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ABSTRACT 

This dissertation aims to create new sentences to summarize text documents. In 

addition to generating new sentences, this project also generates new concepts and 

extracts key sentences to summarize documents. This project is the first research work 

that can generate new key concepts and can create new sentences to summarize 

documents. 

Automatic document summarization is the process of creating a condensed 

version of the document. The condensed version extracts the key contents from the 

original document. Most related research uses statistical methods that generate a 

summary based on word distribution in the document. In this dissertation, we create a 

summary based on concept distributions and concept hierarchies. We use Stanford parser 

as our syntax parser and ResearchCyc (Cyc) as our knowledge base. Words and phrases 

of a document are mapped into Cyc concepts. We introduce a unique concept propagation 

method to generate abstract concepts and use those abstract concepts for the 

summarization. This method has two advantages over the existing methods. One 

advantage is the use of multi-level upward propagation to solve the word sense 

disambiguation problem. The other is that the propagation process provides a method to 

produce generalized concepts. 

In the first part of the project, we generate a summary by extracting key concepts 

and key sentences from documents. We use Stanford parser to segment a document to 
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sentences and to parse each sentence to words or phrases tagged with their part-of-

speeches. We use Cyc commands to map those words and phrases to their corresponding 

Cyc concepts and increase the weights of those concepts. To handle word sense 

disambiguation and to create summarized concepts, we propagate the weight of the 

concepts upward along the Cyc concept hierarchy. Then, we extract the concepts with 

some of the highest weights to be the key concepts. To extract key sentences from the 

document, we weigh each sentence in the document based on the concept weight 

associated with the sentence. Then, we extract the sentences with some of the highest 

weights to summarize the document. 

In the second part of the project, we generate new sentences to summarize a 

document based on the generalized concepts. First, we extract the subject, predicate, and 

object from each sentence. Then, we create compatible matrices based on the 

compatibility between the subjects, predicates, and objects among sentences. Two terms 

are considered to be compatible if the following three conditions hold: the two terms are 

the same concept, one concept is the other concept's immediate super class, or two 

concepts share the same immediate super class. From the compatible matrices, we build 

compatible clusters and finally generate new sentences for each compatible cluster. These 

newly generated sentences serve as a summary for the document. 

We have implemented and tested our approaches. The test results show that our 

approaches are viable and have great potential for future research. 
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CHAPTER 1 

INTRODUCTION 

Automatic document summarization is the process of identifying the most 

significant information in a document or multiple documents and creating a condensed 

version of the document. The generated summary should cover the important content of 

the original documents. 

In this information age, human knowledge has been growing in exponential 

speed. With the current World Wide Web's development, people can upload almost any 

document to the web. The documents on the web are accessible to anyone who connects 

to the Internet. This vast amount of information can be both advantageous and 

disadvantageous. The advantage is that anyone can gain access to this vast amount of 

information. The disadvantage is that the information is so vast that it becomes such a 

great difficulty to find the needed information. So there is an increasing demand for 

automatic document summarization. Automatic summarization can extract or abstract 

the most important content from the documents and present it to the users. This will 

greatly save the readers' time and effort in finding useful information. 

In the first part of this project, we propose a concept hierarchy-based method for 

summarizing a document. The process has three major steps: (1) Map words or phrases 

from a document into Cyc concepts which are defined in ResearchCyc knowledge base. 

(2) Create general concepts by propagating weights of the concepts upward along the 
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concept hierarchy of the Cyc ontology and disambiguate senses by the weights of the 

candidate concepts. (3) Retrieve weight of each word or phrase of each sentence and sum 

the weight together, normalize the sum by the terms number of the sentence. (4) Sort the 

sentences according to their weights and retrieve the sentences with some of the highest 

weights to summarize the document. 

In the second part of the project, we generate new sentences based on sentence 

compatibility. At first, we extract the subject, predicate and object triple from each 

sentence. Then we create compatible matrices based on the compatibility between the 

sentences' subjects, predicates and objects. Two terms are considered to be compatible if 

they have the same concept, or one concept is the other concept's immediate super class, 

or two concepts are siblings in the concept hierarchy. From the compatible matrices, we 

build compatible clusters. Then, we generate new sentences for each compatible cluster. 

The approaches have been fully implemented and tested. The test results show 

that the approaches are viable and have great potential for future research. 

