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ABSTRACT 

One of the major challenges in the field of bioinformatics is the elucidation of 

protein folding for the functional annotation of proteins. The factors that govern protein 

folding include the chemical, physical, and environmental conditions of the protein's 

surroundings, which can be measured and exploited for computational discovery 

purposes. These conditions enable the protein to transform from a sequence of amino 

acids to a globular three-dimensional structure. Information concerning the folded state of 

a protein has significant potential to explain biochemical pathways and their involvement 

in disorders and diseases. This information impacts the ways in which genetic diseases 

are characterized and cured and in which designer drugs are created. With the exponential 

growth of protein databases and the limitations of experimental protein structure 

determination, sophisticated computational methods have been developed and applied to 

search for, detect, and compare protein homology. Most computational tools developed 

for protein structure prediction are primarily based on sequence similarity searches. 

These approaches have improved the prediction accuracy of high sequence similarity 

proteins but have failed to perform well with proteins of low sequence similarity. Data 

mining offers unique algorithmic computational approaches that have been used widely 

in the development of automatic protein structure classification and prediction. 

In this dissertation, we present a novel approach for the integration of physico-

chemical properties and effective feature extraction techniques for the classification of 

iii 
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proteins. Our approaches overcome one of the major obstacles of data mining in protein 

databases, the encapsulation of different hydrophobicity residue properties into a much 

reduced feature space that possess high degrees of specificity and sensitivity in protein 

structure classification. We have developed three unique computational algorithms for 

coherent feature extraction on selected scale properties of the protein sequence. When 

plagued by the problem of the unequal cardinality of proteins, our proposed integration 

scheme effectively handles the varied sizes of proteins and scales well with increasing 

dimensionality of these sequences. We also detail a two-fold methodology for protein 

functional annotation. First, we exhibit our success in creating an algorithm that provides 

a means to integrate multiple physico-chemical properties in the form of a multi-layered 

abstract feature space, with each layer corresponding to a physico-chemical property. 

Second, we discuss a wavelet-based segmentation approach that efficiently detects 

regions of property conservation across all layers of the created feature space. 

Finally, we present a unique graph-theory based algorithmic framework for the 

identification of conserved hydrophobic residue interaction patterns using identified 

scales of hydrophobicity. We report that these discriminatory features are specific to a 

family of proteins, which consist of conserved hydrophobic residues that are then used 

for structural classification. We also present our rigorously tested validation schemes, 

which report significant degrees of accuracy to show that homologous proteins exhibit 

the conservation of physico-chemical properties along the protein backbone. We 

conclude our discussion by summarizing our results and contributions and by listing our 

goals for future research. 
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CHAPTER 1 

INTRODUCTION 

Biology has been transformed greatly in the last century, gradually growing into a 

data rich field inviting scientific interests from a variety of researchers from disciplines 

including, but not limited to computer and computational sciences, mathematics, 

statistics, and engineering. The challenges imposed by biological problems have provided 

a much needed impetus for advancements, both in theory and in application, and have led 

to the development of unique multi-disciplinary fields including bioinformatics and 

biomedical computing. This chapter provides a brief overview of bioinformatics, 

emphasizing its growth and impact, as well as the scientific need for its advancement. 

1.1 Biology and Bioinformatics 

Biological research has witnessed a paradigm shift from in vivo and in vitro to in 

silico experimentation [1]. This development has been attributed to the development of 

bioinformatics, which has broadened the field of biology into new and otherwise 

unknown directions. Like other natural sciences, biology is fostered by human curiosity 

about natural phenomena [2]. As such, it explores the very existence of life. However, 

biology is still an immature science in which we cannot make predictions based on 

general principles [3]. Modern biotechnology began in the 1970s with the cloning and 

isolation of genes. Techniques offered by molecular biology and the completion of 
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human chromosome sequencing have brought bioinformatics to the forefront of the 

biological sciences. The new techniques developed in the automation of protein and DNA 

sequencing have made bioinformatics irreplaceable to both general and molecular 

biology. 

Specifically, technological advances in computer science have made it possible to 

optimize the storage and use of data collected through years of experimental trials. This 

blend of technology and legacy techniques has bridged the gap between wet lab 

experiments and engineering computer simulations, hence opening a new area of 

research. Thus, bioinformatics emphasizes the management and analysis of biological 

information stored in large databases. In short, it is a science that consists of the 

amalgamation of biology, computer science, and mathematics. The ultimate goal of 

researchers in bioinformatics is to abstract knowledge and principles from large-scale 

data to represent and predict computational systems of higher complexity for cells and 

organisms. 

1.2 The Growth of Bioinformatics 

Technological advances in computer science have positively impacted 

bioinformatics, and with hardware and software becoming more economical, the scope of 

bioinformatics continues to grow. The Human Genome Project (HGP)1, a project 

designed to map and sequence the complete human chromosome, as well as other 

important organisms, started in the mid-1990s, and to date has sequenced 100,000 

nucleotide sequences (National Human Genome Research Institute2). A decade of 

research has resulted in a vast amount of data, with many sequence analysis problems for 

1 http.V/www.ornl.gov/sci/techresources/HumanGenome/home.shtml 
2 http://www.genome.gov/ 

http://http.V/www.ornl.gov/sci/techresources/HumanGenome/home.shtml
http://www.genome.gov/
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which conventional algorithms prove inadequate. This inadequacy is attributed to the 

inherent complexity of biological systems and the lack of knowledge of molecular 

organization. 

Apart from the above issue, scientists must take into account that biological 

sequences are inherently noisy, due to variability arising from random events amplified 

by evolution. Machine learning processes play a vital role in removing noise from the 

sequences. They are suited for characterizing large amounts of data and noisy patterns in 

the absence of general theories. The idea behind these approaches is to learn the theory 

automatically from the data through a process of model fitting or learning from examples. 

This process is also called training. 

1.3 The Impact of Bioinformatics 

Bioinformatics has provided the basis for the future of large-scale biology: 

relative data rich science with inexpensive resources. Research and development can be 

done with modest equipment and public resources [4]. The advances in high performance 

computing are synonymous with advances made in biotechnology. With the internet 

providing a means to distribute data and software, researchers are able to perform 

sophisticated analyses on remote high performance servers. 

The effects of data mining in bioinformatics can be enumerated as follows: 

1. Economical Impact: Data mining provides an affordable solution to 

traditional (wet lab) techniques and may potentially replace them. This 

replacement could be brought about by using existing data to identify and 

remove those data that have no potential use, thereby speeding up the process 

and reducing the cost. 
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2. Better Understanding: Data mining has played a vital role in pointing out 

trends that would generally go unnoticed [4]. For instance, computational 

techniques, have provided scientists a better understanding of disease 

pathways, and have provided a better comprehension when identifying 

potential medication through the use of data mining and modeling, and 

various other visualization and simulation tools. 

3. Bioinformatics Tools: Bioinformatics tools are designed to accurately 

identify and analyze gene and protein expressions with respect to healthy and 

diseased tissue at different stages of disease. This identification function 

means that bioinformatics technologies can be used to identify markers for 

cancer diagnosis, to monitor disease progression, and to identify therapeutic 

drug targets. 

1.4 Computational Challenges in Bioinformatics 

The rate at which data is being generated from high throughput biological projects 

continues to out distance the ability to interpret them, even when researchers use the 

fastest computers available today. This exponential growth of biological data has fuelled 

an overarching need for knowledge discovery efforts, which derive information from a 

growing body of invalidated data. For example, freely available protein databases provide 

new opportunities for the discovery and research. The ability to determine the structure of 

a protein without relying on sequence similarity is an important impetus for researchers 

in bioinformatics and has recently generated a great deal of scientific interest. 

For computational scientists, these newly found and constantly improving abilities 

to determine protein structure without sequence similarity provide various opportunities 
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to participate in data-driven biological knowledge discoveries in which they derive 

biological hypotheses from hidden patterns discovered in this large volume of data. 

The data and information discovery focus of our research is analyzing and 

interpreting patterns, trends, and anomalies from high dimensional protein databases. 

Figure 1.1 shows the yearly growth of the Protein Data Bank; the number of proteins in 

the bank reached 50,000 on April 22nd, 2008 [8]. Figure 1.2 shows the number of curated 

sequences of the SwissProt Database, which has reached 362,782 protein and nucleotide 

sequences [9]. 
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Figure 1.2 Number of curated sequences of the SwissProt database. 

1.5 Knowledge Discovery in Databases 

The new biological discovery opportunities can be divided into six specific data 

mining challenges in bioinformatics that are enumerated in the following section 1.5.1. 

First, data mining, by definition, involves the use of sophisticated data analysis tools for 

the discovery of previously unknown, valid patterns and relationships in large datasets in 

general [5]. These tools can include statistical models, mathematical algorithms, and 

machine learning methods (algorithms, such as neural networks or decision trees that 

improve performance automatically through experience). Consequently, data mining 

consists of more than collecting and managing data; it also includes analysis and 

prediction. Data mining, also known as Knowledge Discovery in Databases (KDD), has 

been defined as "[t]he nontrivial extraction of implicit, previously unknown, and 

potentially useful information from data" [17]. Data mining uses machine learning, 

statistical techniques, and visualization techniques to discover and present knowledge in 

an easily comprehensible form. Data mining algorithms include classification, clustering, 

and prediction [18]. 

Number of entries in UniProtKB/Swiss-Prot 

\ 

\ 

• I 

I 

\ 

. —, : T—*T~*^. 

I I ! . 
• 

/ 

1 S 

^_J^^ 
i 



7 

1.5.1 Steps in Knowledge 
Discovery in Databases 

Data mining is an iterative, data-driven, knowledge-discovery process that 

includes the following steps, each of which poses challenges for researchers in 

bioinformatics. In this section 1.5.1, we provide a brief overview of the knowledge 

discovery process in protein databases, which is illustrated in Figure 1.3. 

Initial 
Data Selection 

• ' 

Target 
Data 

Preprocessing 
Preprocessed 

Data Transformation 
Transformed 

Data Data Mining Model Interpretation 

Dimensionality Reduction 

Figure 1.3 Data mining as a step in KDD. 

1. Data Selection: The overwhelming size of the protein database calls for 

researchers to develop techniques that are applied both to reduce the volume 

of information and to maintain the integrity of the original dataset, in order to 

obtain a reduced representation of the dataset. 

2. Data Transformation: Many high-throughput protein data-capturing devices 

and methods are still in early developmental stages; therefore, data from the 

databases are plagued with noise. In this step, the data are altered or 

consolidated into forms appropriate for mining. 

3. Data Mining: Patterns and relationships are found in the data. Methods such 

as association rule mining, classification, and clustering form the core 

methods of this process. 
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4. Interpretation or Pattern Evaluation: Evaluation of the results obtained in 

the previous method is performed. These results are interpreted in order to 

extract interesting patterns that represent knowledge and are based on 

measures of interest. 

5. Knowledge Representation: The results are correlated with supporting 

evidence extracted from existing biological literature. Visualization and 

knowledge representation techniques are then each used to illustrate the 

extracted knowledge to the user. 

1.5.2 Feature Extraction 

When dealing with high dimensional data, the two main challenges are (1) the 

algorithm's ability (or inability) to scale large datasets and (2) the Curse of 

Dimensionality. First, high dimensionality leads to inefficient space and time 

complexities as the dataset's dimensionality increases. Second, the Curse of 

Dimensionality is caused by the exponential increase in resources associated with adding 

extra dimensions to the data. 

Dimensionality reduction is a technique in the data preprocessing step of KDD, 

which reduces the dataset's size by removing the attributes that are irrelevant to the 

particular task of data mining. Feature extraction and feature selection are two broad 

categorizations of techniques that fall under the umbrella of dimensionality reduction. 

The dimensionality reduction challenges inherent to the handled data are enumerated 

below. 

1. Multidimensional Mapping: A dimensionality reduction technique is required to 

map the high dimensional data to a low dimensional space. 
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2. Estimating Information Loss (Gain): A good dimensionality reduction 

technique can be identified by the amount of information it retains in the reduced 

dataset. 

3. "Small n Large P Problem": The imbalance of many genes relative to fewer 

samples creates a high likelihood of finding "false positives" due to chance - both 

in finding differentially expressed genes, and in building predictive models. 

4. Unbalanced Datasets: This challenge is relevant to classification problems that 

arise when the data is constricted by classes that do not have equal 

representations. Unbalanced representation causes misrepresentation of classes, 

and learning tends to be biased. 

5. Validation: We need robust methods to validate the models and assess their 

accuracy and likelihood. 

This work is aimed toward the creation of better dimensionality techniques that 

can be extracted from both the sequential and structural properties of proteins, keeping in 

mind the challenges of handling proteomic data. 

1.6 Proteins: Sequence, Structure, and Function 

A protein is defined by a chain of amino acids. On average, the length of a protein 

ranges from 200 to 5000 amino acids. The twenty known amino acids are each 

represented by a letter. Thus a protein sequence is viewed as a long combination of 20 

letters. The protein folding problem has been one of the greatest challenges to researchers 

in bioinformatics. The problem is that predicting the native three dimensional (3-D) 

structure of a protein from its sequence can be difficult due to the folding and 

misrepresentation of the protein. 
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According to the central dogma of protein folding, the protein sequence (the 

primary sequence) dictates how the protein folds in three dimensions. It is the protein's 

specific 3-D structures that enable it to function, by dictating the function of the protein 

and the way it interacts with other proteins. In this section 1.6, we provide an overview of 

the structure of a protein as shown in Figure 1.4. Typically the structure of a protein starts 

with its primary sequence. The resultant degrees of structural conformation are governed 

by the interaction with the environment and adjacent residues. 

Primary Sequence 

Secondary 
Structure 
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Primary Ammo 
Acid Sequence 

J7 
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Structure 
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Figure 1.4 Hierarchy of a protein structure. 

1.6.1 Primary Sequence 

The sequence of amino acids in each protein is determined by the gene that 

encodes it. The initial process involves the transcription of the gene into a messenger 

RNA (mRNA), which in turn is translated into a protein by a ribosome. The primary 

structure is often called the "covalent structure" of a protein, since the covalent bonding 

mainly defines the primary structure of a protein. However, the other levels of protein 

structure involve many non-covalent interactions. 
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1.6.2 Secondary Structure 

The secondary structure defines the local spatial arrangement of the main-chain 

amino acids and is the result of local hydrogen bonds being created along the peptide 

backbone. The three most common folding patterns found in the secondary structure are 

the alpha helices, beta sheets, and turns that have well determined and distinct shapes. 

1.6.3 Tertiary Structure 

The packing of secondary structures results in a third level 3-D tertiary structure. 

The assembly and interactions of helices and sheets form the tertiary structure. This 

structural level denotes the "global folding" of a single polypeptide chain. The tertiary 

structure is determined by a phenomenon called the hydrophobic effect [12]. The folding 

of the polypeptide chain results in the exposure of the polar residues on the outer surface, 

while the non-polar amino acids are hidden within the structure. In our work, we are 

particularly interested in the tertiary structure, especially since the function of a protein 

depends on it. 

1.6.4 Quaternary Structure 

As illustrated in Figure 1.4 (on page 21), the quaternary structure involves the 

stable association of multiple polypeptide chains resulting in an active multi-subunit 

structure. All proteins do not exhibit this type of structure. Typically, each polypeptide 

present within a multi-subunit protein folds independently into a stable tertiary structure, 

and the folded subunits then associate with each other to form the final structure. Not 

every possible combination of amino acids can form a stable protein sequence that folds 

and functions properly. Evolution selects only those sequences that can fold into a stable 

functional structure. 
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The terms "motifs" and "domains" are commonly used to describe protein 

structure and function. A motif is a simple combination of a few conservative secondary 

structure elements. Some, but not all motives are associated with a specific biological 

function. A domain is the fundamental unit of structure. A domain combines several 

secondary structure elements and motifs, not necessarily contiguous that are packed in 

compact globular structures. A domain can fold independently into a stable 3-D structure 

and has a specific function. A protein may consist of a single domain or of several 

different domains, or of several copies of the same domain. 

1.7 Conclusion 

The immediate goal of protein sequence or structure data analysis and 

visualization is to gain insight into novel protein functions, anonymous protein 

complexes, and uncharacterized biological processes. With the high-throughput protein 

data generation projects, only a small percentage of the data can reach the final protein 

interaction database due to either unavoidable errors or quality issues. Thus scientists 

need to assess the biases in each data generation method and develop sophisticated data 

mining algorithms to make use of all available protein data sources [1]. Any knowledge 

representation scheme should be expressive enough to capture current knowledge details 

and flexible enough to keep up with future technological advancements and shifting 

biological interests. We have adopted these principles in our research. 



CHAPTER 2 

LAYOUT OF RESEARCH 

Researchers have been working on the previously mentioned computational 

challenges for protein mining for decades. Addressing these challenges, we have just 

started to realize the factors involved in protein folding and structure determination, the 

steps of data mining, the process of data selection and transformation, the application of 

realistic evaluation criteria, and the representation of data. As the size of protein data 

grows at an exponential rate, the significance of using this extracted knowledge is 

exemplified for system biology and drug development. The presented body of research is 

aimed at alleviating these challenges. In this chapter, we present our novel research 

contribution that investigates various dimensionality integration schemes for the 

properties of proteins using the data mining framework and put forth our research layout. 

2.1 Classifications of Protein 

The rapid growth in the number of protein sequences and in 3-D structures has 

made it practical and advantageous to classify proteins into families and more elaborate 

hierarchical systems. Proteins are grouped together on the basis of structural similarities 

in the following classification schemes namely, FSSP (Families of Structurally Similar 

Proteins), CATH (Class (C), Architecture (A), Topology (T), and Homologous 

superfamily (H)), and SCOP (Structural Classification of Proteins) databases. SCOP is 

13 
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based on human expert intervention, the FSSP on automatic methods, and CATH on a 

mixture of both human intervention and automatic methods. These three databases are 

described in detail below. Other databases, which we do not mention, collect proteins on 

the basis of sequence similarities to one another, e.g. PROSITE, SBASE, PFAM, 

BLOCKS, PRINTS, and PRODOM. Several collections contain information about 

proteins and their structural similarities. 

2.1.1 The Protein Data Bank 

The Protein Data Bank3 (PDB) [13] is a database of crystallographic protein 

structures, a repository of the 3-D Cartesian co-ordinate information of atoms in the 

amino acid molecules of the protein chain, which are either experimentally determined 

using x-ray, electron or neutron diffraction, or nuclear magnetic resonance, or are 

computationally determined by homology or comparative modeling. The bank holdings 

are increasing at a rapid rate and currently include more than 34,000 determined protein 

structures. 

2.1.2 The SCOP Database 

The SCOP4 (Structural Classification of Proteins) [3] is a manually maintained 

database that provides a detailed and comprehensive description of the evolutionary and 

structural relationships of all known protein structures. The extent of the evolutionary 

relationships of proteins is described at the lower two levels of protein clustering, the 

family and the superfamily. In this case, the geometrical relationships are described at the 

fold level. The evolutionary classification incorporated by SCOP is produced by human 

experts, because to date, automatic classification techniques can only measure a few 

3 PDB http://www.rcsb.org/pdb/ 
4 SCOP http://scop.berkeley.edu/ 

http://www.rcsb.org/pdb/
http://scop.berkeley.edu/
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evolutionary changes, and cannot provide insight into the full extent of these changes. 

This problem makes such techniques less accurate and less efficient. 

The fundamental unit of SCOP is the protein domain. A domain is defined as an 

evolutionary unit observed in nature, either in isolation or in more than one context in 

multi-domain proteins. The protein domains are classified hierarchically into families, 

super families, folds, and classes. The major classes are all a, all P, a+P, a/p, and 

miscellaneous small proteins,' which often have little secondary structure. The July 2005 

SCOP release contained 25,973 PDB entries, in 70,859 domains. 

