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ABSTRACT 

The demand for more computational power to solve complex scientific problems 

has been driving the physical size of High Performance Computing (HPC) systems to 

hundreds and thousands of nodes. Uninterrupted execution of large scale parallel 

applications naturally becomes a major challenge because a single node failure 

interrupts the entire application, and the reliability of a job completion decreases with 

increasing the number of nodes. Accurate reliability knowledge of a HPC system 

enables runtime systems such as resource management and applications to minimize 

performance loss due to random failures while also providing better Quality Of Service 

(QOS) for computational users. 

This dissertation makes three major contributions for reliability evaluation and 

resource management in HPC systems. First we study the failure properties of HPC 

systems and observe that Times To Failure (TTF's) of individual compute nodes follow 

a time-varying failure rate based distribution like Weibull distribution. We then propose 

a model for the TTF distribution of a system of k independent nodes when individual 

nodes exhibit time varying failure rates. Based on the reliability of the proposed TTF 

model, we develop reliability-aware resource allocation algorithms and evaluated them 

on actual parallel workloads and failure data of a HPC system. Our observations 

indicate that applying time varying failure rate-based reliability function combined with 

some heuristics reduce the performance loss due to unexpected failures by as much as 
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30 to 53 percent. Finally, we also study the effect of reliability with respect to the 

number of nodes and propose reliability-aware optimal k node allocation algorithm for 

large scale parallel applications. Our simulation results of comparing the optimal k 

node algorithm indicate that choosing the number of nodes for large scale parallel 

applications based on the reliability of compute nodes can reduce the overall 

completion time and waste time when the k may be smaller than the total number of 

nodes in the system. 
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CHAPTER 1 

INTRODUCTION 

The demand for more computational power to solve complex scientific 

applications has given rise to High Performance Computing (HPC) systems that comprise 

hundreds of thousands of nodes. HPC has gained significant prominence in recent years 

because of its cost-effective way to build systems from Commercial-Off-The-Shelf 

(COTS) components. Uninterrupted execution of large scale parallel applications 

naturally becomes a major challenge because a single node failure interrupts the entire 

application. Increasing the number of nodes for a parallel application increases the failure 

probability, therefore providing reliability for parallel applications running on large scale 

computational resources becomes a major challenge. 

1.1 Failures in HPC Systems 

HPC systems comprise several hardware and software resources required for 

uninterrupted completion of a parallel application. Unexpected failures and downtimes 

have severe effects both on the performance of a HPC system and the Quality of Service 

(QOS) for the computational users. It is unrealistic, at least in the near future, to 

completely eliminate failures and predict the next failure event and time [1]. However, 

several monitoring tools and fault tolerance mechanisms can presently deal with failures. 

Monitoring tools like CluMon [2], Ganglia [3] and Nagios [4] report detailed health 
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information of various hardware and software components, and provide failure warnings 

in event of abnormal activities. These monitoring frameworks lack the capability to 

predict reliability or future failure events. There are also fault-tolerance mechanisms like 

task duplication and checkpoint/restart. Checkpoint/restart is a mechanism that enables 

saving the software state at regular intervals so that the program does not have to restart 

over from the beginning. Current checkpoint schemes may, however, be very inefficient 

for large scale parallel programs because of the overhead of saving the state of multiple 

processes running on large number of nodes [5][6]. Therefore the checkpoint algorithm 

must rely on the reliability information of the resources to optimize checkpoint placement 

and minimize the performance loss. 

The failure events of various compute nodes in HPC systems may be recorded in 

order to assess system reliability and failure rates. Dynamic reliability analysis of 

selected components provides up-to-date system reliability. RAS frameworks [7] [8] have 

recently been proposed for online monitoring and modeling of HPC systems to 

complement resource management and checkpoint frameworks. An accurate reliability 

model and up-to-date failure information would complement reliability-aware resource 

management, reliability-aware checkpoint/restart, and scheduled maintenance of 

computational resources. 

1.2 Resource Allocation in HPC Systems 

Scheduling or resource allocation involves task assignment to computational 

resources to satisfy certain job criteria. In a broader sense, scheduling in parallel super 

computers can be at two levels. The first or top level is in application level or meta-level 

that deals with allocating a parallel application to a partition of compute nodes or 
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systems. Second is the lower level or the operating system level that takes a task and 

allocates various local resources like memory, CPU, disks and I/O devices. There are 

different characteristics of jobs and different domains for application scheduling in 

general [9]. In this dissertation we concentrate on scheduling of parallel applications at 

the application level. 

A scheduler basically consists of a job queue, and a decision algorithm that 

decides where to allocate the job based on the job's requirements and other policies. The 

objective of the scheduler can be to maximize throughput and utilization, to minimize 

completion time, to prioritize jobs, or just to execute the jobs. One of the most important 

aspects for HPC applications is maximizing performance, which means minimizing the 

completion time. There are several resource parameters that affect the completion time of 

a parallel program like the CPU speed, I/O bandwidth, memory, system architecture, 

network bandwidth and latency, etc. Completion time is usually a sum of other times like 

the job submission time, scheduler response time, waiting time or execution time [10]. In 

this dissertation we focus on completion time. The job completion time is basically a sum 

of three components, (1) the waiting time (2) job execution time (3) and waste time due 

to failures. We further discuss these definitions in Chapter 5 and Chapter 6. 

There are several application level schedulers that are widely used for distributed 

platforms. Each scheduler has various capabilities in terms of monitoring resources, 

giving priorities and task assignment. PBS/MAUI [11], SGE [12], and SLURM [13] are 

the most widely used job schedulers in HPC systems. PBS/MAUI and SLURM have two 

basic scheduling policies namely First In First Out (FIFO) and Backfilling. The FIFO 

policy allocates jobs based on the arrival order. Backfilling enables moving short jobs 
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ahead if longer jobs in the queue are not interrupted. In addition some other policies that 

are aimed at giving fair share of resources to users. For example SGE uses several ticket-

based policies to prioritize jobs based on users [12]. 

Parallel applications may also be further categorized into four types based on a 

decision factor such as the number of processors required by a given job. Rigid jobs 

require the number of processors to be specified during job submission, and the job does 

not change the processor requirement during execution. An evolving job is the one that 

keeps changing the processor requirements while the job is executing. A moldable job 

allows the scheduler or resource manager to dictate the number of processors, and a 

malleable job is adaptable to changes in the processor count during execution. More 

details of these jobs are given in [9]. In this dissertation we concentrate on rigid jobs and 

moldable jobs. In the parallel workloads available at [15], the users already give the 

number of processors that would let us to use the actual workloads for rigid jobs. 

Secondly, some of the MPI applications are flexible in the sense that the number of nodes 

can be decided by the scheduler during run time (moldable jobs). We will further discuss 

reliability-aware scheduling of moldable jobs in Chapter 6. 

Currently existing resource managers/schedulers do not consider reliability as an 

important factor. However, reliability becomes crucial research for very large scale 

systems that span hundreds and thousands of nodes. Obtaining accurate reliability 

information provides insights for resource managers to minimize the overall performance 

loss of the HPC system. In addition reliability knowledge of resources lets resource 

manager to ensure Quality of Service to users. 
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1.3 Organization of Dissertation 

This dissertation is organized as follows: Chapter 2 discusses the related work on 

the failure properties, system reliability models, and resource allocation techniques for 

HPC systems. The description of failure data, a detailed statistical analysis such as the 

comparison of Goodness Of Fit (GOF) tests of various TTF distributions of individual 

nodes, and system of k nodes, correlation analysis, and variability of MTTF's and failure 

parameters are demonstrated in Chapter 3. Chapter 4 presents a new model for the TTF 

distribution of a system of k nodes in a HPC system when individual nodes have time 

varying failure rates. Chapter 5 describes our proposed reliability-aware resource 

allocation techniques for parallel applications. The effect of scalability on reliability and 

performance, and an optimal reliability-aware k node allocation algorithm for moldable 

parallel jobs are further discussed in Chapter 6. The conclusions and future work are 

given in Chapter 7. 



CHAPTER 2 

RELATED WORK 

This chapter discusses the related work on the TTF properties, system TTF model 

when individual nodes have time varying failure rates, resource allocation techniques in 

HPC systems and reliability-aware resource allocation algorithms. 

2.1 TTF Properties and System Reliability 

Failure properties like the TTF distribution, and correlations between failures 

enable us to develop reliability or failure models that represent the actual behavior of 

systems. Failure properties of computing systems have also been studied by many 

researchers[14]. The TTF's in various distributed computing platforms [16], [17], [18], 

[19] and [20] are observed to follow the Weibull distribution. Various aspects of 

correlations have been studied in the literature. In [21], the analysis on failures and error 

logs on heterogeneous servers have shown that there are significant autocorrelation, cross 

correlation, and long term temporal correlations among nodes. Also, the temporal 

correlation patterns vary across different nodes. Iyer [20] found a significant correlation 

of workload on failures due to increase in CPU activity. According to [22], the correlated 

failures comprise 27% of all the data and the impact of correlated failures is significant. 

In Chapter 3, we discuss the TTF distribution of a HPC system, the correlation of TTF's 
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between individual nodes, and autocorrelation of individual nodes and a system of k 

nodes of a production HPC system. 

The system reliability model for a constant failure rate is uncomplicated as 

compared with time varying failure rate assumptions to model various aspects of system 

reliability. Dey [23] presents the system reliability and proposes a parameter estimation 

technique when individual components in a series system are Weibull distributed, and 

individual components may have different failure parameters. Also, Hassett [24] 

discussed the availability and reliability of a system with components having time 

varying failure rates. Individual compute nodes are shown to follow a Weibull 

distribution instead of an exponential. We therefore propose a time varying failure rate 

based distribution for a system of k nodes when nodes have different Weibull based 

shape and scale parameters in Chapter 4. 

2.2 Reliability-Aware Resource Allocation 

Failure data analysis and reliability-aware scheduling research in general have 

recently gained much attention in HPC community. Zhang et al. [25] studied failure rates 

of HPC systems that affect performance metrics like job-slow-down and work-loss ratio 

based on the spatial and temporal correlation of time to failures. Oliner et al. [26] 

discussed the effect of HPC reliability metrics on parallel applications with periodic 

check pointing under an assumption that failures follow Poisson process, proposed event 

based failure prediction on Blue Gene/L failure logs [27] and presented failure-aware 

scheduling techniques. Also, Linping [28] discusses the failure aware scheduling policies 

based on the Longest Uptime of nodes. 
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Prior work on reliability-aware task allocation for heterogeneous distributed 

systems models tasks and communications links as a directed graph by Shatz et al. [29]. 

While the graph based reliability model is a good theoretical model for task allocation in 

heterogenous systems [29][30][31], this model relies on a constant failure rate 

assumption, and the simulation results are not based on the failure data of actual systems. 

Recently, Ming [32] proposed exponential-based performance prediction and fault aware 

allocation of parallel applications using failure rates, downtimes, checkpoint overhead 

and fault aware heuristic algorithms. To our knowledge, no work that developed 

reliability-aware algorithms based on a time-varying distribution, or techniques that use 

the failure data of actual system for reliability-aware resource allocation. 

2.3 Optimal K Node Allocation of Parallel Applications 

Various aspects of scalability were studied in [33][34][18][35][36][37][38]. 

Amdahl's law [33] suggests that there is a serial part of the program that limits 

scalability. However, according to Gustafson [38] other parameters in computation that 

can be overlapped to achieve better parallelism while executing the serial portion of the 

program. Kumar et al. [35] have given a survey of scalability models for parallel 

architectures and algorithms for a given parallel architecture and problem size. Nicol [39] 

discussed the optimal selection of the number of processors for a numerical 

approximation problem and architecture. The impact of reliability for large scale parallel 

applications is not new and has also been addressed recently [40][41]. The effect of 

reliability on the completion time of parallel programs is discussed in [42], and the effect 

of coordinated check pointing on large scale parallel applications due to failures is 
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discussed in [6][41]. Also, Plank[43] discusses the importance of considering the number 

of processors as an important performance attribute for check pointed jobs. 

In Chapter 6, we study the scalability limitations of a parallel application with 

respect to system reliability. We also propose a reliability-aware optimal k node selection 

algorithm with the objective of minimizing the completion time and the waste time of 

large scale parallel applications in the presence of failures. 



CHAPTER 3 

THE TIME TO FAILURE PROPERTIES 

OF HPC SYSTEMS 

3.1 Introduction 

Several factors cause failures in a HPC system. Understanding various failure 

properties enable better assessment of the overall system reliability. This chapter 

describes some important failure properties such as the various factors that cause failures, 

the (Time To Failure) TTF distribution of individual nodes and system of k nodes, the 

correlations between TTF's of various nodes, the autocorrelation of TTF's and the 

variability of MTTF's among various nodes in a HPC system. 

HPC systems contain a significant number of hardware and software components 

that are required for uninterrupted running of applications. We classify the factors that 

affect failures broadly into three categories: 

(1) Inherent defects during development/manufacturing 

Both hardware and software are prone to defects or bugs. Many of these defects 

become visible when the system becomes operational. Hardware components like 

processors, memory and hard disks may have design problems, or manufacturing 

problems due to fabrication and processing [44]. Similarly, software is prone to have 

bugs, which may be due to design or logical errors during coding and to the software that 

is not tested adequately. 