The contributions of this project are as followings: (1) We are the first to use 

ResearchCyc as knowledgebase to create new sentences for automatic document 

summarization. ResearchCyc, started by Dr. Douglas Lenat in 1984, is currently the 

largest common sense knowledgebase and inference engine in the world. However, due 

to its lack of documentation, ResearchCyc has not been widely used. (2) We propose a 

concept weight propagation method to resolve word sense disambiguation problems. By 

propagating the concept weights upward along the Cyc concept hierarchy, we link the 

semantically related concepts together. The right concepts are enforced by each other so 

we can choose the right concept for each word or phrase. (3) We propose a new 

compatibility method to generate new sentences by finding compatible sentences, 
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clustering them together, and creating new sentence for each cluster. Figure 1.1 and 1.2 

show part 1 and part 2 of the flow chart for our system. The flow chart shows how key 

concepts, key sentences, and new sentences are created. 

Figure 1.3 shows the architecture of our summarization system. First, we use 

Stanford Parser to parse the document. Based the result from Stanford Parser, we map the 

words and phrases from the document to the Cyc concept hierarchy. Based on the 

concept hierarchy representation of the document, we extract key concepts and key 

sentences from the document to summarize the document, and then create new sentences 

to summarize the document. 

The remainder of this dissertation is structured as follows. In Chapter 2, we 

introduce the background and related work in the automatic text summarization field. It 

gives a simple introduction to the Stanford Parser and ResearchCyc Knowledgebase. In 

Chapter 3, we present the framework of our text summarization system. It provides the 

implementation steps for generating summaries. In Chapter 4, we provide the 

experiments and results of creating new concepts, extracting key sentences, and creating 

new sentences. For the extraction-based summarization method, we compare the results 

of our text summarizer with Microsoft Autosummarizer system. Being the first for the 

others, we created our own test cases. In Chapter 5, we give the conclusion and outline 

the future research. 



Start 

Preprocessing: 
Segment the document into paragraphs 

Call Stanford Parser to generate 
• part-of-speech tagged text 
• phrase structure trees 
• typed dependency 

Use n-gram (with n from 5 down to 2) 
method to segment noun phrases into 
phrases 

Map the above phrases to Cyc concepts; add 1 
to the concepts' weights 

Map content words (verbs, nouns, adjectives, 
adverbs) to Cyc concepts; add 1 to the 
concepts' weights 

Up-propagate the concepts' weight with 
ratio of 0.1 

Part 2 

Figure 1.1 Flow Chart of Text Summarization System (Part 1). 



For each word or phrase, use WSD method to 
get the right mapped concept, tag the word or 
phrase with this concept, assign the concept's 
weight to the word or phrase. 

Sort the concepts 
according to their 
weights 

Output the top 
10 Key concepts 

For each sentence, sum 
the words' weight 
together, and average the 
sentence weight by the 
term number of the 
sentence, 

For each sentence, from the 
Stanford parser's typed 
dependency, build the triple 
relationship: Subject, Predicate 
and Object 

Sort the sentences 
by their weight, 
output top 10 
sentences 

Build compatibility matrix based on the 
compatibility between the sentences 

Build sentence cluster based on the 
compatibility matrix 

Create new sentences for each cluster. 

Output the new generated sentences 

Figure 1.2 Flow Chart of Text Summarization System (Part 2). 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

This chapter describes the related work and provides some background 

knowledge for document summarization. Since Luhn proposed the first automatic text 

summarization system based on word frequency, many approaches to text summarization 

have been developed (Luhn, 1958). Currently, two major text summarization methods are 

used in the area: keyword-based text summarization and sense-based text summarization. 

There are some drawbacks for keyword-based text summarization because of the 

following reasons: one word may have several different semantic meanings, different 

words can have the same semantic meaning, and a phrase can have totally different 

meanings from the words' literal meaning (Lin, 1998). Thus, the text summarization 

results of keyword-based method are not very accurate. Therefore, many researchers 

started using sense-based text summarization. Most of them use WordNet as the lexical 

database and try to map words and phrases to Wordnet senses and create summary based 

on the sense distribution. One drawback of WordNet is its fine-grained sense 

distinctions. It is often beyond what may be needed in many natural language processing 

applications. When trying to map a word to its corresponding sense in WordNet, it is very 

difficult to disambiguate between the senses. 
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2.1 The Genres of Text Summarization 

