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ABSTRACT 

In this dissertation, we present two novel methods for supervised anomaly 

detection. The first method "K-Means+ID3" performs supervised anomaly detection by 

partitioning the training data instances into k clusters using Euclidean distance similarity. 

Then, on each cluster representing a density region of normal or anomaly instances, an 

ID3 decision tree is built. The ID3 decision tree on each cluster refines the decision 

boundaries by learning the subgroups within a cluster. To obtain a final decision on 

detection, the k-Means and ID3 decision trees are combined using two rules: (1) the 

nearest neighbor rule and (2) the nearest consensus rule. The performance of the K-

Means+ID3 is demonstrated over three data sets: (1) network anomaly data, (2) Duffing 

equation data, and (3) mechanical system data, which contain measurements drawn from 

three distinct application domains of computer networks, an electronic circuit 

implementing a forced Duffing equation, and a mechanical mass beam system subjected 

to fatigue stress, respectively. Results show that the detection accuracy of the K-

Means+ID3 method is as high as 96.24 percent on network anomaly data; the total 

accuracy is as high as 80.01 percent on mechanical system data; and 79.9 percent on 

Duffing equation data. Further, the performance of K-Means+ID3 is compared with 

individual k-Means and ID3 methods implemented for anomaly detection. 
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The second method "dependence tree based anomaly detection" performs 

supervised anomaly detection using the Bayes classification rule. The class conditional 

probability densities in the Bayes classification rule are approximated by dependence 

trees, which represent second-order product approximations of probability densities. We 

derive the theoretical relationship between dependence tree classification error and Bayes 

error rate and show that the dependence tree approximation minimizes an upper bound on 

the Bayes error rate. To improve the classification performance of dependence tree based 

anomaly detection, we use supervised and unsupervised Maximum Relevance Minimum 

Redundancy (MRMR) feature selection method to select a set of features that optimally 

characterize class information. We derive the theoretical relationship between the Bayes 

error rate and the MRMR feature selection criterion and show that MRMR feature 

selection criterion minimizes an upper bound on the Bayes error rate. The performance of 

the dependence tree based anomaly detection method is demonstrated on the benchmark 

KDD Cup 1999 intrusion detection data set. Results show that the detection accuracies of 

the dependence tree based anomaly detection method are as high as 99.76 percent in 

detecting normal traffic, 93.88 percent in detecting denial-of-service attacks, 94.88 

percent in detecting probing attacks, 86.40 percent in detecting user-to-root attacks, and 

24.44 percent in detecting remote-to-login attacks. Further, the performance of 

dependence tree based anomaly detection method is compared with the performance of 

naive Bayes and ID3 decision tree methods as well as with the performance of two 

anomaly detection methods reported in recent literature. 
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CHAPTER 1 

INTRODUCTION 

Anomaly detection is the process of identifying unusual events occurring in a 

system by analyzing the audit data generated from monitoring the system's activities. 

Some examples of a "system" include a computer host running several software 

applications, a computer network comprising hundreds of nodes, an electronic circuit 

implementing arithmetic operations, and a mechanical mass beam structure under fatigue 

stress. Some examples of "unusual events" include unexpected behaviors of software 

applications (e.g., sudden shutdowns, memory and buffer overflows, etc.) in the case of a 

computer host, unexpected bursts in TCP/IP traffic passing through a computer network, 

unexpected response measurement from an electronic circuit, and the occurrence of an 

evolving crack in a mass beam structure. 

Based on the past research activity in anomaly detection, anomaly detection can 

be broadly classified into (1) supervised anomaly detection, and (2) unsupervised 

anomaly detection. In supervised anomaly detection, the types of anomalies that may 

occur in a system are known a priori. Therefore, the problem of supervised anomaly 

detection becomes that of identifying whether an event is an anomaly, and if it is, then the 

specific type of anomaly to which it belongs. On the other hand, in unsupervised anomaly 

detection, the types of anomalies that may occur are largely unknown. Therefore, a 

1 
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typical approach to solve the unsupervised anomaly detection problem is to build a 

profile of normal behavior of the system and then identify all events that significantly 

deviate from the normal profile as anomalies. 

Recently, new forms of anomaly detection employing data mining techniques [1], 

called Anomaly Detection using Data Mining (ADDM) methods, have emerged in the 

literature. ADDM methods perceive the anomaly detection problem as a data 

classification problem in which data instances, representing events, are classified as 

normal or as anomalies. To classify data instances, ADDM methods employ a wide range 

of data mining and machine learning techniques like neural networks [2][3], decision 

trees [4], support vector machines [5], fuzzy logic [6], symbolic dynamics [7][8], self-

organizing maps [9], Markov chain models [10], discrete Markov models [11], and 

association rules [12]. ADDM methods have gained popularity in both supervised and 

unsupervised anomaly detection fields because of their abilities to (1) automatically 

extract anomaly signatures, (2) detect new anomalies, (3) maintain high detection 

accuracies with low false positive rates, and (4) scale on large distributed datasets. 

In this dissertation, we present two supervised anomaly detection methods: (1) the 

K-Means+ID3 anomaly detection method and (2) the dependence tree based anomaly 

detection method. Both methods build on existing data mining methods (i.e., k-Means 

clustering, ID3 decision tree learning, and dependence tree approximations of joint 

probability densities) and therefore can be classified as ADDM methods. However, the 

two anomaly detection methods differ in their approach to solve the supervised anomaly 

detection problem. The first method, K-Means+ID3, is designed to identify data instances 

as either "normal" or "anomaly". That means, from a classification point-of-view, the K-
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Means+ID3 method performs a two-category classification. Applications of such "two-

category" anomaly detection approaches exist in domains where data instances may be 

known to originate due to an anomaly but the class or type of anomaly itself is unknown. 

For example, in the case of detecting an evolving crack in a mechanical system under 

fatigue stress, it may be known that the data instances generated during the evolution of 

the crack corresponds to an anomaly; however, to what specific anomaly type the data 

instance belongs is unknown. The second method, dependence tree based anomaly 

detection, is designed to identify specific types of anomalies. That is, the dependence tree 

based anomaly detection method performs multi-category classification. Applications of 

such "multi-category" approaches to anomaly detection exist in domains where data 

instances are known to belong to normal or to specific types of anomalies. An example of 

such an application domain is the detection of computer network attacks, where the type 

of anomaly is known to belong to one of the several attack types like denial-of-service 

attack, probing attack, user-to-root access attack, etc. Next, we present a brief overview 

of the K-Means+ID3 anomaly detection method and the dependence tree based anomaly 

detection method. 

1.1 K-Means+ID3 Anomaly Detection Method 

The K-Means+ID3 anomaly detection method cascades two data mining 

algorithms: (1) k-Means clustering [13] and (2) the ID3 decision tree learning [14] for 

classifying normal and anomaly data instances. In the first stage of K-Means+ID3, k-

Means clustering is performed on training instances to obtain k disjoint clusters using 

Euclidean distance similarity. The k-Means algorithm is used to organize the training 

instances into disjoint subsets or "clusters," where each member in a cluster is more 
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closely related to other members in its associated cluster than to members in other 

clusters. In the second stage of K-Means+ID3, each cluster of training instances is further 

subject to ID3 decision tree learning. In ID3 learning, the ID3 algorithm builds a decision 

tree from the cluster of training instances. The leaf nodes of the ID3 decision tree contain 

the class name whereas a non-leaf node is a decision node. Each leaf node contains one 

of the two classes: (1) normal or (2) anomaly. 

Once the training set is organized into clusters and associated ID3 decision trees, 

test data is compared to the classification system established by the training data set. 

Using this classification system, an unknown test instance is (1) examined for closeness 

to the clusters, and (2) for the closest clusters (i.e., the clusters that are closest by 

Euclidean distance between the test data instance and the clusters' centroids), the 

decision on the test instance as normal or anomaly is given by each cluster's ID3 decision 

tree. The ID3 decision tree's decision is contrasted with the k-Means cluster's decision, 

and the first conformity between the two decisions is the decision assigned to the 

unknown data instance. 

Experiments were performed on three datasets: (1) Network Anomaly Data 

(NAD), (2) Duffing Equation Data (DED), and (3) Mechanical System Data (MSD), 

which contain measurements from three distinct application domains of computer 

networks, an electronic circuit implementing a forced Duffing equation, and a mechanical 

mass-beam system respectively. Anomaly detection performance of the K-Means+ID3 

method was gauged using six performance measures: (1) detection accuracy, (2) false 

positive rate, (3) area under Receiver Operating Characteristic (ROC) curve, (4) 

precision, (5) total accuracy (or recall), and (6) F-measure. Results show that the 
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detection accuracy of the K-Means+ID3 method is as high as 96.24% at a false positive 

rate of 3.66% on NAD; the total accuracy is as high as 80.01% on MSD and 79.9% on 

DED. 

1.2 Dependence Tree Based Anomaly Detection Method 

Dependence trees approximate an w-dimensional joint probability distribution as a 

product of second-order component distributions, that is, probability distributions 

conditioned on at most one variable. The component probability distributions are selected 

such that they maximize the mutual information [15] between features. For the purpose of 

anomaly detection, we use dependence trees to approximate the class conditional 

probability density "P(X | co)", which is the probability that an unknown data instance 

X occurs given that it belongs to a class variable co. The class variable co is one of 

normal, a denial-of-service attack, a probing attack, a user-to-root attack, or a remote-to-

login attack. Once the class conditional probability densities are obtained, through Bayes 

formula [13], the class conditional probability density is transformed to posterior 

probability P(co | x), which is the probability of occurrence of a class co given an 

unknown data instance X. The data instance X is then assigned to a class with the 

highest posterior probability. 

Because dependence tree construction is an optimization procedure that 

maximizes mutual information between features, the features with high correlation tend 

to have high mutual information (see [16]). However, when features are highly 

correlated, the respective class-discriminative power changes little if some of the features 

are removed. Therefore, to reduce correlation within the features in dependence trees, we 

perform feature selection using the supervised and unsupervised versions of the 
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Maximum Relevance Minimum Redundancy (MRMR) feature selection method. Further, 

we theoretically show that the MRMR feature selection criterion minimizes an upper 

bound on the Bayes error rate. 

To demonstrate the performance of the dependence tree based anomaly detection 

method, experiments were performed on KDD Cup 1999 benchmark intrusion detection 

datasets [41]. The KDD Cup 1999 datasets contain labeled instances of normal and attack 

traffic originating from the MIT-DARPA simulated computer network testbed [17]. 

Results show that the dependence tree based anomaly detection has category-wise 

detection accuracy as high as 99.76% for normal, 93.88% for denial-of-service attacks, 

94.88% for probe attacks, 86.40% for user-to-root attacks, and 24.44% for remote-to-

login attacks. The dependence tree based anomaly detection method is further compared 

with two classifier based anomaly detection methods: (1) the naive Bayes [13] anomaly 

detection and (2) the ID3 decision tree based anomaly detection as well as with intrusion 

detection models reported in Bouzida et al. [18] and Song et al. [19]. 

1.3 Contributions of the Dissertation 

The contributions of the dissertation are enumerated as follows: 

• The dissertation presents "K-Means+ID3," a novel method to cascade the k-

Means clustering and ID3 decision tree learning methods for mitigating the 

Forced Assignment and Class Dominance problems of the k-Means method for 

classifying data originating from normal and anomalous behaviors in a computer 

network, an active electronic circuit, and a mechanical mass beam system under 

fatigue stress. 
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• The dissertation evaluates the performance of K-Means+ID3 classifier and 

compares it with the individual k-Means clustering and ID3 decision tree methods 

using six performance measures. 

• From a classification perspective, the dissertation presents a novel method for 

cascading two successful data partition methods for improving classification 

performance. From an anomaly detection perspective, the dissertation presents a 

high performance anomaly detection method. 

• The dissertation presents a dependence tree based anomaly detection method for 

detecting attacks on a computer network. Further, the Maximal Relevance 

Minimum Redundancy (MRMR) feature selection method is used to obtain an 

optimal set of features for attack detection using dependence trees. 

• The dissertation presents a theoretical relationship between dependence tree 

classification error and Bayes error rate and shows that the dependence tree 

approximation procedure minimizes an upper bound on Bayes error rate. 

• The dissertation presents a theoretical relationship between MRMR feature 

selection and Bayes error rate and shows that the MRMR feature selection 

criterion minimizes an upper bound on the Bayes error rate. 

• The dissertation evaluates the performance of the dependence tree based anomaly 

detection method in detecting attacks on a computer network, and compares it 

with two popular classification methods, namely, the naive Bayes method and the 

ID3 decision tree method. 

The rest of the dissertation is organized as follows. Chapter 2 discusses related 

research in anomaly detection. Chapter 3 introduces the K-Means+ID3 anomaly detection 
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method and discusses anomaly detection with individual k-Means and ID3 methods. 

Chapter 4 details the training and testing phases of the K-Means+ID3 method. Chapter 5 

discusses the datasets used to evaluate the K-Means+ID3 method. Chapter 6 presents the 

results of the K-Means+ID3 method. Chapter 7 presents the dependence tree based 

anomaly detection method. Chapter 8 presents theoretical relationship between the 

dependence tree classification error and Bayes error rate. Chapter 9 introduces the 

MRMR feature selection method and presents the relationship between MRJV1R feature 

selection criterion and the Bayes error rate. Chapter 10 discusses the KDD Cup 1999 

dataset used for evaluating the performance of the dependence tree based anomaly 

detection method. Chapter 11 presents the results of the MRMR feature selection method 

and the dependence tree based anomaly detection method. We conclude the dissertation 

and identify future research directions in Chapter 12. 



CHAPTER 2 

RELATED RESEARCH 

In this chapter, we present recent research work related to anomaly detection. This 

chapter is divided into two sections. The first section presents related research on 

anomaly detection in computer networks. The second section presents related research on 

anomaly detection in other domains (e.g., mechanical fatigue-crack detection, anomaly 

detection in computer hosts, anomaly detection in electronic circuits, etc). 

2.1 Anomaly Detection Research in Computer Networks 

Sarasamma et al. in [9] presented a multilevel hierarchical Kohonen network to 

implement a network anomaly detection system. Their motivation for implementing a 

multilevel Kohonen network was that the single-layered Kohonen network, though 

effective in grouping similar input vectors into clusters, does not guarantee an optimal 

separation of resulting clusters. Further, the experiments with single-layered Kohonen 

network on KDD Cup 1999 network intrusion detection data have resulted in 

unacceptably high false positive rates. On the other hand, an anomaly detection system 

based on a multilevel hierarchical Kohonen network combined with domain knowledge 

based grouping of features in KDD Cup 1999 dataset has resulted in detection accuracy 

as high as 97.19% for denial-of-service attacks, 87.88% for probe attacks, 66.52% for 

9 
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user-to-root attacks, and 0.37% for remote-to-login attacks. These detection accuracies 

were achieved at a false positive rate of 2.92%, which was the lowest false positive rate 

achieved by the hierarchical Kohonen network. 

Sarasamma et al. in [20] presented a hyperellipsoidal clustering technique for 

supervised anomaly. The hyperellipsoidal clustering technique is implemented as a self-

organizing map in which the winning cluster is decided based on the Mahalanobis 

distance between the input vector and the cluster mean. A new cluster is initiated if the 

Mahalanobis distance between the input vector and the winning cluster center is greater 

than a predefined threshold. The motivation for using Mahalanobis distance as a transfer 

function in the self-organizing map comes from the assumption that each cluster 

originates from a multivariate Gaussian distribution function. The locus of points of 

constant density for a multivariate Gaussian distribution function geometrically forms a 

hyper ellipsoid with constant radius given by Mahalanobis distance. By applying 

hyperellipsoidal clustering on KDD Cup 1999 network traffic datasets, Sarasamma et al. 

