
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2008

Wireless sensor network modeling using modified
recurrent neural network: Application to fault
detection
Azzam Issam Moustapha
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Computer
Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for
inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact
digitalcommons@latech.edu.

Recommended Citation
Moustapha, Azzam Issam, "" (2008). Dissertation. 513.
https://digitalcommons.latech.edu/dissertations/513

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/513?utm_source=digitalcommons.latech.edu%2Fdissertations%2F513&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

WIRELESS SENSOR NETWORK MODELING USING MODIFIED

RECURRENT NEURAL NETWORK: APPLICATION TO FAULT

DETECTION

by

AZZAM ISSAM MOUSTAPHA, BE, MEE, Ph.D.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

of Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

May 2008

UMI Number: 3308059

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3308059

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

4/ 2 / 2 0 0 8 .
Date

We hereby recommend that the dissertation prepared under our supervision

bv AZZAM ISSAM MOUSTAPHA

entitled. WIRELESS SENSOR NETWORK MODELING USING MODIFIED RECURRENT

NEURAL NETWORKS; APPLICATION TO FAULT DETECTION

be accepted in partial fulfillment of the requirements for the Degree of

„ DOCTOR OF PHILOSOPHY ,

Recommendation concurred in:

j C ICrvvv^tV ffifrff fwXK/

Sauc/^v &(U&L

Director of Graduate Studies

i l /¥
Dean of the College

Head of Department

Deliartraent
\<ttr\e£.rtry<;

Advisory Committee

Approved:

GS Form 13a
{6/07)

ABSTRACT

Wireless Sensor Networks (WSNs) consist of a large number of sensors, which in

turn have their own dynamics. They interact with each other and the base station, which

controls the network. In multi-hop wireless sensor networks, information hops from one

node to another and finally to the network gateway or base station. Dynamic Recurrent

Neural Networks (RNNs) consist of a set of dynamic nodes that provide internal

feedback to their own inputs. They can be used to simulate and model dynamic systems

such as a network of sensors.

In this dissertation, a dynamic model of wireless sensor networks and its

application to sensor node fault detection are presented. RNNs are used to model a sensor

node, the node's dynamics, and the interconnections with other sensor network nodes. A

neural network modeling approach is used for sensor node identification and fault

detection in WSNs. The input to the neural network is chosen to include previous output

samples of the modeling sensor node and the current and previous output samples of

neighboring sensors. The model is based on a new structure of a backpropagation-type

neural network. The input to the neural network (NN) and the topology of the network

are based on a general nonlinear sensor model. A simulation example, including a

comparison to the Kalman filter method, has demonstrated the effectiveness of the

proposed scheme. The simulation with comparison to the Kalman filtering technique was

carried out on a network with 15 sensor nodes. A fault such as drift was introduced and

iii

iv

successfully detected with the modified recurrent neural net model with no early false

alarm that could have resulted when using the Kalman filtering approach.

In this dissertation, we also present the real-time implementation of a neural

network-based fault detection for WSNs. The method is implemented on a TinyOS

operating system. A collection tree network is formed, and multi-hoping data is sent to

the base station root. Nodes take environmental measurements every N seconds while

neighboring nodes overhear the measurement as it is being forwarded to the base station

for recording it. After nodes complete M and receive/store M measurements from each

neighboring node, recurrent neural networks are used to model the sensor node, the

node's dynamics, and the interconnections with neighboring nodes. The physical

measurement is compared to the predicted value and to a given threshold of error to

determine a sensor fault. The process of neural network training can be repeated

indefinitely to maintain self-aware network fault detection. By simply overhearing

network traffic, this implementation uses no extra bandwidth or radio broadcast power.

The only costs of the approach are the battery power required to power the receiver for

overhearing packets and the processor time to train the RNN.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood

that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval of the

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation.

Author | | i Jj^)fk

Date LjA VI ?ooff

GS Form 14
(5/03)

Dedication

To my Dear Parents

TABLE OF CONTENTS

ABSTRACT iii
DEDICATION vi
LIST OF FIGURES ix
ACKNOWLEDGMENTS xi

CHAPTER 1
MOTIVATION 1

CHAPTER 2
WIRELESS SENSOR NETWORK MODELING USING
MODIFIED RECURRENT NEURAL NETWORKS:
APPLICATION TO FAULT DETECTION 4

2.1 Introduction 4

2.2 Background 5

2.3 Modified Recurrent Neural Nets in Sensor Network Modeling 7

2.4 Application to Sensor Node Fault Detection 13

2.5 Simulation and Simulation Results 16

2.6 Conclusion 21

CHAPTER 3
MODIFIED RECURRENT NEURAL NETWORK VS.

KALMAN FILTERING IN WSN FAULT DETECTION 23

3.1 Introduction 23

3.2 A Simulation Example of Our MRNN
Tool vs. Kalman Filtering 24

3.3 Conclusion 29

vu

viii

CHAPTER 4
REAL-TIME IMPLEMENTATION OF FAULT
DETECTION IN WIRELESS SENSOR NETWORKS
USING NEURAL NETWORKS 30

4.1 Introduction 30

4.2 Implementation 32

4.3 Code Overview 34

4.3.1 Experimental Setup 37

4.3.2 Results 38

4.4 Conclusion 40

CHAPTER 5

KALMAN FILTER 42

5.1 Example Applications 42

5.2 Naming and Historical Development 43

5.3 The Kalman Filter 43

CHAPTER 6
CONCLUSIONS AND RECOMMENDED FUTURE

WORK 46

6.1 Conclusions 46

6.2 Recommended Future Work 47
APPENDIX A 49

APPENDIX B 103

BIBLIOGRAPHY 112

LIST OF FIGURES

Figure 2.1 Two-layer recurrent neural network 6

Figure 2.2 Ad hoc recurrent neural network with topology of a wireless
sensor network 8

Figure 2.3 A linear dynamic block surrounded by three static nonlinear

blocks representing a Hammerstein-Wiener dynamic sensor model 10

Figure 2.4 Sensor node i and its neighboring sensors il, i2,..., iNi 11

Figure 2.5 Block diagram of the system identification in the learning phase 15

Figure 2.6 Block diagram of the system identification in the production phase 16

Figure 2.7 Actual output of sensor #1 and its modified recurrent neural
network model with confidence factors set to 1 18

Figure 2.8 Discrepancy between actual output of sensor #1 and its modified
recurrent neural network model with confidence factors set to 1 ...18

Figure 2.9 Evolution of the difference e(k) between the MRNN model and the
actual output of sensor #1 with confidence factors set to 1 19

Figure 2.10 Actual output of sensor #1 and its modified recurrent neural
network model with confidence factors less than 1 19

Figure 2.11 Output of faulty sensor #1 and its MRNN model 20

Figure 3.1 Actual output of sensor #1, its models using modified recurrent
neural network and Kalman filter, and their corresponding
discrepancies with confidence factors set to 1 25

Figure 3.2 Evolution of the difference e(k) between the MRNN model and the
actual output of sensor #1 with confidence factors set to 1 26

Figure 3.3 Actual output of sensor #1, its models using modified recurrent
neural network and Kalman filtering technique, and their
corresponding discrepancies with confidence factors less than 1 27

IX

X

Figure 3.4 Evolution of the difference e(k) between the MRNN model and the

actual output of sensor #1 with confidence factors less than 1 ...28

Figure 3.5 Output of faulty sensor #1 and its MRNN model 29

Figure 4.1 Flow chart of subroutine run after message is received 35

Figure 4.2 Flow chart of subroutine run when periodic timer fires 36

Figure 4.3 Network topology setup for experimental data collection 37

Figure 4.4 Experimental results from a branch of the collection tree 39

ACKNOWLEDGEMENTS

I would like to express great appreciation to Dr. Rastko R. Selmic for his

knowledge transfer, advice, support, inspiring work, and encouragement. I also

appreciate the opportunity of having been allowed to work as a teaching and research

assistant under his supervision. I attribute most of my research career advancement to his

insightful guidance and suggestions. I am deeply thankful for his wise guidance,

encouragement, and support throughout my research work. I owe him an immense debt

of gratitude for inspiring my love, passion, and curiosity for combining the sensors' fault

tolerance field and neural network.

I would like to thank Dr. Lihe Zou, Dr. Vir V. Phoha, Dr. Sandra Selmic, and Dr.

Hisham Hegab, for serving on my advisory committee and reviewing my dissertation. In

addition, I wish to thank all of the friends in Ruston, Louisiana, and elsewhere in the

U.S.A who helped me.

Finally, I thank my dear parents, for their love, patience, and encouragement has

always accompanied me during my academic pursuits.

This research was supported by the following grants: NSF/LEQSF(2005)-

PFUND-19, LaSPACE NASA Grant #822, NSF EPSCoR 32-0967-58159, and PKSFI

LEQSF (2007-12)-ENH-PKSFI-PRS-03.

XI

CHAPTER 1

MOTIVATION

A sensor is a dynamic system; thus, in order to understand the sensor

performance, we need to understand its dynamics and the way they interact with the

external physical world, other sensors, the environment, and humans. Due to the lower

cost and development of networking technology, sensors are increseangly being

networked in wired and wireless sensor networks.

Wireless Sensor Networks (WSNs) consist of a set of sensor nodes that can

communicate with each other, sensors that measure a desired physical quantity, and the

system base station for data collection, processing, and connection to the wide area

network. Modern wireless sensor nodes have microprocessors for local data processing,

networking, and control purposes [1]. WSNs have enabled numerous advanced

monitoring and control applications in environmental, biomedical, and other applications.

Sensors in such networks have their own dynamics, often nonlinear, and modeling

such a sensor network is often not trivial. Since Recurrent Neural Networks (RNNs)

consist of interconnected dynamic nodes, we explore their similarities with WSNs and

exploit those similarities in the WSN modeling. This dissertation presents modeling of

WSNs using a modified dynamic RNN.

The real motivation for WSN modeling stems from the need for intelligent fault

detection in complex distributed sensory systems. Since sensor networks often operate in

1

2

potentially hostile and harsh environments, most applications are mission critical. Sensors

are often used to compute control actions [2-4] where sensor faults can cause catastrophic

events. For instance, NASA was forced to abort the launch of space shuttle Discovery

due to a failure of one of the sensors in the sensor network of the shuttle's external tank

(failure was discovered by human inspection).

Components such as sensors and actuators have significantly higher fault rates

than the traditional integrated semiconductor circuit-based systems. Multi-sensor systems

need feedback information about the health status of their nodes in order to recover and

heal from eventual faults. Such a system would have improved reliability over existing

sensor networks. Since external and internal malfunctions or excessive noise can occur,

sensor readings are somewhat uncertain in the sense that no existing sensor will deliver

accurate readings at all times. It is therefore desirable to develop a WSN that will have

the capability of fault detection, isolation, and accommodation. Efficiency in converting

data to features while consistently accommodating the uncertainty inherent in the

measurements form a key issue for diagnosis and dealing with sensor faults [5] [6]. Fault-

tolerance has become essential and urgent for modern sensory systems [7]. The

traditional way of achieving fault-tolerance in dynamic systems is through hardware

redundancy such as the use of multiple sensors. But the multiplication of sensor devices

adds cost, complexity, and power consumption to the sensor node and the whole network.

Most of the present research efforts have concentrated on an analytical redundancy [8]

[9] in which sensor measurements are processed analytically and mathematical models

are compared with physical measurements. Instead of using additional hardware in the

form of multiple sensors, we propose to use computational resources for intelligent fault

3

detection. A dynamic model of a sensor node is formed from information using

neighboring nodes in the network. RNNs have been applied to model a network due to

their topological similarities with WSNs.

CHAPTER 2

WIRELESS SENSOR NETWORK MODELING

USING MODIFIED RECURRENT NEURAL

NETWORKS: APPLICATION

TO FAULT DETECTION

2.1 Introduction

Instead of using additional hardware in the form of multiple sensors, we propose

to use computational resources for intelligent fault detection. A dynamic model of a

sensor node is formed and based on information from neighboring nodes in the network.

RNN's have been applied to model a network, due to their topological similarities with

WSNs. Communication uncertainties are modeled using confidence factors based on

received signal strength. More detailed communication models can be applied, but this is

not the topic of the dissertation.

In addition to neural networks, the identification of a nonlinear dynamic system

was studied using some alternative techniques. Gallman and Narendra [10] used an

iterative algorithm to obtain the dynamics of the system from finite length input and

noisy output data records. This algorithm has shown to converge for a class of inputs,

including colored Gaussian processes. Haber [11] discussed a two-step identification

method of least-squares parameter estimation based on correlation functions for nonlinear

4

5

dynamic systems with linear parameters. Shiavo and Luciano [12] presented a new,

powerful, and flexible fuzzy algorithm for nonlinear dynamic system identification

The rest of the chapter is organized as follows. Section 2.2 covers briefly some

background on RNNs and their function approximation property. In Section 2.3, a

modified RNN and its model of a dynamic sensor node is introduced, including a result

that shows how neighboring nodes can be used in sensor node modeling. Section 2.4

describes how such a tool can be used in the sensors' failure detection in distributed

sensor networks. Numerical simulations are given in Section 2.5 to show the

effectiveness of the proposed modeling scheme. Finally, Section 2.6 is the conclusion.

2.2 Background

Artificial RNNs have the ability to capture and model dynamic properties of

nonlinear systems. The RNN nodes have their own dynamics with interconnecting

weights between the nodes - similar to the wireless sensor networks where each sensor

node has its own dynamics. Recurrent networks also include feedback loops which

standard Neural Networks (NNs) do not have [13-15].

We have used a nonlinear output error model [13] given by

y(k) = FNN(y(k-l),y(k-2),...,y(k-m),u(k)Mk-l),u(k-2),...,u(k-n)) (2.1)

where y(k) is the NN output, y(k-i) are previous NN outputs, and u{k-i) are inputs

including the previous inputs. The nonlinear function FNN is computed using a

feedforward neural net given in matrix form by

Fm(x)=WTcr(VTx) (2.2)

where x is the NN input, V is the first-layer weights, W is the second layer weights, and

o(-) is the neural net activation function (usually chosen as standard sigmoid function).

The output activation function is chosen as a linear function. The structure of the NN is

given in Figure 2.1.

m

Figure 2.1 Two-layer recurrent neural network

The two-layer NN in Figure 2.1 consists of two layers of tunable weights and

thresholds and has a hidden layer and an output layer. The hidden layer has L neurons,

and the input layer is a combination of delayed input u(k) and the output y(k).

Many well-known results indicate that any sufficiently smooth function can be

approximated arbitrarily close on a compact set using a two-layer NN with appropriate

[16] [17] weights. Both layer weights V and W can be tuned. The NN universal

approximation properly says that any continuous function / can be approximated

arbitrarily well using a linear combination of sigmoidal functions, namely

f(x) = WTa(VTx) + e(x) , (2.3)

where the e(x) is the NN approximation error. The reconstruction error is bounded on a

compact set S by \\e(x)\\ < eN. Moreover, for any eK one can find a NN such as \\£(x)\\ < eN

for all x e S .

7

Given a function g(x) and a domain set D c 9T, the function is said to satisfy

Lipschitz condition on set D if

\\g(x)-g(y)\\<4x-y\\, (2.4)

for any x,ye D. The function is said to be globally Lipschitz if the above condition is

valid on %". If the function g is mapping 9? —»91, then the condition is equivalent to

\g(x)-g(y)\<l]x-y\ , (2.5)

which says that a straight line connecting any two points of g(x) cannot have a slope with

an absolute value greater than L. Therefore, any function with an infinite slope at some

point is not Lipschitz at that point.

