
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2008

Failure analysis and reliability -aware resource
allocation of parallel applications in High
Performance Computing systems
Narasimha Raju Gottumukkala
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Gottumukkala, Narasimha Raju, "" (2008). Dissertation. 510.
https://digitalcommons.latech.edu/dissertations/510

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/510?utm_source=digitalcommons.latech.edu%2Fdissertations%2F510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

FAILURE ANALYSIS AND RELIABILITY-AWARE RESOURCE

ALLOCATION OF PARALLEL APPLICATIONS IN HIGH

PERFORMANCE COMPUTING SYSTEMS

by

Narasimha Raju Gottumukkala, M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

March 2008

UMI Number: 3298937

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3298937

Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

12/11/2007
Date

We hereby recommend that the dissertation prepared under our supervision

by NARASIMHA RAJU GOTTUMUKKALA

entitled FAILURE ANALYSIS AND RELIABILITY- AWARE RESOURCE ALLOCATION

OF PARALLEL APPLICATIONS IN HIGH PERFORMANCE COMPUTING SYSTEMS

be accepted in partial fulfillment of the requirements for the Degree of

Ph.D. in COMPUTATIONAL ANALYSIS AND MODELING

Supervisor of DffisertatiasJiesearch

Head of Department

Recommendation concurred irt:,

4%* ; ^ *£s--a=~-^~

**Z^*>1 A •Ji

Appro

Director of Graduate Studies

fa AL
Dean of the College

Advisory Committee

ttipi&t
Approved

Department

GS Form 13a
(6/07)

ABSTRACT

The demand for more computational power to solve complex scientific problems

has been driving the physical size of High Performance Computing (HPC) systems to

hundreds and thousands of nodes. Uninterrupted execution of large scale parallel

applications naturally becomes a major challenge because a single node failure

interrupts the entire application, and the reliability of a job completion decreases with

increasing the number of nodes. Accurate reliability knowledge of a HPC system

enables runtime systems such as resource management and applications to minimize

performance loss due to random failures while also providing better Quality Of Service

(QOS) for computational users.

This dissertation makes three major contributions for reliability evaluation and

resource management in HPC systems. First we study the failure properties of HPC

systems and observe that Times To Failure (TTF's) of individual compute nodes follow

a time-varying failure rate based distribution like Weibull distribution. We then propose

a model for the TTF distribution of a system of k independent nodes when individual

nodes exhibit time varying failure rates. Based on the reliability of the proposed TTF

model, we develop reliability-aware resource allocation algorithms and evaluated them

on actual parallel workloads and failure data of a HPC system. Our observations

indicate that applying time varying failure rate-based reliability function combined with

some heuristics reduce the performance loss due to unexpected failures by as much as

iii

iv

30 to 53 percent. Finally, we also study the effect of reliability with respect to the

number of nodes and propose reliability-aware optimal k node allocation algorithm for

large scale parallel applications. Our simulation results of comparing the optimal k

node algorithm indicate that choosing the number of nodes for large scale parallel

applications based on the reliability of compute nodes can reduce the overall

completion time and waste time when the k may be smaller than the total number of

nodes in the system.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author N R GOTTUMUKKALA fc,^^sd^->

Date 02/18/2008

GSForm 14
(5/03)

TABLE OF CONTENTS

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES ix

ACKNOWLEDGEMENTS xi

CHAPTER 1 INTRODUCTION 1

1.1 Failures in HPC Systems 1

1.2 Resource Allocation in HPC Systems 2

1.3 Organization of Dissertation 5

CHAPTER 2 RELATED WORK 6

2.1 TTF Properties and System Reliability 6

2.2 Reliability-Aware Resource Allocation 7

2.3 Optimal K Node Allocation of Parallel Applications 8

CHAPTER 3 THE TIME TO FAILURE PROPERTIES OF HPC SYSTEMS 10

3.1 Introduction 10

3.2 Description of Failure Data 11

3.3 TTF Distribution of Individual Nodes 13

3.3.1 Distributions and Goodness Of Fit Test 13

3.3.2 Comparison of TTF Distributions 14

3.4 TTF Distribution of System of K Nodes 16

3.5 Correlation of TTF's Between Nodes 17

3.6 Autocorrelation of TTF's 19

3.7 The Failure Parameters of Various Nodes 22
CHAPTER 4 THE DISTRIBUTION OF TIME TO FAILURE PROPERTIES OF K
NODES IN HPC SYSTEMS 24

4.1 Introduction 25

4.2 TTF Distribution of a System of K Nodes 27

4.3 Goodness Of Fit Tests 34

VI

vii

4.4 Numerical Example 36

4.5 Conclusion 43

CHAPTER 5 RELIABILITY AWARE RESOURCE ALLOCATION IN HPC
SYSTEMS 45

5.1 Introduction 45

5.2 Reliability Model for a Parallel Application 46

5.2.1 Reliability of Job Completion Time 46
5.2.2 Reliability Model for a Parallel Application 48
5.2.3 Reliability-Aware Resource Allocation Algorithms 48
5.2.4 A Study of Waste Time for a Parallel Program 50
5.2.5 Heuristics for Reliability-Aware Resource Allocation 52

5.3 Comparison of Reliability-Aware Resource Allocation Algorithms 54

5.3.1 Simulation Study 55
5.3.2 Parallel Workloads 55
5.3.3 Comparison of Reliability Prediction 56

5.4 Conclusions 59

CHAPTER 6 RELIABILTY AWARE OPTIMAL K NODE ALLOCATION OF
PARALLEL APPLICATIONS 60

6.1 Introduction 60

6.2 The Expected Completion Time of a Parallel Program 62

6.3 Performance and Scalability of Parallel Programs 65

6.3.1 Amdahl's Law 66

6.3.2 Gustafson's Law 67

6.4 Reliability-Aware Resource Allocation 68

6.4.1 Resource Allocation Algorithms 69
6.4.1.1 All Nodes (ALL) 69
6.4.1.2 Round Robin Allocation (RR) 69
6.4.1.3 Reliability-aware Allocation (RA) 70

6.4.2 Reliability-Aware OptimaljC Node Allocation 70
6.4.3 Numerical Example 73
6.4.4 Simulation Study 74
6.4.5 Performance Metrics 75
6.4.6 Experimental Results 76

6.6 Conclusion and Future Work 79

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 81

APPENDIX A PROOFS FOR SYSTEM RELIABILITY MODEL 83

APPENDIX B MATLAB PROGRAMS FOR THE SYSTEM TTF MODEL 86

REFERENCES 90

LIST OF TABLES

Table 3.1 The CDF's of various distributions 14

Table 3.2 Comparison of various distributions based on p-value for all nodes 16

Table 3.3 Comparison of failure distributions using the Kolmogorov-Smirnov

Goodness 17

Table 3.4 Significance of correlation with respect to correlation coefficient values 20

Table 3.5 The statistical properties of shape and scale parameters of the TTF's of

individual nodes obtained from White 23

Table 4.1 The failure times of three nodes 37

Table 6.1 A Numerical Example showing the expected completion time of a
parallel program on k nodes 74

vin

LIST OF FIGURES

Figure 3.1 The number of failures in 3-month intervals over 4 years 3 month's
period on the ASC White 12

Figure 3.2 Comparison of the empirical CDF with the theoretical CDF of gamma
Weibull and lognormal distributions for node 277 16

Figure 3.3 The cross correlation coefficient among the ith TTF among different

nodes 20

Figure 3.4 Autocorrelation among TTF's of Individual nodes 21

Figure 3.5 The Autocorrelation among system TTF's 22

Figure 3.6 The scale parameters and MTTF's of various nodes in White 23

Figure 4.1 Algorithm to determine the system TTF's from TTF's of individual
nodes 28

Figure 4.2 Schematic diagram of system TTF's obtained from the TTF's of
individual nodes 29

Figure 4.3 The Chi-Square GOF tests comparing the actual and expected number

of failures 36

Figure 4.4. Job submitted at (x=100, t=0) 37

Figure 4.5 Job submitted at (x=500, t=300) 39

Figure 4.6 Job submitted at t=200, x=350 when the system failed at 1114 Hrs 40

Figure 4.7 Job submitted at t=50, x=150 when the system failed at 1167 Hrs 41

Figure 4.8. The effect of failure rate and MTTF with the increase in number of
nodes (k) 43

Figure 4.9 The effect of system reliability with the increase in the number of
nodes 43

ix

X

Figure 5.1. The Reliability-Aware Scheduling Algorithm 49

Figure 5.2 Description of workloads and comparison of Waste Times for
reliability-aware policies for individual jobs requiring different
number of processors 51

Figure 5.3 Description of workloads and comparison of Waste Times for
reliability-aware policies for individual jobs requiring different job
run lengths 52

Figure 5.4 The Longest Job Reliability-Aware Scheduling Algorithm 54

Figure 5.5 The comparison of overall waste times for the two workloads namely
LANL and SDSC 56

Figure 5.6 Description of LANL and SDSC workloads based on run lengths and
comparison of Total Waste Time and % average Waste Time for
each run lengths of jobs 58

Figure 6.1 Effect of reliability with the increase in number of nodes 61

Figure 6.2 An un checkpointed parallel application with failures 63

Figure 6.3 The expected completion times for various values of the shape and
scale parameters for a Weibull distribution 65

Figure 6.4 The scalability effect with respect to job completion time for different
performance models (Amdahl's Law and Gustafson's Law) 68

Figure 6.5 The expected completion times of parallel programs considering

reliability for Amdahl's Law (a) and Gustafson's law (b) 68

Figure 6.6 The Optimal k node allocation algorithm 72

Figure 6.7 The Optimal k node selection by the algorithm 73

Figure 6.8 Comparison of MTA and WTA for various resource allocation
algorithms 77

Figure 6.9 The comparison of ATA and AWT with respect to run-lengths 78

ACKNOWLEDGEMENTS

Finally, as I stand here at a point closer to finishing my dissertation and look back

at the journey from where I have started, it has been the most challenging, enduring,

educating and rewarding experience of my career. Several people that have helped me to

come this far.

First of all I owe most of my achievements to Dr. Chokchai Box Leangsuksun,

who has been the most influential person in my career and to whom I shall ever be

grateful. He has guided me from the start in every aspect of my research and career from

picking a high-quality dissertation problem, writing and presenting research, providing

critical feedback, supporting me, and motivating me always to go a step further. He has

also given me the experience of working on various exciting HPC technologies and has

also brought in several researchers in the HPC area from ORNL like Dr. Stephen Scott,

Christian Engelmann, Dr. Hong Ong and Dr. George Ostrouchov who also have provided

valuable inputs on this research.

Dr. Raja Nassar has validated each and every idea and equation in this

dissertation, and helped me improve my technical writing to a great extent. He has taken

time even during his retirement and shown me far more patience than I deserve. I also

sincerely thank Dr. Mihaela Paun for discussing ideas, providing valuable feedback and

spending time to correct each and every chapter in my dissertation. Dr. Dileep Sule has

taken a very special interest in my research by providing me excellent direction. He has

xi

xii

taken valuable time on several occasions to discuss my dissertation. He has provided

some valuable insights on the scheduling aspect. I also thank Dr. Dai for correcting my

dissertation, providing valuable feedback and guiding me through the CAM program. Dr.

Greechie was also helpful in guiding me through the CAM program.

I also specially thank my very dear friend and colleague Kiran Balagani for

always being there to share my research and proofread my papers. I also thank my other

dear friend and Nethken Hall late-night partner Shrijit Joshi for helpful discussions. I also

thank my excellent colleagues at the Extreme Computing Research Group: Hertong

Song, Yudan Liu, Narate Taerat, Nichamon Naksinehaboon, Vishal Rampure, Anand

Tikotekar and Kiriti whom I worked in several occasions on various HPC-related

projects.

On a personal level, I would like to thank my dearest wife Siri who has shown

great love and patience and has given never ending support throughout even in the

toughest of times. She has put up with me for working late nights in the lab and has taken

great care of me throughout. Finally, I thank my parents Krishnaveni and Janaki Rama

Raju, and my Guruji Dr. Umar Alisha who have been a pillar of support throughout.

I would like to dedicate this dissertation to my Sathguru Dr. Umar Alisha and my

late grand father Manthena Rama Krishna Raju.

CHAPTER 1

INTRODUCTION

The demand for more computational power to solve complex scientific

applications has given rise to High Performance Computing (HPC) systems that comprise

hundreds of thousands of nodes. HPC has gained significant prominence in recent years

because of its cost-effective way to build systems from Commercial-Off-The-Shelf

(COTS) components. Uninterrupted execution of large scale parallel applications

naturally becomes a major challenge because a single node failure interrupts the entire

application. Increasing the number of nodes for a parallel application increases the failure

probability, therefore providing reliability for parallel applications running on large scale

computational resources becomes a major challenge.

1.1 Failures in HPC Systems

HPC systems comprise several hardware and software resources required for

uninterrupted completion of a parallel application. Unexpected failures and downtimes

have severe effects both on the performance of a HPC system and the Quality of Service

(QOS) for the computational users. It is unrealistic, at least in the near future, to

completely eliminate failures and predict the next failure event and time [1]. However,

several monitoring tools and fault tolerance mechanisms can presently deal with failures.

Monitoring tools like CluMon [2], Ganglia [3] and Nagios [4] report detailed health

1

2

information of various hardware and software components, and provide failure warnings

in event of abnormal activities. These monitoring frameworks lack the capability to

predict reliability or future failure events. There are also fault-tolerance mechanisms like

task duplication and checkpoint/restart. Checkpoint/restart is a mechanism that enables

saving the software state at regular intervals so that the program does not have to restart

over from the beginning. Current checkpoint schemes may, however, be very inefficient

for large scale parallel programs because of the overhead of saving the state of multiple

processes running on large number of nodes [5][6]. Therefore the checkpoint algorithm

must rely on the reliability information of the resources to optimize checkpoint placement

and minimize the performance loss.

The failure events of various compute nodes in HPC systems may be recorded in

order to assess system reliability and failure rates. Dynamic reliability analysis of

selected components provides up-to-date system reliability. RAS frameworks [7] [8] have

recently been proposed for online monitoring and modeling of HPC systems to

complement resource management and checkpoint frameworks. An accurate reliability

model and up-to-date failure information would complement reliability-aware resource

management, reliability-aware checkpoint/restart, and scheduled maintenance of

computational resources.

1.2 Resource Allocation in HPC Systems

Scheduling or resource allocation involves task assignment to computational

resources to satisfy certain job criteria. In a broader sense, scheduling in parallel super

computers can be at two levels. The first or top level is in application level or meta-level

that deals with allocating a parallel application to a partition of compute nodes or

3

systems. Second is the lower level or the operating system level that takes a task and

allocates various local resources like memory, CPU, disks and I/O devices. There are

different characteristics of jobs and different domains for application scheduling in

general [9]. In this dissertation we concentrate on scheduling of parallel applications at

the application level.

A scheduler basically consists of a job queue, and a decision algorithm that

decides where to allocate the job based on the job's requirements and other policies. The

objective of the scheduler can be to maximize throughput and utilization, to minimize

completion time, to prioritize jobs, or just to execute the jobs. One of the most important

aspects for HPC applications is maximizing performance, which means minimizing the

completion time. There are several resource parameters that affect the completion time of

a parallel program like the CPU speed, I/O bandwidth, memory, system architecture,

network bandwidth and latency, etc. Completion time is usually a sum of other times like

the job submission time, scheduler response time, waiting time or execution time [10]. In

this dissertation we focus on completion time. The job completion time is basically a sum

of three components, (1) the waiting time (2) job execution time (3) and waste time due

to failures. We further discuss these definitions in Chapter 5 and Chapter 6.

There are several application level schedulers that are widely used for distributed

platforms. Each scheduler has various capabilities in terms of monitoring resources,

giving priorities and task assignment. PBS/MAUI [11], SGE [12], and SLURM [13] are

the most widely used job schedulers in HPC systems. PBS/MAUI and SLURM have two

basic scheduling policies namely First In First Out (FIFO) and Backfilling. The FIFO

policy allocates jobs based on the arrival order. Backfilling enables moving short jobs

4

ahead if longer jobs in the queue are not interrupted. In addition some other policies that

are aimed at giving fair share of resources to users. For example SGE uses several ticket-

based policies to prioritize jobs based on users [12].

