain a clear filtrate. 

The filtrate was transferred to a round-bottom flask and then dried under vacuum (10-12 

h). No heat was applied at this stage. Fine light-gray powder was deposited on the walls 

of the flask. The product was redispersed by distilling THF (1 mL) into the flask to 

obtain a stock solution. The stock solution was diluted (5X, 10X, and 20X) in THF and 

used for characterization. A 8 pL aliquot of each sample was pipetted on glass cover 

slip. Solution was allowed to evaporate under fume hood and then dried by blowing 

nitrogen gas. SEM samples were sputtered with 4 nm gold layer and then characterized 

using FE-SEM.

3.4 Observations and Results

3.4.1 Sodium Reduction of InCl

The solvent, DMAc has been reported [76] as a good dispersion medium for 

nanoparticles synthesis, to act as a particle growth terminator and to prevent aggregation 

of nanoparticles [77]. The reaction between InCl and sodium began as soon as the 

solvent was transferred into the Schlenk vessel. Sodium particles dissolved completely 

within 1 h. The colorless solvent turned to dark gray as the solutes were dissolving. Then 

the color changed to dark brown as temperature was raised. Equation for reduction of 

indium(I) to indium(O) is as follows:
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InCl + Na -> In(0) + NaCl

The final product was obtained as a suspension in toluene. The sample was 

allowed to dry at room temperature for 1 h and was dried. The suspension had to be 

diluted and centrifuged several times to get more uniformly distributed particles. 

Analysis of sample prepared from 20X stock solution by SEM indicate good spatial 

dispersion of particles. SEM micrograph of the sample (20X stock solution) is shown in 

Figure 3.1. Particle size was estimated by measuring diameter of 10 particles using 

image processing tools. It was estimated that diameters of the particles obtained were in 

90 -  100 nm range. The size estimation of the particle is approximate due the charging 

effect (nonlinearity in lateral dimensions due to charge accumulation on sample), 

inherent to SEM.

The composition of the particles was analyzed using energy dispersive X-ray 

(EDX). Silicon, aluminum, potassium and partly sodium peaks seen in the graph (Figure 

3.2) are from the glass substrate. Composition of indium in the particles was determined 

to be -52% by weight (after baseline correction for the glass substrate was applied).
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Figure 3.1 SEM micrograph of indium nanoparticles from sodium reduction of InCl
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Figure 3.2 EDX Data for indium nanoparticles from sodium reduction of InCl. Emission 
energy is plotted against Recount
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3.4.2 Solution dispersion of bulk indium

A gray colloidal solution was formed as described in Section 3.3.2, as the 

temperature reached 160 °C (melting point of indium = 156 °C). The product turned 

darker after cooling. The solution was centrifuged to obtain a light gray suspension. The 

paraffin oil suspension was washed with chloroform and centrifuged again. SEM 

micrograph of 10X stock solution showed spherical particles with diameters in the 100 

nm -  1 pm range (Figure 3.3). Irregularly shaped fragments were also seen in the 

micrograph. EDX for the same sample showed ~85 % indium by weight (after baseline 

correction for SiC>2 substrate was applied) (Figure 3.4). High percentage of indium in 

the sample indicates that the both the spherical particles and the fragments contain 

indium. Surface oxidation of indium and adsorption of the paraffin oil produces 

additional peak for oxygen and carbon.

Figure 3.3 SEM micrograph of indium nanoparticles from solution dispersion of bulk 
indium
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Figure 3.4 EDX spectrum for indium nanoparticles from solution dispersion of bulk 
indium. Emission energy is plotted against K<* count.

3.4.3 Sodium Reduction of [HB(3-phpz)3]In

A light gray cloudy suspension formed as DMAc was transferred to the solid 

reactants as described in Section 3.3.3. The solution turned darker as the reaction 

progressed. The solvent was stripped from the product using vacuum. Gentle heating 

was required during this process. The yield of product was less than 0.05 g (22 % yield). 

SEM analysised of the product showed uniformly dispersed particles with diameters in 

10-50 nm range for 20X stock solution (Figure 3.5). However, the particle shape was 

irregular. EDX analysis of the sample revealed that the nanoparticles are composed of 

-27 % indium by weight (Figure 3.6) (after baseline correction for the glass substrate 

was applied).
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Figure 3.5 SEM micrograph for indium nanoparticles from reduction of {[HB(3- 
phpz)3]In}

1.1  -

lli

Figure 3.6 EDX spectrum for indium nanoparticles from reduction of [HB(3-phpz)3]In. 
Emission energy is plotted against K„ count
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Information on size distribution, shape, and dispersion of indium nanoparticles 

prepared by the above three methods has been used to select the appropriate method for 

subsequent deposition of the indium nanoparticles on DNA template. Monodispersed 

indium nanoparticles formation from reduction of {[HB(3 -phpz)3]In} indicates that it is 

possible to reduce {[HB(3 -phpz)3]In} on DNA molecules in-situ, resulting in non­

aggregated deposition of indium(O) on DNA strands.

Comparison of particle size, shape and nature of dispersion of the nanoparticles 

prepared by three methods described above is tabulated in Table 3.1. Indium 

nanoparticles prepared using solution dispersion has relatively large particles and is 

partially aggregated. The large size and agglomeration makes this method unsuitable for 

deposition on a DNA template to construct nanowires. However, indium nanoparticles 

prepared from sodium reduction of InCl and {[HB(3 -phpz)3]In}have relatively smaller 

size and are dispersed uniformly on the substrate. These properties open up the 

possibility of obtaining uniform metal deposition on DNA template by either depositing 

indium nanoparticles from sodium reduction directly on to immobilized DNA template 

or by reducing [HB(3-phpz)3]In on DNA molecules in-situ. Metallization of the DNA 

template on a substrate forming DNA nanowires is discussed in the following chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

