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ABSTRACT 

Strain localization in the form of shear bands or slip surfaces has widely been 

observed in most engineering materials, such as metals, concrete, rocks, and soils. 

Concurrent with the appearance of localized deformation is the loss of overall load-

carrying capacity of the material body. Because the deformation localization is an 

important precursor of material failure, computational modeling of the onset and growth 

of the localization is indispensable for the understanding of the complete mechanical 

response and post-peak behavior of materials and structures. Simulation results can also 

be used to judge the failure mechanisms of materials and structures so that the design of 

materials and structures can be improved. 

Although the mechanisms responsible for localized deformation vary widely from 

one material to another, strain softening behavior is often observed to accompany the 

deformation localization in geotechnical materials. In this dissertation, a rate-independent 

strain softening plasticity model with associated flow rule and isotropic softening law is 

formulated within the framework of classical continuum mechanics to simulate the strain 

localization. A stress integration algorithm is developed to solve the nonlinear system of 

equations that comes from the finite element formulation of the incremental boundary 

value problem for linear strain softening plasticity. Two finite element programs, EP1D 

and EPLAS, are developed to simulate strain localization for 1-D and 2-D problems. 

Numerical examples show that the developed strain softening model and 
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computer programs can reproduce well the occurrence and development of strain 

localization or shear band localization. 

Because the classical strain softening model does not contain a material length 

scale, the finite element simulation suffers from pathological mesh dependence. To 

regularize the mesh dependence of a classical strain softening model, gradient plasticity 

theory or nonlocal plasticity theory has to be used. To provide correct boundary 

conditions for higher-order differential constitutive equations with regard to internal state 

variables, a comparison of boundary conditions for gradient elasticity with gradient 

plasticity is carried out to show that the Dirichlet boundary condition is the correct 

boundary condition to force the strain to be localized into a small region and to remove 

the mesh-dependence. 

A nonlocal plasticity model with C° finite elements is proposed to simulate 

strain localization in a mesh independent manner. This model is based on the integral-

type nonlocal plasticity model and the cubic representative volumetric element (RVE). 

Through a truncated Taylor expansion, a mathematical relationship between an integral-

type nonlocal plasticity model and a gradient plasticity model is established, which 

makes it possible to use the C° elements to approximate the internal state variable field. 

Variational formulae and Gaierkin's equations of the two coupled fields, displacement 

field and plastic multiplier field, are developed based on the C° elements. An algorithm 

consisting of nonlocal elements and moving boundary technique is proposed to solve the 

two coupled fields. A numerical example shows the ability of the proposed model and 

algorithm to achieve mesh-independent simulation of strain localization. 
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CHAPTER 1 

INTRODUCTION 

1.1 Engineering Background 

It is frequently observed that deformation is concentrated in one or several narrow 

zones of intense straining in the failure processes of a number of solids, such as metals 

(Figure 1.1 and 1.3), concrete (Figure 1.5), rocks (Figure 1.6) [1], and soils (Figure 1.7) 

[2-4]. When the behavior of these materials approaches failure, a smoothly varying 

deformation pattern will change into one that involves highly localized deformations. 

This phenomenon is generally called "strain localization," and it occurs in a wide range 

of engineering materials. Because the strain localization generally manifests itself in the 

form of shear banding, the strain localization is often called "shear band localization" 

except for the idealized one-dimensional cases. 

1.1.1 Localization of Deformation in 
Metallic Materials 

Physical processes of the strain localization vary widely, depending on the types 

of materials, their microstructures, loading paths and environment (temperature). 

Localization of deformation in single crystal metals is a natural outcome of plastic 

deformation. For cubic crystals, the plastic deformation involves a relative slip along 

certain lattice planes in certain lattice directions. In face-centered cubic crystals there are 
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12 slip systems, and a yield surface vertex results from the discreteness of the slip 

systems. When the crystal deforms plastically, under boundary constraints, the material 

lattices can rotate relative to each other and thenceforth induce geometrical softening. 

Asaro [5] has shown that both yield surface vertex effects and geometrical softening 

effects contribute significantly to the localization process of single crystals. Although 

coarse slip bands form before the maximum load is reached, macroscopic shear bands do 

not form until the maximum load point after which necking occurs. Chang and Asaro [6] 

also have shown that the material plane of macroscopic shear bands is not aligned with 

the operative crystallographic slip plane (Figure 1.1(a)). The deformation is 

homogeneous before the maximum load point is reached. 

Shear bands in high-strength, low-hardening crystals appear abruptly with very 

little necking, while, in low-strength, high-hardening crystals, macroscopic shear bands 

gradually form after considerable diffuse necking. Diffuse necking itself causes 

nonuniform lattice rotation, which leads to geometrical softening, and in turn advances 

the localization (Figure 1.1(b) and (c)) [6]. In any case, macroscopic shear bands form in 

the necked-down region. 

For ductile metal polycrystals, Anand and Spitzig [7] have shown that shear band 

localization is also initiated by microstructural inhomogeneities through testing a 

specimen made of aged maraging steel subject to plane strain tensile loading. The 

deformation is still homogeneous up to the maximum load point, and no shear bands are 

observed prior to the onset of diffuse necking. The shear bands first form shortly after the 

beginning of diffuse necking with the material being still in the strain-hardening phase. 



The shear bands are densely distributed near the center of the neck, and there are 

connected shear bands spreading diagonally across the specimen (Figure 1.1(d)) [7]. 

(a) 

(c) 

(b) 

1 <. -» i t * -

\ 

(d) 

Figure 1.1 Shear bands in single crystal and polycrystalline metals: (a) shear banding in 
aluminum-copper single crystals; (b) shear bands in a relatively soft, high-hardening 
crystal; (c) shear bands in a relatively strong, low-hardening crystal; (d) shear bands in 
polycrystalline metals [6-7][11]. 

Figure 1.2 is a typical stress-strain curve for metals under uniaxial tension. In 

most cases, macroscopic shear bands occur at or near the peak load point B after which 

the load-carrying capacity of the specimen decreases with increased strain. The eventual 

failure mode usually involves fracture along one of these bands. The shear banding 

failure mode is most often observed in the plane strain tensile test, while the cup-and-
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cone fracture mode is generally observed following the diffuse necking in the standard 

tensile test. 

The Liiders bands are often observed under room temperature in impure 

poly crystalline body-centered cubic metals (see Figure 1.3 (a)) and some polycrystalline 

shape memory alloys, for example, Nitinol (see Figure 1.3 (b)). Figure 1.4 shows a 

typical stress-strain behavior for a polycrystalline mild steel at a constant strain rate. The 

Liiders bands nucleate at the upper yield point A, and is fully developed when the stress 

drops to the lower yield point B. From the lower yield point B on, the Liiders bands 

propagate along the specimen axis roughly at constant stress. When the entire sample has 

yielded, the plateau on the stress-strain curve terminates at the Liiders strain sLu. From 

that point on, the stress will rise with increased strain, indicating that the strain hardening 

process proceeds (see Wang [8]). 

Deformation Localization 
(Necking) 

B / ^ 

•*- s 

Figure 1.2 Typical stress-strain behavior for metal. 



(a) (b) 

Figure 1.3 Luders bands in metals: (a) mild steel plate (courtesy of Mike Meier, 
University of California, Davis); (b) Nitinol tube [17]. 

Luders band 

Unyielded metal 

-as- £ 

Figure 1.4 Typical stress-strain curve for Luders band. 
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The Liiders bands occur in certain types of steel, such as low carbon steel (mild 

steel), but not in other metallic alloys, such as aluminium alloys or titanium alloys. This 

difference exists because plastic strain localization is normally suppressed by work 

hardening, which tends to make plastic flow occur rather uniformly in a metal, 

particularly in the early stages of plastic flow. However, there has been a lot of 

experimental evidence that macroscopic shear band localization frequently occurs in the 

necking phase of some types of metallic materials after the maximum load point is 

reached, as described above. 

1.1.2 Localization of Deformation in 
Geotechnical Materials 

The strain localization in geotechnical materials, such as rocks, soils, and concrete, 

exhibits different mechanisms from those in metallic materials. Laboratory experiments 

have shown that narrow bands of localized deformation are observed to form in rocks and 

concrete during compressive failure [13-16] (Figure 1.5). Also, the geological 

phenomena, for example, earth faults, provide evidence of localized deformation in rocks 

during the movement of the earth crust caused by such action as earthquakes (Figure 1.6). 

In clays and sands, shear bands often form in triaxial and plain strain compression tests 

(Figure 1.7 (a), (b) and (c)). Slope failure is a typical scenario of shear band localization 

in geotechnical engineering (Figure 1.7(d)). The occurrence of shear bands in 

geotechnical materials is often accompanied by the loss of the overall load-carrying 

capacity of the samples or structures with increased deformation after the maximum load 

has been reached. This phenomenon is often called "strain softening," to contrast with a 

phenomenon of "strain hardening" in classical plasticity. 
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* I * r I I r r 4 

Figure 1.5 Shear bands in concrete: experimental observations. 

(a) (b) 

Figure 1.6 Shear bands in rocks: (a) decohesion of rock layers [4]; (b) shear band in 
perlite (I. Vardoulakis) [4]. 
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Figure 1.7 Shear bands in soils: (a) stiff clayey soil [1]; (b) silica (quartz) sand, plane 
strain test [2]; (c) X-ray negative plate of the shear band in cohesionless sand [10]; (d) 
slope failure (California 1995) [3]. 
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The initiation and their geometrical characteristics, such as orientation and 

thickness, of the shear bands in geotechnical materials are strongly affected by the 

properties, state, and the testing conditions. In cohesive materials (for example, rocks and 

dense clays), formation of fracture can be observed at the onset of shear bands and the 

cohesive component of the shear resistance vanishes. In granular, cohesionless materials, 

shear band localization induces intense inter-granular slip and rotation, which in turn 

leads to strong dilatancy of the materials inside the localized zone [9]. Figure 1.7(c) 

shows an X-ray negative plate of a sand specimen (see Vardoulakis [10]). The strong 

localized material dilatancy due to grain rearrangement and grain rotation are the 

dominant micro-kinematical features of shear banding in granular materials. The 

increasing porosity and decreasing density reduces the number of contacts per grain in 

the granular assembly, resulting progressively in a weaker granular structure. 

Figure 1.8 is a typical axial stress-strain curve for rocks subject to triaxial 

compression testing as described by Jaeger and Cook [13]. The rock material behaves 

nearly elastically in the first two regions, OA and AB. Loading and unloading in this 

region does not produce irreversible deformation. Note that from O to A, the intrinsic 

microcracks of the rock material close during the loading, resulting in the curve OA 

being slightly convex upwards. In the region from B to C (usually aB =}{<JC ), 

irreversible deformations develop in the rock, and the slope of the stress-strain curve 

decreases with increasing strain. At or near the peak point C, macroscopic localization of 

deformation appears often in the form of a shear band. Further loading from point C leads 

to a descending branch of the stress-strain curve, a plausible behavior in the rock after 

deformation localization. 
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Figure 1.8 Typical axial stress-strain behavior for rock [13,15,16]. 

Figure 1.9 shows a typical axial stress-volumetric strain curve for the rocks [13], 

where the regions OA, AB, and BC correspond to the same regions as in Figure 1.8. 

From O to B, the volume of the rock material decreases with increasing compression, 

elastically but not necessarily in a linear fashion. When the stress reaches the point B, the 

slope of the curve begins to decrease with increasing stress, which represents an increase 

in volume relative to elastic contraction. This phenomenon is known as dilatancy that can 

be ascribed to the formation and extension of open micro-cracks within the rock 

specimens. The dilating proceeds from point B to point C, where macroscopic 

localization develops. After point C the rock continues to dilate until the final collapse or 

fracture of the specimen. 
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Figure 1.9 Typical axial stress-volumetric strain behavior for rock [13, 15]. 

Confining pressure has effects on the strength and ductility of the rock specimens 

[13]. When the confining pressure is increased, the maximum stress corresponding to the 

macroscopic localization will increase and the permanent deformation remaining in the 

specimens during the post-localization phase also increases. 

Due to the similarities between the constituent materials and structural features of 

rock and concrete, the deformation mechanisms and mechanical behavior of concrete are 

much like those of the rock. Figure 1.10 is a typical plot of axial stress versus axial strain 

for concrete under uniaxial compression as described by Chen [14] and Figure 1.11 

shows a typical axial stress - volumetric strain curve [14]. By comparison of Figure 1.10 

with Figure 1.8 and Figure 1.11 with Figure 1.9, one can find the similarities between 
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these two materials. However, there are still some distinctive characteristics in the 

behavior of the concrete. In the region OA of Figure 1.10, the stress-strain curve is nearly 

linear-elastic up to about 30 percent of its maximum compressive strength f'c . Beginning 

from the point A the curve shows a gradual decrease in the slope up to about 0.75/c' to 

0.90/c', whereupon its slope decreases sharply and approaches zero at the peak point B. 

The macroscopic deformation localization forms at or near point B, after which post-

localization follows and the material's behavior experiences strain softening until the 

final fracture. Figure 1.11 shows that the change in volume is almost linear up to about 

0.15f'c to 0.90/c' (the point C), after which the volumetric change is reversed, resulting 

in volumetric expansion near or at f'c . The deformation localization generally 

accompanies the volumetric expansion and becomes visible at point B. 

A 
Macroscopic localization 

Figure 1.10 Typical axial stress-strain behavior for concrete [14,15]. 
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Figure 1.11 Typical axial stress-volumetric strain curve for concrete [14]. 

The nonlinear behavior of concrete is caused by the microcracks contained in 

concrete. These microcracks exist at interfaces between coarse aggregates and mortar, 

even before any load has been applied. Many of these microcracks are caused by 

segregation, shrinkage, or thermal expansion in the mortar. The propagation of these 

microcracks during loading contributes to the nonlinear behavior of concrete at low stress 

level and causes volumetric expansion near failure. Also some microcracks become the 

triggering factor for the localized failure modes. 

The behavior of soil is more complex, depending on its nature (distribution of 

grain sizes and the mineralogy of the grains), state (specific volume together with the 

pore pressure, dry or saturated), and loading condition (drained or undrained). Figure 

1.12 is a typical stress-strain response for dry soils subject to a triaxial compression test 
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as described by Atkinson [12]. A 'dry' soil in this context refers to dense sand and 

overconsolidated clay as described in [12, 16]. The response from point O to B is 

basically elastic, and plastic deformation is involved from point B to C. In the region BC, 

the soil experiences dilation as the rock does. At point C, which corresponds to the 

maximum load, localized deformation develops often in the form of shear bands or slip 

surfaces. Following the peak point C, is the post-localization region, where strain 

softening behavior dominates the response, and the soil arrives at its critical state at point 

D. Regueiro and Borja [16] noticed a difference between the "slip surface" and the "shear 

band" and define the "slip surface" as "a zone of localized deformation with negligible 

width" and the "shear band" as "a zone of localized deformation with finite width." 

Figure 1.13 depicts the volumetric change of the dry soil with increasing axial strain [12, 

18]. The mechanism of dilatancy is related to the original arrangement of particles in 

soils and their movement during loading, and plays an important role in the formation of 

the shear band pattern. 

It is noteworthy that not all soil types exhibit shear banding during the failure 

process, and, for some soils, other failure modes, for example, barreling and bulging, are 

also observed in laboratory experiments (see Read and Hegemier [15]). However, the 

phenomenon of strain softening in the post-peak region is almost always observed to 

accompany the failure processes of soils. 
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Figure 1.12 Typical axial stress-strain behavior for dry soil [12,16]. 
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Figure 1.13 Typical volumetric strain-axial strain for dry soil [12, 16]. 
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1.2 Research Significance 

Because deformation localization is an important precursor of material failure, 

computational modeling of the onset (bifurcation point) and growth (post-bifurcation 

behavior) of the localization is indispensable for understanding the whole deformation 

process and the final strength of materials and structures. Also, in the simulation of a 

vehicle crash, lethality and vulnerability of weapons, and extreme events in critical 

systems such as a nuclear reactor, understanding the material behavior after the formation 

of localization is of great importance. Simulation results can be used to judge the 

mechanisms of material and structure failure so that the design of materials and structures 

can be improved. Good material models that can replicate the localized deformation 

patterns and final failure modes are in demand. 

1.3 Computational Modeling of 
Strain Localization 

1.3.1 Bifurcation and Material Instability 

It is widely recognized that the localization of deformation results from material 

instability and is a bifurcation phenomenon [30-39]. In a nonlinear dynamic system, a 

bifurcation is generally defined as the change of the number of attractors when some 

system parameters are changed. This change is accompanied by a change of the stability 

of an attractor. In a bifurcation point, at least one eigenvalue of the Jacobian gets a zero 

real part (see Seydel [19]). From a pure mathematical point of view, Hale [20] gave the 

following definition of bifurcation: 

Suppose that S2? and ^ are topological spaces, ^ <z of is open, E is an open 

set in a topological space, and / \^ xS H-» ̂  is a given continuous function. Let 
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£7 = {(x,Z)eT-xE:f{x,Z) = 0} (1.1) 

be the set of solutions of the equation f(x,^)= 0. For a fixed £, define 

^ = {x:(x,t)eSs} (1.2) 

as the "cross-section" of the solution set at E,. In a specific problem, the solution sets 

[5^, g e Sj can be divided into equivalence classes by means of an equivalence relation. 

Given the function / and an equivalence relation ~ , if for any neighborhood W^ of 

£0, there are £,, £2 e W such that 5^ ^ ̂ , the £0 is called a bifurcation point for 

( / , ~ ). An example of an equivalence relation is that i ^ ~ ̂  when 5 | and ^ are 

homeomorphic. 

Bifurcations occur in all types of equations. For a nonlinear differential equation 

depending on a set of parameters, a bifurcation point is defined as a point where the 

number of distinct solutions changes as the parameters change [21]. The concept of 

bifurcation basically implies that system behavior goes through some fundamental 

changes, qualitative in nature, and, as a consequence of this change, the number of 

critical solutions, a quantitative aspect, is changed. Many problems in engineering, such 

as buckling of structural members (e.g. slender columns and deep beams), or in physics, 

such as phase transitions, are typical examples of bifurcation phenomena. 

The qualitative changes of system behavior at a bifurcation point include the 

changes from stable to unstable, symmetric to asymmetric, stationary to periodic motion, 

regular to irregular, order to chaos, etc. [19]. Several of these changes may appear 

simultaneously. 
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According to Drucker's stability postulate (see Drucker [25] and Chen [14]), a 

material is considered to be stable during small deformation if its stress rate and strain 

rate satisfy the following condition: 

&:e>0, (1.3) 

where a is the Cauchy stress tensor and s the strain tensor. The dot over a variable 

denotes the partial derivertive of that variable with respect to time (the rate of that 

variable) or increment of that variable, if no real time is involved at all. 

The Equation (1.3) is called the stability criterion. If a material's behavior violates 

the stability criterion, that is 

a:s<0, (1.4) 

the material is considered to be unstable. 

Strain softening is a typical unstable behavior of materials. The descending 

branch of a typical stress-strain curve of a material under a standard compression test 

represents the strain softening behavior. In the descending branch, the stress decreases 

with increased strain and the tangent modulus of the curve becomes negative (see Figure 

1.14). 