Parallel applications may also be further categorized into four types based on a

decision factor such as the number of processors required by a given job. Rigid jobs

require the number of processors to be specified during job submission, and the job does

not change the processor requirement during execution. An evolving job is the one that

keeps changing the processor requirements while the job is executing. A moldable job

allows the scheduler or resource manager to dictate the number of processors, and a

malleable job is adaptable to changes in the processor count during execution. More

details of these jobs are given in [9]. In this dissertation we concentrate on rigid jobs and

moldable jobs. In the parallel workloads available at [15], the users already give the

number of processors that would let us to use the actual workloads for rigid jobs.

Secondly, some of the MPI applications are flexible in the sense that the number of nodes

can be decided by the scheduler during run time (moldable jobs). We will further discuss

reliability-aware scheduling of moldable jobs in Chapter 6.

Currently existing resource managers/schedulers do not consider reliability as an

important factor. However, reliability becomes crucial research for very large scale

systems that span hundreds and thousands of nodes. Obtaining accurate reliability

information provides insights for resource managers to minimize the overall performance

loss of the HPC system. In addition reliability knowledge of resources lets resource

manager to ensure Quality of Service to users.

5

1.3 Organization of Dissertation

This dissertation is organized as follows: Chapter 2 discusses the related work on

the failure properties, system reliability models, and resource allocation techniques for

HPC systems. The description of failure data, a detailed statistical analysis such as the

comparison of Goodness Of Fit (GOF) tests of various TTF distributions of individual

nodes, and system of k nodes, correlation analysis, and variability of MTTF's and failure

parameters are demonstrated in Chapter 3. Chapter 4 presents a new model for the TTF

distribution of a system of k nodes in a HPC system when individual nodes have time

varying failure rates. Chapter 5 describes our proposed reliability-aware resource

allocation techniques for parallel applications. The effect of scalability on reliability and

performance, and an optimal reliability-aware k node allocation algorithm for moldable

parallel jobs are further discussed in Chapter 6. The conclusions and future work are

given in Chapter 7.

CHAPTER 2

RELATED WORK

This chapter discusses the related work on the TTF properties, system TTF model

when individual nodes have time varying failure rates, resource allocation techniques in

HPC systems and reliability-aware resource allocation algorithms.

2.1 TTF Properties and System Reliability

Failure properties like the TTF distribution, and correlations between failures

enable us to develop reliability or failure models that represent the actual behavior of

systems. Failure properties of computing systems have also been studied by many

researchers[14]. The TTF's in various distributed computing platforms [16], [17], [18],

[19] and [20] are observed to follow the Weibull distribution. Various aspects of

correlations have been studied in the literature. In [21], the analysis on failures and error

logs on heterogeneous servers have shown that there are significant autocorrelation, cross

correlation, and long term temporal correlations among nodes. Also, the temporal

correlation patterns vary across different nodes. Iyer [20] found a significant correlation

of workload on failures due to increase in CPU activity. According to [22], the correlated

failures comprise 27% of all the data and the impact of correlated failures is significant.

In Chapter 3, we discuss the TTF distribution of a HPC system, the correlation of TTF's

6

7

between individual nodes, and autocorrelation of individual nodes and a system of k

nodes of a production HPC system.

The system reliability model for a constant failure rate is uncomplicated as

compared with time varying failure rate assumptions to model various aspects of system

reliability. Dey [23] presents the system reliability and proposes a parameter estimation

technique when individual components in a series system are Weibull distributed, and

individual components may have different failure parameters. Also, Hassett [24]

discussed the availability and reliability of a system with components having time

varying failure rates. Individual compute nodes are shown to follow a Weibull

distribution instead of an exponential. We therefore propose a time varying failure rate

based distribution for a system of k nodes when nodes have different Weibull based

shape and scale parameters in Chapter 4.

2.2 Reliability-Aware Resource Allocation

Failure data analysis and reliability-aware scheduling research in general have

recently gained much attention in HPC community. Zhang et al. [25] studied failure rates

of HPC systems that affect performance metrics like job-slow-down and work-loss ratio

based on the spatial and temporal correlation of time to failures. Oliner et al. [26]

discussed the effect of HPC reliability metrics on parallel applications with periodic

check pointing under an assumption that failures follow Poisson process, proposed event

based failure prediction on Blue Gene/L failure logs [27] and presented failure-aware

scheduling techniques. Also, Linping [28] discusses the failure aware scheduling policies

based on the Longest Uptime of nodes.

8

Prior work on reliability-aware task allocation for heterogeneous distributed

systems models tasks and communications links as a directed graph by Shatz et al. [29].

While the graph based reliability model is a good theoretical model for task allocation in

heterogenous systems [29][30][31], this model relies on a constant failure rate

assumption, and the simulation results are not based on the failure data of actual systems.

Recently, Ming [32] proposed exponential-based performance prediction and fault aware

allocation of parallel applications using failure rates, downtimes, checkpoint overhead

and fault aware heuristic algorithms. To our knowledge, no work that developed

reliability-aware algorithms based on a time-varying distribution, or techniques that use

the failure data of actual system for reliability-aware resource allocation.

2.3 Optimal K Node Allocation of Parallel Applications

Various aspects of scalability were studied in [33][34][18][35][36][37][38].

Amdahl's law [33] suggests that there is a serial part of the program that limits

scalability. However, according to Gustafson [38] other parameters in computation that

can be overlapped to achieve better parallelism while executing the serial portion of the

program. Kumar et al. [35] have given a survey of scalability models for parallel

architectures and algorithms for a given parallel architecture and problem size. Nicol [39]

discussed the optimal selection of the number of processors for a numerical

approximation problem and architecture. The impact of reliability for large scale parallel

applications is not new and has also been addressed recently [40][41]. The effect of

reliability on the completion time of parallel programs is discussed in [42], and the effect

of coordinated check pointing on large scale parallel applications due to failures is

9

discussed in [6][41]. Also, Plank[43] discusses the importance of considering the number

of processors as an important performance attribute for check pointed jobs.

In Chapter 6, we study the scalability limitations of a parallel application with

respect to system reliability. We also propose a reliability-aware optimal k node selection

algorithm with the objective of minimizing the completion time and the waste time of

large scale parallel applications in the presence of failures.

CHAPTER 3

THE TIME TO FAILURE PROPERTIES

OF HPC SYSTEMS

3.1 Introduction

Several factors cause failures in a HPC system. Understanding various failure

properties enable better assessment of the overall system reliability. This chapter

describes some important failure properties such as the various factors that cause failures,

the (Time To Failure) TTF distribution of individual nodes and system of k nodes, the

correlations between TTF's of various nodes, the autocorrelation of TTF's and the

variability of MTTF's among various nodes in a HPC system.

HPC systems contain a significant number of hardware and software components

that are required for uninterrupted running of applications. We classify the factors that

affect failures broadly into three categories:

(1) Inherent defects during development/manufacturing

Both hardware and software are prone to defects or bugs. Many of these defects

become visible when the system becomes operational. Hardware components like

processors, memory and hard disks may have design problems, or manufacturing

problems due to fabrication and processing [44]. Similarly, software is prone to have

bugs, which may be due to design or logical errors during coding and to the software that

is not tested adequately.

10

11

(2) Failures caused due to environments

Both hardware and software failures could occur due to the operating conditions.

For example, overuse of hardware, power fluctuations, and noise can cause hardware

failures, and certain software upgrades or operating system patches may affect other

software already residing in the system. Exhausted resources such as low swap space and

CPU overload may also cause some failures.

(3) Failures caused due to misconfiguration by administrators

Failures are also be caused by the administrators who may misconfigure the

system after installation or upgrade. Administrators have to be careful because a minor

configuration error could lead to an outage of the entire system affecting all the jobs that

were running.

3.2 Description of Failure Data

In the reliability analysis, the failure data source is the failure logs obtained from

Lawrence Livermore National Laboratory (LLNL) ASC White [45], a 512-node cluster.

Each node is a 16-way Symmetric Multi Processor (SMP), and thus the total number of

processors is 8196. Each event log includes the type of failure, length of downtime, time

of failure, and the impacted node. Since we focus on the TTF's, we extract the failure

times and the node information from the failure logs. The ASC white failure information

consists of a large dataset including significant failure events over the period of four

years, from 2000 to 2004. The failure data have 72.3 percent hardware failures, 13.8

percent software, and 13.8 percent are other type of failures. Single node failures usually

occur from a disk/memory failure. Failures from a network switch or a common power

failure affects a group of nodes, and failures from a head node or scheduler master

12

daemon may affect all the nodes. About 75 percent of the failures are from a single node

category, 15 percent belong to a group of nodes, and 10 percent failures affect all 512

nodes. The event logs also have both scheduled and unscheduled downtime times. In our

TTF analysis, we consider the failures that affect a single node, and a group of nodes.

Figure 3.1 shows the number of failure events recorded during the period 7/1/2000 to

10/1/2004 from the ASC White system logs. The total operational time is approximately

4 years 3 months (0.2 X 106 minutes). We observe that in the first two years and three

months there were more failures as compared with the last two years.

Total no of Failures occurred within 4 years 3-month time interval for White
300

250

200

if 150

°o

100

50

0

0 10 20 30 40 50 60 70
Time Intervals (1 Interval = 3 Months)

Figure 3.1 The number of failures in 3-month intervals over 4 years 3 month's period on
the ASC White

The newly deployed components tend to have more failures in the initial phase;

this may be called the infancy stage when the overall failure rate is represented by the

bathtub curve based failure rate. After the infancy stage, failures approximately remain

steady. We use the most recent failure data available from 4/1/2003 to 10/1/2004 for both

TTF analysis and reliability-aware resource allocation study, because data during this

period represent the most recent failure behavior.

13

3.3 TTF Distribution of Individual Nodes

3.3.1 Distributions and Goodness Of Fit Test

Failure distribution functions such as exponential, Weibull, lognormal and gamma

have been widely used in reliability analysis [16] [46] [46]. The Cumulative Density

Function (CDF) for a given TTF distribution is given by,

t

F(t)=\f(T)dT (3.1)

o

Where f(r) is the probability density function (Pdf).The Cumulative Distribution

Functions (CDF) of various TTF distributions are given in Table 3.1.

The Kolmogorov-Smirnov (K-S) Goodness Of Fit (GOF) test [47] compares the

theoretical time to failure distributions with the empirical distribution. If F0(x) is the

empirical CDF based on N data points, Fx (x) is the theoretical CDF, the K-S statistic D

is defined as the maximum absolute difference between the two CDF's which is given by

D = max I F0 (x) - Fx {x) I
-™<X<°o

The K-S GOF test gives the maximum distance between the empirical and

theoretical distribution [47] . The p-value (0 < p < 1) in K-S test represents the

probability that the sample data belongs to certain distributions. A p-value (p<=0.05)

indicates that the distribution does not fit the data. Greater the p-value, greater is the

probability that the empirical distribution closely represents theoretical distribution. Thus,

we apply K-S test to identify which theoretical distribution best represents the empirical

failure distribution.

14

Table 3.1 The CDF's of various distributions.

Distribution

Name

Exponential

Weibull

Lognormal

Gamma

CDF

where X is the failure rate.

F(t)=l-e yaJ where a is the scale parameter, and /? is the

shape parameter.

F(t) = * •

fln-L-l
T
1 50

. a is the shape parameter. T50is the medial life

at 50% failure point.

X

Tx(a)= \ta-xe'ldt
T (y) x>0 o x where and y is the shape

r„(a) = Jr e at
0

parameter.

3.3.2 Comparison of TTF Distributions

The TTF distribution lets us understand whether the TTF increases, decreases, or

remains constant over time, and an appropriate theoretical TTF distribution can be used

for reliability prediction for minimizing the performance loss due to failures. The

empirical failure distributions of individual nodes are compared with the theoretical

distribution based on the p-value of the Kolmogorov-Smirnov GOF test. As an example,

Figure 3.2 shows the empirical CDF's compared with the theoretical CDF's of

15

exponential, Weibull, gamma and lognormal distributions. The greater the p-value of the

K-S test, the better is the GOF. Different nodes could fit better to different distributions

so we compared all the 512 nodes, based on the p-values to understand which distribution

fits better in most cases. Table 3.2 shows the percentages of how well each distribution

fits to the empirical data for all the 512-nodes. In some cases, two or more distributions

perform equally well because the Weibull distribution is a general case of the

exponential, and the gamma distribution is general enough to give results similar to those

of the Weibull or lognormal. Weibull, lognormal, and gamma have time varying failure

rates, and in most cases, they fit the data equally well. For the given data, we observed

that 89.9 percent of the nodes have TTF's that fit the Weibull better than or as good as

the other three distributions. The gamma distribution fits well for 88.8 percent of the

nodes, lognormal for 84.3 percent and 60.7 percent of nodes fit to exponential. For the

case where the p-value is greater than 0.8, 99 percent of the nodes fit the Weibull

distribution. Hence, for the given data set, the Weibull distribution gave the best fit to the

TTF's of the different nodes.

16

400 450 500 550 600 650

Comparison of CDF for Node -277

3400 3450. 3500 3550

" - Empirical

• t * ibu l

Exponential

- Lognormai

• Gamma

3650 3700 3750

3000
TBF(Hours)

Figure 3.2 Comparison of the empirical CDF with the theoretical CDF of gamma Weibull
and lognormai distributions for node 277.

Table 3.2 Comparison of various distributions based on p-value for all nodes.

Distribution
name
Gamma

lognormai

exponential

Weibull

Number of nodes
having highest p-value

79

75

54

80

Percentage of
times

88.8

84.3

60.7

89.9

3.4 TTF Distribution of System of K Nodes

Parallel applications are normally allocated to a set of k nodes for execution. Each

node has an individual failure distribution. In our model, we assume that the system fails

17

when at least one node fails. The TTF's of individual nodes are combined to obtain the

TTF distribution of k nodes when the first failure occurs using the algorithm given in

Figure 4.1. We compare various distributions, namely exponential, Weibull, Gamma and

Lognormal using the K-S test.

Parallel programs are allocated to k processors, and k is usually a power of two.

From the given failure data, we show the time to failure distributions for k= 8, 16, 32, 64,

128, 256. The GOF tests for various models are compared for two cases, namely when

nodes are selected randomly, and when nodes are selected in order. Table 3.3 shows the

comparisons among various distributions for these two cases from the K-S test. In both

the cases Weibull is observed to be a better model for reliability of a system of k nodes as

compared to exponential and lognormal fit.

Table 3.3 Comparison of Failure distributions using the Kolmogorov-Smirnov Goodness.

Comparison of K-S Test of various number
of nodes (nodes selected in order)
No of
Nodes
2
4
8
16
32
64
128
256
350

p-value

0.2628
0.2049
0.1916
0.0818
0.0002
0.0001
0.0001
0.0001
0.0001

p-value

0.8679
0.4310
0.9980
0.9845
0.6300
0.7122
0.2652
0.0599
0.0388

p-value

0.5409
0.9034
0.8571

0.3269
0.0438
0.1538
0.0779
0.0001
0.0001

Comparison of K-S Test of various number
of nodes (nodes selected randomly)
No of
Nodes
2
4
8
16
32
64
128
256
350

p-value

0.6060
0.9940
0.2272
0.3193
0.4829
0.0224
0.0001
0.0001
0.0001

p-value

0.4460
0.8151
0.5758
0.7091
0.4829
0.2484
0.1169
0.0453
0.0159

p-value

0.6573
0.9852
0.7485
0.4671
0.2460
0.0785
0.0061
0.0001
0.0001

3.5 Correlation of TTF's Between Nodes

Correlation is a way to measure how two variables are related. A correlation of

TTF's between two nodes refers to whether the TTF of one node affects the probability

of TTF of another node. There are three possible patterns in TTF correlations.

18

(1) TTF's are positively correlated

The ith TTF of one node increases the probability of i' TTF of another node

(2) TTF's are negatively correlated

The ith TTF of one node decreases the probability of ith TTF of another node

(3) There is no correlation between the TTF's of two nodes

The TTF of one node does not affect the probability of TTF of another node. This

implies that the TTF's of two nodes are independent.

Several studies [48] [50] [51] show that node failures are infact correlated with

failures in multiple nodes occurring nearly simultaneously. Correlated failures have been

studied on several distributed systems. Nath et al. [48] discussed the impact of correlated

failures on the availability of three distributed systems, namely PlanetLab, Public Web

Servers and RON test bed. A study of correlated failures based on conditional probability

on PlanetLab[49], a distributed storage platform show that for 75 percent of the nodes

there is no correlation; however, 10 percent of the node pairs have correlated failures.

Tang et al. [51] have studied the impact of correlated failures on VAX clusters, and

proposed dependability models to evaluate correlations. Nath et al. [48] discusses the

impact of correlated failures on performability and software reliability and presents a

Markov renewal process-based framework to model dependencies between failures.