Table 3.1. Comparison of properties o f nanoparticles

Method
Particle 

Size (nm)
Shape

Spatial

Dispersion

Sodium reduction of InCl 90-100 Roughly spherical Uniform

Solution dispersion of bulk 

indium in mineral oil
1 0 0 - 1 0 0 0

Mixture of 

spherical and 

irregular

Partial

aggregation

Reduction of {[HB(3 -phpz)3]In} 10-50 Irregular Uniform
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CHAPTER 4

DNA-INDIUM INTERACTION STUDIES

4.1 Introduction

It was widely [20] recognized that deoxyribonucleic acid (DNA) has the 

appropriate molecular-recognition and mechanical properties suitable for a nano-sized 

device on electronic circuits. Intrinsic electrical conductivity of DNA molecules has 

been gaining attention and has been an issue of debate for the past decade. It has been 

recently reported [78] that intrinsic DC conductivity of immobilized lambda phage 

double-stranded DNA molecule is 4 x 10~ 15 AV~' pm-1  under low humidity argon 

atmosphere. Such a low conductivity renders unmodified DNA molecule unusable as 

electrical interconnects. Moreover, the conditions in nano-circuits will be drastically 

different from DNA’s natural biological environment, causing DNA molecules to 

denature and disintegrate in the absence of buffer solution and counterions. It was 

suggested [20] that electrical functionality can be instilled into DNA molecules by 

depositing metal along the length of a stretched DNA molecule. Braun et al. 

demonstrated [20] successful chemical deposition of silver on DNA using complex 

formation reactions between silver and DNA bases.

At equilibrium, a DNA molecule in aqueous solution will usually be randomly 

structured as a result of thermal motion. Entropy factors tends to shorten the end-to-end 

distance to a much smaller size than the contour length, depending on the environment.

50
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A DNA molecule therefore must be stretched between two electrodes to serve as a 

nanowire template. Many approaches have been used to stretch and align DNA 

molecules: molecular combing [79], electrophoretic stretching [80], hydrodynamic 

stretching [81], and Van der Waals interaction [82]. A common strategy is to tether one 

end to a surface and then to stretch the molecule by an external force, for example 

surface tension.

DNA-templated assembly of nanowires has been an integral part of progress in 

nanowire fabrication in the past few years. A variety of metallic nanowires have been 

made using DNA templated approach: palladium [21-23], platinum [24, 26, 83], gold 

[60-64], copper [84-86], and cobalt [87]and nickel [8 8 ].

The most commonly used approach for DNA metallization is an electroless 

plating procedure involving reduction of metal ions already bound to DNA 

electrostatically. This method relies on the electrostatic and chelating interactions 

between DNA and ionic metal species. For example, Braun et al. [20] reduced DNA- 

bound silver ions using hydroquinone to produce silver nanoparticles. Ag(I) ions bind to 

DNA by Ag-Na ion exchange. Hydroquinone reduces DNA-bound Ag(I) ions to Ag(0) 

metallic clusters, which then autocatalyze further reduction of Ag ions in the solution. 

DNA stretching and positioning was achieved by Au thiol coupling and hydrodynamic 

flow. Figure 4.1 shows a prepared Ag nanowire between two Au electrodes. The 

diameter is -100 nm (Figure 4.1 A). The resistively, 3.4x10' (Figure 4.IB), is higher 

than that of bulk silver. Nevertheless, this method has become the prototype for 

metallization of single DNA molecules. Another recently demonstrated [8 6 ] method of 

DNA-templated nanowire fabrication uses nonspecific metallic deposition. Alkali metal
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cations with high affinity for Si0 2  were used to passivate the silicon surface, creating a 

physical and an electrostatic barrier against nonspecific silver or copper cation 

adsorption and subsequent metal deposition. For silver nanowires synthesized from 

single-stranded DNA, this ionic masking strategy leads to a 51% reduction in the 

number of nonspecifically deposited nanoparticles and an even greater decrease in their 

dimensions [8 6 ].

-400,

Figure 4.1 Characterization of metallized DNA. A) Atomic force microscope (AFM) 
micrograph of 100 nm wide Ag nanowire using DNA-templated assembly. B) I-V 
characteristics of the nanowire. Reprinted from reference [20]. Copyright 1998 
Macmillan Publishers Ltd.

The binding of metal cations to the DNA molecule can play an important role in 

determining its conductivity. A type of DNA-metal ion complex known as M-DNA, 

with divalent metal ions (Zn2+, Ni2+ or Co2+) bound, has been described [89]. M-DNA 

consists of GC and AT base pairs in which the imino proton of guanine and thymine 

have been replaced by a Zn2+ ion to form a wire of zinc ions sheathed by DNA helix 

[90]. DNA-metal ion interaction studies have so far been mainly conducted to determine 

effects of metals on biological properties such as toxicity [91], carcinogenicity [92] and 

antitumour activity [93].
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We have investigated the interaction of indium(III) ions with DNA molecules in 

aqueous solution using spectroscopic, fluorescence and gel electrophoresis techniques. 

DNA-indium(O) and DNA-indium(I) interaction were investigated using SEM 

characterization of samples prepared by indium species in aprotic polar solvent (toluene 

and THF) deposited on DNA immobilized on a glass substrate. In this chapter, a 

discussion of affinity of indium species to DNA molecules is presented to give the extent 

of DNA metallization and its structure during nanowire formation.

4.2 Indmm(III)-DNA Interaction Studies

4.2.1 Materials

The X DNA (10 mM Tris, 1 mM EDTA stock solution 45% G-C) from E. coli 

host strain W3110, and sodium salt of CT DNA (highly polymerized, type I, 42 % G-C) 

were purchased from Sigma-Aldrich (USA) and used without further purification. The 

ratio of absorbance at 260 nm and at 280 nm (A260/A280) for X-DNA and CT DNA were 

1.77 and 1.88, respectively, indicating that the preparations were mostly free of protein 

[94]. The DNA concentration per nucleotide (or phosphate) was determined by 

observing the absorption (6 2 5 8  = 6600 M' 1 cm'1) [94]. Crystalline indium(III) chloride 

(98% pure), EDTA (anhydrous, 99%) and EtBr were also purchased from Sigma-Aldrich 

and used as received. All solutions were prepared using 18 -cm water from a Milli-Q

purifier (Millipore, USA). CT DNA stock solution was prepared by dissolving the DNA 

in 10 mM Tris pH 7.5 to a final concentration of 1 mg/mL and gently mixing overnight. 