2.3 Modified Recurrent Neural Nets in Sensor Network
Modeling

Dynamic RNNs consist of a set of dynamic nodes that provide internal feedback

to their own inputs (see Figure 2.1). They can be used to simulate and model dynamic

systems such as a network of sensors. WSNs consist of a large number of sensors, which

in turn have their own dynamics. They interact with each other and the base station,

which controls the network. In multi-hop wireless sensor networks, information hops

from one node to another and finally to the network gateway or base station.

To develop a dynamic model for such sensors, without a loss of generality, we

assume that there is one sensor per sensor node. More sensors per node will simply

increase the size of the RNNs.

Sensor nodes can be viewed as small dynamic systems with memory-like features.

Output of one node forwards the information to the next node (for example, node 3

8

provides the input to node 5, Figure 2.2). While the standard RNN is structured in layers,

we introduce an ad-hoc RNN analogous to WSN systems with confidence factors

(0 < CtJ < 1) between the nodes i and j . The confidence factor depends on the signal

strength and data quality in communication links between the nodes. For instance, in

tuning node 2, valuable inputs are coming from node 1 and node 4, providing that

corresponding confidence factors are close to 1. If node 7 is not in the coverage area of

node 2, then the confidence factor is 0 and node 7 will not influence node 2 directly.

Confidence Factors
RNN Nodes

Figure 2.2 Ad hoc recurrent neural network with topology
of a wireless sensor network

Note that the confidence factors do not provide stochastic modeling of the

communication channel. The overall modeling process can be divided into two phases:

the learning phase is where the neural network (NN) adjusts its weights that correspond

to the healthy and N faulty models, where TV is the number of fault types. The production

phase is where the current output of the sensor node is compared with the output of the

9

NN. The difference between these two signals is used as a measure of a sensor's health

status. In case of a fault, NN weights (model) are compared with the faulty models to

isolate the fault. If no similar fault model is found, then the fault bank model is updated

with the new type of fault and corresponding model parameters, i.e., NN weights. This

whole process is repeated during the production phase.

Consider a nonlinear dynamic sensor model given by

yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),ui(k)) (2.6)

where «,(&), yt{k) are the sensor input and output at sample k, and •/,. s are unknown

nonlinear functions. In order for a sensor to be operational and the user to determine the

real sensor input, the function /,- has to be invertible.

ut(k) = f-1 (y,(k-1), y.(k-2),..., yt(k-m),yt(k)) (2.7)

Equation 2.7 indicates that in order to determine the physical input at the sample k,

knowledge of the present and past m sensor outputs is required. A more general dynamic

sensor model is given by [12]

yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),ui(k)) (2.8)

where u"{k) is a vector of input data u"(k) = [ui(k),ui(k-\),...,ui(k-n)]. Similarly, in

order for the sensor to be usable and users to determine the physical input values based

on the sensor outputs, the nonlinear function has to be invertible with respect to input

signal arguments

u;!(k) = fi(yi(k-V),yi(k-2),...,yi(k-m),yi(k)) . (2.9)

Such sensor models correspond to a general sensor model given in [19], i.e.,

Hammerstein-Wiener nonlinear feedback dynamic sensor model (Figure 2.3), which

10

consists of a linear dynamic block surrounded by three nonlinear static blocks [20].

Physical
Input

Nonlinearity

Measured
Output

Static
Nonlinearity

Figure 2.3 A linear dynamic block surrounded by three
static nonlinear blocks representing a Hammerstein-Wiener

dynamic sensor model

It is assumed that all sensors have models of the same order. If that is not the case,

the analysis can still be carried out with slight modification.

Assumption 1: Sensor nodes have a nonlinear model of the same order given by

(2.6).

Assumption 2: Functions/, s are globally Lipschitz functions with L,s being their

Lipschitz constant, respectively.

While wireless sensor nodes are distributed in the field, the neighboring nodes are

assumed to have bounded differences in measured physical quantity. Mathematically, the

assumption is given as follows.

Assumption 3: Neighboring sensor nodes have measurement events that differ by

a bounded constant, i.e., for a sensor node's neighbors a and b,

ua(k)-ub(k) = eab(k), (2.12)

and\\e„Ak)\\<e-

The next result shows how to model a wireless sensor network using a recurrent

11

neural network and how to use such a tool in failure detection of sensor nodes.

Theorem 1 (Wireless sensor network model using RNNs):

Having a model of a sensor node i (Equation 2.6), assumptions 1-3, and the node

neighbors that include nodes i\, h,..., iu (see Figure 2.4), the output of the sensor node

can be approximated using a RNN with inputs consisting of the previous outputs from

node i and its neighboring nodes

yt(k) = RNN^y^k-lXy^k-2),..., yi(k-m),yiXk),yij(k-l),...,yij(k-m)) + c (2.13)

wherej=l, 2,..., iV; and c is a small bounded constant.

Figure 2.4 Sensor node i and its neighboring
sensors /;, ii, ..., im-

Proof:

From Assumption 3 it follows that

ui(k) = uij(k) + eij(k), (2.14)

where j=l,2,...,N{. Equivalently, the input u,(k) is given by

1 N,

ui(k) = —Jju(k) + eij(k). (2.15)

Therefore, one has

12

yi(k) = fi(yi(k-l),yi(k-2),...,yi(k-m),^-JTuij(k) + eij(k)). (2.16)

Using expression (2.7) one has

yi(k) = fi(yi(k-\),yi(k-2),...,yl(k-m),^fjfi-\yij(k-l),yiJ(k-2),...,yij(k-m),yij(k)) + elj(k))-

(2.17)
Knowing that the function/ is Lipschitz yields

yi(k) = gi(yi(k-l),yi(k-2),...,yi(k-m),yiik),yij(k-l),...,yi.(k-m)) + d

(2.18)
wherey=l, 2,..., Ni, and jd\\ < emax(Ly.).

Using NN function approximation property, a RNN that approximates the

unknown function gi is such that

gi(yi(k-l),yi(k-2),...,yi(k-m),yij(k),yiJ(k-l),...,yij(k-m)) = RNNi(x) + ei(x)

(2.19)
where the vector x is given by

x = [yi(k-l),yi(k-2),...,yi(k-m),yij(k),yij(k-l),...,yij(k-m)]. (2.20)

The bounded constant c is then given by

c = em + e max(L;) . (2.21)

This completes the proof.

This proof shows that the sensor node output can be approximated as a RNN with

inputs as m previous output samples of the same node and m previous output samples of

neighboring sensors. The RNN approximates sensor dynamics which can in general be

nonlinear. The proposed method can actually be applied for linear and nonlinear,

dynamic and static sensor models.

The previous results assume ideal communication links. In cases containing

communication link uncertainties, the exact value of y, (k) is not available. Instead, we

13

use the output values of the neighboring sensor nodes combined with confidence factors,

i.e., C.. v. (k). Then the recurrent neural net sensor node models is given by

yi(k) = RNNi(yi(k-l),yi(k-2),...,yi(k-m),CJiyiXk),Cjiyij(k-\),...,Cjiyij(k-m)) + c.

(2.22)

Confidence factors for sensor node i are proportional to the signal strength

between node / and its neighbors. A confidence factor between neighboring nodes i andy

represents a "confidence" of sensor node i from data generated by sensor node j . The

factor depends on certain parameters, such as the proximity and distance between two

nodes, the terrain between the nodes, the topology of the sensor network, and the

received signal strength. We use received signal strength, which can be obtained from

receiving sensor nodes, as a measure of the confidence factor. The received signal

strength indicator (RSSI) has been used in practical applications as a part of IEEE 802.11

standard, and existing commercial sensor nodes have this capability (Crossbow and

MotelV wireless sensor nodes).

2.4 Application to Sensor Node Fault Detection

Previous results provide a tool for approximating a wireless sensor node output

using RNNs. The method can be applied to a wide range of nonlinear dynamic models. A

motivation for the above results stems from the need to detect faults in a network of

distributed, wireless network of sensor nodes.

In order to detect possible sensor faults at the node level, we compare the real

output and the RNN approximation model. If such a difference is larger than a threshold

then a fault has occurred at the sensor.

For a sensor node i, its real output yt:(k), and a RNN model output RNN;(k), if

14

\\RNN i(k) - y/(k)\\ > rji, then a fault has occurred at the sensor node i.

Figure 2.5 and Figure 2.6 show the structure of the modified recurrent network

with its inputs consisting of the delayed output signals of the same NN and the previous

and current modified output signals from neighboring sensors. It is initially assumed that

all confidence factors between the node i and the neighboring nodes are equal to 1. Figure

2.5 shows the topology during the learning phase and Figure 2.6 during the production

phase, where a fault analyzer detects the difference between sensor and modified RNN.

file:////rnn

15

ut(k)_

RWil \>

Sensor /

Rmk-nft

Sensor /",

Sensor /

Sensor /.

\ it)

i ik-b

Y(k-nt

C:

C

v(A-n

v (k-nt

yik)

.V(M>

v (k-i>t

Q

Modified
Recurrent

Neural
Network

jm.

LEARNING
ALGORITHM

RNN(k)

Figure 2.5 Block diagram of the system identification in the
learning phase

16

uXk) Sensor /' yXk)

R\Mk-\)
AWAU-2)

Sensor / \; (A—I)

C

Sensor / y„(k-\)

v ik-iti

c

c,

Sensor /

v(A)

.v (it- li

\-{k-m

Modified
Recurrent

Neural
Network

Threshold

FAULT
ANALYZER

RNN,(k)

Fault
Alarm

Figure 2.6 Block diagram of the system identification in the
production phase

2.5 Simulation and Simulation Results

We have simulated a sensor network with 15 sensor nodes using one sensor per

node. Each node has 2 or 3 "visible" neighbors. Of course, if sensor ;' is a neighbor of j ,

then the opposite is also true.

17

Each sensor is modeled as a Hammerstein-Wienner [12] nonlinear feedback

dynamic sensor, (Figure 2.3), where the nonlinearity part is an arctan{-) function and the

dynamical element is given by H(s) = . Input to the sensor / during both
s2 + s + 1

training and production phases is chosen by

« /(t) = 10 + s i n f i ± ^ -] + « /(0 (2-23)

where n ;0) is a white noise at sensor node i with the variance of 0.6, and the sampling

time is equal to 0.1 seconds.

Each sensor is modeled using a Modified Recurrent Neural Network (MRNN)

described in a previous section. A MRNN node has input consisting of delayed output

samples of the same node and current and previous outputs of the neighboring sensor

nodes. At first, we assumed confidence factors equal to one, but later we made a more

realistic assumption with confidence factors less than one.

In the simulation, the RNN has an input layer with 8 nodes, a hidden layer with 10

nodes, and an output layer with one node. The learning algorithm is the standard

backpropagation. The learning rates for the first layer and the hidden layer are set to 0.01.

The learning phase stopped after the difference between expected and actual artificial

neural network (ANN) output reached a steady-state value. The simulation software was

written in Microsoft Visual C++ .NET.

Sensor #1 results are shown in Figure 2.7. The output of the MRNN closely

approximates the actual output of the sensor with a small error. The MRNN model can

certainly reproduce the dynamic behavior of the sensor. Figure 2.8 shows the discrepancy

between the actual and the MRNN model outputs with confidence factors set to 1.

18

—

• i> -^ i *f"""i H i
t

— -

V y IP V iTv r V
r ^ \

• sensor #1 output

—— neural model

^

9.00 9.05 9.14 9.26 9.58 9.78 10.00 10.21 10.42 10.74 10.87 10.96 11.00
Input

Figure 2.7 Actual output of sensor #1 and its modified recurrent
neural network model with confidence factors set to 1

0.9

0.7

0.5

0.3

0.1

-0.1

-0.3

9.00 9.05 9.14 9.26 9.58 9.78 10.00 10.21 10.42 10.74 10.87 10.96 11.0
Input

Figure 2.8 Discrepancy between actual output of sensor #1 and its modified
recurrent neural network model with confidence factors set to 1

During the learning phase, Figure 2.9 shows the evolution of the difference

between the neural network model and the actual sensor output. Notice that this error

decreases as the number of iterations increases.

J J

sensor output-neural
model

19

o

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

sensor #1 error

50 100 150 200 250 300 350 400 450

Figure 2.9 Evolution of the difference e(k) between the MRNN model and
the actual output of sensor #1 with confidence factors set to 1

A more realistic assumption is to consider confidence factors between nodes as

being less than one. Taking C21 =0.8, C31 =0.6, and C41 =0.95, the results for sensor node 1

are shown in Figure 2.10.

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

confidence factors < 1

y
— s e n s o r #1 output

——neural model

—

I.00 9.05 9.14 9.26 9.58 9.78 10.00 10.21 10.42 10.74 10.87 10.96 11.00

Input

Figure 2.10 Actual output of sensor #1 and its modified recurrent neural
network model with confidence factors less than 1

20

Figure 2.11 shows the sampled output of sensor #1 when this sensor has a fault

(drift) starting at 1.6 seconds. Also shown is the estimated MRNN output when the sensor

is in a normal healthy mode.

2

1.8

1.6

1.4

1.2

1

0 . 8

0 . 6

0 . 4

0 . 2

O
O.OO 2 . 0 0 4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0

t i m e (s)

Figure 2.11 Output of faulty sensor #1 and its MRNN model

The neural net learning rate rj, which has a value between 0 and 1, plays a key

role in the learning process. It affects the rate of convergence during the learning phase.

For too small values of the learning rate, the learning process will be very slow with a

high probability of convergence. On the other hand, when 7] approaches one, the learning

process is fast with a low probability of convergence. Therefore, using a moderate value

of 7] is recommended. In addition, a number of training samples also plays an important

role in modeling accuracy and sensor generalization. By generalization we refer to the

ability of the network to approximate the output for an input different from the training

set. The results in the simulation illustrate the result.

\
\

p"'

o
a u l t y S e n s o r # 1
LltDUt

_ _ _ _ _ _ _ N N O u p u t

21

The initial NN weights also affect the learning time and convergence of the cost

function (sum of errors between desired and actual outputs). For instance, when the initial

weights are chosen near a local minimum, the cost function will converge to that

minimum (particularly for a small learning rate). When the initial weights are chosen near

a global minimum, the cost function will converge to this global minimum. In both, the

choice of initial weights and the learning rate can affect the number of iterations needed

for satisfactory neural network convergence.

A data window with n+l samples corresponds to current and n previous sensor

outputs. The window size affects the precision and accuracy of the step-ahead

approximated sensor value as well as the sensitivity of the fault detection technique. We

have chosen a window size of four samples. Increasing the window size adds more nodes

to the MRNN. Therefore, a trade-off occurs between increased accuracy, additional

complexity of the NN, and ultimately the duration of the training process. In particular,

for online measurement applications, using a smaller window size is desirable. After

satisfactory convergence has been achieved, the validation is provided by estimating the

next (future) sensor sample.

2.6 Conclusion

We have developed a dynamic model of a wireless sensor network and its

application to sensor failure detection and identification. This model shows how the NN

model depends on the sensor model and the network structure. The overall network

model corresponds to the topology of the wireless sensor network. The inputs to the NN

are taken from the modeled node and neighboring nodes. Communication confidence

factor was taken into account in the modeling.