There are different ways to categorize text summarization methods. According to 

summaries' focus, summaries can be either generic or user-focused. Generic summaries 

are generated based on the content of the document. It reflects the author's view, aiming 

at a broad reader group. User-focused summaries are generated based on a reader's query 

or a reader's profile. It reflects the reader's interest. According to the input source size, 

text summarization can be categorized as single-document summarization and multi-

document summarization. Single-document summarization is based on only one input 

document. Multi-document summarization has multiple input documents that need to 

fuse together the information from each input document and present to the reader a 

summary which covers all the most important contents from the documents. According to 

the sentences presented in the generated summary, text summarization can be categorized 

as extract-based or abstract-based summary. Extract-based summary consists entirely of 

sentences that occurred in the original document. Abstract-based summary involves 

rephrasing the sentences or fusing various concepts of the document into a more 

generalized concept. Automatic text summarization can be categorized as indicative 

summary and informative summary. "Indicative abstracts allow a searcher to screen a 

body of literature to decide which documents deserve more detailed attention." 

(Edmundson 1969). Informative abstract is meant to contain all the pertinent information. 

It can serve as a surrogate as the original document. 
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2.2 Related Approaches 

In the long history of research in text summarization, there are many approaches 

to automatic text summarization. Most of the approaches are extraction based. Sentence 

extraction is based on the following assumptions: 

1. The most important concepts of the text are represented by the most frequently 

occurred words. The sentences with most number of frequently occurred words 

are important sentences (Luhn 1958). 

2. The title conveys the content of the document and section headings convey the 

content of the section. Thus, sentences consist of title words and section heading 

words are important sentences (Edmundson 68). 

3. Usually when a writer starts a paragraph, she/he starts the paragraph with the 

topic sentence. It is the main idea of the whole paragraph. The rest of the 

paragraph explains, develops or supports with evidence the topic sentence's main 

idea. Sometimes a topic sentence comes at the end of a paragraph. Thus, the first 

sentence and last sentence of each paragraph are considered important (Baxendal 

1958). 

4. Cue words and phrases are good indicator of importance of sentences. Sentences 

which include words or phrases like "importantly", "significantly", and "in 

conclusion" are considered important. Sentences which include words or phrases 

like "hardly," "it is impossible that" are considered not important (Edmundson 

1968). 

5. The important words or phrases are semantically connected by hyponymy and 

synonymy. Through the semantically related terms' lexical chaining, one can 

grasp the central topic of the document. After building the lexical chain and 
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getting the representation for the original text, build a summary from that 

representation. Picking the concepts represented by strong lexical chains gives a 

better indication of the central topic of the text. Choose the sentence which has 

the first member presented in a strong chain (Barzilay 1999). 

6. Sentences and/or clauses can be classified into nucleus and satellite according to 

rhetorical structure theory (Mann 1988). Nuclei are the sentences that express the 

essential contents; satellites are the sentences which present additional 

information to the essential part. Nuclei are considered more important than 

satellite (Marcu 1999). 

7. Based on paragraph similarity, if a paragraph is more strongly connected to other 

paragraphs, it is very possible it carries the central topic of the document. Choose 

the paragraphs with strong connections for summarization (Salton 1997). 

2.2.1 Frequency Based Method 

The first automatic text summarization system was developed by H. P. Lulin 

(1958). In his algorithm, the key sentences were extracted based on concentration of 

high-score words. First, words like pronouns, articles, and prepositions, which do not 

have the discriminatory power, are removed. Next, consolidate words that are spelled in 

the same way at their beginning: this is done by comparing the pair of words from their 

beginning letter by letter, from the point the two compared letters are not equal, count the 

number of letters left for both words, and if the total number of letters is equal to or less 

than 6, the two words are considered of similar notions, then they are aggregated 

together. This consolidating method was later replaced by using the stemming method 

(Frakes 1992). The frequencies of these aggregated words are computed, and low-

frequency words are removed. Sentences are then graded by the density of the significant 
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words. Each sentence is segmented into groups bracketed by significant words which are 

not separated by more than four non-significant words apart. Each group is scored by the 

square of the number of significant words divided by the total number of words within 

the group. The sentence score is-the highest scored group's score. Extract sentences with 

highest score to represent the document. 