10 
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(2) Failures caused due to environments 

Both hardware and software failures could occur due to the operating conditions. 

For example, overuse of hardware, power fluctuations, and noise can cause hardware 

failures, and certain software upgrades or operating system patches may affect other 

software already residing in the system. Exhausted resources such as low swap space and 

CPU overload may also cause some failures. 

(3) Failures caused due to misconfiguration by administrators 

Failures are also be caused by the administrators who may misconfigure the 

system after installation or upgrade. Administrators have to be careful because a minor 

configuration error could lead to an outage of the entire system affecting all the jobs that 

were running. 

3.2 Description of Failure Data 

In the reliability analysis, the failure data source is the failure logs obtained from 

Lawrence Livermore National Laboratory (LLNL) ASC White [45], a 512-node cluster. 

Each node is a 16-way Symmetric Multi Processor (SMP), and thus the total number of 

processors is 8196. Each event log includes the type of failure, length of downtime, time 

of failure, and the impacted node. Since we focus on the TTF's, we extract the failure 

times and the node information from the failure logs. The ASC white failure information 

consists of a large dataset including significant failure events over the period of four 

years, from 2000 to 2004. The failure data have 72.3 percent hardware failures, 13.8 

percent software, and 13.8 percent are other type of failures. Single node failures usually 

occur from a disk/memory failure. Failures from a network switch or a common power 

failure affects a group of nodes, and failures from a head node or scheduler master 
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daemon may affect all the nodes. About 75 percent of the failures are from a single node 

category, 15 percent belong to a group of nodes, and 10 percent failures affect all 512 

nodes. The event logs also have both scheduled and unscheduled downtime times. In our 

TTF analysis, we consider the failures that affect a single node, and a group of nodes. 

Figure 3.1 shows the number of failure events recorded during the period 7/1/2000 to 

10/1/2004 from the ASC White system logs. The total operational time is approximately 

4 years 3 months (0.2 X 106 minutes). We observe that in the first two years and three 

months there were more failures as compared with the last two years. 

Total no of Failures occurred within 4 years 3-month time interval for White 
300 

250 

200 

if 150 

°o 

100 

50 

0 

0 10 20 30 40 50 60 70 
Time Intervals (1 Interval = 3 Months) 

Figure 3.1 The number of failures in 3-month intervals over 4 years 3 month's period on 
the ASC White 

The newly deployed components tend to have more failures in the initial phase; 

this may be called the infancy stage when the overall failure rate is represented by the 

bathtub curve based failure rate. After the infancy stage, failures approximately remain 

steady. We use the most recent failure data available from 4/1/2003 to 10/1/2004 for both 

TTF analysis and reliability-aware resource allocation study, because data during this 

period represent the most recent failure behavior. 
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3.3 TTF Distribution of Individual Nodes 

3.3.1 Distributions and Goodness Of Fit Test 

Failure distribution functions such as exponential, Weibull, lognormal and gamma 

have been widely used in reliability analysis [16] [46] [46]. The Cumulative Density 

Function (CDF) for a given TTF distribution is given by, 

t 

F(t)=\f(T)dT (3.1) 

o 

Where f(r) is the probability density function (Pdf).The Cumulative Distribution 

Functions (CDF) of various TTF distributions are given in Table 3.1. 

The Kolmogorov-Smirnov (K-S) Goodness Of Fit (GOF) test [47] compares the 

theoretical time to failure distributions with the empirical distribution. If F0(x) is the 

empirical CDF based on N data points, Fx (x) is the theoretical CDF, the K-S statistic D 

is defined as the maximum absolute difference between the two CDF's which is given by 

D = max I F0 (x) - Fx {x) I 
-™<X<°o 

The K-S GOF test gives the maximum distance between the empirical and 

theoretical distribution [47] . The p-value (0 < p < 1) in K-S test represents the 

probability that the sample data belongs to certain distributions. A p-value (p<=0.05) 

indicates that the distribution does not fit the data. Greater the p-value, greater is the 

probability that the empirical distribution closely represents theoretical distribution. Thus, 

we apply K-S test to identify which theoretical distribution best represents the empirical 

failure distribution. 
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Table 3.1 The CDF's of various distributions. 

Distribution 

Name 

Exponential 

Weibull 

Lognormal 

Gamma 

CDF 

where X is the failure rate. 

F(t)=l-e yaJ where a is the scale parameter, and /? is the 

shape parameter. 

F(t) = * • 

fln-L-l 
T 
1 50 

. a is the shape parameter. T50is the medial life 

at 50% failure point. 

X 

Tx(a)= \ta-xe'ldt 
T (y) x>0 o x where and y is the shape 

r„(a) = Jr e at 
0 

parameter. 

3.3.2 Comparison of TTF Distributions 

The TTF distribution lets us understand whether the TTF increases, decreases, or 

remains constant over time, and an appropriate theoretical TTF distribution can be used 

for reliability prediction for minimizing the performance loss due to failures. The 

empirical failure distributions of individual nodes are compared with the theoretical 

distribution based on the p-value of the Kolmogorov-Smirnov GOF test. As an example, 

Figure 3.2 shows the empirical CDF's compared with the theoretical CDF's of 
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exponential, Weibull, gamma and lognormal distributions. The greater the p-value of the 

K-S test, the better is the GOF. Different nodes could fit better to different distributions 

so we compared all the 512 nodes, based on the p-values to understand which distribution 

fits better in most cases. Table 3.2 shows the percentages of how well each distribution 

fits to the empirical data for all the 512-nodes. In some cases, two or more distributions 

perform equally well because the Weibull distribution is a general case of the 

exponential, and the gamma distribution is general enough to give results similar to those 

of the Weibull or lognormal. Weibull, lognormal, and gamma have time varying failure 

rates, and in most cases, they fit the data equally well. For the given data, we observed 

that 89.9 percent of the nodes have TTF's that fit the Weibull better than or as good as 

the other three distributions. The gamma distribution fits well for 88.8 percent of the 

nodes, lognormal for 84.3 percent and 60.7 percent of nodes fit to exponential. For the 

case where the p-value is greater than 0.8, 99 percent of the nodes fit the Weibull 

distribution. Hence, for the given data set, the Weibull distribution gave the best fit to the 

TTF's of the different nodes. 
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Figure 3.2 Comparison of the empirical CDF with the theoretical CDF of gamma Weibull 
and lognormai distributions for node 277. 

Table 3.2 Comparison of various distributions based on p-value for all nodes. 

Distribution 
name 
Gamma 

lognormai 

exponential 

Weibull 

Number of nodes 
having highest p-value 

79 

75 

54 

80 

Percentage of 
times 

88.8 

84.3 

60.7 

89.9 

3.4 TTF Distribution of System of K Nodes 

Parallel applications are normally allocated to a set of k nodes for execution. Each 

node has an individual failure distribution. In our model, we assume that the system fails 
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when at least one node fails. The TTF's of individual nodes are combined to obtain the 

TTF distribution of k nodes when the first failure occurs using the algorithm given in 

Figure 4.1. We compare various distributions, namely exponential, Weibull, Gamma and 

Lognormal using the K-S test. 

Parallel programs are allocated to k processors, and k is usually a power of two. 

From the given failure data, we show the time to failure distributions for k= 8, 16, 32, 64, 

128, 256. The GOF tests for various models are compared for two cases, namely when 

nodes are selected randomly, and when nodes are selected in order. Table 3.3 shows the 

comparisons among various distributions for these two cases from the K-S test. In both 

the cases Weibull is observed to be a better model for reliability of a system of k nodes as 

compared to exponential and lognormal fit. 

Table 3.3 Comparison of Failure distributions using the Kolmogorov-Smirnov Goodness. 

Comparison of K-S Test of various number 
of nodes (nodes selected in order) 
No of 
Nodes 
2 
4 
8 
16 
32 
64 
128 
256 
350 

p-value 

0.2628 
0.2049 
0.1916 
0.0818 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 

p-value 

0.8679 
0.4310 
0.9980 
0.9845 
0.6300 
0.7122 
0.2652 
0.0599 
0.0388 

p-value 

0.5409 
0.9034 
0.8571 

0.3269 
0.0438 
0.1538 
0.0779 
0.0001 
0.0001 

Comparison of K-S Test of various number 
of nodes (nodes selected randomly) 
No of 
Nodes 
2 
4 
8 
16 
32 
64 
128 
256 
350 

p-value 

0.6060 
0.9940 
0.2272 
0.3193 
0.4829 
0.0224 
0.0001 
0.0001 
0.0001 

p-value 

0.4460 
0.8151 
0.5758 
0.7091 
0.4829 
0.2484 
0.1169 
0.0453 
0.0159 

p-value 

0.6573 
0.9852 
0.7485 
0.4671 
0.2460 
0.0785 
0.0061 
0.0001 
0.0001 

3.5 Correlation of TTF's Between Nodes 

Correlation is a way to measure how two variables are related. A correlation of 

TTF's between two nodes refers to whether the TTF of one node affects the probability 

of TTF of another node. There are three possible patterns in TTF correlations. 
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(1) TTF's are positively correlated 

The ith TTF of one node increases the probability of i' TTF of another node 

(2) TTF's are negatively correlated 

The ith TTF of one node decreases the probability of ith TTF of another node 

(3) There is no correlation between the TTF's of two nodes 

The TTF of one node does not affect the probability of TTF of another node. This 

implies that the TTF's of two nodes are independent. 

Several studies [48] [50] [51] show that node failures are infact correlated with 

failures in multiple nodes occurring nearly simultaneously. Correlated failures have been 

studied on several distributed systems. Nath et al. [48] discussed the impact of correlated 

failures on the availability of three distributed systems, namely PlanetLab, Public Web 

Servers and RON test bed. A study of correlated failures based on conditional probability 

on PlanetLab[49], a distributed storage platform show that for 75 percent of the nodes 

there is no correlation; however, 10 percent of the node pairs have correlated failures. 

Tang et al. [51] have studied the impact of correlated failures on VAX clusters, and 

proposed dependability models to evaluate correlations. Nath et al. [48] discusses the 

impact of correlated failures on performability and software reliability and presents a 

Markov renewal process-based framework to model dependencies between failures. 

Distributed systems consist of several hardware and software components with 

different configurations. Correlation between failures mostly depend on the system 

environment factors like the operating system configuration, shared resources like 

network storage and routers, workload, middleware software bugs, and system 

configurations. Correlated failures lead to additional costs and performance loss, and 
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these failures have to be minimized during the design phase. For example, Nath et al. [48] 

propose design principles to minimize correlated failures on distributed systems. In 

addition, manufacturers attempt to provide fault tolerance for crucial components like 

disk redundancy, and high available storage solutions to minimize correlation failures. 

We use the spearman correlation coefficient on the ith TTF of different 

combinations of nodes to understand how well the failures are correlated. The Spear man 

correlation coefficient [52] is given by 

Where d is the difference between each ranks of ith TTF's of different nodes, and n is the 

number of pairs of values. The significance of correlations with respect to the correlation 

coefficient values is given in Table 3.4. We performed a correlation test for all the 

combinations of nodes, and plot a histogram, given in Figure 3.3. We observe that about 

60 percent of the TTF's have a weak correlation, 30 percent have a strong correlation and 

10 percent have very strong correlation. Future systems have to be designed to be 

independent of failures, therefore assuming independence assumption is still valid. 

3.6 Autocorrelation of TTF's 

Autocorrelation between TTF's is another important statistical property that 

determines whether each failure affects the net consecutive failures. Prior studies use the 

Autocorrelation Function to determine long-range dependence on the number of failures 

with age. A study on the failure and error processes on several heterogeneous clusters by 

Sahoo et al. [21] reveals significant levels of autocorrelation with a periodic behavior 

suggesting long range dependence of failure and error process. 
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Table 3.4 Significance of correlation with respect to correlation coefficient values. 

Correlation 

coefficient 

p~0 

-0A<p<0.4 

0.4<p<0.& 

-0.8</?<-0.4 

-0 .8</?<l 

- l< /?<-0 .8 

Significance of 

correlation 

uncorrected 

weak correlation 

high correlation 

high correlation 

strong correlation 

strong correlation 

Spearman-Correlation Coefficients 

Figure 3.3 The cross correlation coefficient among the i"1 TTF among different nodes. 
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In addition, a study on the autocorrelation of disk failures by Bianca [53] suggests 

a long-range dependence among failures. To understand whether there is autocorrelation 

among TTF's we test the autocorrelation among TTF's of the system using the Durbin 

Watson statistic [52]. There are two aspects of autocorrelation when we have to consider 

when we want to develop a model for a system of k nodes 

(1) If TTF' s of individual nodes have autocorrelation 

(2) If TTF's of a system of k nodes have autocorrelation when individual nodes 

may have autocorrelation 

Figure 3.4 shows the autocorrelation of TTF's among individual nodes where 

nodes are ordered based on the number of failures. We observe that the autocorrelation 

among TTF's for nodes which have are lesser number of failures is very insignificant. 

o 
o 
c 
o 

o o o 

< 

4 
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40 

Figure 3.4 Autocorrelation among TTF's of Individual nodes. 