[20] achieved a detection accuracy of 83.97% for denial-of-service attacks, 91.31%o for 

probe attacks, 84.56%> for user-to-root attacks, and 33.78%) for remote-to-login attacks at 

a false positive rate of 2.68%. 

Song et al. in [19] presented a genetic programming approach to supervised 

anomaly detection. The Random Subset Selection-Dynamic Subset Selection (RSS-DSS) 

algorithm was proposed for dynamically filtering large datasets for subsequent 

classification in genetic programming paradigm. The RSS-DSS algorithm initially 

divides the entire training set into small blocks to allow incremental loading on to the 

main memory. Next, a block is selected with uniform probability and a subset of training 
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patterns are selected from the block based on two parameters: (1) age and (2) difficulty. 

Training is performed on the selected subset of patterns through an evolutionary phase 

which involves "crossover" and "mutation" operations of genetic programming. Three 

different fitness functions: (1) equal class cost, (2) variable class cost, and (3) hierarchical 

cost are used to determine the best evolutionary phases. In [19], experiments were 

conducted on KDD Cup 1999 datasets and only the first eight "basic" features were 

utilized. The RSS-DSS genetic programming approach achieved a detection accuracy of 

95.6% for denial-of-service attacks, 48.5% for probe attacks, 10.1% for user-to-root 

attacks, and 0.2% for root-to-login attacks. These attack detection accuracies were 

reported at a false positive rate of 0.27%. 

Qu et al. in [21] introduced a new correlation measure to select features for 

classification and data mining tasks. Their correlation measure, measured between any 

two features, is known as Decision Dependent Correlation (DDC). The DDC measures 

correlation in terms of two components: (1) the correlation between features and the class 

variable, calculated as sum of mutual information between two features and the class 

variable, and (2) the correlation between features, calculated as the mutual information 

between the two features. The first component quantifies the relevance of features with 

the class variable and the second component quantifies the redundancy within features. 

Feature selection is performed by maximizing the first component and minimizing the 

second component of the DDC measure. Qu et al. [21] performed experiments on the 

KDD Cup 1999 dataset. By incrementally using DDC measure to select a set of features 

and by using a linear discriminant function to perform classification, Qu et al. achieved 

99.93% detection accuracy with 0.07% false positive rate for denial-of-service attacks, 
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99.91% detection accuracy with 0.09% false positive rate for probe attacks, 91.13% 

detection accuracy with 9.258% false positive rate for user-to-root attacks, and 92.47% 

detection accuracy with 8.35% false positive rate for remote-to-login attacks. It is to be 

noted here that Qu et al. performed two-category attack detection (i.e., identifying a 

single attack type in the presence of normal traffic) as opposed to multi-category attack 

detection, as performed by earlier mentioned works of Sarasamma et al. [9][20], Song et 

al. [19], and the dependence tree based anomaly detection method of this dissertation. 

Bouzida et al. in [18] performed anomaly detection in network traffic using 

nearest neighbor classification and C4.5 decision trees. The use of nearest neighbor 

classification for anomaly detection was motivated by the fact that its classification error 

is bounded by twice the Bayes error rate, the least possible classification error that can be 

achieved by any classification method (see [22]). The use of C4.5 decision trees for 

anomaly detection in network traffic was motivated by the robustness of C4.5 decision 

trees in handling noisy data and by their high classification performance in various 

application domains such as automated patient classification, image classification, etc. 

(see [23]). Further, to reduce the dimensionality of data, Bouzida et al. performed feature 

extraction using principal component analysis. Experiments performed on the KDD Cup 

1999 datasets using the nearest neighbor classification rule and four principal 

components resulted in 97.14% detection accuracy for denial-of-service attacks, 74.4% 

detection accuracy for probe attacks, 7.91% detection accuracy for user-to-root attacks, 

and 0.80% for root-to-login attacks, at a false positive rate of 0.5%. Experiments with 

C4.5 decision trees and four principal components resulted in 97.25% detection accuracy 

for denial-of-service attacks, 66.80% detection accuracy for probe attacks, 6.58% 
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detection accuracy for user-to-root attacks, and 0. 01% detection accuracy for remote-to-

login attacks, with 1.0% false positive rate. 

2.2 Anomaly Detection Research in Other Domains 

Khatkhate et al. in [1] presented the symbolic time series analysis method for 

detecting anomalies resulting from fatigue cracks in ductile alloys. The first step in 

symbolic time series analysis involved partitioning the time series for constructing 

symbol sequences. For this purpose, Khatkhate et al. [1] used wavelet space partitioning, 

in which the time series data was converted into wavelet space at different scales and 

time shifts. Next, graphs of wavelet coefficients verses the scales were stacked starting 

with the smallest value of the scale and ending with the largest value. This wavelet space 

was then partitioned using the maximum entropy partitioning. A Hidden Markov Model 

(HMM) was used to probabilistically score a given set of symbols as normal or anomaly. 

The scores from the HMM were compared with the scores from three machine learning 

methods, namely the Principle Component Analysis (PCA), Multi-Layer Perceptron 

Neural Network (MLPNN), and Radial Basis Function Neural Network (RBFNN). 

Khatkhate et al. empirically demonstrated that the symbolic time series method for 

anomaly detection outperforms PCA, MLPNN, and RBFNN in identifying early fatigue 

crack anomalies, while all the four methods performed well in detecting evolved 

anomalies. 

Chin et al. in [7] applied the concept of symbolic time series based anomaly 

detection to detect anomalies in a non-linear electronic system. The symbolic time series 

method was tested on an electronic system implementing a second-order, non-

autonomous forced Duffing equation. The dissipation parameter ' P ' , implemented as 
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resistance in the electronic circuit was varied between 0.10 - 0.35 to generate system 

response. The system response at $ = 0.10 was recorded as normal and the response at 

P > 0.10 was recorded as anomaly. Three machine learning methods-namely PC A, 

MLPNN, and RBFNN-were used to compare the anomaly detection performance of the 

symbolic time series method. Results of the experiments in [7] showed that the symbolic 

time series analysis method outperformed the PCA, MLPNN, and RBFNN methods in 

detecting slowly evolving anomalies, i.e., the system response when p is between 0.15 

and 0.27. 

Ye et al. [24] present multivariate statistical analysis of audit trails for host-based 

intrusion detection. Hotelling's T2 test and the chi-squared (%2) test, which are 

multivariate statistical process control techniques, were used to analyze audit trails. The 

Hotelling's T2 statistic and the %2 statistic were used to calculate the amount of deviation 

between a given test sample and the normal (in-control) population. Experiments were 

performed on two datasets: (1) a four hour Basic Security Model (BSM) audit trail data 

consisting of 1,406 audit trails of normal events and 1,225 events of intrusive activities 

and 2) a large BSM audit trail containing 3,174,584 normal events and 48,000 audit trails 

of intrusive events. Accuracy results and Receiver Operating Characteristic (ROC) curves 

on these datasets showed that the chi-squared test results were either better than or 

comparable to the Hotelling's test for both the datasets. The reason for the relatively 

better performance of the chi-squared test, as hypothesized by Nong Ye et al., was that 

the intrusive activities manifest themselves mainly through mean shifts, which the chi-

squared test has captured very effectively. 
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Chang et al. in [25] performed anomaly detection and classification in 

hyperspectral imagery using two methods: (1) Reed and Yu (RXD) method based on 

Mahalanobis distance and (2) Low Probability Detection (LPD) method. In hyperspectral 

image analysis, anomaly detection refers to the identification of targets whose signatures 

are distinct from their surroundings. Chang et al. demonstrated that the RXD method 

coupled with linearly-constrained minimum variance classification method outperformed 

the LPD anomaly detection method in detecting anomalies in hyperspectral images of 

forest landscapes. Additionally, methods for anomaly detection appear in [42], [43], [44], 

[45], [46], [47], [48], and [49]. 



CHAPTER 3 

THE K-MEANS+ID3 ANOMALY 

DETECTION METHOD 

In this chapter, we introduce the K-Means+ID3 method for anomaly detection and 

briefly discuss anomaly detection with individual k-Means and ID3 learning algorithms. 

K-Means+ID3 is a novel supervised anomaly detection method developed by cascading 

two machine learning algorithms: (1) the k-Means clustering and (2) the ID3 decision 

tree learning. In the first stage, k-Means clustering is performed on training instances to 

obtain k disjoint clusters. Each k-Means cluster represents a region of similar instances, 

"similar" in terms of Euclidean distances between the instances and their cluster 

centroids. We choose k-Means clustering because (1) it is a data-driven method with 

relatively few assumptions on the distributions of the underlying data and (2) the greedy 

search strategy of k-Means guarantees at least a local minimum of the criterion function, 

thereby accelerating the convergence of clusters on large datasets. In the second stage of 

K-Means+ID3, the k-Means method is cascaded with the ID3 decision tree learning by 

building an ID3 decision tree using the instances in each k-Means cluster. Cascading the 

k-Means clustering method with ID3 decision tree learning alleviates two problems in k-

Means clustering: (1) the Forced Assignment problem, and (2) the Class Dominance 

problem. The Forced Assignment problem arises when parameter k in k-Means is set to a 

16 
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value considerably less than the inherent number of natural groupings within the training 

data. The k-Means procedure initialized with a low k value under estimates the natural 

groups within the training data and therefore will not capture the overlapping groups 

within a cluster, forcing the instances from different groups to be a part of the same 

cluster. Such 'forced assignments' in anomaly detection may increase the false positive 

rate or decrease the detection accuracy. As an example of forced assignment in an 

anomaly detection setting, consider an anomaly in network traffic originating from a 

particular type of attack (say a 'remote-to-user' attack) whose network traffic may be 

very similar to that of normal traffic. In this case, a low value of A: may force the k-Means 

to assign attack instances to a normal cluster because the value of k is insufficient to 

capture the inherent sub-group structure of the attack that differentiates it from the 

normal traffic; more specifically, the distance (similarity) between the attack instance and 

the cluster representing a normal class is less than the distance between the attack 

instance and the cluster representing an anomaly class. The second problem which K-

Means+ID3 alleviates, Class Dominance, arises in a cluster when the training data have a 

large number of instances from one particular class and very few instances from the 

remaining classes. Such clusters, dominated by a single class, show weak association to 

the remaining classes. That is, when classifying an anomaly associated with a cluster 

dominated by normal instances or vice-versa, decisions based exclusively on the 

probabilistic likelihood of the instance being associated with the cluster will most likely 

misclassify the instance. The Forced Assignment and Class Dominance problems cause 

instances from different classes, like the normal and anomaly classes in our case, to 

overlap within the same cluster. However, a decision tree trained on each cluster learns 
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the sub-grouping (if any) present within each cluster and refines the decision boundaries 

within the clusters dominated by a single class by partitioning the instances with a set of 

if-then constraints over the feature space. Cascading the decisions from the k-Means and 

ID3 methods involves two phases: (1) the Candidate Selection phase, and (2) the 

Candidate Combination phase. In the Candidate Selection phase, / clusters nearest in 

Euclidean distance between the cluster centroids and the test instance are selected. In the 

Candidate Combination phase, two rules are used-(l) the nearest consensus rule and (2) 

the nearest neighbor rule-to combine the decisions of the k-Means and the ID3 

algorithms to obtain a final classification decision over a test instance. 

We perform experiments on three datasets: (1) the network anomaly data, which 

is feature extracted from the 1998, 1999, and 2000 MIT-DARPA network traffic 

[17] [26] [27] using an artificial neural network based non-linear component analysis 

method presented in [28]; (2) the Duffing equation data [7], containing measurements 

from an active electronic circuit implementing a forced Duffing equation; and (3) the 

mechanical systems data [1], containing measurements drawn from a mechanical 

apparatus that excites a mass-beam structure for generating small fatigue cracks. The 

three datasets contain representative anomalous and normal behavioral patterns from 

three distinct domains of computer networks, an active electronic circuit system, and a 

mechanical system. Performance evaluation of the K-Means+ID3 cascading approach is 

conducted using six measures: (1) detection accuracy or True Positive Rate (TPR), (2) 

False Positive Rate (FPR), (3) precision, (4) total accuracy (or accuracy), (5) F-measure, 

and (6) Receiver Operating Characteristic (ROC) curves and Areas Under ROC Curves 

(AUCs). The performance of K-Means+ID3 is empirically compared with the 
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performance of individual k-Means clustering and the ID3 decision tree classification 

algorithms. Next, we briefly discuss the individual k-Means clustering and the ID3 

decision tree learning methods for anomaly detection. 

3.1 Anomaly Detection with Individual 

K-Means Clustering Method 

The k-Means algorithm groups N data points into k disjoint clusters where k is a 

predefined parameter. The steps in the k-Means clustering based anomaly detection 

method are as follows. 

1. Select k random instances from the training data subset as the centroids of the 

clusters C,,C2,...Q . 

2. For each training instance X. 

a. Compute the Euclidean distanceZ)(C(,X), i - l...k. Find cluster Cq that is 

closest to X. 

b. Assign X to C . Update the centroid of Cq. (The centroid of a cluster is the 

arithmetic mean of the instances in the cluster.) 

3. Repeat step (2) until the centroids of clusters Cl,C2,...Ck stabilize in terms of mean-

squared-error criterion. 

4. For each test instance Z: 

a. Compute the Euclidean distance£>(C;,Z), i = \...k. Find cluster Cr that is 

closest to Z. 
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b. Classify Z as an anomaly or a normal instance using either the Threshold rule 

or the Bayes Decision rule. The Threshold rule for classifying a test instance Z 

that belongs to cluster Cr is 

Assign Z —> 1 ;/ P(colr \Z <=Cr)>r; Otherwise Z -» 0, 

where '0 ' and ' 1 ' represent normal and anomaly classes, coXr represents the 

anomaly class in cluster Cn P{colr \Z eCr) represents the probability of 

anomaly instances in Cr, and r is a predefined threshold. In our experiments, 

the threshold is set to 0.5 so that a test instance is classified as an anomaly 

only if it belongs to a cluster that has anomaly instances in majority. The 

Bayes Decision rule is 

Assign Z -> 1 if P(a>lr | Z e Cr) > P(a>0r | Z e Cr}, Otherwise Z -> 0, 

where co0r represents the normal class in cluster Cr, P(co0r \Z e C r ) is the 

probability of normal instances in cluster Cr. 

3.2 Anomaly Detection with ID3 Decision Tree Learning 

The ID3 decision tree learning algorithm computes the Information Gain G on 

each attribute A, defined as 

\s I 
G(S,A) = Entropy(S)- ^ \-^Entropy(S v), 

veValues(A) \^\ 

where S is the total input space, ,SV is the subset of S for which attribute A has a value v. 
c 

The Entropy\S) over c classes is given by ^ - / ? , log2 (/?,), where /?, represents the 

probability of class '/'. The attribute with the highest information gain, say B, is chosen 
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as the root node of the tree. Next, a new decision tree is recursively constructed over each 

value of B using the training subspaceS- {SB}. A leaf-node or a decision-node is formed 

when all the instances within the available training subspace are from the same class. For 

detecting anomalies, the ID3 decision tree outputs binary classification decision of '0' to 

indicate normal and ' 1 ' to indicate anomaly class assignments to test instances. 