22

Example simulation is carried on a network with 15 sensor nodes. A fault such as

drift was introduced and was successfully detected with modified recurrent neural net

model.

CHAPTER 3

MODIFIED RECURRENT NEURAL

NETWORK VS. KALMAN

FILTERING IN WSN

FAULT DETECTION

3.1 Introduction

Many techniques are available for nonlinear dynamic system identification using

NNs. Bernieri et al. [21] [22] compared output signals of a NN model and the sensor to

detect faults. Once the fault has been detected, the parameters of the NN identifier are

compared in order to isolate a fault. Narendra and Parthasarathy [13] demonstrated that

NNs can effectively be used for the identification and control of nonlinear dynamic

systems. Ahmed [23] presented a rapid neural network for identifying unknown nonlinear

dynamic systems when the inputs and outputs are accessible for measurements. Straub

and Shroder [24] presented a new approach to identifying nonlinear dynamic systems

which is based on a general regression NN. Introducing, proving, and simulating a new

tool for nonlinear dynamic systems, like the MRNN technique, need to be compared to

some other powerful techniques like Kalman filtering.

23

24

3.2 A Simulation Example of MRNN Tool VS. Kalman
Filtering

We compared the RNN model with a Kalman filter. The estimated value from the

previous time step and the current measurement coming from the real sensor are used as

input variables to the Kalman filter. The Kalman filter is a recursive estimator. Thus, only

the estimated state from the previous time step and the current measurement are needed

to compute the estimate for the current state. The Kalman filter has two distinct phases:

predict and update. The predict phase uses the state estimate from the previous timestep

to produce an estimate of the state at the current timestep. In the update phase,

measurement information at the current timestep is used to refine this prediction to arrive

at a new, (hopefully) more accurate state estimate for the current timestep.

For sensor #1, the results for the recurrent neural network modeling and Kalman

filtering techniques are shown in Figure 3.1, including a comparison of both results. The

output of the MRNN closely approximates the actual output of the sensor with an error

clearly smaller than the one produced using the Kalman filter model. The MRNN model

can certainly better reproduce the dynamic behavior of the sensor. Also shown are the

discrepancies between the actual output of sensor #1, its resulting model neural network,

and Kalman filtering with confidence factors set to 1.

25

80

30 [

10

confidence factor set to 1

20 30 40

1 real output

nn model output

Kalman filter output

\

c

LT

2 °y*
LU

10
I

I

20

i

30 40 50

i

60
I

/ v y y ••

i

70
i

i

50 60 70

Figure 3.1 Actual output of sensor #1, its models using
modified recurrent neural network and Kalman filter, and
their corresponding discrepancies with confidence factors

set to 1

Figure 3.2 shows the evolution of the error between the NN model and the actual

sensor output during the learning phase. The error decreases with the number of training

iterations.

26

confidence factor = 1

0 100 200 300 400 500 600 700 800

874 Epochs

Figure 3.2 Evolution of the difference e(k) between the
MRNN model and the actual output of sensor #1 with

confidence factors set to 1.

A more realistic assumption is to consider confidence factors between nodes as

less than one. Taking c21 =0.8, C3I =0.6, and C41 =0.95, the results for sensor node 1 are

shown in Figure 3.3 and Figure 3.4. One can notice a larger difference between the sensor

output and the MRNN model in this case, but the result of our approach is still better

than that of the Kalman filtering technique.

27

confidence factor < 1

real output

nn model output

Kalman filter output

10 20 30 40 50 60 70

30 40
time in hours

Figure 3.3 Actual output of sensor #1, its models using modified recurrent
neural network and Kalman filtering technique, and their corresponding

discrepancies with confidence factors less than 1

28

confidence factor <1

2000 3000

5791 Epochs

4000 5000

Figure 3.4 Evolution of the difference e(k) between the
MRNN model and the actual output of sensor #1 with

confidence factors less than 1

To model a sensor fault, we have used a linear drift given by d(t) = 0.2tu(t-3)

where u(t) is a unit step function and time t is in hours. Figure 3.5 shows the sampled

output of faulty sensor #1 when this sensor has a fault (linear drift) starting at fo=3 hours.

Also shown is the estimated MRNN output when the sensor is in a normal healthy mode.

Using the MRNN modeling technique, the fault is successfully detected when the fault in

the sensor output reaches 1 degree Fahrenheit at t=S hours.

29

confidence factor = 1

• faulty sensor output

RNN model output

30 40
time in hours

70

Figure 3.5 Output of faulty sensor #1 and its MRNN model

3.3 Conclusion

RNN modeling technique results are compared to the powerful Kalman filtering

technique results. The inputs to the NN are taken from the modeled node and from

neighboring nodes. A communication confidence factor is taken into account in the

modeling. Simulation with comparison to the Kalman filtering technique is carried out on

a network with 15 sensor nodes. A fault such as drift is introduced and can be

successfully detected with the modified recurrent neural net model with no early false

alarm that could have resulted when using the Kalman filtering approach.

CHAPTER 4

REAL-TIME IMPLEMENTATION OF FAULT

DETECTION IN WIRELESS SENSOR

NETWORKS USING

NEURAL NETWORKS

4.1 Introduction

Wireless sensor networks (WSNs) consist of a set of sensor nodes that can

communicate with each other; sensors that measure a desired physical quantity; and the

system base station for data collection, processing, and connection to the wide area

network. Modern wireless sensor nodes have microprocessors for local data processing,

networking, and control purposes [1]. Increases in modern embedded computing power

have given rise to many WSN applications. These applications range from medical

projects to environmental measurements. For instance, networks have been developed to

record vital signs and forward them to a base station for real time analysis, possibly

improving triage time. Also being developed are sensor boards that record movement

data during the rehabilitation of stroke patients [25]. This raw data would improve

physical therapists' ability to track and quantify improvements.

30

31

The very heart of WSN technology is the ability to measure remote environmental

qualities with low-cost nodes able to self-group into a network topology to reliably

forward data to a base station. A vineyard monitoring system that measures soil moisture

and the irrigation system's water pressure is given in [26]. Environmental measurements

can also help analyze structural health. A WSN has also been implemented that spans the

Golden Gate Bridge in San Francisco, CA [27]. These nodes allow engineers to monitor

important remote qualities such as ambient vibrations both safely and cost effectively.

WSNs can take remote measurements, organize into a network, and forward data

to a base station. Due to the environments they operate in and efforts to maintain cost

effectiveness, node failures can occur. The probability of failure increases as the number

of nodes in a network increases. The traditional solution to this problem is redundant

systems; however, multiplication of sensor devices adds cost, complexity, and power

consumption to both the sensor node and the whole network. Most of the present research

efforts have concentrated on an analytical redundancy [28] [29] in which sensor

measurements are processed analytically and mathematical models are compared with

physical measurements. However, with the limited onboard microprocessors and battery

power, these approaches decrease the amount of measurements taken while increasing

processing time and battery consumption.

In Chapter 2, we presented the theory and modeling of WSNs with recurrent

neural networks (RNNs). This approach has been implemented on Moteiv's Tmote Sky

platform running the operating system TinyOS.

32

4.2 Implementation

The hardware testbed uses Moteiv's Tmote Sky wireless sensor node modules.

The nodes have an onboard microcontroller; a wireless radio stack; and the ability to take

sensor readings of temperature, light, and humidity [30]. The microcontroller is an 8

MHz Texas Instruments MSP430 microcontroller. The radio chipset is a 2.4 GHz

Chipcon CC2420 wireless transceiver with an integrated PCB trace antenna [31]. The

onboard temperature sensor used in this implementation is Sensirion's SHT11

temperature/humidity sensor [32]. The Tmote Sky node requires a minimum operating

voltage of 2.1 volts. To conserve power, this implementation has taken aspects of

bandwidth, transmitting/receiving power, and MCU processing time into consideration.

All information needed for the training and prediction of the NN is gathered by simply

overhearing radio transmissions. As environmental measurements are taken and multi-

hopped forward to the root of the collection tree, neighboring nodes overhear the

transmissions and record the neighbor's measurements for the local node's NN training.

This approach uses no extra radio transmission power or network bandwidth.

The software coding of the implementation is done using TinyOS, an open-source

operating system designed for wireless embedded sensor networks [33]. It is specifically

designed for the embedded systems with memory constraints and low power

consumption. TinyOS uses the programming language NesG [34] which is similar to the

programming language C with big differences in the linking model. NesC programs

include a configuration file and a module file. The module file looks much like event

driven C coding, but the configuration file is the key to NesC. TinyOS has been ported

for dozens of hardware platforms and many more chipsets. The configuration file allows

33

the programmer to link the module code to specific hardware chipsets, background

functions, and communication network topologies.

To decrease development time, many common actions of WSNs are already built

into TinyOS architecture. An essential function of any WSN is to relay the collected data

to a base station for future processing and analysis. TinyOS has addressed this issue and

has included provisions for Collection Tree Protocol (CTP) [35]. CTP is based on a tree

network where the base station is defined as the root of the tree and all other nodes

branch out from their parent nodes in the network. The routing engine is based on

expected transmissions (EXT). The EXT of a node is the EXT of its parent plus the link

level EXT to its parent. When a node searches for acceptable routes, it will choose the

route with the lowest EXT. Because TinyOS is component based, sending messages to

the root of a network is very similar to sending messages to a specific node.

To multi-hop a message to the root of the network, the Send. Send () command

is linked to the collection component instead of the address driven message sending

component, used to send node-to-node messages. This component will forward the

packet to the Multi-hop Forwarding Engine and relay the packet through the tree to the

base station via the route with the lowest EXT. The collection layer only triggers the

R e c e i v e . R e c e i v e () event when a packet reaches its final destination (normally the

base station). In the fault detection implementation, neighboring nodes need access to the

forwarded information to train their NN. Under normal network operation, all packets are

received from the radio and screened at the hardware level to determine if the packet is

needed by the receiving node. The Snoop. R e c e i v e () event bypasses this check and

is triggered any time a packet is received by a node. The packet's origin can then be

34

compared against the list of nodes in the routing engine's neighbor table. If the packet is

from a valid neighbor, the information is stored for future training.

4.3 Code Overview

Upon applying voltage to the sensor node, the node will go through a pre-defined

boot-up sequence. This sequence will initialize components such as the radio, the

network engine, and specific sensors. Once the components have successfully come

online, a periodic timer is started with a period T. Because TinyOS is event driven, the

node remains idle until an event handler is triggered. From this point on in the program,

the code is no longer sequentially executed. TinyOS will handle events as they occur.

Upon receiving a message, the node must consult the forwarding engine to ensure

it is in the node's neighbor table. If the message was overheard from a viable neighbor,

the local node stores the information and checks to ensure all the data is now gathered. If

data collection is complete, the node sets a flag and checks another routine's flag status.

If the situation dictates, the program will enter the NN training subroutine. This process

can be seen in Figure 4.1. The workhorse of this program is the subroutine (Figure 4.2)

that is executed each time the periodic timer fires.

35

Idle

Message is
received

' Mcssiijio from
d nude in neighbor

(able '

Yes

•—No— *H

Siorc mediae

Received till needed
Vmhborinsdaui . ' N o ^

T
Yes

JL
Sol

\oii!hburDiil.iKi.\id\=TRn-:

(l>iil,iRi\id\==TRl i.) ~No~

Yes

Keuin'lrainini! J

Figure 4.1 Flow chart of subroutine run after message is
received

36

<4 N o -

-No-

Idle >

Periodic Timer Fired

i
Take measurement

¥ .
Transmit

Measurement lo
Base Station

Yes

Yes

Compare (M+l)th
Measurement with

predicted value

(Error >Threshold) J > - Y e s ^ I .mil Delected

On ncM li.nlMllil

Good data

Shift all storage
arrays lo LSB once

Prepare all flags for I
next training cycle |

MiMiiH lault\ '•eii'.or

Set
(DataReady=TRUE)

(NeighhorDataReady==TRUE;

Yes

.. ?

(Begin NN training)

Figure 4.2 Flow chart of subroutine run when periodic
timer fires

First, the node calls the sensor to take a reading. If training and prediction were

completed prior to this timer cycle, the node would next compare this reading against the

NN predicted reading. If the error was greater than a threshold setting, the sensor would

have a fault. This information would be relayed so that proper maintenance attention

37

would be administered. However, if the data was within the threshold range, the data

would be verified as good, and preparation would be taken to complete the cycle again.

Had training and prediction not been completed prior, the sensor would store the

new measurement in an array. Next, the subroutine would inspect a counter to determine

if this was the M measurement. If so, a flag would be set, and if other subroutine's flags

allowed, NN training would begin. The actual training of the NN is completed as

described earlier. Once training has been completed and the next measurement has been

predicted, a flag is set to signal that the node is ready to compare the next measurement

against the NN's prediction.

4.3.1 Experimental Setup

We conducted an experiment using a nine node network. These nodes were

configured in a collection tree topology with two branches, as shown in Figure 4.3.

Figure 4.3 Network topology setup for experimental data collection

38

The two branches were placed in different climates (i.e. separate rooms with

differing temperatures.) Temperature measurements were taken and forwarded to the

base station node via the route shown by the black lines. As these data samples were sent

to the base station, nodes were listening to overhear data from their neighbors, shown by

the red lines. After sufficient data was collected to train the network, RNN predictions

and fault detection began.

4.3.2 Results

To simplify the results, we will examine the data collected from a single branch

shown in Figure 4.3. This branch consists of four neighboring nodes shown connected by

red lines in Figure 4.4. Neighboring node 1 was placed in a sunny window, while the

other three nodes were dispersed throughout the room. At sampling point 9, an air

conditioning unit was turned on to emulate a faulty sensor. We can see that the training

node was the closest to the air conditioning unit, followed by neighboring nodes 3 and 2.

At sampling point 10, NN prediction and fault detection was started. The NN prediction

is shown as a dotted line in Figure 4.4. At sampling point 15, the training node was

placed directly on the air conditioning unit to simulate a quick drift fault. The fault was

detected at sampling point 16. A fault is defined as the real world measured value lying

outside a ±2 degree threshold of the prediction. Although only one node's training is

shown here, all nodes except the base station node train, predict, and detect faults

simultaneously.

82

80

,- 78

76

74

72 h

70

- i r-

„-"
/ "

•Training Node
• Neighboring Node 1
• Neighboring Node 2
- Neighboring Node 3
- Prediction

0 2 4 6 8 10 12 14 16 18 20
Sampleing Interval

Figure 4.4 Experimental results from a branch of the
collection tree

39

To reduce power consumption and MCU runtime needed to complete the training

process, the RNN was configured to allow the highest level of error acceptable in the

result. This tolerance saved valuable seconds of processor time during training iterations

by omitting result calculations to unneeded significant digits. The implementation set a

precision goal of less than one degree Fahrenheit. Obtaining accuracy to hundredths of a

degree was considered wasted power and time for our application. With this goal in mind,

we were able to tune down the NN to achieve the process from the beginning of the

neural network training to prediction of the next measurements to less than 12 seconds.

Depending upon the required accuracy needed, this time could be further shortened or

extended in other applications.

Power consumption measurements were isolated to the MCU. This limitation

removed all variables such as radio stack and sensor power consumption. Due to the

40

rapidly advancing nature of the node platforms, many available chipsets were all drawing

differing amounts of power. Therefore, amperage readings were taken with all

peripherals other than the MCU off. While the MCU was idle, the current draw was 7

juA; and while calculating weights for the NN training, it was 1800 juA. Using the

standard 3.0 volts and requiring 12 seconds to train, this process only draws 0.0648

Joules. This amount is minuscule when compared to the amount of power drawn by only

the onboard CC2420 low power radio. While initialized, the idle radio consumes 20 mA.