DNA samples were stored at 4 °C for not more than a week for use in experiments. 

Freshly prepared InCfi solutions were used within 4 h and 25 mM EDTA solution was
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prepared by dissolving solid EDTA in water. All experiments besides thermal 

denaturation of DNA were carried out at 22-24 °C.

4.2.2 Experimental Techniques

4.2.2.1 UV spectroscopy

All LTV spectra were obtained with a Shimadzu 1650PC UV-vis 

spectrophotometer (Japan). Samples were analyzed in a quartz cuvette with a 1 cm path 

length. An attached Fisher Scientific Isotemp 3006 water bath with a circulator pump 

(USA) was used for DNA melting experiments. Stock solutions of CT DNA and X DNA 

were diluted with 5 mM Tris solution at pH 7.5 to a final DNA concentration of 50 

/ig/mL. The 10 jaL aliquots of 5 mM or 10 mM InCE were titrated against 2 mL DNA 

solution in a cuvette. The solution was stirred by repeated gentle in/out pipetting with a 

1000 /tL micropipette for 30 s and then allowed to sit for 1 min before recording the 

spectrum for each indium ion concentration. The micropipette tips were large enough to 

minimize shearing of DNA molecules. Incubation times of 1 min, 10 min, and 1 h were 

tested. The spectral variations after 1 min were negligible, suggesting that binding 

equilibrium was reached on this time scale. Subsequenty, kinetic spectroscopic studies at 

260 nm also revealed that spectral changes were insignificant after 30 seconds to 1 

minute of mixing InCl3 solution with DNA solution. Absorption study during the 

titration of 25 mM EDTA against DNA solution was carried out to test the chelating 

effect of EDTA on indium ions. Absorbance readings were adjusted to account for the 

dilution of DNA by the titrant.
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4.2.2.2 CD Spectroscopy

Circular dichroism (CD) spectra of CT DNA solution in the presence and 

absence of InCl3 were measured with a Jasco J-810 circular dichroism 

spectropolarimeter (Japan) in a 1 mm-path length quartz cuvette. The wavelength range 

was 200 nm-300 nm with the instrument settings: step size, 0.1 nm; scanning speed, 0.3 

nm s'1; response time, 0.3 s; number of scans, 50. The results are presented as 

differential absorption in milliabsorbance units.

4.2.2.3 Extrinsic Fluorescence Emission

Fluorescence quenching and recovery experiments were done with a TECAN 

GENois microplate reader (USA). Same concentrations of InCh and CT DNA as in 

titration experiments were used, and the concentration of EtBr was 0.1 /xg/mL (6 4 7 3  = 

5680 M ' 1 cm' 1 [95]). A 96-well microplate was used for the experiment. Twelve samples 

were prepared by varying the concentration of InCl3 in DNA solution such that the molar 

concentration ratio, [In3+]/[DNA base pairs] (R), varied from 0 to 3.5. The molar 

concentration of DNA base pairs was calculated assuming that the average base pair 

molecular weight is 660 Da. A 100 /xL quantity of each sample was added to separate 

wells in the microplate. A 12-well concentration gradient of EDTA was obtained by 

maintaining R = 3.5 while changing the concentration of EDTA from 0 to 2.5 mM. 

Three identical samples were prepared independently for each InCh concentration to 

ensure repeatability. Samples were excited at 360 nm. Fluorescence emission was 

measured at 610 nm. Fluorescence emission Fi for each well was calculated as the 

average of the three samples. The emission data are presented as Fj/Fo, Fo being the Fj 

value for DNA-EtBr complex in the absence of indium(III).
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4.2.2.4 Gel Electrophoresis

20 /xL 50 /xg/mL CT DNA, 0.1 /xg/mL EtBr with R = 0-2 was introduced into a 

well in a 0.75 % (w/v) agarose gel (40 mM Tris, 50 mM boric acid, 1 mM EDTA, pH 

8.0) and incubated for 1 h at 25 °C. The DNA samples migrated in the gel on application 

of an electric field of 5 V/cm for 4 h. DNA mobility was assessed qualitatively by 

visualization with a Spectroline UV transilluminator (USA) equipped with a light shroud 

and an Olympus digital camera (Japan).

4.2.3 Results and Discussions

4.2.3.1 Spectrophotometric Titration

Both X DNA and CT DNA showed moderate hyperchromicity (increase in 

absorbance) followed by significant hypochromicity (decrease in absorbance) on 

increasing the concentration of InCl3 . These changes were accompanied by a 

bathochromic (shift of absorbance towards longer wavelength) shift of ~4 nm near 260 

nm. Absorbance and the corresponding peak shift for X DNA and CT DNA are plotted 

against R in Figure 4.2. R ranged from 0-2 (CT DNA experiments, 0-0.26 mM InCh) or 

0-2.5 (X DNA, 0-0.37 mM InCls). Absorbance near 260 nm increases steadily with R 

(up to 30 % for CT DNA and 20 % for X DNA) before dropping (up to 20 % CT DNA 

and 30 % for XDNA) and remaining steady thereafter (Figure 4.2A, C).
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Figure 4.2 DNA-Indium titration curves. A) CT DNA v/s R. B) X DNA v/s R. Primary 
X-axis: R, primary Y-Axis: absorbance max change, represented in terms of percentage 
(% Chromicity), secondary Y-Axis: wavelength at maximum absorbance (Peak). C) R = 
2, [CT DNA] = 50 jug/mL v/s [EDTA]. D) R = 2.5, [X DNA] = 50 jug/mL v/s [EDTA], 
Primary X-axis: EDTA concentration (mM), primary Y-Axis: absorbance max change, 
represented in terms of percentage (% Chromicity), secondary Y-Axis: wavelength at 
maximum absorbance (Peak).