However, when the number of failures increases, results show that the 

autocorrelation becomes significant. In the given data, we observed that the 52 percent of 

the nodes have significant autocorrelation among TTF's. Because we are interested in 
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modeling the system TTF behavior we therefore combine the TTF's of nodes into a 

system in order to understand whether there would be autocorrelation. We combined the 

nodes in the order of node numbers using the algorithm given in Figure 4.1 in Chapter 4. 

We observe in Figure 3.5 that the autocorrelation is not very significant for a system of k 

nodes. 

3.5 

3 
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r 
r* 

1 

0.5 

DW- Test (Autocorrelation) 
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10 

• • • • • • • • • • • • 
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No of Nodes 
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Figure 3.5 The Autocorrelation among system TTF's. 

3.7 The Failure Parameters of Various Nodes 

Typically, nodes obtained from same manufacturers are assumed to have identical 

reliabilities. However, as the nodes are put into usage, the failure properties may change. 

Table 3.5 shows the statistical summary of shape and scale parameters of ASCI White, 

assuming that TTF's of nodes follow a Weibull distribution. The scale parameters are 

shown in Figure 3.6 (a), and the MTTF's of individual nodes are shown in Figure 3.6 (b). 
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Table 3.5 The statistical properties of shape and scale parameters of the TTF's of 
individual nodes obtained from White. 

Minimum 

Maximum 

Mean 

Median 

Standard dev 

Scale Parameter 

0.4659 

1.582 

0.8396 

0.7923 

0.2374 

Shape Parameter 

323.4 

5107 

2132 

1884 

1459 

x10 MTTFs ofVarious Nodes 

15 20 25 30 
Node No 

10 15 20 25 30 35 40 45 

Figure 3.6(a) Figure 3.6(b) 

Figure 3.6 The scale parameters and MTTF's of various nodes in White. 

Figure 3.6(a) shows the scale parameters for different nodes, and Figure 3.6(b) shows the 
MTTF's for various nodes. 



CHAPTER 4 

THE DISTRIBUTION OF TIME TO FAILURES 

FOR A SYSTEM OF K NODES 

Reliability estimation of High Performance Computing (HPC) systems allows 

resource allocation and fault tolerance frameworks to minimize the performance loss due 

to unexpected failures. Recent studies have shown that compute nodes in HPC systems 

follow a time-varying failure rate distribution like the Weibull instead of the exponential 

distribution. In this chapter, we propose a model for the Time To Failure (TTF) 

distribution of a system of k independent nodes when individual nodes exhibit time 

varying failure rates. We also present the system reliability, failure rates, the Mean Time 

To Failure (MTTF) of the proposed system TTF model and validate the model using the 

chi-square Goodness Of Fit (GOF) test. 

Acronyms 

CDF Cumulative Distribution Function 

Pdf Probability Density Function 

TTF Time To Failure or Time Between Failures 

MTTF Mean Time To Failure 

HPC High Performance Computing 

GOF Goodness-of-fit 
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K-S Test Kolmogorov Smirnov Test 

Notations 

t f TTF of a node 
j 

w.(t) the Weibull Pdf of node i for the j t h failure 

', 

W (tj) the Weibull CDF of node i, where W. itj) = \wi (t)dT 
o 

a Shape parameter of the ith node 

p. Scale parameter of the ith node 

h. (t.) the excess Weibull Pdf for node i 

'i 

Ht(tj) the excess Weibull CDF, where Ht(tj)= \h(T)dT 
o 

g(t.) the Pdf of a mixture of excess Weibull's. 

G(tj) the CDF of a mixture of excess Weibull's, where G(tj)= \g(T)dT 

o 

5 (x) the Pdf of the Time to Failure (TTF) of a system of k nodes after the j t h 

failure 

S • (x) the CDF of the Time to Failure (TTF) system of k nodes after the j t h failure, 
X 

where S} (x) = \Sj {r)dt 
o 

p-value The probability that the sample belongs to a particular distribution (for K-S 

Test). 

4.1 Introduction 

Current HPC systems utilize hundreds and thousands of compute nodes 

simultaneously to solve computationally challenging problems. The parallel tasks of a 

HPC application simultaneously executes on several nodes, and the failure of a single 
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compute node may interrupt the entire application. Runtime systems in HPC platforms, 

like resource managers and checkpoint/restart rely on reliability prediction to minimize 

the performance loss. For example, reliability-aware checkpoint requires the accurate 

failure rate of the system fo allocate an optimal checkpoint interval. Similarly, resource 

managers need system reliability information to select resources to provide better quality 

of service to users. 

In HPC systems several individual hardware and software components may affect 

the failure behavior of the system. Accurate reliability estimation in the presence of 

multiple failure events is a non-trivial problem. An exponential model is a simple model 

to analytically obtain the failure rate, reliability, and MTTF of a system of k independent 

nodes because of its memory-less property [54]. However, several studies on the failures 

of HPC systems have shown that the failure rate varies over time [53][17][18], A time 

varying failure rate distribution like the Weibull or gamma typically results in a better 

GOF. Also, applying a time varying failure rate distribution in check pointing algorithms 

and reliability-aware resource allocation algorithms [55][56] is observed to minimize 

performance loss. In this chapter, we develop a TTF distribution model for a system of k 

nodes when individual nodes have a Weibull distribution. We also give analytical 

formulae for the system failure rate, MTTF, and reliability for a system of k independent 

nodes. 

In this section, we derive the distribution of TTF for a system of k nodes, for the 

case when the first node that fails interrupts the entire application, using the first-order 

statistics approach. Then, we calculate the failure rate and MTTF of the derived system 

reliability model. We also validate the model TTF distribution using the chi-square GOF 
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test. Section 4.2 gives the Pdf of the TTF of a system of k nodes, an algorithm to obtain 

the system TTF from the TTF's of individual nodes, the CDF, failure rate, and expected 

time to failure of the system. In Section 4.3 we validate the model with the GOF tests, 

and finally in Section 4.4 we present a numerical example. 

Many studies assume that failures of different nodes are independent. However, 

few studies have shown some dependencies in failures, especially software failures [57]. 

These dependencies among failures depend on the system configuration and operation 

environment [17]. In this study we built our model based on the assumption that nodes 

fail independently. This assumption seems to be true in many cases. The model has merit 

because cluster computing systems and servers are usually designed to be independent in 

failures and provide fault tolerance in the event of failures. HPC systems where nodes fail 

independently are expected to be more reliable. 

4.2 TTF Distribution of a System of K Nodes 

We make the following assumptions on the failure properties of individual nodes in an 

HPC system based on our discussion in Chapter 3. 

1. Individual nodes are Weibull distributed, but each node may have different shape 

and scale parameters. 

2. The first failure interrupts the entire application, i.e the node's TTF's are in series 

3. The TTF's of nodes are statistically independent. 

4. After a failure, the node returns to operation at the next time instant. 

5. No more than one failure occurs at a single time instant for the system (i.e. only 

one node fails at a time) 
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We consider a parallel application on a system of k nodes, where any failure in 

one of the k nodes interrupts the entire application. In a failure event, the node is renewed 

back into operation. There may be a downtime associated with the node during recovery 

operation, but in our study, we omit the downtimes and assume that there are spare nodes, 

and a node is available immediately after a failure because we are currently interested in 

modeling the TTF's. The system TTF's are obtained from the TTF's of individual nodes 

using the algorithm shown in Figure 4.1. The algorithm first calculates the actual failure 

times for each individual node (n,y)then the system failure times, and finally it calculates 

the system TTF's as the time between system failures (see Figure 4.2). 

Algorithm to determine the system TTF's 

1. i = 1: k //number of nodes 

2. j = V.ml ^number of failures ofik node 

//Let n9 be the actual failure times ofitk node 

//where the TTFofitk node is n9 - n^ 

3. leti=I: max(size (n^)) 

4. pi=0;ti=0; 
5. x;= p1 =min(n^}//find the min 
6. remove pgfom mj 

7. whilefaij* <fi) 

S. pl+1 =mm(njj) //find $e new min 

9. remove pl+1 from n^-

10. i=i+l 

11. xi=Pn-i-Pt* ^ne Vs tem TTF's 
12. end while 

Figure 4.1 Algorithm to determine the system TTF's from TTF's of individual nodes. 
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nb 
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Figure 4.2 Schematic diagram of system TTF's obtained from the TTF's of individual 
nodes. 

Figure 4.2 illustrates a schematic diagram explaining how the TTF's of the system 

are obtained from the TTF's of individual nodes. Let nn, n12, nn be the failure times of 

node 1 and n2i, n22 the failure times of node 2. The system TTF's denoted by xi, X2, X3 are 

obtained from the failure times of the individual nodes using the system TTF algorithm 

given in Figure 4.1. Now we first obtain the system TTF distribution from the TTF 

distributions of individual nodes for the example shown in Figure 4.2, and generalize it 

for the system of k nodes. 

The Pdf of a Weibull for an ith node and time between j-1 and j t h failure (XJ) is 

given by: 

w,(x.) ft l* J 

CC; ex. 
(4.1) 

The corresponding CDF is given by 

W,(jc,.) = l - e ^ ' 
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From Figure 4.2, the first TTF of the system x, is obtained from Nodel (xi=nn). 

Since Nodel has a Weibull (from Equation (4.1)), the system TTF xi also has a Weibull 

distribution. If there are k nodes, it is possible that any of the k nodes can have the first 

failure, therefore the system TTF may belong to any one of the k nodes. 

For the case of two nodes, we have 

sfa) = wl(xl)[l-W2(xl)] + w2(x2)[l-Wl(xl)] 

Therefore, for k nodes, the first TTF has the Pdf 

k k 

*.(*,)=!>l-ri(i-w,'> (4-2) 
i=i 1=1 

After the first failure, the failed node is renewed back into operation, and the 

second system failure may be due to any of the k nodes failing. The same node (the one 

that failed first) may fail again, or any of the remaining (k-1) nodes (those that have not 

had the first failure) can fail. If the same node fails (in our example in Figure 4.2, thelst 

node), then the second TTF will have a Weibull, u>,(x,). For the remaining (k-1) nodes 

that did not have the first failure, we know that they have survived until the first failure. 

We define the probability that a node will fail in time 'x', given that the node has 

survived until time 't' as 

P(X<t + x\t) = H{t + x\t) = \-e "" . (4.3) 

We denote by H(.) the excess Weibull distribution function, having CDF H(x+t\t) and 
!K-(t+x)l> 

Pdf h(t+x\t). where-t-~(t + xY~1e a" (4.4) 
ap 

Note that for the shape parameter /? = 1 , the Weibull reduces to an exponential 

distribution and for the excess Weibull H(.), we have P(X <t + x\t) = P(X<x). 



31 

Hence, the second TTF has an excess Weibull distribution if any of the remaining (k-1) 

nodes fails. Therefore the Pdf of the 2nd TTF 'x2 ' can be 

(1) Weibull W[ (x2) , if the node that first failed would fail again 

or 

(2) A mixture of (k-1) excess Weibull's g(x2). 

The Pdf of the second TTF of the system may be obtained as 

s2(x2) = wl(x2)[l-G(x2)] + g(x2) [1-W{(x2)], (4.5) 

where w1 (x2) is the Pdf, and Wi(x2) the CDF of the node that has failed previously, and 

g(x2) is the Pdf of the mixture of (k-1) nodes that have not failed previously and have an 

excess Weibull with G(x2) as the corresponding CDF. 

In general, the procedure to obtain the Pdf g(x2) is presented below. 

For 1 node that has not failed previously, we have g(x2) = 1\(tx + x2 \t{), where 

hj(ti+X2\ti) is the distribution of excess life for Node 1 with survival time ti and excess 

life x2. 

For 2 nodes, we have 

g(x2) = hl(t1 + x21 f,)[l - H2(tx +x2\t1)] + [l- HY(tx + x, I /,)]/z2(f, + x. If,), where 

h](t]+X2\tj) is the Pdf and H](ti+X2\tj) is the CDF of excess life distribution for Nodel 

with survival time tiand excess life x2, and Ii2(ti+X2\ti) is the Pdf and H2(ti+X2\ti) is the 

CDF of excess life distribution for Node2 with survival time tiand excess life x2. 

Therefore, for (k-1) nodes that have not failed previously, we obtain 

*(*,) = 2 > , ( ' , - i +Xj uJ-^fi[l~H'itM+xJ ";-•)]• <4-6) 
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In Equation (4.6), note that each of the (k-1) nodes may have a different probability 

density functions. The CDF for the mixture of (k-1) nodes with excess Weibull is given 

k-1 

by G(Xj) = 1 - 1 \ [ \ - H, (tH + x. I tH ). (4.7) 

The Pdf of the j t h TTF for a system when there are k nodes may be written in the general 

k k 

form as 5. (*,) = £ /,f\ (1 - Ft) (4.8) 
=i ;=i 

Hi 

where fi = w.(x.) if the (j-l)th TTF belongs to the ith node and 

f. = h( (tH + Xj I t._x) if the (j-l)th TTF does not belong to the ith node. 

We verify that the function in Equation (4.8) is a Pdf. The proof is provided in the 

Appendix A, Theorem (1). 

The CDF of the system TTF for Equation (4.8) is given by 

a k 

Sj(a) = P(t<a)= fefMlla-F,(T))dT. (4.9) 
0 1=1 1=1 

l*i 

The system reliability of the k nodes is given by 

Rj(a) = \-Sj(a) = f\(l-Fl(a)). (4.10) 
/=i 

The proof can be found in Theorem (2) in the Appendix. 