2.1.3 The FSSP Database 

FSSP5 [14] is known as fold classification based on the structure-structure 

alignment of proteins and families of structurally similar proteins. FSSP is based on a 

fully automated structure comparison algorithm, DALI6 [15] that calculates a structural 

similarity measure between pairs of protein chain structures taken from the PDB. This 

measure is represented in terms of z-score values. First, FSSP chooses a subset of 

representative protein structures from the PDB and employs the DALI algorithm for the 

z-scores for all pairs of selected representatives. Next, the z-scores between each 

representative and the corresponding PDB structures are calculated. For each query 

structure there is a subset of structural neighbors from the set of representatives and a list 

of sequence homologs from the PDB. The database entry for this protein structure 

contains structure-structure alignments with its neighbors along with the list of sequence 

homologs. Alignments are based purely on the 3-D co-ordinates of the proteins and are 

derived by the comparison algorithm DALI. A fold tree is generated by applying an 

5 FSSP http://www.sander.ebi.ac.uk/dali/fssp/6 DALI www.ebi.ac.uk/dali/ 
6 DALI www.ebi.ac.uk/dali/ 

http://www.sander.ebi.ac.uk/dali/fssp/6
http://www.ebi.ac.uk/dali/
http://www.ebi.ac.uk/dali/
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average-linkage hierarchical clustering algorithm to this all-against-all z-score matrix. 

FSSP is a fully automated structural comparison scheme. Hence, frequent updates of new 

proteins to the database by the DALI search engine are feasible. FSSP was recently 

extended by a new database, called DALI, which consists of all-against-all z-scores 

between chains and domains of a larger representative protein set. This set is built so that 

no two protein chains exhibit more than 90% sequence similarity. 

2.1.4 The CATH Classification 

CATH7 [2] is a hierarchical classification of protein domain structures, which 

groups proteins at four major levels, class (C), architecture (A), topology (T), and 

homologous superfamily (H). A consensus approach is used to assign domains to proteins 

using various algorithms. The hierarchal class level describes secondary structures found 

in the domain and is created automatically. There are four class types: mainly-a, mainly-

P, oc-p\ and proteins with few secondary structures. The topology level clusters together 

all similar structures with similar sequential connectivity between their secondary 

structure elements. The homologous superfamily, which is the fourth-level family in the 

hierarchy, contains structures that exhibit high structural and functional similarity. The 

similarities among these structures are calculated by a measure called SSAP at both the 

topology and homologous superfamily levels. The CATH database is connected to the 

dictionary of homologous superfamilies (DHS) database [37], which permits further 

analysis of structural and functional features of evolutionary related proteins. 

CATH http://www.cathdb.info/latest/index.html 

http://www.cathdb.info/latest/index.html
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2.2 Motivation and Contribution 

In Section 2.1, we see the different structural classification schemes available and 

the features on which they are based. In the following discussion, we enumerate our 

objectives and contributions. Protein structure and residue conservation can provide 

information about protein function and protein functional context not apparent from 

protein sequence analysis. Thus, by studying protein structures, we can understand the 

functional roles of previously uncharacterized proteins in different environmental 

conditions. 

It has long been recognized that the regular, organized structure of a protein 

embedded in a non-isotropic environment will be reflected in the sequence of chemical 

properties of the residues in the protein. The physico-chemical properties of the less 

conserved residues still encode the information necessary for folding. Hydrophobicity is 

to a high degree conserved in structurally equivalent positions among evolutionary 

related proteins, even when the individual amino acid residues are different [6]. Several 

qualitative, quantitative, and algorithmic techniques have been introduced to model and 

detect the periodic variation in chemical properties along the protein sequence that are 

characteristic of secondary structural features [7]. Hydrophobicity and hydrophilicity are 

incontrovertibly physico-chemical properties in characterizing protein structures. 

Hydrophobicity scales [8] are intended to be representative of natural phenomenon and to 

be the predictable result of differences in the inter-molecular forces between water and 

the amino acid and of those between the amino acid and some other medium. Because of 

these measurements, hydrophobicity allows a better understanding of how amino acids 

interact within proteins and provides a way to predict structural properties [9] and [10]. It 
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is also known that most hydrophobic sequences in a protein are found in the interior of 

the native structure, and the most hydrophilic sequences are found on the exterior [9]. 

The structure of a protein can be associated with its hydropathy, and its synthesis can 

consequently be employed as a viable descriptor for structural classification and 

prediction. However, to allow such exploitation of the predictive power of 

hydrophobicity, the most accurate evaluations and representations of the hydrophobicity 

and hydrophilicity of amino acids should be formulated [9]. 

In this research, we present novel methods for the encapsulation of different 

hydrophobicity scales into a coherent feature expression, which is then employed for 

classification. The feature vector is further refined in our experimentation to include other 

stereo-chemical properties so that we can study the effects and contributions of those 

properties to the structural state. We ultimately aim to classify proteins to their respective 

secondary structural classes using sequence based properties (physico-chemical 

properties). With the majority of the algorithms claiming appreciable degrees of 

accuracies of classification with high sequence similarity while failing to reproduce the 

same with proteins of low sequence similarity, we have an impetus to develop algorithms 

that encapsulate the following objectives. 

2.2.1 Objectives 

Multiple scales are available for the measurement of the hydropathic character of 

a protein. Each scale depicts a different aspect of the intermolecular forces involved and 

the properties of the proteins itself; there are 40 such scales [8]. Though there are 

conflicting rudiments among these scales, embedded associations exist ([7] provides an 

excellent discussion on 37 of the published scales and the subjective correlations between 
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them), and the correlations between the scales can be mined for classification. However, 

there is no known work that combines these properties in a coherent fashion for a 

synthesized feature set. 

Figure 2.1 provides a tree representation of the existing amino acid indices 

(scales), where each node in the tree corresponds to a scale. These nodes are categorized 

based on the properties they represent [11]. 

HyrfropJwhifflry 

0 PJA 
Plffsicochemical properties' ^ Composition 

Figure 2.1 Available amino acid indices [11]. 

Our objectives are enumerated below and described through section 2.2.1: 

1. To test the efficacy of the physico-chemical properties of proteins as effective 

structural descriptors, 

2. To extract features by merging of physico-chemical properties, 

3. To enhance the detection of structurally conserved regions among homologous 

proteins, and 

4. To annotate the functionality of proteins using the conserved regions of proteins. 
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To address the fold classification problem we look to answer the following key 

questions. Due to the numerous scales of hydrophobicity available, can a coherent 

measure of similar features between different hydrophobicity scales be discovered? Can 

these measures be exploited for efficient and accurate structural classification of these 

proteins? Can a mechanism be developed to discover the candidate pairs of such scales 

for coherence measurement? We aim to develop a computing schema which will both 

discover an equal-sized feature vector for proteins of unequal sizes involved in the study 

of fold classification and significantly reduce the dimensionality of the search space. We 

will evaluate the efficacy of the feature space by the use of different supervised 

classification algorithms. 

We approach the problem in a unique way for the following reasons. 

Hydrophobicity is a key element contributing to the folding state of the protein; we 

believe that its scales need to be better signified in constructing a stereo chemical 

property-based feature vector. Different scales of hydrophobicity represent unique protein 

behavior and should be constructively aggregated for superior feature representation. The 

presence of an unbalanced number of proteins in different fold classes and the unequal 

length of these proteins is not an exception, but a norm, and a consistent cardinality of 

feature vector for such proteins needs to be discovered. This discovery will enable 

uniformity in feature treatment by the classification schema. The technique should allow 

for the merging of other stereo-chemical properties to hydrophobicity for performance 

enhancement. 

Consequently, we will define a distinctive data mining profile generation schema 

for proteins to enhance the detection of structurally conserved regions among 



21 

homologous proteins. As mentioned previously, the expressions of the hydrophobic effect 

are palpable in many facades of protein sequence-stracture-function dependencies. These 

effects include the stabilization of the folded conformation of globular proteins in 

solutions, the subsistence of amphipathic structures in peptides or of membrane proteins 

at lipid boundaries, and protein-protein interactions associated with protein subunit 

assembly, protein-receptor binding, and other intermolecular bio-recognition processes 

[12]. 

Our objective is to identify conserved hydrophobic residues among structurally 

related proteins, using hydrophobicity scales for classification. By doing so, we reduce 

our feature space and show that the reported conserved hydrophobic residues are 

sufficient to differentiate between native and non-native proteins at both the class and 

fold levels of the structural classification of proteins (SCOP) hierarchy8. We focus on five 

well-known scales of hydrophobicity: the Kyte and Doolittle scale, the Hopp Woods 

scale, the Janin scale, the Rose et al. scale, and the Eisenberg et al. scale [6]. Employing 

the principles of graph theory and incorporating the metric of mutual information to 

identify compact structural units, we aim to extract frequently occurring patterns using a 

discriminative weighing function. 

For the functional annotation of proteins using the conserved regions of proteins, 

the contribution of different protein regions towards the bio-chemical function is 

determined by the interactions formed with substrates, cofactors, and other residues. 

Traditional sequence-based techniques of homology transfer are sensitive and unreliable, 

forcing researchers to venture into structure alignment and structure pattern matching 

http://scop.mrc-lmb.cam.ac.uk/scop/ 

http://scop.mrc-lmb.cam.ac.uk/scop/
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techniques. Though more effective, the dependence of traditional sequence-based 

techniques on 3-D coordinate information makes them computationally expensive on 

larger datasets. Our objective is to create a unique representation scheme known as 

"Protein Maps" for a given protein, so that we can capture structural makers across the 

different scales, which are functionally significant. Using spectral base analysis, we aim 

to report regions of functional significance in the protein, through the protein map. We 

further wish to extend our validations and to develop a framework that can be extended to 

the entire Protein Data Bank (PDB) [13]. 

2.3 Research Layout 

This dissertation is divided into three major research contributions. These 

contributions are detailed in Chapters 3, 4, and 5. With the numerous physico-chemical 

properties for a given protein, we provide, in Chapter 3, an in-depth look at different 

hydrophobicity scales and the vital role they play in protein folding. A methodology for 

coherent feature extraction based on protein sequence information from selected 

hydrophobicity scales is provided in the chapter. The detailed experimentation discussed 

in this work demonstrates results with enhanced specificity and sensitivity of protein 

structural classification using new feature sets, and the results are compared to previous 

results in this area. 

The insights obtained from Chapter 3 provide us the impetus to develop an 

algorithm that could integrate multiple physico-chemical properties at one time. Hence, 

in Chapter 4, we report a unique representation scheme known as the "protein maps," 

aimed at capturing structural markers across a myriad of physico-chemical properties, for 

a given protein. Conserved protein sequence residues help determine the bio-chemical 
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function, which is obtained by interactions formed with substrates, cofactors, and other 

residues [14]. Traditional sequence-based techniques of homology transfer are sensitive 

and unreliable, forcing researchers to venture into structure alignment and structure 

pattern matching techniques. Though more effective, their dependence on 3-D coordinate 

information makes them computationally expensive to apply to larger datasets. Thus, we 

hypothesize that correlated mutations of physico-chemical interactions between residues 

reveal residue conservation patterns that are unique to homologous proteins. Integration 

is traditionally inhibited by a two physico-chemical properties at one time limit. In our 

study, we use wavelet-based analysis which reports regions of functional significance in 

the protein. We have validated our study and reported its significance. 

Finally, in Chapter 5, we experiment with more accurate ways to identify protein 

cores. The interactions among residue clusters serve as potential nucleation sites in the 

folding process. Evidence postulates that residue interactions are governed by the 

hydrophobic propensities that the residues possess [15]. An array of hydrophobicity 

scales have been developed to determine the hydrophobic propensities of residues under 

different environmental conditions. Thus, in Chapter 5, we propose a graph theory-based 

data mining framework to extract and isolate protein structural features that sustain 

invariance in evolutionary related proteins. This isolation has been done through the 

integrated analysis of five well-known hydrophobicity scales over the 3-D structure of 

proteins. We conjecture that proteins of the same homology contain conserved 

hydrophobic residues and exhibit analogous residue interaction patterns in the folded 

state. The results shown in Chapter 5 demonstrate that discriminatory residue interaction 
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patterns shared among proteins of the same family can be employed for both the 

structural and the functional annotation of proteins. 

In our results for the methods proposed in Chapters 3, 4, and 5, we obtained an 

average accuracy of 90% in protein classification with a significantly small feature vector 

compared to previous results. 

2.4 Datasets Used 

Our dataset consists of proteins initially used in the studies conducted by [16], 

[17], and [18]. The original dataset consists of independent training and testing sets 

proteins. The training set, extracted from the PDB-select, consists of 408 proteins 

distributed across 25 fold classes. The testing set, also extracted from the PDB-select, 

consists of 174 randomly chosen proteins, resulting in a dataset of 582 proteins from 25 

fold classes and 5 structural classes of variable sizes. For training, we have adopted the 

PDB dataset to directly compare our results with previous work in the area. The proteins 

used in the dataset have been randomly selected from the SCOP 1.619 and ASTRAL 

1.6110 databases with a sequence similarity of less than 40%. To reduce the selection 

bias, we use 10-fold validation of the split between training, test, and averaged results. 

Figure 2.2 provides a graphical representation of the dataset with the classes, the sub­

classes, and the respective percentages of proteins used for training and testing. 

9 http://scop.mrc-lmb.cam.ac.uk/scop/ 
10 http://astral.berkeley.edu/ 

http://scop.mrc-lmb.cam.ac.uk/scop/
http://astral.berkeley.edu/
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Figure 2.2 Dataset used with classes. 

To test the feature vector on a dataset containing two classes (binary 

classification), we choose two well-known datasets. The first dataset CI obtained from 

[19] is unbalanced, consisting of distinctly related proteins from the all-a class- nuclear 

receptor ligand-binding domain proteins (NB, 16 proteins of typical length ranging 

between 210 to 260 residues each) against the prokaryotic serine proteases family (PSP, 

10 proteins each of length averaging between 190 to 250 residues long) from the all-p 

classes of proteins. The second dataset, C2, is balanced, consisting of proteins from the 

eukaryotic serine proteases family (ESP, 19 proteins of length between 200 to 260 

residues on average) and from the PSP family, belonging to the same class of all-p 

proteins. Both datasets (CI and C2) contain proteins filtered under 60% pair-wise 
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sequence similarity to remove highly homologous proteins, with a resolution of <=3 and 

an R factor of <= 1.0. The datasets can be obtained from the "culled PDB list11." 

To test the performance of the feature vector in a multi-class classification, we 

choose a dataset consisting of 106 proteins, from three structural classes: all-p, a/p, and 

a+p of the ASTRAL SCOP 1.71 database with less than 40% pair-wise identity. We 

consider two important fold classes of all-P proteins. The first fold class consists of 38 

proteins of the immunoglobulin-like beta sandwich class of proteins (IgFF). Each protein 

is 260 to 300 residues long. These proteins exhibit heterogeneity of tissue and species 

distribution/ functional implications. The domains of these proteins are more conserved 

than their sequences. The second fold class of the all-P family consists of 35 trypsin-like 

serine proteases proteins. The trypsin-like serine proteases fold (TSP) has smaller than 

average surface areas, smaller radii of gyration, and higher Ca atom densities 

(approximately 238 residues in length on an average). These findings imply that 

proteases are, as a group, more tightly packed than other proteins, as also evidenced in 

[14]. There are also notable differences in secondary structure content between the folds 

of these proteins. 

Next, we introduce the third random class of proteins for classification, taking 

into account the local bias caused by the binary class dataset. This third class consists of 

proteins chosen at random from an unrelated structural class of proteins. In order to 

reduce the effect of this class on classification results, we ensure that no structural 

uniformity exists among these proteins. This lack of uniformity results in a class of 33 

proteins, each an average of 160 residues long, belonging to both the a/p and a+p 

1 ' http://dunbrack.fccc.edu/Guoli/pisces_download.php 

http://dunbrack.fccc.edu/Guoli/pisces_download.php
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structural classes. All the proteins of the dataset satisfy the criteria of < 40% of identity. 

2.5 Conclusion 

The chapters in this dissertation are a compilation of three published contributions 

and one contribution which is currently under review: 

1. Sumeet Dua, Pradeep Chowriappa, Ramakrishnan Rajagopalan (2006) 

Computational Prediction of Protein Structure Using Self-Similarity Based 

Classification, International Symposium on Computational Biology and 

Bioinformatics 

2. Sumeet Dua, Pradeep Chowriappa, Ramakrishnan Rajagopalan (2007) Spectral 

Coherence Feature Extraction from Stereochemical Scales for Protein 

Classification, IEEE/ACM Transactions on Computational Biology and 

Bioinformatics, Under Review 

3. Pradeep Chowriappa, Sumeet Dua, Jinko Kanno, Hilary Thompson (2008) Protein 

Structure Classification Based on Conserved Hydrophobic Residues, IEEE/ACM 

Transactions on Computational Biology and Bioinformatics, In Press 

4. Sumeet Dua, Pradeep Chowriappa (2008) Protein Maps: Physico-chemical 

Properties Integration for Functional Annotation of Proteins, 7th Asia-Pacific 

Bioinformatics Conference, The Asia Pacific Bioinformatics Conference (APBC), 

Submitted. 

Chapters 3, 4, and 5 are based on the publications listed above (listed in order of 

appearance in this dissertation). Publications 3 and 4 refer to the same issue. Each chapter 

is divided into four sections, the introduction, which is not explicitly enumerated and 

related literature, results, and discussion, which are explicitly enumerated. 



CHAPTER 3 

DISCOVERY OF COHERENCE BETWEEN 
HYDROPHOBICITY SCALES 

It has long been recognized that the regular, organized structure of a protein 

embedded in a non-isotropic environment is reflected in the sequence of chemical 

properties in protein residues. Several qualitative, quantitative, and algorithmic 

techniques have been introduced to model and detect the periodic variation in chemical 

properties along the protein sequence that are characteristic of secondary structural 

features [7]. Hydrophobicity and hydrophilicity are incontrovertibly such physico-

chemical properties in characterizing protein structures. Hydrophobicity scales [8] are 

intended represent natural phenomenon, the predictable result of differences in the inter-

molecular forces between water and amino acid, and the predictable result of differences 

in the intermolecular forces between the amino acid and some other medium. 

Hydrophobicity both allows us to better understand how amino acids interact within 

proteins and provides us a way to predict structural properties [9] and [10]. Most 

hydrophobic sequences in a protein are found in the interior of the native structure, and 

the most hydrophilic sequences are found on the exterior [9]. The structure of a protein 

can be associated with the hydropathy, and its synthesis can consequently be employed as 

a viable descriptor for structural classification and prediction. However, to allow such 

exploitation of the predictive power of hydrophobicity, the most accurate evaluations and 

28 
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representations of the hydrophobicity and hydrophilicity of amino acids should be 

formulated [9]. 

In this research, we present a novel method for the encapsulation of different 

hydrophobicity scales into a coherent feature expression, which is then employed for 

classification. The feature vector is further refined in our experimentation to include other 

stereo-chemical properties which will help us to study the effects and contributions of 

those properties to the structural state. In the past, researchers have relied on physico-

chemical properties to extract relevant structural information given the sequence 

information [12], [13], [14], and [17]. These properties, namely amino acid composition, 

predicted secondary structure, hydrophobicity, normalized van der waals volume, 

polarity, and polarizability [20], were extracted using three global descriptors. However, 

the commonality that the majority of the related literature [16], [17], [18] share is the 

prioritization of the machine learning process of classification. Suitable signature profiles 

of various proteins belonging to different fold classes are usually constructed based on 

the selected properties. For example, Dubchak et al. [20] have calculated descriptor 

parameters such as composition, transition, and distribution, laying the foundational work 

for [12], [13], and [14] to try new classifiers on the dataset. 

We believe that these previous works suffer from three key limitations: 

1. Lacking discussion as to why these few (six) specific physico-chemical 

properties were chosen, 

2. Lacking implicit mechanism to infer similarities between scales, or to employ 

those to diminish redundancy in feature representation and increase precision 

in classification, and 
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3. Lacking quality measurement for descriptor accuracies and reproducibility. 

In this chapter, we address the fold classification problem and attempt to answer 

the following key questions: 

1. Can a coherent measure of similar features between different hydrophobicity 

scales be discovered? 