CT DNA was also titrated against NaCl in the range 0-5 mM as a control for the 

possibility that CT ions influence absorbance (data not shown). The concentration of 

NaCl in DNA samples was chosen to mirror the InCU experiments (ionic strength of 

InCU is 6 x that of NaCl in dilute solution). NaCl did not influence absorbance at any 

concentration in the indicated range. Control experiments were also done at a lower 

DNA concentration (0.25 jag/mL), maintaining R and other conditions. The behavior of 

DNA was similar under both conditions.
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R', defined as the R value at the mid-point of the hypochromic slope, represents 

the mid-point of the structural transition. It can be seen in Figure 4.2 that spectroscopic 

titration curve for both X DNA and CT DNA behave in a similar manner. The slight 

difference in R'values suggests that EDTA in the stock solution of X DNA might chelate 

indium ions and therefore yield a higher apparent value of R' for XDNA. The difference 

in hyperchromic (increase in absorbance) and hypochromic (decrease in absorbance) 

effects between CT DNA and X DNA can be ascribed to the difference in counterions 

and buffer concentration in the respective stock solutions, as well as the difference in G- 

C content (42 % for CT DNA [96] and 45 % for XDNA [97]).

The hypochromic effect due to interaction of DNA with indium ions was found 

to be largely reversible by addition of the metal ion chelator, EDTA (up to 80 % of the 

initial value for CT DNA, up to 60 % of the initial value for X DNA). Figure 4.2B, D 

show the effect of increasing EDTA concentration on absorbance of the CT DNA-In3+ 

solution (R = 2) and the XDNA- In3+ solution (R = 2.5), respectively. These experiments 

suggest a 15-20 % recovery of absorbance for both species of DNA in the presence of 

EDTA. A hypsochromic shift of ~4 nm also occurred on addition of EDTA.

Figure 4.3 presents a family of UV spectra for X DNA at different concentrations 

ofInCl3 and EDTA. The inset shows data in the range 240-280 nm. Absorbance changes 

in the far UV region, though significant, were not analyzed more thoroughly because 

many other chemical species, e.g., Tris, EDTA, and CF, absorb in this region. The 

spectral properties of CT DNA under the same conditions were found to be similar to 

those of X DNA.
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Figure 4.3 UV-Vis spectrum ( 320 -  190 nm ) for XDNA. (a) r=0, (b) R = 1.2, (c) R = 
2.5, (d) R = 2.5 and [EDTA] = 0-1.5 mM. Inset: Expanded view of spectrum in 240 -  
280 nm range.

The effect of counterions on In3+-DNA binding was tested by varying the NaCl 

in the range 0-40 mM but keeping all other conditions same. Na+ ions were found to 

affect the value of R' and the maximum hyperchromism and maximum hypochromism 

(Figure 4.4). The data suggest that the effect of counterions is particularly significant in 

the 0-10 mM range.
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Figure 4.4 Titration curve for CD DNA in presence of Na+ ions. Change in absorbance 
for CT DNA at 260 nm represented in terms of % chromicity, plotted against ratio R in 
presence of NaCl concentrations 0, 5, 10 and 40 nM

4.2.3.2 Melting Experiments

Thermal denaturation curves were obtained for CT DNA with R = 0, 0.8 and 2. 

As evident in Figure 4.5, Tm increases with increases in R, from 45 °C for R = 0 to 57 °C 

for R = 4. The increase in Tm is accompanied by a broadening of the transition and a 

reduction in final hyperchromicity (20 % for R = 0, 15 % for R = 1.5, and 5 % for R = 

4). The results indicate that the interaction of CT DNA with In3+ ions stabilizes the DNA 

double helix. That is, In binds with greater affinity to the double-stranded molecule 

than to single strands. The spectra data would also suggest, however, that the binding 

process distorts the conformation of DNA.
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Figure 4.5 Melting Curves for CT DNA. Thermal denaturation curve for CT DNA at R 
= 0.0, 0.8 and 2.0. Change in absorbance at 260 nm represented in terms of 
%Hyperchromicity plotted against temperature (°C)

4.2.3.3 CD Experiments

Structural changes in DNA on addition of InCh were studied by CD at different 

values of R (R = 0, 0.15, 0.3, 0.5, 1, 1.5) (Figure 4.6). Figure 4.6 shows the differential 

absorbance for characteristic Cotton effects at 217, 245 and 275 nm at various R values. 

In all cases, peak intensity decreases as R increases from 0 to 1.5. Moreover, changes in 

the peaks decrease in magnitude as R increases from 0 to 1; there is negligible change 

above R = 1, suggesting saturation. Below 210 nm, the differential absorbance increased 

considerably at high values of R.
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Figure 4.6 Circular Dichroism. A) CD spectra for CT DNA at various concentrations of 
InCb (R = 0 -  1.6), are plotted as milliabsorption units versus wavelength. The spectrum 
is the average of 50 scans. B) As values for peaks (275 nm, 245 nm, 217 nm) for various 
concentrations of InCi3 (R = 0 -  1.6).

4.2.3.4 Fluorescence Experiments

Relative fluorescence (F/Fo) of 50 /xg/mL CT DNA and 0.1 jag/mL EtBr was 

measured as a function of R. Fluorescence emission of EtBr-DNA was quenched by In3+ 

ions, reducing the fluorescence intensity by around 25 % at R = 3.5 (Figure 4.7). The 

quenching profile is closely related to the hypochromicity profile (Figure 4.2); the 

transition in fluorescence intensity, however, occurs at a lower R value (R' = 0.25). The 

fluorescence recovery profile was obtained by adding EDTA to DNA-EtBr solution at R 

= 3.5, keeping all other conditions constant. The data show that EDTA could recover the 

fluorescence to about 60 % of its initial value. A control experiment with NaCl 

(analogous to the Na+ control in UVS experiments) showed that increases in Na+ ion 

concentration did not quench the fluorescence emission (data not shown).
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Figure 4.7 Ethidium Bromide fluorescence quenching and recovery profiles. F/Fo as a 
function of R (square) and as a function of EDTA concentration (mM) with r = 3.5 
(triangle). Square: Quenching Profile, [DNA] = 50 /xg/mL, [EtBr] = 0.1 /xg/mL, r = 0 -  
3.5. Triangle: Recovery profile, [DNA] = 50 /xg/mL, [EtBr] = 0.1 /xg/mL, r = 3.5, 
[EDTA] = 0 - 2.5 mM. Inset: Image of 96 well microplate, row A & B; quenching, rows 
C & D; recovery.