Strain softening is only one form of material instability. Compared to the 

definition of material stability, the material instability involves more aspects of the 

mathematical characterization of the material's behavior. Belytchko [23] give a general 

definition of material instability as "a material is considered unstable when a 

perturbation applied to an infinite slab of the material in a uniform state of stress grows 

without bound." This definition is consistent with the mathematical definition of the 

instability given by Seydel [19]. Besides the strain softening, experimental and numerical 
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studies showed that the yield surface vertex and the non-associative flow rule (see Figure 

1.15) also cause the material to be unstable (see Tvergarrd et al. [22] and Belytschko and 

Mish [23]). Material instability is also related to such phenomena as crazing of polymers 

and liquefaction of granular materials. 

^»- c 

Figure 1.14 Material instability arising from strain softening. 
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A & 

Figure 1.15 Material instability arising from nonassociative flow rule. 

It is well agreed that deformation localization appears when the behavior of a 

material changes from stable to unstable at a bifurcation point where a homogeneous 

deformation pattern gives way to one of highly localized deformation patterns. Shear 

banding is one of these localization modes. In addition, necking, slip surface, and bulging 

are also frequently observed localization modes. 

1.3.2 Theories for the Modeling of Strain 
Localization —A Brief Review 

1.3.2.1 General Review 

The earliest theoretic work for the modeling of the strain localization should 

probably be ascribed to Hadamard [24]. A generally accepted theoretical framework that 

associates the formation of strain localization with a material instability and a bifurcation 
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phenomenon is developed by Thomas [26], Hill [27], Mandel [28], and Rice [29]. These 

pioneering works laid the necessary conditions for the onset of strain localization and 

become the foundation for numerical simulation of stain localization. The fundamental 

points of this theoretical framework are that the onset of strain localization is associated 

with the loss of material stability and correspondingly, the governing incremental 

equilibrium equations lose ellipticity. The early numerical studies employing classical 

elasto-plastic constitutive equations with a smooth yield surface gave no indication of 

strain localization and showed that strain localization does not appear until the material 

behavior loses its stability (see Tvergarrd, Needleman, and Lo [22]). According to Hill's 

bifurcation theory [30], all forms of material instabilities may lead to deformation 

localization. The most common forms of material instabilities are strain softening and the 

non-associative flow rule, although it has been shown that yield surface vertex based on 

the J2 corner theory of plasticity does initiate the strain localization in a plane strain 

loading test of metals [22]. For geotechnical materials, the presence of internal friction 

renders the plastic flow non-associative and the phenomenological incremental elasto-

plastic constitutive equations become unsymmetric. Due to this lack of symmetry, the 

material may become unstable, and strain localization may appear, both in the strain 

hardening stage (see Leroy and Ortiz [31]). 

1.3.2.2 Classical Discontinuous Bifurcation 

Some basic principles underlying the theory of localization was first proposed by 

Hadamard [24] in the studies of elastic stability. Hill [28] extended Hadamard's theory to 

the inelastic context and developed a criterion for discontinuous bifurcation in elasto-

plastic materials with associated flow rule. Hill's theory was further applied to the 
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analysis of discontinuous bifurcations in elasto-plastic materials with nonassociated flow 

rules by Mandel [27], Rice [29], Rudnicki and Rice [32], and Ottosen and Runesson [33]. 

These theories are reviewed and discussed comprehensively by Leroy and Ortiz et al [31], 

Bardet [34], Neilsen and Schreyer [35], de Borst et al. [36], and Tomita [37]. The 

following analysis summarizes the bifurcation theory developed by these authors. 

Consider a homogeneous solid subjected to quasi-static, monotonic loading. 

Assume that material behavior is rate-independent and thermally decoupled, and the 

deformation is small. 

Define u as the displacement field. Let V« be the displacement rate gradient, 

which is a second-order tensor. The matrix form of Va with respect to Cartesian 

coordinates is 

du, dit, du. 

[V*]-

dxl dx2 Sx:3 

du0 du-, du~. 

9x, dx2 dx3 

du-, du-, du-. 

dx, dx-, cbc. 

(1.5) 

When a bifurcation occurs, the continuous displacement rate gradient V« becomes 

discontinuous across the plane of discontinuity. The jump of V« can be expressed as 

where [[•]] denotes the jump of a quantity, («). (•). j = 3(e),/9x; denotes the partial 

derivative of the quantity (•),, i = 1,2,3 , with respect to variable x., j = 1,2,3 . The 

superscript " + " and " - " represent the two opposite sides of the plane of discontinuity. 

Maxwell' s compatibility condition requires that the j ump [[ iii • |J be of the form 
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fej =C,nJ, (1.7) 

where £" is an arbitrary vector and n is the normal to the plane of discontinuity. For the 

sake of convenience, define the unit vector m along C as 

m,=^, (1.8) 

C = | C | , (1.9) 

where C = yC • C • Substituting Equation (1.8) and (1.9) into Equation (1.7) results in 

lu.jh^j- (L1°) 

For infinitesimal deformation, the strain rate tensor e is related to the displacement rate 

gradient by 

£ = ̂ ( v« + (V«)r). (1.11) 

Applying Equation (1.5) and (1.10) to (1.11), the strain rate jump across the plane of 

discontinuity takes the form 

^ = -C{m®n + n®m), (1.12) 

where ® denotes the tensor product of two vectors. 

The strain rate in the localized zone, eloc can be expressed as the sum of the strain 

rate outside the localized zone and the strain rate jump across the plane of discontinuity: 

«i« =*«,+[*]. 0-13) 

where sout represents the strain rate outside the localized zone. For continuing 

equilibrium, the traction rates across the discontinuity are required to be continuous, that 

is 
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Kc-Fou,=n-(&loc-&J = 0. (1.14) 

For rate-independent solids the relations between stress rate and strain rate are given by 

*<*/= A * : e«i > 0-1 6) 

where Dloc and Dot/r are the tangential modulus tensor for material in the localized zone 

and outside the localized zone, respectively. Combining equations from (1.14) to (1.16) 

yields 

n-{Dloc-Doul).em,+A{n).m = 0, (1.17) 

where 

A{n) = n Dloc n (1.18) 

is the acoustic tensor. At the critical point of the bifurcation, Dloc = Dom, Equation (1.17) 

reduces to 

A(n)-m = 0. (1.19) 

For any admissible localized deformation mode, m^O, the necessary condition for 

discontinuous bifurcation is 

det(^(«))=0. (1.20) 

The Equation (1.20) implies that the acoustic tensor A(n) has a zero eigenvalue, which is 

a necessary condition for loss of ellipticity (see Rice [29]). The solutions of Equation 

(1.20), n, determine the normal to the possible plane of discontinuity and the eigenvector 

m, corresponding to the zero eigenvalue of A(n), determines the localization mode. A 

numerical procedure is given by Leroy and Ortiz [31] to solve for n and m . 
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1.3.2.3 General Bifurcation and Loss of 
Strong Ellipticity 

During the derivation of the classical bifurcation criterion (1.20), two assumptions 

are introduced: one is that the discontinuity of the strain field in the localized zone 

remains kinematically compatible with the strain field outside the localized zone; another 

one is that the tangential modulus tensors, both inside and outside the localized zone, are 

identical to each other at the onset of localization [35]. The general bifurcation criterion 

does not have these assumptions. According to Drucker's stability postulate, Hill [30] has 

shown that a necessary condition for any types of bifurcations and loss of uniqueness is 

&:e = 0. (1.21) 

Equation (1.21) can also written as 

e:irm:e = 0, (1.22) 

where Dsym denotes the symmetric part of the tangential modulus tensor D and its 

indical form is expressed as 

D^=\(Dukl+Dklu). (1.23) 

For a kinematically compatible strain rate field ejoc in the localized zone, Bigoni and 

Hueckel [38] proposed the following general bifurcation criterion 

eloc:D^:eloc=0. (1.24) 

This criterion corresponds to the loss of strong ellipticity, implying that general 

bifurcations may appear whenever Dsym is not positive definite. Recall the Equation 

(1.17). Let A(n) be decomposed into a symmetric part Asym(n) and an anti-symmetric 

part/T"(it): 
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A{n) = Asym(n)+Auns(n). (1.25) 

If the continuity requirement on eou1 is relaxed, the loss of strong ellipticity will appear 

when the following condition is satisfied 

det(^m(#i))=0. (1.26) 

This condition will be met before or at the same time as the Equation (1.20) is satisfied. 

During the deformation of solids, when the determinant of the symmetric part of 

the tangential modulus tensor becomes zero, the general bifurcation criterion is first met, 

and the strong ellipticity of the differential equation governing the material behavior is 

lost. The localization may occur prior to the point indicated by the classical discontinuous 

bifurcation criterion. For material exhibiting associated flow rule, the tangential modulus 

tensor is symmetric, and any type of bifurcation mode may appear at the general 

bifurcation point, which coincides with the beginning of strain softening. However, for 

materials with non-associated flow rule, the elasto-plastic constitutive equations are not 

symmetric. Because of the unsymmetry of the tangential modulus tensors, the general 

bifurcation criterion indicates that the bifurcation may even appear in the strain-

hardening stage (see Bigoni and Hueckel [38]). 

1.4 Objectives 

The objectives of the present work are: 

1. To formulate a rate-independent, or quasi-static strain softening plasticity 

model with associated flow rule and isotropic softening. This model is within 

the framework of classical continuum mechanics. 
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2. To develop a stress integration algorithm to solve the nonlinear system of 

equations that comes from the finite element formulation of the incremental 

boundary value problem for elasto-plasticity. 

3. To develop a finite element program to implement the aforementioned model 

to numerically simulate the strain localization behavior. 

4. To demonstrate the mesh-dependence of the simulation results arising from 

the classical continuum-based model in 1 -D and 2-D scenarios. 

5. To compare the gradient elasticity with gradient plasticity to justify the correct 

boundary conditions for the governing differential equations of these two 

gradient theories. The analytical solutions for two one-dimensional bars under 

tension are derived to examine the regularizing effects of different boundary 

conditions on the strain fields. The results provide the prerequisite for the 

development of the nonlocal plasticity model. 

6. To develop a nonlocal plasticity model and a stress integration algorithm to 

regularize the mesh-dependence of the classical continuum model. 

7. To implement the nonlocal plasticity model with C° finite elements to 

simulate the one-dimensional strain localization. 

8. To propose future studies, both in theoretical and computational aspects, that 

would improve the current models, algorithms, and the simulation results. 



CHAPTER 2 

FINITE ELEMENT FORMULATION OF 

CLASSICAL RATE-INDEPENDENT 

STRAIN SOFTENING PLASTICITY MODEL 

2.1 Introduction 

The finite element method is a major numerical method for the computational 

simulation of strain localization. For the solution of any boundary-value problem (BVP) 

in continuum mechanics, its finite element formulation is closely related to the following 

aspects: 

(i) The variational statement of the problem; 

(ii) Constitutive modeling; 

(iii) Finite element discretization and Galerkin's approximation of the variational 

equation; and 

(iv) Computer implementation. 

Physical phenomena indicate that the localized deformation occurring in the 

material failure stage is irrecoverable, plastic deformation. This process implies that the 

material's behavior exhibits strong nonlinearity. This material nonlinearity is caused by 

the constitutive equations that relate the stress field to the displacement field, which 

28 
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includes elastic deformation and plastic deformation. Therefore, the numerical 

simulation of the strain localization can be carried out within the framework of classical 

elasto-plasticity. From a computational standpoint, the constitutive model and numerical 

algorithm play a central role in the finite element simulation of the elasto-plastic behavior. 

In this chapter, the constitutive equations for strain softening plasticity are developed, and 

the finite element equations for the simulation of strain localization are formulated. Three 

assumptions are made for the development of these equations: (i) the strain localization is 

only caused by the strain softening plasticity, not by the nonassociative flow law; (ii) 

deformation is infinitesimal; (hi) material behavior is rate-independent. 

2.2 Constitutive Equations 

2.2.1 Additive Separation of the 
Total Strain Tensor 

Basically, the behavior of the elasto-plastic materials can be divided into two 

phases: elastic phase and elasto-plastic phase. During the elastic phase the material's 

behavior is elastic and no irrecoverable deformations remain in the material upon 

unloading in this phase. When the stress state meets some yield criterion, the material's 

response enters the elasto-plastic phase. During this phase, the material's behavior is no 

longer elastic and instead, some irrecoverable deformations are accumulated if the 

material's deformation continues to increase from the initial yielding state under further 

loading. The distinct characteristic of the plastic deformation is that it is irrecoverable 

after the material is unloaded to the zero-stress state. Starting from this point, it is 

reasonable to assume that the total strain tensor e can be split into an elastic component 

ee and a plastic component ep [14, 39-42] (see Figure 2.1), that is 
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S = Ee+SP. (2.1) 

(a) 

(b) 

Figure 2.1 Additive separation of the total strain in the 1-D case: (a) in strain hardening; 
(b) in strain softening. 
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The incremental form of Equation (2.1) can be expressed as 

d£ = dee+d£p. (2.2) 

The significance of Equation (2.2) is that only the elastic strain component is related to 

the stress by Hooke's law, while the plastic strain component is only related to the yield 

function and the flow law. Thus, the constitutive relations for the elastic deformation and 

plastic deformation can be formulated separately. 

2.2.2 The Yield Function and Plastic Modulus 

For perfect plasticity, isotropic strain hardening, and isotropic strain softening, the 

stress state at a material point in the elasto-plastic phase is governed by the following 

yield function: 

/(<7,7):=jr(«7)-CTf(77) = 0, (2.3) 

where a is a Cauchy stress tensor, rj denotes an internal variable which is a nonnegative 

scalar, J^~(o) represents an equivalent stress, and (JY(jl) is the yield stress or the flow 

stress. The evolution law of the yield stress crY(r}) can be expressed as 

o-Y(Tj) = crY0 + z(tj), (2.4) 

where ayo is the initial yield stress and %{jf) is the evolution function of the yield stress. 

The value of %(r() defines the following plastic deformation process: 

dyCn) 

%(rj) > 0 & > 0: Strain hardening plasticity 
drj 

%(rj) = 0: Perfect plasticity 

{xiv) > 0 or xijl) < 0) & < 0 : Strain Softening plasticity 
drj 

V:?7>0 , (2.5) 
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Figure 2.2 illustrates the evolution of %(rf) with 77 for linear strain hardening, perfect 

plasticity and linear strain softening. 

Without loss of generality, the internal variable t] can be taken to be equal to the 

equivalent plastic strain, ep
eq, that is 

7 = C (2-6) 

in which sp
q is defined by [40,41] 

dsp
q=^depdep, (2.7) 

< = .K • <2"8> 
Since the plastic deformation is irrecoverable, the total equivalent plastic strain is closely 

dependent on the strain history or loading path. 

Differentiation of Equation (2.4) leads to the incremental yield stress-equivalent 

plastic strain relation 

day=Epdsp
tq, (2.9) 

where E is a plastic modulus, which is defined as 

E =^AnlJ^<\ (2.10) 
dr\ dst 

Substituting Equation (2.5) into Equation (2.10) and noticing that crY0 is irrelative to 7], 

E can also be expressed as 

E JjMlJJ^. (2.H) 
P dT] dsp

eq 
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Figure 2.2 The evolution function of the yield stress 

According to Equation (2.5), the sign of Ep is related the following plastic deformation 

processes 

Strain hardening plasticity :Ep>0 

Perfect plasticity :Ep=0 

Strain Softening plasticity : E < 0: 

V:/7>0, (2.12) 

For the one-dimensional (1-D) case, we define the tangent modulus ET as 

E =da' 
ds. 

(2.13) 



34 

After initial yielding, we have 

CJ,=CJY, dsp
x=dsp

eq. (2.14) 

Also, in the 1-D case, the additive separation relation of strain tensor, Equation (2.2), 

becomes 

d£x=ds{+d£x
p. (2.15) 

By substituting Equation (2.14) and (2.15) into Equation (2.13), we arrive at 

ET= d(T* = i \ • (2.16) 
T dsl+dep

q _ ^ + ^L_ 
d<7y d<Ty 

del dsp 

By Hooke's law, it follows that 

da. 
Eo=-rT, (2-17) 

dsx 

where E0 is Young's modulus. Using Equation (2.13) and (2.17), then Equation (2.16) 

reduces to 

EnEn 

or, in another form 

p TP — F 

Figure 2.3 illustrates the plastic modulus for strain hardening, perfect plasticity and strain 

softening in the 1-D case. 
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Figure 2.3 The plastic moduli for linear strain hardening, perfect plasticity, and linear 
strain softening. 

According to Drucker's stability postulate [14, 39], we can find that the material 

behavior is stable only if ET > 0 in the context of the 1-D case. If ET < 0 the material 

behavior is unstable and strain localization occurs. Observing Equation (2.18) and (2.19), 

we obtain 
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ET<Oe>Ep<0, (2.20) 

ET>0^Ep>0. (2.21) 

From the above relations, we can conclude that a necessary condition for the occurrence 

of localized plastic deformation caused by strain softening is: E < 0. 

2.2.3 Loading/Unloading Criteria 
in the Stress Space 

Generally, the yield function f(ff,rj) = 0 represents a hypersurface in stress space. 

This hypersurface can be called a yield surface. Once the stress state meets the yield 

criterion, it implies that the stress state is located in the yield surface and plastic flow 

takes place. For the plastic flow to continue, the state of stress must remain on the yield 

surface. Thus, it follows that 

f(a,rj)=0, df(a,T]) = ^-:dff + ^dTj = 0, drj>0. (2.22) 
da dr\ 

Equation (2.22) is the plastic loading criterion. If the stress state drops inside the yield 

surface, plastic deformation stops, and elastic unloading happens, which means 

f(o,T])<0, df{a,r]) = ^-:dtr + ^dri<0, drj = 0. (2.23) 
da drj 

Equation (2.23) is the unloading criterion. The loading/unloading criteria can be also 

expressed as the following Kuhn-Tucker complementarity condition [43] 

drj>0, f(o,r})<0, drrf(a,r]) = 0, (2.24) 

and the consistency condition 

dTjdf(a,r]) = 0 . (2.25) 

In plastic loading, dt] > 0, then the consistency condition reduces to 

df(a,jJ) = 0 . (2.26) 
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The consistency condition (2.26) enables us to relate the rate of the internal variable rj to 

the current stress rate and provides the foundation for the development of the tangent 

elasto-plastic modulus. 

2.2.4 Associative Flow Rule 

In accordance with Drucker's stability postulate [14, 39], an assumption is made 

to relate the plastic strain increments to the plastic potential function §f . This 

assumption states that the plastic strain increments are proportional to the gradient of the 

plastic potential function ^f via the following equation 

de<;=dA^-, (2.27) 
Sex,' 

where dX is a non-negative scalar, called the plastic multiplier. If the plastic potential 

function and the yield function coincide, that is 

^ = f, (2-28) 

then Equation (2.27) becomes 

dsf,=dX^-. (2.29) 
dal} 

The Equation (2.29) is called the associative flow rule because that the plastic flow is 

associated with the yield function (see Figure 1.15). Also, because the plastic strain 

increment vector e^is normal to the yield surface, relation (2.29) is also called normality 

condition or normal flow rule. Hill [39] provides the theoretical basis for the associative 

flow rule. Experimental observation indicates that the normality condition is an 

acceptable assumption for metals, but still questionable for rocks, concrete, and soils [40]. 