2. Can these features be exploited for efficient and accurate structural 

classification of these proteins? 

And lastly, 

3. Can a mechanism be developed to discover the candidate pairs of such scales 

for coherence measurement? 

In pursuit of these aims, we develop a computing schema to discover an equal-

sized feature vector for proteins of unequal sizes involved in the study. In doing so, we 

significantly reduce the dimensionality of the search space. The efficacy of the feature 

space is evaluated by the use of different supervised classification algorithms, and 

detailed experimental results are presented and discussed. 

Multiple scales are available for the measurement of the hydropathic character of 

a protein. Each scale depicts different aspects of the intermolecular forces involved, along 

with the properties of the proteins. We have examined thirty-seven such scales [8]. 

Though there are conflicting rudiments between these scales, embedded associations do 

exist ([7] provides an excellent discussion on 37 of the published scales and the 

subjective correlations among them), and the correlations among the scales can be mined 

for classification. However, there is no known work that combines these properties in a 

coherent fashion for a synthesized feature set. 
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In our work, correlations among hydrophobicity scales are interpreted as 

magnitude squared coherences in frequency domain. Frequency domain measures tend to 

be more encompassing and provide a more complete description of all common 

oscillatory inputs. This procedure facilitates analysis of the distribution of coherence 

across multiple frequencies and can lead to a better understanding of the nature of the 

common inputs involved. Consequently, magnitude squared coherence yields the 

enhanced information that both is synergic to and complementary among the scales, and 

that produces a comprehensive measure of the property. 

Some other interesting elements of the problem should also be noted. The 

presence of an unequal number of proteins in different structural classes (unbalanced 

data) is standard, not the exception. To avoid over-fitting classifiers to certain classes, we 

compare the performance of different multi-class classification algorithms. We perform 

our analysis using the Random Forest classification algorithm and variants of the multi-

class Support Vector Machine (SVM) algorithm. Further, we provide an in-depth analysis 

of class level accuracies in addition to the overall specificity and sensitivity. Evaluation 

and analysis of the physico-chemical property impact on classifier efficacy are provided 

and make it possible to examine the effectiveness of classifiers in capturing the structural 

similarities of proteins. 

The rest of the chapter is organized as follows. Section 3.2 presents related 

literature in this area. Section 3.3 describes the training and testing dataset used in our 

study. Section 3.4 describes the proposed methodology, including feature vector 

estimation, classification, and scale choice. We present our results in Section 3.5 and 

conclude with a discussion and our conclusions in Sections 3.6 and 3.7. 
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3.1 Related Literature 

The exponential growth of proteomic data has fuelled an overarching need for 

machine-learning algorithms that use protein sequence property information for 

classification to known fold or structural classes. The ability to determine the structure of 

a protein without relying on sequence similarity is an important impetus for 

bioinformatics researchers and has recently generated a great deal of scientific interest. 

Researchers often rely on physico-chemical properties to extract relevant 

structural sequence information. Dubchak et al. [20] investigated a machine learning 

approach to process six physico-chemical properties for structural prediction and yielded 

significant results. These properties, amino acid composition, predicted secondary 

structure, hydrophobicity, normalized van der waals volume, polarity, and polarizability, 

were extracted using three global descriptors. The descriptor composition was used to 

describe the global composition of a given amino acid's properties in a protein. In the 

remaining properties, parameter transition was used to compute the frequencies with the 

property changes along the length of the protein, and the descriptor distribution was used 

to describe the distribution pattern along the sequence [20]. This work paved the way for 

researchers to examine better classification models for vast and constantly evolving data 

[16], [17], and [18]. However, the new models still relied on the same or similar datasets 

and features extracted from the older data [20]. The work pursued by Tan et al. [17], 

proposed an ensemble machine learning method aimed at improving the coverage of 

classifiers under the multi-class imbalanced datasets by integrating knowledge from 

different base classifiers and utilizing the feature space described by [20]. They applied 

frequency-based discretization, and concatenation of the six features to introduce a 
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Bayesian classification schema, and their contributions mainly addressed the imbalanced 

nature of data. 

The work of Venkatarajan et al. [6] is aimed at identifying qualitative descriptors, 

which use multidimensional scaling, a classification approach that reconstructs 

synthesized qualitative descriptors based on the geometrical configuration of a large point 

set into lower dimensions. Five synthesized descriptors based on 237 physico-chemical 

properties for all 20 amino acids were reported. 

In our research, an adroit utilization of physico-chemical properties can be 

attributed to the design of coherence-based feature profiles. The coherence-based profiles 

then overcome inherent problems of large dimensionality and unequal cardinality of 

search space in such domains. Results demonstrate that these descriptors effectively 

capture the structural behavior of proteins based on classification accuracies. Table 3.1 

shows the individual contribution of each property as per [16], compared to our approach 

for using coherence among hydrophobicity scales as a feature descriptor. 

Table 3.1 Prediction accuracy for different parameters [20]. 

Parameter 
Composition 

Secondary Structure 
Hydrophobicity 

Volume 
Polarity 

Polarizability 
Proposed Coherence Features of 

Hydrophobicity 

SVM Ind-test 
32.7% 
29.5% 
23.5% 
21.8% 
20.9% 
20.2% 

62.64% 
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Note that our proposed feature space for hydrophobicity alone can achieve up to 

two-and-a-half times better classification accuracy than the individual properties reported 

in previous work. As shown later in our experimental results, we have also boosted 

accuracy by appending other physico-chemical properties. 

We approach the problem in a unique way with the following four factors for our 

motivation: 

1. With hydrophobicity being a key contributing element to the folded state of 

the protein; we believe that its scales need to be better signified in 

constructing a physico-chemical property-based feature vector; 

2. Different scales of hydrophobicity represent the unique behavior of proteins 

and should be constructively aggregated for superior feature representation; 

3. The presence of an unbalanced number of proteins in different fold classes 

and the unequal length of these proteins is not an exception, but a norm, and a 

consistent cardinality of a feature vector for such proteins should be 

discovered to enable uniformity in feature treatment by the classification 

schema; and 

4. The technique should allow for the merging of other physico-chemical 

properties to hydrophobicity for performance enhancement. Consequently, we 

define a distinctive data mining profile generation schema for proteins. Our 

choice of scales is based on existing correlations between scales, and we use 

coherence between the selected scales to encapsulate structural discriminators 

that can be used for the classification of proteins into their respective 

structural classes. 
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3.2 Dataset 

Our dataset consists of publicly available proteins12 initially used in the study 

conducted by [16], [17], and [18]. The original dataset consists of independent sets of 

training and testing proteins. The training set, consisting of 408 proteins distributed 

across 25 fold classes, was extracted from PDB-select. These proteins were randomly 

selected from SCOP 1.6113 and ASTRAL 1.6114 databases with a sequence similarity of 

less than 40%. The testing set consisted of 174 randomly chosen proteins, resulting in a 

dataset of 582 proteins from 25 different fold classes and five structural classes of 

variable sizes. To reduce the selection bias, we used ten-fold validation of the split 

between training and test and averaged results. 

http://www.nersc.gov/~cding/protein/ 
http://scop.mrc-lmb.cam.ac.uk/scop/ 
http://astral.berkeley.edu/ 

http://www.nersc.gov/~cding/protein/
http://scop.mrc-lmb.cam.ac.uk/scop/
http://astral.berkeley.edu/
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3.3 Methodology 

Our method consists of three main components: feature extraction, supervised 

classification, and schema for the hydrophobicity scales as a candidate for coherence 

based analysis. The overall methodology is presented in Figure 3.1. 
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Protein Sequences 
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Structural Classes 

For Each Protein in the Train set 

•N 
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Figure 3.1 Coherence-based feature extraction and classification. 

3.3.1 Feature Extraction 

Efficient and accurate classifier design depends on choosing discriminatory 

features intuitively derived from data. Statistical properties such as mean, variance, 

covariance, and correlation are used as potential descriptors to discriminate between 

classes of data and have been effective with small datasets. However, intrinsic 

inconsistencies such as redundancies and outliers can compromise the effectiveness of 

these properties to capture discriminatory patterns, especially for data mining 

applications. 
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We use a method that imbibes the intrinsic statistical properties, such as mean and 

standard deviation, along with mathematical principles to provide the necessary levels of 

abstraction to deal with multi-feature datasets. In this pursuit, we incorporate spectral 

coherence as a feature vector design tool for multi-class classification. 

Let Cl,C2,-~,Cn be different classes. Each class Ct, where iel..n in itself has 

variable number m samples of proteins such that 

P«,Pi2,,Pim e Q , where m > 1 VC, . (3.1) 

As in Eq. 3.1, for every protein (P,), a sequence of amino acids can be expressed 

as a sequence of Ca atoms (backbone) of the individual amino acid. 

Let each hydrophobicity scale be Va where a e {1,2} and |^|=20 referring to 

hydrophobic propensities corresponding to the 20 known amino acids. Thus as in Eq. 3.2, 

letGfl be the corresponding representation of the protein sequence Pt given the 

hydrophobicity scale Va, such that 

Ga(j) = {Pi,Va :Pi(J)-+Va(PiU))}, where j = \,..,N-l. (3.2) 

Spectral coherence between scales is computed using the following steps 

1. Segmentation of hydrophobic representation of sequence 

Each Ga is subject to segmentation of length L, with overlap of length D. 

Let GaiO) where j=0,.., L-l, be the first segment, 

then Gai(j)=Ga(j) where j=0, .., L-l. 

Similarly, Ga2(j)=Ga(j+D) where j=0,..,L-l, and finally Gak(j)=Ga(j+(k-l)D) 

where j=0, .., L-l. 
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2. Let us suppose we have k segments such that 

Gai(j),.., GakO) are the resultant segments that cover the entire sequence; i.e. 

(k-1) D+ L= N, the length of the protein sequence. 

3. The computation of the power spectra PGa for individual Ga given its segment 

from step i is computed using the Fast Fourier Transformation, given the window 

size (co). 

4. Given the PGa's of protein^-, the cross spectra is computed as described by 

Welch in [21]. 

5. Magnitude squared coherence between G; and G2 is calculated as follows 

v2 

MSC(Pf) 
(pGfi2r 

(pGfix *PG2G2) 

By definition coherence is the vector property that quantifies the degree of 

interference. By interference, we imply that if at least two vector-like entities are 

combined, and if the relative phase between them is positive, then they can add 

constructively or subtract destructively. The Welch's averaged, modified periodogram 

method for computing coherence uses the Fast Fourier Transformation (FFT) to estimate 

the power spectra of a vector [21]. This computation involves segmentation with overlaps 

of the feature vector into windows of fixed length, taking the modified periodograms of 

these segments and finally finding the average of these modified periodograms. The 

coherence-based features offer better discriminatory properties, as shown in Figure 3.2, 

than selecting the top 20% of FFT coefficients that contain the most energy, and using 

them as features for classification [22]. 
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Figure 3.2 Feature vector performance. 

The hydrophobic representation of protein Pj belonging to C„, with scale Vi, 

results in G/ " = {axi, ax2,..., OXN), when subjected to the computation of coherence and 

is segmented into segments of length L with overlapping regions of length D. We then 

determine the power spectral estimate of the vector Gj " as the average of the 

periodograms, which is computed using FFT for each window of Gfn. We denote these 

coefficients as PGj. Similarly, we determine the spectral estimate for G/7" = {bxj, 

bx2,...,bxN} and denote these coefficients as PG2. Both PGj and PG2 are power spectral 

representations of the same protein PGj in two different scales Va where a e {1,2}. This 

representation can be extended in a straightforward manner to the estimation of the cross 

spectrum. Modified cross periodograms are computed for each pair of segments, and the 

average of these modified cross periodograms constitutes P72 (Cr). The mean squared 

coherence MSC(PiCn) is the estimate of the two vectors GiCn and G2
C" of protein Pf 
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belonging to class C„ using Welch's averaged, modified periodogram method, which is 

given by the relation in Step 5 above. 

For training purposes, we represent each protein in the training set as its computed 

MSC of the scales as Feature Vector FV, represented as in Eq. 3.3 

FV(Pt) = MSC(Pi) VPt, where / e {1,..,m} and Pt e C„. (3.3) 

The resultant is a single vector of attributes for each protein Pi belonging to class 

C„. In our experiments, coherences computed from the hydrophobicity scales of Hopp 

Woods and Janin give us better results than other combinations. A window size of seven 

is chosen because of its superior performance in our method. The coherence between 

these two vectors will result in a vector of consistent length 32, which is used as the 

feature descriptor for each protein. These vectors are then subjected to multi-class 

classification in the subsequent steps. 

3.3.2 Classification 

To classify the feature vectors, we employ Random Forest Classification and 

multi-class Support Vector Machines. 

3.3.2.1 Random Forest 

We use Random Forest [23] to determine the similarity of proteins within a 

family. Random Forest Classification uses a collection of independent decision trees, 

instead of one tree. Each tree is grown using a subset of the possible attributes. In order to 

accurately classify the protein, we use each tree as "votes" for one class. We then assign 

the most popular class to the tree. Interested readers are referred to [23] and [24] for more 

details on Random Forest Classification. 
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3.3.2.2 Support Vector Machines 
fSVM) 

We also use SVM with different kernel functions for classification. SVMs view 

classification as a quadratic optimization problem. This method is chosen because of its 

superior generalization in high dimensional data and fast convergence in training [25]. In 

general, SVMs plot the feature vector for each sample in the training set resulting in a 

high-dimensional feature space. Each vector is labeled with its class identifier referred to 

as training IDs. A hyperplane drawn between the training IDs maximizes the distance 

between the different classes. The following kernel functions are explored in our study: 

linear, polynomial, and radial basis. The shape of the hyperplane is generated by the 

kernel function, though many experiments select the polynomial kernel as optimal. 

We have applied "one-against-one" classification [25] for each of the n classes. In 

this case, n(n-Y)/2 classifiers are generated to train the data, where each training 

vector is compared with two different classes, and the error (between the separating 

hyperplane margins) is minimized. The classification of the testing data is accomplished 

by a voting strategy [26] where the winner of each binary comparison registers on a 

counter. The winners are the classes with the highest counter value after all classes have 

been compared and the results reported as in Section 3.4. 

3.4 Results 

The following section 3.4 of this chapter enumerates the results of our 

experiments. We have divided our results into categories: choice of scales and multi-class 

classification. Assignment into these two categories is based on the two contributions 

made. First, we briefly describe the method which involves how two scales of physico-
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chemical properties are chosen from existing scales. Second, we describe a set of 

experiments that are carried out using the coherence between the two chosen scales. 

3.4.1 Choice of Scales 

More than 37 scales have been used to estimate the hydrophobicity of amino 

acids. These scales have proven useful in providing insight into the measurement of the 

hydropathic character of a protein. Each of the 37 scales depicts a different aspect of the 

intermolecular forces within the protein and the properties of the protein [7]. In our 

technique, spectral coherence is calculated for a pair of hydrophobic scales, and the 

choice of scales to be included is contingent upon the relative affinity of these scales to 

the proteins to the training classes. These vectors are clustered using a hierarchical 

clustering approach, and we hypothesize that the scales that exhibit low affinity in 

discovered clusters should be chosen for spectral-coherence analysis. Also, any 

methodology that is applied to such scales should account for inequality in protein sizes. 

Proteins are represented in a 3-D domain, such as the one shown in Figure 3.3, where one 

dimension (x-axis in Figure 3.3) refers to the protein index; a second represents relative 

amino acid composition (y-axis in Figure 3.3); and the third (z-axis in Figure 3.3) 

represents the hydrophobicity scale under consideration. Relative amino acid composition 

of protein (P) is computed based on the frequency (F) of an individual amino acid (aa) in 

P, as inEq. 3.4 

aat (P) = F(aat) / length(P), where i = 1,.. ,20 . (3.4) 
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Figure 3.3 Hydrophobicity data of (training) proteins and methodology. 

The resultant descriptor of protein P, with respect to an individual amino acid, is 

defined as a 20 dimensional tuple that contains the frequency of occurrence of each 

individual amino acid in the protein sequence. Thus Pn is represented as in Eq. 3.5 

Pn = {aa(Y),aa(2),..,aa(20)}. (3.5) 

Thus, the dataset is represented by the corresponding profiles of proteins. For 

comparison, we normalize each hydrophobicity scale (S) by its mean (^) and standard 

deviation (cr) by the relation shown in Eq. 3.6 
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s\i) = (S(i)-/i)/(y. (3.6) 

We generate the weighted-relative amino acid composition of each protein. The 

relative amino acid composition for each amino acid Pn(aa(i)) of the protein is multiplied 

by the weight assigned to it by the corresponding hydrophobicity scale S(aa(i)), defined 

by 

WPn=S\aa(i))xPn(aa(i)). (3.7) 

In our dataset, the resultant is a multi-dimensional problem that involves 408 

proteins of the training set, each represented by the corresponding profiles of 20 amino 

acid compositions for a given scale (Figure 3.3). With 37 known hydrophobicity scales, 

the clustering of scales takes place in a 20 * 408 dimensional space to choose those scales 

that exhibit the least degree of correlation. The datasets of the hydrophobicity scales are 

available on our project website. 

We then extract the Eigenvector, which processes the highest Eigen value with 

respect to weighted amino acid composition. This Eigenvector acts as a weighted 

representation of amino acids for each scale. We then perform hierarchical clustering of 

Eigenvectors that represent respective scales to identify those scales that exhibit the least 

correlation in 20*408 dimensional spaces. Complete linkage distance is used to identify 

correlations between scales when clustering. As shown in Figure 3.4, scales Hoop 

Woods, Rose, and Eisenburg cluster together, as do scales Kyte and Doolittle, and Janin. 

These clusters exhibit maximum inter-cluster correlation and minimum intra-cluster 

correlation defined by the Euclidean distance in the complete linkage distance 

calculation. To narrow the choice in deciding which two scales generate the best 

accuracy, all possible combinations of the scales between the two clusters are carried out 
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using the suggested framework. The clustering results and the classification accuracies of 

the hydrophobicity pairs are reported in Figure 3.4. 

Legend 
to 
1 
2 
3 
4 
5 

Scales 
Hoop Woods 
Janin 
Kyte & Doolittle 
Rose 
Eisenberg 

% 4 5 ' 2 'S 
HyttropiMMctty scales-

Combination of 
Scales 

(1) and (2) 
(D and (3) 
(1)and(4) 
(1) and (5) 
(2) and (3) 
(2) and (4) 
(2) and (5) 
(3) and (4) 
(3) and (5) 
(4) and (5) 

SVM 
(G-SVC) 

(%) 
58.62 
56.90 
50.00 
52.87 
52.87 
52.30 
54.60 
50.57 
50.00 
52.3 

Random 
Forest 

(%) 
62.64 
54.02 
55.74 
51.15 
55.17 
54.59 
51.15 
58.05 
54.02 
56.87 

SMO {%) 

55.17 
52.87 
48.27 
46.55 
48.85 
48.27 
45.40 
52.30 
49.43 
48.85 

Figure 3.4 Hierarchical clustering of scales of hydrophobicity. 

3.4.2 Multi-Class Classification 

One of the objectives of our study is to demonstrate that the hydrophobic behavior 

of proteins of the same family is similar and that the coherent pattern of hydrophobicity is 

useful to classify proteins into five structural classes. The five classes we use are the all 

a, the all p, the a/p, the a+P, and the small proteins. Additionally, we measure the 

performance of two algorithms: multi-class SVM (C-SVC) and Random Forest. Weka 

2 

».4 
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tools are used to implement [12] Random Forest analysis. For SVM analyses, the 

LIBSVM package16 developed by Chang et al. [15], including parameterized kernel 

functions formulations and multi-class classification, as shown in Table 3.2 is used. 

Table 3.2 Different parameter settings used in C-SVC classification using SVM. 

Deg of Kernel 
Gamma 

Penalty cost (complexity) 

Experiment 1 • Feature 
Vector Size: 64 

1 
0.35 

2 

Experiment 2 • Feature 
Vector Size: 32 

5 
0.3 
4 

The meta-classifier is used for multi-class datasets with two class classifiers. This 

classifier is also capable of applying error correcting output codes for increased accuracy. 