4.2.3.5 Gel Electrophoresis

Lanes 1-7 in Figure 4.8 represent CT DNA solution with R = 0, 0.2, 0.4, 0.8, 1.5,

2.0, and 0, respectively. The concentrations of the various chemical species were same 

as in the fluorescence studies. EtBr-stained DNA is relatively fluorescent at R = 0 but 

steadily decreases as R increases to 2, where the fluorescence intensity is low. This 

decrease in band brightness is an obvious result of fluorescence quenching due to In3+- 

DNA interaction. It is evident from the figure that there is no significant difference in 

mobility between the samples, despite the differences in InCf concentration and 

fluorescence, and no apparent shearing of the DNA.
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Figure 4.8 Gel Electrophoresis Image. Lane 1 -  7, R = 0, 0.2, 0.4, 0.8, 1.5, 2.0 and 0 
respectively. (0 . 50 figimL CT-DNA, 5 mM Tris (pH 7.5), 0.1 /ig/mL EtBr).

A molecular model of 20 base-pair of mixed-sequence, right-handed B-DNA 

surrounded by 20 In3+ ions (R = 1) is shown in Figure 4.9. The van der Waals radius of 

In3+is 0.93 A [98]. The model gives an idea of the relative size of the interacting species.

Figure 4.9 Molecular Modeling of B-DNA. Modeled structure of mixed sequence 
dsDNA shown surrounded by In + ions at R = 1. Van der waal radius of indium in 3+ 
oxidation state is 0.93 A.
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The UV titration results presented here suggest that the DNA-indium interaction 

occurs in at least in two stages: low metal ion concentration (R < 0.5), where absorption 

increases, and high metal ion concentration (R > 0.5), where absorption decreases. There 

was no evidence of DNA aggregation up to R = 20. The initial hyperchromicity can be 

attributed to the electrostatic interaction between In3+ and the phosphate groups in DNA 

backbone [99]. A parallel analysis of UVS data and CD data indicates that the DNA 

undergoes a structural transition on interacting with In3+ and is then transformed into 

another conformation [100], [101]. The CD spectra for R = 1 and R = 1.6 closely 

resemble that of left handed Z-DNA [102]. This data suggests the possibility that the 

usual right-handed B-form shifts to the left-handed Z-form as the In3+ concentration 

increases. The decrease in the absorbance peak at 275 nm and 245 nm, together with the 

hypsochromic shift of the peak at 275 nm and the bathochromic shift of the 245 nm 

peak, is consistent with a conformation change from the B-form to Z-form [103]. A 

large decrease in the absorbance confirms a considerable coiling and condensation of the 

DNA molecules.

The UV absorption titration experiment revealed a hypochromic shift (20 %) and 

bathochromic shift (4 nm) of the absorbance peak at 260 nm upon saturation of indium 

binding sites. These data suggest that the binding of indium ions to DNA is more likely 

to occur by intercalaction than simple outside bonding [104, 105] . The interpretation is 

supported by the fluorescence quenching profile, where the binding of indium ions 

inhibits the intercalaction of EtBr molecules and leads to increased quenching with 

increases in R [89, 90]. The 190 nm-210 nm range of the absorption spectrum (Figure

4.2) shows obvious changes with changes in InCF concentration.
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EDTA is widely known to chelate most divalent and some trivalent metal ions by 

forming coordination compounds. A proposed structure of the indium-EDTA complex is 

shown in Figure 4.10 [106]. The observed recovery in absorbance and fluorescence on 

addition of EDTA might therefore be attributable to the formation of EDTA-In 

complexes, reducing the concentration of free In3+ ions and allowing the DNA molecules

i x
to return to their original confirmation in the absence of In .

co

co co

co

Figure 4.10. EDTA-In complex, EDTA can chelate indium in aqueous solution. 

Redrawn after reference [106]

4.3 [HB(3-phpzfr|In-DNA Interaction Studies

4.3.1 Materials

Sodium salt of calf thymus (CT) DNA (highly polymerized, type I, 42 % G-C) 

were purchased from Sigma-Aldrich (USA). The stock solution of DNA was purified 

using QIAGEN®, QIAEX II Gel Extraction Kit. The concentration of the purified DNA 

was determined to be —150 pg/mL (assuming coefficient o f extinction at 258 nm (f2 5 s) = 

6600 M' 1 cm ' 1 [94]) and the ratio of absorbance at 260 nm and at 280 nm (A260/A2 80) 

was 1.88, indicating that the preparations were mostly free of protein [94]. 10X dilute
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solution of indium nanoparticles from the reduction of [HB(3-phpz)3]In (Section

2.23.3.2) in THF was used.

4.3.2 Methods

CT DNA was deposited on glass substrate by evaporation. Evaporation is a 

simple way to characterize molecular macroscopic conformations as a reference to 

stretched and combed DNA molecules. Stock solution was diluted in 10 mM Tris (HC1) 

buffer solution (pH 7.5) to obtain DNA concentrations of 100 ng/mL, 200 ng/mL and 

500 ng/mL. 8  pL of diluted DNA solutions were pipetted on the glass substrates. DNA 

control samples were prepared by evaporating the excess solvent in the fume hood for 

1 0 - 2 0  min, rinsing with water and drying by passing nitrogen gas.