2.2.2 Surface Feature Based Method 

Edmundson introduced three featured cue phrases, title of the document, and 

sentence location into text summarization (Edmundson 1969). He combined these 

features with the keyword feature in his algorithm. 

Edmundson compiled the cue phrases dictionary from 100 heterogeneous 

documents and further divided the cue phrases into bonus phrases like "in summary" and 

''significantly" which are positively related. These phrases will be given a positive 

weight. Stigma phrases such as "hardly" and "impossible," which are negatively related, 

will be given negative weight. Null phrases (prepositions, pronouns), which are 

irrelevant, will be given zero weight. 

Choosing title and section headings as features are based on the hypothesis. The 

title chosen by the author is the most representative of the content; the section headings 

are most representative of the following section. The title's words and heading words will 

give higher weight. 

Choosing location is based on Edmundson's (1969) claim: "sentences occurring 

under certain headings are positively relevant; and topic sentences tend to occur very 

early or very late in the document." So he gave these sentences higher weight. 

The formula (Edmundson 1969) for computing the final weight of sentences is 
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«,C + a 2 ^ + « , r + a 4L, (2.1) 

where, C is a constant, K is a keyword, T is title, L is location, and a are weights. After 

testing, he found the combination of cue phrases, title and location gave the best results. 

Although these early methods are simple and easy to implement, they worked fairly well. 

These early researchers lay down the foundations for the future advanced text 

summarization. 

2.2.3 Hybrid Approaches 

Surface-level approach uses various features such as thematic features, title, cue 

phrase, and location in determining salience of information for summarization. The paper 

by Hovy and Lin (1998) is very typical of this approach. They describe a three-step 

process: topic identification, concept interpretation, and summary generation. 

The topic identification step is to identify topic to get the central idea from the 

input text. The second step is to fuse together two or more topics to form a more general 

one. The final step is to use a sentence planner to generate a coherent text based on the 

output from the first two steps. Thus, the summarization is based on the following 

equation (Hovy 1998). 

"Summarization=topic identification + interpretation + generation." (2.2) 

The goal of topic identification is to filter the input to retain only the most important, 

central topics. Typically, topic identification can be achieved using various 

complementary techniques, including statistical method (term frequency), methods based 

on sentence position, and cue words. For each method, compute the weight for each 

sentence, and then use decision tree or neural network method to extract the sentence to 

form the potential abstract sentence set. Statistical method is used to calculate the 
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frequency for each word or phrase which is assigned as the weight for the word or phrase. 

The more often a phase occurs in a text, the more representative the word to the text. 

After this, compute the weight for each sentence. The weight of each sentence can be 

computed by adding up the word or phrase weight of the sentence and then normalize by 

the length of the sentence. 

Cue words method is based on people's experience on reading. Usually, phrases 

such as "in conclusion" and "most importantly" can be good indicators of important 

content. During processing, give each keyword in the sentence containing the phrases 

with cue words a higher score. Then, it computes the sentence weight for each sentence. 

Position-based method is based on peoples' experience too. When people write, 

they usually follow style rules. For instance, people like to give the text a title which 

represents the content of the text. They write the first sentence to represent the central 

idea of the paragraph. Thus, a method based on the position of the sentence is developed. 

Optimal Position Policy (OPP) is defined as a list that indicates in what ordinal positions 

in the text high-topic-bearing sentences occur (Hovy 1998). For example, the first 

sentence of the second paragraph is important. 

Each separate topic identification module assigns a score to each sentence. Create 

a combination function to combine all these scores in some way to generate the best 

result. There are several ways to generate a coefficient for the combination function. The 

first one is to determine the coefficients by manual experimentation. The result is not 

optimal. The second one is to use the neural network technique to generate the 

coefficients. For example, use multilayer Perceptron with the back propagation algorithm 

to generate the weight matrix like Figure 2.1. 
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LXl:Using Word frequency 

Whll 

X2: Using Cue phrase 

Wh21 

X3: Using OPP technique 
W32 

Figure 2.1 Neural Network Architecture for Optimization. 

Train the Perceptrons with data to get the weight matrices. The weight matrices 

will be the coefficient for the combination function. Use this combination function to 

compute the weight for each sentence and then extract the highest weighted sentences. 