Over the same 12 second timeframe, the radio alone draws 0.72 Joules. Therefore, this

fault detection application has extremely low power consumption.

4.4 Conclusion

The traditional methods of fault detection rely on hardware. Because this

approach is software based, it can be implemented at a lower cost and can be easily

upgraded in older systems. By simply overhearing data as it is forwarded to the base

station, no extra bandwidth or redundant hardware is needed to detect a fault.

The price to be paid for this approach is a small amount of processor time and

battery power. Neural network training can be completed in a matter of seconds, and with

the implementation of TinyOS's task scheduler, the system remains extremely responsive

during the training. During training, nodes can continue to take measurements, transmit

data, and forward packets to the base station.

Based on distance, the neighboring nodes closest to the local node are more likely

to have similar values. This tendency is especially true in environmental measurements.

Due to laws of diffusion, nodes with closer proximity will likely have closer temperature

readings than neighboring nodes of farther distance. This information can increase

41

prediction accuracy when attached to NN weights during training. Without adding extra

hardware to preserve the nodes' cost effectiveness, the only onboard equipment to

estimate physical distance between the nodes is the received signal strength indictor

(RSSI). Implementation of the confidence factor was attempted, but due to interferences

and noise, the values changed wildly, even though the actual distance change was only

inches. From numerous projects' efforts on localization, we know current indoor RSSI

measurements are not capable of reliably measuring precise distance [35]. While the

confidence factor approach is ahead of its time, future advances in low cost localization

algorithms will allow its implementation.

For indefinite real time fault detection, the minimum sampling interval N must be

less than the time required to train. A node must be able to train, predict, compare, and

store new data every N seconds. With sampling interval N greater than training time,

uniform sampling points can be taken with enough time between sampling for training,

prediction, and fault detection.

CHAPTER 5

KALMAN FILTER

5.1 Example Applications

An example application would be providing accurate continuously-updated

information about the position and velocity of an object given only a sequence of

observations about its position, each of which includes some error. It is used in a wide

range of engineering applications from radar to computer vision. Kalman filtering is an

important topic in control theory and control systems engineering.

For example, in a radar application, where one is interested in tracking a target,

information about the location, speed, and acceleration of the target is measured with a

great deal of noise corruption at any instant. The Kalman filter exploits the dynamics of

the target, which govern its time evolution, to remove the effects of the noise and get a

good estimate of the location of the target at the present time (filtering), at a future time

(prediction), or at a time in the past (interpolation or smoothing). A simplified version of

a Kalman filter is the alpha beta filter (still commonly used) which has static weighting

constants instead of using co-variance matrices.

42

43

5.2 Naming and Historical Development

The filter is named after Rudolf E. Kalman, though Thorvald Nicolai Thiele and

Peter Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is

generally credited with developing the first implementation of a Kalman filter. It was

during a visit of Kalman to the NASA Ames Research Center that he saw the

applicability of his ideas to the problem of trajectory estimation for the Apollo program,

leading to its incorporation in the Apollo navigation computer. The filter was developed

in papers by Swerling (1958), Kalman (1960), and Kalman and Bucy (1961).

5.3 The Kalman Filter

The Kalman filter is a recursive estimator [37]-[41], meaning that only the

estimated state from the previous time step and the current measurement are needed to

compute the estimate for the current state. In contrast to batch estimation techniques, no

history of observations and/or estimates is required. It is unusual in being purely a time

domain filter; most filters (for example, a low-pass filter) are formulated in the frequency

domain and then transformed back to the time domain for implementation. In what

follows, the notation "|m represents the estimate of x at time n given observations up to,

and including time m.

The state of the filter is represented by two variables:

• Jct)l, the estimate of the state at time k.

• P t | t , the error covariance matrix (a measure of the estimated accuracy of the state

estimate).

44

The Kalman filter has two distinct phases: Predict and Update. The predict phase

uses the state estimate from the previous timestep to produce an estimate of the state at

the current timestep. In the update phase, measurement information at the current

timestep is used to refine this prediction to arrive at a new, (hopefully) more accurate

state estimate, again for the current timestep.

Predict

In predicted state,

xk\k-\ — Fkxk-\\k-\ + "kuk-\' (5.1)

where Fk is the state transition model which is applied to the previous state xk_l , and Bk

is the control-input model which is applied to the control vector uk.

For predicted estimate covariance,

where Qk is the covariance process noise which is assumed to be drawn from a zero mean

multivariate normal distribution.

For innovation or measurement residual,

Jk=Zk -Hkxk\k-i • (5-3)

For innovation (or residual) covariance,

Sk=HkPklk_1H
T

k+Rk (5.4)

45

where Hkis the observation model which maps the true state space into the observed

space, and Rk is the covariance observation noise which is assumed to be zero mean

Gaussian white noise.

For optimal Kalman gain,

Kk=Pk\k-iHlSkX- (5 - 5)

To find the updated state estimate

l*=l*-i + **5'f (5-6)

Updated estimate covariance is

Pk]k=^~KkHk)Pk^. (5.7)

The formula for the updated estimate covariance above is only valid for the optimal

Kalman gain.

£ K - **|t 1 = E\-Xk ~ **|*-i] = 0 (5.8)

E[y] = 0 (5.9)

where E[£] is the expected value of t,, and covariance matrices accurately reflect the

covariance of estimates.

Pk]k=cov(xk-xk\k) (5.10)

^ M = c o v (* * " - * * l * - i) (5 J 1)

Sk=cow(yk) (5.12)

CHAPTER 6

CONCLUSIONS AND RECOMMENDED

FUTURE WORK

6.1 Conclusions

Since sensor networks often operate in potentially hostile and harsh environments,

components such as sensors have significantly higher fault rates than the traditional

integrated semiconductor circuits-based systems. The traditional way of achieving fault-

tolerance in dynamic systems is through hardware redundancy such as the use of multiple

sensors.

We developed a dynamic model of WSNs and its application to sensor node fault

detection where a neural network modeling approach is used for sensor node

identification and fault detection. Neural network models will periodically learn the

dynamic of the sensors. After each learning period, sensor output is compared to its

model so that when a malfunction happens, it can be detected. In case a fault occurs, an

alert signal is displayed at both node and base station level.

Since external and internal malfunctions or excessive noise can occur, sensor

readings are somewhat uncertain in a sense that no existing sensor will deliver accurate

readings at all times. Our model provides an improved reliability over existing sensor

46

47

networks to develop a WSN that will have capability of fault detection, isolation, and

accommodation.

Advantages:

• Dynamic systems need feedback information about the health status of their nodes

in order to recover and heal from the eventual faults. Our model enables such

systems to have improved reliability over existing devices.

• The traditional way of achieving fault-tolerance in dynamic systems is through

hardware redundancy such as the use of multiple sensors. But multiplication of

sensor devices adds cost, complexity, and power consumption to the sensor node

and the whole network.

• A fault can be detected with reduced false alarm occurrence, as compared to

traditional techniques such as Kalman filter approach.

• Our model fits well for fast online measurement applications.

The presented model can be applied to a wide range of applications in systems

where multiple devices are running in parallel, such as WSNs, so that it has the capability

of fault detection, isolation, and accommodation. The system can be used in any mission

critical WSN application. Any time higher fault awareness is required, the presented

model can be applied.

Power consumption and processor time preserved for learning remain an obstacle

toward fulfilling a clean, safe, and self-aware wireless sensor network.

6.2 Recommended Future Work

Implementation of the confidence factor was attempted, but due to interferences

and noise, the values changed wildly even though the actual distance change was only

48

inches. From numerous projects' efforts on localization, it is known that the current

indoor received signal strength intensity (RSSI) measurements are not capable of reliably

measuring distance precisely. While the confidence factor approach is ahead of its time,

future advances in low cost localization algorithms will allow its implementation.

Because the neural model uses outputs from neighboring sensors, a failure in one

sensor will propagate to dynamically interconnected sensor nodes. This failure can

happen between neural network learning sessions and can cause false alarms. This failure

will stay until sensor models are trained again. Therefore, more network training causes

fewer error propagations between dynamically interconnected nodes. The long term

solution is to allow the neural model to grow, meaning to increase the number of layers

and/or number of neurons in layers, and train the network for all events, including faulty

cases. The result would be a dynamic network which would have immunity against faults

and faults propagation. This is an analogy to the human brain, which continuously learns

and adjusts to prevent false alarms.

The parameters of each parallel model (a neuron) are estimated separately. In the

next step of the process synthesis, the partial models are evaluated, selected, and included

in the newly created neuron layers. During the network synthesis new layers are added to

the network. The process of the network synthesis leads to the evolution of the resulting

model structure in such a way so as to obtain the best quality approximation of the real

system output signals. The process is completed when the optimal degree of the network

complexity is achieved.

APPENDIX A

SIMULATION SOURCE CODE USING VISUAL

C++. NET

49

50

//SIMULATION CODE USING VISUAL C++. NET

//HEADER FILE

#define time_step 0.1
#define pi 3.14

// Definition of tuning rates
#define tuning_rate_l 0.01 // First layer
#define tuning_rate_2 0.01 // Second layer

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

c21
c31
c41
cl2
c32
c52
cl3
c23
c43
cl4
c34
c54
cl5
c25
c45

1
1
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

.8

.9

.6

.6

.9

.75

.95

.7

.85

.55

.6

.85

double sensor_l(double t)
double sensor_2(double t)
double sensor_3(double t)
double sensor_4(double t)
double sensor_5(double t)

double static_sensorl(double x,int flag)
double static_sensor3(double x,int flag)
double static_sensor4(double x,int flag)

double *get_nn_input_sensor_l(double, double *
double *get_nn_input_sensor_2(double, double *
double *get_nn_input_sensor_3(double, double *
double *get_nn_input_sensor_4(double, double *
double *get_nn_input_sensor_5(double, double *

void get_nn_output_l(double [8
void get_nn_output_2(double [8
void get_nn_output_3(double [8
void get_nn_output_4(double [8
void get_nn_output_5(double [8

[10],double *
[10].double *
[10],double *
[10],double *
[10],double *

double *,double)
double *,double)
double *,double)
double *,double)
double *,double)

void weight_tuning_nn_l()
void weight_tuning_nn_2()
void weight_tuning_nn_3()
void weight_tuning_nn_4()
void weight_tuning_nn_5()

51

double get_output_sensor_l(double)
double get_output_sensor_2(double)
double get_output_sensor_3(double)
double get_output_sensor_4(double)
double get_output_sensor_5(double)

void failure_detection_sensor_l(FILE
void failure_detection_sensor_2(FILE
void failure_detection_sensor_3(FILE
void failure_detection_sensor_4(FILE
void failure_detection_sensor_5(FILE

double get_noise(int);

//MAIN FUNCTION

/*This code is used for modeling a wireless sensor network using
a modified recurrent neural network. The inputs to the recurrent
neural network are:The previous and current outputs of the same
network and the previous and current outputs of the neighboring
sensors.The learning rates are tuned according to the error
between the output of output of the sensor and the recurrent
neural network output.

Author: Azzam I. Moustapha
Professor: R. Selmic
Louisiana Tech University

06-15-05*/

ttinclude <iostream>
#include <math.h>
#include <stdlib.h>
#include <cstdlib>
#include <time.h>
#include "header.h"

using namespace std;

FILE
FILE
FILE
FILE
FILE
main()
{

*fweight_l
*fweight_2
*fweight_3
*fweight_4
*fweight_5

int c ;

/ / c o u t « g e t _ n o i s e (i) « e n d l ;

weight_tuning_nn_l();
//weight_tuning_nn_2();
//weight_tuning_nn_3()
//weight_tuning_nn_4()
//weight_tuning_nn_5()
//failure_detection_sensor_
//failure_detection_sensor_
//failure_detection_sensor_
//failure_detection_sensor_
//failure_detection_sensor_

1(fweight_l)
.2 (f weight_2)
3(fweight_3)
.4 (f weight_4)
.5 (f weight_5)

while (c=getchar(i
return 0;

//SENSOR 1

/*This code is used for modelling a sensor using
Hammerstein-Wiener nonlinear feedback Dynamic
sensor which involve linear dynamic block
sorrounded by three nonlinear static blocks*/

/*-

Discrete Version

Sensor model consits of 4 sub-blocks:

input st|
nonlin. I

I Dynamic
->| Linear

j output st
-> nonlin.

I feedback |
< I st nonlin. |<-

Author: Azzam I. Moustapha
Professor: R. Selmic
Louisiana Tech University

12-07-04

*/

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

double sensor_l(double t)
{
double i;
double physical_input;
double final_output;
double out_static_blockl;
double out_feedback_block;
int static_flagl;
int dynamic_flag2;
int static_flag3;
int static_flag4;
double tau;
double a=-l;
double b=-l;
double m=l;
i = 0;

//setting the flags in such a way to have a Nonlinear Dynamic Sensor
static_flagl=l;
dynamic_flag2=l;
static_flag3=l;
static_flag4=l;

double out_dynamic_sensor_t;
double out_dynamic_sensor_t_l;
double out_dynamic_sensor_t_2;
out_dynamic_sensor_t_l=0;
out_dynamic_sensor_t_2=0;
tau=0;

// Open the files for the storage of the data

/* main iteration loop */ •

// specify measured physical quantity (for example temperature)
while (i<=t)

{
//we have added noise to the sensor input in order to have a

more realistic input
physical_input =10.0+sin(i*2*(pi)/3);//+get_noise(i); //24

specified physical input dependance on time
// change this accordingly

// find output of the input static block
out_static_blockl = static_sensorl(physical_input,

static_flagl);
//tau = out_static_blockl - out_feedback_block;

// find output of the dynamic block

ou t_dynami c_s en s o r_t=-a * out_dynami c_s ensor_t_2-
b*out_dynamic_sensor_t_l+m*tau;

// replace old values with new values
ou t_dynami c_sensor_t_2=ou t_dynami c_s en s or_t_l;
out_dynamic_sensor_t_l=out_dynamic_sensor_t;

// find output of the feedback static block
out_feedback_block = static_sensor3(out_dynamic_sensor_t,

static_flag3);// input to this block is the state xl from dynamic block

tau = out_static_blockl - out_feedback_block;

// find output of the output static block
final_output = static_sensor4(out_dynamic_sensor_t,

static_flag4);// input to this block is the state xl from dynamic block
i=i+time_step;

}
return (final_output);

} // END of main function

//nonlinear input static sensor block
double static_sensorl(double x,int flag)

{

double in_sensor_nonlinearity;
in_sensor_nonlinearity = atan(x)

sensor nonlinearity;

function depending on application */

/* here we specify the input

change this

if (flag==l)
return(in_sensor_nonlinearity)

else
return(x);

//nonlinear feedback static sensor function
double static_sensor3(double x,int flag)
{

if (flag==l)
return(x);

else
return(0);

55

//nonlinear output static sensor block
double static_sensor4(double x,int flag)

{

double out_sensor_nonlinearity;
out_sensor_nonlinearity =atan(x); /* here we specify the output

sensor nonlinearity;
change this

function depending on application */

if (flag==l)
return(out_sensor_nonlinearity);

else
return(x) ;