THF solution of [HB(3 -phpz)3]In (0.1 M, 0.0565 g [HB(3-phpz)3]In, 1 mL THF) 

was prepared in a 1.5 mL microtube. THF solution (10 pL) was pipetted on the DNA- 

coated glass substrate. The solution was allowed to dry under a fume hood for 10-12 min 

and then dried by passing nitrogen gas over it. Sodium (0.023 g) was added to Schlenk 

in dry box. Dry degassed DM Ac (10 mL) was transferred to the a Schlenk vessel to 

dissolve sodium. The substrate and the sodium solution were taken into the dry box. 

DM Ac solution of sodium (10 pL) was pippeted on the substrate. Untreated metallized 

DNA samples were prepared by drying excess solvent in the dry box (~2 h) and passing 

nitrogen gas. The samples were heat treated by gradually heating them to 157 °C in a 

Precision Scientific Thelco 19 Vacuum Furnace (Precision® Scientific Corporation, 

USA) equipped with a Welch® DuoSeal® vacuum pump working at 10' 5 mm Hg. 

Furnace temperature was maintained at this temperature for 30 min and was allowed to 

cool to room temperature gradually. DNA control samples, untreated metallized DNA
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samples and the heat treated metallized DNA samples were sputtered with 4 nm gold 

layer and imaged under SEM.

Preliminary investigations for electrical resistivity of glass substrate control, 

DNA control, untreated metallized DNA and heat treated metallized DNA samples were 

conducted using 2-point probe method on a Keithley probe station (Keithley® 

Instruments, USA). The setup for resistivity measurement is shown in Figure 4.11. The 

two probes were 1000 pm apart on the surface of the sample. Electrical resistance was 

measured at 3 different locations for each sample. Resistivity was determined using the 

following formula:

Rx A

Where, A (crossectional area) = 1 0 0  pm2, assuming 2-D structure with tip 

contact diameter =100  pm, R = Measured resistance and L (distance between the two 

probes) = 1 0 0 0  pm.
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Figure 4.11. Experimental setup for 2-point probe resistivity measurement.

4.3.3 Results and Discussions

4.3.3.1 SEM Characterization

During evaporation of the DNA buffer solution, the DNA is tethered on the glass 

substrate and stretched along the receding meniscus. Figure 4.12 shows a schematic of 

the DNA stretching mechanism during the evaporation process. SEM micrograph of 

DNA coated glass substrate (control) is shown in Figure 4.13. The control acts as a 

reference for comparison with the metal deposited samples. The image can be 

interpreted as bundle of CT DNA strands branching out in different directions.
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Figure 4.12 Mechanism of DNA stretching by evaporation.
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Figure 4.13 SEM micrograph of stretched DNA (control).

An SEM image of untreated metallized DNA sample is shown in Figure 4.14. 

Deposition of indium(O) in the form o f indium nanoparticles on immobilized DNA 

strands could be observed. Higher concentration of nanoparticle deposition on the DNA 

was found along the evaporated edge of the meniscus and metal deposition on the glass
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substrate was minimal. Considerable irregularity and roughness along the length of the 

nanowires was also visible in the SEM image.

Figure 4.14 SEM micrograph of untreated metallized DNA
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Figure 4.15. SEM micrograph of heat treated metallized DNA.

The effect of heat treatment on metallized DNA can be observed in the SEM 

image shown in Figure 4.15. The figure however, is a representative of the entire 

sample and not the same region imaged for the untreated metallized DNA. It can be 

observed that the irregularity and roughness along the length of the DNA strands has 

been significantly reduced due to the heat treatment process. However, aggregation 

and fusion of adjacent nanowires was also observed.

4.3.3.2 Electrical Characterization

Results for preliminary surface resistivity measurements are tabulated in Table

4.1. Our control surfaces, glass and DNA had an average resistivity of 5.37 x io 13 mil

I Tand 1.74 x 10 respectively. Average resistivity for untreated metallized DNA surface 

(1.83 x IO10 mQ) and heat-treated metallized DNA surface (3.39 x 109 mO) were
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relatively low. This result implies that in this case heat treatment has reduced the resis­

tivity by a factor of 5. However, these resistivity measurements are preliminary and need 

further investigation. The observed high resistivity of both untreated and heat-treated 

metallized DNA surface is due the discontinuity of the nanowires and the contact 

resistance between the probe and the nanowires.

Table 4.1. Electrical resistivity data

Test region

Glass

substrate

(control)

(mQ)

DNA

(control)

(mQ)

Untreated 

Metallized 

DNA (mQ)

Heat treated 

metalized 

DNA (mQ )

1 2.80 xlO13 1.35 x io 13 4.30x10'° 8.81 xlO8

2 2.20 x l0 lj 2.90 x l0 lj 7.60x109 5.59 x l0y

3 1.11 x io 14 9.70 xlO1̂ 4.28 xlO9 3.70 x io9

4.4 Sodium Reduced Indium Nanoparticles-DNA Interaction Studies

4.4.1 Materials and Method

Several 40X dilute solutions of indium nanoparticles from sodium reduction of 

InCl in toluene (Section 3.4.1) were used. Indium nanoparticles solution from sodium 

reduction of InCl (5 pL) was pipetted on the DNA coated glass substrate. The solution 

was allowed to dry under a fume hood of 30 min and then dried by passing nitrogen gas 

over it. The sample was sputtered with 4 nm gold layer and imaged under SEM.
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4.4.2 Results and Discussions

The medium used for dispersing the indium nanoparticles was toluene. 

Evaporation of the solvent occurred within 15 min of pipetting. No definite evidence of 

metal deposition on DNA was found in the sample. SEM image shows random 

distribution of agglomerated indium nanoparticles (Figure 4.14). Presence of DNA could 

not be verified by imaging. However, the features in Figure 4.14 can be interpreted as 

non-specific metal deposition on and around DNA molecules.

Figure 4.14 SEM micrograph of indium nanoparticles from sodium reduction of InCl 
deposited on DNA
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this project, a “bottom-up” approach of manufacturing involving manipulation 

of basic building blocks of matter to achieve desired shape and size is investigated. This 

approach mainly involves fabricating metal nanowires using DNA molecules as template 

and indium species as the basic building block. The work here can provide the 

fundamental knowledge for developing fabrication techniques that provides cheaper and 

more accurate techniques to replace current technology based on optical lithography. 