In the present strain softening plasticity model, only the associative flow rule is 

considered. 
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2.2.5 Tangent Elasto-Plastic Moduli 

For both the elastic and elasto-plastic behavior, the stress tensor can always be 

related to the elastic component of the strain tensor through generalized Hooke's law 

da = De: dee, (2.30) 

where D is the elasticity tensor. Using relation (2.2), Equation (2.30) can be rewritten as 

da = De:{de-dep). (2.31) 

Substituting flow rule (2.29) into Equation (2.31) gives 

f df^ 
da = De ds-dA-

V da 
(2.32) 

For convenience, we rewrite the consistency condition (2.26) as 

df(o,rj) = ~-:da + ̂ -dr] = 0, 
da drj 

(2.33) 

Introducing Equation (2.32) into Equation (2.33) and taking rj = sp for strain hardening 

and strain softening plasticity, we get 

df(a,r]) = ^:De: 
da 

f 
ds-dA— 

da 
&}. df 

+ dsp
ea = 0. 

dsL eg 
(2.34) 

Using Equation (2.7), then Equation (2.34) becomes 

df{a,rj) = ^:De: 
da 

ds-dA— 
da 
3 0 , df 

dsp 
^dspdsp = 0. (2.35) 

Substitution of flow rule (2.29) into Equation (2.35) leads to 

df{a,rj) = ^:De: 
da 

f 
ds-dA— 

da +M3LI1ZL:3L = 0. 
dsp\3da da 

(2.36) 

Rearranging the Equation (2.36), we have 
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dX = - da 
De:de 

M.D*.<L_^L 1M.M 
da' 'da dsp

ea V 3 da' da 

(2.37) 

Letting 

p dep
q V 3 da' da 

(2.37) 

Equation (2.36) can be written as 

dX 

ML 
_ da 

De:ds 

df ne df . 
da da p 

(2.38) 

For the von Mises yield function, it can be proved that (see Appendix A for a proof) 

A„ = En, 
p p' 

dA = dsp
q. 

But for other yield functions, Equation (2.39) and (2.40) may not hold. 

Substituting Equation (2.38) into (2.32) yields 

da = Dep : ds, 

(2.39) 

(2.40) 

Dep = D 
De 

e V 

ML 
da 

® De ML 
da 

df W ¥ . 

(2.41) 

(2.42) 

da da 

where Dep is the tangent elasto-plastic modulus tensor. In the 1-D case, Equation (2.42) 

reduces to Equation (2.18). 
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2.3 Governing Differential Equations for the Incremental 
Elasto-Plastic Boundary Problem 

It is well established that, in the plastic region, the strain depends not only on the final 

state of stress, but also on the loading history. Therefore the incremental stress-strain 

relations have to be used to characterize the constitutive behaviors of materials during 

plastic deformation. The following statement of a boundary value problems is under two 

assumptions: the increments are infinitesimal and the governing equations may be 

linearized [44]. According to the flow theory of plasticity, the incremental form of a 

boundary value problems of elasto-plasticity is posed as follows. 

Suppose that at a given instant of time t, a domain O is in a state of static 

equilibrium and the state of stress a and its loading history is known throughout the 

domain. The external force increment dF is prescribed on dgQ, and the displacement 

du is prescribed on duQ, where dg and du denote the boundary associated with the 

given force and displacement (Figure 2.4). The boundary value problem of incremental 

elasto-plasticity is to find the incremental displacement field du that satisfies, in Q, 

the equation of equilibrium 

div da + db = 0, (2.43) 

the Strain-displacement relation 

the constitutive relation 

de = -(ydu + (Vduf), (2.44) 

da = DT:de, (2.45) 

i De if de> = 0, 
DT=\ eq (2.46) 
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and the boundary condition 

da-n = dF on dgQ , (2.47) 

du = du on dun , (2.48) 

where dgQ U duQ = dQ, dgD fl duQ = 0 . If the domain is in the elastic state, we have 

dep = 0. If it experiences plastic loading, we have dsp > 0. 

Figure 2.4 The elasto-plastic domain 

2.4 Variational Formulation 

To solve the governing differential equation numerically using the finite element 

approximation, variational formulae of the governing equations have to be constructed 

[45-48]. 

If du is the solution of field Equations (2.43)-(2.48) and Sduis the variation of 

du, the weak form of the equilibrium Equation (2.43) can be expressed as 

^Sdu-(divda + db) = 0. (2.49) 
n 

Integrating Equation (36) by parts and applying the divergence theorem to it leads to 
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fas: dadV = fa • SdudV + fa • SdudS. (2.50) 
sn. 

Substitution of Equations (2.44)-(2.47) into the above equation results in 

fas: DT : dsdV = fa • SdudV + jdF • SdudS . (2.51) 
n n . e n . 

The variational statement of the incremental boundary value problem of elasto-plasticity 

is: find du such that 

fas: DT : dsdV = jdb • SdudV + \dF • SdudS 
n n dng 

du = du on d„Q 

(2.52) 

The implication of Equation (2.52) is that the solution du satisfies the equilibrium 

Equation (2.43) in the sense of weighted averages [46]. 

2.5 Finite Element Formulation (Galerkin*s Approximation) 

From this point on we will use [_ J to denote a row matrix and { } to denote a column 

matrix, and [ J to denote the other matrices that are neither row matrices nor column 

matrices. 

Let us discretize the domain Q into element domains Qe, 1 < e < nel, where nel is the 

total number of elements. The displacement field du within Qe can be approximated by 

{du} = [N]{due
h}, (2.53) 

where [N] is the matrix of shape functions for displacements and [due
h} represents the 

displacements at element nodal points. The strain-displacement relations can be 

expressed in the matrix form 

{s} = [B]{due
h}, (2.54) 
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where [B] is the strain-displacement matrix, which is defined as: 

[B] = [B],B2--,Bn], 

in which nen denotes the number of element nodes. If {e} is defined as: 

{e} = |_*, e2 snJ, for nsd=2, 

W = [/i £2 £s 2sn 2sn 2f12Jr, for w r f =3, 

(2.55) 

(2.56) 

(2.57) 

where nsd is the space dimension of the problem in hand, then the sub-matrix [Bj] 

0" = 1 , - " , 0 is defined by 

[Bj]-

N 

0 N j i 

N,2 N„ 

> 0" = !»•••,«„) •»,/> for ^ = 2 , (2.58) 

W = 

TV 
7.1 

0 

0 

0 

0 

N 7,2 

0 

0 

0 

N 7,3 

vV,, # 

vV y,3 

'7,3 

0 
7,2 

yV 

NJ,2 * » 

7,1 

0 

.0' = 1.-»»J f o r ^ = 3 ' (2.59) 

Substituting Equation (2.53) and (2.54) into Equation (2.52) yields 

{Sdulf \[B]T[DT][B]{due
h}dV = {sdue

hf j[Nf {db}dV + {sdue
hf J[JVf\dF}dS, (2.60) 

cr n' eni 

Because Equation (2.60) holds for arbitrary |<Si«^}, it follows that 

^[Bf[DT][B]{due
h}dV= \[N]T{db}dV+ $[Nf\dF}dS. (2.61) 

n' Q' 5/2' 

Equation (2.61) can be rewritten in the more compact form 
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[Ke]{du;}=\dFh
e}. (2.62) 

in which 

[Ke]= \[B]T[DT][B]dV, (2.63) 
n' 

{dFh
e}= j[N]T {db}dV + \[N]T\dF}dS. (2.64) 

The matrix [Ke] is the tangent element stiffness matrix. With [iTe]in hand, standard 

finite element stiffness assemblage procedures can be used to obtain the global stiffness 

matrix, and the standard equation solver can be employed to solve the linearized 

algebraic system of equations to obtain the solution of incremental displacement field du. 

With du solved, ds and da can be found using Equation (2.54) and (2.45). 

2.6 Solution Method for Nonlinear System of Equations 

Matrix Equation (2.62) comes from the weak forms of the incremental governing 

Equations (2.43)-(2.48). However, a material' response to plastic deformation is 

generally nonlinear. The source of this nonlinearity arises from the constitutive equations 

that relate the stress field to the displacement field. Therefore Equation (2.62) is actually 

the linearized form of a nonlinear system of operator equations [49]: 

%<=0, (2.65) 

where Jh
e is a nonlinear mapping defined as Jh

e: R"e i-> R"e and xe
h is the solution of 

Equation (2.65) and defined as 

< = &}• (2-66) 

Strictly, the solutions of the displacement field, «must satisfy the following 

equilibrium equation (for convenience we take the body force b = 0): 
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diva + b = 0, in /? , (2.67) 

and 

a = De:{e-sp). (2.68) 

Let Su be the variation of «. The weak form of Equation (2.67) can be written as: 

\Su-(diva + b)=0. (2.69) 
n 

Following the same approach as the derivation of the weak form of the incremental 

equilibrium equation, we obtain 

\Se:adV = fi-8udV+ \dF-SudS, (2.70) 
n n dng 

where the boundary conditions an = F on dgQ and u = u on duQ are applied. Upon 

discretizing the domain, Q, and applying the interpolation relations 

{u} = [N){ul}, (2.71) 

and 

{e} = [B]{ue
h}, (2.72) 

to Equation (2.70), we obtain: 

{Sulf \[B]T[*W = faf \[Nf{b}dV + {5ue
h}

T \[Nf\F}dS. (2.73) 
n' o' Bn'e 

Considering the arbitrariness of )Sue
hj, we have 

\[Bf[tr]dV= j[Nf{b}dV+ j[N]T^}dS, (2.74) 
n' n' en' 

or 

\[Bf[a]dV-{F} = 0, (2.74a) 
n' 

file:///dF-SudS
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where 

{F}= \[N]T\b}dV+ \[Nf\F}dS, (2.75) 

a' 3n'g 

[<r] = [De]({e}-{ep}). (2.76) 

Due to the nonlinearity of the relationship between [a] and \xe
h ], we define 

[a] = W(xi)}, (2.77) 

and 

[sf{xl)} = [De]({B]{ue
h}- H f f ] . k } ) B . (2-78) 

where [^([o-],^})] denotes the total plastic strains matrix, which is the function of total 

stresses and total displacements. Substitution of Equation (2.77) into Equation (2.74a) 

gives 

l[Bf[s/{xe
h)]dV-{F} = 0. (2.79) 

Ci' 

Comparing Equation (2.79) with Equation (2.65), the nonlinear mapping Jh
e: R"' h-> R"' 

is defined by 

%< = \[B]TW{xe
h)W -{F} = 0. (2.80) 

n' 

Because of the nonlinearity of the problem, the solution x\ resulting from the 

incremental-iterative solution procedure will not generally satisfy Equation (2.80). For 

the kxh iteration the solution will generally result in 

{qx'X = \[Bf W{<)\dV-{F\*§. (2.81) 
n' 

During the (k+l)th iteration, we require 
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fexL = \[Bf[^(xl)]k+1dV-{F}k+l=0. (2.82) 
n' 

If [a], )Fj and {b} are linearly additive, i.e. 

M t + 1 =M t +[Ar] , (2.83) 

W+.={4 + M> (2-84) 
f*L. = W* + M > (2-85) 

Equation (2.82) can be rewritten as 

f \ 
fexL= \[Bf([a]k+[A<r])dV- \[N]T {b}k + {Ab}dV + \[N]T ({F\ + {AFpS 

dot 

= o, 
J 

(2.86) 

Letting 

{F; }, = \[Nf {b\dV + \[Nf {F\ dS, (2.87) 
dOi 

{AFh
el"b = {Fh

e}k - l[Bf[a]k dV, (2.88) 
n' 

{AF°}= j[Nf{Ab}dV+ $[Nf\AF\lS, (2.89) 
n' anl 

and rearranging the terms of Equation (2.86), we have 

l[B]T[Aa]dV = {AFh
e}+{AFh

el"b. (2.90) 

cr 

If [Aa] is taken as the linear term of the Taylor expansion of [c] at the time-discretized 

kxh iteration and the incremental constitutive relationships (2.45) are adopted, Equation 

(2.90) can be linearized as 
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[Ke]{Aul}={AF;}+{AF;Xb, (2.91) 

where 

[Ke]= \[Bf[DT][B]dV. (2.92) 

n' 

\th Solutions of total displacements at the (k+1) iteration can be obtained by 

kL-kl+WI- (2.93) 

Mathematically, the linearization process from Equation (2.74) to (2.93) is called method 

of Newton's form. In each load increment, this linearization method is applied iteratively 

to find the displacement \ue
h\ until JAF/j^ becomes sufficiently small. 

2.7 Stress Integration Algorithm 

According to the flow theory of plasticity, the stress-plastic strain relation is 

expressed as an incremental form through flow rule (2.29) after the stress state satisfies 

the yield criterion and the plastic deformation takes place. The incremental nature of the 

flow rule results in the stress-strain relation (2.41) to be incremental for the plastic 

deformation. To find the total stresses and plastic strains, we have to integrate the flow 

rules or the incremental stress-strain equations along the stress path. From the 

computational standpoint, for each iteration, e.g., k'h iteration, we need to find the 

unbalanced nodal forces |ztFA
e]^" . According to Equation (2.88), we need to know the 

total stresses [a\ at first to obtain [AF£ J" )k ' 
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2.7.1 Intersection Point on the Yield 
Surface for Initial Yielding 

To formulate the numerical algorithm, we have to distinguish between the 

iteration and the load increment. Unless otherwise specified, k denotes the iteration 

number, and n denotes the load increment number, regardless of whether they are 

superscripts or subscripts. 

In the computation of the elasto-plastic response, if the stress state meets the yield 

criterion the first time, it is impossible that the geometrical point representing the stress 

state in the stress space is just located on the yield surface, and instead, it is generally 

located outside the yield surface (see Figure 2.5), that is 

f{ak+l)=f(ak+Aa')>0. (2.94) 

To find the intersection of the stress path with the yield surface, we require 

f(ak+aAae)=0, (2.95) 

where ak, representing the stress at k'h iteration, are such that 

fM = 0, (2.96) 

and a is a factor. An initial value of a can be estimated by [40, 50, 51] 

a'-id^ky (2-97) 
then ak+l is updated as 

a^=ak+axAae. (2.98) 

Expanding the yield function into a truncated Taylor series at point B (corresponding to 

o-^,) with respect to a leads to 
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f(<T?)+SaA<re)=f(<r?))+¥-:A<re5a = 0.. (2.99) 

5a 

da 
:Aoe 

(2.100) 

and the ak+l is updated the second time as 

ail=a?+SaA*e 

a2=a^+8a, 

(2.101) 

(2.101a) 

Ok+AGe 

. O, 

Figure 2.5 Determination of the intersection point on the yield surface. 
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At this point, af+x is very close to the yield surface, but not right on the surface, 

i.e. 

However, continuing to apply the Taylor expansion to correct the o ^ will lead to the 

oscillation of o -^ and result in the non-convergent results. More accurate c i+] can be 

obtained using the bisection method (see Conte and Boor [52]). This algorithm is 

summarized in Table 2.1. 

After the stress state at the intersection point has been computed, the remaining 

portion of the stress increment, which is equal to \ak + Aae - o ^ ) , can be treated by an 

elasto-plastic rate integration method. 
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Table 2.1 Algorithm for computing the intersection point on the yield surface 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10 

11 

un-•£,=*«, «« = «, 
IF/(«£,)>.<> THEN: 

« ( B )=a ( 1 ) 

«kl\ = a<kli ~8aAae; am = a(I) - <5a 

IF /(ff£,) > 0 THEN : GO TO 4 

ELSE: a(A) = a(I) 

END IF 

ELSE IF f(a(*]
+1) < 0 THEN : 

aw=am 

< \ = fftii + SaAae;a
m = am + 8a 

IF/(«£>,)<0 THEN: GOTO 8 

ELSE:a ( B ) =a ( I ) 

END IF 

END IF 

a(M) = 0.5(a(A) + « (B)) < > = «f+> + a 

I F | / ( ^ < T O L T H E N : ^ = < C 

ELSE 

IF f(a(^)<0 THEN : a(A)=a(M) 

ELSE IF / ( f f ^ ^ O THEN a(B) = 

END IF 

END IF 

( M W e 

GOTO 12 

GOTO 10 

aw) G 0 T 0 1 0 

12. OUTPUT «rt+]=ff^), as the final stress state on the yield surface. 

2.7.2 Subsequent Yielding 

After reaching the yield surface, if the deformation continues to increase, the 

plastic loading condition will constrain the stress state to be maintained in the current 

(neutral loading) or subsequent yield surface (strain hardening or softening). For the 
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finite-sized load or strain increments, the incremental constitutive equation (2.41) 

becomes 

Aa = Dep :As = De: (AE-AEP), (2.102) 

or 

Aa = Aae-AADe:^-. 
da 

(2.103) 

Applying the forward-Euler integration scheme [50, 51], for the(« + l)' iteration the 

above equations can be written as 

^ (n+i)=J>(V^w 

^ ( B + l ) = Aaln+X) A\n+vDe: da 

(2.104) 

(2.105) 
(«) 

The plastic multiplier at the (n + l) load step zU(n+]) can be found using the forward-

difference form of the differential Equation (2.37) 

AA, 
da 

:De:Ae, '(«+!) 
(«) 

~da 
De 

(") 

df_ 
da 

(2.106) 

+ A. 
(") 

The total stress a(n+l) at the (n +1)' step can be obtained by 

0 W D = 0 ' ( H ) + Z 1 < V I ) - (2.107) 

Notice that in Equation (2.105) and (2.106), df/da represents the gradient of the 

yield function at a stress point on the yield surface and is a function of the total Cauchy 

stresses. Because its value at the n'h load step is used in the solution of AX{n+X) and 

Aa(n+1), this integration scheme is also called explicit integration scheme. 
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Generally in the elasto-plastic response the changes of the stress components 

during the loading process are not proportional and also the loading is monotonic due to 

the plastic flow. Thus (dfjda) will continuously vary with increasing strain. Employing 

(df/da) at the n,h load step to compute AA{n+l) and Ao{n+X) will introduce numerical 

integration errors, especially when the load increment size is inappropriately large or/and 

the stress point is near a region of large curvature of the yield. To reduce this integration 

error, the strain increment ^£(„+1) is divided into m sub-increments (see Figure 2.6), i.e. 

As, , ... 
^ 1 0 = — ^ i = W-,m. (2.108) 

m 

For each sub-increment, the above forward-Euler integration scheme is used to find the 

^ ( „ + U ) > A<T(n+lJ) a n d t n U S 

m 

^ ( n + 1 ) = X ^ ( „ + U ) - (2-109> 

This method is described by Owen and Hinton [40] and Crisfield [50]. 

After obtaining <r(n+i), we need to check if the yield criterion is satisfied. 

Generally it is outside the yield surface. If so, we use the following radial return method 

to correct the <r+1) in order to return the stress state to the yield surface. 
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l(n+l,i) 

Figure 2.6 Geometrical illustration of the forward-Euler stress integration. 

In this approach, the total strains are kept unchanged while additional plastic 

strains are introduced to reduce the stresses to the yield surface. The truncated Taylor 

expansion of the yield function at the (n +1)' step is given by 

/te>)=/kJ+f :Aap + df 
(n + 1) < 

: ^ : = o , (2.110) 

'(«+!) 

where ff(
(p+1) denotes the updated stress after <r(/)+1) is corrected; Aap represents stress 

decrement (corresponding to the distance from point B to C in Figure 2.6) due to the 

additional plastic strain through the relation 
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Aap=DeAsp=A^L,De:^-
'(n+1)J 

da 
(2.111) 

(«+i) 

Substituting Equation (2.37) and (2.111) into (2.110) and rearranging the terms results in 

da 
De: 

l(n+l) da 

(2.112) 
+ A„ 

!(»+!) 

The updated total stress is 

?L,=<r,^n-MlL,De: ' ( n+ l ) — " ( « + l ) '(«+l) J 

8a 
(2.113) 

(«+i) 

which corresponds to the point C in Figure 2.6. 