We later complete a one-against-all transformation to convert the single multi-class 

problem into several two class problems. We set the number of trees to be generated to 

20 for both the 64 and 32 feature vector length based experiments. Due to time 

constraints, the results for SVM, shown in Table 3.3, are reported only for radial basis 

function with different experimental conditions. 

http://www.cs.waikato.ac.nz/ml/weka/ 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 3.3 Comparison of results obtained using two feature vector lengths compared with 
previous results [17]. 

Classes 

All Alpha 
All Beta 
Alpha/ Beta 
Alpha+Beta 
Small Proteins 
Overall Accuracy 

Tan et al 

PI «%) 
76.40 
86.50 
53.10 
55.00 
100.00 
742 

Feature Vector size: 64 
Random 
Forest [%) 

54.50 
67.90 
73.80 
0.00 
76.90 
62.64 

SVM 
(C-SVC)(%) 

42.40 
71.72 
70.49 
0.00 

53.85 
58.62 

Feature Vector size: 32 
Random 
Forest (%) 

48.5 
64.2 
70.5 
0.00 
69.2 

58.62 

SVM 
(C-SVC) (%) 

54.55 
64.15 
62.30 
7.14 
76.92 
58.05 

To determine the accuracy of our methods, we perform our experiments in two 

phases. We begin our first experiment by determining the contribution of hydrophobicity 

with coherence computed at a frequency of 128, resulting in a feature vector of 64 points. 

In our second experiment, we reduce our frequency to 64, and the resultant feature vector 

consists of 32 features. We perform classification using the two classifiers and then 

perform a one-to-one comparison on the individual structural class accuracies of [17], the 

last known work in the area. Tan et al. [17] have reported better accuracy than [20] and 

[16]. These results are presented in Table 3.3 above. We achieve classification accuracy 

comparable to [21] when using hydrophobicity alone in our feature extraction approach. 

In [21], six different properties have been used. 

3.4.3 Appending Other Properties 
to the Feature Vector 

In order to improve classification accuracy, other physico-chemical property 

parameters are appended to the 32-size feature vector of our experiment, as shown in 

Table 3.4. These parameters (adopted from [16] for comparison purposes) are predicted 

secondary structure and percentage amino acid composition. These extended parameters 
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result in a total feature vector size of 72. We choose hydrophobicity with a vector of size 

32 so that our parameters relatively match in size, allowing us to maintain a balanced 

cardinality of different properties within the feature vector. This feature vector is then 

subject to classification using multi-class SVM (C-SVC) and multi-class Random Forest 

with the same experimental setting. These results (for Experiment-3) are presented in 

Table 3.5. 

Table 3.4 Property features added to boost the classification accuracy. 

Parameter 

Hydrophobicity 

Secondary Structure 

Amino Acid Composition 

Vector Size 

32 

20 

20 

Table 3.5 Comparison of results obtained from Experiment-3 with the results of [17]. 

Classes 

All Alpha 
All Beta 
Alpha/ Beta 
Alpha+Beta 
Small Proteins 
Overall Accuracy 

Tan et al 

76.40 
86.50 
53.10 
55.00 
100.00 
74.2% 

Experiment 3 
Feature Vector size 72 
Random 
Forest (%) 

78.80 
90.6 
93.4 
14.30 
92.30 

83.33% 

SVM 
(C-SVC) (%) 

75.76 
83.02 
88.52 
28.51 
84.62 

79.31% 

The Random Forest Classifier outperforms SVM (C-SVC). To demonstrate the 

actual number of true alarms, we have provided the confusion matrices in Figure 3.5. 

Various conclusions and discussions are addressed in the following sections 3.4.4 and 

3.5. 
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Confusion Matrix 
(Random Forest) 

a 

b 
c 
d 

g 

a 

26 
1 
1 
0 

0 

b 

2 
48 
3 
6 

1 

c 

5 

4 
57 
6 

0 

d 

0 
0 
0 
2 

0 

g 
0 

0 
0 
0 

12 

Confusion Matrix 
(C-SVC) 

a 
b 
c 
d 

g 

a 
25 
0 
1 
1 

0 

b 
4 
44 
6 
3 

2 

c 
3 

7 
54 
6 
0 

d 
1 

2 
0 
4 

0 

g 
0 
0 
0 
0 

11 

(a) (b) 

Figure 3.5 Confusion matrices. 

3.4.4 Testing the Efficiency of 
Feature Vector 

We also test the efficacy of our feature vector by subjecting it to various 

classification algorithms. As shown in Figure 3.6, the precision obtained by the Random 

Forest and SMO classifiers overshadow the performance of the Linear SVM and the 

RBF-SVM algorithm, in the class of small proteins. However, in the all-a, all-(3, and a/p 

protein classes, all the algorithms perform relatively equally. In the a+P protein class, the 

Random Forest and SMO classifiers obtain negligible degrees of accuracy, and the Linear 

SVM and RBF SVM classifiers perform at 100% accuracy. This observation indicates the 

a+P class reduces the overall accuracy obtained from the Random Forest and SMO 

classifiers and behaves like an outlier class. 
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Figure 3.6 Overall classification accuracy achieved by different classifiers. 

3.5 Discussion 

While a great deal of evidence suggests that hydrophobicity is a key physico-

chemical property that is related to the structural behavior of proteins, the quantification 

of this fact has been attempted by few researchers. According to Ding et al. [16], 

hydrophobicity contributes an average of 23 percent toward the effective classification of 

proteins [16]. We have shown that contribution can be far larger (62%) with the 

applicability of an improved feature vector and an adaptation of more than one scale. The 

study reinforces our theory that hydrophobicity is a key contributor to protein 

classification into known families. We further elucidate the class-level accuracies of our 

classification to better understand the results and interpretations. For the clarity of space, 
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m 
JS 
U 
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we have only included representative results from our extensive experimentation, and 

readers are referred to our project website for more details . 

To provide a quick visual indication of whether a detailed analysis of mining 

results will uncover any nuggets, we produce the lift charts [27]. In the process of 

uncovering the effect of the hydrophobicity descriptors in the feature vector, we analyze 

lift charts. Figure 3.7 demonstrates the results obtained using the C-SVC classifier and 

using hydrophobicity alone for class all p. 

o 20 40 S c o r e 6 0 80 1 0° 

Figure 3.7 Lift Curves for class all p. 

The curves display true positive rates for the parameters in the feature vector, 

individually plotted for each of the five classes. The plots of classes all a, all P, and a/p 

demonstrate that their feature vectors are good discriminators in the identification of 

proteins that belong to their respective classes. Correspondingly, plots of class a+p and 

small proteins have curves that are separated, implying that the feature vector is not 

17 www.latech.edu/~pch008/spectral_prot07 

http://www.latech.edu/~pch008/spectral_prot07
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comparatively effective in protein classification for those classes. We also obtain the lift 

curves (results omitted here for clarity) for the feature vectors used in [16] and [17]. 

Those curves using our coherent scales are more compact and less scattered than those 

using other scales. 

Our second objective is to evaluate the performance of classifiers that best suit the 

nature of our study. We choose Neural Networks and SVMs (and its modifications) from 

existing research such as [16]. However, these techniques are not effective in handling 

multi-class classification, especially in an imbalanced dataset. For analysis, we plot the 

ROC curves for individual classes (from results obtained in experiment-3). Only the 

curves for Random Forest Classifiers are shown here. The slopes of the curves arch 

toward the top left corner of the plot for the all-a, all-P, a/p, and small proteins classes. 

Several of these plots are presented in Figure 3.8. The curve location indicates that the 

Random Forest Classifier is effective in classifying proteins into their respective classes 

with a higher degree of accuracy. 
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Figure 3.8 ROC plots. 

3.5.1 Detailed Lift Curve Analysis 

The lift charts provide a quick visual indication of whether a detailed analysis of 

mining results will uncover any new information [27]. In the process of uncovering the 

effect the hydrophobicity descriptors have on the feature vector, we perform the analysis 

of lift charts. In this chapter, for the purpose of comparison, we generate lift curves using 

the features of coherence along with the standard features of Composition, Secondary 

Structure, Hydrophobicity, Volume, Polarity and Polarizability as reported by Dubchak 

et. al. in [16]. Since the original results are based on SVM, we use a common multi-class 

SVM (C-SVC) of the LIBSVM package [26] to generate results from the extracted 

features using coherence and the provided features of Dubchak et al. [20] on the test 

datasets. 
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The individual curve in the plots represents specific parameters in the feature 

vector. We create individual plots for each of the five unbalanced structural classes in the 

dataset. The relationship among the curves is important for analysis. If the lift chart 

indicates little or no difference among classes, then we can assume that the parameters 

are good discriminators. However, if the curves are distributed or scattered, then the 

parameters in the feature vector are poor discriminators. 

As reported earlier in the chapter, the feature vector of coherence of 

hydrophobicity scales depicts varied degrees of performance towards the different 

structural classes of proteins. For comparison, we perform the lift plot analysis using the 

feature vectors of hydrophobicity of [20]. Figure 3.9 contains the plots obtained with 

respect to each structural class based on the hydrophobicity features extracted from the 

feature vector of [20], forming a feature vector of size 20. 
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Figure 3.9 Lift Curve analysis of the hydrophobic property attributes. 

The curves in Figure 3.9 are more distributed for four of the five structural classes 

than the curves of Figure 3.10. However, for Figure 3.10, the plots of structural classes 

a+P and small proteins exhibit a higher degree of scatter, similar to those obtained in 

Figure 3.9. This scatter reinforces our theory that the weakness of distinctiveness between 

points is dependant on class representation. However, the lift curves are more scattered 

than in Figure 3.10, indicating that the feature vector using coherence of hydrophobicity 

scales is superior in distinguishing proteins of the test set. We can therefore conclude that 
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the proposed hydrophobicity vector outperforms the vector described in Ding and 

Dubchak [16]. 
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Figure 3.10 Lift Curve analysis of feature vector. 
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3.5.2 ROC Analysis 

In addition to the above, we also want to compare the class level performance of 

the feature vector using Random Forest with a different classifier - namely the C-SVC of 

the LIBSVM, as a justification for the choice of classifier used in our study, neural 

networks and SVM and its modifications are used [12] and [17]. However, these 

techniques do not effectively handle multi-class classification, especially in an 

unbalanced dataset. Modifications to SVM address these issues, and new and more 

efficient algorithms have been developed (see [17]). Each newly proposed algorithm has 

outperformed the other in accuracy. Along the same lines, we have used the multi-class 

Random Forest algorithm and a multi-class SVM (C-SVC) algorithm from the LIBSVM 

package in our study. Using the results obtained from Experiment-3, we plot the ROC 

curves for individual classes as shown in Figure 3.11. 
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The multi-class SVM (C-SVC) algorithm performs effectively only in the all a 

and all p structural classes. Its performance in the remaining classes is below par. This 

indicates that the SVM (C-SVC) classifier may not be built to handle the nature of the 

dataset, and Random Forest may be more effective in handling datasets of this nature. 

3.5.3 Order of Combination of 
Parameters 

In order to boost the classification accuracy, we append the parameters to the 

existing feature vector of size 32. We observe an improvement in accuracy. However, 

there seems to be a fluctuating effect on the accuracy based on the order in which 

parameters are appended to the feature vector. Three parameters contribute to making the 

feature vector in Experiment-3; Table 3.6 contains the different combinations of these 

parameters and the corresponding overall accuracies obtained with both classifiers. 

Figure 3.12 shows significant variations in the overall accuracies of the Random Forest 

Classifier, based on the order of the parameters, while the C-SVC classifier is unaffected. 

Despite this difference in performance, both classifiers perform best when coherence of 

hydrophobicity scale features are placed first and followed by secondary structure and 

amino acid composition. 
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Table 3.6 Effect of combination of parameters on overall accuracy. 

Order of Combination of parameters 

Hydrophobicity + Secondary Structure* Amino Acid Composition 

Hydrophobicity + Amino Acid Composition+ Secondary Structure 

Amino Acid Compositions Hydrophobicity + Secondary Structure 

Amino Acid Composition+ Secondary Structure+ Hydrophobicity 

Secondary Structure* Amino Acid Composition + Hydrophobicity 
Secondary Structure* Hydrophobicity + Amino Acid Composition 

Overall Accuracy 
Random 

forest (%} 
83.33 

81.03 

80.45 

81.60 

80.46 

81.03 

SVM 

(CSVC){%) 
79.31 

78.17 

78.16 

78.74 

79.31 

79.31 

1 
(S 

© 
s 

Secondary Structure* Hydrophobicity + 
Amino Acid Composition 

Secondary Structure* Amino Acid 
Composition + Hydrophobicity 

Amino Acid Composition*Secondary 
Structure* Hydrophobicity 

o Amino Acid Composition* Hydrophobicity 
13 + Secondary Structure 

E 
0 
o 

Hydrophobicity + Amino Acid 
Composition* Secondary Structure 

Hydrophobicity + Secondary Structure* 
Amino Acid Composition 

i 

75 76 77 78 79 80 81 82 83 84 

Overall Accuracy {%) 

• Random forest classifier B SVM(CSVC) 

Figure 3.12 Effect of combination of parameters on the overall accuracy. 
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3.6 Conclusion 

The quest to decipher the structure and function of a protein from its amino acid 

sequence has provided an interesting challenge. Due to the sheer quantity of existing 

protein data, this challenge naturally presents itself as a complex computational problem 

requiring the deployment of novel data mining techniques. Existing research in the area 

uses feature vectors generated from these property values to predict the secondary class 

by constructing a machine-learning classifier. It has long been recognized that the 

regular, organized structure of a protein embedded in a non-isotropic environment is 

reflected in the sequence and hydrophobic physico-chemical properties of the residues in 

the protein. The usefulness of hydrophobicity can provide a clearer understanding of how 

amino acids interact within proteins, as well as providing a basis upon which one can 

predict the structural properties of proteins from sequence information. 

In this work, we have discovered points of spectral similarity among the 

hydrophobicity scales which produce the resultant coherence vector used for 

classification. These features are subjected to a random tree classifier for multi-class 

classification. Similar classification is performed using support vector machines, and the 

performance of each method is compared to the performances of the other methods to 

evaluate the strength of the proposed feature vectors and algorithms in terms of true-

positives and false-negatives for individual structural classes. In another set of 

experiments, we append the feature vectors for other physico-chemical properties to the 

computed hydrophobicity features and study the change (boost) in specificity and 

sensitivity of classification on an incremental basis. We discover that the treatment of 

hydrophobicity in previous literature has suffered from an inadequate feature 
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representation of hydrophobicity scales. Discovering and representing novel feature 

vectors that exploit embedded similarities in these properties can significantly enhance 

the accuracy of structural prediction. 

Although the elucidation of the contribution of individual physico-chemical 

properties of protein sequences is far from complete, computing methods such as the one 

proposed can assist in a better understanding of the contributions of physico-chemical 

sequence properties to the intricate world of protein folding. 



CHAPTER 4 

PROTEIN MAPS: INTEGRATION OF 
PHYSICO-CHEMICAL PROPERTIES FOR 

FUNCTIONAL ANNOTATION OF 
PROTEINS 

In Chapter 3, we attempted to address the fold classification problem and 

provided insights to the integration of different hydrophobicity scales. Our aim for this 

chapter is to utilize the integration of physico-chemical properties for the identification of 

domains. We also propose a characterization scheme to enable the classification of 

functionally related proteins. 

We discussed experiments in which we discovered points of spectral similarity 

among hydrophobicity scales to produce coherence vectors used for the classification of 

evolutionary related proteins. In Chapter 4, we concentrate on experimentation with the 

identification of conserved regions unique to a family of proteins. It has long been 

recognized that the regular, organized structure of a protein embedded in a non-isotropic 

environment is reflected in the sequence and hydrophobic or physico-chemical properties 

of the residues in the protein. The usefulness of hydrophobicity can provide a clear 

understanding of how amino acids interact within proteins and can provide a basis upon 

which one can predict the structural properties of proteins from sequence information. 

The idea of protein structural domains goes back at least to Wetlaufer [28], who 

defined a domain as a small number of continuous regions of a protein chain that can be 

62 
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enclosed in a single compact volume. Additionally, [28] made the first clear distinction 

between continuous domains, those formed from a single chain segment, and 

discontinuous domains, those formed from multiple chain segments. The work of Lijjas 

and Rossman [29], with the creation of contact maps (adjacency matrices), enabled 

domain assignment. They observed a large number of inter-residue contacts within a 

domain and relatively few between domains. This observation forms the basis of many 

modern automated structure-based domain assignment methods. 

Since domains are evolutionary conserved units among proteins of the same 

family [30] and [31], a majority of proteins consist of multiple domains. It is therefore 

necessary to develop techniques that aid in the delineation of regions over the sequence 

that belong to a domain and those that do not. This development is vital, as it is believed 

that domains determine the function and evolutionary relationships of proteins. 

In this chapter we investigate the role physico-chemical properties play in domain 

identification. Studies have shown that changes in protein properties are brought about by 

the cumulative effects of several small adjustments, many of which are propagated over 

significant distances in the 3-D structure. Trace evidence of such coordinated mutations 

brought about by evolution are present in the protein sequence data within members of 

any protein family [30]. Researchers have historically relied on computational techniques 

that depend on sequence homology or structural homology, or sometimes both for 

domain identification. 

It is well known that sequence homology techniques are currently unable to keep 

up with the newly generated protein sequences. Assigning incorrect functions that are 

linked to the true ones, therefore, requires new automatic strategies addressing domain 
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identification, that is important for helping to identify and assign specific protein 

functions [32]. This insensitivity to sequences of low similarity has researchers 

investigating more reliable techniques. In fact, studies have revealed that residues distant 

in sequence but near in 3-D space undergo simultaneous compensatory variation to 

conserve their overall physico-chemical properties [32]. However, these studies have met 

with only limited success. There are currently no reliable techniques for the identification 

of conserved residues that affect functionality across homologous proteins. The estimated 

accuracy of statistical contact predictions has been 15-20% at best [30]. Our impetus 

being to improve this accuracy, we propose to develop a technique that utilizes physico-

chemical properties derived from sequences to aid in functional annotation. 

4.1 Related Literature 

Thus detecting the domain structure of a protein is a challenging problem. Given 

the protein sequence, there are no clear signals that indicate when one domain ends and 

another begins. To quantify the likelihood that a sequence position is either part of a 

domain or the boundary of a domain, several measures, based on the multiple sequence 

alignment reflecting the structural properties of proteins, can be informative of the 

protein domain structure. Previous traditional domain prediction techniques can be 

roughly placed into the following categories. 

4.1.1 Sequence Homology Based 
Domain Prediction Methods 

These methods, which work on the principle of multiple sequence alignment 

(MSA), are straightforward and widely used. Because they work on the principle of 

MSA, the sequences are aligned to other sequences that have known domain information, 
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or seed proteins. The following are examples of such techniques that include ADDA [33], 

Biozon [34], Dopro [35], Matao [36] and Ginzu [37]. 

4.1.2 Structure Based Threading 
Techniques [381 

Structural information can help detect the domain structure of a protein. Domain 

delineation based on structure is currently best done manually by experts [34]; the SCOP 

domain classification [39], which is based on extensive expert knowledge, is one such 

example. These techniques use no form of sequence similarity to determine the domain of 

the protein non-sequence homology based methods and are useful in the absence of 

homologous sequences (or seed proteins). In such cases, a target protein may be 

structurally similar to a protein of known 3-D structure, even if there is no significant 

sequence similarity. In such a case, domains can be predicted using fold recognition or 

threading techniques where the target sequence is aligned into a given structure or fold. 

Here, domains can be predicted using fold recognition or threading techniques, where the 

target sequence is aligned into a given structure or fold as in Dompred [40], SSEP-

domain18, DOMPRO19, and GLOBPLOT [41]. 

Well-known domain databases for protein domains can again be divided roughly 

into two categories as described above. The PFAM [42] and SMART[43] databases are 

useful for several reasons. They are based on multiple sequence alignment, and are 

considered to be the largest existing databases, and rely on expert knowledge. 