Distributed systems consist of several hardware and software components with

different configurations. Correlation between failures mostly depend on the system

environment factors like the operating system configuration, shared resources like

network storage and routers, workload, middleware software bugs, and system

configurations. Correlated failures lead to additional costs and performance loss, and

19

these failures have to be minimized during the design phase. For example, Nath et al. [48]

propose design principles to minimize correlated failures on distributed systems. In

addition, manufacturers attempt to provide fault tolerance for crucial components like

disk redundancy, and high available storage solutions to minimize correlation failures.

We use the spearman correlation coefficient on the ith TTF of different

combinations of nodes to understand how well the failures are correlated. The Spear man

correlation coefficient [52] is given by

Where d is the difference between each ranks of ith TTF's of different nodes, and n is the

number of pairs of values. The significance of correlations with respect to the correlation

coefficient values is given in Table 3.4. We performed a correlation test for all the

combinations of nodes, and plot a histogram, given in Figure 3.3. We observe that about

60 percent of the TTF's have a weak correlation, 30 percent have a strong correlation and

10 percent have very strong correlation. Future systems have to be designed to be

independent of failures, therefore assuming independence assumption is still valid.

3.6 Autocorrelation of TTF's

Autocorrelation between TTF's is another important statistical property that

determines whether each failure affects the net consecutive failures. Prior studies use the

Autocorrelation Function to determine long-range dependence on the number of failures

with age. A study on the failure and error processes on several heterogeneous clusters by

Sahoo et al. [21] reveals significant levels of autocorrelation with a periodic behavior

suggesting long range dependence of failure and error process.

20

Table 3.4 Significance of correlation with respect to correlation coefficient values.

Correlation

coefficient

p~0

-0A<p<0.4

0.4<p<0.&

-0.8</?<-0.4

-0 .8</?<l

- l< /?<-0 .8

Significance of

correlation

uncorrected

weak correlation

high correlation

high correlation

strong correlation

strong correlation

Spearman-Correlation Coefficients

Figure 3.3 The cross correlation coefficient among the i"1 TTF among different nodes.

21

In addition, a study on the autocorrelation of disk failures by Bianca [53] suggests

a long-range dependence among failures. To understand whether there is autocorrelation

among TTF's we test the autocorrelation among TTF's of the system using the Durbin

Watson statistic [52]. There are two aspects of autocorrelation when we have to consider

when we want to develop a model for a system of k nodes

(1) If TTF' s of individual nodes have autocorrelation

(2) If TTF's of a system of k nodes have autocorrelation when individual nodes

may have autocorrelation

Figure 3.4 shows the autocorrelation of TTF's among individual nodes where

nodes are ordered based on the number of failures. We observe that the autocorrelation

among TTF's for nodes which have are lesser number of failures is very insignificant.

o
o
c
o

o o o

<

4

3.5

3

2.5-

2

1.5

1

0.5

0

Autocorrelation Using DWTest

•

•

t

•

* — # - — • - - —

• • » • •
• •

10 20 30

No of Failures

40

Figure 3.4 Autocorrelation among TTF's of Individual nodes.

However, when the number of failures increases, results show that the

autocorrelation becomes significant. In the given data, we observed that the 52 percent of

the nodes have significant autocorrelation among TTF's. Because we are interested in

22

modeling the system TTF behavior we therefore combine the TTF's of nodes into a

system in order to understand whether there would be autocorrelation. We combined the

nodes in the order of node numbers using the algorithm given in Figure 4.1 in Chapter 4.

We observe in Figure 3.5 that the autocorrelation is not very significant for a system of k

nodes.

3.5

3

2.5

r
r*

1

0.5

DW- Test (Autocorrelation)

• • • • * • • CW-Statistic

10

• • • • • • • • • • • •

20 30
No of Nodes

40 50

Figure 3.5 The Autocorrelation among system TTF's.

3.7 The Failure Parameters of Various Nodes

Typically, nodes obtained from same manufacturers are assumed to have identical

reliabilities. However, as the nodes are put into usage, the failure properties may change.

Table 3.5 shows the statistical summary of shape and scale parameters of ASCI White,

assuming that TTF's of nodes follow a Weibull distribution. The scale parameters are

shown in Figure 3.6 (a), and the MTTF's of individual nodes are shown in Figure 3.6 (b).

23

Table 3.5 The statistical properties of shape and scale parameters of the TTF's of
individual nodes obtained from White.

Minimum

Maximum

Mean

Median

Standard dev

Scale Parameter

0.4659

1.582

0.8396

0.7923

0.2374

Shape Parameter

323.4

5107

2132

1884

1459

x10 MTTFs ofVarious Nodes

15 20 25 30
Node No

10 15 20 25 30 35 40 45

Figure 3.6(a) Figure 3.6(b)

Figure 3.6 The scale parameters and MTTF's of various nodes in White.

Figure 3.6(a) shows the scale parameters for different nodes, and Figure 3.6(b) shows the
MTTF's for various nodes.

CHAPTER 4

THE DISTRIBUTION OF TIME TO FAILURES

FOR A SYSTEM OF K NODES

Reliability estimation of High Performance Computing (HPC) systems allows

resource allocation and fault tolerance frameworks to minimize the performance loss due

to unexpected failures. Recent studies have shown that compute nodes in HPC systems

follow a time-varying failure rate distribution like the Weibull instead of the exponential

distribution. In this chapter, we propose a model for the Time To Failure (TTF)

distribution of a system of k independent nodes when individual nodes exhibit time

varying failure rates. We also present the system reliability, failure rates, the Mean Time

To Failure (MTTF) of the proposed system TTF model and validate the model using the

chi-square Goodness Of Fit (GOF) test.

Acronyms

CDF Cumulative Distribution Function

Pdf Probability Density Function

TTF Time To Failure or Time Between Failures

MTTF Mean Time To Failure

HPC High Performance Computing

GOF Goodness-of-fit

24

25

K-S Test Kolmogorov Smirnov Test

Notations

t f TTF of a node
j

w.(t) the Weibull Pdf of node i for the j t h failure

',

W (tj) the Weibull CDF of node i, where W. itj) = \wi (t)dT
o

a Shape parameter of the ith node

p. Scale parameter of the ith node

h. (t.) the excess Weibull Pdf for node i

'i

Ht(tj) the excess Weibull CDF, where Ht(tj)= \h(T)dT
o

g(t.) the Pdf of a mixture of excess Weibull's.

G(tj) the CDF of a mixture of excess Weibull's, where G(tj)= \g(T)dT

o

5 (x) the Pdf of the Time to Failure (TTF) of a system of k nodes after the j t h

failure

S • (x) the CDF of the Time to Failure (TTF) system of k nodes after the j t h failure,
X

where S} (x) = \Sj {r)dt
o

p-value The probability that the sample belongs to a particular distribution (for K-S

Test).

4.1 Introduction

Current HPC systems utilize hundreds and thousands of compute nodes

simultaneously to solve computationally challenging problems. The parallel tasks of a

HPC application simultaneously executes on several nodes, and the failure of a single

26

compute node may interrupt the entire application. Runtime systems in HPC platforms,

like resource managers and checkpoint/restart rely on reliability prediction to minimize

the performance loss. For example, reliability-aware checkpoint requires the accurate

failure rate of the system fo allocate an optimal checkpoint interval. Similarly, resource

managers need system reliability information to select resources to provide better quality

of service to users.

In HPC systems several individual hardware and software components may affect

the failure behavior of the system. Accurate reliability estimation in the presence of

multiple failure events is a non-trivial problem. An exponential model is a simple model

to analytically obtain the failure rate, reliability, and MTTF of a system of k independent

nodes because of its memory-less property [54]. However, several studies on the failures

of HPC systems have shown that the failure rate varies over time [53][17][18], A time

varying failure rate distribution like the Weibull or gamma typically results in a better

GOF. Also, applying a time varying failure rate distribution in check pointing algorithms

and reliability-aware resource allocation algorithms [55][56] is observed to minimize

performance loss. In this chapter, we develop a TTF distribution model for a system of k

nodes when individual nodes have a Weibull distribution. We also give analytical

formulae for the system failure rate, MTTF, and reliability for a system of k independent

nodes.

In this section, we derive the distribution of TTF for a system of k nodes, for the

case when the first node that fails interrupts the entire application, using the first-order

statistics approach. Then, we calculate the failure rate and MTTF of the derived system

reliability model. We also validate the model TTF distribution using the chi-square GOF

27

test. Section 4.2 gives the Pdf of the TTF of a system of k nodes, an algorithm to obtain

the system TTF from the TTF's of individual nodes, the CDF, failure rate, and expected

time to failure of the system. In Section 4.3 we validate the model with the GOF tests,

and finally in Section 4.4 we present a numerical example.

Many studies assume that failures of different nodes are independent. However,

few studies have shown some dependencies in failures, especially software failures [57].

These dependencies among failures depend on the system configuration and operation

environment [17]. In this study we built our model based on the assumption that nodes

fail independently. This assumption seems to be true in many cases. The model has merit

because cluster computing systems and servers are usually designed to be independent in

failures and provide fault tolerance in the event of failures. HPC systems where nodes fail

independently are expected to be more reliable.

4.2 TTF Distribution of a System of K Nodes

We make the following assumptions on the failure properties of individual nodes in an

HPC system based on our discussion in Chapter 3.

1. Individual nodes are Weibull distributed, but each node may have different shape

and scale parameters.

2. The first failure interrupts the entire application, i.e the node's TTF's are in series

3. The TTF's of nodes are statistically independent.

4. After a failure, the node returns to operation at the next time instant.

5. No more than one failure occurs at a single time instant for the system (i.e. only

one node fails at a time)

28

We consider a parallel application on a system of k nodes, where any failure in

one of the k nodes interrupts the entire application. In a failure event, the node is renewed

back into operation. There may be a downtime associated with the node during recovery

operation, but in our study, we omit the downtimes and assume that there are spare nodes,

and a node is available immediately after a failure because we are currently interested in

modeling the TTF's. The system TTF's are obtained from the TTF's of individual nodes

using the algorithm shown in Figure 4.1. The algorithm first calculates the actual failure

times for each individual node (n,y)then the system failure times, and finally it calculates

the system TTF's as the time between system failures (see Figure 4.2).

Algorithm to determine the system TTF's

1. i = 1: k //number of nodes

2. j = V.ml ^number of failures ofik node

//Let n9 be the actual failure times ofitk node

//where the TTFofitk node is n9 - n^

3. leti=I: max(size (n^))

4. pi=0;ti=0;
5. x;= p1 =min(n^}//find the min
6. remove pgfom mj

7. whilefaij* <fi)

S. pl+1 =mm(njj) //find $e new min

9. remove pl+1 from n^-

10. i=i+l

11. xi=Pn-i-Pt* ^ne Vs tem TTF's
12. end while

Figure 4.1 Algorithm to determine the system TTF's from TTF's of individual nodes.

29

Node-2

Node-k

SYSTEM

ni2 ni3

X i = n n

n2i

x 2 =n 2 i - n 1 , x3=ni2-n2

nb

X4=ni3-rH2 X5=n22-ni3 |

Figure 4.2 Schematic diagram of system TTF's obtained from the TTF's of individual
nodes.

Figure 4.2 illustrates a schematic diagram explaining how the TTF's of the system

are obtained from the TTF's of individual nodes. Let nn, n12, nn be the failure times of

node 1 and n2i, n22 the failure times of node 2. The system TTF's denoted by xi, X2, X3 are

obtained from the failure times of the individual nodes using the system TTF algorithm

given in Figure 4.1. Now we first obtain the system TTF distribution from the TTF

distributions of individual nodes for the example shown in Figure 4.2, and generalize it

for the system of k nodes.

The Pdf of a Weibull for an ith node and time between j-1 and j t h failure (XJ) is

given by:

w,(x.) ft l* J

CC; ex.
(4.1)

The corresponding CDF is given by

W,(jc,.) = l - e ^ '

30

From Figure 4.2, the first TTF of the system x, is obtained from Nodel (xi=nn).

Since Nodel has a Weibull (from Equation (4.1)), the system TTF xi also has a Weibull

distribution. If there are k nodes, it is possible that any of the k nodes can have the first

failure, therefore the system TTF may belong to any one of the k nodes.

For the case of two nodes, we have

sfa) = wl(xl)[l-W2(xl)] + w2(x2)[l-Wl(xl)]

Therefore, for k nodes, the first TTF has the Pdf

k k

.(,)=!>l-ri(i-w,'> (4-2)
i=i 1=1

After the first failure, the failed node is renewed back into operation, and the

second system failure may be due to any of the k nodes failing. The same node (the one

that failed first) may fail again, or any of the remaining (k-1) nodes (those that have not

had the first failure) can fail. If the same node fails (in our example in Figure 4.2, thelst

node), then the second TTF will have a Weibull, u>,(x,). For the remaining (k-1) nodes

that did not have the first failure, we know that they have survived until the first failure.

We define the probability that a node will fail in time 'x', given that the node has

survived until time 't' as

P(X<t + x\t) = H{t + x\t) = \-e "" . (4.3)

We denote by H(.) the excess Weibull distribution function, having CDF H(x+t\t) and
!K-(t+x)l>

Pdf h(t+x\t). where-t-~(t + xY~1e a" (4.4)
ap

Note that for the shape parameter /? = 1 , the Weibull reduces to an exponential

distribution and for the excess Weibull H(.), we have P(X <t + x\t) = P(X<x).

31

Hence, the second TTF has an excess Weibull distribution if any of the remaining (k-1)

nodes fails. Therefore the Pdf of the 2nd TTF 'x2 ' can be

(1) Weibull W[(x2) , if the node that first failed would fail again

or

(2) A mixture of (k-1) excess Weibull's g(x2).

The Pdf of the second TTF of the system may be obtained as

s2(x2) = wl(x2)[l-G(x2)] + g(x2) [1-W{(x2)], (4.5)

where w1 (x2) is the Pdf, and Wi(x2) the CDF of the node that has failed previously, and

g(x2) is the Pdf of the mixture of (k-1) nodes that have not failed previously and have an

excess Weibull with G(x2) as the corresponding CDF.

In general, the procedure to obtain the Pdf g(x2) is presented below.

For 1 node that has not failed previously, we have g(x2) = 1\(tx + x2 \t{), where

hj(ti+X2\ti) is the distribution of excess life for Node 1 with survival time ti and excess

life x2.

For 2 nodes, we have

g(x2) = hl(t1 + x21 f,)[l - H2(tx +x2\t1)] + [l- HY(tx + x, I /,)]/z2(f, + x. If,), where

h](t]+X2\tj) is the Pdf and H](ti+X2\tj) is the CDF of excess life distribution for Nodel

with survival time tiand excess life x2, and Ii2(ti+X2\ti) is the Pdf and H2(ti+X2\ti) is the

CDF of excess life distribution for Node2 with survival time tiand excess life x2.

Therefore, for (k-1) nodes that have not failed previously, we obtain

(,) = 2 > , (' , - i +Xj uJ-^fi[l~H'itM+xJ ";-•)]• <4-6)

32

In Equation (4.6), note that each of the (k-1) nodes may have a different probability

density functions. The CDF for the mixture of (k-1) nodes with excess Weibull is given

k-1

by G(Xj) = 1 - 1 \ [\ - H, (tH + x. I tH). (4.7)

The Pdf of the j t h TTF for a system when there are k nodes may be written in the general

k k

form as 5. (*,) = £ /,f\ (1 - Ft) (4.8)
=i ;=i

Hi

where fi = w.(x.) if the (j-l)th TTF belongs to the ith node and

f. = h((tH + Xj I t._x) if the (j-l)th TTF does not belong to the ith node.

We verify that the function in Equation (4.8) is a Pdf. The proof is provided in the

Appendix A, Theorem (1).

The CDF of the system TTF for Equation (4.8) is given by

a k

Sj(a) = P(t<a)= fefMlla-F,(T))dT. (4.9)
0 1=1 1=1

l*i

The system reliability of the k nodes is given by

Rj(a) = \-Sj(a) = f\(l-Fl(a)). (4.10)
/=i

The proof can be found in Theorem (2) in the Appendix.

The failure rate of the system TTF is given by

s,(x)

l-\Sj(T)dT

33

k k

1=1 ;=i 1=1 ;=i

Therefore, Ai (x) = . (4.11)
1 ' * k k

0 i=l /=1

The MTTF or the expected time to failure is given by E(x) = JJC[,S(JC)]<&:,
o

Substituting SJ(XJ) in E(x), we obtain

00 k k

E(xj)=jxJYJfil\(l-Fl)dx . (4 . 1 2)

0 i=l /=1

We present the system TTF model for two special cases,

(1) The shape parameter /? = 1 for a Weibull distribution, which gives rise to an

exponential distribution

(2) The shape and the scale parameters for all nodes are equal to some values a and

P.