//END OF PROGRAM

//SENSOR 2

/*This code is used for modelling a sensor using
Hammerstein-Wiener nonlinear feedback Dynamic
sensor which involve linear dynamic block
sorrounded by three nonlinear static blocks

Discrete Version

Sensor model consits of 4 sub-blocks:

input st|
nonlin.

| Dynamic
->| Linear

| output st
->I nonlin.

feedback |
st nonlin. <-

Author: Azzam I. Moustapha
Professor: R. Selmic
Louisiana Tech University

12-07-04

*/

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

double sensor_2(double t)
{
double i;
double physical_input;
double final_output;
double out_static_blockl;
double out_feedback_block;
int static_flagl;
int dynamic_flag2;
int static_flag3;
int static_flag4;
double tau;
double a=-l;
double b=-l;
double m=l;
i = 0;

//setting the flags in such a way to have a Nonlinear Dynamic Sensor
static_flagl=l;
dynami c_flag2 = 1;
static_flag3=l;
static_flag4=l;

double out_dynamic_sensor_t;
double out_dynamic_sensor_t_l;
double out_dynamic_sensor_t_2;
out_dynamic_sensor_t_l=0;
out_dynamic_sensor_t_2=0;
tau=0;

// Open the files for the storage of the data

/* main iteration loop */

// specify measured physical quantity (for example temperature)
while (i<=t)

{
physical_input =5+sin(i*(pi/24)); // specified physical

input dependance on time
// change this accordingly

// find output of the input static block
out_static_blockl = static_sensorl(physical_input,

static_flagl);
//tau = out_static_blockl - out_feedback__block;

// find output of the dynamic block

out_dynami c_s en s o r_t=-a * out_dynami c_s ens or_t_2-
b*out_dynamic_sensor_t_l+m*tau;

// replace old values with new values
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l;
out_dynamic_sensor_t_l=out_dynamic_sensor_t;

// find output of the feedback static block
out_feedback_block = static_sensor3(out_dynamic_sensor_t,

static_flag3);// input to this block is the state xl from dynamic block

tau = out_static_blockl - out_feedback_block;

// find output of the output static block
final_output = static_sensor4(out_dynamic_sensor_t,

static_flag4);// input to this block is the state xl from dynamic block
i=i+time_step;

}
return (final_output);

} // END of main function

//SENSOR 3

/*This code is used for modelling a sensor using
Hammerstein-Wiener nonlinear feedback Dynamic
sensor which involve linear dynamic block
sorrounded by three nonlinear static blocks

Discrete Version

Sensor model consits of 4 sub-blocks:

input stl
nonlin. j

| Dynamic.
->| Linear

| output st
->I nonlin.

feedback |
st nonlin.I<-

Author: Azzam I. Moustapha
Professor: R. Selmic
Louisiana Tech University

12-07-04

*/

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

double sensor_3(double t)
{
double i;
double physical_input;
double final_output;
double out_static_blockl;
double out_feedback_block;
int static_flagl;
int dynamic_flag2;
int static_flag3;
int static_flag4;
double tau;
double a=-l;
double b=-l;
double m=l;
i = 0;
//setting the flags in such a way to have a Nonlinear Dynamic Sensor
static_flagl=l;
dynami c_flag2 = 1;
static_flag3=l;
static_flag4=l;

double out_dynamic_sensor_t;
double out_dynamic_sensor_t_l;
double out_dynamic_sensor_.t_2 ;
out_dynamic_sensor_t_l=0;
out_dynamic_sensor_t_2=0;
tau=0;

// Open the files for the storage of the data

/* main iteration loop */

// specify measured physical quantity (for example temperature)
while (i<=t)
{

physical_input =15+sin(1*(px/24)); // specified physical
input dependance on time

//• change this accordingly

// find output of the input static block
out_static_blockl = static_sensorl(physical_input,

static_flagl);
//tau = out_static_blockl - out_feedback_block;

// find output of the dynamic block

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau;

// replace old values with new values
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l;
out_dynamic_sensor_t_l=out_dynamic_sensor_t;

// find output of the feedback static block
out_feedback_block = static_sensor3(out_dynamic_sensor_t,

static_flag3);// input to this block is the state xl from dynamic block

tau = out_static_blockl - out_feedback_block;

// find output of the output static block
final_output = static_sensor4(out_dynamic_sensor_t,

static_flag4);// input to this block is the state xl from dynamic block
i=i+time_step;
}

return (final_output);

} // END of main function

//SENSOR 4

/*This code is used for modelling a sensor using
Hammerstein-Wiener nonlinear feedback Dynamic
sensor which involve linear dynamic block
sorrounded by three nonlinear static blocks

Discrete Version

Sensor model consits of 4 sub-blocks:

input st| | Dynamic | | output st
nonlin. I- I > Linear I >| nonlin.

feedback

60

< I st nonlin.|<

/*

Author: Azzam I. Moustapha
Professor: R. Selmic

Louisiana Tech University
12-07-04

*/

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"
//#define time_step 0.01

using namespace std;

double sensor_4(double t)

{
double i;
double physical_input;
double final_output;
double out_static_blockl;
double out_feedback_blcck;
int static_flagl;
int dynamic_flag2;
int static_flag3;
int static_flag4;
double tau;
double a=-l;
double b=-l;
double m=l;
i = 0;
//setting the flags in such a way to have a Nonlinear Dynamic Sensor
static_flagl=l;
dynamic_flag2=1;
static_flag3=l;
static_flag4=l;

double out_dynamic_sensor_t;
double out_dynamic_sensor_t_l;
double out_dynamic_sensor_t_2;
out_dynamic_sensor_t_l=0;
out_dynamic_sensor_t_2=0;
tau=0;

// Open the files for the storage of the data

/* main iteration loop */

// specify measured physical quantity (for example temperature)

while(i<=t)
{

physical_input =20+sin(i*(pi/24)); // specified physical
input dependance on time

// change this accordingly

// find output of the input static block
out_static_blockl = static_sensorl(physical_input,

static_flagl);
//tau = out_static_blockl - out_feedback_block;

// find output of the dynamic block

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau;

// replace old values with new values
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l;
out_dynamic_sensor_t_l=out_dynamic_sensor_t;

// find output of the feedback static block
out_feedback_block = static_sensor3(out_dynamic_sensor_t,

static_flag3);// input to this block is the state xl from dynamic block

tau = out_static_blockl - out_feedback_block;

// find output of the output static block
final_output = static_sensor4(out_dynamic_sensor_t,

static_flag4);// input to this block is the state xl from dynamic block
i=i+time_step;

}

return (final_output);

} // END of main function

//SENSOR 5

/*This code is used for modelling a sensor using
Hammerstein-Wiener nonlinear feedback Dynamic
sensor which involve linear dynamic block
sorrounded by three nonlinear static blocks

Discrete Version

Sensor model consits of 4 sub-blocks:

input st| I Dynamic | | output st
nonlin. I I- I >| Linear I I >| nonlin.

feedback
st nonlin.

Author: Azzam I. Moustapha
Professor: R. Selmic
Louisiana Tech University

12-07-04

'I

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

double sensor_5(double t)
{
double i;
double physical_input;
double final_output;
double out_static_blockl;
double out_feedback_block;
int static_flagl;
int dynamic_flag2;
int static_flag3;
int static_flag4;
double tau;
double a=-l;
double b=-l;
double m=l;
i = 0;
//setting the flags in such a way to have a Nonlinear Dynamic Sensor
static_flagl=l;
dynamic_flag2=l;
static_flag3=l;
static_flag4=l;

double out_dynamic_sensor_t;
double out_dynamic_sensor_t_l;
double out_dynamic_sensor_t_2;
out_dynamic_sensor_t_l=0;
out_dynamic_sensor_t_2=0;
tau=0;

// Open the files for the storage of the data

63

/* main iteration loop */ .

// specify measured physical quantity (for example temperature)
while (i<=t)
{

physical_input =ll+sin(i*(pi/24)); // specified physical
input dependance on time

// change this accordingly

// find output of the input static block
out_static_blockl = static_sensorl(physical_input,

static_flagl);
//tau = out_static_blockl - out_feedback_block;

// find output of the dynamic block

out_dynamic_sensor_t=-a*out_dynamic_sensor_t_2-
b*out_dynamic_sensor_t_l+m*tau;

// replace old values with new values
out_dynamic_sensor_t_2=out_dynamic_sensor_t_l;
out_dynamic_sensor_t_l=out_dynamic_sensor_t;

// find output of the feedback static block
out_feedback_block = static_sensor3(out_dynamic_sensor_t,

static_flag3);// input to this block is the state xl from dynamic block

tau = out_static_blockl - out_feedback_block;

// find output of the output static block
final_output = static_sensor4(out_dynamic_sensor_t,

static_flag4);// input to this block is the state xl from dynamic block
i=i+time_step;
}

return (final_output);

} // END of main function

//NOISE

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;
double get_noise(int i)
{
double RAN_MAX = 3267600;
double n;
int e;
int co;
srand(1002*i);
co=0;

64

e=rand()*1000/RAN_MAX;
n=100*(rand()/(RAN_MAX*100))*pow(-l,e);
return(n);
}

//NN for SENSOR 1

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w's)
for the first and second layer used in the modified recurrent
neural network */

using namespace std;
extern FILE *fweight_l;

void weight_tuning_nn_l()
{
FILE *ferror_l;
FILE *fweight_l;
int i,j,T;
double t;
double u[8];
double v[8][10];
double v0[10];
double w[10]•
double wO;
double *k;
double pi[10],sl[10],sigma[10] ;
double p2[10];
double output[2];
double E0,SE1[10],E1[8][10],SE,SE0;

ferror_l=fopen("nn_error_l","w");
fweight_l=fopen("nn_weight_l","w");
t=0.0;
T=0;
SE0=0;

for (i=0;i<5;i++)
{
output[0]=0,•
output[1]=0;

}

for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

}

65

for (i=0; i<8; i++)
for (j=0; j<10;j++)

{

v[i][j] = 0;

}

for (i=0;i<10;i++)

{

v0[i] =0;

}

for (i=0; i<10; i++)

{
w[i]=0;

}
w0 = 0;

do

{

for (i=0;i<10;i++)

{
SEl[i]=0;

}
t = 0;

do

{

// Getting inputs from neighboring sensors
k=get_nn_input_sensor_l(t, output);

for(i=0;i<8;i++)
u[i]=*(k+i);

// Resetting variables
for (i=0;i<10;i++)

{
pl[i]=0;
p2[i]=0;
sl[i]=0;

SEl[i]=0;
}

// Calculating output of the modified recurrent NN during learing phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p l [i] = p l [i] + v [j] [i] * u [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)

{
s l [i] = p l [i] + v O [i] ;

sigma[i] = 1.0/(1.0 + exp(-si [i])) ;
}

for (i=0;i<10;i++)
{
p2[i]=w[i]*sigma[i];
output[0]=output[0]+p2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

// Calculating error between sensor output and RNN output
E0=sensor_l(t)-output[0];
output[0]=0;

f o r (i = 0 ; i < 8 ; i + +)
f o r (j = 0 ; j < 1 0 ; j + +)

{
E l [i] [j] = s i g m a [j] * (l - s i g m a [j]) * E 0 * w [i] ;
S E l [i] = S E l [i] + E l [i] [j] ;

}

// Updating weights of the second layer according to the error
for (i=0;i<10;i++)

{
w[i]=w[i]+tuning_rate_2*E0*sigma[i];

}

// Updating weights of the first layer according to the error
for (i=0;i<8;i++)

for (j=0;j<10;j++)
{
v[i][j]=v[i][j]+tuning_rate_l*SEl[j]*u[i];

}
// Calculating the sum of errors

SE0=SE0+E0;

t=t+time_step;
//cout<<"Modeling Sensor #1 ...";
//system("els");
}

while (t<12.0);

SE=0.5*SE0*SE0;

fprintf(ferror_l,"%d %.16f\n",T,SE0);

SE0=0;
T=T+1;
cout<<SE<<endl;
//system("els");
}
//Checking if the error is higher than threshold
while (SE>2.61e-10);//0.00041);//2.61e-8);//-6
c o u t < < e n d l < < " E r r o r i s : " < < S E « e n d l < < e n d l ;
f o r (i = 0 ; i < 8 ; i + +)

67

{
for (j=0;j<10;j++)
fprintf(fweight_l,"%lf\n",v[i][j]) ;

}
for (i=0;i<10;i++)
fprintf(fweight_l,"%lf\n",w[i]);
for (i=0;i<10;i++)
fprintf(fweight_l,"%lf\n",vO[i]);
fprintf(fweight_l,"%lf\n",w0);
t=0;
get_nn_output_l(v,w,vO,wO);
fcloseall();
return;
}

double *get_nn_input_sensor_l(double t, double *output)
{
double in[8];

// input to NN from previous output of same NN
in[0]=output[0] ;
// input to NN from previous output of same NN
in[1]=output[1];
// input to NN from output of neighbor sensor 2
in[2]=c21*sensor_2(t);
// input to NN from previous output of neighbor sensor 2
in[3]=c21*sensor_2(t-time_step);
//input to NN from output of neighbor sensor 3
in[4]=c31*sensor_3(t);
// input to NN from previous output of neighbor sensor 3
in[5]=c31*sensor_3(t-time_step);
//input to NN from output of neighbor sensor 4
in[6]=c41*sensor_4(t);
// input to NN from previous output of neighbor sensor 4
in[7]=c41*sensor_4(t-time_step);

return(in) ;
}

void get_nn_output_l(double v[8][10],double *w, double *v0, double wO
)

{
FILE *fsensor_l;
int C;
int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10];
double s[8];
double sigm[10];
fsensor_l=fopen("NN_output_l","w");

68

// Initialization of output
output[0]=0;
output[1]=0;:
t=0;

C=0;
do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_l(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

fprintf(fsensor_l, "%f %f
%.16f\n",t,sensor_l(t),output[0]);

//Resetting the output
output[0]=0;r

t=t+time_step;
}
while (t<12.0);

fcloseall();
return ;

}

//NN for SENSOR 2

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

using namespace std;

extern FILE *fweight_2;
void weight_tuning_nn_2()
{
FILE *ferror_2;
FILE *fweight_2;
int i,j,T;
double t;
double u[8];
double v[8][10];
double vOtlO];
double w[10] ,-
double wO;
double *k;
double pi[10],si[10],sigma[10];
double p2[10];
double output[2];
d o u b l e E 0 , S E 1 [1 0] , E l [8] [1 0] , S E , S E 0 ;
f e r r o r _ 2 = f o p e n (" n n _ e r r o r _ 2 " , " w ") ;
fweight_2=fopen("nn_weight_2","w");
t=0.0;
T=0;
SE0=0;

for (i=0;i<5;i++)
{
output[0]=0,•
output[1]=0;
}

for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

}

for (i=0; i<8; i++)

70

for (j=0; j<10;j++)
{
v[i] [j] = 0;

}

for (i=0;i<10;i++)

{

v0[i] =0;

}

for (i=0; i<10; i++)

{

w[i]=0;

}

w0 = 0;

do

{

for (i=0;i<10;i++)

{
SEl[i]=0;

}
t = 0;

do

{

// Getting inputs from neighboring sensors
k=get_nn_input_sensor_2(t, output);

for(i=0;i<8;i++)

u[i]=*(k+i);

// Resetting variables

for (i=0;i<10;i++)