CHAPTER 4 

TRAINING AND TESTING THE 

K-MEANS+ID3 ANOMALY 

DETECTION METHOD 

We are provided with a training dataset (X;.,l^), i = 1,2,..., N where Xj 

represents an w-dimensional continuous valued vector and Yt = {O, l} represents the 

corresponding class label with '0 ' for normal and ' 1 ' for anomaly. The K-Means+ID3 

method has two steps: (1) training and (2) testing. During training, steps 1-3 of the k-

Means based anomaly detection method are first applied to partition the training space 

into k disjoint clusters C1,C2,...Ck. Then, an ID3 decision tree is trained with the 

instances in each k-Means cluster. The k-Means method ensures that each training 

instance is associated with only one cluster. However, if there are any sub-groups or 

overlaps within a cluster, the ID3 decision tree trained on that cluster refines the decision 

boundaries by partitioning the instances with a set of if-then rules over the feature space. 

The testing step of the K-Means+ID3 has two phases: (1) the Candidate Selection phase 

and (2) the Candidate Combination phase. In Candidate Selection, decisions from k-

Means and ID3 based anomaly detection methods are extracted. In Candidate 

Combination, the decisions of the k-Means and ID3 decision tree methods are combined 

to give a final decision on the class membership of a test instance. For combining the k-

22 
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Means and ID3 decision tree methods, we present two combination rules: (1) the nearest 

neighbor rule, and (2) the nearest consensus rule. A detailed explanation of the two 

phases follows. 

4.1 The Candidate Selection Phase 

Figure 4.1 presents the procedure for the Candidate Selection. Let 

DTx,DT1,...DTk be the ID3 decision trees on clusters C,,C2 , . . .Q formed by applying 

the k-Means method on the training instances. Let rx,r2,...rk be the centroids of 

Cl,C2,...Ck respectively. Given a test instance Z., the Candidate Selection procedure 

extracts anomaly scores from/candidate clusters Gl,G2,...Gk. The '/candidate clusters' 

are / clusters in C,, C2,... Ck that are nearest to Z, in terms of the Euclidean distance 

between Z; and the cluster centroids. Here,/is a user-defined parameter. 

iripili* l e s t ins tances £•» / — 7 » . «o ( f vaJLue. 
Output:. Anomaly score matrix for Z-„ i - 1. . .n. 

Procedure CandldataijSeiection { 
Step 1: For each test instance Z.-

a. Compute Euclidean distance D(l-F y , y « 1. . . *, 
and find/clusters closest to Zj. 

D. Compute kHbteans and 103 decision tree scores 
for fnearest {candidate) clusters. 

Step 2; Return ftnomlay Score Matrix for Zj. 
} /* End Procedure */ 

Figure 4.1 Procedure of Candidate Selection. 
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Figure 4.2 illustrates the extraction of anomaly scores from k-Means clustering 

and ID3 decision tree learning methods for / candidate clusters. Let ml,m2,...,mf 

represent the centroids of candidate clusters GnG2,...,Gf. LetDyZ^mJ- dx, 

D(Zj,m2) = d2, and D[Zj,mf) = df, represent the Euclidean distances between the test 

vector Z( and the/candidate clusters. The k-Means anomaly scores Ps, s = 1,. . . , / , for 

each of the/ candidate clusters is given by 

P,=PM* 1 — 
d. 

Equation 4.1 

'=1 

where P((ols) is the probability of anomaly instances in cluster ' s '. In Equation 4.1, the 

term' 1 • 
d. S 9 is called the Scaling Factor (SF). 

Zj Test Instance 

k ^r^) f k-Means Clusters 

ID3 Decision Trees 

P,* = f K ) x 1 - -
Zf l (Z,v, ) 

Anomaly 
Score Matrix 

Figure 4.2 Extraction of k-Means and ID3 decision tree scores from/= 3 candidate 
clusters for the test instance Zu 
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The SF scales P(cou ) by weighing it against the ratio of the Euclidean distance 

between the cluster 5 and Z,; and the sum of Euclidean distances between Z, and the 

clusters Ci,C2,...Ck. The SF penalizes the probability of anomaly P{cou) in cluster s 

with its distance from the test vector Z, i.e., a high value of ds yields a low/^ value and 

vice versa. The decisions from the ID3 decision trees associated with the / candidate 

clusters are either '0 ' representing normal or ' 1 ' representing an anomaly classes. The 

Candidate Selection phase outputs an anomaly score matrix with the decisions extracted 

from the k-Means and ID3 anomaly detection methods for a given test vector. The 

decisions stored in the anomaly score matrix are combined in the Candidate Combination 

phase to yield a final decision on the test vector. A detailed description of the Candidate 

Combination follows. 

4.2 The Candidate Combination Phase 

The input to the Candidate Combination phase is the anomaly score matrix 

containing the anomaly scores Ps, s = l,...,f, of the k-Means and the decisions of the 

ID3 based anomaly detection methods over / candidate clusters. To combine the 

decisions of the k-Means and ID3 algorithms, we first harden the anomaly scores of the 

k-Means method by using the Threshold Rule presented in Section 2.1. Next, we use two 

rules: (1) the nearest consensus rule and (2) the nearest neighbor rule to combine the 

decisions. 
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4.2.1 The Nearest Consensus Rule 

Figure 4.3 shows an example of an anomaly score matrix for the test vector Z. 

The/candidate clusters G,,G2,...,Gf are ordered in the anomaly score matrix such that 

the distances d1,d2,...,df between Z and the candidate clusters G,,G?,...,Gf 

respectively, satisfy d, < d2 < ... < df. In the nearest consensus rule, the decision of the 

nearest candidate cluster in which consensus exists between the decisions of the k-Means 

and the ID3 decision tree methods is selected as the combined classification decision. For 

example, in the anomaly score matrix shown in Figure 4.3, the nearest consensus occurs 

in candidate cluster G2 and therefore the test vector is classified as ' 1' i.e., an anomaly. 

Gj GQ G% Gf 

k-Means 

ID3 

1 

0 

1 

1 

0 

0 

*>*<•« *>«*•>*>* **#» 

" « . . . - . . -

1 

0 

f 
Consensus 

Figure 4.3 An example anomaly score matrix for test instance Z. The anomaly 
scores of the k-Means method are hardened using the Threshold rule. 

4.2.2 The Nearest Neighbor Rule 

The nearest neighbor rule chooses the decision of the ID3 decision tree associated 

with the nearest candidate cluster within the / candidate clusters. In the anomaly score 

matrix shown in Figure 4.3, G, is the nearest candidate cluster to the test vector Z. 

Therefore, the nearest neighbor rule classifies the test vector as '0' (normal), which is the 

decision of the ID3 decision tree associated with candidate cluster G,. 



CHAPTER 5 

DATASETS FOR TESTING THE 

K-MEANS+ID3 METHOD 

In this chapter we discuss three experimental datasets: (1) Network Anomaly Data 

(NAD), (2) Duffing Equation Data (DED), and (3) Mechanical Systems Data (MSD). 

The NAD contains three data subsets: (i) NAD-98, (ii) NAD-99, and (iii) NAD-00, 

obtained by feature-extracting the 1998, 1999, and 2000 MIT-DARPA network traffic 

corpora. The DED dataset was obtained from an active non-linear electronic circuit 

implementing a second-order forced Duffing equation. The MSD dataset was obtained 

from an apparatus designed to induce small fatigue cracks in ductile alloy (mass beam) 

structures. 

Table 5.1 summarizes the proportion of normal and anomaly instances, and the 

number of dimensions in the three datasets. The training and testing data subsets were 

randomly drawn from the original NAD, DED, and MSD datasets. The number of 

instances in all the training data subsets was restricted to utmost 5000 instances, with 

70% of them being normal and the rest being anomaly instances. The testing datasets 

contain utmost 2500 unseen instances (i.e., those excluded in training data subsets), with 

80% of them being normal and the remaining 20% being anomaly instances. The ratio of 

training datasets to the testing datasets is 65% to 35% except for the NAD-2000 and DED 

27 



28 

datasets. The NAD-2000 and DED datasets contain comparatively less number of 

training and testing instances because of the limited number of normal instances available 

in DED and the limited number of anomaly instances available in NAD-2000. Therefore, 

the training-to-testing dataset ratio for DED is 60% to 40% and for the NAD-2000 is 50% 

to 50%. A brief description of each dataset follows. 

Table 5.1 Characteristics of the NAD, DED and MSD datasets used in the anomaly 
detection experiments. 

Datasets 

NAD 
1998 

1999 

2000 

DED 

MSD 

Dimensions 

12 

10 

10 

4 

4 

Training Instances 

Normal 

3500 

3500 

294 

1288 

3500 

Anomaly 

1500 

1500 

126 

502 

1500 

Testing Instances 

Normal 

2000 

2000 

336 

860 

2000 

Anomaly 

500 

500 

84 

215 

500 

5.1 Network Anomaly Data 

The NAD-98, NAD-99, and NAD-00 data subsets contain artificial neural 

network based Non-Linear Component Analysis (NLCA) feature-extracted 1998, 1999, 

and 2000 MIT-DARPA network traffic [28], respectively. The 1998 MIT-DARPA 

datasets [17] were collected on an evaluation test bed simulating network traffic similar 

to that seen between an Air Force base (INSIDE network) and the Internet (OUTSIDE 

network). Thirty-eight different attacks (documented in [17]) were launched from the 

OUTSIDE network. Approximately seven weeks of training data and two weeks of test 

data were collected by a sniffer deployed between the INSIDE and OUTSIDE network. 

List files provide attack labels for the seven-week training data. However, the list files 
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associated with the test data do not contain attack labels. For this reason, we use only the 

seven-week training data for both training and testing purposes. The 1999 MIT-DARPA 

datasets [26] were generated on a test bed similar to that used for 1998 MIT-DARPA 

datasets. Twenty-nine additional attacks (documented in [26]) were developed. The 

datasets contain approximately three weeks of training data (with two weeks of data 

exclusively containing normal traffic) and two weeks of test data. In our experiments we 

use the tcpdumps collected by the sniffer in the INSIDE network on weeks 1, 3, 4 and 5. 

The tcpdumps from Week-2 were excluded because the list files associated with datasets 

were not available. The 2000 MIT-DARPA datasets [27] are attack-scenario specific 

datasets. The datasets contain three attack scenarios simulated with the background traffic 

being similar to those in 1999 MIT-DARPA datasets. The first dataset, LLS DDOS 1.0, 

simulates a 3.5 hour attack scenario in which a novice attacker launches a Distributed 

Denial of Service (DDoS) attack against a naive adversary. The second dataset, LLS 

DDOS 2.0.2, is a two-hour stealthy DDoS attack scenario. The third dataset, Windows 

NT Attack, is a nine-hour dataset containing five phased Denial-of-Service (DoS) attack 

on Windows NT hosts. 

5.2 Duffing Equation Data 

This section describes the preparation of the Duffing Equation Dataset (DED). 

Chin et al. [7] use an active non-linear electronic circuit to generate the data. The circuit 

implements a second-order, non-autonomous, forced Duffing equation represented as 

*l*fL + p(ts)^± + x(t) + x3(t) = Acoscot 
dt2 '' dt 
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The dissipation parameter j3(ts), implemented as resistance in the circuit, varies in 

the slow-time ts and is constant in the fast time-scale t at which the dynamical system is 

excited. Although the system dynamics is represented by a low order differential 

equation, it exhibits chaotic behavior that is sufficiently complex from thermodynamic 

perspectives and is adequate for illustration of the anomaly detection concept. The goal is 

to detect, the changes in /3(ts), which are associated with an anomaly. Setting the 

stimulus with amplitude A = 5.5 and&>= 5.0 rad/sec, the stationary behavior of the 

system response for this input stimulus is obtained for several values of (3 in the range of 

0.10 to 0.35. In all our experiments with DED, we have considered the datasets with/? = 

0.1, p = 0.32, p = 0.33, p = 0.34, and p = 0.35 to randomly select 1790 instances for 

preparing the training data subsets and 1075 unseen random instances for preparing the 

test data subset. 

5.3 Mechanical Systems Data 

This section discusses the preparation of Mechanical System Data (MSD). 

Khatkhate et al. [1] present the test apparatus to generate the MSD. The test apparatus has 

two subsystems: (1) the plant subsystem consisting of the mechanical structure including 

test specimens (i.e., the mass-beams that undergo fatigue crack damage), electro­

magnetic shakers, and displacement measuring sensors; and (2) the instrumentation and 

control subsystem consisting of the hardware and software components related to data 

acquisition and processing. The mechanical structure of the test apparatus is persistently 

excited near resonance to induce a stress level that causes fatigue cracks in the mass 

beam specimens and yields an average life of approximately 20,000 cycles or 36 minutes. 
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The mass beams attain stationary behavior in the fast-time scale of machine vibrations 

when persistently excited in the vicinity of its resonant frequency. Fatigue cracks occur at 

a slow time scale that is slow relative to the fast time scale dynamics of the vibratory 

motion. The goal here is to detect the slowly evolving anomaly, possibly due to fatigue 

cracks, by observing the time series data from displacement measuring sensors. There is a 

total of 36 minutes of data. The first two minutes of data are considered transient 

(normal) and the rest from 3 to 36 minutes of data are considered as steady state 

asymptotic behavior (anomaly). In all our experiments with MSD, we used the data 

recorded during the 1st, 33rd, 34th, 35th, and the 36th minute to randomly select 5000 

instances for preparing the training data subsets and 2500 unseen random instances for 

preparing the test data subset. 



CHAPTER 6 

RESULTS OF K-MEANS+ID3 ANOMALY 

DETECTION METHOD 

In this chapter we present the results of the K-Means+ID3 method with the 

nearest neighbor and nearest consensus combination rules and compare it with the 

individual k-Means and ID3 decision tree methods over the NAD, DED, and MSD 

datasets. We use six measures for comparing the performance^ 1) TPR or recall is the 

percentage of anomaly instances correctly detected, (2) FPR is the percentage of normal 

instances incorrectly classified as anomaly, (3) 'precision' is the percentage of correctly 

detected anomaly instances over all the detected anomaly instances, (4) 'total accuracy' 

or 'accuracy' is the percentage of all normal and anomaly instances that are correctly 

classified, (5) the 'F-measure' is the equally-weighted (harmonic) mean of precision and 

recall, and (6) the ROCs [29] and AUCs [30] give the performance of an anomaly 

detection system with FPR on the x-axis and TPR on the y-axis. The performance 

measures: precision, recall, and F-measure determine how the K-Means+ID3, the k-

Means, and the ID3 methods perform in identifying anomaly instances. The performance 

measure 'accuracy' determines the number of normal and anomaly instances correctly 

classified by the anomaly detection methods. The measures FPR and AUC determine the 

32 
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number of false positives that the anomaly detection systems generate at specific 

detection accuracies. The results of our experiments on the NAD, DED, and MSD follow. 