Additionally, they are driven by methods such as Hidden Markov Models (HMMs) and 

Artificial Neural Networks (ANNs). Similarly, the PRODOM [44] and TIGRFAMS20 

http://www.bio.ifi.lmu.de/cafasp/ 
http://www.ics.uci.edu/baldig/dompro.html 
http://www.tigr.org/TIGRFAMs 

http://www.bio.ifi.lmu.de/cafasp/
http://www.ics.uci.edu/baldig/dompro.html
http://www.tigr.org/TIGRFAMs
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databases identify domains based on evolutionary relationships using advance machine 

learning techniques. These databases are considered accurate in their predictions but have 

been restricted to a few well studied families of proteins. 

In Chapter 3, we attempted to address the fold classification problem and 

provided insights to the integration of different hydrophobicity scales. Our aim in this 

chapter is to utilize the integration of physico-chemical properties for the identification of 

domains. We also propose a characterization scheme to enable the classification of 

functionally related proteins. We hypothesize that evolutionary related proteins exhibit 

correlated behavior across regions, along their backbones, and over a myriad of 

interacting physico-chemical property residues in unison, revealing a pattern that is 

unique to different functional families of proteins. We propose protein maps to help 

capture the co-evolution of residues through spectral analysis of independent physico-

chemical properties. 

Chapter 4 is organized as follows. We first describe the physico-chemical 

properties used in this study. We then briefly describe how we divide a sequence into 

subsequences and extract the features by transforming the sequence into the frequency 

domain. We then describe the steps that are taken to create the protein map for a given 

physico-chemical property. The protein map is subjected to wavelet-based segmentation 

which clusters regions of the protein map and to identify regions that exhibit similarity 

over the entire sequence. The most coherent cluster is chosen and reported as a domain 

for further validations described in Section 4.3. 
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4.2 Methodology 

The methodology as shown in Figure 4.1, involves the creation of a protein map 

from a given protein using physico-chemical properties as descriptors. To discuss the 

methodology in detail, we first define a protein 'P ' as a sequence of amino acids of finite 

length V . The following are some of the key concepts followed in this work. 

Find correlation 
between 

windows of FFT 

Rank Clusters 

Protein Sequence 

FFT of each Window 

PROTEIN MAP 

Perform Wavelet 
Based 

Segmentation with 
overlap 

Choose the 
number of clusters 

using Silhouette 
Index 

Extract elements 
of specific clusters 

Report as 
DOMAIN 

Divide sequence 
into windows of 
size 6 residues 

Hierarchical 
Clustering 

Figure 4.1 Proposed methodology for the discovery of domains. 
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4.2.1 Amino Acid Descriptors 

In Chapter 4, we have used the quantitative descriptors for the 20 amino acids as 

proposed by Venkatarajan and Braun [6]. Using the method of multi-dimensional scaling, 

Venkatarajan and Braun summarized information from 237 known physico-chemical 

properties aimed at providing useful information for the identification of protein 

homologues on the basis of property-based motifs. They provided five-dimensional 

numerical descriptors for each amino acid, from the first five Eigenvectors as seen in 

Table 4.1., referred to as El through E5. 

Table 4.1 Venkatarajan and Braun components. 

Amino 
Acid 

A 
R 
N 
D 
C 
Q 
E 
G 
H 
1 
L 
K 
M 
F 
P 
S 
T 
W 
Y 
V 

Components 

E1 
0.008 

0.171 

0.255 

0.303 

-0.132 

0.149 

0.221 

0.218 

0.023 

-0.353 

-0.267 

0.243 

-0.239 

-0.329 

0.173 
0.199 

0.068 

-0.296 

-0.141 

-0.274 

E2 
0.134 

-0.361 

0.038 

-0.057 

0.174 

-0.184 

-0.280 

0.562 

-0.177 

0.071 

0.018 

-0.339 

-0.141 

-0.023 

0.286 
0.238 

0.147 

-0.186 

-0.057 

0.136 

E3 
-0.475 

0.107 

0.117 

-0.014 

0.070 

-0.030 

-0.315 

-0.024 

0.041 

-0.088 

-0.265 

-0.044 

-0.155 

0.072 

0.407 
-0.015 

-0.015 

0.389 

0.425 

-0.187 

E4 
-0.039 

-0.258 

0.118 

0.225 

0.565 

0.035 

0.157 

0.018 

0.280 

-0.195 

-0.274 

-0.325 

0.321 

-0.002 

-0.215 

-0.068 

-0.132 

0.083 

-0.096 

-0.196 

E5 
0.181 

-0.364 

-0.055 

0.156 

-0.374 

-0.112 

0.303 

0.106 

-0.021 

-0.107 

0.206 

-0.027 

0.077 

0.208 

0.384 

-0.196 

-0.274 

0.297 

-0.091 

-0.299 
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As per [4], the components (scales) El to E3 are useful in describing the 

hydrophobicity, size, and helical propensity of a protein sequence. E4, on the other hand, 

is a useful descriptor for partial specific volumes, relative abundance of amino acids, and 

the number of codons. The P strand forming propensity seems to be the dominant factor 

for E5. We propose to use these five components for the creation of a protein map for a 

given protein. 

4.2.2 Creation of Protein Maps 

The correlated compensation of properties is balanced over the entire sequence, 

making it vital to capture this characteristic across the entire length of the protein. We 

thus propose dividing the protein into subsequences, using the concept of sliding window 

with overlap, defined in Eq. 4.1 

N = (tf-M) + s), (4.1) 

where '£' is the arbitrary length of the protein sequence (the number of residues) and '^', 

the size of the sliding window set at six residues and 's' set at one less than the size of the 

sliding window. Figure 4.2 provides a pictorial representation of sliding window over the 

physico-chemical profile of a protein sequence. 

fS\ 

% 
4 v 

v \A 

H1 F-2 ^i3 

S. 

w 

Figure 4.2 Creation of protein maps. 
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This process creates N subsequences for a given protein sequence. Since not all 

proteins are of equal length, and since we must keep the length of a window constant for 

any given protein, the number of windows, 'N', varies from protein to protein. Each 

subsequence (window) is subject to the Fourier transform, defined by the relation shown 

in Eq. 4.2 

X(k)=TM(J)coiJ-m'-l), (4.2) 

w h e r e c o N = e ^ I N . 

Our aim is to capture the localized changes in physico-chemical properties. By 

extracting the Fourier coefficient of the window, we obtain a profile for each window in 

the frequency domain that enables us to capture the transient behavior of physico-

chemical property over the sequence. 

4.2.2.1 Correlated mutations 
scores 

An important source of information about the structural flexibility of a position 

can be found in the profile of a protein. Traditionally, a count of the number of pair-wise 

contacts between residues on opposite sides of that position is necessary for each 

sequence position [45]. Minima in the profile correspond to regions where fewer 

interactions occur across these sequence positions, implying relatively higher structural 

flexibility and suggesting a domain boundary. Contacts between residues in a protein are 

usually predicted based on correlated mutations. 

We believe that the correlations that exist between the physico-chemical 

behaviors of localized regions over the entire sequence of the protein provide a better 
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understanding of physico-chemical interactions between the residues of a neighborhood 

and help identify compact structural domains. This correlation lends valuable insight into 

the structure of bio-chemical property conservation over homologous proteins. 

The correlated mutation score between frequency coefficients of two windows k 

and / is defined as in Eq. 4.3 

Corr (k,l) = . M , (4.3) 

jiiki-kfm-i)2 

V i=\ i=\ 

where k,l el.JV subsequences of a given protein. 

Here kt is the amino acid propensity in position /, of subsequence k of the protein 

sequence (similarly for the window I). The resultant correlation matrix consists of the 

correlation coefficients of all possible pair-wise combinations of Fourier coefficients of 

windows 'JU' for a given protein. The textured representation matrix, capturing the 

correlated behavior of residues, is known as a 'layer' of the protein map using a given 

physico-chemical property. The algorithm of this process is described in Figure 4.3. 

Since we are using the five components or scales as described in Section 4.3.2.1, a 

myriad of five layers, constitute the resultant protein map of protein 'P'. 
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Algorithm 1 Creation of Protein Map 
Input: Protein Sequence PSi 
Output: Protein Map PM(PS^ 

1. For the given physico-chemical property, convert PSi to its corresponding 
signal 

2. D ivid e PSi (s ign al) into s ub £ e que nc e o f le ngth s ix us ing o ve rlapp ing win dow s 
otstep size=l 

a. Extract the Fourier coefficients of each window using FFT 
b. Sehct the first 50% of coefficients of each window 

3. Compute the correlated mutation score between every possible :ombina:ion of 
subsequences 

a. Mat_PS(kJ)—correl_coejff(windowk(Pi)r windowi(Pi)) where 0<kJ<—j 

Figure 4.3 Algorithml for the creation of a layer in protein map. 

4.2.2.1.1 Wavelet-based 
segmentation 

Once we have created a Protein Map for protein 1AAQ, shown in Figures 4.4 and 

Figure 4.5, our next objective is to predict those proteins that significantly contribute to 

domains. We plan to use the existing correlated mutations between localized regions to 

make this prediction. We propose a novel wavelet-based segmentation approach for the 

identification of conserved correlated segments for a given protein map. To assess the 

significance of correlated mutation scores, we subject each layer to z-score 

normalization, thus the normalized and correlated mutation score r is defined as in Eq. 

4.4 

z - score(r) = (r - ju)/a, (4.4) 

where ju and a correspond to the mean and standard deviation of the correlated mutation 

sores of a given layer of the protein map. 
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PROTEIN MAP 1AAQ (61X64) Correlation Matrix 

10 20 30 40 50 60 

Figure 4.4 Layer of Protein Map for Protein 1AAQ. 

Figure 4.5 Structure of protein 1AAQ. 

4.2.2.1.2 Wavelet transform 

Since each frequency component can be analyzed with a different resolution and 

scale, wavelet functions are capable of the multi-resolution representation of a signal. 

This multi-resolution representation allows the wavelet transform to represent 

discontinuities in the signal by using "short" functions, and, at the same time, 

emphasizing low frequency components using "wide" functions [46]. 
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The Continuous WT decomposes a signal into a set of scaling functions by using a 

wavelet functions basis, as in Eq. 4.5 

(Waf)(b) = !f(Xylb(x)dx. (4.5) 

With the basis of wavelet functions obtained by scaling and shifting a single 

mother wavelet functiony/(x), given as follows in Eq. 4.6 

Vaj,(x) = -j=V • (4-6) 
\ a J 4a 

The general norm states that the mother wavelet should only satisfy the zero-

average condition as in Eq. 4.7 

jy/(x)dx = 0. (4.7) 

The Discrete wavelet transform, on the other hand is obtained by taking a=2" and 

beZ. 

4.2.2.1.3 Segmentation of Protein 
Map 

The protein map is an aggregate representation of the transient behavior of 

different physico-chemical properties. It provides a means for conserved residues to 

analyze a protein under a myriad of properties. We propose a method to identify these 

regions for a given layer of a protein map where the layer is broken down into segments 

consisting of correlation coefficients that correspond to specific localized regions over 

the sequence of the protein. The steps are as follows: 

1. Segmentation: The layer is segmented into non-overlapping segments of 

uniform dimensions. 
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2. Application of DWT to Individual Segment: The approximation 

coefficients are extracted from each segment. 

3. Clustering of Segments: The approximate coefficients of each segment are 

hierarchically clustered, keeping the maximum number of clusters extracted at 

twenty; we call each cluster an fA (frequency aggregate) based on the 

similarity of wavelet coefficients. 

4.2.3 Generation of Frequency 
Aggregates 

We adopt a hierarchical clustering-based approach to identify clusters of protein 

map segments that exhibit similar characteristics. As mentioned, the approximate 

coefficients of each segment are applied as time-frequency descriptors to group the 

segments of a layer of the Protein Map. We adopt the 'Euclidean distance' approach to 

measure the similarity between the approximate coefficients of segments. As seen in 

Figure 4.6 each frequency aggregate is a collection of segments. 

Figure 4.6 Segmented protein map for protein 1AAQ after DWT. 



76 

We rank the silhouette scores of each cluster in the hierarchy and choose those 

segments that constitute the cluster of highest rank. Each segment of the fA corresponds 

to the correlated mutation scores of the windows of the sequence. It is thus simple to back 

track to those regions for the given protein. Figure 4.7 provides an overview of the 

resultant hierarchical clustering of segments and the resulting frequency aggregates of a 

single layer of the protein map of protein 1AAQ. 

Figure 4.7 Clustered segments of a layer of a protein map. 
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4.2.3.1 Conservation measures 

The hierarchical clustering of segments of a given protein is carried out for each 

physico-chemical property. We follow the above process of generating fA for each layer 

of the protein map. The generation of fAs facilitates back tracking to specific sequence 

positions on the protein that could constitute conserved domains for each property. To 

quantify the likelihood that a sequence position is part of a domain or is at the boundary 

of a domain across the five physico-chemical properties, we define a simple weighing 

scheme to measure the likelihood that a given position on the sequence constitutes a 

domain. 

As in the MSA of proteins, key positions along the backbone which are crucial to 

stabilize the protein structure or which play an important functional role (as in the active 

site of an interaction site), are revealed. These positions tend to be more conserved than 

others and strongly favor amino acids with similar and very specific physico-chemical 

properties because of structural and functional constraints. 

Based on this concept, we align the generated fA for each physico-chemical 

property and weigh the probability of occurrence of a residue at the given location as 

conserved across the properties. This probability Et as in Eq. 4.8, acts as an indicator of 

those residues that strongly constitute domains. 

T^,T^ #of occurances at P(i) as conserved 
E^) = — — , (4.8) 

# of physico - chemcial properties 

where Et is the estimated probability of conservation for a residue at location i. This 

results in a weighted representation of a domain of protein Pt. 
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4.2.4 Analysis of the Structural 
Environment of Conserved 
Residues 

We analyze all the conserved residues and compare the structural environment to 

amino acids in the naturally occurring proteins in the dataset, using packing density, 

hydrogen bonding, and solvent accessibility. The following is a brief description of the 

methods used to determine the parameters. The values computed are presented later in 

Section 4.4.2. 

1. Packing Density (Ooi Number): A contact number with other residues within an 

8 A radius is computed using the method of [47]. Because the longest distance 

from C'a to Cl+l
a is approximately 4 A, the nearest neighbor residues on 

either side of the dipeptide are omitted. 

2. Hydrogen Bond Information: Hydrogen bond information is defined using a 

donor-acceptor distance of < 3.5 A. Angular criteria are not considered because 

side-chain atoms are not equally positioned by crystallography, and not all 

hydrogen atom positions are fixed by the positions of the heavier atoms. 

Hydrogen bonding is examined from a side chain at positions i to the residues 

other than those at positions i-1, i and i+1, the average number of hydrogen bonds 

(dipole interactions) that can be formed by the residue in a given position. 

3. Solvent Accessibility: The solvent accessible contact area of amino acids is 

calculated using the method of [48], with a probe radius of 1.4 A. The percentage 

of accessible contact area of the total atoms is used. 
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4.3 Results and Discussion 

This section 4.3, enumerates the results obtained for each validation proposed 

herein. Largely automated sequence comparison protocols are responsible for databases 

of aligned protein domains such as PFAM, and SMART. The assignment of domain 

boundaries for entries in these databases sometimes originates in a manually-curated 

'seed' alignment, as is the case for PFAM. Alternatively, computer analysis is applied 

based either on the recurrence of similar sequence segments in different proteins at 

different distances from the N- and C-termini, or on duplicated segments observed in 

protein sequences. 

4.3.1 Accurate Domain 
Assignment 

Accurate domain assignment requires, ideally, structural information, or 

otherwise the repeated occurrence of a domain in different contexts. Domain 

identification is observed in protein families that lack relevant structural information and 

whose structures comprise several domains. If these domains are only observed in a 

single order, or if sequence comparisons fail to reveal their presence elsewhere, then the 

current protein domain databases will erroneously assign a single domain to the whole 

protein. 

For our experiment, we have randomly chosen proteins from the Swiss_Prot and 

SMART databases that belong to the Trypsin and Eukaryotic families. Table 4.2 shows 

these databases and results. Figures 4.8, 4.9, 4.10, and 4.11 show the results of 

comparisons made with the domain assignments of Swiss-Prot. 
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Table 4.2 Domain validation of Trypsin and Eukaryotic proteins. 

Trypsin 

Eukaryotic 

ID 

1433Z_BOVIN 

3BHS.VACCV 

3HA0-PSEFL 

ACT10-DICDI 

ACT12-ARATH 

ACT17-DICDI 

ACT18-DICDI 

2SS1-ARATH 

2SS2-ARATH 

2SS2-BRANA 

2SS2-CAPMA 

2SS3-ARATH 

2SS4-ARATH 

2SS4-BRANA 

AC 

P63103 

P26670 

Q83V26 

Q54GX7 

P53497 

Q554S6 

P07828 

P15457 

P15458 

P01090 

P30233 

P15459 

P15460 

P17333 

Domain in SMART 

3-242 

2-144, 43-155, 57-91, 87-198, 
167-197,190-239,190-267 

13-126, 51-121, 51-86, 84-184, 
104-166 

6-376; 3-376 (LS) 

7-377; 4-377,230-241 

6-374; 3-374 

6-374; 3-376,208-216 

1-21,59-153; 5-27,5-18,59-153, 
85-96 

1-21, 45-158; 5-27, 45-158, 62-
73,76-85,89-101 

5-24, 60-167; 2-168, 42-65, 47-
74, 92-104, 102-153, 104-153, 
105-159,129-143 

5-27, 40-149; 2-75, 2-20, 36-59, 
68-81,88-145,92-141,106-130 

1-21,58-151; 5-27,58-151 

1-21,58-155; 5-27,5-18,58-155 

5-27, 60-169; 1-116, 2-170, 29-
86, 42-65, 47-74, 87-148, 92-
104,111-146,130-146 

Domain Identified 
(cut off 0.4 and above) 

1-235 

1-345 

10-180 

1-375 

2-370 

1-370 

1-375 

1-155 

1-160 

1-165 

3-140 

2-140 

1-155 

1-145 
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SWISSPROT ID: 1433Z_BOVIN 
AC NUMBER: P63103 

CHAIN 
MOD RES 
MOD RES 
MOD RES 
CONFLICT 
HELIX 
TURN 
HELIX 
TURN 
HELIX 
HELIX 
HELIX 
HELIX 
HELIX 
HELIX 
TURN 
HELIX 
HELIX 

1-245 
1 

184 
232 

25 
3-14 

15-17 
19-30 
31-33 
38-66 

74-104 
106-108 
112-131 
136-157 
167-179 
180-182 
185-201 
212-225 

250 

Figure 4.8 Degree of conservation of protein 1433Z_BOVIN. 

SWISSPROT ID: 3BHS_VACCV 
AC NUMBER: P26670 

CHAIN 1-346 

Figure 4.9 Degree of conservation of protein 3BHSVACCV. 
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SWISSPROT ID: 2SS1 ARATH 
AC NUMBER: P15457 

SIGNAL 
PROPEP 
CHAIN 
PROPEP 
CHAIN 
PROPEP 

1-21 
22-37 
38-73 
74-83 

84-162 
163-164 

r l 5* 
0 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

Figure 4. 10 Degree of conservation of protein 2SS1_ARATH. 

SWISS PROT ID: 2SS2_ARATH 
AC NUMBER : P15458 

SIGNAL 
PROPEP 
CHAIN 
PROPEP 
CHAIN 

1-21 
22-37 
38-72 
73-88 

89-170 

100 120 140 160 

Figure 4.11 Degree of conservation of protein 2SS 1_ARATH. 