{
pl[i]=0;
p2[i]=0;
sl[i]=0;

SEl[i]=0;
}

// Calculating output of the modified recurrent NN during learing phase

f o r (i = 0 ; i < 1 0 ; i + +)
f o r (j = 0 ; j < 8 ; j + +)

p l [i] = p l [i] + v [j] [i] * u [j] ;

71

f o r (i = 0 ; i < 1 0 ; i + +)
{

s l [i] = p l [i] + v O [i] ;
s i g m a [i] = 1 . 0 / (1 . 0 + e x p (- s l [i])) ;

}

for (i=0;i<10;i++)
{
p2[i]=w[i]*sigma[i];
output[0]=output[0]+p2[i];
}

output[0]=output[0]+w0;
output[1]=output[0];

// Calculating error between sensor output and RNN output
E0=sensor_2(t)-output[0];
output[0]=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)

{
El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i];
SEl[i]=SEl[i]+El[i][j];

}

// Updating weights of the second layer according to the error
for (i=0;i<10;i++)

{
w[i]=w[i]+tuning_rate_2*E0*sigma[i];

}

// Updating weights of the first layer according to the error
for (i=0;i<8;i++)

for (j=0;j<10;j++)
{
v[i][j]=v[i][j]+tuning_rate_l*SEl[j]*u[i];

}

// Calculating the sum of errors
SE0=SE0+E0;
t=t+time_step;
}
while (t<12.0);

cout«"Modeling Sensor #2 ...";
system("els");

SE=0.5*SE0*SE0;
SE0=0;
fprintf(ferror_2,"%d %.16f\n",T,SE);
T=T+1;
}
// Checking if the error is higher than threshold
while (SE>2.61e-10);

cout«endl«"Error is: "«SE«endl«endl;

72

for (i=0;i<8;i++)
{

for (j=0;j<10;j++)
fprintf(fweight_2,"%lf\n",v[i][j]) ;

}
for (i=0;i<10;i++)

fprintf(fweight_2,"%lf\n",w[i]);
for (i=0;i<10;i++)

fprintf(fweight_2,"%lf\n",vO[i]) ;
fprintf(fweight_2,"%lf\n",w0);

t=0;
get_nn_output_2(v,w,vO,wO);
fcloseall();
return ;
}

double *get_nn_input_sensor_2(double t, double *output)
{
double in[8];
// input to NN from previous output of same NN
in[0]=output[0];
// input to NN from previous output of same NN
in[1]=output[1];
// input to NN from output of neighbor sensor 1
in[2]=sensor_l(t);//cl2
// input to NN from previous output of neighbor sensor 1
in[3]=sensor_l(t-time_step);//cl2
//input to NN from output of neighbor sensor 3
in[4]=sensor_3(t);//c32
// input to NN from previous output of neighbor sensor 3
in[5]=sensor_3(t-time_step);//c32
//input to NN from output of neighbor sensor 4
in[6]=sensor_5(t);//c52
// input to NN from previous output of neighbor sensor 4
in[7]=sensor_5(t-time_step);//c52

return(in);
}

void get_nn_output_2(double v[8][10],double *w, double *v0, double wO
)

{
FILE *fsensor_2;

int i, j ;
double t;
double *1;
double output[2];
double prl[10] ;
double sul[10];
double pr2[10];
double s[8];
double sigm[10];
fsensor_2=fopen("NN_output_2","w");
// Initialization of output

73

output[0]=0;
output[1]=0;
t = 0;

do

{
// Getting input from neighboring sensors
l=get_nn_input_sensor_2(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m f i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

// Printing results
fprintf(fsensor_2, "%f %f
%.16f\n",t,sensor_2(t),output[0]);

// Resetting the output
output[0]=0;;
t=t+time_step;

}
while (t<12.0);
fcloseall();
return ;

}

//NN for SENSOR 3

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent

neural network */

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

extern FILE *fweight_3;

void weight_tuning_nn_3()
{
FILE *ferror_3;
FILE *fweight_3;
int i, j , T;
double t;
double u[8];
double v[8][10];
double v0[10];
double w[10];
double wO;
double *k;
double pi[10],sl[10],sigma[10];

double p2 [10];

double output[2];
double E0,SE1[10],E1[8][10],SE,SE0;
ferror_3=fopen("nn_error_3","w");
fweight_3=fopen("nn_weight_3","w");

t=0.0;
T=0;
SE0=O;
for (i=0;i<5;i++)
{

output[0]=0,•
output[1]=0;
}

for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

}

for (i=0; i<8; i++)
for (j=0; j<10;j++)

v[i] [j] = 0;

75

for (i=0;i<10;i++)
{
vO[i] =0;

}
for (i=0; i<10; i++)

{
w[i]=0;

}

w0 = 0;

do
{

for (i=0;i<10;i++)
{ SEl[i]=0;
}

t=0;

do
{

// Getting inputs from neighboring sensors
k=get_nn_input_sensor_3(t, output);

for(i=0;i<8;i++)
u[i]=*(k+i);

/•/ Resetting variables
for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

SEl[i]=0;
}

// Calculating output of the modified recurrent NN during learing phase

f o r (i = 0 ; i < 1 0 ; i + +)
f o r (j = 0 ; j < 8 ; j + +)

p l [i] = p l [i] + v [j] [i] * u [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s l [i] = p l [i] + v O [i] ;
s i g m a [i] = 1 . 0 / (1 . 0 + e x p (- s i [i])) ;

}

for (i=0;i<10;i++)
{
p2[i]=w[i]*sigma[i];
output[0]=output[0]+p2[i];
}

output[0]=output[0]+w0;
output[1]=output[0];
// Calculating error between sensor output and RNN output
E0=sensor_3(t)-output[0];

output[0]=0;
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i];
SEl[i]=SEl[i]+El[i] [j];

}

// Updating weights of the second layer according to the error
for (i=0;i<10;i++)
{

w[i]=w[i]+tuning_rate_2*E0*sigma[i];

}

// Updating weights of the first layer according to the error
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{
v [i] [j] = v [i] [j] + t u n i n g _ r a t e _ l * S E l [j] * u [i] ;
}
// Calculating the sum of errors
SE0=SE0+E0;

t=t+time_step;

}
while (t<12.0);

cout«"Modeling Sensor #3 . . . " ;
system("els");

SE=0.5*SE0*SE0;
SE0=0;
fprintf(ferror_3,"%d %.16f\n",T,SE);
T=T+1;
}
// Checking if the error is higher than threshold
while (SE>2.61e-10);

c o u t « e n d l < < " E r r o r i s : "«SE<<endl<<endl;
for (i=0; i<8; i++)
{

77

for (j=0;j<10;j++)
fprintf(fweight_3,"%lf\n",v[i][j]);

}
for (i=0;i<10;i++)
fprintf(fweight_3,"%lf\n",w[i]);
for (i=0;i<10;i++)
fprintf(fweight_3,"%lf\n",vO[i]);
fprintf(fweight_3,"%lf\n",wO);
t=0;
get_nn_output_3(v,w,vO,wO);
fcloseall();
return ;
}

double *get_nn_input_sensor_3(double t, double *output)
{
double in[8];

// input to NN from previous output of same NN
in[0]=output[0];
// input to NN from previous output of same NN
in[1]=output[1];
// input to NN from output of neighbor sensor 1
in[2]=cl3*sensor_l(t) ;
// input to NN from previous output of neighbor sensor 1
in[3]=cl3*sensor_l(t-time_step);
//input to NN from output of neighbor sensor 2
in[4]=c23*sensor_2(t);
// input to NN from previous output of neighbor sensor 2
in[5]=c23*sensor_2(t-time_step);

//input to NN from output of neighbor sensor 4
in[6]=c43*sensor_4(t);
// input to NN from previous output of neighbor sensor 4
in[7]=c43*sensor_4(t-time_step);

return(in);
}

void get_nn_output_3(double v[8][10],double *w, double *v0, double wO
)

{
FILE *fsensor_3;

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10];
double s[8];
double sigm[10];
fsensor_3=fopen("NN_output_3","w");
// Initialization of output

output[0]=0;
output[1]=0;
t = 0;

do

{
// Getting input from neighboring sensors
l=get_nn_input_sensor_3(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables

for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v 0 [i] ;
s i g m f i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];.

}

output[0]=output[0]+w0;
output[1]=output[0];

/•/ Printing results
fprintf(fsensor_3, "%f %f

%.16f\n",t,sensor_3(t),output[0]);
// Resetting the output
output[0]=0;r
t=t+time_step;

}
while (t<12.0);
fcloseall();
return ;

}

//NN for SENSOR 1

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent

79

neural network */

ttinclude <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

extern FILE *fweight_4;

void weight_tuning_nn_4()
{
FILE *ferror_4;
FILE *fweight_4;
int i, j , T;
double t;
double u[8] ;
double v[8] [10] ;
double V0[10];
double w[10];
double w0;
double *k;
double pi[10],sl[10],sigma[10];

double p2[10];

double output[2];
double E0,SE1[10],E1[8][10],SE,SEO;
ferror_4=fopen("nn_error_4","w");
fweight_4=fopen("nn_weight_4","w");
t=0.0;
T=0;
SE0=0;
for (i=0;i<5;i++)
{

output[0]=0;
output[1]=0;
}

for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

}

for (i=0; i<8; i++)
for (j=0; j<10;j++)

{

v[i] [j] = 0;

}

for (i=0;i<10;i++)

{
vOti] =0;

}

for (i=0; i<10; i++)

{
w[i]=0;

}

w0 = 0;

do

{

for (i=0;i<10;i++)
{ SEl[i]=0;
}

t = 0;

do

{

// Getting inputs from neighboring sensors
k=get_nn_input_sensor_4(t, output);

for(i=0;i<8;i++)
u[i]=*(k+i);

// Resetting variables
for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

SEl[i]=0;
}

// Calculating output of the modified recurrent NN during learing phase

f o r (i = 0 ; i < 1 0 ; i + +)
f o r (j = 0 ; j < 8 ; j + +)

p l [i] = p l [i] + v [j] [i] * u [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s l [i] = p l [i] + v O [i] ;
s i g m a [i] = 1 . 0 / (1 . 0 + e x p (- s l [i])) ;

}

for (i=0;i<10;i++)
{
p2 [i]=w[i]*sigma[i];
output[0]=output[0]+p2[i];
}

output[0]=output[0]+w0;
output[1]=output[0];
// Calculating error between sensor output and RNN output

E0=sensor_4(t)-output[0];
output[0]=0;
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i];
SEl[i]=SEl[i]+El[i][j];

}

// Updating weights of the second layer according to the error
for (i=0;i<10;i++)
{

w[i]=w[i]+tuning_rate_2*E0*sigma[i];

}

// Updating weights of the first layer according to the error
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{
v [i] [j] = v [i] [j] + t u n i n g _ r a t e _ l * S E l [j] * u [i] ;
}
// Calculating the sum of errors
SE0=SE0+E0;
t=t+time_step;

}
while (t<12.0);

cout<<"Modeling Sensor #4 ...";
system("els");

SE=0.5*SE0*SE0;
SE0=0;
fprintf(ferror_4,"%d %.16f\n",T,SE);
T=T+1;
}
// Checking if the error is higher than threshold
while (SE>2.61e-10);

cout«endl«"Error is: "«SE<<endl<<endl;
for (i=0;i<8;i++)
{

82

for (j=0;j<10;j++)
fprintf(£weight_4,"%lf\n",v[i][j]) ;

}
for (i=0;i<10;i++)
fprintf(fweight_4,"%lf\n",w[i]);
for (i=0;i<10;i++)
fprintf(fweight_4,"%lf\n",vO[i]);
fprintf(fweight_4,"%lf\n",w0);
t=0;
get_nn_output_4(v,w,vO,wO);
fcloseall();
return ;
}
double *get_nn_input_sensor_4(double t, double *output)
{
double in[8];
// input to NN from previous output of same NN
in[0]=output[0];
// input to NN from previous output of same NN
in[1]=output[1];
//input to NN from output of neighbor sensor 1
in[2]=cl4*sensor_l(t);
// input to NN from previous output of neighbor sensor 1
in[3]=cl4*sensor_l(t-time_step);
// input to NN from output of neighbor sensor 3
in[4]=c34*sensor_3(t) ;
// input to NN from previous output of neighbor sensor 3
in[5]=c34*sensor_3(t-time_step);
//input to NN from output of neighbor sensor 5
in[6]=c54*sensor_5(t);
// input to NN from previous output of neighbor sensor 5
in[7]=c54*sensor_5(t-time_step);

return(in);
}

void get_nn_output_4(double v[8][10],double *w, double *v0, double wO
)

{
FILE *fsensor_4;

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10];
double s[8];
double sigm[10];
fsensor_4=fopen("NN_output_4","w");
// Initialization of output
output[0]=0;

83

output[1]=0;
t = 0;

do

{
// Getting input from neighboring sensors
l=get_nn_input_sensor_4(t, output);
for(i=0;i<8;i++)
s[i]=*(l + i) ;

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m f i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i] ;
output[0]=output[0]+pr2[i] ;

}

output[0]=output[0]+w0;
output[1]=output[0];
// Printing results

fprintf(fsensor_4, "%f %f
%.16f\n",t,sensor_4(t),output[0]);

// Resetting the output
output[0]=0;;
t=t+time_step;

}
while (t<12.0) ;
fcloseall();
return ;

//NN FOR SENSOR 5

84

/* The following function is used for tuning the weights (v's,w's)
for the first and second layer used in the modified recurrent
neural network */

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

using namespace std;

extern FILE *fweight_5;
void weight_tuning_nn_5()
{
FILE *ferror_5;
FILE *fweight_5;
int i,j,T;
double t;
double u[8] ;
double v[8][10] ;
double v0[10];
double w[10];
double w0;
double *k;
double pi[10] , si[10],sigma[10];

double p2[10];

double output[2];
double E0,SE1[10],E1[8][10],SE,SE0;
ferror_5=fopen("nn_error_5","w");
fweight_5=fopen("nn_weight_5","w");
t=0.0;
T=0;
SE0=0;
for (i=0;i<5;i++)
{

output[0]=0;
output[1]=0;
}

for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

}

for (i=0; i<8; i++)
for (j=0; j<10;j++)

{

85

v[i][j] = 0;

}

for (i=0;i<10;i++)
{

v0[i] =0;

}

for (i=0; i<10; i++)
{

w[i]=0;

}

w0 = 0;

do
{

for (i=0;i<10;i++)
{ SEl[i]=0;
}

t=0;

do
{

// Getting inputs from neighboring sensors
k=get_nn_input_sensor_5(t, output);

for(i=0;i<8;i++)
u[i]=*(k+i);

// Resetting variables
for (i=0;i<10;i++)
{

pl[i]=0;
p2[i]=0;
sl[i]=0;

SEl[i]=0;
}

// Calculating output of the modified recurrent NN during learing phase

for (i=0;i<10;i++)
for (j=0;j<8;j++)

86

p l [i] = p l [i] + v [j] [i] * u [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s l [i] = p l [i] + v O [i] ;
s i g m a [i] = 1 . 0 / (1 . 0 + e x p (- s l [i])) ;

}

for (i=0;i<10;i++)
{
p2[i]=w[i]*sigma[i];

output[0]=output[0]+p2[i];
}

output[0]=output[0]+w0;
output[1]=output[0];

// Calculating error between sensor output and RNN output
E0=sensor_5(t)-output[0];
output[0]=0;
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{