The longterm goal of this project is to achieve self-assembling conducting nano wires as 

electrical interconnects with resistively close to that of bulk metal (indium, in this case). 

The accomplishments of our project are described in the following paragraphs.

This project started with an investigation into the interaction of indium (III), 

indium(I) and indium(O) with DNA in the process of DNA metallization in order to 

study the role of these indium species in the formation of DNA templated indium 

nanowires.

First, an aqueous solution of trivalent indium salt (InCh) was used to investigate 

In(III)-DNA interactions. Based on spectroscopic, fluorescence and gel electropherosis 

techniques we used for indium(III)-DNA binding studies, following conclusions were 

reached: 1) indium(III) ions bind to DNA molecules in aqueous solution, leading to a
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significant change in spectral and extrinsic fluorescence properties of DNA; 2) indium- 

bound DNA has a higher melting point than free DNA; 3) EDTA affects indium(III) ions 

bound to the DNA molecules by chelation in aqueous solution, reversing the 

conformational changes that occurred by increased concentration of In(III); 4) 

indium(III) ions induce considerable aggregation and condensation of DNA molecules, 

leading to bundling and coiling of DNA.

Second, we have studied the in situ sodium reduction of indium(I) complex on 

DNA molecules using SEM. DNA templated indium nanowires hence obtained were 

heat treated and a preliminary investigation on electrical resistivity was conducted. NMR 

spectroscopy was used to characterize the indium(I) complex used as precursor for DNA 

metallization. Following conclusions were reached based on the above studies: 1) 

monoatomic indium(I) ions are highly air sensitive but can be stabilized by incorporating 

indium(I) ion in a suitable organic coordination complex; 2) pyrazole ligand with bulky 

group such as phenyl exhibits much greater steric hinderance (stability) in the complex 

as compared to cyclopentadienyl complexes; 3) in situ sodium reduction of indium(I) 

complex, [HB(3-phpz)3]In to indium(O) on DNA immobilized substrate produces 

deposition of indium(O) specifically on the DNA strands; 4) indium(I) ions bound to 

DNA are reduced by sodium to ln(0) forming nucleation sites for further electroless 

deposition of ln(0) on the DNA strands; 5) irregularity and roughness along the length of 

the DNA nanowires can be reduced by subsequent heating and annealing making the 

wires relatively smooth; 6) heating the nanowires to the melting point of indium and 

subsequent annealing could reduce the resistivity of the nanowires by a factor of 5; 7)
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high resistivity of the nanowires is due to the discontinues structure of the wires and high 

contact resistance between nanowire surface and the test probe.

Third, we have investigated the direct deposition of indium(O) in the form of 

indium nanoparticles as a method of DNA templated nanowire assembly. First, indium 

nanoparticles were synthesized by the following three methods: l)sodium reduction of 

indium(I) chloride; 2) sodium reduction of indium complex ([HB(3-phpz)3]In); 3) 

dispersion of bulk indium in mineral oil. Then, the nanoparticles were deposited directly 

on DNA molecules immobilized on glass substrate. Based on SEM and EDX 

characterizations, following conclusions were reached: 1) indium nanoparticles prepared 

from sodium reduction of InCl and {[HB(3-phpz)3]In} have diameters in 10-100 nm 

range and were distributed uniformly; 2) composition of indium in the indium 

nanoparticles prepared from sodium reduction of InCl and {[HB(3-phpz)3]In} is 

relatively low (25-50% by weight); 3) indium nanoparticles synthesized by dispersion of 

bulk indium in mineral oil have relatively large particle size and irregular particle size 

distribution; 4) composition of indium in indium nanoparticles synthesized by dispersion 

of bulk indium in mineral oil is relatively high (85% by weight); 5) direct deposition of 

indium nanoparticles prepared by sodium reduction of indium(I) chloride, on DNA 

strands immobilized on a glass substrate produced random distribution of agglomerated 

indium nanoparticles; 6) indium nanoparticles do not deposit specifically on DNA 

strands.

Even though indium(III) have confirmed affinity towards DNA molecules, 

condensation and coiling of DNA molecules in presence of indium(III) ions will make it 

difficult to maintain stretched and aligned DNA molecules during metallization process.
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A former member of our research group had shown [107] that reduction of immobilized 

DNA-bound indium(III) ions using p-dimethylaminobenzaldehyde (DMAB) produces 

aggregated clusters of metallized DNA. However, specific deposition of indium(O) on 

DNA was observed. Hence, we adopted direct deposition of indium(O) on immobilized 

DNA to prevent aggregation and coiling. Direct deposition method however lacked the 

specificity of deposition. Based on our experiments with the three indium species, we 

conclude that in situ sodium reduction of {[HB(3-phpz)3]In} in the presence of DNA is 

the most suitable method for the assembly of DNA templated indium nanowires.

5.2 Future Work

In this work, we have partially accomplished the long term goals of the project. 

Further improvements in precursor synthesis, DNA stretching and alignment process and 

the DNA metallization process is required to develop highly reliable and cost effective 

interconnects for futuristic nanocircuits.