If f\a{^+l)) > 0, «7(
(

+̂]) can be scaled back to the yield surface by 

<T(2) =am (2.114) 

which corresponds to the point D in Figure 2.6. Using Equation (2.113) will generally 

introduce elastic components into c(
(^+1), which is different from the radial return method. 

Considering that the stress state ff(
(^+1) is very close to the yield surface at this point, 

application of Equation (2.113) at the last step of stress updating algorithm will generally 

lead to good convergence properties of the numerical procedure. 

Table 2.2 summarizes the whole stress integration algorithm. 
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Table 2.2 Stress integration algorithm 

0. Given e(n), a(n) for nth load step and Ae{n+X) for (n + \Jh load step 

1. Compute elastic trial stresses 

<C'i) = ff(«) + A<TUD 

2. IF / ( < % ) > 0 THEN: 

IF (initial yielding is true) THEN : 

Find intersecton point: solve a{M). 

ELSE:a ( M )=0 

END IF 

Aa(n+m=a^De:Ae{n+l) 

Ae{n+i)={\-a™)Ae{n+1) 

GOTO 3 

ELSE IF /(<*£?,)) < 0 THEN : 

GOTO 7 

END IF 

As,, 
3. As, •(n+1,0 / = 1,2..., w. 

Find : AA(n+hl) and Aa{n+ll) uisngEq.(2.104)-(2.106) 

(=0 

4. IF /(<r(„+I))>0 THEN: 

Compute AA(^+}) and ff(
(^+]) according to Eq.(2.112) - (2.113). 

ENDIF 

5. I F / ( < + 1 ) ) > 0 T H E N : 

Compute ofj+x) according to Eq.(2.114). 

ENDIF 

6. Output: ff(B+1) = ffg^ 

7. EXIT stress intergration. 
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2.8 Summary 

For elasto-plastic deformation, the total strain tensor can be additively separated 

into an elastic component and a plastic component. The elastic component is related to 

the stress tensor by Hooke's law, while the plastic component is connected with yield 

functions and flow laws. Combining the associative flow rule, consistency condition and 

Hooke's law, the elasto-plastic tangent modulus tensor and incremental constitutive 

equation is derived. A necessary condition for the occurrence of localized plastic 

deformation is E < 0 . Based on the incremntal constitutive equation, the variational 

equation of the incremental elasto-plastic boundary value problem is developed and the 

finite element approximation of this variational equation is formulated through Galerkin's 

method. The solution method for the resulting nonlinear system of equations is described, 

which is of Newton's form. The forward-Euler integration procedure is developed to 

integrate the incremental constitutive equation and the stress integration algorithm is 

shown. 



CHAPTER 3 

COMPUTER IMPLEMENTATION AND 

NUMERICAL EXAMPLES 

3.1 Introduction 

To provide the solution to the elasto-plastic boundary-value problem with the 

strain softening plasticity model and implement its finite element approximation, two 

computer programs, one named EP1D for one-dimensional problems and the other named 

EPLAS for two-dimensional problems, are developed. In this chapter, the program 

structures and the main functions of EP1D and EPLAS are outlined. To verify the strain 

softening plasticity model developed in Chapter 2, 1-D and 2-D numerical examples are 

given to demonstrate the formation of strain localization arising from the strain softening. 

Also a detailed analysis of the mesh-dependency is given based on a 1-D model problem. 

3.2 Outline of the Computer Programs 

The computer programs EP1D and EPLAS are based on the framework provided 

by Owen and Hinton [40], Hughes [47], and Zienkiewicz [53]. An outline of the program 

structure is shown in Figure 3.1. 

EP1D is mainly designed for the 1-D plastic strain softening analysis. The 

element type in EPID is a two-noded constant stress element with linear shape functions 

(Figure 3.2). Gaussian direct elimination is used in the equation solver. 
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EPLAS is mainly designed for the 2-D plastic strain softening analysis. The 

element types in EPLAS include the 4-node isoparametric quadrilateral element, the 8-

node Serendipity quadrilateral element, and the 9-node Lagrangian quadrilateral element 

(see Figure 3.3). Only the 8-node Serendipity quadrilateral element is employed in the 

numerical simulation of the strain localization. The frontal method is used in the 

assembly of the element stiffness matrices and the solution of unknown displacements. 

Both EP1D and EPLAS employ the Newton-Raphson method for the solution of 

the nonlinear equilibrium equations (see Bathe [48] and Zienkiewicz [53]) and use the 

same stress integration algorithm, that is, the forward-Euler integration algorithm. 

EPLAS incorporates the following yield criteria with isotropic strain hardening and strain 

softening: von Mises criterion, Tresca criterion, Mohr-Coulomb criterion, and Drucker-

Prager criterion [14, 40, 41]. To focus on the simulation of the strain localization 

phenomenon, only the von Mises criterion with isotropic strain softening is used in the 

present research. 

The main objectives of EP1D and EPLAS are to numerically simulate the strain 

localization caused by strain softening plasticity. However these two programs can also 

be used for the finite element analysis of linear elastic problems, perfect plasticity, and 

strain hardening plasticity problems. 

The programs are coded using the standard FORTRAN 90 programming language 

and dynamic allocation of memory is used in the storage of the global stiffness matrix. 

* 



Preprocessing: discretization; data 
preparation 

Input data and inintialization: n = 1; \Pfo = 0; 

i 
Apply first load increment: A{P\n ; {P}n = {P}„_x + {-dP}„ 

Compute element stiffness matrix [Ke ]n 

I 
Assembly of element stiffness matrices into 

global stiffness matrix [K]„ = / ,[Ke]n 

Apply displacement and force boundary condition 

to the system of equations [X]„{zllf}n = \AP)n 

I 
Solve for displacement {Au}n ; {u}n = {«}„_] + {^«}„ 

Calculate: A{s}n; {«}„ = {«}„_, + {As} ; and {Ao}n 

I 
Stress integration. Solve: {s]P

n = \d{s}p ; {a)n = \d{a] 
A A 

Calculate unbalanced nodal forces: 

n' 

4pi=4pf:b 4p}:b <TOL 

n - n + \ 

Output: R ; M „ ; R P ; M „ 

n = m ? 

Post-processing: print or plot solution 

gure 3.1 The outline of the finite element program for elasto-plastic problems. 
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Figure 3.2 The 1-D constant stress elements 

1 2 
4-node element 

1 2 3 

8-node element 

1 2 3 

9-node element 

Figure 3.3 The 2-D isoparametric elements. 

3.3 Analysis of a 1-D Model Problem 

3.3.1 Statement of the Problem 

Let us consider a 1-D bar under uniaxial tension (Figure 3.4). The bar has a 

length of L and a unit cross-sectional area A = 1. Its one end is fixed and the other end is 

applied with a tensile force F o r a displacement u . It is assumed that the material 

behaviors elastically until its stress reaches the yield stress crY0, and then linear strain 

softening behavior follows, with E < 0. The corresponding tangential modulus for the 

elasto-plastic curve is Ef < 0. A weak zone of length Ls is also assumed to be in the 
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middle part of the bar such that the material in this zone enters the strain softening stage 

earlier than the other part of the bar. 

As soon as the material in the weak zone enters the strain softening stage, the 

remaining part of the bar will experience elastic unloading, and the elongation of the bar 

will continue to increase with force decreased. In the following section, we use the finite 

element method to analyze this process. 

3.3.2 Analysis of the Tangential 
Stiffness Matrix 

The bar is discretized into 3 1-D elements: two elastic elements with equal length 

L0 and one softening element with length Ls. The geometry and the boundary conditions 

are shown in Figure 3.5. For elements 1 and 3 (elastic elements), the incremental 

equilibrium equations are 

E0A 
V h ) 

1 -1 

-1 1 

\du® 

'du^' 
(3.1) 

1 - 1 

-1 1 

duf 
(3) du \dFP 

(3.2) 

For element 2 (softening element), the incremental equilibrium equation is 

v ', j 

1 - 1 

-1 1 

\duf 

\du{2) 

\dF™ 

\dF? 
(3.3) 

where the superscripts inside the round brackets, (•), denote the element numbers and 

the subscripts represent the node numbers. The equilibrium condition at each nodal point 

leads to 



dFl = dFx 
(i) 

dF2=dF^+dF^2) = 0 

dF3=dF3
(2)+dF3

{3)=0 

dF, = dF™ 

y-y-

Weak zone 

-Z/2- .L/2. 

X + F 

B 

Figure 3.4 A 1-D model problem. 

Elastic element 

© 2 © 
-O 

3 
- O 

© 
Ln 

4 F 
-o—--o—»» 

Figure 3.5 The finite element discretization of the 1-D model problem. 



Substitution of Equations (3.1)-(3.3) into Equation (3.4) results in 
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EQ-\ ^oA) 

L /„ 
EQA EOA , EsAs EA 

0 

0 

EA E0A, [ EA 

E0A 

0 

0 

E0A 

k 
E04) 

L 

dU] 

du2 

< 

du3 

du4 

• = < 

dFx 

0 

0 

dF4 

(3.5) 

Introducing the displacement boundary condition 

dux = 0 (3.6) 

into Equation (3.5), we have 

EA^+EA^ EA 

EA EoA , EA 
k I, 

E0A 

0 

E0A 

k 
EQA 

du2 

<du3 

du. 
K 4 J 

• = < 

0 ' 

0 

dF4 

(3.7) 

Equation (3.7) is a linear system of equations with regard to du2, du3, du4, and dF4. If 

dF4 is known (under force-controlled loading), one finds that 

du2 = EQA 

V E0 j 
dFA, (3.8) 

du3 = 
v 4 / 

dF4 + du2 = 
V Lo J 

+ ETA 
v 4 j 

-\\ 

dF4, 

du4 = 
f c A v 1 

EQA 
\ EQ J 

dF4 + c/w3 = 
^ , v1 

v E0 j 
+ 

Ee/A: ^ 

V Es j 

J 

) 

dF. 

(3.9) 

(3.10) 

With equilibrium equation (3.1), the reaction dFx at node 1 can be found to be 



The condition for the strain softening behavior of this model problem is 

From Equation (3.10) and the above condition, we arrive at 

Because Ef < 0, for convenience, we rewrite the inequality (3.14) as 

Letting 

and noticing that A0= As, inequality (3.16) can take the final form 
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EQA dFx = ^^{dux -du2) = -^^du2. 
Eo4> (3.11) 

E'p <0, dF.<0 and du,>0, (3.12) 

v 1 f EepA v 1 

+ 
v 4 j 

<o, (3.13) 

2Ln 
• + • 

E0A E?AS 

<0. (3.14) 

2Ln 
• + • 

E0A, -E?AS 

< 0 , (3.15) 

L. \E?U 
> 

ZL0 -C-o4) 
(3,16) 

Le=2L0,rs=Ls/Le,rE=\E:P\/E{ (3.17) 

s b ' (3.18) 

where rs is the length ratio of the softening element with respect to the elastic element 

and rE is the tangential modulus ratio. In Equation (3.17), Le represents the sum of total 

lengths of the elastic elements. In sum, the condition for the strain softening behavior to 

occur is 

Ef < 0, dFA < 0, duA > 0, and rs > rE (3.19) 
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If the loading is controlled by the forced displacement u4 at nodal point 4, the 

same results and conclusion as above can be obtained. In the finite element simulation of 

the strain localization, only the displacement-controlled loading scheme is used. 

If the condition (3.18) is violated, the load-displacement path will follow a "snap-

back" path ( rs < rE ) or the steepest-drop path (rs=rE) (see Figure 3.6). 

From Equation (3.10), the slope of the load-displacement can be expressed as 

dF±=EAL(du^_duj = 
( rr „ v1 rr „ v'V1 

(A Li A •*~J0 V Ls j 
+ 

E0A 

v A) j 
(3.20) 

It can be seen that the slope is related to the length of the softening element even if the 

condition for the strain softening is satisfied. This fact is reflected in the numerical 

simulation results, which is called mesh-dependency. The fundamental reason for the 

mesh-dependency is that the governing equations for the strain softening behavior are ill-

posed. 

3.3.3 Numerical Results 

The length of the bar is taken to be L = 100 mm . The element located in the center 

of the bar is treated as a weak element, whose yield stress is 10% off compared to the 

yield stress of the normal elements. Material parameters are listed in Table 3.1. The finite 

element discretization is shown in Figure 3.7, and the discretization data for all meshes 

are listed in Table 3.2. Eight different meshes with 1, 3, 5, 7, 9, 11, 21, and 101 elements, 

respectively, are used to analyze the problem. The load is displacement-controlled and 

the forced displacement u is applied at the end B until the final displacement of 

u = 0.019 mm is achieved. 



F 
A 

O B C D E- F . ^ 

Figure 3.6 Load-displacement paths for 1-D strain softening behavior. 

Table 3.1 Material parameters for the 1-D problem 

Parameters 

E0 

E
P 

Ef 
°Yo§ 

Units 

MPa 

MPa 

MPa 

MPa 

t E-ep _ EoEp . § 

Eo+Ep 

Normal elements 

20000.00 

-2000.00 

-2222.22 

2.00 

Weak element 

20000.00 

-2000.00 

-2222.22 

1.80 
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Figure 3.7 The 1-D finite element discretization and the coordinate system for computer 
implementation. 

Table 3.2 The finite element discretization data for the 1 -D problem 

el 
"total 

1 
3 
5 
7 
9 
11 
21 
101 

Zf ! (mm) 

100 
33 
20 
14 
11 
10 
5 
1 

4 (mm) 
100 
34 
20 
16 
12 
10 
5 
1 

4 (mm) 
0 
66 
80 
84 
88 
90 
95 
99 

rs=Ls/Le 

oo 

0.515 
0.250 
0.190 
0.136 
0.111 
0.053 
0.010 

rE = 

0.111 
0.11] 
0.111 
0.111 
0.11] 
0.11] 
0.111 
0.11] 

Ef /E0 

* 4 is the typical length of most elements. Some elements may have length more 

or less than the typical length to fit the bar length. 

Figure 3.8 shows the effective plastic strain distribution for seven meshes. Notice 

that for all of the meshes, the plastic strains are concentrated into the weak elements 

located in the center of the bar. With mesh refinement, the size of weak element 

decreases, and the magnitude of the plastic strain in the weak element increases. 
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Figure 3.8 The 1-D problem: the effective plastic strain distribution. The results are 
mesh-dependent. 

Figure 3.9 shows the load-displacement plots for six meshes. The descending 

branches of the load-displacement curves for different meshes follow different paths. 

From Table 3.2, we can see that the critical modulus ratio is rE = 0.111. Because the 

length ratios for 1-element, 3-element, 5-element, 7-element, and 9-element meshes are 

greater than rE, the descending branches for these meshes follow the softening branch. 

For 11-element mesh, because of rs =0.111 = /^, the descending branch for this mesh 

follows the steepest-drop path. For 21-element and 101-element meshes, because their 

length ratios of the softening elements are less than the critical ratio, their descending 

branch should follow the snap-back path according to the foregoing conclusions. 

However, the numerical results show that their descending branches still follow the 
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steepest-drop path. One of the reasons for this inconsistency is that the load is 

displacement-controlled, and the displacement at the end B is monotonically increased. 

Another reason is that, to maintain the positive-definiteness of the stiffness matrices, for 

every load step, small positive plastic modulus is employed to form the tangential 

stiffness matrices, and the softening branch is simulated by reducing the unbalanced 

nodal forces to zero by iteration within each load step. This algorithmic process will 

constrain the load-displacement curve to follow the snap-back path and instead, for the 

meshes with rs <rE, it always follow the steepest-drop path. This phenomenon is also 

observed in the 2-D strain softening problems, which will be shown in the following 

Section 3.4. 

1.8 
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Figure 3.9 The 1-D problem: load-displacement plots. The results are mesh-dependent. 
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3.4 2-D Numerical Examples 

3.4.1 Statement of the Problem 

A 2-D problem is considered to demonstrate the shear band formation due to 

strain localization. Figure 3.10 shows the geometry, loading conditions, and coordinate 

system of a specimen under the plan strain test. Figure 3.11 shows the schematic 

description of the material parameters used in the computation. To prevent unrealistic 

response, a residual stress, au , and the corresponding plastic strain s^ is set to indicate 

that if the equivalent plastic strain sp > s^, the yield stress will remain at <ru. 

rh 
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(a) (b) 

Figure 3.10 Geometry, loading conditions, and coordinate system of a specimen under 
plane strain test: (a) compressive test; (b) tensile test. 
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Figure 3.11. The schematic description of the material constitutive model for the 2-D 
problem. 

The von Mises yield criterion is employed in the analysis. The yield function 

reads 

f(<T,Ti):=j3T2-*Y(£:g) = 0 (3.21) 

where J7 is the second deviatoric stress invariant, which is defined as 

J2 =\sgSy- = X-[S2
X +S2

y + S2 + 2 ( < + r j +r2
a)] 

= T[(CTI -VIT +(CT2 -<rJ +(^3 -o"i)2J> 
o 

(3.22) 

where 5,, /,_/ = 1,2,3 or x , j , z is termed the deviatoric stress tensor and its components 

are defined as 

SV = aij ~ SVam » (3.23) 

°m = 3 (°"x + Vy + < 0 = "jfo + °2 + CT
3)> (3.24) 

1,/ = 7 
J = <! . .; i = 1,2,3 or x,>>,z. 

10, i * J 
(3.25) 
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The 8-node elements are used in the computation. To trigger the initiation of the 

strain localization, a weak zone with lower initial yield stress has to be specified at some 

location and correspondingly, a weak element is specified in the finite element mesh. 

Also, the weak element is specified at different locations to examine the effect of the 

weak zone location on the pattern of the shear band localization. The loading is 

displacement-controlled, that is, a forced displacement, u , which is uniform along the top 

edge of the specimen, is incrementally specified. This loading method is necessary for 

simulating strain softening plasticity and the descending branch of load-displacement 

response. 

Drucker's stability postulate [14, 25] indicates that material's behavior is stable 

under the condition &: s > 0 . If this condition is violated, that is, &: e < 0, the material's 

behavior becomes unstable. According to Hill's theory [30], a necessary condition for 

any type of bifurcation and loss of uniqueness is &: e = 0 . If the yielding of the material 

follows the von Mises yield criterion, and the associative flow rule is assumed, the 

conditions &: e = 0 and a : e < 0 correspond to Ep=0 and E < 0 , respectively. The 

former condition is related to perfect plasticity, and the later condition related to strain 

softening plasticity. From a mathematical point of view, the perfect plasticity can be 

viewed as an extreme case of the strain softening plasticity. Theoretically both conditions 

can cause the material instability and lead to strain localization. In the following 

numerical examples, both of these conditions are considered to demonstrate the strain 

localization. 
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3.4.2 Numerical Results 

3.4.2.1 Strain Softening Plasticity: 
Ep<0 

Table 3.2 lists the material parameters used in the strain softening plasticity. 

Three different locations of the weak zones are considered: lowerleft corner, the center of 

the left side, and the center of the specimen. Figure 3.12 shows the lower-left-corner 

weak zone. The simulation results for three different meshes, 128-element, 512-element 

and 2048-element meshes, with lower-left weak element are shown in Figure 3.13 

through Figure 3.18. 