The failure rate of the system TTF is given by 

s,(x) 

l-\Sj(T)dT 
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k k 

1=1 ;=i 1=1 ;=i 

Therefore, Ai (x) = . (4.11) 
1 ' * k k 

0 i=l /=1 

The MTTF or the expected time to failure is given by E(x) = JJC[,S(JC)]<&:, 
o 

Substituting SJ(XJ) in E(x), we obtain 

00 k k 

E(xj)=jxJYJfil\(l-Fl)dx . ( 4 . 1 2 ) 

0 i=l /=1 

We present the system TTF model for two special cases, 

(1) The shape parameter /? = 1 for a Weibull distribution, which gives rise to an 

exponential distribution 

(2) The shape and the scale parameters for all nodes are equal to some values a and 

P. 

Case 1: The shape parameter /3 = 1 for a Weibull distribution. 

When P = \ the CDF of Weibull becomes, W(x) = l-e ^aJ , which is an exponential 

distribution. The corresponding Pdf is given by w(x) = —e ya), and the system Pdf 
a 

1 ii 
for the ith node is given by s (x ) = w(x ) =—e ^a' . 

1 1 ' J at 

Case 2: The shape parameter a and scale parameter (3 for all nodes are equal. 

That is, a = ax - a2 = a3 = ... = ak and/? = f3x = f32 - /?3 =. . . = j3k . 
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The Pdf for the mixture of (k-1) excess Weibull distributed nodes in Equation (4.6) is 

given by, 

g(Xj ) = (k-1)[1 - H(thl + Xj I thl )f~2 h(tM + Xj I t._x), and the corresponding CDF 

from Equation (4.7) is given by 

G(x ;) = l - [ l - / / ( r j _ 1 + ^ U y _ 1 ) ] * - 1 . 

Therefore, the Pdf of the system TTF in Equation (4.8) becomes 

Sj(Xj) = k[f(X-F)k-1], (4.13) 

where / = w(Xj) if the (j-l)th TTF belongs to the failed node and / = h(t;_, + xi 11}_x) 

if the (j-l)th TTF does not belong to the node that failed. 

1 -f 
For Case 1, / in Equation (4.13) is exponential —e a' for all nodes. 

a 

4.3 Goodness Of Fit Tests 

We adopted a simulation based approach to validate the model using the chi-

square GOF test. First, we derived the expression to generate random variables for an 

excess Weibull model for a given survival time 't'. The expression for generating TTF's 

that follow an excess life distribution is given by, 

H-\t + x\t) = {tp -ap-\n{\-U)up -t (4.14) 

Where t is the survival time, x is the system TTF or the excess life, a is the scale 

parameter and jB is the shape parameter and U is the uniform random variable. The proof 

for Equation (4.14) is given in Theorem 3 in Appendix A. We use the Chi-square GOF 

test to validate the model. The Chi-square test statistic if given as 
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i=l fij 

where m is the number of time intervals, 0t the observed number of failures in the ith 

interval, Ei-npi the expected number of failures in the ith interval,n the total number at 

risk (sample size) assuming that the TTF's are not correlated, and pi the probability of a 

failure occurring in the ith interval, where pi - S} (ai) - Sj (a,_,), and 

a-

Sj(a,)= ^hl(t + x\t)[l-H2(t + x\t)] + h2(t + x\t)[l-Hl(t + x\t)]dx (4.15) 
0 

The expected number of failures in the ith interval is n * [5 • (a,) - S. (a(_,)] (4.16) 

We use the following algorithm to calculate the system TTF's 

Simulation Algorithm: 

1. Generate TTF for two nodes with same alpha and beta using Equation (4.14) for a 

sample size (N=200) assuming a = 1000 and/? = 0.8 . 

2. Draw a random observation from node-1 and node-2, the system TTF is the 

min(TTF of node-1,TTF of node-2). 

3. Repeat the above process 100 times to obtain 100 TTF's of the system, group 

them into 'm' intervals and perform the chi-square test. 

The hypothesis we want to test is formulated below: 

Null hypothesis HO: The system TTF has the specified distribution given in Equation 

(4.15) 

Alternate hypothesis HI: The data does not fit the specified distribution 
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Figure 4.3 shows the comparison of observed number of failures, expected number of 

failures calculated from Equation (4.16), and chi-square values for various TTF intervals. 

In calculating the expected value in Figure 4.3 from Equation (4.16) a and f3 are 

estimated from the sample of generated TTF's. As such the degrees of freedom for the 

test statistic is m-c-l= 6-3=3, where m is the number of intervals and c is the number of 

estimated parameters. The value of the test statistic i s ^ 2 = 1.365. The critical value J^ 

for a level of significance a = 0.05 and 3 degrees of freedom is given b y ^ 0 5 i 3 = 7.814. 

We observe that 1.365 < 0̂.05 3 • Therefore, we fail to reject Ho and conclude that our 

model is consistent with the data. The GOF test shows 95 percent confidence that the data 

follows the distribution specified in Equation(4.15). 

ai 

200 

400 

600 

800 

1000 

8000 

Interval 

[0, 200] 

[200, 400] 

[400,600] 

[600,800] 

[800,1000] 

[1000,8000] 

Observed 

30 

21 

16 

8 

5 

20 

n=100 

Expected 

29.1 

19.8 

13.8 

9.8 

7 

20.5 

Chi-Sq 

0.028 

0.072 

0.351 

0.331 

0.571 

0.012 

Figure 4.3 The Chi-Square GOF tests comparing the actual and expected number of 
failures. 

4.4 Numerical Example 

To illustrate the TTF distribution model, CDF, reliability and failure rate for a 

system of k nodes we give a numerical example. We chose the scale parameters 

a\ = ai = a3 - 1542 and shape parameters /?, = /?2 = /?3 = 0.8606 for three nodes. The 

Chl-Goodness of Fit Test for Excess Life 
Distribution 

35-1 

3 0 -

| 25 

•8 15 -

2 1 0 . 
5-

0-
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failure times (the actual wall clock times that the nodes failed) for the three nodes are 

shown in Table 4.1. The calculation of CDF, reliability and failure rate are calculated for 

various cases illustrated in Figure 4.4, Figure 4.5, Figure 4.6, and Figure 4.7. We also 

discuss the effect of system reliability, failure rate and MTTF with the increasing number 

of nodes. Figure 4.4 shows the failure times of the three nodes when the system started 

functioning at time t=0. Here, the job is submitted at time t=0 where the job running time 

is 100 Hrs. 

Table 4.1 The failure times of three nodes 

Node-1 
1667 
6472 

10273 
10587 
12643 
12722 

14945 
17201 
17202 
17957 

Node-2 
1114 
2347 
3358 
4264 
4662 
7592 

13018 
13719 
13779 
13800 

Node-3 
1503 
3875 
3933 
5610 
5917 
5925 

6203 
6262 
15143 
17812 

Node 1 

Node? 

Node3 

System 
- x=100 _ 

* • w 

t=o 

1887 

1114 

- * -
1503 

•x x 

Figure 4.4. Job submitted at (x=100, t=0) 

2347 

- * -

3875 

^ _ _ 

X * failure time 
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The system reliability (From Equation 4.10), 

( fo0 8 6 0 6-(0+100)0 8 < i 0 6^ 

^aoo)=n 
1=1 

l - e 1542"- = 0.7521 

The system CDF (From Equation 4.9 and Equation 4.10) = 

/V(100) = 1 - / ^ ( 1 0 0 ) = 0.2479 

The system failure rate (From Equation 4.11), 

V100): 

0.8606 
3606 _,ruTnm0H<M6 

1542 0.8606 
(o+ioo) 

oMuo-(o+iooy 
/ fn0.8606_(n, ,nfl,0.86I>6\\ 

,0.8606-1 1542"- l-e 

O^'^-tO+lOO)" 

1542°' 

( r o o 8 6 o 6 - f o + i o o ) o 8 < i o 6 ^ 
J n 

i=l 

l-e 

O^^'-tQ+lOO)" 

1542° 

0.0025 

The system MTTF (From Equation 4.12), 

£(100)= J3* 
100 a" 

-(t+xy 
t"-(t+x)p 

dx = 464.4902 

The system MTTF is integrated using the Composite Simpson's approximation function 

[54]. The Matlab [54] programs to calculate the above are given in Appendix 2. 
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Node 1 

Node 2 

Node 3 

System 

t»3O0 

y *=500 > 

-fc-
1114 

Figure 4.5 Job submitted at (x=500, t=300) 

-X-
1867 

1503 

^ X_ 

2347 

* 

3875 

-X" 
^ - Failure time 

Figure 4.5 shows the case when the system was surviving until time t=300, and a 

job is with execution time x=500 is submitted at t. Here t is the survival time, and x is the 

excess life or the job running time. We show the calculation of reliability, CDF and 

failure rate for this case. 

The system reliability (From Equation 4.10), 

f ^30O t t 8 6 0 6 - (O+50O) 0 - 8 6 0 6^^ 

^(5oo)=n 1-e 
1542" = 0.3782 

The system CDF (From Equation 4.10 and 4.9) = F (500) = 1 - Rsys(500) = 0.6218 
sys y 

The system failure rate (From Equation 4.11), 

3* 

Aw(500) = 

0 .8606 / cnn\o.8606-i 

^56 (300 + 500) e 

SOO8606 -(300+500)" 

1542" 

15421 
l-e 

300°»W-(300+500)'> 

1542 1 ' - 8 6 0 6 

Y\ 

j j 

n l-e 

300o.8606 _(3oo+500) 0 8 6 0 6 ^ ̂  
= 0.0018 

The system MTTF (From Equation 4.12), 
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/ 

£(500)= j*3 ' 
500 

Node \ 

Node 2 

Nods 3 

,/*-(,+*)/< \ 

-^(t + xf~le a" Ux = 536.8430 

) 

<& 

System 

J%. 

11114 

j>4 
1=200 

168? 

f̂ 
1503 

~^s; TX-

2347 

* 

-X-
3875 

_^_ 
4 — — — • 

>^- Failure time 

Figure 4.6 Job submitted at t=200, x=350 when the system failed at 1114 Hrs 

In Figure 4.6 we show the job submission when the job running time is x=350, the 

system survived until time t=200 after the system failed at 1114 Hrs 

The system reliability (From Equation 4.10), 

*„(350) = n l-e 

200"°°"° -(200+350)' 

15420J 

0.8606 \ \ 

= 0.4877 

The system CDF (From Equation 4.10 and 4.9), F (350) = 1 - fl„,(350) = 0.5123 

The system failure rate (From Equation 4.11), 

^ , ( 350 ) = -

0.8606 
I-v 0.8606 / 

1542 
^ ( 2 0 0 + 350r606-1^ •**" 

/\().S606 / inf i j- i<m\0-8606 

1542" 
2005°"°-(200+350)"a°"° | I 2 0 ° -(200+350)" 

~ l - e ' 

V 

Y\ 

/ / 

n 
( r2oool"'06-(200+350)"86"6^ 

I 1 3 4 2 0 .8606 

0.0019 

The system MTTF (From Equation 4.12), 
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£(350)= J3: 

350 

Node i 

Node 2 

Nods 3 

System. 

dx = 522.4005 

1067 

11114 

-H-
1503 

• * — ^ 

« J = ^ 

2347 

- * -

3S75 

* 

X * Failure Time 

Figure 4.7 Job submitted at t=50, x=150 when the system failed at 1167 Hrs 

In Figure 4.7, the system starts functioning at time t=50. We want to calculate the system 

reliability metrics for the future time x=150. 

The system reliability (From Equation 4.10), 

, ( f50 0 8 6 0 6 - (50+150) 0 8 6 0 6^ 

^aso)=n l-e 
1542u-

= 0.6974 

The system CDF (From Equation 4.10 and 4.9), F (150) = 1 - f l (150) = 0.3026 
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The system failure rate (From Equation 4.11), 

3* 

*„(100) = -

0.8606 
1 ««470-8606 (50 + 150r 6 0 6 -^ 1542"7 l-e 

50""™' "-(50+150)' 0.8606 A \ 

1542' 0.8606 

\A 

V 

n 1542"-

( fso^^^so+iso) 0 8 6 0 6 ^ 

l - e 

V 

= 0.0022 

The system MTTF (From Equation 4.12), 

( 

150 

P 
a 

tp-<.t+xy 

£(100)= [3* -^(t + xf-'e a" dx = 489.5752 

Parallel applications are allocated to a system of k nodes. Therefore, it is important to 

study the system reliability failure rate and MTTF with increasing the number of k nodes. 

We use the same example wherea t = 1 5 4 2 , $ =0.8606 and vary i from to 50 nodes. 