6.1 Results on the NAD-1998 Dataset 

Here we present the results of the k-Means and ID3 decision tree based anomaly 

detection methods and the K-Means+ID3 method over the NAD-1998 datasets. Figure 

6.1 illustrates the performance of the k-Means, the ID3, and the K-Means+ID3 methods 

averaged over 10 trials for k-means and K-means+ID3. For the NAD-1998 datasets, the k 

value of the k-Means method was set to 20. For the ID3, the training space was 

discretized into 45 equal-width intervals. For the K-Means+ID3 cascading method the k 

was set to 20 and the data discretized into 45 equal-width intervals. The choice of k value 

used in our experiments was based on 10 trial experiments conducted with A: set to 5, 10, 

15, and 20. The performance of the k-Means based anomaly detection showed no 

significant improvement when k value was set to a value greater than 20. Similarly, the 

choice of the number of equal-width intervals for discretization was based on 19 

experiments conducted with different discretization values (e.g. 10, 15,..., 100). Figure 

6.1 shows that: (i) the K-Means+ID3 cascading method based on Nearest Neighbor (NN) 

combination rule has better performance than the k-means and ID3 in terms of TPR, FPR, 

Precision, and Accuracy; (ii) the TPR, FPR, Precision, Accuracy, and F-measure of the 

K-Means+ID3 cascading with NC combination is in-between the k-Means and the ID3; 

and (iii) the K-Means+ID3 with NN combination outperforms the k-Means and ID3 

algorithms in terms of F-measure, obtained from combining precision and recall. 

Figure 6.2 shows the ROC curves and AUC values for the k-Means, ID3 and K-

Means+ID3 methods. The ROC curves for the K-Means+ID3 and the k-Means 
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algorithms were plotted for the trials with the AUC values closest to the mean TPR 

values shown in Figure 6.1. The ROC for K-Means+ID3 cascading algorithm with NN 

combination rule shows that the best TPR is achieved at 0.76 with an FPR as low as 0.05. 
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Figure 6.1 Performance of the k-Means, the ID3 decision tree, and the K-
Means+ID3 method with Nearest Neighbor (NN-Rule) and Nearest 

Consensus (NC-Rule) combination rules over the NAD-1998 
test dataset. 
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Figure 6.2 ROC Curves and AUCs of k-Means, ID3, and K-Means+ID3 with NN-
Rule and NC-Rule over the NAD-1998 test dataset. 
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6.2 Results on the NAD-1999 Dataset 

Figure 6.3 illustrates the performance of the k-Means, the ID3, and the K-

Means+ID3 methods averaged over 10 trials for k-Means and K-Means+ID3. For the 

NAD-1999 datasets, the k value of individual k-Means was set to 5. For the ID3 

algorithm, the training space was discretized into 25 equal-width intervals. For the K-

Means+ID3 cascading, the value of k was set to 5 and the data was discretized into 25 

equal-width intervals. 

Figure 6.3 shows that (i) the K-Means+ID3 cascading with NC combination has 

better performance than the k-Means and ID3 in terms of TPR, and (ii) precision, 

accuracy, and F-measure of the K-Means+ID3 with NN combination is higher than the k-

Means and ID3. 
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Figure 6.3 Performance of the k-Means, the ID3 decision tree, and the K-
Means+ID3 method with Nearest Neighbor (NN-Rule) and Nearest 

Consensus (NC-Rule) combination rules over the NAD-1999 
test dataset. 



36 

Figure 6.4 shows the ROC curves and AUC values of the k-Means, ID3 and K-

Means+ID3 methods over NAD-1999. The ROC curves for K-Means+ID3 and k-Means 

method were plotted for the trial with the AUC values closest to the mean TPR values 

shown in Figure 6.3. The K-Means+ID3 cascading with NN and NC combination has the 

same AUC performance as compared to k-Means and ID3 methods. 
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Figure 6.4 ROC Curves and AUCs of k-Means, ID3, and K-Means+ID3 with NN-
Rule and NC-Rule over the NAD-1999 test dataset. 

6.3 Results on the NAD-2000 Dataset 

Figure 6.5 illustrates the performance of the k-Means, the ID3, and the K-

Means+ID3 methods averaged over 10 trials for k-Means and K-Means+ID3. For the 

NAD-2000 datasets, the k value of the k-Means was set to 10. For the ID3 algorithm, the 

training space was discretized into 15 equal-width intervals. For the K-Means+ID3 

cascading algorithm, we set the value of k to 10 and discretized the data into 15 equal-

width intervals. 
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Figure 6.5 shows that (i) the K-Means+ID3 cascading with NN combination has 

better performance than the k-Means and ID3 in terms of FPR and Precision, (ii) the TPR 

of the K-Means+ID3 cascading is less than the k-Means and ID3 methods, and (iii) the 

accuracy of the K-Means+ID3 is similar to the k-Means and ID3 methods. 
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Figure 6.5 Performance of the k-Means, the ID3 decision tree, and the K-
Means+ID3 method with Nearest Neighbor (NN-Rule) and Nearest 

Consensus (NC-Rule) combination rules over the NAD-2000 
test dataset. 

Figure 6.6 shows the ROC curves and AUC values of the k-Means, ID3 and K-

Means+ID3 methods over NAD-2000 test dataset. The ROC curves for the K-

Means+ID3 and k-Means methods were plotted for the trial with the AUC value closest 

to the mean TPR values in Figure 6.5. The ROC curves for the k-Means, and ID3 

methods show better performance than the K-Means+ID3 cascading algorithm over the 

NAD-2000 datasets. 
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Figure 6.6 ROC Curves and AUCs of k-Means, ID3, and K-Means+ID3 
methods over the NAD-2000 test dataset. 

6.4 Results on the Duffing Equation Dataset 

Figure 6.7 illustrates the performance of the k-Means, the ID3, and the K-

Means+ID3 methods averaged over 10 trials for k-Means and K-Means+ID3. For the 

DED datasets, the k value for the k-Means was set to 5 clusters. For the ID3, the training 

space was discretized into 45 equal-width intervals. For the K-Means+ID3 method, we 

set the value of A: to 5 and discretized the data into 45 equal-width intervals. 

Figure 6.7 shows that (i) the K-Means+ID3 cascading with NC and NN 

combination has better performance than the k-Means in terms of FPR, precision, and 

accuracy, (ii) the F-measure of the K-Means+ID3 cascading is in-between the k-Means 

and the ID3, (iii) the TPR of the k-Means+ID3 is less than the k-Means and ID3 methods. 
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Figure 6.7 Performance of the k-Means, the ID3 decision tree, and the K-
Means+ID3 method with Nearest Neighbor (NN-Rule) and Nearest 

Consensus (NC-Rule) combination rules over the DED 
test dataset. 

Figure 6.8 shows the ROC curves and AUC values of the k-Means, ID3 and K-

Means+ID3 methods over DED. The ROC curves for K-Means+ID3 and k-Means 

algorithm were plotted for the trial with the AUC value that is closest to the mean TPR 

values shown in Figure 6.7. The ROC curve for the K-Means+ID3 cascading with NC 

and NN combinations is in-between the k-Means and the ID3 methods over the DED test 

datasets. 
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Figure 6.8 ROC Curves and AUCs of k-Means, ID3 and K-Means+ID3 
methods over the DED test dataset. 



40 

6.5 Results on the Mechanical Systems Dataset 

Figure 6.9 illustrates the performance of the k-Means, the ID3, and the K-Means+ID3 

algorithms averaged over 10 trials for k-Means and K-Means+ID3. For the MSD 

datasets, the k value of the k-Means was set to 5. For the ID3 method, the training space 

was discretized into 65 equal-width intervals. For the K-Means+ID3 method, we set the 

value of & to 5 and discretize the data into 65 equal-width intervals. 

Figure 6.9 shows that: (i) K-Means+ID3 with NC combination has better 

performance than the k-Means in terms of FPR, precision, and F-measure, and (ii) the 

precision, accuracy, and the F-measure of the K-Means+ID3 with NC combination is 

higher than the k-Means method. 
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Figure 6.9 Performance of the k-Means, the ID3 decision tree, and the K-
Means+ID3 method with Nearest Neighbor (NN-Rule) and Nearest 

Consensus (NC-Rule) combination rules over the MSD 
test dataset. 
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Figure 6.10 shows the ROC curves and AUCs of the k-Means, ID3 and K-

Means+ID3 methods over MSD. The ROC curves for K-Means+ID3 and k-Means 

methods were plotted for the trial with the AUC value that is closest to the mean TPR 

values in Figure 6.9. The ROC curves for the K-Means+ID3 with NN combination shows 

a TPR rate as high as 0.98 at a FPR of 0.4 over the MSD test dataset. 
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Figure 6.10 ROC Curves and AUCs of k-Means, ID3 and K-Means+ID3 
methods over the MSD test dataset. 
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CHAPTER 7 

ANOMALY DETECTION USING 

DEPENDENCE TREES 

In this chapter we present the details of dependence tree based anomaly detection 

method for detecting attacks on a computer network system. The goal of the dependence 

tree based anomaly detection method is to build dependence trees that achieve high 

classification accuracy in detecting five types of network traffic instances originating 

from: (1) normal traffic, (2) denial-of-service attacks, (3) probing attacks, (4) user-to-root 

attacks, and (5) remote-to-login attacks. The two major motivations for using dependence 

trees for detecting network attacks is as follows: 

• Dependence trees have an advantage of making the classification models more 

explicit with regard to features and their relationships. Such explicit 

representations of relationships between features facilitate the ensuing steps of 

network forensic analysis and vulnerability inspections over the feature space, 

which are inevitably performed for effective corrective actions. 

• Dependence trees, being probabilistic by nature, assign probability scores 

indicating the "degree" to which a network traffic instance belongs to particular 

type of attack. Such quantitative assignments of scores to network traffic 
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instances will assist human experts and network administrators in culling the false 

positives generated by the attack detection system. 

Next, we present the problem formulation for network attack detection using the 

dependence tree based anomaly detection method. 

7.1 Problem Formulation 

Let X = (x1,x2,...,xn) denote an ^-dimensional feature vector. The feature vector 

X represents a set of n measurements recorded over a computer network (e.g., type of 

service, protocol, number of source bytes, etc.). Let W = {co/,co2,...,cor} denote a set of r 

classes. The set W represents five types of network traffic instances, i.e., normal, denial-

of-service attack, probing attack, user-to-root attack, and remote-to-login attack. We 

assign an optimal label co* e W to X using the Bayes classification rule, given by 

p(co* | x) = max{p(©ft | X)} Equation 7.1 

where P{(nk | X) is the posterior probability of the class cot e W given the feature vector 

X. Using Bayes formula [13], the posterior probability can be expressed as a function of 

class-conditional probability P[X \ tok) by 

p{pk, x) = pfoHr|a> t) Equat.on 12 

r 

where P(co/.) is the prior probability of class a>k and ^ ] P(wJl )P(X | coA) is the 

normalization factor that scales the posterior probability between 0 and 1. Through 

Equation 7.2, the problem of classifying X into one of the r classes becomes one of 

estimating the class-conditional probability function P{X | co .̂). However, estimating 
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P{X | o^) involves computations of (exponential) order TV", where m is the number of 

features and N is the number of unique values in each feature. The exponential 

complexity makes estimating P\X \ a)k) infeasible when dealing with a large number of 

features, which are typically available for the anomaly detection problem. Therefore, we 

estimate the class-conditional probability with a product of second-order joint probability 

distributions using dependence tree approximation. The dependence tree approximation 

requires at most (N2* m2) computations, which mean far fewer computations than N™ even 

for moderate values of TV and m. Here, it is important to note that we build a number of 

dependence trees equal to that of the classes available (i.e., five classes in our case). 

7.2 Dependence Trees 

Chow and Liu [31] first introduced dependence trees to approximate an nth order 

discrete joint probability distribution using a product of second order discrete joint 

probability distributions. Let X = (x,,x2,...,xn) denote an ^-dimensional discrete 

random feature vector. Let P\X) = P(x;, x2,..., xn) be the joint distribution of the feature 

vector. In dependence tree approximation, the joint probability distribution 

P\xl, x2,..., xn) is approximated by P\X) as 

P(X) « P{X) = f\p{xmi | xmm } 0 < j(i) < i, Equation 7.3 
i=l 

where {m1,m2,...,mr^) is an unknown permutation of integers 1,2,...,n, P\xm \ xm J is a 

component probability in which each feature xm is conditioned on at most one variable 

xm and the component probability of the form P\xm \x0j is by definition equal to 
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Figure 7.1 gives examples of two dependence trees containing four features 

(x,,x?,x3,x4). In Figure 7.1(a), the joint probability distribution P(x,,x2,x3,x4) is 

approximated by P{xl)p{x2 \x,)P{x3 \XJ)P{X4 \x,). In Figure 7.1(b), P\x1,x2,x3,x4) is 

approximated by P(x, )P(X2 | x, )P(X3 \ x, )P(X4 ) . Note that the dependence tree in (b) 

illustrates a case where there can be more than one independent component, i.e., P(x ;) 

and P(x4). 

© 

© 
X. 

(a) 0) 

Figure 7.1 Dependence trees approximating the joint probability distribution 
P(xj,X2,X3^X4). The dependence tree in (a) approximates Pfxi^^^) as 

P(xi)P(x2\xi)P(xs\x2)P(x4\xi) and the dependence tree in (b) 
approximates P(xi^X2>X3^C4) as P(xj)P(x2\xi)P(x3\x2)P(x^. 

7.3 Steps for Building Dependence Trees 

Let X = {x1,x2,...,xn) be an n-dimensional discrete feature vector. Let 

,ra2,...,cor) denote a set of r classes. Let P\x,,x2,...,xl]) be the joint 

distribution to be approximated. There are five steps to build a dependence tree to 

approximate P{x;, x2,..., xn). 
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STEP 1) Find the mutual information Iyx^Xj) between all pairs of features, where 

[xl ,x.) are any two features in X - {x,, x2,..., xn) and i* j . The mutual 

information between the feature pair \x[ ,x . ) is defined as 

STEP 2) Build a complete undirected graph G with the features (x,,x2,...,xn) as 

vertices and the mutual information between the vertices as edge weights. 

STEP 3) Use Kruskal's algorithm [32] to find a maximum spanning tree in G. 

STEP 4) In the maximum spanning tree, choose any node as a root node and set the 

direction of all edges outwards, pointing towards the root node. 

STEP 5) Repeat STEP 1 through STEP 4 for each class in W. 

7.4 Optimality of Dependence Tree Approximation 

Chow and Liu, in [31], have shown that the dependence tree with the maximum 

edge weights (i.e., mutual information) gives the optimal second order approximation of 

P(X) = P(x,,..., xn), the true joint probability distribution of an n-dimensional feature 

vector X. A brief overview of their proof follows. 

Let P(X) be any second order dependence tree approximation of 

P(x) = P{xs ,...,xn). Then, the closeness of approximation between the 

probabilities P(x) and P(x) is quantified by the Kullback-Liebler divergence measure 

[15], given as 

rp{x)^ KL(p,p)=J^P(x)\og 
\H*)j 

Equation 7.4 
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With Equation 7.4, the problem of finding the optimal second order dependence tree 

approximation to P(x) is transformed into the problem of finding P(x) which 

minimizes KL\P,Pj. On replacing P{x) with the dependence tree approximation given 

in Equation 7.3, the Kullback-Leibler distance between P(x) and P(x) becomes 

= - Z 7 k , >*»m)+ Z " k ) - # M Equation 7-5 

where H(xm )= -£p(*m ( . Jlogifa J and tf(jr) = - ;>>(x) logP(x) . Because //(xm ) 

and i/(X) are independent of the dependence tree approximation, minimizing KL\P,P) 

is equivalent to maximizing the total mutual information^l\xm ,xm J. Thus, the 

problem of finding the optimal dependence tree approximation P(x) is transformed to 

that of finding a dependence tree with maximum total branch weight. 