Case 1: The shape parameter /3 = 1 for a Weibull distribution.

When P = \ the CDF of Weibull becomes, W(x) = l-e ^aJ , which is an exponential

distribution. The corresponding Pdf is given by w(x) = —e ya), and the system Pdf
a

1 ii
for the ith node is given by s (x) = w(x) =—e ^a' .

1 1 ' J at

Case 2: The shape parameter a and scale parameter (3 for all nodes are equal.

That is, a = ax - a2 = a3 = ... = ak and/? = f3x = f32 - /?3 =. . . = j3k .

34

The Pdf for the mixture of (k-1) excess Weibull distributed nodes in Equation (4.6) is

given by,

g(Xj) = (k-1)[1 - H(thl + Xj I thl)f~2 h(tM + Xj I t._x), and the corresponding CDF

from Equation (4.7) is given by

G(x ;) = l - [l - / / (r j _ 1 + ^ U y _ 1)] * - 1 .

Therefore, the Pdf of the system TTF in Equation (4.8) becomes

Sj(Xj) = k[f(X-F)k-1], (4.13)

where / = w(Xj) if the (j-l)th TTF belongs to the failed node and / = h(t;_, + xi 11}_x)

if the (j-l)th TTF does not belong to the node that failed.

1 -f
For Case 1, / in Equation (4.13) is exponential —e a' for all nodes.

a

4.3 Goodness Of Fit Tests

We adopted a simulation based approach to validate the model using the chi-

square GOF test. First, we derived the expression to generate random variables for an

excess Weibull model for a given survival time 't'. The expression for generating TTF's

that follow an excess life distribution is given by,

H-\t + x\t) = {tp -ap-\n{\-U)up -t (4.14)

Where t is the survival time, x is the system TTF or the excess life, a is the scale

parameter and jB is the shape parameter and U is the uniform random variable. The proof

for Equation (4.14) is given in Theorem 3 in Appendix A. We use the Chi-square GOF

test to validate the model. The Chi-square test statistic if given as

35

i=l fij

where m is the number of time intervals, 0t the observed number of failures in the ith

interval, Ei-npi the expected number of failures in the ith interval,n the total number at

risk (sample size) assuming that the TTF's are not correlated, and pi the probability of a

failure occurring in the ith interval, where pi - S} (ai) - Sj (a,_,), and

a-

Sj(a,)= ^hl(t + x\t)[l-H2(t + x\t)] + h2(t + x\t)[l-Hl(t + x\t)]dx (4.15)
0

The expected number of failures in the ith interval is n * [5 • (a,) - S. (a(_,)] (4.16)

We use the following algorithm to calculate the system TTF's

Simulation Algorithm:

1. Generate TTF for two nodes with same alpha and beta using Equation (4.14) for a

sample size (N=200) assuming a = 1000 and/? = 0.8 .

2. Draw a random observation from node-1 and node-2, the system TTF is the

min(TTF of node-1,TTF of node-2).

3. Repeat the above process 100 times to obtain 100 TTF's of the system, group

them into 'm' intervals and perform the chi-square test.

The hypothesis we want to test is formulated below:

Null hypothesis HO: The system TTF has the specified distribution given in Equation

(4.15)

Alternate hypothesis HI: The data does not fit the specified distribution

36

Figure 4.3 shows the comparison of observed number of failures, expected number of

failures calculated from Equation (4.16), and chi-square values for various TTF intervals.

In calculating the expected value in Figure 4.3 from Equation (4.16) a and f3 are

estimated from the sample of generated TTF's. As such the degrees of freedom for the

test statistic is m-c-l= 6-3=3, where m is the number of intervals and c is the number of

estimated parameters. The value of the test statistic i s ^ 2 = 1.365. The critical value J^

for a level of significance a = 0.05 and 3 degrees of freedom is given b y ^ 0 5 i 3 = 7.814.

We observe that 1.365 < 0̂.05 3 • Therefore, we fail to reject Ho and conclude that our

model is consistent with the data. The GOF test shows 95 percent confidence that the data

follows the distribution specified in Equation(4.15).

ai

200

400

600

800

1000

8000

Interval

[0, 200]

[200, 400]

[400,600]

[600,800]

[800,1000]

[1000,8000]

Observed

30

21

16

8

5

20

n=100

Expected

29.1

19.8

13.8

9.8

7

20.5

Chi-Sq

0.028

0.072

0.351

0.331

0.571

0.012

Figure 4.3 The Chi-Square GOF tests comparing the actual and expected number of
failures.

4.4 Numerical Example

To illustrate the TTF distribution model, CDF, reliability and failure rate for a

system of k nodes we give a numerical example. We chose the scale parameters

a\ = ai = a3 - 1542 and shape parameters /?, = /?2 = /?3 = 0.8606 for three nodes. The

Chl-Goodness of Fit Test for Excess Life
Distribution

35-1

3 0 -

| 25

•8 15 -

2 1 0 .
5-

0-

37

failure times (the actual wall clock times that the nodes failed) for the three nodes are

shown in Table 4.1. The calculation of CDF, reliability and failure rate are calculated for

various cases illustrated in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7. We also

discuss the effect of system reliability, failure rate and MTTF with the increasing number

of nodes. Figure 4.4 shows the failure times of the three nodes when the system started

functioning at time t=0. Here, the job is submitted at time t=0 where the job running time

is 100 Hrs.

Table 4.1 The failure times of three nodes

Node-1
1667
6472

10273
10587
12643
12722

14945
17201
17202
17957

Node-2
1114
2347
3358
4264
4662
7592

13018
13719
13779
13800

Node-3
1503
3875
3933
5610
5917
5925

6203
6262
15143
17812

Node 1

Node?

Node3

System
- x=100 _

* • w

t=o

1887

1114

- * -
1503

•x x

Figure 4.4. Job submitted at (x=100, t=0)

2347

- * -

3875

^ _ _

X * failure time

38

The system reliability (From Equation 4.10),

(fo0 8 6 0 6-(0+100)0 8 < i 0 6^

^aoo)=n
1=1

l - e 1542"- = 0.7521

The system CDF (From Equation 4.9 and Equation 4.10) =

/V(100) = 1 - / ^ (1 0 0) = 0.2479

The system failure rate (From Equation 4.11),

V100):

0.8606
3606 _,ruTnm0H<M6

1542 0.8606
(o+ioo)

oMuo-(o+iooy
/ fn0.8606_(n, ,nfl,0.86I>6\\

,0.8606-1 1542"- l-e

O^'^-tO+lOO)"

1542°'

(r o o 8 6 o 6 - f o + i o o) o 8 < i o 6 ^
J n

i=l

l-e

O^^'-tQ+lOO)"

1542°

0.0025

The system MTTF (From Equation 4.12),

£(100)= J3*
100 a"

-(t+xy
t"-(t+x)p

dx = 464.4902

The system MTTF is integrated using the Composite Simpson's approximation function

[54]. The Matlab [54] programs to calculate the above are given in Appendix 2.

39

Node 1

Node 2

Node 3

System

t»3O0

y *=500 >

-fc-
1114

Figure 4.5 Job submitted at (x=500, t=300)

-X-
1867

1503

^ X_

2347

*

3875

-X"
^ - Failure time

Figure 4.5 shows the case when the system was surviving until time t=300, and a

job is with execution time x=500 is submitted at t. Here t is the survival time, and x is the

excess life or the job running time. We show the calculation of reliability, CDF and

failure rate for this case.

The system reliability (From Equation 4.10),

f ^30O t t 8 6 0 6 - (O+50O) 0 - 8 6 0 6^^

^(5oo)=n 1-e
1542" = 0.3782

The system CDF (From Equation 4.10 and 4.9) = F (500) = 1 - Rsys(500) = 0.6218
sys y

The system failure rate (From Equation 4.11),

3*

Aw(500) =

0 .8606 / cnn\o.8606-i

^56 (300 + 500) e

SOO8606 -(300+500)"

1542"

15421
l-e

300°»W-(300+500)'>

1542 1 ' - 8 6 0 6

Y\

j j

n l-e

300o.8606 _(3oo+500) 0 8 6 0 6 ^ ̂
= 0.0018

The system MTTF (From Equation 4.12),

40

/

£(500)= j*3 '
500

Node \

Node 2

Nods 3

,/*-(,+*)/< \

-^(t + xf~le a" Ux = 536.8430

)

<&

System

J%.

11114

j>4
1=200

168?

f̂
1503

~^s; TX-

2347

*

-X-
3875

^
4 — — — •

>^- Failure time

Figure 4.6 Job submitted at t=200, x=350 when the system failed at 1114 Hrs

In Figure 4.6 we show the job submission when the job running time is x=350, the

system survived until time t=200 after the system failed at 1114 Hrs

The system reliability (From Equation 4.10),

*„(350) = n l-e

200"°°"° -(200+350)'

15420J

0.8606 \ \

= 0.4877

The system CDF (From Equation 4.10 and 4.9), F (350) = 1 - fl„,(350) = 0.5123

The system failure rate (From Equation 4.11),

^ , (350) = -

0.8606
I-v 0.8606 /

1542
^ (2 0 0 + 350r606-1^ •**"

/\().S606 / inf i j- i<m\0-8606

1542"
2005°"°-(200+350)"a°"° | I 2 0 ° -(200+350)"

~ l - e '

V

Y\

/ /

n
(r2oool"'06-(200+350)"86"6^

I 1 3 4 2 0 .8606

0.0019

The system MTTF (From Equation 4.12),

41

£(350)= J3:

350

Node i

Node 2

Nods 3

System.

dx = 522.4005

1067

11114

-H-
1503

• * — ^

« J = ^

2347

- * -

3S75

*

X * Failure Time

Figure 4.7 Job submitted at t=50, x=150 when the system failed at 1167 Hrs

In Figure 4.7, the system starts functioning at time t=50. We want to calculate the system

reliability metrics for the future time x=150.

The system reliability (From Equation 4.10),

, (f50 0 8 6 0 6 - (50+150) 0 8 6 0 6^

^aso)=n l-e
1542u-

= 0.6974

The system CDF (From Equation 4.10 and 4.9), F (150) = 1 - f l (150) = 0.3026

42

The system failure rate (From Equation 4.11),

3*

*„(100) = -

0.8606
1 ««470-8606 (50 + 150r 6 0 6 -^ 1542"7 l-e

50""™' "-(50+150)' 0.8606 A \

1542' 0.8606

\A

V

n 1542"-

(fso^^^so+iso) 0 8 6 0 6 ^

l - e

V

= 0.0022

The system MTTF (From Equation 4.12),

(

150

P
a

tp-<.t+xy

£(100)= [3* -^(t + xf-'e a" dx = 489.5752

Parallel applications are allocated to a system of k nodes. Therefore, it is important to

study the system reliability failure rate and MTTF with increasing the number of k nodes.

We use the same example wherea t = 1 5 4 2 , $ =0.8606 and vary i from to 50 nodes.

Figure 4.8(a) shows the system failure rate for various values of 'k'. We observe that

increasing the number of nodes increases the failure rate. Figure 4.8(b) shows the system

MTTF with the increase in number of nodes. We observe that increasing the number of

nodes decreases the MTTF. Figure 4.9 shows the effect of system reliability with the

increase in the number of nodes. We observe that the system reliability decreases with the

increase in number of nodes. We study Reliability-Aware optimal k node allocation in

more detail in Chapter 6.

43

Failure Rate versus K Nodes MTTF vs K-Nodes

(a) (b)
Figure 4.8. The effect of failure rate and MTTF with the increase in number of nodes (k)

System Reliability versus K Nodes

Figure 4.9 The effect of system reliability with the increase in the number of nodes

4.5 Conclusion

Estimating system reliability of a parallel program among a system of k nodes is a

challenging problem when there are multiple components, with different failure

behaviors. When components are independent and have a constant failure rate

(exponential model), estimating the k node system reliability is simple because there is no

dependency on the previous failure time. However, recent studies on HPC system suggest

that individual compute nodes follow a time varying distribution like the Weibull [16],

[17], [18], [19], [20] instead of the exponential. In this chapter, we developed a TTF

distribution model for a system of k nodes for a parallel program, where individual nodes

44

follow a Weibull distribution. Based on the distribution function of the proposed model,

we developed the algorithm to obtain the system TTF distributions, the reliability of a

system of k nodes, the failure rate, and the MTTF. We also validated the model using a

simulation based approach. The proposed model exhibits more accuracy than previous

models in the literature since it considers the excess life (future running time given that

the nodes survived until time't') in order to estimate system reliability.

CHAPTER 5

RELIABILITY-AWARE RESOURCE

ALLOCATION IN HPC SYSTEMS

In this chapter, we propose a reliability-aware resource allocation model for

parallel programs based on a time-varying distribution and present reliability-aware

resource allocation algorithms to minimize the performance loss due to failures. We also

study the effectiveness of the proposed allocation algorithms based on the actual failure

logs and parallel workloads. The failure data are obtained from the 512 node ASCI White

system from Lawrence Livermore National Laboratory (LLNL), and the parallel

workloads are obtained from Los Alamos National Laboratory (LANL) and San Diego

Supercomputer Center (SDSC).

5.1 Introduction

Typically, parallel applications like MPI have multiple processes that

concurrently run on several nodes. MPI processes running on these nodes

intercommunicate by passing messages between the processes that span several nodes.

Unfortunately, a failure on any nodes running these processes can cause the overall

application outage and requires restarting the entire application. The compulation time

lost for a parallel program due to failures is called the waste time. An ideal model would

predict the exact time and event of failure, which would enable the applications to

45

46

checkpoint right before the failure or a resource manager to avoid allocating the job to a

node that may fail in future. However, current failure prediction techniques are still

unrealistic to be applied in real systems.

We study stochastic techniques to determine the reliability of computation nodes

and apply heuristics based on workload properties to minimize the overall waste time.

We present reliability-aware resource management algorithms and compare with the

existing techniques.. To understand the effectiveness of the proposed reliability-aware

algorithms, we use the production parallel workloads available at [15] on failure data of

ASC white. We first discuss the reliability functions for estimating the reliability of a

parallel job. Then, we establish a reliability model for job allocation, discuss reliability-

aware resource allocation algorithms, waste time metrics, and the effect of waste time

metrics for various job types.

The rest of the chapter is organized as follows. Section 5.2 introduces the time

varying reliability function, reliability-aware resource allocation model, and reliability-

aware resource allocation algorithms for parallel programs. Section 5.3 describes the

simulation framework for reliability prediction; parallel workloads used, and waste time

of various reliability-aware resource allocation algorithms for resource allocation. Section

5.4 finally summarizes the contributions.

5.2 Reliability Model for a Parallel Application

5.2.1 Reliability of Job Completion Time

Let x denote the job runtime, and t the time since the most recent failure, (t is

basically the failure-free runtime or survival time of a particular node). The reliability of

job run time, conditioned on the failure free runtime t is given by

47

R(t + x\t)=R(t + x) (5.1)
R(t)

Where, R(t + x) is the reliability during the time (t+x) and R(t) is the reliability

of the failure free running time. We use exponential and one of the time varying CDF to

develop reliability cost functions. We choose Weibull because it is relatively easier to

develop cost function for estimating the reliability of job completion time as compared to

gamma and lognormal.

If we apply the above Equation (5.1) for the CDF of Weibull:

*,+ m ̂ W)
R(t + x\t)=——- = eK J (5.2)

Applying Equation (5.1) for the CDF of Exponential

R(t + x\t) = 1— = e-Ax=R(x) (5.3)

e

Exponential model is well-known, and we observe from Equation (5.3) that for

exponential distribution there is no memory on previous failure, and the reliability of job

run time R(x) is the same during the life time of the node. It does not matter when the

previous failure happens. But in the case of Weibull from Equation (5.2), the reliability of

job completion time decreases as a job is submitted away from the most recent failure

(for shape parameter m<l). To determine how a distribution performs in selecting

reliable nodes to avoid failures and minimizes waste time, we can compare the reliability-

aware resource allocation algorithms that apply reliability functions on the actual failure

data and parallel job workloads.

48

5.2.2 Reliability Model for a
Parallel Application

For a parallel program like MPI, a single node failure interrupts the entire

program running on all k processors. In this reliability model, we assume that nodes have

identical processing times, and nodes are statistically independent [25]. If x is the job

runtime and Rl(t1 + x\t1) is the reliability of nodet, where t} is its failure free running

time, R2(t2 + x 112) is the reliability of node2, where t2 is its failure-free running time and

Rk (tk + x \tk) is the reliability of node, where tk is its failure free running time. Because

node failures are independent from another, and the entire parallel program can be

interrupted if any of the k nodes fail, the system reliability model is a series connection.