Table 3.2. Material parameters for the 2-D strain softening problem 

Parameters 

Eo 
V 

E
P 

Ef 
0Yo§ 

au 

£P 

£u 

t EeP 

Units 

MPa 

MPa 

MPa 

MPa 

MPa 

E«E
P 

Eo+E/ 

Normal elements 

11920.00 

0.20 
-1192.00 

-1322.22 

100.00 

10.00 

0.0755 

0.0763 

Weak element 

11920.00 

0.20 
-1192.00 

-1322.22 

90.00 

10.00 

0.0671 

0.0679 

O U V - l l g l l l 
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Figure 3.12 The plain strain compression test with weak zone located at the lower left 
corner. 
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Figure 3.13 Computational results of the plain strain compression test at u = 1.3 mm 
based on strain softening plasticity: (a) deformed mesh (scaling factor =3); (b) contour 
plot of the effective plastic strain; (c) 3-D plot of the effective plastic strain. The weak 
element is located at the lower left corner (see Figure 3.12). The mesh includes 128 
elements and 433 nodal points. 
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Figure 3.14 Computational results of the plain strain compression test based on strain 
softening plasticity: plot of the load-displacement response. The weak element position: 
lower left corner. The mesh includes 128 elements and 433 nodal points. 
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Figure 3.15 Computational results of the plain strain compression test at u = 1.3 mm 
based on strain softening plasticity: (a) deformed mesh (scaling factor =3). (b) contour 
plot of the effective plastic strain, (c) 3-D plot of the effective plastic strain. The weak 
element is located at the lower left corner (see Figure 3.12). The mesh includes 512 
elements and 1633 nodal points. 
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Figure 3.16 Computational results of the plain strain compression test based on strain 
softening plasticity: plot of the load-displacement response. The weak element position: 
lower left corner. The mesh includes 512 elements and 1633 nodal points. 
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Figure 3.17 Computational results of the plain strain compression test at u =1.3 mm 
based on strain softening plasticity: (a) deformed mesh (scaling factor =3); (b) contour 
plot of the effective plastic strain; (c) 3-D plot of the effective plastic strain. The weak 
element is located at the lower left corner (see Figure 3.12). The mesh includes 2048 
elements and 6337 nodal points. 
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Figure 3.18 Computational results of the plain strain compression test based on strain 
softening plasticity: plot of the load-displacement response. The weak element position: 
lower left corner. The mesh includes 512 elements and 1633 nodal points. 
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The shear bands form due to the localized deformation for all the three meshes. 

The shear bands initiate at the weak elements and propagate at about 37° with respect to 

the horizontal axis, separating the specimen into two blocks. It is noted that the thickness 

of the shear band decreases with the refinement of the mesh and become vanishingly 

small when the mesh grid is very fine. This result is consistent with the 1-D numerical 

result. The load-displacement responses, shown in Figure 3.14, Figure 3.16, and Figure 

3.18, follow the steepest-drop path and the shear bands form when the load drops from 

the peak value down to the lowest value. The deformed meshes and the contour plots of 

the effective plastic strains all together show that the magnitude of the shear band width 

is equivalent to the size of the element employed. These results provide the evidence of 

the mesh-dependency of the simulation results based on classical continuum mechanics. 

The contour plots of the effective plastic strains show that the deformation is 

concentrated in the shear bands, and the plastic strains outside the shear bands are zero. 

Figure 3.19 shows a weak zone located at the center of the left side of the 

specimen and Figure 3.20 shows the simulation results of the shear band development. 

We can see that the shear band still initiates at the weak element and propagates at the 

same angle as in the case with the weak element at the lower left corner. Also, the 

researchers noticed that only one shear band forms. Figure 3.21 shows a weak zone 

located at the center of the specimen, and Figure 3.22 shows the simulation results. 

Similarly, only one shear band forms and its location is different from that in other 

scenarios. Figure 3.19 through Figure 3.22 indicate that the location of the shear band is 

related to the location of the weak element. 
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Figure 3.19. The geometry and loading condition of the plain strain compression test with 
weak zone located at the center of the left edge. 
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Figure 3.20. Computational results of the plain strain compression test at u = 1.3 mm 
based on strain softening plasticity: (a) deformed mesh (scaling factor =2). (b) contour 
plot of the effective plastic strain. The weak element is located at the center of the left 
edge (see Figure 3.19). The mesh includes 512 elements and 1633 nodal points. 
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Figure 3.21. The geometry and loading condition of the plain strain compression test with 
weak zone located at the center of the specimen. 
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Figure 3.22. Computational results of the plain strain compression test at 
u = 1.3 mm based on strain softening plasticity: (a) deformed mesh (scaling factor =2); (b) 
contour plot of the effective plastic strain. The weak element is located at the center of 
specimen (see Figure 3.21). The mesh includes 512 elements and 1633 nodal points. 
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3.4.2.2 Perfect Plasticity: Er = 0 

Table 3.4 lists the material parameters used in the perfect plasticity. Figure 3.23 

through Figure 3.31 show the simulation results for different weak zone locations and 

different loading conditions. The shear band patterns caused by perfect plasticity are 

different from those caused by the strain softening plasticity. If the weak zone is at the 

lower left corner, only one shear band forms (see Figure 3.23). However, if the weak 

zone is at the center of the left side of the specimen, The two shear bands are formed in 

different directions (see Figure 3.25). If the weak zone is at the center of the specimen, 

the two groups of shear bands are formed each developing in different directions but with 

symmetry with respect to the center axis of the specimen. The results are the same no 

matter if the loading is compressive or tensile (see Figure 3.27 and Figure 3.30). 

Table 3.4. Material parameters for the 2-D perfect plasticity 

Parameters 

E0 

V 

E
P 

Ef 
<?Y0 § 

t Ef 

Units 

MPa 

MPa 

MPa 

MPa 

EoE
P 

E0 + E/ 

Normal elements 

200000.00 

0.30 
0 

0 

300.00 

Weak element 

100000.00 

0.30 
0 

0 

150.00 

The load-displacement plots resulting from the perfect plasticity model are 

substantially different from those from the strain softening plasticity model. Figure 3.24, 

Figure 3.26, Figure 3.28, and Figure 3.31 show that the shear band formation initiates and 

develops in the plastic flow phase. The load level is maintained unchanged with the 
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displacement increasing during the shear band development, which is completely 

different from the load-displacement response from the strain softening plasticity model 

(see Figure 3.14, 3.16, 3.18). Also, the magnitude of the thickness of the shear bands 

resulting from the perfect plasticity model is about 2 - 3 times the size of the element, 

which is obviously different from the results of the strain softening plasticity model. 

These results indicate that the governing differential equations for the perfect plasticity 

are different from that for the strain softening plasticity even though both the models 

exhibit the material instability and the strain localization. 
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Figure 3.23. Computational results of the plain strain compression test at 
u = 4.5 mm based on perfect plasticity: (a) deformed mesh (scaling factor =5); (b) 
contour plot of the effective plastic strain; (c) 3-D plot of the effective plastic strain. The 
weak element is located at the lower left corner of the specimen (See Figure 3.12). The 
mesh includes 128 elements and 433 nodal points. 
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Figure 3.24 Computational results of the plain strain compression test based on perfect 
plasticity: plot of the load-displacement response. The weak element position: lower left 
corner. The mesh includes 128 elements and 433 nodal points. 
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Figure 3.25 Computational results of the plain strain compression test at 
u = 4.5 mm based on perfect plasticity: (a) deformed mesh (scaling factor =8); (b) 
Contour plot of the effective plastic strain; (c) 3-D plot of the effective plastic strain. The 
weak element is located at the lower left corner of the specimen (See Figure 3.12). The 
mesh includes 128 elements and 433 nodal points. 
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Figure 3.26 Computational results of the plain strain compression test based on perfect 
plasticity: plot of the load-displacement response. The weak element position: lower left 
corner. The mesh includes 128 elements and 433 nodal points. 
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Figure 3.27 Computational results of the plain strain compression test at 
u = 2.6 mm based on perfect plasticity: (a) deformed mesh (scaling factor =5); (b) 
contour plot of the effective plastic strain; (c) 3-D plot of the effective plastic strain. The 
weak element is located at the center of the specimen (See Figure 3.21). The mesh 
includes 512 elements and 1633 nodal points. 
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Figure 3.28 Computational results of the plain strain compression test based on perfect 
plasticity: plot of the load-displacement response. The weak element position: the center 
of the specimen. The mesh includes 512 elements and 1633 nodal points. 
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Figure 3.29 The geometry and loading condition of the plain strain tensile test with the 
weak zone located at the center of the specimen. 
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Figure 3.30 Computational results of the plain strain tensile test at u = 2.6 mm based on 
perfect plasticity: (a) deformed mesh (scaling factor =10); (b) contour plot of the 
effective plastic strain; (c) 3-D plot of the effective plastic strain. The weak element is 
located at the center of the specimen (See Figure 3.21). The mesh includes 512 elements 
and 1633 nodal points. 
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Figure 3.31 Computational results of the plain strain tensile test based on perfect 
plasticity: plot of the load-displacement response. The weak element position: the center 
of the specimen. The mesh includes 512 elements and 1633 nodal points. 
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3.5 Summary 

Two computer programs, EP1D and EPLAS, are developed to simulate strain localization 

caused by strain softening plasticity for 1-D and 2-D problems, respectively. The two-

noded constant stress element is used in EP1D and 4-node isoparametric quadrilateral 

element. The 8-node Serendipity quadrilateral element and the 9-node Lagrangian 

quadrilateral element are used in EPLAS. The 8-node Serendipity quadrilateral element is 

employed in the 2-D numerical example. The program structure is outlined in Figure 3.1. 

Strain localization and shear band localization are well demonstrated through 1 -D and 2-

D numerical examples using the developed computer programs. Seven different meshes 

for the 1-D problem and three different meshes for the 2-D problems are used in the 

illustration of the mesh dependency of the simulation results based on the classical 

continuum mechanics. Different locations of the weak zone are specified to examine the 

relations of the shear band position with the weak zone location. As an extreme case of 

the strain softening plasticity, a perfect plasticity model is also used in the simulation, and 

the resulting shear band patterns are compared with the results from the strain softening 

model. The comparison indicates that the shear band patterns and load-displacement 

responses for these two models are obviously different. The reason for this difference is 

that the governing differential equations for the two models are different even though 

both the models can exhibit material instability and strain localization. 



CHAPTER 4 

COMPARISON OF BOUNDARY CONDITIONS 

OF GRADIENT ELASTICITY AND 

GRADIENT PLASTICITY 

4.1 Introduction 

As demonstrated in Chapter 3, the computational simulation of strain localization 

based on classical continuum mechanics suffers from spurious mesh dependency. Several 

methods and theories have been proposed to regularize the mesh dependency, among 

which the gradient plasticity theory provides well-posed governing differential equations 

for the strain softening problems (see Aifantis [54, 55] and de Borst [60, 63]). 

The gradient plasticity theory is the extension of the gradient elasticity theory to 

the description of plastic behavior. Both gradient theories, gradient elasticity, and 

gradient plasticity theories, are within the framework of nonlocal continuum mechanics 

(see Eringen [56] and Bazant [57]) and are appropriate for describing heterogeneous 

phenomena [54-57]. The common feature of these two gradient theories is that the 

higher-order gradients of constitutive quantities (e.g. stresses or strains) enter the 

constitutive models and result in the constitutive equations to be 2nd or higher order 

differential equations [54; 58-60]. To solve the differential constitutive equations, 

appropriate boundary conditions have to be introduced. However, gradient elasticity and 

gradient plasticity are proposed for different purposes with analogous mathematical 
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expressions [59; 61]. The purpose of gradient elasticity is to smooth the heterogeneity, 

while that of the gradient plasticity is to introduce heterogeneity (see Askes [62]). To 

fulfill these contrary purposes, different boundary conditions should be adopted. Up to 

now, the boundary conditions have not been thoroughly investigated and clearly specified, 

especially for the nonstandard ones. While research on the boundary conditions in the 

literature so far is mainly addressed from the physical point of view (see Polizzotto [61]), 

the studies from the mathematical point of view are lacking. 

In this chapter, two one-dimensional (1-D) bars under tension, one for gradient 

elasticity and the other for gradient plasticity, are solved analytically using Neumann and 

Dirichlet boundary conditions, respectively. The resulting solutions are compared to 

examine the regularizing effects of different boundary condition on the strain fields in 

order to identify the correct boundary conditions for the gradient plasticity model to 

regularize the mesh dependency of the simulation of the strain localization. The stability 

and uniqueness of the solutions for two versions of the 2" order gradient models, 

involving I2 and (-/2) (/ is the internal length scale), respectively, are also illustrated 

and discussed. The results obtained in this chapter will provide the theoretical evidence 

for the application of the nonlocal model developed in Chapter 5 to the simulation of the 

strain localization. 

4.2 Gradient Elasticity for Regularizing Singularities 

The general constitutive equation in the gradient elasticity theory reads 

a = A(tr e)l + 2/j£-cV2 [A(tr s)l + 2jus], (4.1) 

where ffis Cauchy stress tensor and s the strain tensor, X and // are Lame constants, 

and c is a gradient coefficient that is related to the internal length scale of the material, / . 
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Consider a 1-D bar of length L and cross-section area A (Figure 4.1) [61], given 

that one end at x = -L/2 is fixed and the other end x = + L/2 subjected to a uniformly 

distributed load p, which is equivalent to a uniformly distributed stress a = pi A along 

the bar. The bar is made of two sections that have equal lengths and cross-section areas, 

but different Young's modulus E and (3E, respectively, implying that there is a material 

property jump at the interface of the two sections. Obviously, application of classical 

continuum mechanics to this nonhomogeneous bar will lead to a singularity of the strain 

field at the middle section of the bar. To avoid this problem, a gradient elasticity model 

has to be used. In this one-dimensional case, the constitutive equation (4.1) reduces to 

dx2 <T = E(S-C^Y) \f:-LI2<x<LI2. (4.2) 

PE -^ a 

s ^ ^ ^ ^ , ^ ^ ^ ^ ^ X* 

L/2 _\ o L/2 

Figure 4.1. One-dimensional bar with jump of Young's modulus. 

Let the origin of material coordinate axis, x, be in the center of the bar. The 

standard boundary conditions are 

e+(0) = e-(0)t ( 4 3 ) 

(ds+/dx) = (d£-/dx) a t x = 0 , (4.4) 

o--(-f <x<0") = o-, (4.5) 

CT+(0+<X<+i) = CT, (4.6) 

and the non-standard boundary conditions read 
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(d£+/dx) = 0 at x = L/2, 

(d£~/dx) = 0 at x = -L/2, 

(4.7) 

(4.8) 

where boundary condition (4.4), (4.7) and (4.8) are Neumann boundary conditions. The 

differential constitutive Equation (4.2) with the boundary conditions (4.3) - (4.8) results 

in two types of analytical solutions, hyperbolic functions and harmonic functions, 

depending on the sign of the coefficient c. 

(a) Hyperbolic solution (c = l2) 

If c = I2, where / is the internal length scale, Equation (4.2) can be rewritten as 

dx2 o = E{£-l2^r) , \f:-LI2<x<LI2. (4.9) 

The general analytical solutions of the above differential equation are of the following 

exponential form: 

e (x) = c]e
l + c2e ' +c 3 , V: ~L/2<x<0, (4.10a) 

£+(x) = c,V + c2e ' +c3
+, V: 0 < x < Z / 2 , (4.10b) 

Application of boundary conditions (4.3) - (4.8) to the above equations results in the 

constants c[, c2, c3~, Cj+, c2, and c3
+ to be as follow 

c\ ~ £o 
V P J 

( eLll-\ 

K2(eL/l-e-L/l
 }J 

, C2 — £0 

V P J 

l-e -Hi \ 

K2[eLll-e-Lll,j 
c~ = £0, (4.11a) •> u 3 ° 0 

Cj C2 , C2 Cj , C3 — £QI p (4.11b) 

where £0=cr/E . Substitution of (4.1 la) and (4.1 lb) into (4.10a) and (4.10b) gives the 

following hyperbolic solutions 
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£~(X) = £0 

V P J 
cosh! + tanh — sinh 

\i j) 
+ e0, V: -L/2<x<0, 

(4.12a) 

s+(x) = -£0 

fl-pV f,\ 

P v H j 
cosh — tanh 

f T \ 

yllj 
sinh 

\l J) 
+ ^-, V : 0 < x < Z / 2 

P 

(b) Harmonic solution (c = -I2) 

If c = -I2, Equation (4.2) becomes 

(4.12b) 

8x2 
a = E{£ + l2—), V: -L/2<x<LI2. (4.13) 

The general solution is 

£ (x) = c, sin + c2 cos 
^ 

+ c~, V : - Z / 2 < x < 0 , (4.14a) 
v y 

£+(x) = c/sinl 
^ 

+ c2 cos 
^ 

v* y 
+ c3

+, V: 0<x<L/2. 
\i J 

(4.14b) 

Applying the same boundary condition (4.3) - (4.8) to the above equations gives 

c\ ~ ~£o 2 V P J 
tan 

\2lj 
•> C2 ~£0 

V P J 
, C-j C Q , (4.15a) 

Cj Cj , C2 C2 , C3 — £Q/ p (4.15b) 

The final solution of strain field is of harmonic type: 

e~(x) = -ec 
' l - / T > 

V P J 

f^\ 
cos 

V \ l J 
tan 

rL\ . fx^ 
K2lj sin + £0, V: -L/2<x<0, (4.16a) 

KUJ 

£+(x) = --£{ 

V P J 

( f v\ 
cos 

f T \ 
+ tan 

K2lj 
sin + ^ V: 0 < x < Z / 2 . (4.16b) 
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As an example, given L = 500 mm , sQ = 0.0001, the two types of solutions for 

different values of /? and /, are plotted in Figure 4.2. As shown in the figure, the strain 

jump caused by the material property jump at the mid section of the bar is smoothed due 

to the introduction of the standard Neumann boundary condition (4.4) and nonstandard 

ones, (4.7) and (4.8). The hyperbolic function gives a stable and unique solution of the 

strain distribution. However, the harmonic solution, although satisfying all the boundary 

conditions, gives nonrealistic and unstable strain distributions, which were also 

demonstrated by Altan and Aifantis [59] and other authors [62]. It is also shown that the 

strain distribution is affected by the internal length scale /. 
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Figure 4.2 Elastic strain distribution resulting from gradient elasticity model. 
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4.3 Gradient Plasticity for Regularizing 
Mesh-Dependency of Strain Localization 

In the gradient plasticity theory, the yield function in the stress space depends not 

only on stress state and internal state variables, but also on the spatial gradient of the 

internal state variables [54, 55, 60, 63]. The yield function of the 2nd-order gradient 

plasticity model has the following general form [55, 63]: 

/•(<7,77,V277) = 0. (4.17) 

The flow rule and hardening/softening law obey the following Kuhn-Tucker 

complementarity condition [43] 

y > 0 , /(<r, 77, V2/7) < 0, and yf(a, rj, V2TJ) = 0, (4.18) 

and the consistency requirement 

yf(a,?7,V
2r1) = 0, (4.19) 

where TJ is the internal state variable and y is the consistency parameter. During plastic 

loading, y > 0, consistency condition (4.15) becomes 

/(<7,77,V277) = 0. (4.20) 

In 1-D linear plastic strain softening, taking TJ = SP , the yield function (4.17) has the 

following form: 

/ > , 7 7 , V 2 / 7 ) = C7- aY+Ep(s -c ^ 2 ) 
dx 

where sr is the accumulative plastic strain, EP the plastic softening modulus, aY the 

yield strength, and c the gradient coefficient related to the internal length scale of the 

material. Note that Ep < 0 for plastic strain softening (see Figures 4.3 and 4.4). 

(4.21) 
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During plastic strain softening, the plastic strain is localized into a small region. 