7.5 Estimating Mutual Information 

Estimating mutual information between pairs of features involves estimating the 

marginal and joint probabilities of features. To estimate the marginal and joint 

probabilities, we use relative frequencies derived from the training samples. Let P(x.,xy.) 

be the joint probability distribution of two features xt and x,. The value of P\xt,x,) is 

calculated as 

/ x F(Xl=U,Xj=v) 
p{x. = u>Xj=v) = t 
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where F\xt = u,Xj = v) denotes the number of training samples whose feature x, is equal 

to u and whose feature x j is equal to v. T denotes the total number of training samples. 

Similarly, the marginal distributions of the features xt and *., that is, Pyx^ and P\x.) 

are calculated as 

, F(X. =U) I \ Fix,. =v) 
P{xt = u) = - L L _ J and p(x ; = v) = - ^ — ; 

where F(xt = u) is the number of training samples whose feature x{ is equal to u and 

F\x, = v) is the number of training samples whose feature x, is equal to v. 



CHAPTER 8 

RELATIONSHIP BETWEEN DEPENDENCE 

TREE CLASSIFICATION ERROR AND 

BAYES ERROR RATE 

Let X = (xl,...,Xn) denote an ^-dimensional discrete random feature vector. Let 

PF = {cOj,...,cor}, be a discrete random variable whose values are the class labels. Let 

P(x | co) be the conditional distribution of X given W, where x = (xj,..., xn) is a value 

of the feature vector X and co is a value of W. In Chow and Liu's dependence tree 

approximation, the probability distribution P(x | co) is approximated by P(x | co) as 

P(x | co) « P(x | co) = Y[ P{xmi | xm , co), 0 < j(i) < i, Equation 8.1 

where (m{,...,mn) is an unknown permutation of integers 1, 2, ..., n, P\xm \xm ,co) is a 

component probability in which each variable xm is conditioned on at most one 

variablexm , and the component probability of the form P(xi \x0,ca) is by definition 

equal to P(xt \ co). The unknown permutation is obtained using KruskaFs algorithm [32], 

which finds the spanning tree with maximum pairwise mutual information between the 

features. For notational simplicity, we will hereafter omit the subscript m of each variable 

and represent, for example, xm as xt. 
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Hellman and Raviv [33] proved that an upper bound on Bayes error rate "cre" is 

— H(G>\X), where H(G>\X) is the conditional entropy of class co given the n-

dimensional feature vectorX. Wong and Poon, in [34], extended Hellman and Raviv's 

result (see [35] for tighter bounds on the Bayes error rate) and showed that, under certain 

assumptions, Chow and Liu's dependence tree approximation procedure can be derived 

by minimizing the upper bound of the Bayes error rate. Wong and Poon's result comes 

from Equation (5) in their paper [34], which expands the entropy function //(co | X) and 

replaces P(X\(D) with probability distribution P(x\(o) using the dependence tree 

approximation. The equation appeared as 

//(co | X) = / /(co)- H(X)- X P ( c o ) X / . ( x , , X j { i ) ) - £ / > ( » ) £ H a ( X t ) Equation 8.2 
co i=l co i-1 

where 

//(co) = -£/>(co)logP(co), 
(1> 

H(x) = -^P{x)\ogP(x), 

'M.xJ^pi^^W - }. and 

Hu(Xl) = -^iP{xl\<a)logP{xl\(a). 
Xj 

The correct expansion of the conditional entropy function H{co\X) (derived in the 

next section) and is given as: 

/ / ( H X ) = / / ( c o ) - / / ( x ) - £ / > ( c o ) £ / > , , X J + X P ( C O ) £ / / J X , . ) . Equation8.3 
<o i=l,j(i)*0 co i=l 
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Equation 8.3 corrects Equation 8.2 by reversing the sign of the 

term ̂  P(co)^ Ha (Xt). Though this correction appears as a minor issue, it invalidates 

the misleading idea purported by Equation 8.2 that every component probability in the 

dependence tree approximation decreases the value of i/(co | X) thereby reducing the 

upper bound on the Bayes error rate. The corrected equation (Equation 8.3) shows that 

each component probability in the dependence tree approximation, whether in the form 

ofP(x;. | x](i),(£s), j{i)*0, or P{xi |x0,co), adds^P(<x>)Ha(Xt) to H((o\X) and does 
CO 

not necessarily contribute toward decreasing the upper bound on Bayes error rate. 

Therefore, caution is advised when selecting component probabilities for dependence tree 

approximation. 

Below, we give two conditions to guarantee that every component probability in 

the dependence tree approximation decreases the value of H{co\X), thereby decreasing 

the upper bound on Bayes error rate. 

Condition 1: In a dependence tree approximation, for each component probability of the 

form P[xi | xJ(j), co), j(i) * 0, ^ P{(£>)la {X,, Xj^) should be greater than 
{0 

5>(coK(X,.). 
CO 

Condition 1 follows from expansion in Equation 8.9 in the derivation (in the next 

section) and concerns with component probabilities of the form P[xj | x;(0,co), j(i) =? 0 , 

in the dependence tree approximation. We explain Condition 1 with an example. Let 

X = (Xl ,X2,X3) be a three-dimensional discrete random feature vector. Let 
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P(X, \U>)P{X2 \XI,a)p(X3 |co) be the dependence tree approximation of P(X|co). In 

this dependence tree approximation, there is one component probability of the form 

P\xt. | xy(0,co), i.e., P{X2 | X\,co). Expansion in Equation 8.9 shows that each 

component probability of the form P[xi | xj{i), co) adds ^ ( © ^ ( J r , ) to H((o\X). 
CO 

Therefore, P(X2\X ,,<£>) adds £ > ( © ) # „ (X2) to#(<y|x). However, if 

^^(©Xo{X 2 ,X,) is greater Xhsa^PioijHa{X2), then from expansion in Equation 8.9 

we see that the presence of component probability P(X2 \ X,, co) in the dependence tree 

approximation decreases the value of i/(co| X), thereby decreasing the bound on Bayes 

error rate. 

Condition 2: In a dependence tree approximation, for each component probability of the 

form P{xi | x0,co),0 <i< n , there must be a nonempty set lt,\lt \<n , of component 

probabilities of the form P(xs \ x,., co), 0<s<n, so that ^ ^(co)^ Ia {Xs, Xi) is greater 
co n 

than Y^PWM)-
CO 

Condition 2 follows from Equation. 8.10 in the next section and concerns with 

component probabilities of the form P(xj \x0,(o). We explain Condition 2 with an 

example. Let X = (Xl,X2,X3,X4) be a four-dimensional discrete random feature 

vector. Let P(X!\(i))p(X2\Xl,(o)p(X3\X,,(o)p(X4\co) be the dependence tree 

approximation of P(X\(o). In this dependence tree (or more precisely, dependence 

forest) approximation, there are two component probabilities of the form P\xi \ x0, co), 
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i.e., P(X, | co) andP(X4 |co). Equation 8.10 shows that P(x, | co) and P(X4 | co) add 

^ / • ( © ^ ( X / ) and ^P(co)/7<i)(X4) to H{(o\x). NOW, consider the component 
CO (0 

probability i ,(X / | co). From Condition 2, /, contains all the component probabilities 

conditioned on Xx, i.e., /, = {P(X2 | X,, co), />(XJ | X,, co)}. 

If^Pfoft^X^X^ + I^X^X^^Pfoty^X,), then from Equation 8.10 we see 
CO CO 

that the presence of the variable X, decreases //(co | X), thereby decreasing the upper 

bound on the Bayes error rate. However, the component probability P\X4 | co) does not 

satisfy Condition 2 because /4 is an empty set. Therefore, the presence of P\X4 \ co) 

certainly increases i^(co | X), thereby increasing the upper bound on the Bayes error rate. 

Consequently, the variable X4 may be omitted when approximating P\X \ co). 

8.1 Derivation Relating Bayes Error Rate To 

Dependence Tree Classification Error 

It is known [15] that 

//(co | X) = / /(co)- l(X, co). Equation 8.4 

Using the definition of mutual information [5], /(X,co) in Equation 8.4 can be expanded 

as 

//(co|X)= //(co)-£/>(*,co)logP(x,co) + ][>(x,co)logP(x) + £/>(;<;,co)log/>(co) Equation 8.5 
X,(0 X,<Q X,(0 

By the definition of entropy 

^ P(x, co)logP(x) = Y, P(x)logP(x) = -H{X) and 
.r,co x 
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X P(x, co)log P(co) = X P(co)log P(co) = -//(<D) . 

Therefore, Equation 8.5 can be written as 

H(<a | X) = -H{X) - £ P(x, co)log P(x, co) = - # ( * ) - £ ^(©)£ ^ I «)log(P(* | co)p(co)) 

Equation 8.6 

Using dependence tree approximation in Equation 8.1, log(P(x | co)P(co)) in Equation 8.6 

is replaced bylog(p(x | co)P(co)), so that 

H(<o\X) = -H(X) + //(co) - X P(co)£ P(x | co)£ log P(X,. | x .(0, a>), 0 < j(i) < i 

co x i=l,j(i)*0 

TERM 1 

n . . 

- ^ P(co)^ P(x I co) ^ log P(x, I xy(0, co). Equation 8.7 
i=i,m=o 

TERM 2 

Term I (sign included) in Equation 8.7 contains the component probabilities of the 

form P(x, | xm,co), j(i) < 1, and j(i) & 0. Term II (sign included) contains the remaining 

component probabilities of the form P(x, | x0, co) = P(x,. | co). Term I can be expanded as 

- Z ^ ) 2 > ( * l « ) t togp/^w0'"! r I ^ ) Z ^ i c o ) Z l o g P k l c o ) . 

Equation 8.8 

Since P(X, , xm | co) and P(x,. | co) are components (marginal distributions) of P(x | co), 

we know that 

^ P(x,. | co)P(x (0 | co) ^ P(x. | co)P(x (/) | co] 
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X P{x | ©)log P{xt | <D) = £ Pfo | co)log P(x, I co). 
.Y .V,-

Therefore, the expansion in Equation 8.8 can be rewritten as 

- Z ^ ( » ) I / > , , ^ ( o ) + 2 > ( « ) 2 X W - Equation 8.9 
0) i=l,j(i)*0 co i=l,j(i)*0 

Expansion in Equation 8.9 shows that each component probability of the form 

p(xi \xj(i),(j$),j(i)*0, adds ^P(co)//a{X i) to / /(co|X). Now, consider Term II in 
CO 

Equation 8.7. Let there be K component probabilities of the form 

P{x, | x0, co) = P(x. | co). Then, Term II can be written as 

- X ^ ( « ) ) E ^ | c o ) i l o g ^ |co) = ~£ /> (« )£ £ P ( X , . |a>)logP(*, |CO) = £ P ( C O ) £ / / U ( X , ) 

Equation 8.10 

where K>\ and K <n from the definition of dependence tree approximation in 

Equation. 8.1. Equation 8.10 shows that each component probability of the form 

P(XJ \x0,eo) adds ^P(p)H a{Xi) to H(a>\X). By substituting Equation 8.9 and 

Equation 8.10 for Term I and Term II respectively, Equation 8.7 becomes 

//(co | X) = //(co) - H(X) - X P(co) £ /„ (x,, XJ(i)) + J P(co)£ //W (X,). 
co i=I,j{i)*0 co i=l 



CHAPTER 9 

MAXIMUM RELEVANCE MINIMUM 

REDUNDANCY FEATURE 

SELECTION 

Feature selection (in the context of classification) is the process of identifying the 

most characterizing features that minimize classification error [36]. Let dataset D 

contain M samples with ^-dimensional features, i.e., D = \X,,X2,...,XM} 

and Xt = {xl, x2,..., xn). Each sample in D belongs to one of the classes in 

,co2,...,cor}. The feature selection problem is to find a subset of k features that 

minimize classification error. One of the most popular methods of feature selection, 

known as the Maximum Relevance feature selection [37], selects features with the 

highest relevance to the target class W. In Maximum Relevance feature selection, 

"relevance" is usually characterized using correlation or mutual information between 

features and the classes. Mutual information is preferred over correlation because 

correlation captures only linear dependencies between features and classes where as 

mutual information captures linear as well as nonlinear dependencies (see [16]). A 

detailed investigation of the advantages of mutual information over correlation is given in 

[38], [39], and [40]. Next, we briefly discuss Maximum Relevance feature selection. 

56 
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9.1 Maximum Relevance Feature Selection 

In Maximum Relevance feature selection, the objective is to identify a subset of 

k features among a set of n features such that the mutual information between the k 

features and the class is maximized. In other words, Maximum Relevance feature 

selection maximizes 

/ ( * > ) = I L ^ > ) . O ( ^ ; 
X W 

where X' is a feature vector of size k. Identifying maximally relevant features by 

calculating I\X ,W) is computationally prohibitive, especially when there are a large 

number of features, because (1) computing I\X ,W) requires estimating higher order 

probability terms, which require a minimum of M*2n computations assuming that there 

are M training samples and that each of the n features has exactly two values and (2) the 

consideration of all possible subsets of features requires computing I\X ,W) for 

number of times. One is therefore forced to choose approximations to Maximum 

Relevance feature selection. A possible way to approximate Maximum Relevance feature 

selection is to calculate the mutual information between the individual features and class 

and then, incrementally select k features with the highest relevance, so that the selected 

k features maximize 

However, it is likely that the k features selected through Maximum Relevance 

feature selection may contain large dependencies. That means that features may highly 
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depend on each other, and therefore removing any one of them may not significantly 

change the overall classification error. To eliminate such redundancy but at the same time 

retain relevance of the features to the classes, Maximum Relevance Minimum 

Redundancy feature selection is used. A brief description of Maximum Relevance 

Minimum Redundancy feature selection follows. 

9.2 Maximum Relevance Minimum 

Redundancy (MRMR) 

Let F be a set containing n features {x,,x2,...,xn}. Let S(S cz F) be a set of k-1 

features which jointly have the largest dependency on the class variable W. The 

objective of Maximum Relevance Minimum Redundancy (MRMR) is to add the kth 

feature x. from F into S so that x; maximizes 

l(xj, W) - y-T ]T l(Xj, Xj), ieF Equation 9.1 
HY/eS 

From Equation 9.1, it is clear that a feature is selected from F not only if it maximizes the 

mutual information with the class variable W, but also if it is unpredictable by the 

current set of already selected features in S. The criterion in Equation 9.1 can be applied 

incrementally to select a set of k features from a set of n features that optimally 

characterize the class variable W. The steps for performing MRMR feature selection are: 

1) (Initialization Step) Set F to contain the initial set of n features; S containing the 

final set of k features is initialized to empty. 

2) Compute the mutual information between W and each of the individual features 

inF. 



59 

3) (Selection of the first feature) Select the first feature x. that maximizes /(x,., W); 

Remove xt from F and add x. to S. 

4) Repeat until |S| = k 

a. Compute the mutual information between pairs of variables I\xj ,Xj) such 

that x(. e F and x. e S, if it is not already available. 

b. (Selection of the next feature) Select feature xi e F, which maximizes the 

criterion l(xi,W)-T—i^lI\xi,Xj);a.dd xt to S; remove x, from/7. 

In several studies (see [16] and [37]), the above procedure for MRMR feature selection 

has been empirically shown to decrease classification error and improve classification 

results. However, until now, the criterion used in MRMR feature selection (Equation 9.1) 

has been used as heuristic, without formal proof showing how the criterion is 

instrumental in reducing classification error. In the next section, we present a set of 

derivations to show that the MRMR feature selection procedure, under some 

assumptions, gives an upper bound on the Bayes error rate. 