2.2.4 Lexical Chains Based Method 

Lexical chain was defined as a sequence of semantic related words spanning a 

topical unit of text (Morris 1991). For example, the words "peach" and "fruit" are related 

by means of super-ordinate. Lexical chains were first proposed to determine lexical 

cohesion among terms in a text by Morris and Hirst. "Lexical cohesion is the result of 

chains of related words that contribute to the continuity of lexical meaning" (Morris 

1991). Lexical chain method has been widely used in topic detection from web-based 

breaking news (Stokes 2000), malapropism detection (St. Onge 1995) and text filtering 

(Li 2004). 

Using the lexical chaining method for text summarization was first implemented 

by Barzilay and Elhadad (1997). A text is fully analyzed to find all chains of words, and 
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the strongest chains of words are claimed to represent the theme of a text. In this method, 

only nouns are candidates for constructing lexical chains. Each lexical chain consists of 

the candidate word; its repetitions and words can be related through WordNet 

relationship synonymy and hyponymy. 

Lexical chain scoring metrics: 

• Extra strong: between a word and its repetitions; 

• Strong: between words which are directly linked by a WordNet relation 

(synonymy and hyponymy); 

• Medium strong: between the words whose path linked by WordNet relationship 

is longer than one. 

Summarization proceeds in three steps: construct lexical chains, identify strong 

chains, and extract significant sentences. 

(1) A procedure for constructing lexical chains follows three steps: 

• Select a set of candidate words; 

• For each candidate word, find an appropriate chain relying on a relatedness 

criterion among members of the chains; 

• If it is found, insert the word in the chain and update it accordingly. 

For example: laptop->computer->machine. 

(2) Strong chains identification procedure: 

Picking the concepts represented by strong lexical chains gives a better indication of 

the central topic of the text. 

The strength of each lexical chain is computed from the following rules: 

• Length: The number of chain members; 
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• "Homogeneity index: 1 minus the number of distinct occurrences divided by the 

length;" 

• "Score (Chain) = Length*Homogeneity Index" (Barzilay 1999). 

The chains whose scores are greater than threshold are considered as strong chains. 

"Score (Chain)> Average (Scores) + 2*Standard Deviation (Scores)" (Barzilay 

1999). 

(3) Significant sentence extraction procedure: 

Once the strong chains have been selected, extract full sentences from the original 

text based on chain distribution. For each chain in the summary representation, choose 

the first sentence that contains the first chain member. 

2.2.5 Discourse Tree Based Method 

Daniel Marcu (1999) proposed the discourse tree method. This method parses the 

sentences from the original text into NUCLEUS and SATELLITE based on rhetorical 

relation (Mann & Thompson 1988). "The distinction between nuclei and satellites comes 

from the empirical observation that the nucleus expresses what is more essential to the 

writer's purpose than the satellite; and that the nucleus of rhetorical relation is 

comprehensible independent of the satellite, but not vice" (Marcu 1999). For example, 

"Although it's not raining, I still carry an umbrella." "Although it's not raining" is the 

satellite, and "I still carry an umbrella" is the nucleus. Use rhetorical paring algorithm 

(Marcu 1997) to parse each sentence to a discourse tree. Nuclei are considered more 

salient than satellite clauses. After getting the discourse tree, rank sentences according to 

their salience scores and extract the sentences with higher scores. 



17 

2.2.6 Graph Based Method 

Apply information retrieval methods at the document level: the processing 

units are paragraphs within a document (Salton et al. 1994; Mitra et al. 1997; 

Buckley & Cardie 1997; Salton et al., 1997]. Gerard Salton (1994) first presented an 

extractive system based on the intra-document links between passages of a 

document. Each paragraph Pj is represented by a vector of weighted terms of the 

form Di=(da,dj2, dit) where ^ represen t s the weight for term Tk which 

occurred in paragraph/*. The term weights are computed by the number of 

occurrences of the term in the current document (its term frequency] and the whole 

document collection (inverse document frequency) (Salton & McGill 1983). 

Pair-wise vector similarities are computed as the inner product between vector elements 

(Gerard Salton 1997). Create a link between two paragraphs if their similarity is higher 

than a threshold. The paragraph relationship map is shown in Figure 2.2. The nodes with 

a large number of associated links are considered as very important paragraphs of 

conveying the content of the document. They use depth-first method to extract 

paragraphs. Start by extracting the paragraph with the highest number of associations. 