Synthesis of {[HB(3-phpz)3]In} is a long process and several steps are highly 

critical requiring intense care. Development o f a more efficient synthetic route is 

important to provide a cost effective solution when commercialization is required. DNA 

with thiol modified ends can be stretched across gold microelectrodes before indium 

deposition. Metallized DNA can then be heated and annealed in vacuum (or inert 

atmosphere) to obtain smoother structure. This method will eliminate discontinuity and 

contact resistance, providing an ideal setup for electrical characterization. Detailed study 

of electrical characteristics and temperature dependence will reveal the performance of 

the nanowires under device conditions.
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Future holds enormous possibilities for low temperature DNA-templated metal 

nanowires. For controlling the orientation and length of the DNA-templated nanowires 

in the required position inside the nanocircuits, manipulation of DNA molecules on the 

circuit surface is required prior to further processing. Individual DNA molecules must be 

synthesized with specific number of base pairs, separated, and stretched between specific 

electrodes in the circuit to serve as templates for nanowire fabrication. Thus, DNA can 

be positioned in nanocircuits with high precision by molecular recognition and 

metallized in situ. Interconnects thus obtained can be heated and annealed to eliminate 

any structural defects thus enhancing their conductivity. Such interconnects have 

potential to exhibit high performance and can operate at single-molecule level 

connecting various components in nanocircuits.
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A. Procedure for drying solvents using sodium and benzophenone

1) Place the solvent in a round bottom flask with magnetic stir bar in it. Add freshly 

cleaved sodium (~5 g per 100 mL) and benzophenone (10 g per 100 mL). Do not 

use more than 50% of the volume of the flask.

2) Connect round bottom flask to water cooled condenser. Attach nitrogen supply 

and oil trap to the condenser. Adjust nitrogen supply so that the gas bubbles 

regularly out of the oil trap.

3) Place the heating mantle and magnetic stirrer under the round bottom flask. Set 

heat just over boiling point of the solvent. Solvent should condense in the 

condenser and return to the flask. Allow the solvent to reflux for -24 h.

4) Make sure that the solvent has turned dark purple in color. Connect Schlenk flask 

to the side arm of the condenser and collect the distilled solvent.

5) Close the stopcock of the Schlenk flask. The solvent is ready to use.
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B. Procedure for degassing of liquids using Freeze-Pump-Thaw method

1) Place the solvent (or solution) in a Schlenk flask. Make sure the stopcock is 

closed. Do not use more than 50% of the volume of the flask to avoid cracking of 

the flask during the procedure.

2) Connect the Schlenk flask to the vacuum line and freeze the liquid using liquid 

nitrogen filled dewar.

3) Open the stopcock to vacuum and pump down the flask after the solvent is frozen 

(~ lh).

4) Close the stopcock to seal the flask.

5) Thaw the solvent until it just melts using a tepid water bath. Gas bubbles should

evolve from the solution. Do not over heat or shake the flask.

6) Replace the water bath with the liquid nitrogen filled dewar and reffeeze the 

solvent.

7) Repeat steps (3) -  (7) until evolution of gas during thawing ceases. The solution

should be put through a minimum of three cycles.

8) The solvent can be transferred through distillation for use.
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C. Protocol for purification of CT DNA (QIAEXII Handbook)

QIAEX II Gel Extraction Kit can be used to purify and concentrate DNA fragments 

from 40 bp to 50 kb from aqueous solutions without phenol extraction or ethanol 

precipitation. Purification of DNA fragments with the QIAEX II system is based on 

solubilization of agarose and selective adsorption of nucleic acids onto QIAEX II silica- 

gel particles in the presence of chaotropic salt. QIAEX II separates DNA from salts, 

agarose, polyacrylamide, dyes, proteins, and nucleotides without phenol extraction or 

ethanol precipitation.

1) Add ethanol (96-100%) to Buffer PE before use.

2) All centrifugation steps are at maximum speed (>10,000 x g, -13,000 rpm) in a

conventional table-top microcentrifuge.

3) For DNA fragments larger than 10 kb, mix by gently flicking the tube to avoid 

shearing the DNA. Do not vortex the tube.

4) Transfer the sample to a colorless tube. Add 3 volumes of Buffer QX1 to 1 

volume of sample.

5) Add 3 volumes of Buffer QX1 plus 2 volumes of H20 .

6) Check that the color of the sample mixture is yellow. If the color of the mixture

is orange or purple, add 10 pL 3M sodium acetate, pH 5.0, and mix. The color 

should now be yellow. The adsorption of DNA to QIAEX II particles is only 

efficient at pH <7.5. Buffer QX1 now contains a pH indicator which is yellow at 

pH <7.5, and orange or violet at higher pH, allowing easy determination of the 

optimal pH for DNA-binding.
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7) Resuspend QIAEX II by gentle flicking for 30 sec.

8) Add 10 pL of QIAEX II per 5 pL of DNA and mix. Incubate at room

temperature for 10 min. Mix every 2 min to keep QIAEX II in suspension.

9) Centrifuge the sample for 30 sec and remove supernatant.

10) Wash the pellet twice with 500 pL of Buffer PE.

11) Air-dry the pellet for 10-15 min or until the pellet becomes white. Do not

vacuum dry, as this may cause overdrying. Overdrying the QIAEX II pellet may

result in decreased elution efficiency.

12) To elute DNA, add 20 pL of 10 mM Tris-Cl, pH 8.5, or H2O and resuspend the 

pellet by gentle flicking. Incubate at 50°C for 10 min.

13) Centrifuge for 30 sec. Carefully transfer the supernatant into a clean tube. The

supernatant now contains pure DNA.

14) Centrifuge for 30 sec. Carefully transfer the supernatant into a clean tube. The

supernatant now contains pure DNA.

15) Repeat steps 12 and 13 and combine the eluates. A second elution step will

increase the yield by approximately 10-15%.
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D. NMR Spectra

3J)6 j0 SO 2 0

Figure 1 !H NMR spectrum for 3-phenylpyrazol. Peaks specific to phenyl and pyrazol 
group is indicated.

120 0 110.0130 JO 100 JO 90 JO

Figure 2. 13C-Couple NMR spectrum for 3-phenylpyrazol. Peaks specific to phenyl and 
pyrazol group is indicated.
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11Figure 3. C-Decouple NMR spectrum for 3-phenylpyrazol. Peaks specific to phenyl
and pyrazol group is indicated.
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Figure 4. 'H NMR spectrum for KH2B(3-phpz)2
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Figure 6 .13C-Decouple NMR for KH2B(3-phpz)2
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Figure 7. 'H NMR spectrum for KHB(3-phpz)3
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Figure 11 .13C-Couple NMR spectrum for [HB(3-phpz)3]In
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