Figure 4.8(a) shows the system failure rate for various values of 'k'. We observe that 

increasing the number of nodes increases the failure rate. Figure 4.8(b) shows the system 

MTTF with the increase in number of nodes. We observe that increasing the number of 

nodes decreases the MTTF. Figure 4.9 shows the effect of system reliability with the 

increase in the number of nodes. We observe that the system reliability decreases with the 

increase in number of nodes. We study Reliability-Aware optimal k node allocation in 

more detail in Chapter 6. 
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Failure Rate versus K Nodes MTTF vs K-Nodes 

(a) (b) 
Figure 4.8. The effect of failure rate and MTTF with the increase in number of nodes (k) 

System Reliability versus K Nodes 

Figure 4.9 The effect of system reliability with the increase in the number of nodes 

4.5 Conclusion 

Estimating system reliability of a parallel program among a system of k nodes is a 

challenging problem when there are multiple components, with different failure 

behaviors. When components are independent and have a constant failure rate 

(exponential model), estimating the k node system reliability is simple because there is no 

dependency on the previous failure time. However, recent studies on HPC system suggest 

that individual compute nodes follow a time varying distribution like the Weibull [16], 

[17], [18], [19], [20] instead of the exponential. In this chapter, we developed a TTF 

distribution model for a system of k nodes for a parallel program, where individual nodes 
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follow a Weibull distribution. Based on the distribution function of the proposed model, 

we developed the algorithm to obtain the system TTF distributions, the reliability of a 

system of k nodes, the failure rate, and the MTTF. We also validated the model using a 

simulation based approach. The proposed model exhibits more accuracy than previous 

models in the literature since it considers the excess life (future running time given that 

the nodes survived until time't') in order to estimate system reliability. 



CHAPTER 5 

RELIABILITY-AWARE RESOURCE 

ALLOCATION IN HPC SYSTEMS 

In this chapter, we propose a reliability-aware resource allocation model for 

parallel programs based on a time-varying distribution and present reliability-aware 

resource allocation algorithms to minimize the performance loss due to failures. We also 

study the effectiveness of the proposed allocation algorithms based on the actual failure 

logs and parallel workloads. The failure data are obtained from the 512 node ASCI White 

system from Lawrence Livermore National Laboratory (LLNL), and the parallel 

workloads are obtained from Los Alamos National Laboratory (LANL) and San Diego 

Supercomputer Center (SDSC). 

5.1 Introduction 

Typically, parallel applications like MPI have multiple processes that 

concurrently run on several nodes. MPI processes running on these nodes 

intercommunicate by passing messages between the processes that span several nodes. 

Unfortunately, a failure on any nodes running these processes can cause the overall 

application outage and requires restarting the entire application. The compulation time 

lost for a parallel program due to failures is called the waste time. An ideal model would 

predict the exact time and event of failure, which would enable the applications to 

45 
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checkpoint right before the failure or a resource manager to avoid allocating the job to a 

node that may fail in future. However, current failure prediction techniques are still 

unrealistic to be applied in real systems. 

We study stochastic techniques to determine the reliability of computation nodes 

and apply heuristics based on workload properties to minimize the overall waste time. 

We present reliability-aware resource management algorithms and compare with the 

existing techniques.. To understand the effectiveness of the proposed reliability-aware 

algorithms, we use the production parallel workloads available at [15] on failure data of 

ASC white. We first discuss the reliability functions for estimating the reliability of a 

parallel job. Then, we establish a reliability model for job allocation, discuss reliability-

aware resource allocation algorithms, waste time metrics, and the effect of waste time 

metrics for various job types. 

The rest of the chapter is organized as follows. Section 5.2 introduces the time 

varying reliability function, reliability-aware resource allocation model, and reliability-

aware resource allocation algorithms for parallel programs. Section 5.3 describes the 

simulation framework for reliability prediction; parallel workloads used, and waste time 

of various reliability-aware resource allocation algorithms for resource allocation. Section 

5.4 finally summarizes the contributions. 

5.2 Reliability Model for a Parallel Application 

5.2.1 Reliability of Job Completion Time 

Let x denote the job runtime, and t the time since the most recent failure, (t is 

basically the failure-free runtime or survival time of a particular node). The reliability of 

job run time, conditioned on the failure free runtime t is given by 
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R(t + x\t)=R(t + x) (5.1) 
R(t) 

Where, R(t + x) is the reliability during the time (t+x) and R(t) is the reliability 

of the failure free running time. We use exponential and one of the time varying CDF to 

develop reliability cost functions. We choose Weibull because it is relatively easier to 

develop cost function for estimating the reliability of job completion time as compared to 

gamma and lognormal. 

If we apply the above Equation (5.1) for the CDF of Weibull: 

*,+ m ̂  W ) 
R(t + x\t)=——- = eK J (5.2) 

Applying Equation (5.1) for the CDF of Exponential 

R(t + x\t) = 1— = e-Ax=R(x) (5.3) 

e 

Exponential model is well-known, and we observe from Equation (5.3) that for 

exponential distribution there is no memory on previous failure, and the reliability of job 

run time R(x) is the same during the life time of the node. It does not matter when the 

previous failure happens. But in the case of Weibull from Equation (5.2), the reliability of 

job completion time decreases as a job is submitted away from the most recent failure 

(for shape parameter m<l). To determine how a distribution performs in selecting 

reliable nodes to avoid failures and minimizes waste time, we can compare the reliability-

aware resource allocation algorithms that apply reliability functions on the actual failure 

data and parallel job workloads. 
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5.2.2 Reliability Model for a 
Parallel Application 

For a parallel program like MPI, a single node failure interrupts the entire 

program running on all k processors. In this reliability model, we assume that nodes have 

identical processing times, and nodes are statistically independent [25]. If x is the job 

runtime and Rl(t1 + x\t1) is the reliability of nodet, where t} is its failure free running 

time, R2(t2 + x 112) is the reliability of node2, where t2 is its failure-free running time and 

Rk (tk + x \tk) is the reliability of node, where tk is its failure free running time. Because 

node failures are independent from another, and the entire parallel program can be 

interrupted if any of the k nodes fail, the system reliability model is a series connection. 

The system reliability for a parallel program allocated on k nodes is therefore given by 

1=1 

Note that the above reliability function is discussed in Chapter 4 may also be obtained 

from Equation (4.9) and the proof is given in Theorem (2) in the Appendix. 

We define a heuristic of Reliability-aware Scheduling (RAS) Algorithm as follows: 

"For a job that requires k out of n available processors, the job is allocated to k adjacent 

processors and nodes such that Rsys is maximized." 

5.2.3 Reliability-Aware Resource 
Allocation Algorithms 

The RAS algorithm is given in Figure 5.1. For an exponential RAS algorithm 

(EXP) Riis obtained from Equation (5.3). Exponential reliability algorithm requires the 

failures rate X of each processor and the jobs run time. For a Weibull RAS algorithm 

(WEIB) Rj is obtained from Equation (5.2). Weibull reliability algorithm requires the 

shape (oc) and scale (/3) parameter values of each processor, the time since previous 
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failure (t), and the job running time (x). All the three parameter values (A,m,c) are 

obtained from the failure history of each node. 

The following performance metrics were considered to evaluate the reliability 

algorithms. 

%MWT (Mean Waste Time): The ratio of waste time to the actual run length of 

the job. 

Total Waste Time: The total waste time for each category of job. The category of 

jobs form a workloads are either the run lengths or the number of processors 

The total waste time per category gives the amount of waste time for various 

categories of jobs. The %MWT gives a more normalized metric on the percentage of time 

lost relative to the job run length. 

RAS ( R e l i a b i l i t y - a w a r e Schedul ing) Algor i thm 

K : Haximum Number of Jobs 
H : Maximum Number of Processors 
1: for ( each job ready in job queue J ( i= l to N)) 

processors Id le (j=l to H) 
s e l e c t the f i r s t job ( J ) i n the queue 

i f ( job (Ji .no_of_procs) avai lable==true) 
s e l e c t k adjacent r e l i a b l e processors 

from nodes out of H such t h a t R i s 
maximized 

5: endif 
6: i f any of the s e l ec t ed k processors f a i l ed 
7: requeue the job a t the head of job queue 

endif 
endfor 

Note: R, for Re l i ab i l i t y -aware algorithm i s computed us ing 
Equation (5.4) 

Figure 5.1. The Reliability-A ware Scheduling Algorithm 
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5.2.4 A Study of Waste Time 
for a Parallel Program 

Figure 5.2 and Figure 5.3 shows the effect of MWT with respect to job run length 

and number of processors. In the ideal case we want to avoid allocating job to nodes that 

would fail, but present mechanisms disallow prediction of the exact failure event and 

time. An accurate reliability prediction function should, however, minimize the failures 

and waste time with reliability-aware resource allocation policies. There could be several 

factors that affect the waste time in the presence of failures like the arrival sequence of 

jobs, type of jobs, and availability of resources. 

To understand the effectiveness of a reliability prediction function we first 

compare how individual jobs are affected due to waste time. Figure 5.2(a) and Figure 

5.2(b) illustrate the workloads categorized by the number of processors and Figure 5.2 (c) 

and Figure 5.2(d) show the comparison of total waste time with respect to number of 

processors when an individual job is allocated using three policies. We can observe that 

%MWT is minimal with reliability-aware resource allocation for jobs requiring different 

number of processors. When the number of processors required by a job increase, the 

failure probability also increases. Thus, the %MWT is higher for jobs that require more 

number of processors. In Figure 5.2 (c), for LANL workload there are 6 jobs (about 

0.00005% of the entire jobs) that require 1024 processors and for SDSC in Figure 5.2 (d) 

there are 0.00002% of the entire jobs that require 2048 nodes. Because the percentage of 

the jobs that required many processors is smaller, we chose not to plot these values. The 

effect of waste time due to job run lengths is shown in Figure 5.3(b). The graphs in 

Figure 5.3(c) and Figure 5.3(d) show that the waste time increases when jobs have longer 
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job run lengths; however, the graphs do not show clear trends for much longer jobs 

because of the difference in the percentage of jobs with different run lengths. 

LANL SDSC 

32 64 128 256 512 
Number of processors 

(a) 

120000 -
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UJ 

•O 80000 -

, ^ 6 0 0 0 0 -

40000 -
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ff 
C O ••£> 
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i 1 • H • • ._ 
(S ^ m >fl N 
ro D̂ c\l in ,-H 

i H CM IT) 
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(b) 

10
24
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a) 

(0 

^ <9 

V 
# of p r o c e s s o r s 
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Figure 5.2 Description of workloads and comparison of Waste Times for reliability-aware 
policies for individual jobs requiring different number of processors. 



52 

70000 

60000 -

50000 
a 
.° 40000 

" 30000 -

* 20000 

10000 

0 

B C D 
Job run l e n g t h 

(a) 

Job run length 

(b) 

Percentage MWT vs runlengths 

0.12 -

A B C D E 

Job run length 

(c) 

Percentage MWT vs job runlength 

(SDSC) 

B C D E 
Job run length 

(d) 

A 

<lMin 

B 

lMin<X<lHr 

C 

lHr<X<6Hrs 

D 

6Hrs<X<12Hrs 

E 

12Hrs<X<24Hrs 

F 

>lDay 

Figure 5.3 Description of workloads and comparison of Waste Times for reliability-aware 
policies for individual jobs requiring different job run lengths 

5.2.5 Heuristics for Reliability-Aware 
Resource Allocation 

In an actual job scheduling scenario, we have a mixture of jobs based on arrival 

sequence with different run lengths, and number of processors. We explore the following 

heuristics that can aim to minimize the overall waste time: 

(A) Resubmit the job immediately after the failure 
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(B) Allocate longer jobs to reliable processors 

(C) Allocate shorter jobs to unreliable processors 

(A) Resubmit the job immediately after the failure 

A job should not be penalized for a resource failure by queuing it at the end of the 

job queue. Hence, a job that has failed is immediately scheduled on the most reliable 

node. 

(B) Allocate longer jobs to reliable processor 

During a job execution, the waste time depends on what point of runtime the 

failure occurred. If a job fails just before completion, it has higher waste time as 

compared to when it fails in the beginning due to rollback time. In general, longer jobs 

are more likely to have more waste time as compared with shorter jobs, thus allocating 

longer jobs to more reliable processor reducing the failure chances for longer jobs, 

thereby minimizing the overall waste time. 

(C) Allocate shorter jobs to unreliable processors 

If both short and long jobs are allocated to reliable processors, the additional (or 

new) longer jobs coming later in the queue would get assigned to less reliable processors 

in the system, therefore allocating shorter jobs to less reliable nodes makes reservations 

for longer jobs. Because allocating shorter jobs to unreliable processors has less waste 

time as compared to longer jobs, the overall waste time can be reduced. 

With the above mentioned heuristics, we develop an algorithm called the LJRAS 

(Longest Jobs Reliable Aware Allocation) that is given in Figure 5.4. The algorithm 

basically allocates longer jobs to reliable nodes, shorter jobs to unreliable nodes and 

resubmits the job immediately after failure. The reliability-aware simulation framework, 
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workloads and discussion on comparison of reliability-aware resource allocation 

techniques are discussed in the Section 5.3. 