9.3 Relationship Between MRMR Feature 

Selection and Bayes Error Rate 

In this section we derive the relationship between MRMR feature selection and 

Bayes error rate and show that the criterion of MRMR feature selection (Equation 9.1) is 

an approximation to an upper bound of Bayes error rate. Let X = (X, ,X2,...,X„) denote 

an ^-dimensional discrete random feature vector. Let W = (co/,co2,...,con) be a discrete 
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random variables whose values are the class labels. Let x = (x,,x?,...,xn) be a value of 

the feature vector X and co is a value of W. 

Assumption 9.1 The features xl,x2,...,xn_1 are independent features and 

x,,x2,..., xn_j are conditionally independent given the feature xn. 

Lemma 9.1 If x,,x2,...,xn_, are independent features and if x,,x2,...,xn_1 are 

conditionally independent given the feature xn (Assumption 8.4.1), then 

n-1 

P\xn \x1,x2,...,xn_I) = -j— y|„_2 • 

Proof: 

From Assumption 9.1, it follows that 

P(x,,x2,...,xn_j) = P{x.j)P(X2)...P(xn_j) and Equation 9.2 

P(x,,x2,...,xn_, | xJ = P(x, | x„)P{x2 \xj...P{xn_, \xn). Equation 9.3 

Using Bayes formula, Equation 9.3 can be expanded as 

p/ r r | r ^ ,., [Pi*. I *, M * „ I *, )• • • HX„ I *„-, )] [Pi*, Y{X2 )• • • ^ - 7 )] 
r\xnx2T">xn-l I Xn)~ r_,/ Y\„-l 

IA*JJ 
Equation 9.4 

From Bayes formula, we have 

P(x„\x,,x,,...,x ,) = p(x>'x2>->x»-, \X„)HXJ Equation9.5 

Substituting Equation 9.4 in Equation 9.5, we get 

P(Y . r r x_ [P{x„ \ x,)p(xn \x2)...P(x„ \ xn__,)] [Pjx,)P{x2)...P(x„_,)] 

Equation 9.6 
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Using Equation 9.1 in Equation 9.6, we get 

Kxj^Mxjx2)...p(xjx„_/)]_n^i^) 
n-l 

P{*„ •*"/ ; - * 2 ' - • • > • * , „-,)- W.Y2 H*Jr2 

Thus, Lemma 9.1 is proved. 

Lemma 9.2 If x,,x2,...,xn_, are independent features and if x,,x2,...,xn_, are 

conditionally independent given the feature xn (Assumption 9.1), then the conditional 

entropy function H(xn \x,,x2,..., xn_,) is equal to 

H{xn)-%l{Xi,xn), 

where l{xl,xn) is the mutual information between features xt and xn. 

Proof: 

It is well known (see [15]) that the conditional entropy function H(xn \x,,x2,...,xn_,) 

can be expanded as 

H(xn \x„x2,...,xn_,) = - ^tP[x1,x2,...,x,,)logP(xll \x,,x2,...,xn_,). Equation 9.7 
x,,x,,...,x„ 

From Lemma 9.1, P(xn\x1,x2,...,xn_1) in Equation 9.7 can be replaced by 

n-l 

npki^) 
1=7 

K*jr 
•, so that 

( n-\ 

" \Xn I Xl' X2 i • • •' Xn-\ ) ~ 2-1 V*l' X2 ' • • •' Xn )*®8\ 
x,,x2,...,x„ ]>oor 
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n-l 

= ~ TAX1 >X2>'~>Xn)^}0gP(xn | X,.) + (n-2) YAX>'X2>• • • ' X n ) l ° ^ i X n ) 

«-; 

n-l 

= YjH(xn \xt)-(n-2)H{xn) Equation 9. 

where H(xn) is the entropy and H(xn \ xt) is the conditional entropy defined as 

#(0 = -I^>gP(xJand 
xn 

H(Xn\Xi)=-TAXn>Xi)l0&iXn I Xi) 
xn >•*?' 

respectively. It is known (see [15]) that the conditional entropy H(xn \x() can be 

expanded as 

H(xn \Xi) = H(xn)-l(xi,xn) Equation 9.9 

where •*\xi>Xn)~ ?f\xi'xn)^SZ7 Vw \ is the mutual information between the 

features x. and xn. By substituting Equation 9.9 in Equation 9.8, we get 

n-l n-l 

H(xn\x„x2,...,xn_,) = YdH(xn)-Ydl(xi,xH)-(n-2)H(xn) 
i=l i=l 

= {n-l)H{Xy{n-2)H{xn)-Yl{xi,x„) 
i=l 

= H(xn)-^(xi,xlt) 
i=l 

Thus, Lemma 9.2 is proved. 
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Assumption 9.2 The features independent. 

Lemma 9.3 If x,,x2,...,xn are independent features (Assumption 9.2) and co is the class 

label associated with the feature vector (x ; ,x7 , . . . ,xn) , then the joint entropy function 

H[(i),xl,x2,...,xn) is equal to 

#(ffl)+S#M-ZJfa*,) 

Proof: 

By the chain rule of entropy (see [15]), the joint entropy function H\o>,x1,x2,...,xn) can 

be written as 

H(a,xJ,x2,...,xn) = H((i))+ H(X, | co) + H(x2 | X,,CO)H \-H{xn I xl,x2,...,xn_,,a) 

Equation 9.10 

If the features x,, x2,..., xn are independent (by Assumption 9.2), then 

H(xn \x„X2,...,Xn_„<a)=- YJ
P(XnX2>--->Xn>(i))logP{Xn I XI >X2 > • • •» Xn-1» ® ) 

* ; , J T 2 >•••»*„ >© 

= ~ ZP(Xi'X2v,^„,C>)logP(x„ | CO) 
X / , J : 2 , . . . , *„ ,a> 

= - Z^'^g^ N 
= H(xn | co) 

Equation 9.11 

Similarly, 

H\x2 I x7, co) = H\x2 | co) 

: Equation 9.12 
H(Xn-l \X,>X2>X3--->Xn-2>(£>)=H(Xn-l I'00) 

From Equation 9.11 and Equation 9.12, Equation 9.10 becomes 

H((0,x!,x2,...,xn) = H(co) + H(xl |co) + //(x2 | <»)+••• + H{xn | co) Equation9.13 
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It is known (see [15]) that H{xi | co) can be expanded as //(*,. )-/(co, A:,.). Therefore, 

Equation 9.13 can be written as 

n n 

H(a,xnx2,...,xn) = H((i))+YJH(xi)-YJl(®,xi) 
i=l i=l 

Thus, Lemma 9.3 is proved. 

Theorem 9.1 The Maximum Relevance Minimal Redundancy (MRMR) feature 

selection procedure, which maximizes the criterion 

k k i-l , > 

i=l 1=2 j=l 

minimizes an upper bound on the Bayes Error rate. 

Proof: 

Hellman and Raviv in [33] showed that 

ve <-H((Q I X), Equation 9.14 

where o~e is the Bayes error rate and H(co | X) is the class conditional entropy. Equation 

9.14 shows that greater the value of H{(o\X), the greater is the upper bound on the 

Bayes error rate. Therefore, to minimize classification error, one needs to minimize the 

class conditional entropy //(co | X). It is known (see [15]) that 

H(®\X) = H{(o)-l(X;<o). 

Because l(X;(n) is a negative term, minimizing i/(co | X) is equivalent to 

maximizing l{X; co). As x = (x,, x2,..., xn), we have 

l(X;a>) = l(xnx2,...,xn;o). 

It is known (see [15]) that l(xl,x2,...,xn;(o) can be expanded as 
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n _ n 

/(jc7,x7,...,xn;co)= ^T//(x( \xj_,,...,x1)-'^H{xi | JC(._; ,...,*,, co) Equation 9.15 
(=/ ! = / 

TERM 1 TERM 2 

TERM 1 in Equation 9.15 can be written as 

) = H(X,) + H(X2 \X,)+H(X3 \X,,X2)+ — + H(X„ \x,,x2,...,xn_,) 

Equation 9.16 

From Lemma 9.2, we have 

H(x2 \X, ) = H(x2) - l(x2 ,xj) 

H(x3 I x2,x,) = H(X3)-I(X3,X])-I(X3,X2) 

Equation 9.17 

H(xn \xI,x2,...,xn_,) = H{xn)-YJl{xi,xn) 

Now using Equation 9.17, Equation 9.16 can be rewritten as 

n n n i-\ , . 

X H(x> I xi-x»• • • > xi) = Z H(xt)- Z Z 7 U ' x ; ) Equation 9.18 
1=1 i=l 1=2 j=\ 

Replacing TERM 1 in Equation 9.15 using Equation 9.18 gives 

n n i-\ . . n 

l(x\,x2,...,xn-,co) = YJH{xl)-YJYjI\xi>xj)-YjH(xi \x,.i,...,xlfe)) Equation 9.19 
1=1 i=2 j=\ 

TERM 1 TERM 2 

From Equation 9.19, it is straight forward to see that maximizing TERM 1 results 

in maximizing l(xl,x2,...,xn;o)), thereby minimizing the upper bound on Bayes error 

rate. Here, we point out that TERM 1 does not involve class information and therefore, 

the MRMR feature selection based on maximizing TERM 1 is an unsupervised version of 

MRMR feature selection. Now, TERM 2 in Equation 9.19 can be written as 



66 

YjHixi \xi_,,-..,x,,(i>) = H(xI \(o)+H(x2 \xl,®)+--- + H(xn | 

Equation 9.20 

It is known (see [15]) that 

H(oi,x1,x2,...,xt!) = H((i})+H(x1 \o>)+H(x2 \X1,<Q)+--- + H(XII \x,,x2,...,xn_na>). 

Equation 9.21 

Using Equation 9.21, Equation 9.20 can be written as 

^ H\xi | xt_,,...,x,, co) = //(co, x7, JC2 ,..., xn)- //(co). Equation 9.22 
/=/ 

From Lemma 9.3, we have 

n n 

//(co, x,, x2,..., xn) = //(co) + ^ H{xi) - ^ /(co, xt). Equation 9.23 
i=l i=l 

From Equation 9.23, Equation 9.22 can be written as 

n n n 

£ H{xi | x,_, ,...,x1,®) = YJ
H{xi)-Yj ^ xt) Equation 9.24 

i=l i=l i=l 

Now, substituting Equation 9.24 for TERM 2 in Equation 9.19, we get 

n n i—l , v n n 

l(xi,x2,...,xn)0)) = ̂ H(xi)-^^jl(xi,xJ)-YJH(xi)-^l(co,xi) Equation 9.25 
1=2 y=l 

On simplifying Equation 9.25, we get 

l(xnx2,...,xH;G))=^il(to,xl)-J^Yil(xl,Xj). 
n i-1 

Equation 9.26 

Substituting Equation 9.26, in Equation 9.14 

' 2 

I 1 

i=2 j=l 

n i-1 

//(co)- X / ( c o , * , ) - X I / ( * , . , x , ) 
1=2 y = / 

Equation 9.27 
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From Equation 9.27, it is straight forward to see that any set of A: features (k < n) that 

f 
maximize the criterion for MRMR feature selection, i.e., E7(ro>*<)-£E7(*/»*y) 

V •=' 1=2 .1=1 

also maximize ,xn;<X)), thereby minimizing an upper bound on Bayes error 

rate. Thus, we prove Theorem 9.1. 



CHAPTER 10 

THE KDD CUP 1999 INTRUSION 

DETECTION DATASET 

The dependence tree based anomaly detection method is tested using the 

benchmark KDD Cup 1999 dataset [41]. The entire KDD Cup 1999 dataset contains 

about 5,000,000 connection records. However, a concise dataset known as the "10% 

training" dataset has been provided to allow for faster training of anomaly and intrusion 

detection systems. We use the 10% training dataset. The 10% training dataset consists of 

494, 021 connection records, each record labeled as normal or as a specific attack type. 

There are 22 different attack types in the training dataset. The KDD Cup 1999 test dataset 

contains 311, 030 connection records. The test dataset contains 17 additional attack types 

that are not present in the training data. 

Each connection record in the KDD Cup 1999 dataset contains 41 features and a 

label indicating whether the connection is normal or an attack. The 41 features fall into 

three categories: (1) basic features, (2) content features, and (3) temporal features. A brief 

description of the 41 KDD Cup 1999 dataset features is provided in the following section. 
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10.1 Features in KDD Cup 1999 Dataset 

Here we give a brief description of features in the KDD Cup 1999 datasets. The 

first nine features are known as "basic" features and contain intrinsic information of a 

single network connection. The basic features are described in Table 10.1. 

Table 10.1 Basic features of KDD Cup 1999 dataset. 

No. 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Feature Name 
Duration 
Protocol 
Service 

Source Bytes 
Destination Bytes 

Flag 
Land 

Wrong Fragment 
Urgent 

Description 
Length (number of seconds) of the connection 

Type of the protocol, e.g. top, udp, etc. 
Network service on the destination, e.g., http, telnet, etc. 

Number of data bytes from source to destination 
Number of data bytes from destination to source 

Normal or error status of the connection 
1 if connection is from/to the same host/port; 0 otherwise 

Number of "wrong" fragments 
Number of urgent packets 

The next thirteen features in a KDD Cup 1999 connection record are known as 

"content" features. These features use domain knowledge to asses the payload of TCP 

packets. A brief description of content features is given in Table 10.2. 

Table 10.2 Content features of KDD Cup 1999 dataset. 

No. 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Feature Name 
Hot 

Num failed logins 
Logged in 

Num compromised 
Root shell 

Su attempted 
Num root 

Num file creations 
Num shells 

Num access files 
Num outbound cmds 

Description 
Number of "hot"' indicators 

Number of failed login attempts 
1 if successfully logged in; 0 otherwise 
Number of compromised" conditions 
1 if root shell is obtained; 0 otherwise 

1 if "su root'" command attempted; 0 otherwise 
Number of "root"' accesses 

Number of file creation operations 
Number of shell prompts 

Number of operations on access control files 
Number of outbound commands in an ftp session 



70 

21 
22 

Is hot login 
Is_guest_login 

1 if the login belongs to the "hot" list; 0 otherwise 
1 if the login is a "guest" 'login; 0 otherwise 

The next nineteen features in a connection record are known as "temporal" 

features. These features are collected over a 2 second time-window. A brief description 

of content features is given in Table 10.3. 

Table 10.3 Temporal features of KDD Cup 1999 dataset. 

No. 

23 

24 
25 
26 
27 

28 

29 
30 
31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

Feature Name 

Count 

Serror rate 
Rerror rate 

Same srv rate 
Diff srv rate 

Srvcount 

Srv serror rate 
Srv rerror rate 

Srv diff host rate 

dst_host_count 

dst_host_srv_count 

dst_host_same_srv_rate 

Dst_host_diff_srv_rate 

dst host_same_src_port rate 

dst host srv diff host rate 

dst_host_serror_rate 

dst_host_srv_serror_rate 

dst_host_rerror_rate 

d s thos t s rv re r ro r r a t e 

Description 
Number of connections to the same host as the 

current connection 
Percentage of connections that have "SYN"' errors 
Percentage of connections that have "REJ" errors 

Percentage of connections to the same service 
Percentage of connections to different services 

Number of connections to the same service as the 
current connection 

Percentage of connections that have "SYN" errors 
Percentage of connections that have "REJ" errors 

Percentage of connections to different hosts 
Number of connections to the same destination host 

as the current connection 
Percentage of connections to the same service at the 

destination host 
Percentage of connections to different services at 

the destination host 
Percentage of connections to different services at 

the destination host 
Number of connections to the same port at 

destination host 
Percentage of connections to different hosts at the 

destination host 
Percentage of connections that have "SYN" errors 

at the destination host 
Percentage of connections that have "SYN" errors 

at the destination host 
Percentage of connections that have "REJ" errors at 

the destination host 
Percentage of connections that have "REJ" errors at 

the destination host 
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It is to be noted here that all continuous features in the KDD Cup 1999 dataset 

(i.e., Duration, Source Bytes, Destination Bytes, and all "content" features) are 

discretized using Fayyad and Irani's discretization method [50] before being input to the 

dependence tree based anomaly detection method. 