Assuming that material in the localization zone enters the strain softening stage and the 

other part of the material keeps elastic, the yield condition for the localization zone reads 

a -
a2pp ' 

_ p U t, . 
aY+Ep{s -C—J-) 

ox 

= 0, \/:-S/2<x<S/2, (4.22) 

where S is the length of localization zone, which is symmetric to the origin of the 

coordinate axis, x (see Figure 4.3). The plastic strain distribution is controlled by 

differential Equation (4.22) and appropriate boundary conditions. From a physical point 

of view, the plastic strains at the intersection points of the plastic part and the elastic part 

should be zero. In the 1-D case, this condition leads to the following nonstandard 

boundary conditions: 

£
p=0 V:x = -S/2 and x = + 5 / 2 , (4.23) 

which is a Dirichlet boundary condition. 

Strain softening zone gh s/2 

V/A 
% 

\ L , 

\ . ' 
& / < ' & / . ' • 

Y//f//y, 

L/2 
0 

IP 

X* 

Figure 4.3 The 1-D bar with strain softening zone. 

ET < 0 
EF < 0 

-c 

Figure 4.4 Constitutive model for linear strain softening. 
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Similar to gradient elasticity, the differential Equation (4.22) has two types of analytical 

solutions, hyperbolic and harmonic, depending on the sign of coefficient c. 

(a) Hyperbolic solution (c = l2) 

If c = I2, Equation (4.22) becomes 

a - cTy+EAe'-l2^-) 
ox 

= 0, \/:-S/2<x<S/2. (4.24) 

The solution is of hyperbolic type: 

£P{x)=°y-v cosh(x//) _ g L ^ , V : - S / 2 < x < < ? / 2 . (4.25) 
Ep cosh(572/) Ep 

(b) Harmonic solution ( c = -I2) 

If c = -I2, Equation (4.22) can be written as 

a2 p 
O £ 

a•-
ox 

= 0, \/:-S/2<x<S/2, (4.26) 

The solution is of harmonic type: 

£P{x)=°y-v cos(x//) _aJ-a_^ V : _ 5 / 2 < x < 5 / 2 ( 4 2 7 ) 

iip cos(S/2l) Ep 

To illustrate the above two solutions, the following structural and material 

parameters are considered [63]: L = 100 mm, E = 20000 N/mm2, ay = 2.0 N/mm2, 

Ep = -0.1E = -2000 N/mm2, I = 5 mm. Given that material is in the stress state of 

cr = 0.5a-y =l.0N/mm2, corresponding to localization length S = 31.4mm, the plastic 

strain distribution within the localization zone of the bar from the above two solutions are 

plotted in Figure 4.5(a). The two functions are also plotted separately over the whole 

length of the bar in Figure 4.5 (b) and (c). It can be seen that the hyperbolic distribution 
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of plastic strain is stable and unique within the localization zone, while the harmonic 

solution only has realistic distribution for 0< 5/2/ < n . If S/21 > n, there is a possibility 

that negative plastic strains will occur in the localization zone, which is inadmissible 

from a physical point of view. However the harmonic strain distribution results in more 

intense plastic strain in the strain localization zone than does the hyperbolic solution. In 

numerical simulations, using a harmonic function makes the plastic strain localize rapidly 

and stably into a narrow zone as soon as the stress reaches the bifurcation point (see de 

Borst [60, 63]). There have been successful applications of using harmonic functions for 

numerical simulation of strain localization in both one-dimensional and two-dimensional 

cases [63, 64]. However, the relation of the size of the localization zone (such as shear 

band width, necking zone, and crack band width, etc.) to the material internal length scale 

is still an open problem. 
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Figure 4.5 Plastic strain distribution resulting from gradient plasticity model: (a) plastic 
strain within localization zone; (b) hyperbolic distribution extended to whole bar; (c) 
harmonic distribution extended to whole bar. 
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4.4 Comparison of Boundary Conditions 

The analytical solutions of the gradient elasticity model show that the standard 

Neumann boundary condition (4.4) removes the singularity of the elastic strain field 

caused by the material property jump, while the nonstandard Neumann boundary 

conditions (4.7) and (4.8) make the gradient effect negligible at the material points far 

from the singular point. In other words, the heterogeneity is smoothed by the application 

of Neumann boundary conditions to the higher gradient models. However, for gradient 

plasticity, if Neumann boundary conditions are used, the resulting plastic strains will be 

zero in the localization zone, which is nonrealistic. Forcing the plastic strain localized 

into a narrow region is equivalent to introducing heterogeneity into the strain field. 

Motivated from this point, the first derivative of the plastic strain field should not be 

specified at the boundary, and instead, the plastic strains themselves should be specified. 

The above analytical solutions of the strain softening problem with gradient plasticity 

model shows that plastic strains are surely localized into a narrow zone when the 

nonstandard Dirichlet boundary condition (4.23) is used, indicating that due to the 

Dirichlet boundary condition, the gradient plasticity model introduces heterogeneity into 

the strain field and makes the boundary value problem of strain localization well-posed. 

4.5 Summary 

The Neumann boundary condition is a correct one for gradient elasticity to 

regularize singularity of strain field, while the Dirichlet boundary condition forces the 

strain to be localized into a small region and removes the mesh-dependency in the 

modeling of strain localization and, therefore is an appropriate boundary condition for the 

gradient plasticity problem. Only with correct boundary conditions can these two gradient 
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theories regularize the nonrealistic mechanical response and make the boundary value 

problems well-posed. The constitutive equations with c = I2 give unique and stable 

solutions for both gradient theories, while the gradient models with c = -I2 result in 

unstable solutions. However, provided 0< S/21 < n, the gradient plasticity model with 

c = -I2 can still give successful mesh-independent modeling of strain localization. 



CHAPTER 5 

NUMERICAL SIMULATION OF STRAIN 

LOCALIZATION BASED ON NONLOCAL 

PLASTICITY MODEL AND 

C° FINITE ELEMENTS 

5.1 Introduction 

It is well established that the pathological, mesh-dependent solutions of strain 

localization based on the classical continuum mechanics are caused by the loss of 

ellipticity of the governing differential equations describing the mechanical responses of 

materials with heterogenous properties [60, 65, 66]. From a mathematical point of view, 

the boundary value problem becomes ill-posed when the classical continuum models are 

employed to describe the inhomogenous deformation of materials in the presence of a 

high strain gradient [60, 67, 68]. 

Various theories and models have been suggested or proposed to preserve the 

ellipticity of the governing differential equations and restore the well-posedness of the 

boundary value problems. These theories and models approximately fall into two 

categories: the modified classical continuum model and the nonlocality-based continuum 

theory. In the first category, localization is viewed as a bifurcation phenomenon, and the 
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bifurcation analysis is used to determine the geometry of the localized deformation 

modes [35, 69, 70]. The bifurcation point is found through the use of Hill's general 

theory of bifurcation and uniqueness for elasto-plastic solids [30]. When the onset of 

localization is detected, post-bifurcation behavior is modeled through setting up 

additional shape functions which closely reproduce the localized deformation patterns 

[65], smearing the deformation within a shear band over the elements that contain it [71], 

or assuming an enhanced strain field to reflect the strong discontinuity or displacement 

jumps [72-74]. Numerical analyses based on the modified classical continuum models 

can give objective load-displacement responses and displacement field. The drawback of 

this type of model is that the thickness of the shear band is still sensitive to the mesh 

refinement. However, the thickness of shear band in geotechnical materials, such as soils, 

sands, rocks, and concrete, is small as compared with the typical dimensions of 

geotechnical structures; for this reason the accurate prediction of shear band thickness is 

not important [72]. On the other hand, the shear bands observed in a variety of metals are 

of finite thickness, and their accurate prediction is of theoretical and practical 

significance [8]. The second type of theory, the nonlocality-based continuum theory, can 

be viewed as the generic name of a class of theory that considers the microstructure of 

materials (e. g. particle size, lattice arrangement, etc.), in the constitutive characterization 

[54, 55, 57, 75-79]. The salient feature of this type of theory is that the internal length 

scales of materials, which reflect the long-range cohesive forces, enter the constitutive 

representation of material behavior [54, 55, 76, 79-81]. Among the popular theories of 

this kind are Cosserat continuum theory [60, 82-85]; Toupin-Mindlin's micropolar theory 
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[77, 78]; Eringen-Bazant's nonlocal theory [75, 76, 86, 87]; and high-order gradient 

theory [54, 55, 63, 64, 88-90]. 

Eringen-Bazant's nonlocal theory takes into account the behavior of the 

micro structure of materials and long-range interactions between material particles by 

statistically averaging constitutive quantities [76, 86]. The underlying assumption of the 

nonlocal continuum theory is that the stress at a reference point in the body depends not 

only on strain history at that point but also on strain histories at all other points of the 

body [56, 57]. In the classical continuum mechanics, the stress at a material point 

depends only on the strain history at that point. Actually, this assumption of locality is 

too strong to reflect the microstructure behavior and is abandoned in the nonlocal 

continuum theory. In Eringen-Bazant's nonlocal model, the nonlocal counterpart of a 

field variable at a material point, e.g. nonlocal strain, is expressed as the weighted 

averaging of the local variable over a spatial neighborhood of that point. When the local 

variable is substituted for by its truncated Taylor series, the integral-type nonlocal model 

reduces to the gradient-type nonlocal model whose mathematical expression has the same 

form as that of the high-order gradient model [80]. Both integral-type and gradient-type 

nonlocal models introduce internal length scales of materials in their constitutive 

relations. Direct application of integral-type nonlocal models to numerical analyses of 

strain softening were conducted by Bazant and Lin [91], and Bazant and Chang [86, 87] 

by way of their imbricate continuum model. The integration of nonlocality equations is 

approximated by finite sums over all the integration points of all the elements in the 

material body. With similar approach and different solution strategy, Stromberg and 

Ristinmaa [92] directly applied the integral-type nonlocal plasticity model to the analysis 
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of shear band localization. Their studies have shown that nonlocal theory can make the 

boundary value problem of strain softening well-posed and give mesh-independent 

simulation of strain localization. However, the numerical integration algorithms for 

incremental constitutive equations involving nonlocal quantities and stress updating 

schemes in these studies are much different from the regular time-step integration 

algorithm, and their numerical convergence and stability are not always assured. Also the 

physical meaning of the internal length scale and its relationship with the size of 

localization zone is not clearly defined. 

In this chapter, a nonlocal plasticity model, which is based on the nonlocal 

plasticity theory, is developed to simulate the strain localization with the purpose of 

regularizing the mesh-dependency. A numerical analysis of the one dimensional plastic 

strain softening is carried out to demonstrate the ability of this model to simulate the 

strain localization without mesh-dependency. 

5.2 Nonlocal Plasticity Model fTheorv) 

5.2.1 Introduction to the Nonlocal 
Theory and CRVE 

Let x represent the position of a material point in a global reference system and 

£ the position of a material point in a local reference system with its origin located at JC 

(see Figure 5.1). For a local field, Y{x), defined in domain Q, its corresponding nonlocal 

counterpart, Y(x) (see Figure 5.2 ), is defined as: 

? (x)=~-y- jw(x,fW(x + f)dV \/:xen;ZenRVE(x), (5.1) 
VRVE\X) nRVE(x) 

in which 



VRVE{x)= \w(x,f)dV , 
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(5.2) 
nRVE(x) 

where QRVE{x) represents the domain occupied by a representative volumetric element 

(RVE) at the reference material point x, w(x,lj) is a nonlocal weighting function over 

QRVE(x). The symbol "~" over a variable denotes the nonlocal counterpart of that 

variable. Equation (5.1) implies that a nonlocal variable is the weighted averaging of its 

local counterpart. 

Xn (6,6.6) 

A*i 

Figure 5.1 The nonlocal reference frame. 

4r(x) 

l-#:^-Mi^o; ^a^'^W^i 

Figure 5.2 Nonlocal averaging. 
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The nonlocal weighting function w(x,jj) is a non-negative function and 

monotonically decreases with |£|| increasing. At ||£| = 0 , the w(x, %) acquires its 

maximum and when ||f|-»oo, w(x,£)-»0 . The nonlocal weighting function w(x,£) 

actually reflects the nonlocal interaction between two points no matter how far they are 

from each other. Accurate determination of w(x,£) should rely on the analysis of atomic 

lattice dynamics, particle physics, or statistical mechanics. In numerical analyses, 

currently only semi-empirical distribution functions are adopted. According to Bazant 

and Lin [91], w(x,g) could be defined as a uniformly distributed function as shown in 

Figure 5.3(a) 

w(x,£) = l, (5.3) 

or a normally distributed function (Gaussian distribution function) as in Figure 5.3(b) 

W(*,<f) = e- ( i | f | / , ) \ (5-4) 

where A: is a constant and / the characteristic length of the material that defines the size 

of the representative volumetric element. For the sake of simplicity, only a uniformly 

distributed weighting function is considered in the present study. 

Consider a cubic representative volumetric element (CRVE) with side length of lc 

(Figure 5.4). Suppose that the center of this CRVE is located at x° = {x°,x^,xl) in the 

global Cartesian coordinate system and serves as the origin of a local Cartesian 

coordinate system £ = (£j, £2 ,£3). If the field Y(x) is sufficiently smooth within this 

CRVE, it can be expanded as the following Taylor series: 



Y(x° + Z) = Y(x°) + 
dY(x) 

dx. x=x° J *
 + 2 

f d2Y{x) 

dxtdXj 
^J+0(^k), (5 

x=x° J 

where Einstein's summation convention applies to the dummy indices. 

(a) (b) 

Figure 5.3 The nonlocal weighting function: (a) uniform distribution function; (b) 
Gaussian distribution function. 

£l 
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^ 
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Figure 5.4 The cubic representative volumetric element (CRVE). 



117 

Generally, for every material point at xeQ, there is a CRVE centered at JC. If 

Y(x) is smooth enough for all xeQ, then Equation (5.5) is valid for 

xeQ and £ eQRVE(x). Replacing x°with JC and substituting Equation (5.5) and (5.3) 

into Equation (5.1) and (5.2), with the fourth and higher order terms neglected, results in 

the following differential equation [80, 93]: 

Y{x) = Y(x) + ̂ V2Y(x), (5.6) 

which is an approximate expression of the integral-type nonlocal model, as given by 

Equation (5.1). 

Equation (5.6) is of the same form as the explicit gradient model except for the 

difference in the coefficients in front of the gradient term between Equation (5.6) and the 

gradient model. It is the truncated Taylor expansion, as given by Equation (5.5), which 

establishes a link between the nonlocal integral-type model and the gradient model, and 

provides an approximate approach to introduce the nonlocal effect by adding a 2n or 

higher order gradient of the local field into the original local field. In the later section we 

will show that this link makes it possible to use C° elements to solve the nonlocal field. 

The dimension length lc, defined as the side length of a CRVE, and often called 

the characteristic length of the CRVE, enters into Equation (5.6). In the literature of 

nonlocal or gradient theory [55, 57, 68, 93, 94], an internal length scale c is usually 

defined through 

Y(x)=Y(x) + c2V2Y(x). (5.6a) 

Comparing Equation (5.6) with Equation (5.6a), one can obtain 
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c = -^=. (5.6b) 

V24 

The implication of this definition is that the nonlocal interaction between the reference 

point at the center of the CRVE and the material points outside the CRVE are not 

considered. This definition is based on the assumption that the nonlocal interaction 

between two material points will become negligible when their physical distance exceeds 

a characteristic length. As a consequence, a link between the size of the localization zone 

or shear band width and the CRVE is well established. It will be shown in the later 

section that the size of the localization zone is equal to the characteristic length of the 

CRVE. 

5.2.2 The Nonlocal Plasticity 

Recall Equations (2.3) through (2.5). In the classical theory of plasticity, the yield 

function in the stress space at a material point generally depends on the local stress state 

and the local internal state variables at that material point [41-42]. All of the quantities in 

Equations (2.3) through (2.5) are local quantities. In the presence of strain softening 

plasticity, the boundary value problem (BVP) with all local quantities involved in the 

yield function becomes ill-posed. To regularize the ill-posedness, some local variables 

have to be replaced with their nonlocal counterparts. In Eringen's nonlocal plasticity 

theory, the elastic stresses or total strains are nonlocal, and the resulting formulation 

cannot be used as a localization limiter [76]. Bazant and Chang [86], Vardoulakis and 

Aifantis [94], de Borst and Muhlhaus [63], and other researchers [88, 89, 95] treat the 

internal state variable or plastic strains as nonlocal quantities and give mesh-independent 

modeling of strain localization. In the present study, only nonlocality of the internal state 

variable and plastic strains are considered in our nonlocal plasticity model. 
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Substituting the nonlocal internal variable rj for the local variable r\ in Equations 

(2.3) and (2.4) gives the following nonlocal yield function and yield stress: 

f(a,fJi):=jr(ff)-crY(rj) = 0, (5.7) 

cJy(rj) = cjY0+z{r/)- (5.8) 

If the differential Equation (5.6) is adopted as the approximate relation between rj and r\, 

i.e. 

ij(x)^r](x) + -^V2r/(x), (5.9) 

the nonlocal yield function and the yield stress will take the form of a 2nd order 

differential equation in the local internal variable 77: 

f(a,71+^2j1):=J^(G)-aY(T] + -^V2rj) = 0, (5.7a) 

"rto + YAV2f]) = *" + Xin + ^ V ) • (5-8a) 

The advantage of Equation (5.7a) and Equation (5.8a) over Equation (5.7) and 

Equation (5.8) is that we can derive the weak form of Equations (5.7a) and (5.8a) and use 

C° finite elements to obtain the solution of the local field 77 . After obtaining 77, 

Equation (5.1) can be used to solve the nonlocal field rj, and then 77 is substituted into 

Equation (5.7) and Equation (5.8) to check if the yield condition is satisfied. With this 

methodology, we can avoid employing C1 elements to evaluate the Laplacian term V277. 
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5.3 Finite Element Formulation of the Two Coupled Fields 

5.3.1 The Governing Differential Equations 

Suppose that at a given instant of time t, a domain Q is in a state of static 

equilibrium, and the state of stress a and its loading history is known throughout the 

domain. The external force increment dF is prescribed on dgQ, and the displacement 

du is prescribed on duQ, where dg and du denote the boundary associated with the 

given force and displacement (Figure 5.5). The boundary value problem of incremental 

elastoplasticity is to find the incremental displacement field du that satisfies, in O, 

the equation of equilibrium 

divd<T + db = 0, (5.9) 

the strain—displacement relation 

de = -(w« + (Vduf), (5.10) 

the constitutive relation 

d<r = Ce:(de-d£p), (5.11) 

and the boundary condition 

da-n = dF on dgQ and (5.12) 

du = du on duQ, (5-13) 

where dgQ U duQ = dfl , dgQ D duO = 0 . The domain Q can be divided into an 

elastoplastic domain Qep and an elastic domain Qe, i.e. Q = Qep U Oe. In the elastic 

domain Qe, we have dsp =0 . In the elastoplastic domain Qep , when the material 

experiences unloading, we have dep = 0 . If it experiences plastic loading, we have 



121 

dsp > 0. If the plastic loading obeys the associative normal flow rule, the plastic strains 

relate to stresses by 

de"= dX^-. 
da 

(5.14) 

The plastic loading/unloading condition obeys the following Kuhn-Tucker 

complementarity condition [42, 43] 

dA>0 , f(a,ff)<0, and dAf(a,?f) = 0, (5.15) 

and satisfies the consistency requirement 

<Mf(c,rj) = 0. 