El[i][j]=sigma[j]*(l-sigma[j])*E0*w[i];
SEl[i]=SEl[i]+El[i] [j];

// Updating weights of the second layer according to the error
for (i=0;i<10;i++)
{

w[i]=w[i]+tuning_rate_2*E0*sigma[i];

// Updating weights of the first layer according to the error
for (i=0;i<8;i++)
for (j=0;j<10;j++)
{
v [i] [j] = v [i] [j] + t u n i n g _ r a t e _ l * S E l [j] * u [i] ;
}
// Calculating the sum of errors
SE0=SE0+E0;

t=t+time_step;

}
while (t<12.0) ;

cout<<"Modeling Sensor #5 ...";
system("els");
SE=0.5*SE0*SE0;

87

SEO=0;
fprintf(ferror_5,"%d %.16f\n",T,SE);
T=T+1;
}
// Checking if the error is higher than threshold
while (SE>2.61e-10);

cout<<endl«"Error is: "«SE«endl«endl;
for (i=0;i<8;i++)
{

for (j=0;j<10;j++)
fprintf(fweight_5,"%lf\n",v[i][j]);

}
for (i=0;i<10;i++)
fprintf(fweight_5,"%lf\n",w[i]);
for (i=0;i<10;i++)
fprintf(fweight_5,"%lf\n",vO[i]);
fprintf(fweight_5,"%lf\n",w0);
t=0;
get_nn_output_5(v,w,vO,wO);
fcloseall();
return ;
}

double *get_nn_input_sensor_5(double t, double *output)
{
double in[8];

// input to NN from previous output of same NN
in[0]=output[0];
// input to NN from previous output of same NN
in[l]=output[1];
// input to NN from output of neighbor sensor 1
in[2]=cl5*sensor_l(t);
// input to NN from previous output of neighbor sensor 1
in[3]=cl5*sensor_l(t-time_step);
//input to NN from output of neighbor sensor 2
in[4]=c25*sensor_2(t);
// input to NN from previous output of neighbor sensor 2
in[5]=c25*sensor_2(t-time_step);
//input to NN from output of neighbor sensor 4
in[6]=c45*sensor_4(t);
// input to NN from previous output of neighbor sensor 4
in[7]=c45*sensor„4(t-time_step);

return(in);
}

void get_nn_output_5(double v[8][10],double *w, double *v0, double wO
)

{
FILE *fsensor_5;

88

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s[8];
double sigm[10];
fsensor_5=fopen("NN_output_5","w");
// Initialization of output
output[0]=0;
output[1]=0;
t=0;

do
{
/./ Getting input from neighboring sensors
l=get_nn_input_sensor_5(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];

output[0]=output[0]+pr2[i] ;
}

output[0]=output[0]+w0 ;
output[1]=output[0];
// Printing results

89

fprintf(fsensor_5, "%f %f
%.16f\n",t,sensor_5(t),output[0]);

// Resetting the output
output[0]=0;
t=t+time_step;

}
while (t<12.0);
fcloseall();
return ;

}

//NN SENSOR 1 WITH FAILURE

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

#define drift 0.02
/* The following function is used for tuning the weights (v's,w's)

for the first and second layer used in the modified recurrent
neural network */

using namespace std;

void failure_detection_sensor_l(FILE *fweight_l)
{
FILE *ffailure_l;
int i, j ;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s[8];
double sigm[10];
double v[8][10],w[10],v0[10],w0;
ffailure_l=fopen("nn_failure_l","w");
fweight_l=fopen("nn_weight_l","r");

// Initialization of output
output[0]=0,•
output[l]=0;
t=0.0;//0.1;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
{fscanf(fweight_l,"%lf\n",&v[i][j]);

}
for (i=0;i<10;i++)
fscanf(fweight_l,"%lf\n",&w[i]);

for (i=0;i<10;i++)
fscanf(fweight_l,"%lf\n",&v0[i]);

fscanf(fweight_l,"%lf\n",&wO);

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_l(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0] ;
// Resetting the output
output[0]=0;
cout«endl«t<<" " <<output [1] «endl ;
t=t+time_step;
fprintf(ffailure_l,"%f %.10f %.10f\n", t-

time_step,get_output_sensor_l(t-time_step),output[1]);
}
while ((t<12.0)&&(abs(get_output_sensor_l(t-time_step)-
output[1])<0.02));

if (t<12.0)
cout«endl«endl«"time= "<<t-time_step<<" FAILURE

DETECTED IN SENSOR #l"«endl;
fcloseall();
return;

}

double get_output_sensor_l(double t)
{

if (t<1.45)
return(sensor_l(t));

91

else return(sensor_l(t)+t*drift);
}

//NN SENSOR 2 WITH FAILURE

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define c2 0.8
ttdefine c3 0.6
#define c4 0.9

using namespace std;

void failure_detection_sensor_2(FILE *fweight_2)
{

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10];
double s[8];
double sigm[10];
double v[8][10],w[10],vO[10],wO;
fweight_2=fopen("nn_weight_2","r");

// Initialization of output
output[0]=0;
output[1]=0;r
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf(fweight_2,"%lf\n",&v[i][j]);

for (i=0;i<10;i++)
fscanf(fweight_2,"%lf\n",&w[i]);

for (i=0;i<10;i++)

fscanf(fweight_2,"%lf\n",&vO[i]);

fscanf(fweight_2,"%lf\n",&wO);

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_2(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

// Resetting the output
output[0]=0;
cout«endl<<t«" "«output [1] «endl;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_2(t-time_step)-

output[1])<0.015));
if (t<12.0)

cout<<endl<<endl«"time= "<<t-time_step«" FAILURE
DETECTED IN SENSOR #2"«endl;

fcloseall();
return

}

double get_output_sensor_2(double t)
{

93

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_2(t));

//NN SENSOR 2 WITH FAILURE

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define c2 0.8
#define c3 0.6
ttdefine c4 0.9

using namespace std;

ttinclude <iostream>
#include <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define
#define
#define

c2
c3
c4

0.
0.
0.

.8

.6

.9

using namespace std;

void failure_detection_sensor_4(FILE *fweight_4)
{

int i,j;
double t;

double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s [8] ;
double sigm[10];
double v[8][10],w[10],v0[10],w0;
fweight_4=fopen("nn_weight_4","r");

// Initialization of output
output[0]=0;
output[1]=0;
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf(fweight_4,"%lf\n",&v[i][j]);

for (i=0;i<10;i++)
fscanf(fweight_4,"%lf\n",&w[i]);

for (i=0;i<10;i++)
fscanf(fweight_4,"%lf\n",&v0[i]);

fscanf(fweight_4,"%lf\n",&w0);

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_4(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + exp (- s u l [i])) ,-

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i] ;

output[0]=output[0]+pr2[i] ;
}

output[0]=output[0] +w0 ;
output[1]=output[0] ;

// Resetting the output
output[0]=0;
cout<<endl<<t<<" "<<output[1]<<endl;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_4(t-time_step)-

output[1])<0.015));
if (t<12.0)

cout<<endl«endl«" time= "«t-time_step«"
DETECTED IN SENSOR #4"«endl;

fcloseall();
return ;

double get_output_sensor_4(double t)
{

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_4(t));
}

void failure_detection_sensor_3(FILE *fweight_3)
{

int i, j ;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s[8];
double sigm[10];
double v[8][10],w[10],vO[10],wO;
fweight_3=fopen("nn_weight_3","r");

// Initialization of output
output[0]=0;
output[1]=0;;
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf(fweight_3,"%lf\n",&v[i][j]);

for (i=0;i<10;i++)
fscanf(fweight_3,"%lf\n",&w[i]);

for (i=0;i<10;i++)
fscanf(fweight_3,"%lf\n",&v0[i]);

fscanf(fweight_3,"%lf\n",&w0);

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_3(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

// Resetting the output
output[0]=0;
cout«endl<<t«" " <<output [1] <<endl ;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_3(t-time_step)-

output[1])<0.015));
if (t<12.0)

cout<<endl<<endl<<" time= "<<t-time_step«" FAILURE
DETECTED IN SENSOR #3"«endl;

fcloseall();
return ;

}

double get_output_sensor_3(double t)
{

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_3(t));
}

//NN for SENSOR 3 with FAILURE

#include <iostream>
ttinclude <math.h>
#include <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define c2 0.8
#define c3 0.6
#define c4 0.9

using namespace std;

void failure_detection_sensor_3(FILE *fweight_3)
{

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sultlO];
double pr2[10] ;
double s[8];
double sigm[10];
double v[8][10],w[10],v0[10],w0;
fweight_3=fopen("nn_weight_3","r");

// Initialization of output
output[0]=0;
output[1]=0;
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf (fweight_3, "%lf \n", &v[i]'[j]) ;

for (i=0;i<10;i++)
fscanf(fweight_3,"%lf\n",&w[i]);

for (i=0;i<10;i++)
fscanf(fweight_3,"%lf\n",&v0[i]);

fscanf(fweight_3,"%lf\n",&w0);

98

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_3(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i) ;

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

f o r (i = 0 ; i < 1 0 ; i + +)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0];

// Resetting the output
output[0]=0;
cout<<endl«t<<" " <<output [1] <<endl ;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_3(t-time_step)-

output[1])<0.015));
if (t<12.0)

cout«endl«endl«"time= "«t-time_step<<" FAILURE
DETECTED IN SENSOR #3"«endl;

fcloseall();
return ;

}

double get_output_sensor_3(double t)
{

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_3(t));
}

//NN for SENSOR 4 with FAILURE

#include <iostream>
#include <math.h>
ttinclude <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define c2 0.8
#define c3 0.6
ttdefine c4 0.9

using namespace std;

void failure_detection_sensor_4(FILE *fweight_4)
{

int i, j ;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s[8];
double sigm[10];
double v[8][10],w[10],vO[10],w0;
fweight_4=fopen("nn_weight_4","r");

// Initialization of output
output[0]=0;
output[1]=0;
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf(fweight_4,"%lf\n",&v[i] [j]) ;

for (i=0;i<10;i++)
fscanf(fweight_4,"%lf\n", &w[i]) ;

for (i=0;i<10;i++)
fscanf(fweight_4,"%lf\n",&v0[i]);

fscanf(fweight_4,"%lf\n",&w0);

do
{

// Getting input from neighboring sensors
l=get_nn_input_sensor_4(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m f i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i];

}

output[0]=output[0]+w0;
output[1]=output[0] ;

// Resetting the output
output[0]=0;
cout«endl«t<<" " <<output [1] «endl ;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_4(t-time_step)-

output[1])<0.015));
if (t<12.0)

cout<<endl«endl<<"time= "<<t-time_step«" FAILURE
DETECTED IN SENSOR #4"«endl;

fcloseall();
return ;

}

double get_output_sensor_4(double t)
{

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_4(t));
}

//NN FOR SENSOR 5 WITH FAILURE

#include <iostream>

#include <math.h>
ttinclude <stdlib.h>
#include "header.h"

/* The following function is used for tuning the weights (v's,w'w)
for the first and second layer used in the modified recurrent
neural network */

// Definition of tuning rates
#define tuning_rate_l 0.1 // First layer
#define tuning_rate_2 0.1 // Second layer

#define c2 0.8
#define c3 0.6
#define c4 0.9

using namespace std;

void failure_detection_sensor_5(FILE *fweight_5)
{

int i,j;
double t;
double *1;
double output[2];
double prl[10];
double sul[10];
double pr2[10] ;
double s[8];
double sigm[10];
double v[8][10],w[10],v0[10],w0;
fweight_5=fopen("nn_weight_5","r");

// Initialization of output
output[0]=0;
output[1]=0;
t=0;

for (i=0;i<8;i++)
for (j=0;j<10;j++)
fscanf(fweight_5,"%lf\n",&v[i][j]);

for (i=0;i<10;i++)
fscanf(fweight_5,"%lf\n",&w[i]);

for (i=0;i<10;i++)
fscanf(fweight_5,"%lf\n",&v0[i]);

fscanf(fweight_5,"%lf\n",&w0);

do
{
// Getting input from neighboring sensors
l=get_nn_input_sensor_5(t, output);
for(i=0;i<8;i++)
s[i]=*(l+i);

// Resetting variables
for (i=0;i<10;i++)

{
prl[i]=0;
pr2[i]=0;
sul[i]=0;

}
// Calculating the output of the neural network during the testing

phase
for (i=0;i<10;i++)

for (j=0;j<8;j++)
p r l [i] = p r l [i] + v [j] [i] * s [j] ;

f o r (i = 0 ; i < 1 0 ; i + +)
{

s u l [i] = p r l [i] + v O [i] ;
s i g m [i] = 1 . 0 / (1 . 0 + e x p (- s u l [i])) ;

}

for (i=0;i<10;i++)
{
pr2[i]=w[i]*sigm[i];
output[0]=output[0]+pr2[i J;

}

output[0]=output[0]+w0;
output[1]=output[0];

// Resetting the output
output[0]=0;
cout«endl«t<<" " «output [1] «endl ;
t=t+time_step;

}
while ((t<12.0)&&(abs(get_output_sensor_5(t-time_step)-
output[1])<0.015)) ;

if (t<12.0)
cout<<endl<<endl<<"time= "«t-time_step«" FAILURE

DETECTED IN SENSOR #5"«endl;
fcloseall();
return ;

}

double get_output_sensor_5(double t)
{

if ((t>4.9)&&(t<5.09))
return(2.0);

else return(sensor_5(t));
}

APPENDIX B

SIMULATION SOURCE CODE USING

MATLAB 7.1

103

//SIMULATION CODE USING MATLAB 7.1

//conf fac =1

%Real data for five temperature sensors
si = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47];
s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47 43] ;

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45];
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45 44];

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70.70 71 71 70 66 63 60
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46];
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46 42] ;

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45];
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45 42];

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72.69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47];
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47 39];

%Setting up the neural network learning session
p=[sl; s_l; s2; s_2; s3; s_3; s4; s_4]./10;

net=newff(minmax(p),[10,1],{'logsig','purelin1},'traingd');
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;

105

net.trainParam.min_grad = le-3 0;
net.trainParam.epochs = 100000;
net.trainParam.goal = 2e-4;

%training the network
%[net,tr]=train(net,p,si./10);

%calculating the model
%al=sim(net,p)*10;
%al

u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47] ' ;
t=l:73;

%KALMAN FILTERING TECHNIQUE
A=0;
B=l;
C=l;
n=73;

randn('seed1,0)

Q = 10 ; R = 1;

w = sqrt(Q)*randn(n,1);
v = 0*sqrt(R)*randn(n,1);

%Building sensor as a system

Plant = ss(0,[l 1],1,0,-1,'inputname',{'u' ' W },'outputname','y');

%Building Kalaman Filter model

[kalmf,L,P,M] = kalman (Plant, Q, R) ,-
kalmf = kalmf(1,:);
kalmf

a = A;
b = [B B0 0*B];
c = [C;C];
d = [0 0 0; 0 0 1] ;
P = ss(a,b,c,d,-1,'inputname',{'u1 'w' 'v'},'outputname',{'y' 'yv'});
sys = parallel(P,kalmf,1,1, [],[])
%Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)

%Delete yv from I/O list

SimModel = SimModel([1 3],[1 2 3])

SimModel.inputname

SimModel.outputname

[out,x] = lsim(SimModel,[w,v,u]);