The system reliability for a parallel program allocated on k nodes is therefore given by

1=1

Note that the above reliability function is discussed in Chapter 4 may also be obtained

from Equation (4.9) and the proof is given in Theorem (2) in the Appendix.

We define a heuristic of Reliability-aware Scheduling (RAS) Algorithm as follows:

"For a job that requires k out of n available processors, the job is allocated to k adjacent

processors and nodes such that Rsys is maximized."

5.2.3 Reliability-Aware Resource
Allocation Algorithms

The RAS algorithm is given in Figure 5.1. For an exponential RAS algorithm

(EXP) Riis obtained from Equation (5.3). Exponential reliability algorithm requires the

failures rate X of each processor and the jobs run time. For a Weibull RAS algorithm

(WEIB) Rj is obtained from Equation (5.2). Weibull reliability algorithm requires the

shape (oc) and scale (/3) parameter values of each processor, the time since previous

49

failure (t), and the job running time (x). All the three parameter values (A,m,c) are

obtained from the failure history of each node.

The following performance metrics were considered to evaluate the reliability

algorithms.

%MWT (Mean Waste Time): The ratio of waste time to the actual run length of

the job.

Total Waste Time: The total waste time for each category of job. The category of

jobs form a workloads are either the run lengths or the number of processors

The total waste time per category gives the amount of waste time for various

categories of jobs. The %MWT gives a more normalized metric on the percentage of time

lost relative to the job run length.

RAS (R e l i a b i l i t y - a w a r e Schedul ing) Algor i thm

K : Haximum Number of Jobs
H : Maximum Number of Processors
1: for (each job ready in job queue J (i= l to N))

processors Id le (j=l to H)
s e l e c t the f i r s t job (J) i n the queue

i f (job (Ji .no_of_procs) avai lable==true)
s e l e c t k adjacent r e l i a b l e processors

from nodes out of H such t h a t R i s
maximized

5: endif
6: i f any of the s e l ec t ed k processors f a i l ed
7: requeue the job a t the head of job queue

endif
endfor

Note: R, for Re l i ab i l i t y -aware algorithm i s computed us ing
Equation (5.4)

Figure 5.1. The Reliability-A ware Scheduling Algorithm

50

5.2.4 A Study of Waste Time
for a Parallel Program

Figure 5.2 and Figure 5.3 shows the effect of MWT with respect to job run length

and number of processors. In the ideal case we want to avoid allocating job to nodes that

would fail, but present mechanisms disallow prediction of the exact failure event and

time. An accurate reliability prediction function should, however, minimize the failures

and waste time with reliability-aware resource allocation policies. There could be several

factors that affect the waste time in the presence of failures like the arrival sequence of

jobs, type of jobs, and availability of resources.

To understand the effectiveness of a reliability prediction function we first

compare how individual jobs are affected due to waste time. Figure 5.2(a) and Figure

5.2(b) illustrate the workloads categorized by the number of processors and Figure 5.2 (c)

and Figure 5.2(d) show the comparison of total waste time with respect to number of

processors when an individual job is allocated using three policies. We can observe that

%MWT is minimal with reliability-aware resource allocation for jobs requiring different

number of processors. When the number of processors required by a job increase, the

failure probability also increases. Thus, the %MWT is higher for jobs that require more

number of processors. In Figure 5.2 (c), for LANL workload there are 6 jobs (about

0.00005% of the entire jobs) that require 1024 processors and for SDSC in Figure 5.2 (d)

there are 0.00002% of the entire jobs that require 2048 nodes. Because the percentage of

the jobs that required many processors is smaller, we chose not to plot these values. The

effect of waste time due to job run lengths is shown in Figure 5.3(b). The graphs in

Figure 5.3(c) and Figure 5.3(d) show that the waste time increases when jobs have longer

51

job run lengths; however, the graphs do not show clear trends for much longer jobs

because of the difference in the percentage of jobs with different run lengths.

LANL SDSC

32 64 128 256 512
Number of processors

(a)

120000 -

100000 -
UJ

•O 80000 -

, ^ 6 0 0 0 0 -

40000 -

20000 -

ff
C O ••£>

Number

i 1 • H • • ._
(S ^ m >fl N
ro D̂ c\l in ,-H

i H CM IT)

of p r o c e s s o r s
(b)

10
24

% age MWT vs. No of

Processors(LANL)

%age MWT vs. No of processors

(SDSC)

H

s
s

64 128 256
of p r o c e s s o r s

(c)

512

H
2

S

a)

(0

^ <9

V
of p r o c e s s o r s

(d)

Figure 5.2 Description of workloads and comparison of Waste Times for reliability-aware
policies for individual jobs requiring different number of processors.

52

70000

60000 -

50000
a
.° 40000

" 30000 -

* 20000

10000

0

B C D
Job run l e n g t h

(a)

Job run length

(b)

Percentage MWT vs runlengths

0.12 -

A B C D E

Job run length

(c)

Percentage MWT vs job runlength

(SDSC)

B C D E
Job run length

(d)

A

<lMin

B

lMin<X<lHr

C

lHr<X<6Hrs

D

6Hrs<X<12Hrs

E

12Hrs<X<24Hrs

F

>lDay

Figure 5.3 Description of workloads and comparison of Waste Times for reliability-aware
policies for individual jobs requiring different job run lengths

5.2.5 Heuristics for Reliability-Aware
Resource Allocation

In an actual job scheduling scenario, we have a mixture of jobs based on arrival

sequence with different run lengths, and number of processors. We explore the following

heuristics that can aim to minimize the overall waste time:

(A) Resubmit the job immediately after the failure

53

(B) Allocate longer jobs to reliable processors

(C) Allocate shorter jobs to unreliable processors

(A) Resubmit the job immediately after the failure

A job should not be penalized for a resource failure by queuing it at the end of the

job queue. Hence, a job that has failed is immediately scheduled on the most reliable

node.

(B) Allocate longer jobs to reliable processor

During a job execution, the waste time depends on what point of runtime the

failure occurred. If a job fails just before completion, it has higher waste time as

compared to when it fails in the beginning due to rollback time. In general, longer jobs

are more likely to have more waste time as compared with shorter jobs, thus allocating

longer jobs to more reliable processor reducing the failure chances for longer jobs,

thereby minimizing the overall waste time.

(C) Allocate shorter jobs to unreliable processors

If both short and long jobs are allocated to reliable processors, the additional (or

new) longer jobs coming later in the queue would get assigned to less reliable processors

in the system, therefore allocating shorter jobs to less reliable nodes makes reservations

for longer jobs. Because allocating shorter jobs to unreliable processors has less waste

time as compared to longer jobs, the overall waste time can be reduced.

With the above mentioned heuristics, we develop an algorithm called the LJRAS

(Longest Jobs Reliable Aware Allocation) that is given in Figure 5.4. The algorithm

basically allocates longer jobs to reliable nodes, shorter jobs to unreliable nodes and

resubmits the job immediately after failure. The reliability-aware simulation framework,

54

workloads and discussion on comparison of reliability-aware resource allocation

techniques are discussed in the Section 5.3.

LJRAS (Longest Job Reliability-aware Scheduling) Algorithm

N : Maximum Number of Jobs
H : Maximum Number of Processors
1: for(each job ready in job queue J (i = l t o N))

&& Each processor I d l e (j = l to H)
2: s e l e c t the f i r s t job (J") i n the queue
3: if (job (Ji.no_of_procs) avai lable==true)
4: i f j i . r u n _ l e n g t h >lday
5: s e l e c t k adjacent r e l i a b l e processors

from nodes out of M such t h a t R i s
maximized

6: e l se
7: s e l e c t k out of M adjacent u n r e l i a b l e

processors such t h a t Rsys i s
minimum

8: endif
9: endif
10: i f any of the k processors f a i l ed
11: requeue the job a t the head of job

queue
12: endif
13: endfor
Note: R for Re l i ab i l i t y - aware algorithm i s computed us ing
Equation (5.4)

Figure 5.4 The Longest Job Reliability-Aware Scheduling Algorithm

5.3 Comparison of Reliability-A ware

Resource Allocation Algorithms

In this section we discuss the simulation study of applying various resource

allocation algorithms namely, RAS, LJRAS and round robin with the parallel jobs on the

actual failure data, and parallel workloads. We compared the waste time metrics for

reliability-aware resource allocation algorithms with exponential, Weibull and round-

robin techniques.

55

5.3.1 Simulation Study

We simulate the 8196 processor cluster from the ASC White failure logs and run

parallel workloads in the presence of failures. The system failure logs (number of

processors, their failure trace which include uptime and downtime) and parallel job

workloads trace (job submit time, running time, and number or processors) are inputs to

the simulator. Each parallel job requires a certain number of processors, and each job

runs on not more than one processor at the same time. The parallel job continues to run

until either the job is completed, or any node has failed. Jobs are scheduled based on First

Come First Serve policy. If the job is failed, it is given highest priority.

For reliability-aware resource allocation, the simulator uses the most recently

available failure parameters obtained from nodes in order to obtain the reliability of a

parallel job. Failure rate, shape and scale parameters are evaluated using the MLE

(Maximum Likelihood Evaluator) and updated periodically every 1000 minutes.

5.3.2 Parallel Workloads

The workload for the ASC white was unavailable. We chose two workloads from

[53] that are significant on terms of jobs that required more number of processors, jobs,

longer run lengths, and has more number of jobs. LANL workload is from a 1024

processor system and has 122,060 jobs, and SDSC BLUE workload is from an 1152

processor system with 243,314 jobs. We use the initial 6 months failure data of nodes

from ASCI White to calculate the failure parameter values, we therefore assume jobs start

executing at 250000 minutes. The number of processors in the failure data is 8196. Using

the actual submit times would make most of the processors idle. Therefore to utilize the

56

system to maximum and compare the waste time for various techniques, we assume that

all jobs are available at the same time.

5.3.3 Comparison of Reliability Prediction

We present the comparison results of among exponential RAS, exponential

LJRAS, Weibull RAS, and Weibull LJRAS allocation policies and round robin (RR)

technique. A round robin algorithm (RR) selects k adjacent processors in the order of the

node numbers. If the last node number is reached, the RR algorithm starts selecting nodes

beginning with the first node.

We first study the overall waste time and then discuss the waste time metrics with

respect to various run length of jobs. The total waste time of each technique for the two

workloads is shown in Figure 5.5. We observe that (1) reliability-aware techniques based

on two variations, exponential and Weibull result in lesser waste time, and (2) allocating

longer jobs on reliable processors and shorter jobs on less reliable processors further

reduces the waste time. For SDSC workloads, the total waste time by RAS is reduced as

much as lOpercent and as much as 33.8 percent with LJRAS technique.

CJ 16000
.2 14000
f- 12000
<D 10000
w 8000
| 6000

4000
^ 2000

o
t-J

Comparison of

Total Waste Time (LANL)

•RAS
HLJRAS

Comparison of
Total Waste Time (SDSC)

Exp Weib

160000
1400a0
12000-0

loooao
80000
60000
40000
20000

0

•RAS
El LJRAS

Resource Allocation Scheme Exp Weib

Resource Allocation Scheme

Figure 5.5 The comparison of overall waste times for the two workloads namely LANL
and SDSC.

57

In the case of LANL, the waste time is reduced with RAS by as much as 30

percent and by LJRAS by 53 percent. The longer the jobs are, the more likely they will

encounter failures during execution. Therefore, longer jobs have less reliability and more

waste time as compared to shorter jobs. In RAS algorithm, allocating short jobs to

reliable nodes makes the reliable nodes unavailable to longer jobs. The LJRAS takes

advantage of the fact that shorter jobs have less failure probability, hence shorter jobs

may be allocated to less reliable processors and thus reliable processors are reserved to

longer jobs.

In general, the waste time is affected by three factors namely (1) the time of

failure (2) the job run length and (3) the availability of reliable processors. For longer

jobs, Weibull based reliability function performs better than exponential and exponential

performs better than round robin. For example, the total waste time for LANL in Figure

5.6 (a), and total waste time for SDSC in Figure 5.6 (b) shows that for longer jobs

(category D,E and F), the Weibull-based LJRAS performs as good as or better than the

exponential-based LJRAS.

58

LANL: Total waste time,

categorized by job run length

12000 -,

10000

8000 -

3 6000

4000

2000 -

B C D E

Job run length

SDSC: Total Waste time,

categorized by job run length

JobBrunClengR:h E F

MWT vs Job Runlength (SDSC)

% MWT VS job run length (LANL)

B C D E
Job run length

Figure 5.6 Description of LANL and SDSC workloads based on run lengths and
comparison of Total Waste Time and % average Waste Time for each run lengths of jobs.

In our experiments, the failure data belongs to a Weibull population, which is one

of the reasons why it performs better than exponential. A more accurate reliability

prediction function may perform better than Weibull. With reliability-aware resource

allocation, the waste time is also affected by several factors like the arrival rates, and

system utilization. For instance, if arrival rate or system utilization is smaller, with

reliability-aware allocation, most of the unreliable nodes are left idle and very few jobs

59

fail. Incorporating reliability-aware resource management in the presence of failures is a

hard problem both because of the unpredictability of workload properties and failure

behavior of HPC systems. We observed different distribution of job sizes in the

workloads and failure properties of nodes to develop some heuristics to minimize the

overall waste time.

5.4 Conclusions

Failures and downtimes are a growing concern for large- scale HPC systems.

Future HPC systems require an integrated RAS framework [7] for providing reliability

information of resources for runtime mechanisms such as checkpoint managers and

resource managers. In this chapter, we proposed a time varying failure rate based

reliability model for parallel applications and evaluated effectiveness of a reliability-

aware resource allocation as compared to round-robin for exponential and Weibull

reliability functions with two policies namely Reliability-Aware Scheduling (RAS) and

Longest Job based Reliability-Aware scheduling (LJRAS). Our results indicate that

LJRAS technique with Weibull function minimizes the waste time, and performs better

than or equal to exponential in most cases.

CHAPTER 6

RELIABILITY-AWARE OPTIMAL K NODE

ALLOCATION OF PARALLEL

APPLICATIONS

In an ideal case, scalability by increasing the number of nodes would reduce the

completion time. However, some important system factors limit the scalability to a

certain threshold to achieve better performance[59][60][61][62]. Current and future

parallel applications demand significant computing resources, and thus system reliability

becomes a major scalability issue. In this chapter, we first study the effect of job

completion time with respect to scalability. Our findings suggest that in the presence of

failures, increasing the number of nodes for a parallel application would start to increase

the completion time after a certain threshold. In addition, there is an optimal number of

nodes the parallel application can scale, and the overall completion time can be

minimized. Based on this observation, we propose a reliability-aware optimal k-node

allocation algorithm and compare with existing resource allocation algorithms.

6.1 Introduction

There are two types of scaling, namely weak and strict. Strict scaling involves

increasing the processor count to reduce the completion time. With weak scaling, the

processor count is increased proportional with the input (i.e. throughput computing). We

60

61

study the performance aspect relevant to job completion time (strict scaling). Reliability

has been mentioned as an important challenge for large scale computational applications.

In Chapter 5 we observed that reliability-aware resource allocation can improve the

performance loss. Though reliability decreases with increasing number of nodes,

reliability-aware resource allocation in the context of scalability has not been given much

attention. We also observed in Section 3.7, Chapter 3 that individual nodes may posses'

different reliabilities over time. Figure 6.1 shows the effect of system reliability from

ASCI White with the increase in number of nodes. We observe that the system reliability

decreases with the increase in the number of nodes.

Effect of Reliability of Parallel Application Running on system of K Nodes
1 1 1 1 1

i

0 100 200 300 4D0 500
Number of Nodes (1Node=16 Processors)

Figure 6.1 Effect of reliability with the increase in number of nodes.

Considering reliability as an important performance metric for resource managers,

enables to develop heuristics that minimize waste time and reduce the job completion

times. In this chapter, we study how reliability affects job completion time while scaling

up the number of nodes and propose a reliability-aware optimal k node allocation

algorithm based on the expected completion time of a parallel program.

s 10°

62

The rest of the chapter is organized as follows. Section 6.2 discusses the expected

completion time of a job without failures. The effect of reliability as an important

performance and scalability metric is discussed in Section 6.3. Section 6.4 describes the

reliability-aware optimal k node selection algorithm and compares it with other resource

allocation algorithms for various types of jobs. Section 6.5 discusses the conclusions and

future work.