Among the paragraph's associated paragraphs; select those paragraphs that follow the 

current paragraph in text order as candidates for the next step of extraction. Among the 

above candidate paragraphs, choose the paragraph which is most similar to the current 

paragraph. By doing this, the abrupt transition of subject matter is eliminated. Repeat the 

above steps until enough sentences are extracted. 
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P3 

Figure 2.2 Paragraph Relationship Map. 

2.3 Natural Language Processing Tools 

In our text summarization project, we build summary based on the meaning 

instead of physical words counting. We need identify the meaning for each word and 

phrase in the document. To do this, we need find right meaning for each word or phrase. 

So we use ResearchCyc concepts as the meaning representation. We use Stanford parser 

to parse sentence to its phrase structure tree. In the phrase structure tree, each phrase is 

tagged with its phrase type, such as noun phrase, verb phrase, and preposition phrase. 

Each word is tagged with its part-of-speech. In ResearchCyc, there is a natural language 

processing system, which can map phrases and words to their Corresponding Cyc 

concepts. 

2.3.1 Stanford Parser Tools 

Stanford Parser is a syntactic parser of multi-languages including Chinese, 

English, German, Arabic, Italian and Bulgarian, based on Probabilistic Context-Free 
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Grammars (PCFGs) (Booth &Thomson 1973) (Baker 1979). Given a sentence, the parser 

will generate three kinds of output: 

• Part-of-speech tagging (Penn tree-bank style tag) for each word within the 

sentence (Santorini 1990). The Penn Tree tag set is shown in Table 2.1 (Santorini, 

1990). 

• Phrase tree structure (noun phrases, verb phrases) for the entire Sentence 

• Typed Dependencies (subject relationship, object relationship) between the words 

within a sentence. The Stanford grammatical relation hierarchy contains 48 

grammatical relations. The basic relations of the hierarchy are very similar to that 

in (Carroll et al. 1999). Stanford parser adds a number of extensions and 

refinements to it. Typed dependency grammatical relation hierarchy of Stanford 

Parser is shown in Figure 2.3 (Marneffe, 2006). 

To better explain Stanford parser, we use Stanford parser to parse a sentence and 

list the results. For the sentence: 

"Bills on ports and immigration were submitted by Senator Brownback, 

Republican of Kansas." 

The part-of-speech tagging output is as follows: 

Bills/NNS on/IN ports/NNS and/CC immigration/NN were/VBD submitted/VBN 

by/IN Senator/NNP Brownback/NNP,/, Republican/NNP of/IN Kansas/NNP./ 

"Bills" and "ports" are tagged with "NNS," which means noun plural; "on," "by" 

and " o f are tagged with "IN," which means they are prepositions; "and" is tagged with 

"CC," which means it is a coordinating conjunction; "immigration" is tagged with "NN," 

which means it is a singular noun or a mass noun. "Senator," "Brownback" and 



' Republican' are tagged with ' NNP, which means they are proper nouns; "were" 

tagged with "VBD," which means it is past tense verb; "submitted" is tagged with "vbn, 

which means it is a past participle form of a verb. 

Table 2.1 PennTree Tag Set. 

POS Tag 

AUX(G)~ 

~ cc 
CD 

DT 

IN 

JJ 

JJR 

JJS 

NN 

NNS 

Description 

auxiliary be, have 

coordinating conjunction 

cardinal number 

determiner 

preposition/subordinating] 