106

y = out(:,1);
ye = out(:,2);
yv = y + v;

ye(l)=sl(l);
y(l)=sl(l);

for i=l:72
ye(i)=ye(i+l);
y(i)=y(i+l);
end
ye(73)=sl(73) ;
y(73)=sl(73);
%and compare the true and filtered responses graphically.
%subplot(211), plot(t,y,'--',t,ye,'-'),
%xlabel('No. of samples'), ylabel('Output')
%title('Kalman filter response')
%subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),
%xlabel('No. of samples'), ylabel('Error')
%ye=ye+5;
%subplot(211)
plot(si,'bl');
%hold on
%plot(al,'b');
hold on
plot(ye,'r');
%hold on
%plot(y,'g') ;
%subplot(212),
%plot(sl-al,'b');
%hold on
%plot(sl-ye','r');

//conf fac <1

si = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47];
s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68.65 61 59 55 49
49 50 47 43];

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45];
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45 44] ;

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60

% true response
% filtered response
% measured response

107

55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46];
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46 42] ;

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45] ;
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45 42];

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47] ;
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47 39] ;
c21=0.8;
c31=0.6;
c41=0.95;
p=[sl; s_l; c21*s2; c21*s_2; c31*s3; c31*s_3; c41*s4; c41*s_4]./10;

net=newff(minmax(p),[10,1],{'logsig','purelin'},'traingd1);

%net=init(net);
%net.trainParam.show = 50;

net.trainParam.lr =0.05;
net.trainParam.mc = 0.9;
net.trainParam.min_grad = le-3 0;
net.trainParam.epochs =100000;
net.trainParam.goal = 2e-2;
[net,tr]=train(net,p,si./10);
al=sim(net,p)*10;
al
u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47] ' ;
t=l:73;
A=0;
B=l;
C=l;
n=73;
randn('seed',0)

Q = 3 ; R = 1;
w = sgrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

108

Plant = ss(0,[l 1],1,0,-1,'inputname',{'u' 'w'},'outputname','y');
[kalm£,L, P,M] = kalman (Plant, Q, R) ,-
kalmf = kalmf(1,:);
kalmf
a = A;
b = [B B 0*B];
c = [C;C];
d = [0 0 0; 0 0 1] ;
P = ss(a,b,c,d,-1,'inputname',{'u' 'w' 'v'},'outputname',{'y' 'yv'});

sys = parallel(P,kalmf,1,1,[],[])

%Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)

%Delete yv from I/O list

SimModel = SimModel([1 3],[1 2 3])

SimModel.inputname

SimModel.outputname

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,l); % true response
ye = out(:,2); % filtered response

yv = y + v; % measured response

ye(l)=sl(l) ;

%and compare the true and filtered responses graphically.

%subplot(211), plot(t,y,'--',t,ye,'-'),
%xlabel('No. of samples'), ylabel('Output')
%title('Kalman filter response')
%subplot(212), plot(t,y-yv, '-.',t,y-ye, '-') ,
%xlabel('No. of samples'), ylabel('Error')
%{
subplot(211),plot(si,'bl');
hold on
plot(al, 'b') ,-
hold on
plot(ye,'r');
subplot(212),
%plot (si,'b');
plot(sl-al,'b');
hold on
plot(sl-ye','r');
%}

//WITH DRIFT
t=3:73;
sl = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47] ;

109

s_l = [41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47 43];

s2 = [44 41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45];
s_2 = [41 45 43 42 40 43 43 45 44 48 52 56 60 62 62 62 61 56 49 48 48
45 49 50 50 48 52 52 51 50 52 50 55 57 60 64 67 70 72 72 71 60 57 53 55
55 53 52 51 51 48 47 45 45 44 43 47 52 55 60 62 66 67 68 65 62 57 52 50
50 48 45 44];

s3 = [42 41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46];
s_3 = [41 43 43 41 40 42 42 40 40 45 52 57 55 60 62 64 64 64 59 56 53
50 47 46 46 45 47 48 48 47 43 46 48 52 60 62 68 70 70 71 71 70 66 63 60
55 53 49 49 48 45 45 41 42 39 40 47 54 59 63 65 68 67 67 66 65 54 53 50
50 48 46 42] ;

s4 = [42 40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45];
s_4 = [40 45 46 47 44 45 42 44 44 43 45 52 54 55 57 59 57 57 55 49 46
45 49 49 52 51 52 53 52 51 51 50 53 54 57 60 62 64 65 66 68 67 54 57 55
55 52 55 50 50 52 50 50 46 46 44 53 55 58 59 60 62 62 62 61 55 52 48 46
50 48 45 42] ;

s5 = [39 40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47] ;
s_5 = [40 41 40 38 39 39 38 38 39 46 53 57 60 61 62 62 60 53 51 46 45
43 41 40 39 38 36 36 40 48 39 49 57 62 64 66 68 70 71 72 69 62 59 54 51
50 48 48 46 46 43 43 40 39 42 41 48 53 60 62 65 65 66 67 64 60 54 52 50
48 47 47 39] ;

p=[sl; s_l; s2; s_2; s3; S_3; s4; s_4]./10;

net=newff(minmax(p),[10,1],{'logsig','purelin'},'traingd');

%net=init(net);
%net.trainParam.show =50;

net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.min_grad = le-3 0;
net.trainParam.epochs = 100000;
net.trainParam.goal = 2e-2;
[net,tr]=train(net,p,si./10);
al=sim(net,p)*10;
al
drift=0.2*(t-3); % linear drift

110

fsl=sl+drift; % output of faulty sensor #1

u = [43 41 40 40 38 38 38 40 42 51 55 61 59 61 62 61 60 56 52 50 48 46
45 44 47 43 42 53 52 52 53 54 57 60 63 67 71 72 72 72 72 64 60 55 54 53
51 50 47 49 45 45 42 40 40 40 41 48 57 61 62 65 66 67 68 65 61 59 55 49
49 50 47] ' ;

A=0;
B=l;
C=l;
n=73;
randn('seed1 , 0)

Q = 2 ; R = 1;
w=0*u;%w = sqrt(Q)*randn(n,1);
v = sqrt(R)*randn(n,1);

Plant = ss(0,[l 0],1,0,-1,'inputname',{'u' 'W},'outputname','y');
[kalmf, L,P,M] =• kalman(Plant,Q,R);
kalmf = kalmf(1,:);
kalmf
a = A;
b = [B 0 0*B];
c = [C;C];
d = [0 0 0; 0 0 1] ;
P = ss(a,b,c,d,-l,'inputname',{'u' 'w' ' V }, 'outputname',{'y' 'yv'});

sys = parallel(P,kalmf,1,1, [], [])

%Close loop around input #4 and output #2
SimModel = feedback(sys,1,4,2,1)

%Delete yv from I/O list

SimModel = SimModel([1 3],[1 2 3])

SimModel.inputname

SimModel.outputname

[out,x] = lsim(SimModel,[w,v,u]);

y = out(:,l); % true response
ye = out(:,2); % filtered response
yv = y + v; % measured response
ye(l)=sl(l);

%and compare the true and filtered responses graphically.
%subplot(211), plot(t,y, '--',t,ye, '-') ,
%xlabel('No. of samples'), ylabel('Output')
%title('Kalman filter response')
%subplot(212), plot(t,y-yv,'-.',t,y-ye,'-'),
%xlabel('No. of samples'), ylabel('Error')
for i=l:73

if abs(fsl(i)-sl(i))>2
disp('error in sensor at hour')

I l l

disp(i)
break

end
end
subplot(211),
plot(si,'b');
hold on
plot(fsi,•r');

BIBLIOGRAPHY

[I] Crossbow, http://www.xbow.com

[2] Xiao Di, B. K. Gosh, Xi Ning, and T. J. Tarn. "Sensor-based hybrid position/force
control of a robot manipulator in an uncalibrated environment," IEEE Transactions
on Control Systems Technology, vol. 8, no. 4, pp. 635-645, July 2000.

[3] S. E. Lysheyski, "Smart flight control surfaces with microelectromechanical
systems," Aerospace and Electronic Systems, IEEE Transactions on Control
Systems Technology, vol. 38, no. 2, pp. 543-552, April 2002.

[4] S. Katsura, Y. Matsumoto, and K. Ohnishi. "Analysis and experimental validation
of force bandwidth for force control," 2003 IEEE International Conference on
Control Systems Technology, December 2003, pp. 796-801.

[5] Pouliezos A. D. and G. S. Stavrakankis, Real Time Fault Monitoring of Industrial
Processes, Kulwer Academic Publishers, 1994.

[6] Zhirabok and O. V. Preobragenskaya, "Instrument fault detection in nonlinear
dynamic systems," in Proceedings on Systems, Man and Cybernetics, 1993.

[7] C. B Weinstock, W. L Heirnerdinger, H. Ihara, S. B. Johnson, H. D. Kirrmann, J. J.
Stiffler, and L. Yount, "The state of the practice in fault tolerant systems," 22nd

international Symposium on Fault-Tolerant Computing, July 1992.

[8] S. C. Lee, "Sensor Value Validation Based on Systematic Exploration of the sensor
Redundancy for Fault Diagnosis", IEEE Transactions on systems, Man and
Cybernetics, vol.24, no. 4, pp. 594-605, April 1994.

[9] M. L. Leushen, J. R. Cavallaro, and I. D. Walker, "Robotic fault detection using
analytical redundancy", in Proceedings IEEE Conference on Robotics and
Automation, 2002, pp. 456-463.

[10] K. Narendra and P. Gallman, "An iterative method for the identification of
nonlinear systems using a Hammerstein model", IEEE Transactions on Automatic
Control, vol. 11, no. 3, pp. 546-550, July 1966.

[II] R. Haber, "Parametric identification of nonlinear dynamic systems based on
nonlinear crosscorrelation functions", Control Theory and Applications, IEEE
Proceedings, vol. 135, no. 6, November 1988, pp. 405-420.

112

http://www.xbow.com

113

[12] A. Lo Shiavo and A. M. Luciano, "Powerful and flexible fuzzy algorithm for
nonlinear dynamic system identification", IEEE Transactions on Fuzzy Systems,
vol. 9, no. 6, pp. 828-835, December 2001.

[13] K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical
systems using neural networks", IEEE Transactions on Neural Networks, vol. 1, no.
1, pp. 4-27, March. 1990.

[14] S. Haykin, Neural Networks - A Comprehensive Foundation (second ed.), Prentice-
Hall, Upper Saddle River, NJ, 1998.

[15] F. L. Lewis, S. Jagannathan, and A. Yesilidrek, Neural Network Control of Robot
Manipulators and Nonlinear Systems, Taylor and Francis, Philadelphia, PA, 1999.

[16] G. Cybenko, "Approximation by superpositions of a sigmoidal function,"
Mathematics of Control, Signals, and Systems, vol. 2, no. 4, pp. 303- 314, 1989.

[17] K. Funahashi, "On the approximate realization of continuous mappings by neural
networks," Neural Networks, 2, 183-192.

[18] H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, Upper Saddle River,
New Jersey, 2002.

[19] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli, "Fault tolerance
techniques for wireless ad hoc sensor networks," in Proceedings IEEE Conference
on Sensors, 2002, pp. 1491-1496.

[20] Dennis S. Bernstein, "Sensor Performance Specifications", IEEE Control Systems
Magazine, pp 9-18, August 2001.

[21] A. Bernieri, M. D'Apuzzo, L. Sansone, and M. Savastano, "A neural network
approach for identification and fault diagnosis on dynamic systems," IEEE
Transactions on Instrumentation and Measurement, vol. 43, no. 6, pp. 867-873,
December 1994.

[22] A. Bernieri, G. Betta, A. Pietrosanto, and C. Sansone, "A neural network approach
to instrument fault detection and isolation", in Proceedings IEEE Conference on
Instrumentation and Measurement, 1994, pp. 139-144.

[23] R. S. Ahmed, "Identification of nonlinear dynamic systems using a rapid neural
network", the 27l Annual Conference of the IEEE, vol. 3, December 2001, pp.
1734-1739.

[24] S. Straub and D. Shroder, "Identification of nonlinear dynamic systems with
recurrent neural networks and Kalman filter methods", 1996 IEEE International
Symposium, 12-15, May 1996, pp. 341-344.

114

[25] Harvard University. "Code Blue: Wireless Sensor Networks for Medical Care."
http://www.eecs.harvard.edu/~mdw/proj/codeblue.

[26] M. Holler Ed. "Camalie Net: Wireless Sensor Network at Camalie Vineyards Mt.
Veeder, Napa Valley, California."
http://camalie.com/WirelessSensing/WirelessSensors.

[27] UC Berkeley. "Structural Health Monitoring of the Golden Gate Bridge".
http://www.cs.berkeley.edu/~binetude/ggb.

[28] S. C. Lee, "Sensor Value Validation Based On Systematic Exploration of the
Sensor Redundancy For Fault Diagnosis", IEEE Transactions on Systems, Man and
Cybernetics, vol.24, no. 4, pp. 594-605, April 1994.

[29] M. L. Leushen, J. R. Cavallaro, and I. D. Walker, "Robotic Fault Detection Using
Analytical Redundancy", in Proceedings IEEE Conference on Robotics and
Automation, 2002, pp. 456-463.

[30] Moteiv Corporation. "Tmote Sky Datasheet." VI.04. November 2006.
http://www.moteiv.com.

[31] Chipcon. "SmartRF CC2420 datasheet." V1.2. June 2004.
http://www.chipcon.com.

[32] Sensirion. SHTlx/SHT7x Datasheet. V2.0. March 2003 www.sensirion.com.

[33] UC Berkley, www.TinyOS.net.

[34] P. Levis."TinyOS Programming." June 2006. www.TinyOS.net.

[35] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and A. Woo. "The
Collection Tree Protocol (CTP)". TinyOS Extension Proposal 123. VI.8. August
2006.

[36] Y Chraibi. "Localization in Wireless Sensor Networks." KTH Signal Sensors and
Systems. Stockholm, Sweden. 2005.

[37] Gelb A., "Applied optimal estimation". MIT Press, 191 A.

[38] Kalman, R. E. "A New Approach to Linear Filtering and Prediction Problems,"
Transactions of the ASME - Journal of Basic Engineering Vol. 82: pp. 35-45
(1960).

[39] Kalman, R. E. and Bucy R. S., "New Results in Linear Filtering and Prediction
Theory", Transactions of the ASME - Journal of Basic Engineering Vol. 83: pp. 95-
107 (1961).

http://www.eecs.harvard.edu/~mdw/proj/codeblue
http://camalie.com/WirelessSensing/WirelessSensors
http://www.cs.berkeley.edu/~binetude/ggb
http://www.moteiv.com
http://www.chipcon.com
http://www.sensirion.com
http://www.TinyOS.net
http://www.TinyOS.net

115

[40] Julier, Simon J. and Jeffery K. Uhlmann. "A New Extension of the Kalman Filter to
nonlinear Systems." In The Proceedings of AeroSense: The 11th International
Symposium on Aerospace/Defense Sensing, Simulation and Controls, Multi Sensor
Fusion, Tracking and Resource Management II, SPIE, 1997.

[41] Harvey, "A.C. Forecasting, Structural Time Series Models and the Kalman Filter".
Cambridge University Press, Cambridge, 1989.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2008

	Wireless sensor network modeling using modified recurrent neural network: Application to fault detection
	Azzam Issam Moustapha
	Recommended Citation

	ProQuest Dissertations