4.3.2 Residue Type Based 
Measures 

Physico-chemical properties of proteins may also help predict domain boundaries, 

since they tend to have different characteristics around domain transition points than in 

domain core positions. For example, hydrophobic residues tend to cluster inside domain 

cores with hydrophilic residues occupying more exposed locations in a protein structure, 
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and, therefore are more likely to be in inter-domain regions. Similarly, certain amino 

acids such as cystines and prolines are crucial in defining protein structure, and therefore 

tend to occur in different frequencies in core domain and inter-domain regions of a 

protein. The value of considering residue composition in detecting domain boundaries is 

also demonstrated in the work done by Miyazaki et al. [49]. In order to exploit these 

sources of information, we must first define several measures: those for hydrophobicity; 

those for molecular weight; and those for the amino acids cystine, valine, proline, and 

glycine, all believed to be instrumental in defining protein structure. In addition, 

RasMol27 classification of amino acids must be completed to create and measure a set of 

non-redundant classes (acyclic [ARNDCEQGILKMSTV], aliphatic [AGILV], aromatic 

[HFWY], buried [ACILMFWV], hydrophobic [AGILMFPWYV], large 

[REQHILKMFWY], negative [DE], positive [RHK], and small [AGS]). For each 

measure, the score of an alignment column is defined as the average of all residue scores, 

where residue scores are defined in the range of 0-1. Hydrophobicity and molecular 

weight residue scores are adopted from Black and Mould [50], and class scores are 

simply defined by the presence (score 1) and absence (score 0) of the residue in the class. 

4.3.3 Structural Environment of 
Conserved Residues 

To score residue presence, we first conduct a comparative study to verify the 

validity criteria which will test the structural environment of the reported conserved 

residues. We used a dataset consisting of the protein sequences reported by the Munich 

Information Center for Protein Sequences (MIPS22) yeast protein-protein interaction 

dataset of family (3.1.1), were reported in the PARTSLIST [51] database. The listed 

21 http://www.umass.edu/microbio/rasmol/ 
22 http://mips.gsf.de/ 

http://www.umass.edu/microbio/rasmol/
http://mips.gsf.de/


84 

proteins were also cross-ranked with representatives from two other well-known, 

functional classifications, namely the Julia classification by Wilson etal., JMB 297(1)23, 

and the GenProtEC24 classification for E. coli. Three families, namely (3.1.1), (3.4.21) 

and (3.2.1), were considered, and a total of 64 proteins were used for analysis. 

The first test of validation, we compared the relative composition of amino acids 

of the conserved regions to the entire proteins. Ideally, for a good dimensionality 

reduction, the conserved amino acid composition should exhibit a trend similar to that of 

its natural occurrence. From our test, it can be seen, as in Figure 4.12, that the behavior 

tends to hold true for all three families of proteins, as well as with the entire dataset. 

Relative Distribution of Amino Acid Composition (Dstaset} 

ii 
t t 4 * ft 1 ft ? Ill 11 i ; 13 tl « «i 1/ 18 i? if) tn"W~i> 

Amino Acid 
Relative Distribution of Amino Add Composition (Ciss* 2} 

„«. t . i t l I-* m it in i Xtr* i, 

Relative Distribution of Ammo Acid Composition (Cists 1) 

UyfUlllClMM t) 
C.otnvivW (0«m t l j 

.II i 
T ? 3 t s « / * s io i i i i a i t n t t v i» ii» m 2\ . 

Amino Acid 
Relative Distribution of Amino Acfd Composition (Clsss 3J 

V 

A i 
St 1 « * .. / . 11 <n IK 1 / »n 1«t X I -f\ V*: 

Figure 4.12 Comparison of reported relative amino acid composition. 

http://bioinfo.mbb.yale.edu/align/scop/tables/ 
http://genprotec.mbl.edu/ 

http://bioinfo.mbb.yale.edu/align/scop/tables/
http://genprotec.mbl.edu/
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We further reinforce our observation by subjecting the proteins of family (3.1.1) 

(Class 1) to the described validation criteria. As illustrated in Figure 4.13, it is clear that 

the trend of conserved amino acids is consistent with that of the naturally occurring 

proteins of the family. This result supports our hypothesis that a correlated trend across 

protein properties are conserved and can be exploited for the classification of proteins. 

H-BONO Interaction Proffl* for Proteins of Class 1 00! 8 Profiles for Proteins of Class 1 

L. 
3 JO 
o 
T5 
# 15 

10-

s 

1 2 3 4 $ 
Number of Hydrojjen Bonding Interactions 

ll 

|NaturalOO» 
]ConifrvedQO» 

X 1 1 1 « . 
0 1 2 3 4 6 6 7 B 9 10 11 12 13 14 18 16 17 18 19 20 21 

Number of Amino Acids 

Solvent Accessibility Contact Ares profile for Proteins of Class 1 
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100 

SO 

« 
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Figure 4.13 Results of analysis. 

We propose a classification scheme, where the feature vector is the result of the 

above process. This process is shown in Figure 4.14. The dataset consists of proteins 
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from the UniProtKB , and of proteins from the Trypsin and Eukaryotic families under 

the UniProtKB sequence filtering constraints. UniProtKB allows one to filter out 

sequences based on a range of 50% to 100% sequence identity. When the search is 

subjected to one of these degrees of sequence similarity, the resultant is the grouping of 

the proteins based on proteins of UniProt50, UniProt90, or UniProtlOO seed proteins. 

Thus, a reduced number of proteins that match these seed proteins are identified. 

G 2 4 6 8 10 12 14 16 18 
Atom Set 

Figure 4.14 Representation of a feature vector. 

This reduction results in 10,646 protein sequences which contain Trypsin in the 

description of the protein. The protein sequences are ordered in descending order of an 

identity score. Similarly, we obtain 10,995 protein sequences containing the key word 

Eukaryotic. From these key words, we filter out proteins that are known to be multi-

domain in nature. For the purpose of training and testing we randomly choose 500 

proteins from the Trypsin and 500 from the Eukaryotic descriptors. 

25 http://beta.uniprot.org/ 

http://beta.uniprot.org/
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These proteins are then subjected to classification using a Random Forest 

Classifier. An independent test set consisting of 100 Trypsin and 100 Eukaryotic proteins 

are randomly chosen from the dataset and are subjected to the trained classifier, and the 

results are shown in Table 4.3. The classifier consistently classifies the proteins into their 

corresponding families, with an average accuracy of 89%. Similarly, Table 4.4 shows the 

results of a 10-fold cross validation carried out on the training set, and a 90.5% accuracy 

is observed. These results indicate that the method can identify discriminatory domains 

for effectively classifying proteins that belong to the corresponding Trypsin and 

Eukaryotic classes of proteins. 

Table 4.3 Results of classification on independent test set. 

TPRate 
0.889 
0.891 

FP Rate 
0.109 
0.111 

Precision 
0.889 
0.891 

Recall 
0.889 
0.891 

F-Measure 
0.889 
0.891 

ROC Area 
0.966 
0.966 

Class 
Eukaryotic 

Trypsin 

Eukaryotic 
88 
11 

Trypsin 
11 
90 

Classified as 
Eukaryotic 

Trypsin 

Table 4.4 Results often fold cross validation. 

TP Rate 
0.9 
0.91 

FP Rate 
0.09 
0.1 

Precision 
0.909 
0.901 

Recall 
0.9 
0.91 

F-Measure 
0.905 
0.905 

ROC Area 
0.948 
0.948 

Class 
Eukaryotic 

Trypsin 

Eukaryotic 
90 
9 

Trypsin 
10 
91 

Classified as 
Eukaryotic 

Trypsin 
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4.4 Conclusion 

The challenges faced in the annotation of proteins have moved into a realm in 

which traditional sequential analysis and structural alignment techniques are not 

sufficient. The potential and importance of using physico-chemical properties to extract 

the implicit behavioral characteristics of a protein are now being realized. Through the 

course of this work, we envisage conservation in terms of properties rather than the 

residues themselves. Our contribution can be viewed as twofold. First, we aimed at 

creating an algorithm to provide us a means to integrate multiple physico-chemical 

properties in the form of a layered proteins map with each layer corresponding to a 

physico-chemical property. Second we proposed a wavelet-based segmentation approach 

that efficiently detects regions of property conservation across all the layers of the protein 

map. We stringently validated the reported regions using our validation schemes, and we 

report significant regions of accuracy to show that homologous proteins exhibit 

conservation of physico-chemical properties over the protein backbone. 



CHAPTER 5 

PROTEIN STRUCTURE CLASSIFICATION 
BASED ON CONSERVED HYDROPHOBIC 

RESIDUES 

Proteins contain a large but limited number of features. Ab initio computational 

protein folding models assist scientists involved in molecular biology and in 

bioinformatics to better elucidate the intricate process of protein folding and the causal 

forces involved. However, no current ab initio protein folding algorithm generates a high 

precision rate <3.5-A backbone Root Mean Squared Deviation (RMSD) from the 

experimental structure for the identification of regions and features in large protein 

structures. This low precision rate stimulates a need for more efficient computational 

techniques, especially those geared toward the automatic annotation and classification of 

newly introduced proteins. 

Traditional supervised machine learning techniques compare unclassified protein 

sequences to classified proteins using kernel functions [52]. This method produces a low 

effective cut-off point for the effectual homology modeling of proteins with ~30% 

sequence identity, a lower bound at which the computed structure can still accurately 

depict the arrangement of secondary structure elements in 3-D. Largely due to 

impediments posed by sequence similarity, researchers focus on finding conserved 

regions (sub-sequences) that exhibit sequence or property conservation across structurally 

89 
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related proteins by restricting the feature space [53]. To this end, as hypothesized by 

Kauzmann [54], hydrophobic interactions play a major role in organizing and stabilizing 

the architecture of proteins. 

Researchers have investigated the correlation of hydrophobic interactions to 

similarities in 3-D structural elements, and have exhibited and exploited property 

conservation at these sites. A number of computational methods to this end have been 

proposed in the literature. Paiardini et al. [55] and Reddy et al. [56], using multiple 

sequence alignment (MSA) techniques, show that a significant correlation exists between 

the sequence, structure, and conserved hydrophobic contacts (CHC) that remain invariant 

during long evolutionary periods. Reddy et al. [56] present a methodology, known as 

conserved key amino acid positions (CKAAPs), to identify conserved residues and 

potential folding nuclei based on sequence and weighted homologues scoring. Tsai et al. 

[57] propose a method using a scoring function based on the physico-chemical properties 

of hydrophobicity, compactness, solvent accessibility of surface area (ASA), and 

segmentation to test the validity of fold unit definition based on Eigenvector analysis. 

Typically, these methods lack recognition and exploitation of the structural 

contributions of each residue. Later models that provide insight into structure 

discrimination using conserved hydrophobic residues have been proposed. Particularly, 

the model proposed by Muppirala et al. [58] quantitatively measures the individual 

contributions of amino acid residues in a protein structure. Each protein is treated as a 

network of edges representing inter-residue interactions between hydrophobic residues. 

Emphasizing the relation between hydrophobic interactions and stability, Huang et al. 

[59], introduce a pair-wise energy function that enumerates contacts between 
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hydrophobic residues while weighing their sum by the total number of residues 

surrounding them. Although using different approaches, each model suggests a common 

and unexpected feature of protein packing that proteins significantly rely on based on few 

members of the set of conserved residues. 

We propose a data mining model, which we believe will also be useful for 

classification purposes, for the integrated analysis of five popular hydrophobicity scales 

to enhance the detection of structurally conserved regions among homologous proteins. 

Employing the principles of graph theory and incorporating the metric of mutual 

information to identify compact structural units, we extract frequently occurring patterns 

using a discriminative weighing function. Our goal is to identify conserved hydrophobic 

residues among structurally related proteins, using hydrophobicity scales for 

classification. By doing so, we reduce our feature space and show that the reported 

conserved hydrophobic residues are sufficient to differentiate between native and non-

native proteins at both the class and fold levels of the structural classification of proteins 

(SCOP) hierarchy. We test the efficacy of our model by comparing the length of the 

feature vector with traditional techniques. Our feature vector is significantly smaller, yet 

yields comparable results. The scalability analysis reaffirms that the proposed model is 

scalable to multiple classifiers. 
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5.1 Approach 

Expressions of the hydrophobic effect are palpable in many facades of protein 

sequence-structure-function dependencies, including 

1. The stabilization of the folded conformation of globular proteins in solutions; 

2. The subsistence of amphipathic structures in peptides or of membrane proteins 

at lipid boundaries; and 

3. Protein-protein interactions associated with protein subunit assembly, protein-

receptor binding, and other intermolecular bio-recognition processes [11]. 

We hypothesize that an integrated analysis of multiple prominent hydrophobic 

scales can lead to better encapsulation of hydrophobic bearings on protein functional 

analysis. We focus on five well-known scales of hydrophobicity, the Kyte and Doolittle, 

the Hopp Woods, the Janin, the Rose et al. and the Eisenberg et al. scales [7]. The 

discussion on the scales follows in the next section 5.1.1. 

5.1.1 Hydrophobicity Scales 

The pioneering work of Kauzmann elucidates important attributes of the 

thermodynamic stabilities of proteins and suggests that hydrophobic interactions are 

dominant in the protein folding process. More than thirty-eight scales of hydrophobicity 

have been developed since the Kauzmann work [7]. These scales contain distinctive 

stereo-chemical hydrophobicity rankings for better understanding of protein-interaction 

mechanisms, which actually create confusion rather than resolution [9]. Nevertheless, the 

hydrophobic property of proteins is widely considered the most important underlying 

factor in the hierarchical structure and in the 3-D stability of proteins. 
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Specifically, amphipathic residues responsible for the formation of secondary 

structures along the backbone of the protein are also usually inconsistently ranked due to 

their varied nature. To correlate the hydrophobic interaction of residues and the formation 

of the secondary structure, we propose the creation of summary graphs (see [60] for 

background). These summary graphs capture behavioral similarity across hydrophobic 

scales, while pursuing distinct objectives: to capture the local interactions between 

protein residues, to reduce the feature space, and to provide an estimate of the 

hydrophobic behavior of the protein. 

Table 5.1 shows residue ranks, in ascending order of magnitude, based on the 

hydrophobic propensity assigned to the residues by each scale. A wide range of 

hydrophobicity values exist for each amino acid. Some amino acids show a high 

hydrophobic ranking with one scale and a high hydrophilic ranking for another scale [9]. 

Though most residues are ranked consistently across scales, certain residues rank across 

the spectrum more than the others. Inconsistencies in the ranking of aromatic residues are 

attributed to the size of side chains, to the environment (solute chosen), and to the tender 

difficulty to use them to model protein folding [9]. 
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Table 5.1 Amino acid ranks in hydrophobicity scales. 

Rank 

Kytn aitdDootittk 

Hopp Woods 

Jam vtai 

Rose at af 

Etsettbatq it at 

Rank 

Kyte aitd Dootittle 

Hopp Woods 

Jam etaf 

Rose at a! 

Eiswberg etal 

1 

ARG 

TRP 
LYS 
LYS 
ARG 

11 

SER 
THR 
SER 

ALA 
TYR 

2 

LYS 

PHE 
ARG 
ASP 

LYS 

12 

THR 
GLY 
ALA 

TYR 
CYS 

J 

ASP 

TYR 
GLU 
GLU 
ASP 

13 

GLY 
PRO 
GLY 

HIS 
GLY 

4 

GLU 

ILE 
GLN 
GLN 
GLN 

14 

.ALA 

ASN 
TRP 

LEU 
ALA 

5 

ASN 

LEU 
ASP 
ASN 

ASM 

15 

MET 
GLN 
MET 

MET 
MET 

6 

GLN 

VAL 
ASN 
PRO 

GLU 

16 

CYS 
SER 
PHE 
TRP 
TRP 

7 

HIS 

MET 
TYR 
ARG 

HIS 

17 

PHE 
ASP 
LEU 
VAL 
LEU 

8 

PRO 

CYS 
PRO 
SER 

SER 

18 

LEU 
GLU 
VAL 

PHE 
VAL 

9 

TYR 

ALA 
THR 
THR 

THR 

19 

VAL 
LYS 
ILE 
ILE 

PHE 

10 

TRP 

HIS 
HIS 
GLY 

PRO 

20 

ILE 
ARG 
CYS 

CYS 
ILE 

5.1.2 Capturing Local Interactions 
between Protein Residues 

With the backbone (Ca atoms) defining the overall protein structure, we use 

protein structure graphs (G), to create a four-body nearest neighbor propensity 

representation of a protein using Delaunay Tessellations (DT) [60] (see Figure 5.1). The 

edges of this graph are defined for a finite set of points, satisfying the empty sphere 

property [19]. The corresponding adjacency matrix for the G is shown in Figure 5.2. 

Figure 5.1 Result of applying Delaunay Tessellation. 
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0 50 100 150 200 .250 300 

Figure 5.2 Adjacency matrix representing residues. 

Each resultant tetrahedron of the tessellation identifies neighbors by capturing 

four natural nearest neighbor residues that fall on the circumference of a sphere of radius 

x. Tetrahedra with vertex-vertex distance > x are omitted on the grounds that significant 

interactions will not occur at greater distances. Thus, biases that arise from the adoption 

of a fixed coordination volume around a given residue can be avoided [61]. The value of 

x determines the proximity for residue-residue interaction [62], and is set to 8.5 A. 

5.1.3 Feature Space Reduction 

The 2-D representation of hydrophobic propensities makes it difficult to observe 

regularity in the conformation of protein backbone that is caused by the competition 

between local hydrophobic interactions. The G of a protein can be viewed as an 

aggregate of a four-body nearest neighbor tetrahedra [60]. A weighted representation of a 

G, given a hydrophobicity scale hyd, is referred to from this point forward as a 

hydrophobicity scaled graph Ghydn(P)- We view each tetrahedra of Ghydn(P), as a 

composition of a central residue, connected to its corresponding nearest-neighbors and 

located within the first coordination shell [61]. Thus, given a hydrophobicity scale, we 

define a hydrophobic center as that central residue that possesses the highest hydrophobic 
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potential. Grouping all adjacent tetrahedra coincident with the hydrophobic center, we 

define a neighborhood as a cluster that shares a common center of the highest 

hydrophobic propensity (Figure 5.3). By constraining the number of residues in the 

proceeding methodology, we eventually reduce our feature space. 

D 

Figure 5.3 Capturing of protein structure using Delaunay Tessellation. 

5.1.4 Estimation of Hydrophobic 
Behavior 

Hydrophobic residues buried in the protein core generally display a compact 

structure and contain a hydrophobic interior [57]. However, in larger proteins, the 

collapse caused by the interaction of hydrophobic clusters with subsequent 

rearrangements forms secondary structure elements and tertiary structures. We interpret 

the interactions between the neighborhoods as long-range interactions that are captured 

by the proximity of hydrophobic centers in the native state (Figure.5.3.c). It is logical to 
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presume that the two centers of neighboring residues, associated with a central 

hydrophobic residue, are in close proximity if their neighboring residues are common. In 

this case, we say they share a proximity edge. We define a proximity edge as an edge 

between two hydrophobic centers that share neighboring residues. 

5.2 Methodology 

Figure 5.4 provides the proposed framework of the extraction and coherent 

subgraph mining algorithm. The following sections in this chapter are arranged as 

follows. Section 5.2.1, we provide a detailed description of our proposed approach to 

estimating hydrophobic behavior. In Section 5.2.1, we outline a detailed description of 

the steps involved in merging information from a set of hydrophobicity scales of a 

protein. In Section 5.2.2, we provide a protein partitioning scheme followed by a 

coherent subgraph mining schema in Section 5.2.3. 