During plastic loading, dk > 0, Equation (5.15) and Equation (5.16) turn out to be 

f(o,rj) = 0 \nQep, 

/(ff,77) = 0 mOep. 

(5.16) 

(5.17) 

(5.18) 

d„n d„n 

Figure 5.5 Domain of two coupled elasto-plastic boundary-value problems. 
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Using the chain rule and nonlocal relation Equation (5.6a), Equation (5.7), and Equation 

(5.9), the consistency Equation (5.18) can be rewritten as 

i^-ML + ̂ b , (5.19) 
da dr/ 

If the plastic modulus E is defined as 

E = ^ f f l = ^ ( 7 ) ; (520) 
p dr/ drj 

and the tensor a, which is related to the normal direction of the yield surface, is written 

as 

« = f . (5.21) 
da 

Equation (5.18) becomes 

a:da-Epdrf-Epc
2V2dr/ = 0. (5.22) 

Letting 

k = Epc\ (5.23) 

and substituting k into Equation (5.22), we obtain 

a:da-Epdr]-kV2drj = 0. (5.24) 

Equation (5.24) is a 2nd-order differential equation with respect to the internal variable rj 

and only valid under the following condition 

x e Qep and r\ > 0 (i.e. plastic loading), (5.25) 
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To solve Equation (5.24), the boundary conditions related to TJ(X) have to be 

prescribed on dfl . According to the results obtained in Chapter 4, Dirichlet boundary 

conditions should be applied on dQep, that is 

d?j = 0 on dQep. (5.26) 

The boundary value problem of the field drj{x) is to find the internal variable r/(x) in 

domain Qep that satisfies Equation (5.24), Equation (5.25), and the boundary condition 

of Equation (5.26). The internal variable r] can be related to the equivalent plastic strain, 

sp
eq, through 

dr1 = dsp
eq. (5.27) 

With associative flow rule (5.14) and the assumption of isotropic strain 

hardening/softening, for many yield functions the relation between dr\ and dX has the 

following linear form [63, 95]: 

dri = ydX. (5.28) 

For the von Mises yield function, one can derive (see Appendix A) 

y = \, drj = dl. (5.29) 

For other yield functions, y can be formulated by substituting the specific yield function 

into Equation (5.14), and then Equation (2.7), and finally Equation (5.27). Our research 

effort will be only focused on the von Mises yield function. Substitution of Equation 

(5.29) into Equation (5.24) results in 

a:da-EpdA-kV2dA = 0. (5.30) 
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We can see that the two fields, the displacement field u and the plastic multiplier 

field X (or the internal variable field rj) are coupled with each other. These two fields 

involve two sets of coupled 2" order partial differential equations and independent 

boundary conditions, which are summarized as follows: 

Displacement field : div da + db = 0 V : x e Q 

Plastic multiplier field: a: da- EpdX - kS72dX = 0, V: JC e Qep & dX > 0 
(5.31) 

Notice that the governing equations for the displacement field hold for the whole 

problem domain Q, while the governing equations for the plastic multiplier field are 

only valid in the elasto-plastic domain Qep under the condition of dX > 0. This situation 

brings some complexities in the design of solution algorithms for the nonlinear system of 

equations resulting from finite element discretization. 

5.3.2 Variational Formulation of 
Two Coupled Field Equations 

Following Muhlhaus and Aifantis [58] and de Borst and Miihlhaus [63], we 

derive the weak forms of the differential field Equation (5.31) as follows. 

For the displacement field du, the weak form of the Equation (5.9) is the same as 

derived in Chapter 2, which is rewritten in the following 

jsds: da dV = jdb • SdudV + jdF • SdudS. (5.32) 

n Q eng 

Substitution of Equations (5.10), (5.11), (5.14), (5.21) into the above equation results in 

J&fe :C:(ds- dXa)dV = \db • SdudV + jdF -SdudS. (5.33) 
n n eng 

The variational statement of the boundary value problem for the displacement field is to 

find du such that 



jsde :C:{de- dAa)dV = jdb • SdudV + \dF • SdudS 

du = du on d„Q 
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(5.34) 

For the plastic multiplier, we can write the variational form of the field Equation 

(5.30) as 

jSdA(a:da-EpdA-kV2dA) = 0, (5.35) 

where SdA is the variation of the solution dA. To make the derivation convenient, we 

take the alternative form of Equation (5.35) 

^(SdAa:da-EpSdAdA-k&lAV2dA) = 0. (5.36) 

Integrating the third term of Equation (5.36) by parts yields 

\SdA(V2dA)dV= fr-(SdA{VdA))dV- ft (SdA) • (VdA)dV . (5.37) 
n<P

 neP nep 

Applying the divergence theorem 

fr-(SdA(VdA))dV = \ddAQj dA) • ndV, (5.38) 
nep enep 

to the first term of right hand side of Equation (5.37) and considering the nonstandard 

boundary condition (5.26) and Equation (5.29), we arrive at 

$SdA(y2dA)dV = - fr(SdA) • (VdA) dS. (5.39) 

n,p
 neP 

Substitution of Equation (5.39) into Equation (5.36) results in the weak form of the 

governing equation of the plastic multiplier field as 

j(&M. a. do- EpSdA dA + kV(SdA) • Vctt)dV = 0. (5.40) 

file:///ddAQj
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The variational statement of the boundary value problem for the plastic multiplier field is 

to find dX such that 

pdX a. do- Ep5dX dX + kV(SdX) • Vdx)dV = 0 
n., 

dX = 0 on dDep , & dX > 0, V JC e Qep 

>. (5.41) 

Observe that dX is unknown for Equation (5.34), and da is unknown for 

Equation (5.41). Thus du can not be found by only solving Equation (5.34) and dX can 

not be found by only solving Equation (5.41). To find the solutions of du and dX, we 

have to solve the two field equations simultaneously. The variational statement of these 

two coupled field equations should be defined as: to find du and dX such that Equation 

(5.34) and Equation (5.41) are satisfied simultaneously. We summarize the weak form of 

these two coupled field equations in the following box 

jSde :C:(ds- dXa)dV = \db • SdudV + jdF • Sdu dS 
n n dng 

du = du on duQ 

j(sdX a: da- EpSdX dX + kV(SdX) • VdX)dV = 0 

dX = 0 on dnep , & dX > 0, V x e Qep 

• V: jce!2 

•V:xeaep 

(5.42) 

5.3.3 Galerkin's Formulation 

Following the procedure in Section 2.5 of Chapter 2, let us discretize the domain 

Q into the element domain Qe, 1 < e < nel, where nd is the total number of elements. 

The displacement field du within Qe can be approximated by Equation (2.53), and the 

strain-displacement relations can be expressed in matrix form as Equation (2.54). For the 
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same element domain Qe, if Qe c: Qep and dX > 0, the plastic multiplier field t/A can 

be approximated by 

{dA} = l4>]{dll}, 

where |_^J is m e shape function of [dX], defined as 

L*J=L<pi ^ <P»J -

The gradient of {cf/l} is written as 

V{dX} = [V&}{dXl}=[V]{dll}, 

where 

(5.42) 

(5.43) 

(5.44) 

[¥] = [V*] = [V01 V<Z>2 ••• V<Z>„ ] = 

PP] = [V#] = [V<P, V<Z>2 ••• V0„ ] = 

#1,1 #2,1 • • • • • < \ , , 1 

<ft 0 . . . . . . <z> 

®u ^2,1 <P„„(, 

#1.2 02,2 #„„,2 

^1,3 02,3 # » 3 

forWjr f=2, (5.45) 

, for ^ , = 3 , (5.46) 

Substituting Equation (2.53), Equation (2.54) and Equation (5.42)-(5.46) into 

Equations (5.34) and (5.41) yields 

{Sdulf \[B]T[C]([B]{dul}-[0i{drh}{a})dV = {sdU^ \[N}T{db}dV+ \[Nf^p}dS 

n' n' dn' 

(5.47) 

{ddll}T \i^]T{a}r[c{[B]\dul}-{al^\{dX:})-EX^Il*Jw}+k\¥f[W]fa})dV = 0. 
o' 

(5.48) 

Because Galerkin's Equations (5.47) and (5.48) hold for arbitrary {Sdul} and {ddXe
h}, it 

follows that 
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\[Bf[c{[B]{dul}-{al4>]{dX:})dV= \[N]T{db}dV + \[N]T{dl?}dS , (5.49) 
n' n' en: 

j^*}T{a}T[C\m{duh}-l*}T\a}T[C\^ 
ne

ep 

(5.50) 

After rearranging the terms in Equation (5.49) and Equation (5.50), we obtain the 

following concise form 

K:„ K uX dull \dF' 

where 

[K:J JTJKJ \ o 

[K'„]= j[Bf[C][B]dV, 
ne 

[K:A] = -\[Bf[C]{al4>\dV, 

[*'»] = Sl*J{4[C]{a )|#J + Ep\*J L*J- k[Vf[V])dV, 
K 

\dFh
e}= \[N]T{db}dV + j[Nf\dF}dS. 

Q' dni 

In Equation (5.54), E and k have the following properties: 

E > 0, k > 0 for strain hardening 

Ep=Q,k-Q for perfect plascity 

Ep < 0, k < 0 for strain softening 

Equation (5.51) can be written in a more concise form as 

[ir]{d?tz}={d?:}, 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

with 



M= Ke 

uu 
LuX 

lXX 

( ] \dXl 
te}= IdFf 
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(5.58) 

(5.59) 

Notice that the element stiffness matrix [Ke] is symmetric when the associative 

flow rule is applied. This property makes it possible to take advantage of the existing 

symmetric equation solvers to save program coding work. Also we notice that C° 

continuity is enough to find the solution of \du\ and \dX} in the finite element context. 

5.4 Solution Strategy of the Two Groups of 
Nonlinear Equations 

5.4.1 General Methodology 

In Section 2.6 of Chapter 2, we have shown that for the incremental-iterative 

solution process, the linearized equilibrium equations for (k + \)'h iteration become 

\[Bf[Aa]dV = {AF;}+{AF:l"h. (5.60) 
a' 

Following similar methodology as in Section 2.6, we can show that the linearized 

Galerkin's equations (5.51) for the two coupled fields become 

Ki uu uX Au[\ \AFh
e+(AFhyk"

b 

AX:\ ] o 
(5.61) 

where, 

{AP<}= $[Nf{Ab}dV+ j[Nf \AF}dS., (5.62) 
n' en: 
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{AP:}T= \[N]T{h}kdV + l[Nf{F\dS- \[Bf[a\dV = {F:\- \[B]T[a\dV. 

n' dn'g n' n' 

(5.63) 

Equations (5.61)-(5.63) are based on the assumption that [a] and \Fj are linearly 

additive, i.e 

[a\+,=[G\+[Aa], (5.64) 

{̂ L = H + M- (5-65) 
Solutions of displacements and plastic multipliers at the (k+])th iteration can be obtained 

by 

1143.*!;) 
It should be noticed that the yield condition (5.17) is not exactly satisfied at each 

iteration but only the consistency condition (5.18) is satisfied. However, in the governing 

equation for the plastic flow, only linear terms of the Taylor expansion of the yield 

function are considered, and the higher order terms are truncated, which means that 

Equation (5.17) will not generally be satisfied at any stage of computation. Because the 

elasto-plastic problems are driven by the displacement field, and also u and X are 

coupled with each other, we can not adjust \Xe
hj in a similar way as we do with \ue

h\. 

Instead, we need to construct an alternative algorithm to adjust \Xe
h\ to force the X to 

satisfy the yield condition and then compute the unbalanced nodal forces to reflect this 

adjustment in the equilibrium equations. This algorithm will be described in the 

following section. 
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5.4.2 The Moving Boundary Technique 
and Nonlocal Element 

The governing equations of the two coupled fields, {«} and {X\, consist of two 

parts: one is the equilibrium equation and the other the yield condition. These two sets of 

governing equations are associated with one another through the flow rule and 

consistency condition. Therefore, there is no doubt that the linearized Galerkin's equation 

(5.61) is valid only for the domain where the material has entered the plastic stage and is 

under plastic loading. For the same domain, the yield condition is not involved in the 

governing equations in the following three cases: elastic loading and unloading, 

unloading from the plastic stage, and reloading before reaching the new yield surface. In 

these three cases, the yield condition will not be satisfied, and it will not enter the finite 

element formulation. On the other hand, for the same structures under loading, some parts 

of it may be in the elastic stage whereas the other parts are experiencing plastic flow. 

This situation still results in the exclusion of the yield conditions from the governing 

equations for some elements. In the present research, we use the moving boundary 

technique and nonlocal element to realize the exclusion and inclusion of yield condition 

in the Galerkin's equation by means of adjusting the degrees of freedom (DOFs) of the 

plastic multiplier field, {ji}. 

Recall the definition of the cubic representative volumetric element (CRVE) in 

Section 5.2.1. For the 2-D cases, if domain Q has unit thickness, the CRVE reduces to a 

square RVE (SRVE) with a side length of lc (Figure 5.6(a)). In the same way, for the one 

dimensional cases, a SRVE further reduces to a bar of length lc with a cross-section area 

of Ac, which is called a line RVE or LRVE (Figure 5.6(b)). For a discretized 2-D domain 
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Q, a SRVE is composed of all the elements inside a square region ABCD. All these 

elements inside this square region are called the nonlocal elements attached to the local 

element, e\0), which is located in the center of the region. In other words, every finite 

element itself is not only a local element, but also has a set of adjacent finite elements 

attached to it. These adjacent elements that attach to a certain local element are called 

nonlocal elements whose host element is the local element located in the center of the 

RVE. In Figure 5.6(a), element e\j), _/ = 0,1, • • -, 8, constitutes a set of 2-D nonlocal 

elements whose host element is a 2-D element e\0) . In Figure 5.6(b), elements 

e^J\ j = 0,1,•••,4 , constitutes a set of 1-D nonlocal elements whose host element is a 

1-D element e\0). Notice that a host element itself serves as one of its nonlocal elements. 

According to the above definition, a local element is both a host element and a 

nonlocal element attached to some other host elements. Consequently the nonlocal 

elements for some host elements are overlapped within the discretized domain. For 

example, in Figure 5.7, the nonlocal elements of the host elements e5, ew, and en are 

overlapped (Table 5.1). 

The purpose of defining a set of nonlocal elements for a host element is to 

evaluate the nonlocal constitutive quantities of a local element. In the current study, the 

only nonlocal constitutive quantity is the equivalent plastic strain or plastic multiplier, X. 

If at the k'h iteration of the rih load step, the stress state at some Gaussian integration 

point, say, GPt, in the local element e, meets the yield condition, the whole element e, is 

thought as to be in yielding and all of the DOFs at its nodal points for X, are activated, 

that is, 
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A;;#0 , 7=1,2 nt, (5.67) 

where X\ represents the values of X at nodal points of element <?., hj is the global node 

number, ne is the total number of nodal points in element e ;, and j represents the local 

node number, for example, j = 1,2, •••,%., for an 8-noded isoparametric element. In this 

way, the yield condition (5.17), enters the governing equations. On the contrary, if any 

Gaussian integration points are in an elastic or unloading stage from the yield surface or 

reloading but not reaching the new yield surface, the DOFs of its all nodal points for X, 

will be inactive, that is, 

XI =0 ,7=1 ,2 , . . . , ne. (5.68) 

As a result, the yield condition will quit the governing equations. By making the DOFs of 

element nodal points for X active or inactive, the yield condition is controlled to come 

into or quit from playing in the governing equations. This approach is actually equivalent 

to moving the elasto-plastic boundary according to the stress state of local elements 

(Figure 5.7). 
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Figure 5.6. The moving elasto-plastic boundary and nonlocal elements: (a) 2-D; (b) 1-D. 



Figure 5.7 The overlapped nonlocal elements. 

Table 5.1 The overlapped nonlocal elements 

Host elements 

'10 

Nonlocal elements 

V l ' ^ 2 ' ^ 3 ' ^ 4 ' ^ 5 ' ^ 6 ' 7 ' ^ 8 ' ^ 9 / 

\ ^5 ' ^6 ' ^7 ' 9 ' 1 10' eW> ^ 1 2 ' g 1 3 ' g 1 4 , 

1^14' g 1 5 ' ^16» ^17> ^ 1 8 ' g 1 9 ' g20> ^ 2 1 ' £ 22 / 

If a uniform weighting function is assumed, the nonlocal plastic multiplier A, 

host element e, can be evaluated by 

IM 
A = 

7 = 0 

i m, (5 

14 
y=o 

0) 
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where Xj is the averaged X over the nonlocal element e{ that is attached to host element 

ei. In 2-D cases, Gaussian numerical integration can be used to evaluate X\, i.e. 

X\ = I=L^±—-i , (5-70) 
4 

where ^J\l = 1,2 , is the coordinate of the p'h integration point in the Ith dimension, and 

Gp is the weight of the p'h integration point. 

Because of dX = drj for the von Mises yield criterion, X = rj and further X = rj 

can be reasonably obtained. Provided that Xt is obtained for a local element ei, we can 

substitute it into the yield function (5.17) to check if the yield condition is satisfied. If it 

is, the unbalanced stresses will be computed. However for the higher-order finite element 

that involves nonlinear interpolation functions, stresses and strains are usually evaluated 

at Gaussian integration points. In this situation, Xt is taken to be constant over the local 

element ei and the values of X at all the Gaussian points of element et are treated to be 

equal to Xi. This treatment can be equivalently viewed as if the plastic strains are 

"smeared" over the whole local element. When a coarse mesh is used in the discretization, 

the approximate solution will be very rough. With the refinement of the mesh, the results 

will converge to the exact solution. 

The significance of using nonlocal plastic strain instead of local plastic strain is 

that the variation of plastic strains in one element will affect the plastic strains in other 

elements that are within the characteristic region of a RVE. Because of the overlapping of 

the nonlocal elements and the application of the nonlocal plastic strains in the yield 
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function, the nonlocality of plasticity is reflected in the interaction of plastic strains of 

local elements with one another. 

5.4.3 The Stress Updating Algorithm 

In the classical computational methodology for plasticity, stress updating is 

achieved by integrating the local constitutive equations with given initial conditions. 

Because the local incremental constitutive equations involve plastic strains and state 

variables only as local quantities, the integration schemes are carried out locally at each 

material point on the constitutive level. However, for the current nonlocal plasticity 

model, the plastic multiplier serves as an independent variable, and the yield condition is 

not locally satisfied. Instead, it is satisfied in an integral sense and the local stress 

integration scheme does not apply any more. Therefore, the stress updating for nonlocal 

plasticity has to be carried out on a global level with a regular finite-element procedure 

combined with the moving elasto-plastic boundary technique. 