adjective 

adjective, comparative 

adjective, superlative 

noun, singular or mass 

noun plural 

NNP 

NNPS 

RB 

RBR 

— 

RBS 

TO~" 

~~~VB 

VBD 

proper noun, singular ; 

proper noun, plural 

adverb 

adverb, comparative 

adverb, superlative 

to 

verb, base form 

verb, past tense 

VBG verb, gerund/present 

VBN verb, past participle 

VBP 
_____ 

verb, sing, present, non-

verb, 3rd person sing. 
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dep - dependent 
aux - auxiliary 

auxpass - passive auxiliary 
cop - copula 

conj - conjunct 
cc - coordination 
arg - argument 

subj - subject 
nsubj - nominal subject 

nsubjpass - passive nominal 
csubj - clausal subject 

comp - complement 
obj - object 

dobj - direct object 
iobj - indirect object 
pobj - object of preposition 

attr - attributive 

subject 

ccomp - clausal complement with internal subject 
xcomp - clausal complement with external subject 
compl - complementizer 
mark - marker (word introducing an advcl) 
rel - relative (word introducing a rcmod) 
acomp - adjectival complement 

agent - agent 
ref - referent 
expl - expletive (expletive there) 
mod - modifier 

advcl - adverbial clause modifier 
purpcl - purpose clause modifier 
tmod - temporal modifier 
rcmod - relative clause modifier 
amod - adjectival modifier 
infmod - infinitival modifier 
partmod - participial modifier 
num - numeric modifier 
number - element of compound number 
appos - appositional modifier 
nn - noun compound modifier 
abbrev - abbreviation modifier 
advmod - adverbial modifier 
neg - negation modifier 
poss - possession modifier 
possessive - possessive modifier ('s) 
prt - phrasal verb particle 
det - determiner 
prep - prepositional modifier 

sdep - semantic dependent 
xsubj - controlling subject 

Figure 2.3 The Grammatical Relation Hierarchy. 
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The phrase structure tree output is as follows: the branches are phrases such as 

verb phrases, noun phrases, preposition phrases; the leaves are the single words. These 

phrases will be mapped to correct concepts in Cyc knowledgebase. 

(ROOT 

(S 
(NP 
(NP (NNS Bills)) 
(PP (IN on) 
(NP (NNS ports) 
(CC and) 
(NN immigration)))) 
(VP (VBD were) 
(VP (VBN submitted) 
(PP(INby) 
(NP 
(NP (NNP Senator) (NNP Brownback)) 

(,,) 

(NP 
(NP (NNP Republican)) 
(PP(INof) 

(NP (NNP Kansas)))))))) 

(• • ) ) ) 

Typed Dependencies Output is as follows: The term outside the parenthesis 

represents the type of dependency between individual words. The two terms inside the 

parenthesis are the individual words being constrained by the dependency type. For 

example, "nsubjpass(submitted-7, Bills-1)" means "Bills" is a passive nominal subject, 

"submitted" is the predicate. We will extract (predicate, subject) dependency and 

(predicate, object) dependency from the typed dependency relationships of the sentence. 

We will create a new tuple (subject, predicate, object) from the above relationships and 

create new sentences from the tuples based on their compatibility. 

nsubjpass(submitted-7, Bills-1) 
prep(Bills-l, on-2) 
pobj(on-2, ports-3) 
cc(ports-3, and-4) 
conj(ports-3, immigration-5) 



23 

auxpass(submitted-7, were-6) 
prep(submitted-7, by-8) 
nn(Brownback-10, Senator-9) 
pobj(by-8, Brownback-10) 
appos(Brownback-10, Republican-]2) 
prep(Republican-12, of-13) 
pobj(of-13, Kansas-14) 

2.3.2 ResearchCyc Knowledgebase 

ResearchCyc is the world's largest and most complete general common sense 

knowledge base and commonsense reasoning engine. The Cyc project was started by Dr. 

Douglas Lenat in 1984. The goal of Cyc project is to build a general purpose intelligent 

system. Feed Cyc with common sense knowledge, when there is enough common sense 

in Cyc, Cyc should be able to learn and reason by itself. The language used for 

knowledge representation in Cyc is CycL, which is a logic-based language. English 

words and phrases are encoded as concepts. Facts and rules in everyday life are encoded 

as assertions. Cyc inference engine draws conclusions by deductions from those 

assertions. Cyc includes 300,000+ concepts. There are about 26,000 relations to 

interrelate, constrain, and define the concepts. These relations and concepts are used to 