Dataset of 
PDB files 

For Individual Protein 

Extraction of 3D coordinate 
Information from PDB files 

Creation of Protein Structure 
Graph using 3D coordinates 

For each Hydrophobicity Scale 

Creation of Hydrophobic scale 
graph for a given Protein 

Identify hydrophobic centers 
and neighborhoods 

Creation of Interaction Graphs 

i I I i I 
Creation of Summary Graphs 

Partitioning of Summary 
Graph of a protein 

Filtering Partitions based 
on Discriminatory Power 

COHERENT SUBGRAPH 
MINING 

Figure 5.4 Proposed framework for the extraction of subgraphs. 
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5.2.1 Merging of Hydrophobicity 
Scales 

The methodology of merging hydrophobicity scales for a given protein can be 

sketched as follows. We represent a protein P' by an underlining graph G(P) called the 

protein structure graph, which we construct using Delaunay Tessellations. A weighted 

representation of the underlying graph G(P) is obtained from five different 

hydrophobicity scales (hydn) called the hydrophobicity scaled graph {Ghydn (P)) which we 

will discuss further in see Section 5.2.3. For a given scale, we attempt to reduce the 

feature space by considering only those residues with the highest weight (centers) among 

residue clusters. These centers become the vertices and edges (defined in Section 5.1.3) 

of the interaction graphs abstracting the behavior of the residues. An important 

contribution of this work is the integration of these scale representative interaction graphs 

in the form of summary graphs SG. 

We first define a protein 'P', consisting of its set of residues, as the coordinates of 

Ca atoms in 51 Euclidean space. Using this information, we define each residue as a 

vertex 'v.' Thus as in Eq. 5.1, let v; and V2 be represented in 91 Euclidean space 

Vl = (xl,yl,Zl)eW3, 

(5.1) 

v2 =(x2,y2,z2)ey(i. 

The Euclidean distance 'd' between the two vertices is defined as in Eq. 5.2 

diyx,v1) = V(x2 -xj)2 +(y2 -y\f + 0 2 -* i ) 2 • (5-2) 
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5.2.1.1 Protein structure graph 
and hydrophobic scales 

A protein structure graph G(P) is defined to satisfy the constraints of Delaunay 

Tessellation. Let graph G (P) be a three-element tuple, so that G = {V, E, x}, where ' V 

(Gy is a set of vertices that represents the Ca atoms of P. An edge e € E{G) exists 

between two vertices if the two vertices are spatial neighbors according to the Delaunay 

Tessellations "empty sphere property" [19] and [62]. Let V represent the predefined 

distance threshold, ranging between 8.5 and 10 A. Thus we obtain Eq. 5.3 as 

E(G)^{(vl,v2):vl,v2eV(G),d(vl,v2)<T}. (5.3) 

The constraint results in a graph G(P) consisting of vertices joined by edges in a 

unique way to form a collection T(G) of non-overlapping tetrahedra [60] that can be 

viewed as clusters of four-body nearest neighbor residues connected by edges under the 

criteria specified by Delaunay Tessellations. 

A hydrophobic scale on a protein structure graph G(P) is a function hyd that 

labels every vertex v e V(G) with a corresponding weight of hydrophobic propensity 

depending on the type of amino acid found at v. For the five scales of hydrophobicity, we 

use hyd„, where n = 1... 5. The resultant is a protein structure graph with vertices 

assigned weights corresponding to a specific hydrophobic scale called a hydrophobic 

scale graph denoted as Ghydn(P)-

5.2.1.2 Identification of 
hydrophobic centers 

For a given tetrahedron t e T{Ghydn), we choose the vertex of the highest weight 

in hyd„ and call it the hydrophobic center C(t). We cluster all tetrahedra having a common 
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maximum vertex, say a, and call the collection a neighborhood of center a denoted as 

H(a). Thus we define 

H(a) = {teT;C(t) = a}. (5.4) 

In this definition, as seen if Figure 5.5, a is the hydrophobic center of the 

neighborhood H(a), Ghydn(P)- Not all tetrahedra surrounding a center belong to the same 

neighborhood. 

[ 
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Figure 5.5 Example of the process of identifying centers and neighborhoods. 

5.2.1.3 Interaction Graphs 

We aim to identify interactions among hydrophobic centers. Two centers, a and b, 

are connected by an edge in an interaction graph (IG) if the neighborhoods of a and b 

share a vertex in common, such as the one shown in Figure 5.5 above. As proposed 

earlier, we believe the interaction graph, especially in edges among residues, is 
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significant in retaining the structure of the protein. Correspondingly, we term the edges in 

the interaction graph, IG, proximity edges. For a given neighborhood H(a) of center a, let 

V(H(a)) be all vertices of all tetrahedra in H(a). 

Definition: An interaction graph, IG = {V",E"} is a graph whose vertex set V"(IG) 

represents the hydrophobic centers connected by the edges of set E"(IG), and is defined 

in Eq. 5.5 as 

E"(IG) = {(a,b):V(H{a))t)V(H(b)±<t>} ( 5 5 ) 

With five different hydrophobicity scales, we obtain a set of five interaction 

graphs (IGy) representing individual proteins. For a given protein, the vertices for each IG 

have a common vertex set V(Ghydn(P)), but possess different edge sets. It is our objective 

to extract similarities among all interaction graphs of P. 

5.2.1.4 Summary Graph 

Based on our approach in Section 5.1.4, we postulate that the similarity among 

scales will reveal useful insight into the identification of folding units. The summary 

graph is an overlapping mechanism that is capable of capturing similarities across 

different graphs and can be used to merge information derived from the five interaction 

graphs (IGn) of a protein. 

Definition: A summary graph SG (P) with IG„, n=l,..,5 is defined as an unweighted 

5 
graph SG where V (SG) = V (G(P)) and E(SG) a \J(IG„)are determined by the 

n=\ 

frequency '&' of occurrences in the Interaction Graphs (IGJ, where 1 < k < n is a user 

defined threshold. 
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We aggregate (overlay) the interaction graphs obtained for a protein under the 

five scales of hydrophobicity. We aim to identify subgraphs in the aggregated summary 

graph. However, such an aggregation could result in the creation of false subgraphs that 

may not occur in the original interaction graphs. The frequency of occurrences '£' 

provides a threshold through which means any biases caused by the scales could be 

annulled. Since our approach evaluates the combined effect of the five scales, we 

undermine this problem. 

5.2.2 Partitioning a Protein 

In the following discussion, we describe the process of protein partitioning as a 

means of identifying significant subgraphs in the summary graph. These subgraphs 

contribute toward the identification of key structural characteristics embedded within the 

protein. Using the Trajans algorithm, we extract all possible connected components 

(subgraphs) of SG. Through the concept of mutual information, we filter insignificant 

components of SG that do not satisfy a specified threshold (ju), as shown in Figure 5.6 

below. The steps of our algorithm, presented in Figure 5.6, are explained in sections 

5.2.2.1 and 5.2.2.2 and 5.2.2.3. 



Algorithm 1 Partitioning of Summary Graph 
Input: A Connected Summary Graph SG(P) 
Output: Set of subgraphs of SG(P) 

1. Identification of connected components (subgraphs) of SG(P) using 
Trajan's DFS algorithm. 

2. Filtering components based on Mutiml, Information (p) > 6.1. 

3. Determining partitions by sorting and finding gaps in residue 
locations. 

Algorithm 1.3 Identification of Gaps in SG. 
Input: SG and it subgraphs (U*). 
Output: Partitions of SG. 

1. LisLm is assigned the residues of each subgraph II*. 
2. Sort residues in List*™ according to the location in protein sequence 
3. If difference between residue location >2 

a. Identify as Partition 
b. Record beginning and end locations of Partition 

Algorithm 2 Frequency of occurrence of subgraphs 
Input: Protein Database (PD) and Subgraph List (SL). 
Output: Matrix NF containing frequency of occurrence of each subgraph 11/ in 
PD. 

1. Repeat for each SG(P) in PD. 
2. Repeat for each subgraph Ujin SI. 

a. Compute D-RRMi between SG(P) and Uj. 
b. IfD-ERAM=lI,then 

i. If location of vertices of If, fall within the location 
range of SG(P) 

NF(U}H 
else 

NF(Up=0 

Figure 5.6 Algorithms of coherent subgraph mining. 
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5.2.2.1 Identification of connected 
components 

For the first step of Algorithm 1, we use Tarjan's Algorithm [63] to find the bi-

connected components, defined below, of a summary graph. 

Definition: A bi-connected component of an SG is defined as a maximal subset of the 

edges of SG such that the corresponding induced subgraph U cannot be disconnected by 

deleting any vertex of U. 

The connected components of an undirected graph are essentially maximal 

connected subgraphs. The algorithm is based on the tree structured, depth-first search, 

where the search begins from a root node, and strongly connected components form the 

subtrees of the search tree. The time complexity of this algorithm is 0(V+E), where V 

and E are the number of vertices and edges, respectively. 

5.2.2.2 Filtering using mutual 
information 

Typically, a large number of subgraphs U are produced for a single summary 

graph using the above process. However, since not all of the subgraphs are useful for 

classification, we first create a filtering process based on the information theoretic metric 

of mutual information that uses entropy to select the most informative collection of 

subgraphs. 

We define function Ml(U) for a subgraph U of SG, which measures the marginal 

entropy. Similarly, MI(SG/U) and MKJJ/SG) measure the conditional entropies. The 

joint entropy of SG and U are measured using the functionMI(SG,U). Using the 

functions above, the mutual information between graph SG and subgraph U is defined 

as in [19], using the Eq. 5.6 
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MI(SG, U) = MI(SG) + MI(U) - MI(SG, U). (5.6) 

A subgraph U is a coherent subgraph of SG if the mutual information between U 

and SG is above a fixed threshold p. Selecting only coherent subgraphs offers the 

following advantages: 

1. It filters out generic subgraphs across the protein (for those subgraphs, the mutual 

information tends to be low), and 

2. It finds statistically significant patterns, since each coherent subgraph is strongly 

correlated to its own parent graph. 

5.2.2.3 Partitions in protein 
sequence 

From the previous step, we obtain a set of subgraphs U that have mutual 

information greater than p with respect to the corresponding summary graph SG. We 

devise a simple algorithm for sorting residues and finding gaps among them, which 

determine partitions in the protein sequence. A detailed description of the steps involved 

in finding gaps in protein sequences is described in Algorithm 1 (Fig. 5.6). We call the 

resultant gaps partitions because they delineate portions of residues along the sequence. We 

validate the results of the partition algorithm by comparing them to the results achieved by 

Gelly et al. [64]. A detailed discussion of our results is presented in Section 5.4.1. 

We test Algorithm 1.3 on a random PDB ID - 1AN2 (a) protein. The algorithm 

detects strongly connected components in black rectangles, as shown in Figure 5.7, by 

choosing those components with MI-value > p (threshold p is set to 0.1 in this example) 

and determined partitions. Figures 5.7 and 5.8 describe the location of the cuts and the 

corresponding MI for each component. Further validations of summary graph 

partitioning, such as that shown in Figure 5.7 are described in Section 5.3.1. 
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Figure 5.8 Corresponding mutual information values. 

5.2.3 Coherent Subgraph Mining 

Using the method of partitioning described in section 5.2.2, we are able to extract 

subgraphs that correspond to the structural units of a protein. We hypothesize that 

structurally homologous proteins exhibit conserved units dictated by the hydrophobic 
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behavior of the residues that belong to these units. In this section 5.2.3, we propose a 

means of identifying conserved residue interaction patterns within a family of proteins. 

Since we propose to use the frequency of interaction patterns in our classification 

scheme, we detail a simple approach to identify the presence of a subgraph in a summary 

graph in Section 5.2.1.4. In Section 5.2.1.5, we define a simple metric that estimates the 

discriminatory power (DP) of a subgraph based on its frequency of occurrence within the 

proteins of a family. Using the frequency patterns in Section 5.2.3.3, we provide a 

detailed description of the design of our feature vector for the classification of proteins. 

We view a protein database (PD) as a collection of summary graphs SG 

corresponding to the proteins of the database. We define a subgraph list (SL) as a 

collection of all partitions (subgraphs) U of the summary graphs SG belonging to PD. For 

a comparison, we define a residue-residue adjacency matrix (RRAM) as a 20x20 matrix, 

where each row and column corresponds to the 20 known amino acid types. Thus, the 

RRAM of a SG or a subgraph U is such that RRAM (I, m) represents the frequency of the 

occurrence of the edges that have vertices of amino acidi and amino acidm. 

A Difference-RRAM (D-RRAM) is the difference operation performed between 

the RRAM (SG) and the RRAM(U), defined by Eq. 5.7 

D _RRAM(l,m) = mm{RRAMSG(l,m),RRAMu(l,m)}. (5.7) 

5.2.3.1 Frequency of subgraphs 

Now that we have defined protein database (PD), a subgraph list (SL), and a 

means to compare an SG with a subgraph U, we use Algorithm 2, (Figure 5.6) to find the 

frequency of occurrence of each UofSL with respect to each SG ofPD. 
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5.2.3.2 Filtering of subgraphs 
based on discrimination 
power 

Our objective is to identify frequently occurring subgraphs that are capable of 

discriminating among proteins at the fold or class levels of the SCOP. The discrimination 

power (DP) of a subgraph is a measure of goodness used to estimate the significance of a 

subgraph in a family of proteins. It is used to distinguish among families of proteins, as 

defined by [19]. 

Definition: A discrimination power (DP) of subgraph t/is defined using Eq. 5.8 as 

DP(U) 
f(U)A f(U)B 

$A $B 
(5.8) 

where /(U)A and f(U)B correspond to the number of proteins in family A and B having U 

as a subgraph (frequency of occurrence), and SA and SB correspond to the number of 

proteins in family A and B. 

The greater the DP value, the more selective the feature. We define a threshold £ 

that determines a cutoff for the selection of subgraphs. Thus, given n frequent subgraphs-

Ui, U2, U3... U„, that satisfy the threshold, we create a profile for each protein P in the 

dataset as an n-element vector NF= fh f2 ... f„ in feature space where f, indicates the 

presence of the subgraph U in SG. We use the generated frequency matrix (NF) in the 

design of our feature vector (Section 5.2.3.3). The filtering process results in the 

reduction of the number of subgraphs, which inadvertently results in the reduction of the 

feature vector length used by the classifier. Though the resultant feature vector is 

confined to discriminating proteins that belong to two classes in PD, we extend this 

definition to suit proteins that belong to the multi-class PD in Section 5.3. 



109 

5.2.3.3 Feature vector design 

In the feature vector designing stage, a set of descriptors capable of discriminating 

proteins of different classes is defined for each protein. These descriptors ensure the 

capture of significant, yet unique characteristics, common across a class of proteins. The 

presence of key interactions among residues (subgraphs) captured by NF, is a good 

discriminator. However, we believe that the nature of interacting conserved residues is 

unique to homologous proteins. Thus in addition to NF, descriptors such as 

1. The connectivity of hydrophobic residues in the summary graph of a protein 

exhibits unique packing patterns. Connectivity, the ratio between the number 

of edges and the number of vertices, generally measures two aspects of 

interaction patterns. First, it measures which residues are interacting with one 

another; and second, it measures the frequency or regularity of these 

interactions. 

2. The number of connected components in a summary graph reflects those 

interactions among hydrophobic residues that are prominently expressed 

across scales, as shown in Figure 5.9, parts a and b. 

3. The relative amino acid composition of the summary graph is taken to assess 

the environmental-dependent parameters of conserved residues in the 

summary graph. Through these descriptors, we create a profile of any protein 

with respect to the reported conserved hydrophobic residues. 
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Figure 5.9 Protein of dataset C2. 

5.2.3.4 Analysis of conserved 
residue structural 
environment 

As in Chapter 4, we analyze the data set for all the conserved residues to compare 

the structural environment to amino acids in the naturally occurring proteins using 

packing density, hydrogen bonding, and solvent accessibility as briefly discussed below. 

1. Packing Density (Ooi Number): A contact number with other residues within 

an 8 A radius is computed using the method of Nishikawa and Ooi [47]. 

Because the longest distance from C'a to Ct+
 a is approximately 4 A, the 

nearest neighbor residues on either side of the dipeptide are omitted. 
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2. Hydrogen Bond Information: Hydrogen bond information is defined by using 

a donor-acceptor distance of < 3.5 A. Angular criteria are not considered 

because side-chain atoms are not equally positioned by crystallography and 

because not all hydrogen atom positions are fixed. Hydrogen bonding is 

examined from a side chain at positions /' to the residues other than those at 

positions i-1, i, and i+1, and the average number of hydrogen bonds (dipole 

interactions) that can be formed by the residue in a given position. 

3. Solvent Accessibility: The solvent accessible contact area of amino acids is 

calculated using the method of Lee and Richards [48] with a probe radius of 

1.4 A. The percentage of accessible contact area of the total atoms is used. The 

computed values are presented later in section 5.4. 

5.3 Results 

This section 5.3 contains the results obtained by our methodology, which is 

divided into two modules. In Section 5.3.1, we emphasize an efficient partitioning 

scheme for proteins, and in Section 5.3.2, we provide a coherent subgraph mining 

technique to identify discriminatory subgraphs for classification purposes. In the 

following sections we present the results obtained from each of the modules. Section 

5.4.1 details the results obtained from our partitioning techniques, and Section 5.4.2 

provides the results obtained when the feature vector is used for binary class 

classification and multi-class classification. 

5.3.1 Protein Partitioning 

The protein partitioning approach is aimed at dividing the 3-D protein structure 

into a limited set of compact units that identify structural units within the protein based 
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on the hydrophobic behavior captured by the summary graphs. Like Tsai et al. [57], we 

believe that these units' hydrophobic regions have the highest probability of nucleation 

binding domain protein (PDB ID: 1AN2 (A)), using Algorithm 1.3. 

As described by Gelly et al. [64], protein peeling divides a protein into units based 

on the structure processed by the protein. For validation purposes, we compare the results 

obtained from Algorithm 1.3 to the 'Protein Peeling' approach. We consider the training 

proteins used by Tsai et al. [57] as the benchmark, as shown in Table 5.2. We observe 

similar partitions with respect to the partition's location on the proteins. For a closer look 

at the location of partitions, we perform an in-depth analysis of the partitioning of a 

protein that belongs to the family Cytochrome C (PDB ID 1AKK (A)). The partitions 

obtained on protein 1AAK (A) are compared to the partitions of protein peeling, as 

shown in Table 5.3. We observe that the partitions are consistent with those reported by 

[64], with the exception of the gaps reported by our method. 

Table 5.2 Partitioning of proteins-dataset using protein partitioning. 

Proteins 

3cd4 

1pph1 

2mcm 

1bia 

1sgt 

1 atr ial 

1ccr 

1fha 

2hhba 

2aak 

1cus 

1041a 

3pmga1 

5ruba2 

2aaib1 

Tsai 
et al 

2 

3 

2 

3 

2 

4 

2 

3 

3 

2 

Gelly 
et al 

7 

18 

5 

3 

18 

7 

3 

6 

5 

9 

14 

8 

13 

10 

6 

Ours 

5 

9 

6 

1 

11 

5 

7 

7 

7 

9 

12 

5 

8 

4 

5 
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Table 5.3 Partitions of protein 1AKK (A) of Cytochrome C family. 

Protein Peeling 

1-14 

15-34 

35-59 

60-91 

92-104 

Our Results 

1-12 

14-23 

32-55 

58-78 

93-97 

5.3.2 Classification of Proteins 

The following experiments are carried out to test our feature vector with regard to 

the discrimination of proteins belonging to well-known families at the fold and class 

levels of the SCOP database. Datasets include both balanced and unbalanced populated 

classes of proteins. We evaluate and enumerate our results that capture characteristics of 

our feature vector to distinguish proteins when tested with both multi- and binary classes. 

We use the five-fold cross validation for all our classification schemes. The results are 

presented below. 

5.3.2.1 Binary Class Classification 

To test the efficacy of the feature vector on a dataset containing two classes, we 

choose two well-known datasets, which are shown in Table 5.4. The first dataset CI 

obtained from [19] is unbalanced, consisting of distinctly related proteins from all-a class 

nuclear receptor ligand-binding domain proteins (NB, 16 proteins of typical length 

ranging between 210 to 260 residues each), against the prokaryotic serine proteases 

family (PSP, 10 proteins each of length averaging between 190 to 250 residues long) 

from the all-|3 classes of proteins. The second dataset C2 consists of proteins from the 

eukaryotic serine proteases family (ESP, 19 proteins of length between 200 to 260 

residues on average) and the PSP family, belonging to the same class of all-p proteins. 
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Both datasets (CI and C2) contain proteins filtered under 60% pair-wise sequence 

similarity to remove highly homologous proteins, with a resolution of <=3 and an R 

factor of <= 1.0. The datasets can be obtained from the "culled PDB list26". We use the 

Random Forest classification schema [21] on both datasets. 