LJRAS (Longest Job Reliability-aware Scheduling) Algorithm 

N : Maximum Number of Jobs 
H : Maximum Number of Processors 
1: for(each job ready in job queue J ( i = l t o N) ) 

&& Each processor I d l e ( j = l to H) 
2: s e l e c t the f i r s t job (J" ) i n the queue 
3: if ( job (Ji.no_of_procs) avai lable==true) 
4: i f j i . r u n _ l e n g t h >lday 
5: s e l e c t k adjacent r e l i a b l e processors 

from nodes out of M such t h a t R i s 
maximized 

6: e l se 
7: s e l e c t k out of M adjacent u n r e l i a b l e 

processors such t h a t Rsys i s 
minimum 

8: endif 
9: endif 
10: i f any of the k processors f a i l ed 
11: requeue the job a t the head of job 

queue 
12: endif 
13: endfor 
Note: R for Re l i ab i l i t y - aware algorithm i s computed us ing 
Equation (5.4) 

Figure 5.4 The Longest Job Reliability-Aware Scheduling Algorithm 

5.3 Comparison of Reliability-A ware 

Resource Allocation Algorithms 

In this section we discuss the simulation study of applying various resource 

allocation algorithms namely, RAS, LJRAS and round robin with the parallel jobs on the 

actual failure data, and parallel workloads. We compared the waste time metrics for 

reliability-aware resource allocation algorithms with exponential, Weibull and round-

robin techniques. 
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5.3.1 Simulation Study 

We simulate the 8196 processor cluster from the ASC White failure logs and run 

parallel workloads in the presence of failures. The system failure logs (number of 

processors, their failure trace which include uptime and downtime) and parallel job 

workloads trace (job submit time, running time, and number or processors) are inputs to 

the simulator. Each parallel job requires a certain number of processors, and each job 

runs on not more than one processor at the same time. The parallel job continues to run 

until either the job is completed, or any node has failed. Jobs are scheduled based on First 

Come First Serve policy. If the job is failed, it is given highest priority. 

For reliability-aware resource allocation, the simulator uses the most recently 

available failure parameters obtained from nodes in order to obtain the reliability of a 

parallel job. Failure rate, shape and scale parameters are evaluated using the MLE 

(Maximum Likelihood Evaluator) and updated periodically every 1000 minutes. 

5.3.2 Parallel Workloads 

The workload for the ASC white was unavailable. We chose two workloads from 

[53] that are significant on terms of jobs that required more number of processors, jobs, 

longer run lengths, and has more number of jobs. LANL workload is from a 1024 

processor system and has 122,060 jobs, and SDSC BLUE workload is from an 1152 

processor system with 243,314 jobs. We use the initial 6 months failure data of nodes 

from ASCI White to calculate the failure parameter values, we therefore assume jobs start 

executing at 250000 minutes. The number of processors in the failure data is 8196. Using 

the actual submit times would make most of the processors idle. Therefore to utilize the 
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system to maximum and compare the waste time for various techniques, we assume that 

all jobs are available at the same time. 

5.3.3 Comparison of Reliability Prediction 

We present the comparison results of among exponential RAS, exponential 

LJRAS, Weibull RAS, and Weibull LJRAS allocation policies and round robin (RR) 

technique. A round robin algorithm (RR) selects k adjacent processors in the order of the 

node numbers. If the last node number is reached, the RR algorithm starts selecting nodes 

beginning with the first node. 

We first study the overall waste time and then discuss the waste time metrics with 

respect to various run length of jobs. The total waste time of each technique for the two 

workloads is shown in Figure 5.5. We observe that (1) reliability-aware techniques based 

on two variations, exponential and Weibull result in lesser waste time, and (2) allocating 

longer jobs on reliable processors and shorter jobs on less reliable processors further 

reduces the waste time. For SDSC workloads, the total waste time by RAS is reduced as 

much as lOpercent and as much as 33.8 percent with LJRAS technique. 
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f- 12000 
<D 10000 
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| 6000 
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Exp Weib 
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0 

•RAS 
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Resource Allocation Scheme Exp Weib 

Resource Allocation Scheme 

Figure 5.5 The comparison of overall waste times for the two workloads namely LANL 
and SDSC. 
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In the case of LANL, the waste time is reduced with RAS by as much as 30 

percent and by LJRAS by 53 percent. The longer the jobs are, the more likely they will 

encounter failures during execution. Therefore, longer jobs have less reliability and more 

waste time as compared to shorter jobs. In RAS algorithm, allocating short jobs to 

reliable nodes makes the reliable nodes unavailable to longer jobs. The LJRAS takes 

advantage of the fact that shorter jobs have less failure probability, hence shorter jobs 

may be allocated to less reliable processors and thus reliable processors are reserved to 

longer jobs. 

In general, the waste time is affected by three factors namely (1) the time of 

failure (2) the job run length and (3) the availability of reliable processors. For longer 

jobs, Weibull based reliability function performs better than exponential and exponential 

performs better than round robin. For example, the total waste time for LANL in Figure 

5.6 (a), and total waste time for SDSC in Figure 5.6 (b) shows that for longer jobs 

(category D,E and F), the Weibull-based LJRAS performs as good as or better than the 

exponential-based LJRAS. 
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Figure 5.6 Description of LANL and SDSC workloads based on run lengths and 
comparison of Total Waste Time and % average Waste Time for each run lengths of jobs. 

In our experiments, the failure data belongs to a Weibull population, which is one 

of the reasons why it performs better than exponential. A more accurate reliability 

prediction function may perform better than Weibull. With reliability-aware resource 

allocation, the waste time is also affected by several factors like the arrival rates, and 

system utilization. For instance, if arrival rate or system utilization is smaller, with 

reliability-aware allocation, most of the unreliable nodes are left idle and very few jobs 
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fail. Incorporating reliability-aware resource management in the presence of failures is a 

hard problem both because of the unpredictability of workload properties and failure 

behavior of HPC systems. We observed different distribution of job sizes in the 

workloads and failure properties of nodes to develop some heuristics to minimize the 

overall waste time. 

5.4 Conclusions 

Failures and downtimes are a growing concern for large- scale HPC systems. 

Future HPC systems require an integrated RAS framework [7] for providing reliability 

information of resources for runtime mechanisms such as checkpoint managers and 

resource managers. In this chapter, we proposed a time varying failure rate based 

reliability model for parallel applications and evaluated effectiveness of a reliability-

aware resource allocation as compared to round-robin for exponential and Weibull 

reliability functions with two policies namely Reliability-Aware Scheduling (RAS) and 

Longest Job based Reliability-Aware scheduling (LJRAS). Our results indicate that 

LJRAS technique with Weibull function minimizes the waste time, and performs better 

than or equal to exponential in most cases. 



CHAPTER 6 

RELIABILITY-AWARE OPTIMAL K NODE 

ALLOCATION OF PARALLEL 

APPLICATIONS 

In an ideal case, scalability by increasing the number of nodes would reduce the 

completion time. However, some important system factors limit the scalability to a 

certain threshold to achieve better performance[59][60][61][62]. Current and future 

parallel applications demand significant computing resources, and thus system reliability 

becomes a major scalability issue. In this chapter, we first study the effect of job 

completion time with respect to scalability. Our findings suggest that in the presence of 

failures, increasing the number of nodes for a parallel application would start to increase 

the completion time after a certain threshold. In addition, there is an optimal number of 

nodes the parallel application can scale, and the overall completion time can be 

minimized. Based on this observation, we propose a reliability-aware optimal k-node 

allocation algorithm and compare with existing resource allocation algorithms. 

6.1 Introduction 

There are two types of scaling, namely weak and strict. Strict scaling involves 

increasing the processor count to reduce the completion time. With weak scaling, the 

processor count is increased proportional with the input (i.e. throughput computing). We 

60 
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study the performance aspect relevant to job completion time (strict scaling). Reliability 

has been mentioned as an important challenge for large scale computational applications. 

In Chapter 5 we observed that reliability-aware resource allocation can improve the 

performance loss. Though reliability decreases with increasing number of nodes, 

reliability-aware resource allocation in the context of scalability has not been given much 

attention. We also observed in Section 3.7, Chapter 3 that individual nodes may posses' 

different reliabilities over time. Figure 6.1 shows the effect of system reliability from 

ASCI White with the increase in number of nodes. We observe that the system reliability 

decreases with the increase in the number of nodes. 

Effect of Reliability of Parallel Application Running on system of K Nodes 
1 1 1 1 1 

i 

0 100 200 300 4D0 500 
Number of Nodes (1Node=16 Processors) 

Figure 6.1 Effect of reliability with the increase in number of nodes. 

Considering reliability as an important performance metric for resource managers, 

enables to develop heuristics that minimize waste time and reduce the job completion 

times. In this chapter, we study how reliability affects job completion time while scaling 

up the number of nodes and propose a reliability-aware optimal k node allocation 

algorithm based on the expected completion time of a parallel program. 

s 10° 
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The rest of the chapter is organized as follows. Section 6.2 discusses the expected 

completion time of a job without failures. The effect of reliability as an important 

performance and scalability metric is discussed in Section 6.3. Section 6.4 describes the 

reliability-aware optimal k node selection algorithm and compares it with other resource 

allocation algorithms for various types of jobs. Section 6.5 discusses the conclusions and 

future work. 

6.2 The Expected Completion Time of a Parallel Program 

To estimate the completion time of a parallel program in the presence of failures, 

we first derive the expected completion time on k nodes. Figure 6.2 shows the completion 

time of a parallel program when there are failures and repairs. The actual completion time 

TC(k) is an estimated running time of a parallel program on k nodes when there are no 

failures. In the event of a failure, the un-checkpointed parallel program running on set of 

k nodes is interrupted and has to be restarted from the beginning. The time until the 

failure which is wasted, is called the waste time (Wki). The expected waste time is the 

MTTF of the given set of k nodes that we denote by M. The time the application takes to 

restart from the ith failure is called the repair time rid. We denote the expected recovery 

time by R. The probability of system failure (Fk) Equation (4.9) in Chapter 4. 
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Figure 6.2 An un checkpointed parallel application with failures. 

Theorem: The Expected Completion time of a parallel program is given by 

E(Tc(k)) = Tc(k)+(M+R) 
l - f \ 

(6.1) 

Where Tc(k) is the completion time of a job on k nodes without failures, M is the expected 

waste time due to failures, R is the recovery time, and Fkis the failure probability of the 

system. 

Proof: 

The expected completion time in the presence of multiple failures and repairs is given by: 

E[Tc(k) ] = (1 - F t l )Tc(k) + Fki [wkl + rkl + (1 - Fk2 )Tc(k) + Fk2 [wk2 +rk2+(l- Fki )Tc{k3) + ... 

In the above equation, Fki is the failure probability of k nodes selected first time the job is 

allocated. If the job fails, the job may be allocated to a different set of k-nodes where the 

failure probability is Fk2 and so on. Since the job is not checkpointed after a failure the 

job has to be restarted from the beginning. Therefore Tc(k) still remains the same and has 

reliability of completion (1-Fia)- For a Weibull-based distribution function the failure 

probability may change over time. For simplicity, we consider a special case where 
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Fki=Fk we assume average system reliability for all the nodes. Similarly, the average 

waste time for k nodes (M) and the average repair time for k nodes R. Therefore, 

let **k ~ rkl — tk2 — Pk3 — ...rkm M=Mkl=Mk2=Mki = ...Mkm and 

^ = wk\ = wki = wki ~ —wkm f° r m ' failures. 

Therefore, 

E[Tc(k)] = a-Fk)Tc(k)+Fk[M+R + {l-Fk)Tc(k,+Fk[M + R + (l-Fk)Tc(k) + k'* c(k) ' A k k >l c(k) ' x * I k > x c(k) 

We can rewrite the above equation as follows: 

E[Tc(k)] = (l-Fk)Tc(k)+FM+FR + F(l-F)Tc(k)+F2M+F2R + F2(l-F)Tc( 

+ F3M + F3R + F3 (1 - F)Tc{k) + 

After factoring out M, R and TC(k) the above equation becomes 

E[Tc(k)] = (l-Fk)Tc(k) +Tc(k)(F(l- F) + F\\-F) + F\\- F) +..) 

2 , z?3 + M(F + FZ + F* +...) + R(F + F'+Fi+...) 

-A 1 
We have from geometric series that 2_,r' — 

i=0 1 — ' 

1 r 
Therefore, V r ' = 1 = . 

tT \-r \-r 

Using the above sum, we obtain, E[TC k ] = (1 - Fk)Tc 1 k'Ac(k) 

l-F 
+ (M+R) 

1-F 

This implies E[Tc(k)] = Tctk) + (M+R) 
l-F 

The expected completion time considering the reliability of nodes on different 

scale systems is shown in Figure 6.3. We observe that the expected completion time 

increases after a reliability threshold is reached. The expected completion times for 
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different shape and scale parameters are shown in Figure 6.3. Figure 6.3 (a) shows the 

expected completion time for different values of shape parameter b. 

Expected Completion Time vs No of Nodes for various values of beta 
when a=2.8780e-*TJ05 

b=0.5 
b=0.6 
b=0 7 
b=08 j 
b=0 9 j 
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Figure 6.3 The expected completion times for various values of the shape and scale 
parameters for a Weibull distribution. 

We observe that increasing the number of nodes increases the expected 

completion time, and smaller values of beta have higher expected completion time in the 

case of large number of nodes. Figure 6.3(b) shows the expected completion time for 

various number of nodes for different values of the scale parameters a. We also note that 

for different values of the scale parameter a, increasing the number of nodes increases 

completion time. Furthermore, lower the value of alpha, the higher is the expected 

completion time. 