Table 10.4 gives the number of normal and attack connection records in the KDD 

Cup 1999 training and test datasets. There are four classes of attacks in KDD Cup 1999: 

(1) denial-of-service (DoS) attacks (e.g., "syn flood"), (2) surveillance and other probing 

(Probe) attacks (e.g., "port scanning"), (3) unauthorized access attacks to local superuser 

privileges (U2R) (e.g., "buffer overflow"), and (4) unauthorized access from a remote 

machine (R2L) (e.g., "guess password"). The training data contains 24 different attack 

types that fall in to one of the four classes. The KDD Cup 1999 test data includes an 

addition 14 attack types that are not present in the training data. 

Table 10.4 Distribution of normal and attack connections in the 
KDD Cup 1999 dataset. 

Dataset 

Training 
Testing 

Normal 

97278 
60593 

DOS 

391458 
229853 

PROBE 

4107 
4166 

U2R 

52 
228 

R2L 

1126 
16189 

Total 

494021 
311029 

The major motivations for using the benchmark KDD Cup 1999 datasets are: 

• The KDD Cup 1999 dataset has been used popularly as a standard for 

comparing the performance of intrusion detection methods. This allows us to 

compare the performance of our dependence tree based anomaly detection method 

with the performance of the other intrusion detection methods reported in recent 

literature. 
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• The data instances in KDD Cup 1999 test dataset are labeled, making it possible 

for us to verify the detection accuracy and false positive rate of our dependence tree 

based anomaly detection method. 

• The KDD Cup 1999 test dataset contains 17 additional attacks that are not 

included in the training dataset. This feature of the dataset allows us to gauge the 

performance of the dependence tree based anomaly detection method on unseen or 

new attacks. 



CHAPTER 11 

EXPERIMENTS AND RESULTS 

In this chapter we present the results of MRMR feature selection and the results of 

the dependence tree based anomaly detection method on the KDD Cup 1999 dataset. 

11.1 Results of MRMR Feature Selection on 

KDD Cup 1999 Dataset 

In Table 11.1, we give the results of MRMR supervised feature selection (see 

Equation 9.26) on KDD Cup 1999 datasets. Each feature in Table 11.1 is ranked based on 

its relevance to the class variable. 

Table 11.1 The first eight features in KDD Cup 1999 datasets selected 
through MRMR supervised feature selection. 

Rank 
1 
2 
3 
4 
5 
6 
7 
8 

Feature No. 
5 
14 
6 

32 
23 
12 
37 
31 

Feature Name 
Source Bytes 
Root shell 

Flag 
Dst host count 

Count 
Logged in 

Dst host srv diff host rate 
Srv diff host rate 
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In Table 11.2, we give the results of MRMR unsupervised feature selection (see 

Equation 9.19) on KDD Cup 1999 datasets. Each feature in Table 11.2 is ranked based on 

its entropy value. 

Table 11.2 The first eight features in KDD Cup 1999 datasets selected 
through MRMR unsupervised feature selection. 

Rank 
1 
2 
3 
4 
5 
6 
7 
8 

Feature No. 
23 
24 
5 

33 
3 
35 
34 
36 

Feature Name 
Count 

Srv Count 
Source Bytes 

Dst host srv count 
Service 

Dst host diff srv rate 
Dst host same srv rate 

Dst host same src port rate 

Only eight of the 41 KDD Cup 1999 features have been incrementally selected by 

both the supervised and unsupervised MRMR feature selection methods. For the 

remaining features, the supervised and unsupervised MRMR feature selection criteria 

(Equation 9.26 and Equation. 9.19) incurred negative values, meaning that the remaining 

features had more redundancy than relevance to classification. Next, we present the 

results of the dependence tree based anomaly detection method on the features selected 

through the supervised and unsupervised versions of MRMR feature selection method. 

11.2 Dependence Tree Results 

The performance of the dependence tree based anomaly detection method is 

gauged using three measures: (1) detection accuracy, which is the percentage of instances 

correctly detected in each of the five classes (i.e., normal, denial-of-service attack, probe 

attack, user-to-root attack, and remote-to-login attack), (2) false positive rate, which is the 
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percentage of normal instances detected as attacks, and (3) the total attack detection 

accuracy, which is the percentage of all attacks correctly detected. Next, we present the 

results of the dependence tree based anomaly detection method using the features 

selected by supervised MRMR feature selection method (see Table 11.1). 

11.2.1 Dependence Tree Results 
with Supervised MRMR 
Selection 

In this section we present the class-wise detection accuracy of dependence trees 

built using the features selected by the supervised MRMR selection algorithm. Figure 

11.1 shows dependence trees with two features: Source (5) and Root_shell (14). The 

class-wise detection accuracy is 93.68% for Normal, 68.9% for DoS, 94.89% for Probe, 

17.54% for U2R, and 3.5% for R2L. The total attack detection accuracy is 91.11% at a 

false positive rate of 6.31%o. 

Figure 11.1 Dependence trees with two features (5,14) for classifying Normal, DOS, 
Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.2 shows dependence trees with three features: Source (5), Rootshell 

(14), and Flag (6). The class-wise detection accuracy for the dependence trees in Figure 

11.2 is 97.45% for Normal, 68.91% for DoS, 92.51% for gQProbe, 17.98% for U2R, and 
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0.01% for R2L. The total attack detection accuracy is 89.40% at a false positive rate of 

2.53%. 

Figure 11.2 Dependence trees with three features (5,14, 6) for classifying Normal, 
DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.3 shows dependence trees with four features: Source (5), Root_shell 

(14), Flag (6), and Dst_host_count (32). The class-wise detection accuracy for the 

dependence trees in Figure 11.3 is 97.87% for Normal, 68.91% for DoS, 91.14% for 

Probe, 12.28% for U2R, and 2.13% for R2L. The total attack detection accuracy is 

89.56% at a false positive rate of 2.13%. 

@ © © © 
Normal DoS Probe U2R R2L 

Figure 11.3 Dependence trees with four features (5,14, 6,32) for classifying Normal, 
DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 
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Figure 11.4 shows dependence trees with five features: Source (5), Rootshell 

(14), Flag (6), Dst_host_count (32), and Count (23). The class-wise detection accuracy 

for the dependence trees in Figure 11.4 is 97.89% for Normal, 93.83% for DoS, 81.18% 

for Probe, 12.28% for U2R, and 0.01% for R2L. The total attack detection accuracy is 

88.30% at a false positive rate of 2.13%. 

Normal DoS Probe U2R R2L 

Figure 11.4 Dependence trees with five features (5,14, 6,32, 23) for classifying 
Normal, DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.5 shows dependence trees with six features: Source (5), Rootshell 

(14), Flag (6), Dst_host_count (32), Count (23), and Logged_in (12). The class-wise 

detection accuracy for the dependence trees in Figure 11.5 is 97.95% for Normal, 93.83% 

for DoS, 81.93% for Probe, 9.658% for U2R, and 0.01% for R2L. The total attack 

detection accuracy is 88.31% at a false positive rate of 2.0%. 

Figure 11.5 Dependence trees with six features (5,14, 6, 32, 23,12) for classifying 
Normal, DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 
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Figure 11.6 shows dependence trees with seven features: Source (5), Rootshell 

(14), Flag (6), Dsthostcount (32), Count (23), Logged_in (12), and 

Dst_host_srv_diff_host_rate (37). The class-wise detection accuracy for the dependence 

trees in Figure 11.6 is 98.90% for Normal, 93.82% for DoS, 77.2% for Probe, 9.21% for 

U2R, and 0.03% for R2L. The total attack detection accuracy is 88.21% at a false 

positive rate of 1.1%. 

Figure 11.6 Dependence trees with seven features (5,14, 6,32,23,12,37) for 
classifying Normal, DOS, Probe, U2R, and R2L connections in 

KDD Cup 1999 dataset. 

Figure 11.7 shows dependence trees with eight features: Source (5), Rootshell 

(14), Flag (6), Dst_host_count (32), Count (23), Logged_in (12), 

D s t h o s t s r v d i f f h o s t r a t e (37), and Srv_diff_host_rate (31). The class-wise detection 

accuracy for the dependence trees in Figure 11.7 is 98.76%) for Normal, 93.81%) for DoS, 

68.24%, for Probe, 9.21% for U2R, and 0.01% for R2L. The total attack detection 

accuracy is 88.07%> at a false positive rate of 1.2%. 
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Figure 11.7 Dependence trees with eight features (5,14, 6, 32, 23,12, 37, 31) 
for classifying Normal, DOS, Probe, U2R, and R2L connections in 

KDD Cup 1999 dataset. 

11.2.2 Dependence Tree Results with 
Unsupervised MRMR 
Selection 

In this section we present the class-wise detection accuracy of dependence trees 

built using the features selected by the unsupervised MRMR feature selection algorithm. 

Figure 11.8 shows dependence trees with two features: Count (23) and Srvcount (24). 

The class-wise detection accuracies for the dependence trees in Figure 11.8 are 60.00% 

for Normal, 81.16% for DoS, 58.74% for Probe, 86.40% for U2R, and 23.92% for R2L. 

The total attack detection accuracy is 97.13% at a false positive rate of 40.00%. 

Normal DoS Probe U2R R2L 

Figure 11.8 Dependence trees with two features (23,24) for classifying Normal, 
DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 
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Figure 11.9 shows dependence trees with three features: Count (23), Srvcount 

(24), and Source (5). The class-wise detection accuracies for the dependence trees in 

Figure 11.9 are 92.06% for Normal, 92.90% for DoS, 73.93% for Probe, 27.19% for 

U2R, and 16.17% for R2L. The total attack detection accuracy is 90.85% at a false 

positive rate of 7.94%. 

Normal DoS Probe U2R R2L 

Figure 11.9 Dependence trees with three features (23, 24, 5) for classifying Normal, 
DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.10 shows dependence trees with four features: Count (23), Srvcount 

(24), Source (5), and D s t h o s t s r v c o u n t (33). The class-wise detection accuracies for 

the dependence trees in Figure 11.10 are 98.79% for Normal, 92.64% for DoS, 68.72% 

for Probe, 42.11% for U2R, and 0.43% for R2L. The total attack detection accuracy is 

87.92% at a false positive rate of 1.2%. 

Figure 11.10 Dependence trees with four features (23, 24, 5, 33) for classifying 
Normal, DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 
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Figure 11.11 shows dependence trees with five features: Count (23), Srvcount 

(24), Source (5), Dst_host_srv_count (33), and Service (3). The class-wise detection 

accuracies for the dependence trees in Figure 11.11 are 99.50% for Normal, 92.82% for 

DoS, 72.30% for 8Probe, 8.33% for U2R, and 0.31% for R2L. The total attack detection 

accuracy is 87.85% at a false positive rate of 0.49%. 

Figure 11.11 Dependence trees with five features (23, 24, 5, 33, 3) for classifying 
Normal, DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.12 shows dependence trees with six features: Count (23), Srv_count 

(24), Source (5), Ds thos t s rvcoun t (33), Service (3), and Dst_host_diff_srv_rate (35). 

The class-wise detection accuracies for the dependence trees in Figure 11.12 are 99.64% 

for Normal, 93.88% for DoS, 59.82% for Probe, 3.07% for U2R, and 0.98% for R2L. The 

total attack detection accuracy is 87.57%) at a false positive rate of 0.36%. 
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Normal DoS Probe U2R R2L 

Figure 11.12 Dependence trees with six features (23,24, 5,33,3,35) for classifying 
Normal, DOS, Probe, U2R, and R2L connections in KDD Cup 1999 dataset. 

Figure 11.13 shows dependence trees with seven features: Count (23), Srvcount 

(24), Source (5), Dst_host_srv_count (33), Service (3), Dsthostdiffsrvrate (35), and 

Dst_host_same_srv_rate (34). The class-wise detection accuracies for the dependence 

trees in Figure 11.3 are 99.70% for Normal, 93.62% for DoS, 61.69% for Probe, 3.07% 

for U2R, and 0.97% for R2L. The total attack detection accuracy is 87.45% at a false 

positive rate of 0.30%. 

Figure 11.13 Dependence trees with seven features (23, 24, 5, 33, 3, 35, 34) for 
classifying Normal, DOS, Probe, U2R, and R2L connections in 

KDD Cup 1999 dataset. 



83 

Figure 11.14 shows dependence trees with seven features: Count (23), Srv_count 

(24), Source (5), Ds thos t s rvcoun t (33), Service (3), Dst_host_diff_srv_rate (35), 

Dst_host_same_srv_rate (34), and Dst_host_same_src_port_rate (36). The class-wise 

detection accuracies for the dependence trees in Figure 11.14 are 99.76% for Normal, 

93.65% for DoS, 57.73% for Probe, 3.51% for U2R, and 1.02% for R2L. The total attack 

detection accuracy is 87.38% at a false positive rate of 0.24%. 

Figure 11.14 Dependence trees with eight features (23,24, 5,33,3,35,34,36) 
for classifying Normal, DOS, Probe, U2R, and R2L connections in 

KDD Cup 1999 dataset. 

11.3 Comparison with Naive Baves and ID3 Anomaly 

Detection Methods 

In this section, we compare the performance of dependence tree based anomaly 

detection method with the performance of naive Bayes [13] and ID3 [14] anomaly 

detection using the KDD Cup 1999 features selected from supervised and unsupervised 

MRMR feature selection. 
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11.3.1 Results with Supervised 
MRMR Feature Selection 

Table 11.3 gives the detection accuracies and false positive rates obtained by 

three methods: (1) dependence tree based anomaly detection (DTree), (2) naive Bayes 

(NB), and (3) ID3 decision tree (ID3) on KDD Cup 1999 dataset. The features in Table 

11.3 are obtained using the supervised MRMR feature selection method. 

Table 11.3 Results of Dependence Tree based anomaly detection (DTree), Naive 
Bayes (NB) anomaly detection, and ID3 anomaly detection on KDD Cup 1999 

features selected by the supervised MRMR feature selection method. 