Table 5.4 Comparison of results of binary classification. 

Dataset 

C1 

C2 

Method 

DT 

AD 

LFM-Pro 

Proposed method 

DT 

AD 

LFM-Pro 

Proposed method 

Features 

20646 

23130-37394 

5282 

38 

15895 

18491-32569 

2180 

29 

Accuracy (%} 

100 

96-100 

100 

100 

95 

93-95 

100 
96.55 

Our methodology captures fewer discriminatory features and is more accurate 

than methods in [65] and [66]. As reported in Table 5.4, the length of our CI, feature 

vector is 38, and the length of our C2 feature vector is 29. These features represent the 

number of frequent coherent subgraphs augmented with additional features such as the 

relative amino acid composition of the coherent subgraphs, the connectivity of the 

summary graph (see Figures 5.9), and the number of subgraphs extracted from the 

summary graph. Note that the results reported correspond to the five-fold cross validation 

accuracy. 

We use the Random Forest classification scheme in our experiments, as it offers 

several distinct advantages for our application. Random Forest is efficient for datasets 

http ://dunbrack. fccc. edu/Guoli/piscesdownload.php 
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with a large number of input variables. It can internally generate an unbiased estimate of 

the generalization error of the classifier scales and can balance errors in unbalanced 

datasets (see [23] for an excellent introduction to Random Forest). However, we are also 

interested in exploring the relationship of the efficacy of our feature set with the nature of 

the classifier employed. 

To calibrate the performance of the feature vector with other classification 

schemes, we use the six well-known classifiers shown in Table 5.5. The dataset consists 

of two classes of proteins belonging to the cytochrome C fold (all-a class) and the 

ubiquitin fold (a+P class). 

Table 5.5 Efficacy of the feature vector. 

Classifiers 

Naive Bayes 

Logistic 
Random Forest 

K-NN(HEOM) 
SVM (Polynomial) 

C-SVC (Linear) 

Accuracy (%) 

74.28 
80 
80 

88.57 

100 
100 

The consistency of the results obtained across the different classifiers is 

indicative of the accuracy of the classification, which is not deterred by the nature of the 

classifier used. 

5.3.2.2 Multi-Class Classification 

The proposed multi-class classification scheme is an extension of our proposed 

binary class classification scheme. The choice of frequent subgraphs across the classes in 

the dataset is carried out as a combination of classes considered pair-wise. We choose 

27 Weka data mining suite (http://www.cs.waikato.ac.nz/ml/weka/). 

http://www.cs.waikato.ac.nz/ml/weka/


116 

those subgraphs that are common to all possible pair-wise combinations of classes and 

filter them based on their discriminative power across the dataset. A detailed description 

of the way subgraphs are chosen is found in Section 5.4. Our dataset consists of 106 

proteins belonging to three structural classes, namely all-p, a/p, and a+P of the ASTRAL 

SCOP 1.71 database with less than 40% pair-wise identity. Table 5.6 shows the database 

breakdown. 

Table 5.6 Multi-class classification dataset. 

Structural 
Class 

All Betas 

Alpha/Beta 
and 

Alpha + Beta 

All Beta 

Folds 

Immunoglobulin-like 
beta-sandwich (IgFF) 
CI-2 family of serine 

protease inhibitors, beta-
Grasp (Ubiquitin-like) and 

Nucleotide-diphospho 
sugar tranferase (N) 

Trypsin-like serine 
proteases (TSP) 

Overall 

No. of 
proteins 

38 

33 

35 

106 

Precision 
(%) 

86.8 

87.1 

89.2 

87.73 

We consider two important fold classes of all-p proteins. The first fold class 

consists of 38 proteins of the immunoglobulin-like beta sandwich class of proteins 

(IgFF). Each protein is composed of 260 to 300 residues. The proteins from this fold 

exhibit a wide heterogeneity in terms of tissues and species distribution or functional 

implications. The domains of these proteins are far more conserved than their sequences. 

The second fold class of the all-P family consists of 35 Trypsin-like serine proteases 

proteins. The Trypsin-like serine proteases fold (TSP) has smaller than average surface 

areas, smaller radii of gyration, and higher Ca atom densities (approximately 238 

residues in length on an average). These findings imply that proteases are, as a group, 
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more tightly packed than other proteins, as also evidenced in [14]. There are also notable 

differences in secondary structure content between the folds of these proteins. 

We introduce the third random class of proteins for classification, taking into 

account the local bias caused by binary class dataset. This third class consists of proteins 

chosen at random from an unrelated structural class of proteins. In order to reduce the 

effect of this class on classification results, we ensure that there is no structural 

uniformity among these proteins. This lack of uniformity results in a class of 33 proteins, 

of average length 160 residues each, belonging to both the a/p and a+p structural classes. 

All the proteins of the dataset satisfy the criteria of < 40 % of sequence identity. 

An overall accuracy of 87.73% is reported using the Random Forest classification 

scheme. Individual class precisions are reported in Table 5.6. In our scheme, 33 of the 38 

proteins of immunoglobulin-like beta sandwich class (IgFF) are correctly classified. 

Table 5.7 shows the confusion matrix. Similarly, 33 of the 35 Trypsin-like serine 

proteases fold (TSP) proteins are correctly classified. The area under curve (AUC) of the 

corresponding ROC plots of Figure 5.10, are shown in Table 5.7. From the ROC and 

AUC for each class, we conclude that the classifier distinguishes the proteins of the three 

classes in the dataset. 

Table 5.7 Confusion matrix. 

IgFF 

33 

3 

2 

N 

4 

27 

0 

TSP 

1 

3 

33 

IgFF 

N 

TSP 

Area Under Curve 
(AUC) 

0.93 

0.928 

0.986 
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Figure 5.10 ROC Analysis using Random Forest classifier. 
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5.4 Discussion 

5.4.1 Frequently Occurring 
Subgraphs 

One of our objectives is to validate the accuracy of the reported frequently 

occurring subgraphs to discriminate between homologous proteins. To this end, we 

compare the residues reported by our method to those reported by Reddy et al. [56]. The 

proteins used in our study are located in the fssp-ckaaps-1.2 database28 provided in [56] 

and belong to three structural protein classes: coiled coil, all- p, and <x+p\ 

We have selected ten proteins from each class, resulting in a dataset consisting of 

30 proteins which satisfy a RMSD of <=3.0 and a Z-score of >=4.5. We report a total of 

141 coherent subgraphs from the protein database. These are further narrowed by 

choosing subgraphs that are common to all possible pairs of classes in the dataset and that 

satisfy a minimum threshold of DP. The subgraphs common to all combinations of two 

classes have the discriminative power to differentiate proteins in all the classes of the 

dataset. 

Subgraphs and their residue locations, as shown in Table 5.8, are selected only if 

they satisfy a DP >= 0.1 on a scale of 0 to 1. We perform the multi-class classification 

with five-fold validation using the Random Forest Classifier, which yields commendable 

individual class accuracy and an overall accuracy of 90%, as shown in Table 5.9. To 

investigate individual residue contribution, we study the proteins that belong to the coiled 

coil class. We choose those subgraphs that posses the highest discriminative power (see 

Table 5.8). From Table 5.8, we observe that subgraphs 23 and 58 posses the highest 

discriminative power (0.4). 

ftp://ftp.sdsc.edu/pub/sdsc/biology/ckaap 

ftp://ftp.sdsc.edu/pub/sdsc/biology/ckaap
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Table 5.8 Coherent subgraphs. 

Subgraph 
Index 

19 

23 

24 
25 

31 

33 

54 

56 

58 

62 

65 

Discriminative 
Power 

0.2 

0.4 

0.2 
0.1 

0.2 

0.2 

0.2 

0.2 

0.4 

0.2 

0.2 

Residue 
Locations 

8, 9, 10 

22,23 

27,28 
29,30 

19, 20, 21 

34, 35, 36 
19,20 

26,27 

37,38 

11,12,13 

29, 30, 31 

Table 5.9 Results of multi-class classification. 

Structural Class 
Coiled Coil Proteins (A) 

All Beta Proteins (B) 

Alpha/Beta Proteins (C) 

Overall Accuracy 

Precision (%) 

100 
90.9 

81.8 

90 

Our results obtain a higher rank (80% of the proteins report highly ranked 

residues at locations 22, 23, 37, and 38) than CKAAPs [56]. We present the residues, 

their respective locations in protein sequences, and their associated CKAAPs ranks 

above, as shown in Table 5.10. We observe that though not all the proteins report 

conserved residue locations in CKAPPs, our results indicate that the residues at location 

37 are more conserved than others. The analysis of the hydrophobic propensities of the 

residues across all the proteins reveals that residues at location 22 exhibit conservation of 

hydrophobic residues. Similarly, the residues at location 37 exhibit conservation of 

hydrophilic propensity. 
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Table 5.10 CKAAPs alphabetical rank scores. 

Protein 

1fe6c 

1g2ci 

1czqa 

2dgca 

1qbza 

1ci6b 

1fe6a 

1a02j 

22 

F 

H 

-

-

-

-

B 

-

Ser 

Ser 

Glu 

Met 

Arg 

Glu 

Arg 

Ala 

23 

-

-

G 

B 

-

-

-

-

Leu 

Leu 

He 

Lys 

Gin 

Asn 

Tyr 

Arg 

37 

A 

A 

B 

-

-

G 

A 

E 

lie 

Leu 

lie 

Tyr 

Leu 

Leu 

Leu 

Glu 

38 

-

-

-

-

K 

J 

-

A 

lie 

Lys 

Lys 

His 

Gin 

Ser 

Glu 

Leu 

5.4.2 Structural Environment of 
Conserved Hydrophobic 
Residues 

In this study, we consider the proteins used by Paiardini et al. [55]. We compare 

the proteins of Trypsin-serine protease fold superfamily (TSP) to proteins from the (PLP) 

family, which consists of 23 proteins belonging to the 1-PLP-dependent enzymes 

superfamily (PLP) fold type. These proteins exhibit high structure conservation despite 

low sequence similarity. 

To evaluate the structural environment of the conserved residues of the summary 

graphs of individual proteins, we compare the various environmental parameters for the 

conserved residues against all naturally occurring residues of the protein. As seen in 

Figure 5.11, the total hydrogen-bonding interactions of the conserved residues are 

proportional to the hydrogen-bonding interactions in the naturally occurring proteins. 

This plot reflects the proportional decrease of the charged group of conserved residues 

when compared to the overall residues in the protein. It thereby captures the integrity of 

the proteins in the dataset. The Ooi values (Figure 5.11) indicate that the conserved 
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residues are significantly more buried than naturally occurring residues. Finally, the 

solvent-accessible contact area, as seen in Figure 5.11, of the conserved residues does not 

show much difference compared with amino acids in a naturally occurring protein. 

1 2 3 
Number of hydrogen bounding interactions 

10 11 12 13 14 lO 18 17 10 13 20 21 

(a) 

40 

a 36 
u 

f> 30 

8 25 
O 
O 20 

Number of amino acids 

(b) 

|Cona*rv#d 
•Natural 

llhbblibL 
0 10 20 30 40 60 

l> L 
70 80 90 100 

% of solvent accessible contact area 

(C) 

Figure 5.11 Comparison of summary graph and protein representative set. 

We extract a set of 25 key positions that possess a discriminative power greater 

than 50%. Of those extracted, 23 conserved positions across the PLP family of proteins 

match the conserved residue positions reported by Paiardini et al. The matching 23 

positions and their reported conservation scores are listed in Table 5.11. The biological 

significance of the reported conserved residue locations reported by Paiardini et al. state 

that positions 8, 12, 11 and 97 are involved in one of the strongest conserved 
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hydrophobic contacts (CHC). The position 133 of SCR- P 17, occupied mainly by the 

Arg residue, is the center of a cluster of interacting residues. 

All residues that are in close proximity of position 133 are members of the cluster. 

Residues 8, 11 of SCR- a 1, and 97 of SCR- a 12 form a hinge between a 1 and a 12. 

These residues form a vertical strip down each side of the helices that delimit the major 

domain. Site 97 of SCR- a 12 is engaged in the constitution of the two most extensive 

hydrophobic contacts measured for the a 1- a 12 hinge. Table 5.11 shows the matching 

positions and conservation scores of hydrophobic contacts measured for the a 1- a 12 

hinge. 



Table 5.11 Matching positions and conservation scores. 

Conserved 

residue 

location 

5 

8 

9 

10 

11 

12 

14 

15 

16 

18 

45 

53 

54 

74 

75 

76 

97 

103 

104 

133 

134 

136 

137 

Structurally 

conserved 

regions 

a1 

p2 

p5 

(56 

(110 

a 12 

P17 

Residues 

QEIERLLKRAEQCAEKQRMEEEE 

ALYAVKIVLLFMLVFAMLLAIIF 

LAAAAFAKAARGVNAKCLGASKC 

OEQEKRHKENDEADAEESKRAER 

AWYTVR\S/WTILLMAHAAVMLLL 

YLAFLEFMFTLfTVHFEALYEKT 

GRQESETWTDKTEEHDGSGKEYY 

VAVAEEVIIRVACMAYCQGTSIA 

NLLAITVITALTvVLIVLVYTvV 

YIRPSVPADSGVDNTHPAGGAVS 

PQVTFTCNRLAGIITnVPRVQT 

SGGGGGGGGIIGMIGGMHCGLGG 

RDQRTAKRQEAAYVLQEASTRLA 

VLIVATLTYLIILTALSMFWLA 

TVLMSVLFATYACTTTrTNVLLI 

TVRFFNTTFLAALLFMQFFQHFF 

LLLLMLYYLLFLLLLLLIFAMLL 

QKQEHAYVAVIGDYVYQHKDSKR 

VLIDMYLIIMNMILRRHAHLTLR 

RRRRRRRRRRRRIEWRRRRLRRS 

LLILLLIAIAIYALLLFFFFLL 

TLV-ILYALCPIIMFHIIPIMFLL 

PTGHCAGAHPYAPTRAGTCTGIF 

Conservation 

score 

0.44 

1.15 

0.91 

0.92 

0.90 

0.43 

•0.46 

0.21 

0.31 

0.57 

0.56 

1.00 

0.40 

1.37 

0.93 

0.56 

1.70 

0.72 

0.60 

2.00 

1.43 

0.95 

0.67 
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5.5 Conclusion 

A protein folds into globular structures as a response to its surrounding 

environment, which poses several computational challenges for the determination of 

causal factors involved in the folding. This (folding) behavior of proteins has been 

frequently governed by localized hydrophobic residue interactions. To this end, an array 

of hydrophobicity scales has been developed to determine the hydrophobic propensities 

of residues under different environmental conditions. These scales act as a relatively 

untapped reserve of information to provide researchers a unique perspective to observe a 

protein under different conditions. The similarities and discrepancies among these scales 

are valuable resources of information for the structural and functional behavior of the 

protein, and an effective abstraction strategy such as ours can lead to better elucidation of 

this data for functional assessment. 

We have developed a graph-theory based computing framework for the 

identification of conserved hydrophobic residue interaction patterns using well known 

scales of hydrophobicity. The framework provides a means to weigh these residue-

residue interaction patterns and to identify key discriminatory patterns using mutual 

information and a discriminative weighing function. We report that these discriminatory 

patterns are specific to a family of proteins, consisting of conserved hydrophobic residues 

that can be used for structural classification. 

Our results reaffirm our hypothesis that conserved hydrophobic residues are 

retained in structurally homologous proteins and play a vital role in protein folding. 

Clearly, the success of the framework relies on three key factors: the efficient 

representation on the structural characteristics of a protein using Delaunay Tessellations, 
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the choice of hydrophobicity scales to identify hydrophobic residues, and, finally, the 

provision of summary graphs that prove useful in integrating information from different 

scales. The summary graph is vital in capturing interaction similarities across scales, 

eventually affecting the identification of frequent coherent subgraphs. Typically the 

efficacy of such a method can be compared with an appropriate random background 

calculated using different permutations of the given sequences. Our current focus is to 

propose a novel and effective approach for integrated hydrophobicity profiling and 

characterization. Future efforts will entail tuning and evaluating the robustness of the 

approach for datasets with usual sequence reshuffling or permutation, which has 

disrupted the biological information. We will also explore refinements when other stereo­

chemical properties are included in the analysis and evaluate their affects on the 

integrated framework, including when the underlying biological information has been 

disrupted. 

In conclusion, the proposed framework provides an efficient means to integrate 

different scales for protein analysis. This study further reinforces, with newer evidence, 

that the identification of conserved hydrophobic residues is vital to the exposition protein 

folding and further aids in the functional annotation of proteins and possible mutational 

studies. 



CHAPTER 6 

CONCLUSION 

The study presented in this dissertation addresses the problem of integrating 

numerous physico-chemical properties (sequence based) for the structural and functional 

annotation of proteins. Our aim is to provide a classification mechanism that is 

computationally inexpensive and dependant on sequence properties. 

We have presented three approaches for effective feature extraction. First, in 

Chapter 3, we provide an in depth look at the vital roles that different hydrophobicity 

scales play in the folding of protein. Our approach has overcome two major obstacles, the 

inherent high dimensionality of the data, and the difficulty of generalizing an n-

dimensional object to a desired lower dimensional space. We deal with the first obstacle 

by integrating scales by providing a methodology for coherent feature extraction from the 

selected scales of hydrophobicity for a protein sequence. Plagued by the problem of 

unequal cardinality of proteins, our proposed integration scheme effectively handles the 

varied sizes of proteins. Here we deal with how to choose scales from a known scale 

space, so that we can obtain higher classification accuracies. 

Since our first approach suffers from an inability to integrate two properties at a 

time, we build our second approach to handle multiple properties simultaneously. In the 

second approach, we design a schema to handle the integration of multiple physico-

127 
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chemical properties. Not limiting our choice of physico-chemical properties to 

hydrophobicity, we use the scales proposed by [6]. We additionally propose an 

integration scheme. The objective of this work is to explore this integration approach as a 

method of identification for conserved domains across homologous families of proteins. 

Theory states that the contribution of conserved residues over a protein sequence, toward 

determining the bio-chemical function is obtained by the interactions formed with 

substrates, cofactors, and other residues [15]. Thus, in Chapter 4, we hypothesize that 

correlated mutations of physico-chemical interactions between residues reveal residue 

conservation patterns that are unique to homologous proteins. We create a unique 

representation scheme known as protein maps for a given protein. These maps are aimed 

at capturing structural makers across a myriad of physico-chemical properties. 

Driven by the need to identify conserved residues among homologous proteins, 

we further investigate and provide necessary insight to the identification of protein cores 

in Chapter 5. Inhibited by using features derived from sequential properties alone, we 

represent the sequence based properties over the 3-D structure of a protein. By using a 

graph theory-based data mining framework to extract and isolate protein structural 

features, and by applying a mutual information-based feature extraction technique, we 

identify those residues that exhibit sustained invariance among homologous proteins. 

This identification has been performed through the integrated analysis of five well-known 

hydrophobicity scales over the 3-D structure of proteins. 

The methods proposed in Chapters 3, 4, and 5, are complementary in several 

aspects. All three methods are driven by a common rudiment of using sequence-based 

properties. Each method is aimed at improving over previous methods. In the method 
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proposed in Chapter 3, we integrate two physico-chemical properties. In Chapters 4 and 

5, we successfully propose an integration scheme that integrates structural and multiple 

physico-chemical properties in a single instance. 

6.1 Future Directions 

The ultimate goal of this research is structural and functional annotation which we 

hoped to achieve by integrating various features. Several further developments can be 

planned for the near future. Specifically, we plan to use the tools for classifying new 

sequences and the proposed algorithms that we have discussed in this dissertation to 

explore the effects of various properties on protein structure. We expect these 

explorations to add to our understanding of protein properties, thereby, allowing valuable 

insight into protein evolution, to sequence-structure relationships, and to studies on 

protein function analysis. 
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