6.3 Performance and Scalability of Parallel Programs 

In this section, we discuss the expected completion time with various scalability models. 

Amdahl's law and Gustafson's law are some of the widely discussed scalability models 

with respect to the completion time of a job. 
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6.3.1 Amdahl's Law 

According to Amdahl's Law, the maximum achievable speedup is limited by the serial 

part of the application. The "speedup" of a parallel program is defined as the ratio of the 

rate that a job is running on k processors to the rate at which the same job is executed on 

one node [49]. The speedup S(k) is given by 

1 T 
S(k) = and Tclk) = - ^ L 

£ + (!-/» m 

k 

,where p is the fraction of code that can be parallelized and 1-p is the code that has to be 

executed sequentially and k is the total number of nodes. TC(k) is the estimated completion 

time on k nodes and Tc(l) is the expected completion time on one node. Amdahl's law 

gives an upper bound on the amount of scalability that can be achieved for a program 

with a certain degree of parallelism. The expected completion time is therefore given by 
P (6.2) E[Tcik)] = Tc(k)*\^- + (\-p)\ + (M+R) 

We present an example program with an execution time of 105 hrs to study the 

scalability effect with and without reliability. Figure 6.4(a) shows that the job completion 

time tends to decrease in the beginning when increasing the number of nodes. However, 

after a certain point the job completion time remains constant because the improvement 

in scalability is negligible. Figure 6.5(a) shows the comparison of expected job 

completion time with respect to the number of nodes with and without reliability. When 

the reliability of nodes is considered, we observe that the expected completion time 

decreases in the beginning but starts to increases after a certain point. 
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6.3.2 Gustafson's Law 

According to Gustafson's Law, the time needed to execute the serial fraction of 

the program may be overlapped with some other operations, unlike Amdahl's law, which 

imposes a restriction that the sequential part of the program is completely disjoined to the 

parallel counterpart. The scalability of According to Gustafson's Law [37] the speedup 

and the completion time are given by: 

S(k) = (l-p) + k*p 

T =M> 
c{k) S(k) 

The expected completion time with Gustafson's model is given by: 

(l-p) + k*p 
Fk 

1-^i 
(6.3) 

The example program with an execution time of 105 Hrs is used to study the effect of 

scalability for Gustafson's model, with and without reliability. Figure 6.5(b) shows the 

completion times of parallel application with three degrees of scalability. We observe that 

the actual completion time decreases linearly on a log-log scale. Also, Figure 6.5(b) 

shows that the expected completion time by considering reliability decreases in the 

beginning, but starts to increase after a certain point. 
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Figure 6.4 The scalability effect with respect to job completion time for different 
performance models (Amdahl's Law and Gustaf son's Law) 

Expected Completion Time (Amdahl's Law) Versus Number of Nodes 
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Figure 6.5(a) 

Expected Completion Time (Gustafson's Law) vs Number of Nodes 

Expected Completion Time 
(Without considering Reliability) 
Expected Comletion Time 
(Considering Relaibility) 
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Figure 6.5(b) 

Figure 6.5 The expected completion times of parallel programs considering reliability for 
Amdahl's Law (a) and Gustafson's law (b). 

6.4 Reliability-Aware Resource Allocation 

To study the effect of reliability in selecting the optimal number of k nodes, we 

consider reliability and job completion time as important metrics for space sharing. In 

this section, we discuss existing relevant resource allocation algorithms, the optimal k 
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node allocation algorithm and compare these algorithms by simulating the resource 

allocation of parallel jobs on the generated failure data representing ASCI White system, 

and synthetic workload representing the parallel workload properties. 

6.4.1 Resource Allocation Algorithms 

The main objective of the resource allocation algorithm is to select the optimal 

number of nodes that results in minimal overall completion time of a parallel application. 

A node in may contain more than one processors. In our study, we assume a node has a 

single processor, but the resource allocation may be extended to an SMP system. 

Therefore, allocating a job to a node means allocating to a processor and vice-versa. 

6.4.1.1 All Nodes (ALL) 

This technique selects all the available nodes in the system. In the absence of 

failures, selecting all the nodes gives the minimum job completion time. However, if any 

of the allocated node fails before the job is completed, it would be resubmitted to all the 

nodes after the node is up. 

6.4.1.2 Round Robin Allocation (RR) 

The Round Robin allocation technique allocates the job to k' adjacent nodes 

based on the round-robin policy of node ids. When the last node number is reached, 

nodes are allocated beginning from the first node id. The k' number of processors 

required for the parallel application (which means k' node) is given by the user and the 

value of k' does not change. The RR policy does not take into account the node 

reliabilities or job run-lengths before allocating the job. 
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6.4.1.3 Reliability-aware Allocation (RA) 

Here, the k' number of nodes for a job is given by the user, and the k' value is 

fixed. The algorithm selects the k' most reliable nodes for every job. Reliability-aware 

resource allocation of parallel applications [55] reduce the overall waste time as 

compared to Round-Robin and has been discussed in Chapter 5. The reliabilities are 

calculated using a Weibull distribution and the system reliability for k nodes is given in 

Equation (5.4) from Chapter 5. 

For simulation, we randomly generate the workloads with the number of 

processors required by the user's applications. Several studies have shown that the 

number of processors selected by the user follows a two-phase log uniform distribution. 

We generate the number of processors for each job using the two-phase log uniform 

distribution. Further discussion on workload and failure data is given in section 6.4.3. 

6.4.2 Reliability-Aware Optimal 
K Node Allocation 

In an HPC system the reliability of each individual node is calculated based on the 

failure parameters obtained from the failure history of the nodes. Each node may have 

different reliability, and an optimal k node allocation algorithm considers the following 

three factors. 

(A) The Number of Processors 

Increasing the number of processors reduces job completion time. On the other 

hand, increasing the number of nodes will also increase the failure probability. This 

requires resubmission of jobs which increases the overall completion times and waste 

times. 
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(B) Job Run-length 

Longer jobs have more chances to encounter failures, as compared with shorter 

jobs. Therefore, for a given set of nodes, longer jobs may have more waste time as 

compared with shorter jobs. 

(C) Reliability of k nodes 

The reliability of a selected node affects the chances that the node will fail in 

future. Also, failures increase the waste time and completion time of a job. 

We define the scheduling problem may be as follows: 

"Given a parallel application, and a HPC system that contains m nodes n\, n2, nj . . .nm 

with reliabilities rj,r2,r3...rm find k out of m nodes such that the overall completion time 

is minimized'' 

Figure 6.6 gives the algorithm for selecting optimal k out of the 'm' nodes in the 

system. The expected completion time on k nodes ECTime(kj) in the algorithm is 

calculated using Equation (6.1), where k is the number of nodes and j is the job run 

length on a single node. It may not possible to accurately estimate the completion time on 

a given k nodes (i.e Tc(k) in Equation (6.1)); therefore we use some standard 

scalability/performance models discussed in Section 6.3 to study the effectiveness of k 

node allocation algorithm The job completion time on k nodes without considering 

reliability may be calculated from one of the performance models (In Equation 6.2 or 

6.3). The RA-Opt algorithm basically calculates the reliability of each individual node 

and incrementally allocates k-nodes such that the expected completion time is minimal. 
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Algorithm: Optimal K-Node allocation 

1. k=0// The number of nodes selected 
N[]//contains all the node id's 
J//contains the pb runlength 

2. fir i=l: maxfsize (N)) nodes 
3. calculate R(i) //Equation (6.2) 
4. end 
5. M[] - sortdesc(N,R) //sort the nodes based on descending order 
6. //ofreliabilities 
7. KNList.add{M(l)); I/add the node with highest reliability 
S. while (ECTime{k+ 1,1) <= ECTimefcJ) /Equation (6.3) 
p k=k+I 
10. KNList.add(M(k+l)) 
11. end while 
12. opt_k=k 
13. allocate application to KNList.nodes 
• Allocate (k) Nodes to the Application 

Figure 6.6 The optimal k node allocation algorithm. 

Figure 6.7(a) shows a sample case where the optimal number of k nodes is 

selected based on the minimum expected completion time. The expected completion time 

decreases further and starts to increase at a certain point when it reached an optimal 

number of processors that are allocated for a given job. We show the results from the 

selection of k nodes randomly and RA-Opt algorithm based on the job run-lengths in 

Figure 6.7(b). We observe that the number of nodes selected increases 

proportionally with the job run-length. The effectiveness of various resource allocation 

techniques with k node selection can be seen only when compared with completion times 

and waste times. The simulation results of applying various resource allocation 

techniques are discussed in Section 6.4.5. 
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Figure 6.7 The Optimal k node selection by the algorithm, (a) shows the optimal k nodes 
at a point where the expected completion time is minimum and (b) shows the comparison 
of optimal k node selection vs. k nodes selected randomly. 

6.4.3 Numerical Example 

We demonstrate the Reliability-Aware optimal k node algorithm using an 

example shown in Table 6.1. The first column k is the number of selected nodes, A(t) is 

the failure rate of an individual nodes (given in Equation (4.11)). The second column s(t) 

1 T 

is the speedup factor S(k) = , and Tc(lc) =S^L where Tc(k) is the running 
- + Q-P) S(k) 

time on k nodes, which is discussed in Section 6.3.1. In this example, we assume the 

amount of code that can be parallelized, p=0.895 and k is the number of nodes. Rsys(t) is 

the system reliability of k nodes, M is the MTTF. EC(t) is the expected completion time 

on k nodes. 
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Table 6.1 A Numerical Example showing the expected completion time of a parallel 
program on k nodes 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

S(t) 
1 

1.809955 

2.479339 

3.041825 
3.521127 

3.934426 

4.294479 
4.610951 
4.891304 

5.141388 
5.365854 

5.568445 

5.752212 

5.919662 

6.072874 

6.213592 

6.343284 

6.463196 

6.574394 

6.677796 

T 

1000 

552.5 

403.3333 

328.75 
284 

254.1667 

232.8571 

216.875 
204.4444 

194.5 

186.3636 

179.5833 

173.8462 

168.9286 

164.6667 

160.9375 

157.6471 
154.7222 

152.1053 

149.75 

RSYS (t) 

0.971864 

0.968956 

0.966057 

0.954172 
0.944844 
0.930032 

0.899131 
0.861962 

0.820061 

0.774655 
0.734563 

0.684369 

0.633531 

0.582774 

0.513084 

0.436384 

0.367344 

0.306048 

0.252351 

0.209033 

M 
3.50E+04 

1.75E+04 

1.17E+04 

7.01 E+03 
5.01 E+03 
3.50E+03 

2.19E+03 
1.46E+03 

1.03E+03 

7.62E+02 

6.04E+02 

4.74E+02 

3.81 E+02 

3.13E+02 

2.47E+02 

1.94E+02 

1.57E+02 

1.31 E+02 

1.10E+02 

9.57E+01 

E(Tcik)) 

2014.406 

1113.804 

813.7115 

665.333 
576.211 

517.7785 
478.5445 
450.6858 

430.5775 

416.0872 

404.6705 

397.9672 

394.1615 

392.9122 

398.8412 

411.6036 

428.7588 

451.0254 

479.3888 

511.7624 

In the Table 6.1 we can observe that the expected running time initially decreases 

with the increase in number of nodes, and starts to increases at a certain point as the 

system reliability decreases. The Reliability-Aware optimal k node algorithm selects k 

nodes such that the expected completion time is minimum (k=14 in our case). 

6.4.4 Simulation Study 

The system failure logs and parallel job workloads are inputs to the simulator. 

Each job has a. job id, job run-length, and number of processors required for the job. The 

failure logs have node ids, failure times, down times, and reliability of the nodes. We 

simulate a 10,000 node system using the failure properties of compute nodes obtained 

from ASCI White system logs The processing times of each node are identical, however 
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the reliability of individual nodes may differ. We generate the failure data for the 10,000 

system by using the ASCI White failure properties. 

In this study we are interested in a large scale system. However, the parallel 

workloads available at [15] are not suitable for our purpose. Therefore, a synthetic 

workload was generated using the distribution of the number of processors and the job 

run-lengths [59]. We use the uniform-log distribution to generate the number of 

processors, and two stage hyper exponential distribution to generated job run-lengths 

[53][62][63][64]. In addition to the actual workload, we also injected some jobs with very 

long run-lengths to test the effectiveness of our techniques. 

6.4.5 Performance Metrics 

We consider the following performance metrics in our study: 

Average Completion Time (ACT) is the ratio of the total completion time of a particular 

category of jobs to the total number of jobs. 

Average Waste time (AWT) is the ratio of the total waste time to the total number of jobs. 

Mean Completion Time (MCT) is the ratio of the total completion time to the unit job run-

length (unit job run-length =job-run-length/number of processors) 

Mean waste time (MWT) is the ratio of the total waste time to the unit job run-length. 

Relative Percentage Difference RPD(=100* ' yL ), where To is the performance 

metric for the most optimal technique and Ti is the performance metric for one of the 

three compared techniques (RR, RA or ALL). The positive value of percentage difference 

gives the percentage of improvement of To over Ti and a negative value indicates the 

percentage improvement of Ti over To. 
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6.4.6 Experimental Results 

We assume that the MWT and MCT are affected by the number of processors, the 

job run-lengths and reliability of the selected k' nodes. The All-nodes technique selects 

all the nodes, which in an ideal case, should reduce the total completion time, but 

increases the system failure probability. Since failures may happen multiple times as any 

one of the nodes fail, the MCT and MWT is higher for the All-nodes technique as shown 

in (Figure 6.8(a) and Figure 6.8(c)). The RR technique allocates nodes based on round-

robin policy, and no reliability is considered, therefore the MWT and MCT are higher. 