Features 

5,14 

5, 14,6 

5, 14, 6, 
32 

5, 14, 6, 
32,23 

5, 14, 6, 
32,23, 12 

5, 14, 6, 
32, 23, 
12,37 

5, 14, 6, 
32, 23, 

12,37,31 

Method 
DTree 

NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

Normal 
93.68 
98.50 
98.46 
97.47 
99.40 
98.81 
97.87 
99.50 
98.81 
97.89 
98.70 
97.80 
97.95 
98.60 
97.80 
98.90 
98.60 
97.97 
98.76 
98.63 
99.65 

DoS 
68.90 
94.60 
94.58 
68.91 
94.30 
94.28 
68.91 
94.20 
94.24 
93.83 
97.10 
94.26 
93.83 
97.10 
94.26 
93.82 
97.10 
94.27 
93.81 
97.01 
94.27 

Probe 
94.89 
17.70 
17.69 
92.51 
17.90 
24.89 
91.14 
19.80 
18.36 
81.18 
26.90 
69.56 
81.93 
35.40 
69.49 
77.20 
30.30 
69.49 
68.24 
31.04 
69.16 

U2R 
17.54 
9.20 
8.77 
17.98 
11.00 
6.14 
12.28 
9.20 
5.26 
12.28 
9.20 
5.26 
9.65 
9.20 
3.51 
9.21 
10.10 
4.83 
9.21 
10.53 
4.82 

R2L 
3.50 
0.40 
0.36 
0.02 

0 
0.02 
0.02 

0 
0.02 
0.02 

0 
0.03 
0.02 

0 
0.01 
0.04 
0.80 
0.03 
0.02 
1.15 
0.02 

TAD 
91.11 
87.14 
87.14 
89.40 
86.83 
86.95 
89.56 
86.82 
86.80 
88.30 
89.54 
87.68 
88.31 
89.72 
87.68 
88.21 
89.68 
87.68 
88.07 
89.64 
87.67 

FPR 
6.30 
1.50 
1.54 
2.53 
0.60 
1.19 
2.13 
0.50 
1.19 
2.11 
1.30 
2.20 
2.06 
1.40 
2.20 
1.10 
1.40 
2.03 
1.24 
1.37 
0.35 

From Table 11.3, we observe that there are minor differences between the 

performances of the three methods when detecting normal class except in the case of the 

DTree method with two features (i.e., 5 and 13), which has the least detection accuracy of 
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93.68% for normal instances (and therefore, the highest false positive rate of 6.30%). 

However, in this case we note that the DTree method yields relatively high detection 

accuracies in detecting Probe, U2R, and R2L attacks. Further, the DTree method with 

three features (5, 14, and 6) and four features (5, 14, 6, and 32) outperforms the NB and 

ID3 methods in detection Probe and U2R attacks. In these cases, however, the DTree 

method has relatively lower accuracies (68.91% with three features and 68.91% with four 

features) in detecting DoS attacks. The reason for such low detection accuracies is that a 

considerable number of DoS instances have been misclassified as Probe attacks. Such 

misclassification, though undesirable, is better than the unacceptably low detection 

accuracies for Probe attacks, achieved by NB and ID3 methods. In the rest of the cases 

with five, six, seven, and eight features, the DTree method outperforms the NB and the 

ID3 methods in detecting Probe and U2R attacks, yet maintaining very comparable 

accuracies in detecting Normal, DoS, and R2L attacks. 

11.3.2 Results with Unsupervised 
MRMR Feature Selection 

Table 11.4 gives the percentage attack detection accuracies and false positive 

rates obtained by three methods: (1) DTree, (2) NB, and (3) ID3 on KDD Cup 1999 

dataset. The features in Table 11.4 are obtained using the unsupervised MRMR feature 

selection method. 

From Table 11.4, we observe that the DTree method outperforms the NB and ID3 

methods in detecting normal instances except in two cases: (1) the DTree method with 

two features (23 and 24), and (2) the DTree method with three features (23, 24, and 5). 

However, in both these cases, we note the detection accuracies of the DTree method are 

considerably higher than the detection accuracies of NB and ID3 methods in detecting 
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Probe, U2R, and R2L attacks. The DTree method with four features (23, 24, 5, and 33) 

achieves detection accuracy as high as 42.11% for U2R attacks, which is significantly 

higher than the detection accuracies of NB and ID3 methods for detecting U2R attacks 

with four features. The DTree method with five features (23, 24, 5, 33, and 3) achieves 

comparable detection accuracies for DoS, Probe, and U2R methods at a false positive rate 

as low as 0.5%, which is considerably lower than the false positive rate of NB and ID3 

methods implemented with five features. The DTree method with six, seven, and eight 

features achieves fine improvements in detecting normal instances but falls behind the 

NB and ID3 methods in detecting Probe, U2R and R2L methods 

Table 11.4 Results of Dependence Tree based anomaly detection (DTree), Naive 
Bayes (NB) anomaly detection, and ID3 anomaly detection on KDD Cup 1999 

features selected by the unsupervised MRMR feature selection method. 

Features 

23,24 

23, 24, 5 

23, 24, 5, 
33 

23, 24, 5, 
33,3 

23, 24, 5, 
33,3,35 

23, 24, 5, 

33,3,35, 
34 

23, 24, 5, 
33,3,35, 

34,36 

Method 
DTree 

NB 

ID3 
DTree 

NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 
ID3 

DTree 
NB 

ID3 
DTree 

NB 

ID3 
DTree 

NB 

ID3 

Normal 

60.00 

97.90 

98.28 
92.06 
97.70 
98.25 
98.79 
98.00 
96.26 
99.50 

97.80 
97.95 
99.64 

97.90 

97.81 
99.70 

97.60 

97.75 
99.76 
97.80 
97.74 

DoS 

81.16 

93.40 
82.62 
92.90 

96.60 
94.12 
92.64 
95.20 
94.10 
92.82 

95.10 
94.17 
93.88 

95.80 
93.80 
93.62 

95.00 

93.71 
93.65 
95.00 
93.71 

Probe 

58.74 

10.80 

45.10 

73.93 
37.80 

58.43 
68.72 
73.40 
65.22 
72.30 
76.20 
74.44 

59.82 
73.20 

74.56 
61.69 

72.00 

74.39 
57.73 
72.40 
74.51 

U2R 

86.40 

0 

0 
27.19 

0 
0 

42.11 

0 
1.04 
8.33 

10.50 
7.02 
3.07 
10.10 

3.51 
3.07 

10.50 
3.070 
3.51 
8.30 
3.07 

R2L 

23.92 

0 
0 

16.17 
3.50 
0.72 
0.43 
1.50 
0.38 
0.32 

8.00 
0.49 
0.98 

8.10 

1.01 
0.98 

8.50 

1.90 
1.02 
8.80 
1.90 

TAD 

97.13 

85.92 

76.58 
90.85 
89.52 
87.40 
87.92 

88.72 
87.48 
87.85 

89.07 
87.70 
87.57 

89.69 

87.40 
87.45 

88.91 
87.37 
87.38 
88.93 
87.38 

FPR 

40.00 

2.10 

1.72 
7.95 

2.30 
1.75 
1.21 
2.00 
3.74 
0.50 

2.20 
2.05 
0.36 

2.10 
2.19 
0.30 

2.40 
2.25 
0.24 
2.20 

2.26 
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11.4 Comparison with Other Studies on 

KDD Cup 1999 Datasets 

In Table 11.5, we compare the class-wise detection accuracies of dependence tree 

based anomaly detection method with results reported in Song et al. [19] and Bouzida et 

al. [18] over the KDD Cup 1999 dataset. 

Table 11.5 Comparison of class-wise percentage detection accuracies and false 
positive rates of the dependence tree based anomaly detection method with the 

network attack detection methods reported in Bouzida et al. and Song et al. 

Work 

Ours 

[18] 

Classification Models 

DTree with four supervised 

MRMR selected features. 

DTree with five supervised 

MRMR selected features. 

DTree with six supervised 

MRMR selected features. 

DTree with seven supervised 

MRMR selected features. 

DTree with eight supervised 

MRMR selected features. 

DTree with four unsupervised 

MRMR selected features. 

DTree with five unsupervised 

MRMR selected features. 

DTree with seven 

unsupervised MRMR selected 

features. 

DTree with eight unsupervised 

MRMR selected features. 

Nearest neighbor classification 

with 41 features. 

Nearest neighbor classification 

with 4 principal components. 

C4.5 classification with 41 

features. 

C4.5 classification with 4 

principal components. 

Normal 

97.87 

97.89 

97.95 

98.90 

98.76 

98.79 

99.50 

99.70 

99.76 

99.5 

99.50 

99.49 

99.00 

DoS 

68.91 

93.83 

93.83 

93.82 

93.81 

92.64 

92.82 

93.62 

93.65 

97.01 

97.14 

97.31 

97.25 

Probe 

91.14 

81.18 

81.93 

77.20 

68.24 

68.72 

72.30 

61.69 

57.73 

72.01 

74.40 

74.70 

66.80 

U2R 

12.28 

12.28 

9.65 

9.21 

9.21 

42.11 

8.33 

3.07 

3.51 

6.60 

7.91 

4.39 

6.58 

R2L 

0.02 

0.02 

0.02 

0.04 

0.02 

0.43 

0.32 

0.98 

1.02 

1.21 

0.80 

5.84 

0.01 

FPR 

2.13 

2.11 

2.06 

1.10 

1.24 

1.21 

0.50 

0.30 

0.24 

0.5 

0.5 

0.51 

1.00 
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[19] 

Genetic programming with lap 

distance (8-4), age 10%. 

Genetic programming with lap 

distance (8-8), age 10%. 

Genetic programming with lap 

distance (16-4), age 10%. 

Genetic programming with lap 

distance (8-4), age 30%. 

Genetic programming with lap 

distance (16-4) age 30%. 

99.7 

98.0 

98.7 

99.1 

98.6 

95.36 

95.6 

95.7 

95.36 

95.5 

48.5 

55.4 

55.1 

62.6 

56.5 

10.10 

18.0 

10.2 

9.2 

11.4 

0.2 

3.4 

1.8 

1.6 

0.8 

0.30 

2.0 

1.3 

0.92 

1.4 

In Table 11.5, we compare the results of dependence tree based anomaly detection 

method with the results reported in two recent papers: (1) Bouzida et al. used nearest 

neighbor classification and C4.5 decision tree with principal component analysis for to 

detect attacks in the KDD Cup 1999 datasets and (2) Song et al. used dynamic 

programming approach to detect attacks in the KDD Cup 1999 datasets. Although other 

studies on intrusion detection using KDD Cup 1999 dataset exist (for example, 

Sarasamma et al. [9][20]), the reason for choosing the works by Bouzida et al. and Song 

et al. for comparison with the dependence tree based anomaly detection method is that 

the false positive rates in these two works are considerably low and are comparable with 

the false positive rates achieved by the dependence tree based anomaly detection method. 

On the other hand, intrusion detection methods reported in Sarasamma et al. yielded an 

unacceptably high false positive rate and therefore are excluded from the comparison. 

The results in Table 11.5, show that at 0.5% false positive rate Bouzida et al.'s 

nearest neighbor classification rule and C4.5 decision tree implemented on 41 features 

achieve detection accuracies that are very similar to the detection accuracies of our 

dependence tree based anomaly detection method with only five features selected through 

unsupervised MRMR feature selection method. Further, Bouzida et al.'s C4.5 decision 
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tree built on 4 principal components extracted from 41 features of the KDD Cup 1999 

data, has a false positive rate 1.0% which is comparable to the false positive rate of the 

dependence tree method with seven features selected through supervised MRMR feature 

selection. In this case, however, our dependence tree based anomaly detection method 

outperforms the C4.5 method in detecting probe and U2R attacks. 

The results in Table 11.5 show that Song et al.'s genetic programming approach 

with tap distance parameters (16-4) at age 10% and (16-4) at age 30% have 1.3% and 

1.4% false positive rates, which are comparable to the 1.24% and 1.21% false positive 

rate of our dependence tree method with eight features selected through supervised 

MRMR feature selection and the dependence tree method with four features selected 

through unsupervised MRMR feature selection, respectively. We note that both these 

dependence trees outperform Song et al.'s genetic programming models with tap distance 

(16-4) in detection probe and U2R attacks. Similarly, we note that the dependence tree 

models outperform the remaining genetic programming models from Song et al. with tap 

distances (8-4) and (8-8) at ages 10% and 30% in detecting probe and U2R attacks, while 

no significant differences in the detection accuracies for DoS attacks have been observed 

between Song et al.'s models and our dependence trees. 



CHAPTER 12 

CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS 

In this dissertation, we developed two novel pattern recognition methods: (1) the 

K-Means+ID3, and (2) the dependence tree method for supervised anomaly detection. 

The first method, K-Means+ID3, was developed to classify data instances into normal or 

anomaly classes. To detect anomaly data instances, the K-Means+ID3 method first 

partitions the training data instances into k disjoint clusters. Then, an ID3 decision tree 

built on each cluster learns the sub-groups within the cluster and partitions the decision 

space into finer classification regions, thereby improving the overall classification 

performance. We compared the performance of K-Means+ID3 method with the 

individual k-means and ID3 methods in terms of six performance measures. Results on 

network anomaly data, Duffing equation data, and mechanical system data showed that 

1. the K-Means+ID3 method outperforms individual k-Means and the ID3 methods 

in terms of six performance measures over the 1998 network anomaly data, 

2. the K-Means+ID3 has a very high detection accuracy (99.12 percent) and AUC 

performance (0.96) over the 1999 network anomaly data, 
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3. the K-Means+ID3 method shows better false positive rate and precision as 

compared to the individual k-Means and the ID3 methods over the 2000 network 

anomaly data, 

4. the false positive rate, precision, and F-measure of the K-Means+ID3 method is 

higher than the k-Means method and lower than the ID3 method over the Duffing 

equation data, and 

5. the K-Means+ID3 method has the highest precision and F-Measure over the 

mechanical system data. 

Future research directions pertaining to the K-Mean+ID3 method include: (1) 

developing theoretical error bounds for K-Measn+ID3 method, and (2) comparing the 

performance of K-Means+ID3 with cascading classifiers developed using different 

clustering methods like hierarchical clustering, adaptive resonance theory (ART) neural 

networks, Kohonen's self-organizing maps and decision trees like C4.5 and Classification 

And Regression Trees (CART). 

The second method, dependence tree based anomaly detection, was developed to 

classify network traffic data instances into one of normal, denial-of-service attack, 

probing attack, user-to-root attack, or remote-to-login attack. The dependence tree based 

anomaly detection method used Bayes classification rule to classify data instances into 

normal or one of the four attack types. Dependence trees were implemented to 

approximate class conditional densities in the Bayes classification rule. For improving the 

classification performance of dependence tree based anomaly detection, supervised and 

unsupervised Maximum Relevance Minimum Redundancy (MRMR) feature selection 

was used to select features that optimally characterize the class information. We derived 
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the theoretical relationship between Bayes error rate, dependence tree based classification 

error, and MRMR feature selection criterion and showed that both dependence tree 

approximation and MRMR feature selection criterion minimize an upper bound on the 

Bayes error rate. The performance of the dependence tree based anomaly detection 

method was demonstrated on the benchmark KDD Cup 1999 dataset. Further, the 

performance of the dependence tree based anomaly detection method was compared with 

the performance of the naive Bayes and the ID3 decision tree methods as well as with the 

nearest neighbor rule and C4.5 decision trees presented in [18] and the genetic 

programming approach presented in [19]. Our results showed that 

1. the dependence tree based anomaly detection method with five and six features 

selected through supervised MRMR feature selection method outperforms the 

naive Bayes classifier and the ID3 decision tree method in detecting probe and 

U2R attacks, 

2. the dependence tree based anomaly detection method with four features selected 

through unsupervised MRMR feature selection method achieves U2R attack 

detection accuracy as high as 42.11% at 1.21% false positive rate, outperforming 

both the naive Bayes and the ID3 methods in detecting U2R attacks, and 

3. the dependence tree based anomaly detection method outperforms Song et al. 's 

[19] genetic programming based anomaly detection models in detecting both 

probe and U2R attacks, while maintaining high detection accuracies in detecting 

normal and denial-of-service attacks. 

Future research directions pertaining to our dependence tree based anomaly 

detection work include (1) using robust kernel density estimators for estimating the class 
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entropy of and mutual information between features and (2) modifying the MRMR 

feature selection criterion by adding a weight matrix to represent different 

misclassification costs so that the features selected through the modified feature selection 

criterion take into account the misclassification costs that may be incurred during 

classification. 
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