6.2 The Expected Completion Time of a Parallel Program

To estimate the completion time of a parallel program in the presence of failures,

we first derive the expected completion time on k nodes. Figure 6.2 shows the completion

time of a parallel program when there are failures and repairs. The actual completion time

TC(k) is an estimated running time of a parallel program on k nodes when there are no

failures. In the event of a failure, the un-checkpointed parallel program running on set of

k nodes is interrupted and has to be restarted from the beginning. The time until the

failure which is wasted, is called the waste time (Wki). The expected waste time is the

MTTF of the given set of k nodes that we denote by M. The time the application takes to

restart from the ith failure is called the repair time rid. We denote the expected recovery

time by R. The probability of system failure (Fk) Equation (4.9) in Chapter 4.

63

«*"* '~~ i s .

/ resubmit: N

\

0
1M

?ti

1-1

Figure 6.2 An un checkpointed parallel application with failures.

Theorem: The Expected Completion time of a parallel program is given by

E(Tc(k)) = Tc(k)+(M+R)
l - f \

(6.1)

Where Tc(k) is the completion time of a job on k nodes without failures, M is the expected

waste time due to failures, R is the recovery time, and Fkis the failure probability of the

system.

Proof:

The expected completion time in the presence of multiple failures and repairs is given by:

E[Tc(k)] = (1 - F t l)Tc(k) + Fki [wkl + rkl + (1 - Fk2)Tc(k) + Fk2 [wk2 +rk2+(l- Fki)Tc{k3) + ...

In the above equation, Fki is the failure probability of k nodes selected first time the job is

allocated. If the job fails, the job may be allocated to a different set of k-nodes where the

failure probability is Fk2 and so on. Since the job is not checkpointed after a failure the

job has to be restarted from the beginning. Therefore Tc(k) still remains the same and has

reliability of completion (1-Fia)- For a Weibull-based distribution function the failure

probability may change over time. For simplicity, we consider a special case where

64

Fki=Fk we assume average system reliability for all the nodes. Similarly, the average

waste time for k nodes (M) and the average repair time for k nodes R. Therefore,

let **k ~ rkl — tk2 — Pk3 — ...rkm M=Mkl=Mk2=Mki = ...Mkm and

^ = wk\ = wki = wki ~ —wkm f° r m ' failures.

Therefore,

E[Tc(k)] = a-Fk)Tc(k)+Fk[M+R + {l-Fk)Tc(k,+Fk[M + R + (l-Fk)Tc(k) + k'* c(k) ' A k k >l c(k) ' x * I k > x c(k)

We can rewrite the above equation as follows:

E[Tc(k)] = (l-Fk)Tc(k)+FM+FR + F(l-F)Tc(k)+F2M+F2R + F2(l-F)Tc(

+ F3M + F3R + F3 (1 - F)Tc{k) +

After factoring out M, R and TC(k) the above equation becomes

E[Tc(k)] = (l-Fk)Tc(k) +Tc(k)(F(l- F) + F\\-F) + F\\- F) +..)

2 , z?3 + M(F + FZ + F* +...) + R(F + F'+Fi+...)

-A 1
We have from geometric series that 2_,r' —

i=0 1 — '

1 r
Therefore, V r ' = 1 = .

tT \-r \-r

Using the above sum, we obtain, E[TC k] = (1 - Fk)Tc 1 k'Ac(k)

l-F
+ (M+R)

1-F

This implies E[Tc(k)] = Tctk) + (M+R)
l-F

The expected completion time considering the reliability of nodes on different

scale systems is shown in Figure 6.3. We observe that the expected completion time

increases after a reliability threshold is reached. The expected completion times for

65

different shape and scale parameters are shown in Figure 6.3. Figure 6.3 (a) shows the

expected completion time for different values of shape parameter b.

Expected Completion Time vs No of Nodes for various values of beta
when a=2.8780e-*TJ05

b=0.5
b=0.6
b=0 7
b=08 j
b=0 9 j
b=1.0 /
b=1.2 /

/ / / /
/ / i

10' 10* 1
No of Nodes

F̂ Kpected Completion Time vs No of Nodes for Various values of alpha when b=1

-

a= 9.5934e-tO04
a= 1.4390e-tO05

a= 1.4390e-t€05
a= 5.7561e-r005
a- 1.1512S+O06

-

- 5 = " - " "

/

-

/
/

, ' /

i
j-

' .
/

/
-

• ' -

-

-

Figure 6.3 The expected completion times for various values of the shape and scale
parameters for a Weibull distribution.

We observe that increasing the number of nodes increases the expected

completion time, and smaller values of beta have higher expected completion time in the

case of large number of nodes. Figure 6.3(b) shows the expected completion time for

various number of nodes for different values of the scale parameters a. We also note that

for different values of the scale parameter a, increasing the number of nodes increases

completion time. Furthermore, lower the value of alpha, the higher is the expected

completion time.

6.3 Performance and Scalability of Parallel Programs

In this section, we discuss the expected completion time with various scalability models.

Amdahl's law and Gustafson's law are some of the widely discussed scalability models

with respect to the completion time of a job.

66

6.3.1 Amdahl's Law

According to Amdahl's Law, the maximum achievable speedup is limited by the serial

part of the application. The "speedup" of a parallel program is defined as the ratio of the

rate that a job is running on k processors to the rate at which the same job is executed on

one node [49]. The speedup S(k) is given by

1 T
S(k) = and Tclk) = - ^ L

£ + (!-/» m

k

,where p is the fraction of code that can be parallelized and 1-p is the code that has to be

executed sequentially and k is the total number of nodes. TC(k) is the estimated completion

time on k nodes and Tc(l) is the expected completion time on one node. Amdahl's law

gives an upper bound on the amount of scalability that can be achieved for a program

with a certain degree of parallelism. The expected completion time is therefore given by
P (6.2) E[Tcik)] = Tc(k)*\^- + (\-p)\ + (M+R)

We present an example program with an execution time of 105 hrs to study the

scalability effect with and without reliability. Figure 6.4(a) shows that the job completion

time tends to decrease in the beginning when increasing the number of nodes. However,

after a certain point the job completion time remains constant because the improvement

in scalability is negligible. Figure 6.5(a) shows the comparison of expected job

completion time with respect to the number of nodes with and without reliability. When

the reliability of nodes is considered, we observe that the expected completion time

decreases in the beginning but starts to increases after a certain point.

67

6.3.2 Gustafson's Law

According to Gustafson's Law, the time needed to execute the serial fraction of

the program may be overlapped with some other operations, unlike Amdahl's law, which

imposes a restriction that the sequential part of the program is completely disjoined to the

parallel counterpart. The scalability of According to Gustafson's Law [37] the speedup

and the completion time are given by:

S(k) = (l-p) + k*p

T =M>
c{k) S(k)

The expected completion time with Gustafson's model is given by:

(l-p) + k*p
Fk

1-^i
(6.3)

The example program with an execution time of 105 Hrs is used to study the effect of

scalability for Gustafson's model, with and without reliability. Figure 6.5(b) shows the

completion times of parallel application with three degrees of scalability. We observe that

the actual completion time decreases linearly on a log-log scale. Also, Figure 6.5(b)

shows that the expected completion time by considering reliability decreases in the

beginning, but starts to increase after a certain point.

68

Gustafsons Law

: *N

•

p=0,695

- - p-0.795
p-Q.995

:

""•>

:

— p=0.795
- p=0.895

p=Q.995

^ V X N .

No Of Processors No of Processors

Figure 6.4 (a) Amdahl's Law Figure 6.4(b) Gustafson's Law

Figure 6.4 The scalability effect with respect to job completion time for different
performance models (Amdahl's Law and Gustaf son's Law)

Expected Completion Time (Amdahl's Law) Versus Number of Nodes

E 10 -

_ Expected Completion time
(Without Considering Reliability)

_ Expected Completion Time
(Considering Reliability)

10 10
Number of Nodes

Figure 6.5(a)

Expected Completion Time (Gustafson's Law) vs Number of Nodes

Expected Completion Time
(Without considering Reliability)
Expected Comletion Time
(Considering Relaibility)

10 10
Number of Nodes

Figure 6.5(b)

Figure 6.5 The expected completion times of parallel programs considering reliability for
Amdahl's Law (a) and Gustafson's law (b).

6.4 Reliability-Aware Resource Allocation

To study the effect of reliability in selecting the optimal number of k nodes, we

consider reliability and job completion time as important metrics for space sharing. In

this section, we discuss existing relevant resource allocation algorithms, the optimal k

69

node allocation algorithm and compare these algorithms by simulating the resource

allocation of parallel jobs on the generated failure data representing ASCI White system,

and synthetic workload representing the parallel workload properties.

6.4.1 Resource Allocation Algorithms

The main objective of the resource allocation algorithm is to select the optimal

number of nodes that results in minimal overall completion time of a parallel application.

A node in may contain more than one processors. In our study, we assume a node has a

single processor, but the resource allocation may be extended to an SMP system.

Therefore, allocating a job to a node means allocating to a processor and vice-versa.

6.4.1.1 All Nodes (ALL)

This technique selects all the available nodes in the system. In the absence of

failures, selecting all the nodes gives the minimum job completion time. However, if any

of the allocated node fails before the job is completed, it would be resubmitted to all the

nodes after the node is up.

6.4.1.2 Round Robin Allocation (RR)

The Round Robin allocation technique allocates the job to k' adjacent nodes

based on the round-robin policy of node ids. When the last node number is reached,

nodes are allocated beginning from the first node id. The k' number of processors

required for the parallel application (which means k' node) is given by the user and the

value of k' does not change. The RR policy does not take into account the node

reliabilities or job run-lengths before allocating the job.

70

6.4.1.3 Reliability-aware Allocation (RA)

Here, the k' number of nodes for a job is given by the user, and the k' value is

fixed. The algorithm selects the k' most reliable nodes for every job. Reliability-aware

resource allocation of parallel applications [55] reduce the overall waste time as

compared to Round-Robin and has been discussed in Chapter 5. The reliabilities are

calculated using a Weibull distribution and the system reliability for k nodes is given in

Equation (5.4) from Chapter 5.

For simulation, we randomly generate the workloads with the number of

processors required by the user's applications. Several studies have shown that the

number of processors selected by the user follows a two-phase log uniform distribution.

We generate the number of processors for each job using the two-phase log uniform

distribution. Further discussion on workload and failure data is given in section 6.4.3.

6.4.2 Reliability-Aware Optimal
K Node Allocation

In an HPC system the reliability of each individual node is calculated based on the

failure parameters obtained from the failure history of the nodes. Each node may have

different reliability, and an optimal k node allocation algorithm considers the following

three factors.

(A) The Number of Processors

Increasing the number of processors reduces job completion time. On the other

hand, increasing the number of nodes will also increase the failure probability. This

requires resubmission of jobs which increases the overall completion times and waste

times.

71

(B) Job Run-length

Longer jobs have more chances to encounter failures, as compared with shorter

jobs. Therefore, for a given set of nodes, longer jobs may have more waste time as

compared with shorter jobs.

(C) Reliability of k nodes

The reliability of a selected node affects the chances that the node will fail in

future. Also, failures increase the waste time and completion time of a job.

We define the scheduling problem may be as follows:

"Given a parallel application, and a HPC system that contains m nodes n\, n2, nj . . .nm

with reliabilities rj,r2,r3...rm find k out of m nodes such that the overall completion time

is minimized''

Figure 6.6 gives the algorithm for selecting optimal k out of the 'm' nodes in the

system. The expected completion time on k nodes ECTime(kj) in the algorithm is

calculated using Equation (6.1), where k is the number of nodes and j is the job run

length on a single node. It may not possible to accurately estimate the completion time on

a given k nodes (i.e Tc(k) in Equation (6.1)); therefore we use some standard

scalability/performance models discussed in Section 6.3 to study the effectiveness of k

node allocation algorithm The job completion time on k nodes without considering

reliability may be calculated from one of the performance models (In Equation 6.2 or

6.3). The RA-Opt algorithm basically calculates the reliability of each individual node

and incrementally allocates k-nodes such that the expected completion time is minimal.

72

Algorithm: Optimal K-Node allocation

1. k=0// The number of nodes selected
N[]//contains all the node id's
J//contains the pb runlength

2. fir i=l: maxfsize (N)) nodes
3. calculate R(i) //Equation (6.2)
4. end
5. M[] - sortdesc(N,R) //sort the nodes based on descending order
6. //ofreliabilities
7. KNList.add{M(l)); I/add the node with highest reliability
S. while (ECTime{k+ 1,1) <= ECTimefcJ) /Equation (6.3)
p k=k+I
10. KNList.add(M(k+l))
11. end while
12. opt_k=k
13. allocate application to KNList.nodes
• Allocate (k) Nodes to the Application

Figure 6.6 The optimal k node allocation algorithm.

Figure 6.7(a) shows a sample case where the optimal number of k nodes is

selected based on the minimum expected completion time. The expected completion time

decreases further and starts to increase at a certain point when it reached an optimal

number of processors that are allocated for a given job. We show the results from the

selection of k nodes randomly and RA-Opt algorithm based on the job run-lengths in

Figure 6.7(b). We observe that the number of nodes selected increases

proportionally with the job run-length. The effectiveness of various resource allocation

techniques with k node selection can be seen only when compared with completion times

and waste times. The simulation results of applying various resource allocation

techniques are discussed in Section 6.4.5.