The RA technique allocates the most reliable nodes, but the number of nodes is fixed by 

the user similar to RR. Therefore, though RA technique performs better than RR and All-

nodes techniques, the MWT and MCT are higher than RA-Opt. For RA-Opt technique 

the optimal number of nodes is selected such that the expected completion time is 

minimal. 

Figure 6.8 (a) shows the comparison of MTA, for various techniques and Figure 

6.8(b) shows the corresponding MWT. We can observe that the MCT of RA-Opt is 364 

percent better than All technique, 1100 percent better than RR, and 33 percent better than 

RA algorithms. Figure 6.8(c) shows MWT and Figure 6.8(d) the percentage difference of 

MWT when RA-Opt is compared to other techniques. We observe that the MWT of RA-

Opt is 306.39 percent better than the All technique, 156.64 percent better than RR and 

44.3 percent better than RA technique. For the ALL technique, jobs fail more often 

contributing to waste time, however jobs also complete faster because all the nodes arc 

available. Therefore, we observe in Figure 6.8 (a) that the MCT is lower for ALL 

technique as compared to RR, whereas Figure 6.8 (c) the MWT is higher. 
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Figure 6.8 Comparison of MTA and WTA for various resource allocation algorithms, (a) 
shows the MTA of the three techniques and (b) shows the corresponding percentages.(c) 
shows the MWT of each technique and (d) shows the corresponding improvement in 
percentages of RA-Opt over other techniques. 

It is also important to compare the performance metrics with respect to job run-

lengths and to especially understand how well the algorithm performs with respect to job 

run-lengths. Figure 6.9 shows the ACT and AWT metrics with respect to job run-lengths. 
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Figure 6.9 The comparison of ATA and AWT with respect to run-lengths. Figure 6.9(a) 
and Figure 6.9(b) show the AWT and the MWT with respect to run-lengths and Figure 
6.9(c) and Figure 6.9(d) show the ATA and the AWA with respect to job run-lengths. 

For short and medium jobs, the AWT and MWT can be ignored (Figure 6.9(a), 

and Figure 6.9(b)) for all the four techniques, and the waste time increases with the 

increase in job run-lengths. The waste time for very long jobs is higher even for RA-Opt 

because the optimal number of selected nodes k' > m, where m is the total number of 

nodes available in the system. However, the RA-Opt technique has more flexibility in 

deciding the number of nodes and determining if it is worth adding another. 
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Further, we can observe in Figure 6.9(a, b, c, d) that RA-Opt produces the AWT, 

MWT, ACT and MCT for very longer jobs that are smaller as compared with other job 

types. Therefore, the RA-Opt technique performs especially well for longer jobs, where 

reliability becomes the most crucial. 

6.6 Conclusion and Future Work 

Increasing the number of nodes in HPC systems for solving ultrascale 

computational problems will decrease reliability, which presents new challenges in 

resource management. Several factors affect the completion time of a parallel program as 

nodes are scaled higher, and reliability becomes a major factor in deciding the optimal 

number of nodes to minimize completion time. In this chapter, we discuss the effect of 

reliability on job completion time as scalability and performance metrics for large scale 

parallel applications. Then, we developed an expected completion time function of 

parallel programs based on the system reliability. This function is used to develop the 

algorithm that selects an optimal number of nodes for minimizing the completion time. 

Our simulation results indicate that long jobs can especially benefit with the reliability-

aware optimal k node allocation algorithm to steer away from failures thereby 

minimizing the completion time and waste time for jobs. 

This work has several scopes for improvement. The reliability-aware optimal k-node 

allocation can be combined with various scheduling algorithms to explore if further 

improvement is possible. The importance of processor selection for checkpoint based 

jobs was discussed by Plank[43]. Checkpoint/restart and reliability-aware resource 

allocation can be optimized together to minimize the overall completion time of the 
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parallel programs. We also plan to extend the present model to deal with different Fki's, 

i.e when the failure probability, MTTF may change over time. 



CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

Future computational platforms may have hundreds and thousands of processors 

that aim to deliver peta-scale performance. Resource management of such a large scale 

system would become a major challenge because of the presence of multiple hardware 

and software components, diverse applications with different workload requirements and 

users with different priorities. Therefore, reliability would be a major performance 

hindrance factor, especially for time critical applications that demand QOS from the 

computational service provider. 

This dissertation presents a system TTF model based on the time varying failure 

distribution of individual nodes, and proposes reliability-aware resource allocation 

algorithms for parallel applications. First, we demonstrate the TTF distributions and 

correlations of a production HPC system, the LLNL based ASCI White system. Then we 

present the system TTF distribution model, failure rate, reliability and the MTTF when 

the TTF's of individual nodes have a time-varying failure rate. The effectiveness of 

proposed reliability-aware resource allocation algorithms were evaluated on the actual 

failure data and standard workloads. We observe that applying a time-varying failure rate 

based reliability-aware resource allocation algorithms reduces the overall performance 

loss by as much as 53 percent. Finally, we study the effect of reliability with scaling up 

the number of nodes and proposed reliability-aware optimal k node allocation algorithm. 
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The comparison results of the proposed optimal k nodes versus existing resource 

allocation algorithms suggest that giving flexibility for the scheduler in determining the 

optimal number of nodes based on reliability is especially beneficial for large scale 

parallel applications. 

This work has a broad scope to be extended for both reliability prediction, and 

reliability-aware resource allocation. The reliability prediction approach we used is based 

on well known statistical distributions observed from the TTF data. In addition to the 

TTF history, the failure properties of nodes like the usage history, CPU load and 

motherboard temperature could be incorporated into the reliability model to improve the 

prediction accuracy. 

The proposed reliability-aware resource allocation algorithms can be further 

investigated with various scheduling and queuing policies and reliability-aware resource 

allocation can be incorporated into currently available resource managers. In addition, 

reliability of nodes becomes a very crucial factor for time sharing applications because in 

the event of a failure, several applications running on a single node are simultaneously 

affected. Therefore, reliability-aware resource allocation of time sharing applications is 

another extension to this work as well. 
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Theorem 1: 

The system TTF function s(x) is a distribution function, i.e. . 

We verify the above equation for two cases, when k=l and k=2, where, k is the number 

of nodes. 

Proof: 

Case k=l: 

For single node, the TTF distribution of the node is a WeibuU, and we know that w(t) is a 

distribution function. Therefore, for the system Pdf s(x) we get, 

s(x)dx = \w(x) = 1. 

0 0 

Case k=2: 

For two nodes, 

L(x)dx = fw, (x)[l -H2(t1+x\ tx )]dx + \h2 (tx+x\ tx )[1 - W, (t)]dx 
0 0 0 

= [l-H2(tl+x\ f, )Wi (x) IQ + JW, (x)h2 (tt+x\ tx )]dx + jh2 (tl+x\tl)[l- W, (x)]dx 
0 0 

= \h2(tx +x\tx)dx - 1, 
o 

Where H2 (x) is the CDF of Excess WeibuU, and Wi(x) is the CDF of WeibuU. 

Theorem 2: 

The system reliability when the TTF distribution of individual nodes is WeibuU is given 

byJ?.U) = l-1S7(jc) = f In-F JU)]. 
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Proof: 

We verify the above equation for the case where (Xx = d2 — ... = CC and 

fl=A = ...=£. 

From the theory of the first order statistic, the TTF distribution of the system is given by, 

X 

SJ(x)=jk[l-F(t)f-lf(t)dt, 
o 

Sj(x) = -[1-F(t)]k\x
0 

Therefore the system reliability is given by R (x) = 1 - Sj(x) - [1 - F(x)f. 

Theorem 3: 

Given a random variable U, drawn from a uniform distribution, on (0, 1) we observe that 

H, (t + x\t) = (t -a ln(l-U)1 -1 h a s a n e x c e s s W e i b u l l distribution. 

Proof: 

We use a similar idea given in [65] 

Let U =H(t + x\t). 

_!(,/> _ ( , + i / ) i . . 

Hence, U = l-e"f and ln(l-C/) = —T{tfi -(t + x/) 

apM\.-U) = tp -{t + x)p 

tp -a/}.ln(l-U) = (t + x)/} 

(tp -apM\-U)Yp =(t + x) 

x = (tp-apAn(l-U)Yp-t. 



APPENDIX B 

MATLAB PROGRAMS FOR THE SYSTEM TTF MODEL 



Program to calculate the system MTTF 
function y= sysMTTF(t,s,A,B) 
% usage sysMTTF(10,50,[1000],[0.7]) 
% t=10; 
% s=50; 
%A=[1000 1000]; 
%B=[0.7 0.7]; 
%t is the survival time 
%s is the excess life 
%A is an array of alpha/scale parameter/characteristic lifes for each node 
%B is the corresponding beta/shape parameter for each Node 
%Note that A and B have to be of the same size 
y=l; 
cnt=l; 
val=[]; 

for(i=l :max(size(A))) 
%(1) Build the expression as a string 

term2=['s.*'ewpdfstr(A(cnt),B(cnt),t)]; 
test2='epdf()'; 

j=i ; 
while(j<=max(size(A))) 

if(cnt~=j) 
term2=[term2 '.*' ' ( K ewcdfstr(A(j),B(j),t)'))']; 
test2=[test2 '#' '(l-ewcdf())']; 
end 
j=j+i; 

end 
syms s; 
a=A(cnt); 
b=B(cnt); 

term2 =['@(s)' term2]; 
yy=eval(term2) 
%the following steps find the upper limit to integrate 
inc=10; 
vl=l;v2=10; 

to 1=0.001; %you may adjust the tolerance as needed 
while(abs( v 1 - v2)>tol) 

vl=v2; 
inc=inc*10; 

v2=quad(yy ,0,inc); 
end 
%basically inc is the higher order limit to integerate. 
cdf=v2; 
val=[val cdf]; 

end 
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y=sum(val); 

2. Program to calculate the system reliability of k nodes 
function y= sysRel(t,s,A,B) 
%t is the survival time 
%s is the excess life 
%A is an array of alpha/scale parameter/characteristic lifes for each node 
%B is the corresponding beta/shape parameter for each Node 
%Note that A and B have to be of the same size 

y=i; 
for(i=l :max(size(A))) 

R(i)=1 -eweibcdf(t,s,A(i)3 (i)); 
y=y*R(i); 

end 

3. Program to calculate the system failure rate of k nodes 
function y= sysFrate(t,s,A,B) 
cnt=l; 
%For each node... 

while(cnt<=max(size(A))) 
P(cnt)=eweibpdf(t,s,A(cnt),B(cnt)); % the Pdf of each node 
C(cnt)=eweibcdf(t,s,A(cnt),B(cnt)); % the CDF of each node 

cnt=cnt+l; 
end 
cntl=l; 
cnt2=l; 
suml=0;sum2=0; 
while(cnt 1 <=max(size( A))) 

cnt2=l; 
suml=P(cntl); 

while(cnt2<=max(size(A))) 
if(cntl~=cnt2) 

suml=suml*(l-C(cnt2)); 
end 

cnt2=cnt2+l; 
end 
sum2=sum2+suml; 

cntl=cntl+l; 
end 

y=sum2; 

4. function y= eweibcdf(t,s,a,b) 
% This function calculates the Weibull CDF 
%t is the survival time 
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%s is the excess life 
%a is alpha or c 
%b is beta or m 
y= 1 -exp(-power((t+s)/a,b)+power(t/a,b)); 

5. function y= eweibpdf(t, s, a,b) 
%t is the survival time 
%s is the excess life 
%a is alpha or c 
%b is beta or m 
y=((b*power(t+s,b-l))/power(a,b))*exp((power(t,b)-power(t+s,b))/power(a,b)); 

6. function S= wcdfstr(x,y) 
a=num2str(x); 
b=num2str(y); 
s='s'; 
S=['(l-exp(-power(s./' a ',' b ')))']; 

7. function S= wpdfstr(x,y) 
a=num2str(x); 
b=num2str(y); 
s='s'; 
S=['((' b './s).*power(s./1 a ',' b ').*exp(-power(s./' a ',' b ')))']; 

8. function F= ewcdfstr(x,y,z) 
% a - alpha or scale parameter 
% b - beta of the shape parameter 
% t - survivial time of node 
% s - The excess life 
a=num2str(x); 
b=num2str(y); 
t=num2str(z); 
s=V; 

F=['l-exp((l./power(' a ',' b ')).*(power(' t', ' b ')-power(' t '+' s ',' b ')))' ]; 

9. function F= ewpdfstr(x,y,z) 
% a - alpha or scale parameter 
% b - beta of the shape parameter 
% t - survivial time of node 
% s - The excess life 
a=num2str(x); 
b=num2str(y); 
t=num2str(z); 
s=V; 
F=['((' b '.*power(' t V s ',' b '-l))./power(' a ',' b ')).*exp((power(' t',' b *)-
power(' t '+' s ',' b '))./power(' a ',' b '))']; 
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