Recall the linearized Galerkin's Equation (5.61). Taking the assumption of rj = A 

for the von Mises yield criterion, the second part of the equation is associated with the 

truncated Taylor expansion of the yield function at the k'h iteration: 

oa k 

d<jy {A ) 
AA=0, (5.71) 

under the yield condition of 

f(<rk,Ak) = 0. (5.72) 

However, because the 2nd and higher order terms of the Taylor expansion of f(a, A) at 

(ok,Ak) are truncated, the yield condition at the (k + l)'h iteration, generally are not 

exactly satisfied, i.e. 
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/(**+i > h+x) = / (** + Aa,Ak+M)^0. (5.73) 

To make the yield condition satisfied at the (k + \),h iteration, namely, 

M + i A + i ) = o. (5.74) 

we have to adjust Aa or AX or both. We notice that Aa and AX are solutions of the 

two coupled field equations and Aa is related to AX by 

Atr = C:(Ae-AXa). (5.75) 

From a computational standpoint, this problem can always be regarded as strain-

driven in the sense that the state variables are computed from a given deformation history 

[43]. After comparing Equation (5.73) with Equation (5.75), it is indicated that we only 

need to adjust AX at the end of the (k + \)'h iteration to force the yield condition to be 

satisfied with Ae unchanged. Expanding the yield function into a Taylor series at the 

(k + l)'h iteration with respect to X with nonlinear terms truncated, one can obtain 

f +^ 
Jk+l T -

Off 

:Aff' 
k+\ 

daY {X) 

8X 
AX' = fk+] - AX X+1 :C:a-AX'Ep = 0, (5.76) 

k+\ 

and 

AX' = f(ffk+vXM) 
aT

k+x:C:a + Ep 

(5.77) 

where the AX' is the adjustment value of AX . The adjusted value of Xk™ is 

K7i = K+\ +AX' = Xk+AX+AX'. (5.78) 

We notice that the solutions of X are obtained only at the discretized nodal points, 

whereas the adjustment value AX' is solved for each element. To make the solution 

consistent, we have to transform the value of AX' for each element onto its nodal points. 
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Because of the nonlocality of AX', the values of X at all of the nodal points of every 

nonlocal element attached to the host element that has a nonzero value of AX' should be 

adjusted. To this end, we use a proportional adjustment approach based on the equivalent 

averaged plastic multiplier to obtain the adjustment value at each relevant nodal point. 

Suppose that an adjustment value, AX[^ , at any material point in the elasto-plastic 

domain, Q , at the (k + ])'h iteration is proportional to the total value A^+1 at the same 

point by the following relationship 

AXl^QX^, (5.79) 

where Q is a proportionality factor. For a host element e,, an adjustment value AX^ can 

be found from Equation (5.77). Notice that AX^ is the averaged adjustment value for all 

of the nonlocal elements attached to host element e,. To obtain the actual adjustment 

value for each material point, we need to compute Q first. Considering that the averaged 

adjustment value should be equal to AX^ after adjustment according to Equation (5.78), 

we have 

y = i Aj .7=1 

mi 

Q = H ~ , (5-81) 

where mt is the number of nonlocal elements for host element e,. 
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For a nodal point p that belongs to one of the nonlocal element attached to the 

host element /, the adjustment value of X can be obtained by 

AX;[f=QX^\ (5.82) 

The final adjustment value of X at nodal point p can be found by 

4l'jfr>=J=2 , (5.83) 
nP 

where n is the total number of the host elements that take the point p as a nodal point 

for one of their nonlocal elements. The updated incremental and total value of X at point 

p can be computed as 

AX[fx"
ew) = M ' i + AKlT'] > (5-8 4) 

^ P X * W ) = A(P) + AA(P) _ (5.85) 

From the updated incremental and total values of X at the nodal points, the nonlocal 

plastic strain, both incrementally and totally, for each host element, can be obtained by 

using Equation (5.69), and the updated stress increment can be calculated according to 

Equation (5.75). 

The implementation of the algorithm described above is summarized in Table 5.2. 



Table 5.2 The stress updating algorithm 

1. Initialize at n'h load increment and (k +1)* iteration : 

{Ml J+1 = 0; If * +1 = 1, Then {AF^ \+l = j ^ F / }, Else \AF; }"k+1 = 0 End IF 

2. Compute stiffness matrix [K"^ 

3.Solve{zl«:};+1and{^}:+1 

Ke 

\KlJ Kn_, 
according to a"k and Xk 

\Au[ 

AX, 
'h J t + i 

Ke K 
uu i 

I 0 

mb 

4. Compute strain, stress and plastic strain 

~ m'• I - \ lm- ~ I "m "^ 

;=o y=o />=! ?=l 
' 4 J 

{Ae}k+i = [B]{Aue
h }k+i, sk+1=sk+ Ask+l 

Aak+1 = C: (AEM - AXk+lak} ok+l =ak+ Aak+l 

5 . C h e c k i f / K + 1 , ^ + 1 ) > 0 ? 

I F / K + 1 , ^ + 1 ) > 0 T H E N : 

IF the DOFs of element et for X have been released,THEN : 

Find AX' \p\ according to Eq.(107) - (112), then GOTO step 6 

ELSE: 

Release the DOFs of element e, for X, then GOTO step 3 to 

recompute {Aue
h\+V (d^J+ 1 , AX„ {As}k+1, ek+l, Aak+1, and a 

END IF 

ENDIF 

6. Update plastic strain and stress 

Axi=Ax,+Ax;, W;+1={^L.+k'L. kL=kL+k) : 
Aak+l = C: [Aek+l - AXk+lak), ak+l =ak+ AaM 

7. Compute unbalanced nodal forces 

8 Check convergence of the unbalanced nodal forces 

IF fc;M| <TOL , THEN: GOTO next load increment ->(» + l)j 

ELSE :k<-k + \ GOTO step 2 

ENDIF 

* + i 

)k+\ 
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5.5 Simulation of the One-Dimensional Plastic Strain Softening 

5.5.1 Problem Definition and 

the Finite Element Modeling 

To illustrate the methodology presented in the preceding sections, we consider the 

one-dimensional bar subjected to pure tension, which is described Section 3.3 of Chapter 

3 (see Figure 3.4). The bar has a length of L = 100mm with unit cross-sectional area, 

A=\ mm1, The material parameters are shown in Table 3.1. To focus on the 

demonstration of the solution strategy, linear plastic strain softening is assumed (see 

Figure 3.5). The internal length scale c = 5mm is assumed and correspondingly, 

lc = 25 mm is taken for the LRVE. Gradient coefficient k is calculated as 

k = Epc
2 = -2000 N/mm2 • 25 mm2 = -50000 N . 

Table 5.3 The finite element discretization data 

nel 

"total 
21 
45 
85 
167 

Lf ^mm) 

5 
2.23 
1.17 
0.60 

n § 

5 
11 
21 
41 

* L* is the typical length of most elements. 

Some elements may have the length more or 
less than the typical length to fit the bar 
length. 

§ nnk ' s t n e n u m D e r of nonlocal elements for 
each host element. 

The finite element discretization is shown in Figure 3.7. Four different meshes, 

21-element, 45-element, 85-element and 167-element, are used, respectively, with a 

different number of nonlocal elements for each host element (see Table 5.3). To trigger 

the plastic strain localization, the local element located in the center of the bar for each 
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mesh is treated as a weak element with the yield strength 10% off the normal yield 

strength crY . The size of the weak element decreases with the refinement of the mesh. 

5.5.2 Numerical Results 

The effective plastic strain distributions and the load-displacement curves from 

the four different meshes at u = 0.02 mm are shown in Figure 5.8 and Figure 5.9, 

respectively. In Figure 5.8, we can see that the plastic strain, resulting from the nonlocal 

model, is localized into a region that spans over several elements after the weak element 

yields, whereas the plastic strain from the classical model (local model) is localized into 

only one single element—the weak element. With refinement of meshes, the size of the 

localization zone is almost unchanged except that there is a little difference between the 

results of the 21-element mesh and that of other three meshes. Since the 21-element mesh 

is relatively coarse compared with other meshes, this result is reasonable. Figure 12 also 

shows that the distributions of the plastic strain over the localization zone for the 21-

element, 45-element, 85-element, and 167-element cases are very similar and are of 

harmonic type, which agrees with the solution in de Borst and Miihlhaus [63] and the 

theoretical results obtained in Chapter 4. We notice that the four distributions tend to 

converge towards a steady distribution with mesh refinement. 

Figure 5.9 shows the well-posedness of the plastic strain softening problem with 

the nonlocal model employed. The post-peak branch of the load-displacement curve 

descends gradually after yielding of the weak element. This response is consistent with 

the reasonable plastic distribution that is associated with a localization zone over more 

than one element. For an ill-posed strain softening problem, the post-peak branch of the 

load-displacement curve is not unique and generally depends on the mesh pattern and the 
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stress updating algorithm [97, 98]. If a small positive plastic modulus and an algorithm of 

Newton's type are used, the post-peak response will be an all-of-a-sudden decrement of 

the applied load, followed by a rapid increment of displacement with a constant residual 

load that is either very small or zero (see Figure 3.9). The results in Figure 5.9 also show 

the convergence of the post-peak branch of the load-displacement curve, even though the 

curve from the 21-element mesh deviates somewhat from the results of other meshes due 

to the coarse mesh. 

The total strain distributions of the bar after yielding for different meshes at 

u = 0.0125mm are shown in Figure 5.10. The elements other than those in the 

localization zone experience elastic deformation while the elements within the 

localization zone are in the elasto-plastic state. Most of the deformation of the bar after 

yielding comes from the plastic deformation of the localization zone. Figure 5.11 shows 

the evolution of the plastic distribution over the bar at the end displacements of 

w = 0.01mm, 0.0125mm, 0.015mm and 0.02mm, respectively. It is shown that the 

localization zone remains unchanged with increased end displacement after triggering of 

the localization. The distributions of plastic strain at each loading stage after localization 

are all of similar harmonic type. 
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Figure 5.8 Mesh independent result: the effective plastic strain distribution of the bar 
under tension with the nonlocal model. 
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Figure 5.9 Mesh-independent results: load-displacement curve of the bar under tension 
with the nonlocal model. 
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Figure 5.10 Mesh-independent results: the total strain distribution of the bar under 
tension at u = 0.0125 mm with the nonlocal model. 
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Figure 5.11. Mesh-independent results: evolution of the effective plastic strain 
distribution of the bar under tension at different end displacements with the nonlocal 
model. 
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5.6 Summary 

A new methodology that combines the nonlocal plasticity model with C° finite 

elements is proposed to simulate strain localization. The nonlocal field is introduced as a 

weighted averaging of its local counterpart over a representative volumetric element 

(RVE), and therefore is of integral type. Based on the uniformly distributed weighting 

function and the truncated Taylor expansion of the local field at the center of RVE, an 

approximate expression of the integral-type nonlocal model is derived, which is a 2" 

order differential equation. This approximate expression is similar to the explicit gradient 

model. Thus, a link is established between an integral type nonlocal model and its 

equivalent differential form. This link serves two purposes: on the one hand, the 

consistency equation, which originally is an algebraic equation with respect to the 

nonlocal plastic multiplier (or state variable), becomes a 2nd order differential equation 

with respect to the local plastic multiplier. To solve this differential consistency equation 

in the finite element context, we can derive its variational form with the local plastic 

multiplier as an independent field variable; on the other hand, to avoid using C1 elements 

in the finite element approximation to evaluate the 2nd order gradient of the local plastic 

multiplier field, we can take advantage of its integral-type nonlocal model to evaluate its 

nonlocal counterpart. With this method, C° elements are efficient enough for the finite 

element approximation of the plastic multiplier field. 

Variational formulation and Galerkin's equations of the two coupled fields, 

displacement and plastic multiplier fields, are presented based on the C° element. A 

solution strategy and an algorithm are constructed to solve these coupled nonlinear 

systems of field equations. The method of solution is still within the framework of 
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Newton's type with linearization of nonlinear operator equations. However, because the 

problem is displacement-driven, the convergence is controlled by the norm of unbalanced 

nodal forces, which is reflected in the linearized equation (95). Stress integration is 

implemented by means of an algorithm that employs a so-called moving boundary 

technique and nonlocal elements, which are summarized as follows: 

(i) If the stress state of an element in an averaged sense satisfies the yield condition, 

the degrees of freedom for the plastic multiplier field at all nodal points of this 

element are activated, and Equation (5.61) is resolved with the same applied loads. 

With load increased, more nodal points are activated regarding the plastic 

multiplier and the elasto-plastic boundary moves with increased plastic 

deformation. We use this technique to control the exclusion and inclusion of yield 

conditions in the governing equations, 

(ii) A nonlocal plastic multiplier X for a local element is evaluated as an averaging of 

local plastic multiplier over all of its nonlocal elements. A nonlocal element 

attached to a local element (also called a host element) is one of the local 

elements included in a region that has the characteristic size of a RVE. Nonlocal 

elements are generally overlapped with each other, and it is just this overlapping 

that contributes to the nonlocality of plastic strains for local elements. 

Numerical simulation for a 1-D bar under tension shows that the methodology 

presented is capable of giving rise to a mesh independent solution of strain localization. 

The size of the localization zone will approach to a limit value when the mesh is refined, 

and this size is roughly equal to the characteristic size of the RVE. The plastic strain 

distributions and load-displacement curves are both convergent and realistic. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

Within the frame of the classical continuum mechanics, a rate-independent strain 

softening plasticity model is formulated to simulate the strain localization caused by 

plastic strain softening. A necessary condition for the occurrence of localized plastic 

deformation is E < 0. Based on the incremental constitutive equation, the variational 

equation of the incremental elasto-plastic boundary value problem is developed and the 

finite element approximation of this variational equation is formulated through Galerkin's 

method. To solve the resulting nonlinear system of equations, a method of Newton's 

form is applied. A forward-Euler integration algorithm is developed to integrate the 

incremental constitutive equation. 

Two computer programs, EP1D and EPLAS, are developed to simulate strain 

localization for 1-D and 2-D problems, respectively. Strain localization and shear band 

localization is well demonstrated through 1-D and 2-D numerical examples. It is shown 

that the simulation result of the size of the localization zone and the load-displacement 

response are mesh-dependent. This mesh-dependency is caused by the loss of ellipticity 

of the governing differential equations that come from the classical continuum 

mechanics-based strain softening plasticity model. Numerical examples also show that 

the location of the shear band is sensitive to the location of the weak zone. As an extreme 

149 
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case of the strain softening plasticity, a perfect plasticity model is also used in the 

simulation, and the results are compared with those from the strain softening model. The 

comparison indicates that the shear band patterns and load-displacement responses for 

these two models are obviously different. The reason for this difference is that the 

governing differential equations for the two models are different even though both 

models can exhibit the material instability and the strain localization. 

To regularize the mesh-dependency and make the boundary-value problem well-

posed, a new methodology that combines the nonlocal plasticity model with the C° finite 

elements is proposed to simulate strain localization. In this model, the nonlocal field is 

introduced as a weighted averaging of its local counterpart over a representative 

volumetric element (RVE), and therefore is of integral type. Based on the uniformly 

distributed weighting function and the truncated Taylor expansion of the local field at the 

center of RVE, an approximate expression of the integral-type nonlocal model is derived, 

which is a 2nd order differential equation. This approximate expression is similar to the 

explicit gradient model. Thus, a link is established between an integral type nonlocal 

model and its equivalent differential form. This link serves two purposes: on the one hand, 

the consistency equation, which originally is an algebraic equation with respect to the 

nonlocal plastic multiplier (or state variable), becomes a 2nd order differential equation 

with respect to the local plastic multiplier. To solve this differential consistency equation 

in the finite element context, we can derive its variational form with the local plastic 

multiplier as an independent field variable; on the other hand, to avoid using C1 element 

in the finite element approximation to evaluate the 2" order gradient of the local plastic 

multiplier field, we can take advantage of its integral-type nonlocal model to evaluate its 
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nonlocal counterpart. With this method, the C° elements are efficient enough for the 

finite element approximation of the plastic multiplier field. 

Variational formulation and Galerkin's equations of the two coupled fields, 

displacement field and plastic multiplier field, are presented based on the C° element. A 

solution strategy and an algorithm are constructed to solve these coupled nonlinear 

systems of field equations. The method of solution is still within the framework of 

Newton's type with linearization of nonlinear operator equations. However, because the 

problem is displacement-driven, the convergence is controlled by the norm of unbalanced 

nodal forces. Stress integration is implemented by means of an algorithm that employs a 

so-called moving boundary technique and nonlocal elements. 

Analytical solutions of two 1 -D bars under tension with gradient elasticity and 

gradient plasticity are compared to identify the correct boundary conditions for the 2n 

order differential constitutive equations resulting from the above mentioned nonlocal 

model. It is shown that the Dirichlet boundary conditions force the strain localized into a 

small region and remove the mesh-dependency in the modeling of strain localization and 

thus are appropriate boundary conditions for the gradient plasticity problems. 

Numerical simulation for a 1-D bar under tension shows that the methodology 

presented here is capable of giving rise to a mesh independent solution of strain 

localization. The size of the localization zone will approach to a limit value when the 

mesh is refined, and this size is roughly equal to the characteristic size of the RVE. The 

plastic strain distributions and load-displacement curves are both convergent and realistic. 
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The Mure studies should include the following aspects: 

1. Simulation of the 2-D strain localization using the nonlocal model and C° 

elements. The 2-D problems are more complex than 1-D problem regarding the 

nonlocality in that the uniformly distributed weighting function may result in the 

divergence or oscillation of the stress integration process. This result occurs 

because the yield criterion is not satisfied at every material point; instead, it is 

only satisfied in the distributive sense. Thus, the weighting function of the plastic 

multiplier will have a major influence on the satisfaction of the yield criterion. 

2. Triangular constant strain elements, 9-noded elements and other higher order 

elements should be used in the simulation to examine the effect of different types 

of elements on the initiation and propagation of the shear band pattern. 

3. The implicit stress integration algorithms should be developed to improve the 

accuracy and convergence property. In the current model and the computational 

procedures, only the explicit algorithm and inconsistent tangent modulus matrix 

are used. This choice only meets the research need. If the model and the 

procedures are to be incorporated into commercial software packages, an efficient 

stress integration algorithm is in demand. Development of a more efficient and 

fast stress integration algorithm is always a difficult task for the simulation of 

elasto-plastic problems. 

4. Further research into application of the current model and the computational 

procedures in engineering practice. The application should include incorporating 

the current model and the procedures into commercial software packages and 

employing the computer program presented in this dissertation to simulate the 
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strain localization phenomena in geotechnical engineering, trenchless engineering, 

and structural engineering. 



APPENDIX A 

THE RELATION BETWEEN THE PLASTIC 

MULTIPLIER AND THE EQUIVALENT 

PLASTIC STRAIN FOR THE VON MISES 

YIELD FUNCTION AND THE 

ASSOCIATIVE FLOW RULE 

The von Mises yield function reads 

/(*,<):= V3^-cxy(<) = 0, (A.1) 

where 

Ji =\siisv =^[s] +s2
y +s> +2(^+^+4)] 

= %> "^)2 +k -°J + fc -°J A< +< + ̂ )1 (A.2) o 

= T[(ai '^f + fo -0"3)2 + (CT3 -°"l)2J • 
D 

The equivalent plastic strain ep is defined by 

de^fae'de', (A3) 

< = \dB% . (A.4) 

The associative flow rule is expressed as 

de*=dX-^—, (A.5) 
da/ 
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Substituting Equation (A.5) into Equation (A.3) gives 

eq \\ 3 da,, da,, 
(A.6) 

Using Equation (A.l), we can obtain the partial derivative of f(a,£q
et') with respect to <r 

df df dJ2 _ V3 8J2 

day dJ2 dal} 2^T2 datJ 

From Equation (A.2), one can obtain that 

da„ " 

(A.7) 

(A.8) 

Then we have 

df S 
day 2p2

 u (A.9) 

Substituting Equation (A.9) into (A.6) yields 

dsp
ea = dX^, 
eq v3 

V3~ 
2JJ. 

=um 
2 J 2J, 

(A. 10) 

2 
Since J2 =—SySy, it follows that 

del = dX. (A.11) 

Thus, we conclude that for the von Mises yield function and the associative flow rule, the 

equivalent plastic strain increment is equal to the plastic multiplier. 
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