73

Selection of Optimal K Job Runlengths us Number of Processors

\
\

\

~~~" _ 

-

! 

:X:62 j / 
: Y: 1696 . ^ y ^ 

104 

r 
!,.• 
•s 
s 

i, 
' 

i n 0 

• 

' 

' 

0 * * 

o 

: 

oo o 
:•• 

t ' * o 

o 

0 

_ . . » • * ' 

:; o 

••5 

° 
o 

o 

o ooo:>: 

• ' : 

: 

: 

RandomJ 

Job Runlengths 

(a) (b) 

Figure 6.7 The Optimal k node selection by the algorithm, (a) shows the optimal k nodes 
at a point where the expected completion time is minimum and (b) shows the comparison 
of optimal k node selection vs. k nodes selected randomly. 

6.4.3 Numerical Example 

We demonstrate the Reliability-Aware optimal k node algorithm using an 

example shown in Table 6.1. The first column k is the number of selected nodes, A(t) is 

the failure rate of an individual nodes (given in Equation (4.11)). The second column s(t) 

1 T 

is the speedup factor S(k) = , and Tc(lc) =S^L where Tc(k) is the running 
- + Q-P) S(k) 

time on k nodes, which is discussed in Section 6.3.1. In this example, we assume the 

amount of code that can be parallelized, p=0.895 and k is the number of nodes. Rsys(t) is 

the system reliability of k nodes, M is the MTTF. EC(t) is the expected completion time 

on k nodes. 



74 

Table 6.1 A Numerical Example showing the expected completion time of a parallel 
program on k nodes 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

S(t) 
1 

1.809955 

2.479339 

3.041825 
3.521127 

3.934426 

4.294479 
4.610951 
4.891304 

5.141388 
5.365854 

5.568445 

5.752212 

5.919662 

6.072874 

6.213592 

6.343284 

6.463196 

6.574394 

6.677796 

T 

1000 

552.5 

403.3333 

328.75 
284 

254.1667 

232.8571 

216.875 
204.4444 

194.5 

186.3636 

179.5833 

173.8462 

168.9286 

164.6667 

160.9375 

157.6471 
154.7222 

152.1053 

149.75 

RSYS (t) 

0.971864 

0.968956 

0.966057 

0.954172 
0.944844 
0.930032 

0.899131 
0.861962 

0.820061 

0.774655 
0.734563 

0.684369 

0.633531 

0.582774 

0.513084 

0.436384 

0.367344 

0.306048 

0.252351 

0.209033 

M 
3.50E+04 

1.75E+04 

1.17E+04 

7.01 E+03 
5.01 E+03 
3.50E+03 

2.19E+03 
1.46E+03 

1.03E+03 

7.62E+02 

6.04E+02 

4.74E+02 

3.81 E+02 

3.13E+02 

2.47E+02 

1.94E+02 

1.57E+02 

1.31 E+02 

1.10E+02 

9.57E+01 

E(Tcik)) 

2014.406 

1113.804 

813.7115 

665.333 
576.211 

517.7785 
478.5445 
450.6858 

430.5775 

416.0872 

404.6705 

397.9672 

394.1615 

392.9122 

398.8412 

411.6036 

428.7588 

451.0254 

479.3888 

511.7624 

In the Table 6.1 we can observe that the expected running time initially decreases 

with the increase in number of nodes, and starts to increases at a certain point as the 

system reliability decreases. The Reliability-Aware optimal k node algorithm selects k 

nodes such that the expected completion time is minimum (k=14 in our case). 

6.4.4 Simulation Study 

The system failure logs and parallel job workloads are inputs to the simulator. 

Each job has a. job id, job run-length, and number of processors required for the job. The 

failure logs have node ids, failure times, down times, and reliability of the nodes. We 

simulate a 10,000 node system using the failure properties of compute nodes obtained 

from ASCI White system logs The processing times of each node are identical, however 



75 

the reliability of individual nodes may differ. We generate the failure data for the 10,000 

system by using the ASCI White failure properties. 

In this study we are interested in a large scale system. However, the parallel 

workloads available at [15] are not suitable for our purpose. Therefore, a synthetic 

workload was generated using the distribution of the number of processors and the job 

run-lengths [59]. We use the uniform-log distribution to generate the number of 

processors, and two stage hyper exponential distribution to generated job run-lengths 

[53][62][63][64]. In addition to the actual workload, we also injected some jobs with very 

long run-lengths to test the effectiveness of our techniques. 

6.4.5 Performance Metrics 

We consider the following performance metrics in our study: 

Average Completion Time (ACT) is the ratio of the total completion time of a particular 

category of jobs to the total number of jobs. 

Average Waste time (AWT) is the ratio of the total waste time to the total number of jobs. 

Mean Completion Time (MCT) is the ratio of the total completion time to the unit job run-

length (unit job run-length =job-run-length/number of processors) 

Mean waste time (MWT) is the ratio of the total waste time to the unit job run-length. 

Relative Percentage Difference RPD(=100* ' yL ), where To is the performance 

metric for the most optimal technique and Ti is the performance metric for one of the 

three compared techniques (RR, RA or ALL). The positive value of percentage difference 

gives the percentage of improvement of To over Ti and a negative value indicates the 

percentage improvement of Ti over To. 



76 

6.4.6 Experimental Results 

We assume that the MWT and MCT are affected by the number of processors, the 

job run-lengths and reliability of the selected k' nodes. The All-nodes technique selects 

all the nodes, which in an ideal case, should reduce the total completion time, but 

increases the system failure probability. Since failures may happen multiple times as any 

one of the nodes fail, the MCT and MWT is higher for the All-nodes technique as shown 

in (Figure 6.8(a) and Figure 6.8(c)). The RR technique allocates nodes based on round-

robin policy, and no reliability is considered, therefore the MWT and MCT are higher. 

The RA technique allocates the most reliable nodes, but the number of nodes is fixed by 

the user similar to RR. Therefore, though RA technique performs better than RR and All-

nodes techniques, the MWT and MCT are higher than RA-Opt. For RA-Opt technique 

the optimal number of nodes is selected such that the expected completion time is 

minimal. 

Figure 6.8 (a) shows the comparison of MTA, for various techniques and Figure 

6.8(b) shows the corresponding MWT. We can observe that the MCT of RA-Opt is 364 

percent better than All technique, 1100 percent better than RR, and 33 percent better than 

RA algorithms. Figure 6.8(c) shows MWT and Figure 6.8(d) the percentage difference of 

MWT when RA-Opt is compared to other techniques. We observe that the MWT of RA-

Opt is 306.39 percent better than the All technique, 156.64 percent better than RR and 

44.3 percent better than RA technique. For the ALL technique, jobs fail more often 

contributing to waste time, however jobs also complete faster because all the nodes arc 

available. Therefore, we observe in Figure 6.8 (a) that the MCT is lower for ALL 

technique as compared to RR, whereas Figure 6.8 (c) the MWT is higher. 



77 

Mean Job Completion times for Variou* Tochmquo* 

2000 

1500 

1000 

500 

n 

: 

RA-Optk RA 
Resource Allocation Technique 

Percent age Improvement in Avtraga ConiplMion Tlmst 
When comM'wi with RA-opi(i} 

Hesource Alio cation Technique Cumpamd 

Figure 6.8(a) Figure 6.8 (b) 

700 

600 

500 

4UU 

300 

200 

100 

Mean Waste Times for each Technique 

• 

c«e JG 

;nnia 

i 

r\ 
rTiVn i 

• ! 

! 

" 

-

; 

All RR RA-Optk RA 

Resource Allocation Technique 

350 

300 

S 250 

£ 

1 200 
a. 
E 
g> 150 

a u 
S 100 
a. 

50 

Percentage Improvement in Mean Waste Times 
when compared with RA-Optk 

306.39% 

156.64% 

-'".;'-u,:aei' 

All RR RA 
Resource Allocation Technique Compared 

Figure 6.8 (c) Figure 6.8(d) 

Figure 6.8 Comparison of MTA and WTA for various resource allocation algorithms, (a) 
shows the MTA of the three techniques and (b) shows the corresponding percentages.(c) 
shows the MWT of each technique and (d) shows the corresponding improvement in 
percentages of RA-Opt over other techniques. 

It is also important to compare the performance metrics with respect to job run-

lengths and to especially understand how well the algorithm performs with respect to job 

run-lengths. Figure 6.9 shows the ACT and AWT metrics with respect to job run-lengths. 



78 

Average Waste Time for various resource allocation techni 
x 1Q5 with respect to Versus Job Type 

- * — ALL 

• • « • • • • R R 

-$- - RA-Opt 
• •*• • RA 

Job Categories 
S :1 to «100 
M:100to<10000 
L:10000 to<1000000 
VL: 1000000 to 10000000 

Figure 6.9(a) 

M L 
Job Type 

% Improvement of Average CompteHon Time (ACTS for RA-
Opt(k| with respect te Jcb Ruft-leftglhs 

9 830 
2 

i «° 
1 

| m 

f 0 

S 1 to *100 
M:tOGt<t«1<KB0 
l, twa)to«tyy«?j» 
VI : l0O«IOfit*'l(SJWWWI 

Job Runlengths 

7 0 0 

BOO 

5 0 0 

4 0 0 

« 300 

< 200 

Mean Waste Time of each job with 
respect to runlengths for various job types 

- * — ALL 

• • " • • • ' R R 

- * - - RA-Opt 

-'• RA 

Job Categories 
S : 1 to <100 
M:100to<10000 
L:10000 to«1000000 
VL 1000000 to 10000000 

Job Type 

Figure 6.9(b) 
% Improvement of Mean Waste Times when 

Compared with Ra-Opt with respect to Runlengths 

E 

S 
o 400 

I IRR 
I B I A I I 

-

Job RurJeogBis 
S : 1 to <t00 
M:100to<10Q0O 
L: 10000 to <10OOO0O 
VL: 1000000 to 100OO000 

u 

Job Runlengths 

Figure 6.9(c) Figure 6.9(d) 

Figure 6.9 The comparison of ATA and AWT with respect to run-lengths. Figure 6.9(a) 
and Figure 6.9(b) show the AWT and the MWT with respect to run-lengths and Figure 
6.9(c) and Figure 6.9(d) show the ATA and the AWA with respect to job run-lengths. 

For short and medium jobs, the AWT and MWT can be ignored (Figure 6.9(a), 

and Figure 6.9(b)) for all the four techniques, and the waste time increases with the 

increase in job run-lengths. The waste time for very long jobs is higher even for RA-Opt 

because the optimal number of selected nodes k' > m, where m is the total number of 

nodes available in the system. However, the RA-Opt technique has more flexibility in 

deciding the number of nodes and determining if it is worth adding another. 



79 

Further, we can observe in Figure 6.9(a, b, c, d) that RA-Opt produces the AWT, 

MWT, ACT and MCT for very longer jobs that are smaller as compared with other job 

types. Therefore, the RA-Opt technique performs especially well for longer jobs, where 

reliability becomes the most crucial. 

6.6 Conclusion and Future Work 

Increasing the number of nodes in HPC systems for solving ultrascale 

computational problems will decrease reliability, which presents new challenges in 

resource management. Several factors affect the completion time of a parallel program as 

nodes are scaled higher, and reliability becomes a major factor in deciding the optimal 

number of nodes to minimize completion time. In this chapter, we discuss the effect of 

reliability on job completion time as scalability and performance metrics for large scale 

parallel applications. Then, we developed an expected completion time function of 

parallel programs based on the system reliability. This function is used to develop the 

algorithm that selects an optimal number of nodes for minimizing the completion time. 

Our simulation results indicate that long jobs can especially benefit with the reliability-

aware optimal k node allocation algorithm to steer away from failures thereby 

minimizing the completion time and waste time for jobs. 

This work has several scopes for improvement. The reliability-aware optimal k-node 

allocation can be combined with various scheduling algorithms to explore if further 

improvement is possible. The importance of processor selection for checkpoint based 

jobs was discussed by Plank[43]. Checkpoint/restart and reliability-aware resource 

allocation can be optimized together to minimize the overall completion time of the 



80 

parallel programs. We also plan to extend the present model to deal with different Fki's, 

i.e when the failure probability, MTTF may change over time. 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

Future computational platforms may have hundreds and thousands of processors 

that aim to deliver peta-scale performance. Resource management of such a large scale 

system would become a major challenge because of the presence of multiple hardware 

and software components, diverse applications with different workload requirements and 

users with different priorities. Therefore, reliability would be a major performance 

hindrance factor, especially for time critical applications that demand QOS from the 

computational service provider. 

This dissertation presents a system TTF model based on the time varying failure 

distribution of individual nodes, and proposes reliability-aware resource allocation 

algorithms for parallel applications. First, we demonstrate the TTF distributions and 

correlations of a production HPC system, the LLNL based ASCI White system. Then we 

present the system TTF distribution model, failure rate, reliability and the MTTF when 

the TTF's of individual nodes have a time-varying failure rate. The effectiveness of 

proposed reliability-aware resource allocation algorithms were evaluated on the actual 

failure data and standard workloads. We observe that applying a time-varying failure rate 

based reliability-aware resource allocation algorithms reduces the overall performance 

loss by as much as 53 percent. Finally, we study the effect of reliability with scaling up 

the number of nodes and proposed reliability-aware optimal k node allocation algorithm. 

81 



82 

The comparison results of the proposed optimal k nodes versus existing resource 

allocation algorithms suggest that giving flexibility for the scheduler in determining the 

optimal number of nodes based on reliability is especially beneficial for large scale 

parallel applications. 

This work has a broad scope to be extended for both reliability prediction, and 

reliability-aware resource allocation. The reliability prediction approach we used is based 

on well known statistical distributions observed from the TTF data. In addition to the 

TTF history, the failure properties of nodes like the usage history, CPU load and 

motherboard temperature could be incorporated into the reliability model to improve the 

prediction accuracy. 

The proposed reliability-aware resource allocation algorithms can be further 

investigated with various scheduling and queuing policies and reliability-aware resource 

allocation can be incorporated into currently available resource managers. In addition, 

reliability of nodes becomes a very crucial factor for time sharing applications because in 

the event of a failure, several applications running on a single node are simultaneously 

affected. Therefore, reliability-aware resource allocation of time sharing applications is 

another extension to this work as well. 



APPENDIX A 

PROOFS FOR SYSTEM RELIABILITY MODEL 

83 



Theorem 1: 

The system TTF function s(x) is a distribution function, i.e. . 

We verify the above equation for two cases, when k=l and k=2, where, k is the number 

of nodes. 

Proof: 

Case k=l: 

For single node, the TTF distribution of the node is a WeibuU, and we know that w(t) is a 

distribution function. Therefore, for the system Pdf s(x) we get, 

s(x)dx = \w(x) = 1. 

0 0 

Case k=2: 

For two nodes, 

L(x)dx = fw, (x)[l -H2(t1+x\ tx )]dx + \h2 (tx+x\ tx )[1 - W, (t)]dx 
0 0 0 

= [l-H2(tl+x\ f, )Wi (x) IQ + JW, (x)h2 (tt+x\ tx )]dx + jh2 (tl+x\tl)[l- W, (x)]dx 
0 0 

= \h2(tx +x\tx)dx - 1, 
o 

Where H2 (x) is the CDF of Excess WeibuU, and Wi(x) is the CDF of WeibuU. 

Theorem 2: 

The system reliability when the TTF distribution of individual nodes is WeibuU is given 

byJ?.U) = l-1S7(jc) = f In-F JU)]. 



85 

Proof: 

We verify the above equation for the case where (Xx = d2 — ... = CC and 

fl=A = ...=£. 

From the theory of the first order statistic, the TTF distribution of the system is given by, 

X 

SJ(x)=jk[l-F(t)f-lf(t)dt, 
o 

Sj(x) = -[1-F(t)]k\x
0 

Therefore the system reliability is given by R (x) = 1 - Sj(x) - [1 - F(x)f. 

Theorem 3: 

Given a random variable U, drawn from a uniform distribution, on (0, 1) we observe that 

H, (t + x\t) = (t -a ln(l-U)1 -1 h a s a n e x c e s s W e i b u l l distribution. 

Proof: 

We use a similar idea given in [65] 

Let U =H(t + x\t). 

_!(,/> _ ( , + i / ) i . . 

Hence, U = l-e"f and ln(l-C/) = —T{tfi -(t + x/) 

apM\.-U) = tp -{t + x)p 

tp -a/}.ln(l-U) = (t + x)/} 

(tp -apM\-U)Yp =(t + x) 

x = (tp-apAn(l-U)Yp-t. 



APPENDIX B 

MATLAB PROGRAMS FOR THE SYSTEM TTF MODEL 



Program to calculate the system MTTF 
function y= sysMTTF(t,s,A,B) 
% usage sysMTTF(10,50,[1000],[0.7]) 
% t=10; 
% s=50; 
%A=[1000 1000]; 
%B=[0.7 0.7]; 
%t is the survival time 
%s is the excess life 
%A is an array of alpha/scale parameter/characteristic lifes for each node 
%B is the corresponding beta/shape parameter for each Node 
%Note that A and B have to be of the same size 
y=l; 
cnt=l; 
val=[]; 

for(i=l :max(size(A))) 
%(1) Build the expression as a string 

term2=['s.*'ewpdfstr(A(cnt),B(cnt),t)]; 
test2='epdf()'; 

j=i ; 
while(j<=max(size(A))) 

if(cnt~=j) 
term2=[term2 '.*' ' ( K ewcdfstr(A(j),B(j),t)'))']; 
test2=[test2 '#' '(l-ewcdf())']; 
end 
j=j+i; 

end 
syms s; 
a=A(cnt); 
b=B(cnt); 

term2 =['@(s)' term2]; 
yy=eval(term2) 
%the following steps find the upper limit to integrate 
inc=10; 
vl=l;v2=10; 

to 1=0.001; %you may adjust the tolerance as needed 
while(abs( v 1 - v2)>tol) 

vl=v2; 
inc=inc*10; 

v2=quad(yy ,0,inc); 
end 
%basically inc is the higher order limit to integerate. 
cdf=v2; 
val=[val cdf]; 

end 



88 

y=sum(val); 

2. Program to calculate the system reliability of k nodes 
function y= sysRel(t,s,A,B) 
%t is the survival time 
%s is the excess life 
%A is an array of alpha/scale parameter/characteristic lifes for each node 
%B is the corresponding beta/shape parameter for each Node 
%Note that A and B have to be of the same size 

y=i; 
for(i=l :max(size(A))) 

R(i)=1 -eweibcdf(t,s,A(i)3 (i)); 
y=y*R(i); 

end 

3. Program to calculate the system failure rate of k nodes 
function y= sysFrate(t,s,A,B) 
cnt=l; 
%For each node... 

while(cnt<=max(size(A))) 
P(cnt)=eweibpdf(t,s,A(cnt),B(cnt)); % the Pdf of each node 
C(cnt)=eweibcdf(t,s,A(cnt),B(cnt)); % the CDF of each node 

cnt=cnt+l; 
end 
cntl=l; 
cnt2=l; 
suml=0;sum2=0; 
while(cnt 1 <=max(size( A))) 

cnt2=l; 
suml=P(cntl); 

while(cnt2<=max(size(A))) 
if(cntl~=cnt2) 

suml=suml*(l-C(cnt2)); 
end 

cnt2=cnt2+l; 
end 
sum2=sum2+suml; 

cntl=cntl+l; 
end 

y=sum2; 

4. function y= eweibcdf(t,s,a,b) 
% This function calculates the Weibull CDF 
%t is the survival time 



89 

%s is the excess life 
%a is alpha or c 
%b is beta or m 
y= 1 -exp(-power((t+s)/a,b)+power(t/a,b)); 

5. function y= eweibpdf(t, s, a,b) 
%t is the survival time 
%s is the excess life 
%a is alpha or c 
%b is beta or m 
y=((b*power(t+s,b-l))/power(a,b))*exp((power(t,b)-power(t+s,b))/power(a,b)); 

6. function S= wcdfstr(x,y) 
a=num2str(x); 
b=num2str(y); 
s='s'; 
S=['(l-exp(-power(s./' a ',' b ')))']; 

7. function S= wpdfstr(x,y) 
a=num2str(x); 
b=num2str(y); 
s='s'; 
S=['((' b './s).*power(s./1 a ',' b ').*exp(-power(s./' a ',' b ')))']; 

8. function F= ewcdfstr(x,y,z) 
% a - alpha or scale parameter 
% b - beta of the shape parameter 
% t - survivial time of node 
% s - The excess life 
a=num2str(x); 
b=num2str(y); 
t=num2str(z); 
s=V; 

F=['l-exp((l./power(' a ',' b ')).*(power(' t', ' b ')-power(' t '+' s ',' b ')))' ]; 

9. function F= ewpdfstr(x,y,z) 
% a - alpha or scale parameter 
% b - beta of the shape parameter 
% t - survivial time of node 
% s - The excess life 
a=num2str(x); 
b=num2str(y); 
t=num2str(z); 
s=V; 
F=['((' b '.*power(' t V s ',' b '-l))./power(' a ',' b ')).*exp((power(' t',' b *)-
power(' t '+' s ',' b '))./power(' a ',' b '))']; 



REFERENCES 

[1] Y. Liang, Y. Zhang, A. Sivasubramaniam, M. Jette, and R.Sahoo, "BlueGene/L 
Failure Analysis and Prediction Models," pp. 425-434, International Conference on 
Dependable Systems and Networks (DSN'06), 2006 

[2] Fullopm, J, "Clumon - The cluster monitoring system," http://clumon.ncsa.uiuc.edu/ 

[3] M. L. Massie, B.N. Chun and D.E. Culler, "The Ganglia Distributed Monitoring 
System: Design, Implementation, and Experience," Parallel Computing, vol 30, iss 7, 
pp. 817-840, July 2004. 

[4] E. Galstad, NAGIOS: Host and Service Monitor, 2005. Available at 
http://www.nagios.org. 

[5] C. Engelmann and G. A. Geist. "Super-Scalable Algorithms for Computing on 
100,000 Processors," Proceedings of International Conference on Computational 
Science (ICCS), Atlanta, GA, USA, May 2005. 

[6] Elmootazbellah N. Elnozahy, James S. Plank, "Checkpointing for Peta-Scale 
Systems: A Look into the Future of Practical Rollback-Recovery," IEEE 
Transactions on Dependable and Secure Computing, vol. 01, pp. 97-108, April-
June, 2004. 

[7] H. Song, C. Leangsuksun, N. Gottumukkala, R. Nassar, S. L. Scott, and Andy Yoo, 
"Near-Real-time Availability Monitoring and Modeling for HPC/HEC runtime 
systems," Symposium of Los Alamos Computer Science Institute, Santa Fe, New 
Mexico, October 2005. 

[8] C. Engelmann, S. L. Scott, D. E. Bernholdt, N. R. Gottumukkala, C. Leangsuksun, J. 
Varma, C. Wang, F. Mueller, A. G. Shet, and P. Sadayappan. "MOLAR: Adaptive 
runtime support for high-end computing operating and runtime systems,". ACM 
SIGOPS Operating Systems Review, vol. 40, pp. 63-72, 2006. 

[9] D. G. Feitelson and L. Rudolph, "Toward convergence in job schedulers for parallel 
supercomputers: Job Scheduling Strategies for Parallel Processing," vol. 1162, 
Lecture Notes in Computer Science, Springer-Verlag, pp. 1-26, 1996. 

90 

http://clumon.ncsa.uiuc.edu/
http://www.nagios.org


91 

[10] Gaj, K., El-Ghazawi, et al., "Performance Evaluation of Selected Job- Management 
Systems," Parallel and Distributed Processing Symposium., Proceedings 
International, IPDPS 2002,pp.254-261, 2002. 

[11] Jackson, D. B., Snell, Q., and Clement, M. J., "Core Algorithms of the Maui 
Scheduler," In Revised Papers From the 7th international Workshop on Job 
Scheduling Strategies For Parallel Processing, Lecture Notes In Computer Science, 
vol. 2221. Springer-Verlag, London, pp. 87-102, 2001 

[12] Gentzsch, W., "Sun Grid Engine: Towards creating a compute power grid, Cluster 
Computing and the Grid," Proceedings. First IEEE/ACM International Symposium, 
pp. 3 5 - 3 6 , May 2001. 

[13] A. Yoo, M. Jette, and M. Grondona, "SLURM: Simple Linux Utility for Resource 
Management," Lecture Notes in Computer Science, pp. 44-60, 2003. 

[14] M. F. Buckley and D. P. Siewiorek., "Vax/vms Event Monitoring and Analysis," In 
FTCS-25, Computing Digest of Papers, pp. 414-423, June 1995. 

[15] D. G. Feitelson. Parallel workloads archive, http://cs.huji.ac.il/labs/parallel/workload 
/index.html,2001. 

[16] B. Schroeder and G.A Gibson, "A large-scale study of failures in high-performance 
computing systems," In Proceedings of the international Conference on Dependable 
Systems and Networks, June 2006. 

[17] Heath, T., Martin, R. P., and Nguyen, T. D. 2002. "Improving cluster availability 
using workstation validation," SIGMETRICS Perform. Eval. Rev. vol. 30, pp. 217-
227, June 2002. 

[18] J. Xu, Z. Kalbarczyk, and R.K Iyer, "Networked Windows NT system field failure 
data analysis," Pacific Rim International Symposium on Dependable Computing, 
pp.178-185, 1999. 

[19] N. R. Gottumukkala, C. Leangsuksun, Y. Liu, R. Nassar, and S. L. Scott, "Reliability 
analysis in HPC clusters," in Proceedings of High Availability and Performance 
Workshop (HAPCW) 2006, in conjunction with Los Alamos Computer Science 
Institute (LACSI) Symposium 2006, Santa Fe, NM, USA, October 17, 2006. 

[20] R. K. Iyer, D. J. Rossetti, and M. C. Hsueh, "Measurement and modeling of computer 
reliability as affected by system activity," ACM Trans. Comput. Syst., vol. 4, no 3, 
1986. 

[21] R.K Sahoo, M.S. Squillante, A. Sivasubramaniam, and Y. Zhang, "Failure data 
analysis of a large-scale heterogeneous server environment," International 
Conference on Dependable Systems and Networks, pp. 772-781, July 2004. 

http://cs.huji.ac.il/labs/parallel/workload


92 

[22] T. Lin, and D.P. Siewiorek, "Error log analysis: statistical modeling and heuristic 
trend analysis," IEEE Trans on Reliabilit, vol.39, no.4, pp.419-432, October 1990. 

[23] D.K. Dey, and L.R. Jaisingh, "Estimation of system reliability for independent series 
components with Weibull life distributions," IEEE Transactions on Reliability, 
vol.37, Iss.4, pp. 401-405, October 1988. 

[24] T. F. Hassett, D. L. Dietrich, and F. Szidarovszky, "Time-varying failure rates in the 
availability & reliability analysis of repairable systems," IEEE Trans.on Reliability, 
vol. 44, no. 1, pp. 155-160, March 1995. 

[25] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K. Sahoo. "Performance 
Implications of Failures in Large-Scale Cluster Scheduling," In Proc. 10th Workshop 
on Job Scheduling Strategies for Parallel Processing, 2004. 

[26] Oliner, A.J., R.K. Sahoo, J.E. Moreira, M. Gupta, and A. Sivasubramaniam, "Fault-
aware job scheduling for BlueGene/L systems," Parallel and Distributed Processing 
Symposium, 2004. Proceedings. 18th International, pp. 26-30 April 2004. 

[27] A. J. Oliner, R. Sahoo, J. E. Moreira, M. Gupta, and A.Sivasubramaniam, "Fault-
aware Job Scheduling For BlueGene/L Systems," In Proceedings of the International 
Parallel and Distributed Processing Symposium (IPDPS), 2004. 

[28] W. Linping, M. Dan, et al, "A Failure-Aware Scheduling Strategy in Large-Scale 
Cluster System," Sixth IEEE International Symposium on Cluster Computing and the 
Grid (CCGRID'06), pp. 645-648, 2006. 

[29] S.M. Shatz, J.P. Wang, M. Goto, "Task Allocation for Maximizing Reliability of 
Distributed Computer Systems," IEEE Transactions on Computers, vol. 41, no. 9, 
pp. 1156-1168, September 1992. 

[30] S. Kartik and C. Siva Ram Murthy, "Task Allocation Algorithms for Maximizing 
Reliability of Distributed Computing Systems," IEEE Trans, on Computers, vol. 46, 
no. 6, pp. 719-724, 1997. 

[31] S. Srinivasan, N.K. Jha, "Safety and Reliability Driven Task Allocation in Distributed 
Systems," IEEETrans. Parallel Distributed Systems, vol.10, no. 3, pp.238-251,1999. 

[32] M. Wu, X.H. Sun and H. Jin, "Performance under Failures of High-End Computing". 
In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing Reno, 
Nevada, 2007. 

[33] G. M. Amdahl, "Validity of the single processor approach to achieving large-scale 
computing capabilities," in Proceedings oftheAFZPS, pp. 483-485, vol. 30, 1967. 



93 

[34] N. J. Davies. "The Performance and Scalability of Parallel Systems", PhD thesis, 
Department of Computer Science, Faculty of Engineering, University of Bristol, UK, 
December 1994. 

[35] Kumar, V. and A. Gupta, "Analysis of Scalability of Parallel Algorithms and 
Architectures: A survey," In Proceedings of the 5th international Conference on 
Supercomputing", Cologne, Germany, pp.396-405, 1991. 

[36] K., Hwang, "Advanced Computer Architecture: Parallelism, Scalability, and 
Programmability," New York, McGraw-Hill, Inc, 1993. 

[37] V. Kumar and A. Gupta, "Analyzing scalability of parallel algorithms and 
architectures," Journal of Parallel and Distributed Computing, vol. 22, no.3, pp.379-
391,1994. 

[38] Gustafson, J. L. "Reevaluating Amdahl's law," Communications of the ACM, vol.31, 
pp. 532-533, May 1988. 

[39] Nicol, D. M. and Willard, F. H. "Problem size, parallel architecture, and optimal 
speedup." Journal of Parallel & Distributed Computing. Vol. 5, no. 4 pp. 404-420, 
August 1988. 

[40] Reed, D. A., Lu, C , and Mendes, C. L. 2006. "Reliability Challenges in Large 
Systems," Future Generation Computing. Systems, vol. 22, no. 3, pp. 293-302, 
Febraury 2006. 

[41] J.S. Plank, W.R. Elwasif, "Experimental Assessment of Workstation Failures and 
Their Impact on Checkpointing Systems," The Twenty-Eighth Annual International 
Symposium on Fault-Tolerant Computing, 1998. 

[42] N. R. Gottumukkala, C. Leangsuksun, and S. L. Scott, "Reliability-aware approach to 
improve job completion time for large-scale parallel applications,"/?! Proceedings of 
2nd Workshop on High Performance Computing Reliability Issues (HPCRI) 2006, 
Austin, TX, USA, February 11-15, 2006. 

[43] James S. Plank and Michael G. Thomason, "The Average Availability of Parallel 
Checkpointing Systems and Its Importance in Selecting Runtime Parameters," 29th 
International Symposium on Fault-Tolerant Computing, Madison, WI, pp. 250-259, 
June 1999. 

[44] C. Weaver and T. M. Austin, "A Fault Tolerant Approach to Microprocessor 
Design," In Proceedings of the 2001 international Conference on Dependable 
Systems and Networks, pp. 411-420, June 2001. 

[45] Lawrence Livermore National Laboratory Trace Logs: url: 
http ://www. Unl. go v/asci/platforms/white/ 



94 

[46] A. C. Cohen and B.J. Whitten, 1988. Parameter Estimation in reliability and Life 
Span Models, Marcel Dekker, New York. 

[47] T T. Soong "Model Verification," in Fundamentals of Probability and Statistics for 
Engineer, John Wiley & Sons Ltd, Chichester, UK, p. 327, 2004. 

[48] S. Nath, H. Yu, P.B. Gibbons, and S. Seshan, S., "Subtleties in Tolerating Correlated 
Failures in Wide-Area Storage Systems," In Proceedings of the 3rd Conference on 
3rd Symposium on Networked Systems Design and Implementation, vol. 3, USENIX 
Association, Berkeley, CA, May 2006. 

[49] R. Jain, "The Art of Computer Systems Performance Analysis", J. Wiley & Sons, 
Inc., 1991. 

[50] B. Chun and A. Vahdat, "Workload and failure characterization on a large-scale 
federated testbed," Technical Report IRB-TR-03040, Intel Research Berkeley, 
November 2003. 

[51] D. Tang, R. K. Iyer, and S. S. Subramani, "Failure analysis and modelling of a 
vaxcluster system," In Proceedings of 20th. Intl. Symposium on Fault-tolerant 
Computing, pp. 244-251, 1990. 

[52] R.V. Hogg, and E.A. Tanis. 1983, "Probability and Statistical Inference," 2nd edition. 
Macmillan Publishing Co., Inc. New York. 

[53] B. Schroeder, and G. A. Gibson, "Disk Failures in the Real World: What does an 
MTTF of 1,000,000 Hours Mean to You? " the 5th USENIX Conference on File and 
Storage Technologies (FAST 2007), San Francisco, CA, Febraury. 2007. 

[54] R. L. Burden and J. Douglas Faires. Numerical Analysis. PWS-Kent, Boston, fourth 
edition, 1989. 

[55] N.R. Gottumukkala, C. Leangsuksun, R. Nassar, and S.L Scott. "Reliability-Aware 
Resource Allocation in HPC Systems," Proceedings of the IEEE International 
Conference on Cluster Computing 2007, Austin Texas, September 2007. 

[56] Yudan Liu; C.B. Leangsuksun, H. Song; and S.L. Scott, "Reliability-aware 
Checkpoint/Restart Scheme: A Performability Trade-off, " Cluster Computing, 2005. 
IEEE International, pp. 1-8, September 2005. 

[57] K.G. Popstojanova, K.and K.S. Trivedi, "Failure Correlation in Software Reliability 
Models," IEEE Transactions on Reliability, vol.49, iss.l, pp. 37-48, March 2000. 

[58] MATLAB.2006, MATLAB. Version 6.0. MathWorks, Natick, Massachusetts, USA. 



95 

[59] S. Sahni, V. Thanvantri, "Performance Metrics: Keeping the Focus on 
Runtime,"IEEE Parallel and Distributed Technology, vol.04, no. l,pp.43-
56, Spring, 1996. 

[60] D. Eager, J. Zahorjan, and E. Lazowska, "Speedup versus Efficiency in Parallel 
Systems," IEEE Transactions on Computers, vol. 38, pp.408-423, March 1989. 

[61] J. Worlton, "Toward a Taxonomy of Performance Metrics", in Computer 
Benchmarks, J. J. Dongarra and W. Gentzsch, Eds. Elsevier Advances In Parallel 
Computing Series, vol. 8. Elsevier Science Publishers B. V., Amsterdam, The 
Netherlands, 1993. 

[62] A.B. Downey, "A Parallel Workload Model and its Implications for Processor 
Allocation," In Proceedings of the 6th IEEE international Symposium on High 
Performance Distributed Computing, High Performance Distributed Computing. 
IEEE Computer Society, Washington, DC, August 1997. 

[63] D.G. Feitelson, "Packing Schemes for Gang Scheduling," In Proceedings of the 
Workshop on Job Scheduling Strategies For Parallel Processing D. G. Feitelson and 
L. Rudolph, Eds. Lecture Notes In Computer Science, vol. 1162. Springer-Verlag, 
London, pp. 89-110, 1996. 

[64] U. Lublin and D. G. Feitelson, "The Workload on Parallel Supercomputers: Modeling 
the Characteristics of Rigid Jobs", Journal of Parallel & Distributed Computing. Vol. 
63, no.l 1, pp. 1105-1122, November 2003. 

[65] S. Ross, A First Course in Probability. New York: Macmillan, 1976. 


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2008

	Failure analysis and reliability -aware resource allocation of parallel applications in High Performance Computing systems
	Narasimha Raju Gottumukkala
	Recommended Citation


	ProQuest Dissertations