construct the facts and rules (nearly 3,000,000) in everyday life. The concepts are 

organized into a hierarchy. The Cyc upper ontology is shown in Figure 2.4. 

There is a natural language processing system (called Cyc-NL) built into Cyc. The 

Cyc-NL system includes a lexicon, a morphology system, a parser system and a natural 

language generation system. 

• The lexicon includes information about word to part-of-speech correspondences 

and word to Cyc concept correspondence. For example, assertion "(#$singular 

#$Dog-TheWord "dog")" relates the word "dog" to part-of-speech #$singular; 
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assertion "(#$denotation #$Bat-TheWord #$SimpleNoun 0 #$Bat-Mammal)" 

relates the lexical word #$Bat-TheWord to Cyc concept #$Bat-Mammal. 

Mathem abcalOrC omputatianalThiiig 

TangibleThiiig 

I ntangbleE xi stingThing 

LogicalCoiuiective 

BinaiyR d ePr e die ate 

Figure 2.4 Cyc Upper Ontology. 

The morphology system can transform an inflected word to its root form and 

transform root words to their reflected form according to users' needs. For 

examples, morphology system can transform the plural form of word "dogs" to its 

root form "dog"; transform root form of verb "sing" to its gerund form "singing". 

The parser system can parse a natural language word or phrase to Cyc concepts. 

The natural language generation system can transform Cyc concepts, rules and 

sentences into natural language. For example, Cyc sentence "(forAll 7PERSON1 
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(implies (isa 7PERS0NJ Person) (thereExists 7PERS0N (and (isa 7PERSON2 

Person) (loves 7PERS0N1 7PERSON2)))))" will be transformed to natural 

language sentence "for every 7PERSON2, it is the case that for every 7PERS0N1, 

if 7PERS0N1 is someone, then 7PERSON2 is someone and 7PERS0N1 loves 

7PERSON2." 

To demonstrate how does Cyc work, we attach a browser display of concept 

#$Dog as in Figure 2.5. There are a total of 528 assertions which define #$Dog concept 

in Cyc and relate #Dog to other concepts in Cyc. For example, #Dog is related to its 

super-ordinates by #$genls. In #$DomesticBreedsVocabularyMt, its super-ordinate is 

#$DomesticatedAnimal. In #$UniversalVocabularyMt, its super-ordinates are 

#$CanisGenus and CanineGenus. Some common sense knowledge such as "dogs make 

bark sound" is asserted by predicate #$AnimalTypeMakesSoundType. In following 

figures (Figure 2.6, Figure 2.7, and Figure 2.8), we attach a more detail list of predicates 

which can relate #$Dog to other concepts in Cyc are attached. 
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*»$ n -i * A Yog are: CycAdministrator 
J i - > W H P * ^ j > ? ' 3 ' ' Server: irN236:3600 

Assert Compose Create Doc History Qucr. Qucn Preferences Tools 

Dog 

(Oi I Create Simtlat 1 [Rename] 

[Merge] [Kl ] [Le* l 

Documentation 

Definitional Info 

Internal Data 

Lexical Info (6) 

Assertions Histon' 

> Fact Entry Tool 

• Pertinent Queries (1) 

.All Asserted Knowledge (529) 

Bookkeeping Info (T) 

All KB Assertions (528) 

All GAFs (307) 

T Argi (45) 

• 153(5)4 

• genls (3)»4 

3gentTypeLikesType# 

agentTypeTvpicalh'LkesRoleliiEv 

aiimatTy'peMakesSoiindType 

fafoaderThan> 

comment'!' 

• conceptualryKelated (3)4 

definingMt# 

facets-Generic (3)# 

facets-Strict# 

freq 

futureAssertion (6)# 

genStringAsseiticin4' 

inTnniri-ii r 

«1 i JJ 

Collection: Dog 

GAF Arg : 1 

Alt: UniversalVocabnlarvMt 

isa : ^BiologicalSpecies ^ConyentionalClassificanonType ^DomestJcatedAnimalType 

M t : BJologvMt 

isa: ^KEClarifyingCollectioiiType 

M t : TopicMt 

isa: ^SomeSanipleKindsOfMammal-BJotogy-Topic 

M t : UairersalVocabalarvMt 

geals T^CanisGemis *CanineAnimal 

M t : DoaiesticBreedsVocabalanMt 

geals: ** DomesticatedAnimal 

Copyright £1995- 2008 Cvcoiy, All rigks reserved. 

Figure 2.5 The Brower Display of Concept #$Dog. 
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Fact Entry Tool 

Pertinent Queries (1) 

All Asserted Knowledge (529) 
Bookkeeping Info (1) 

All KB Assertions (528) 
All GAFs (307) 
Arg 1 (45) 

isa (5)._ 

-genls (3)._ 

agentTypeLikesType. 
. agentTypeTypicallyLikesRolelnEventType 
animalTypeMakesSoundType 
broaderThan 
comment 

.conceptuallyRelated ( 3 ) _ 

definingMt 
facets-Generic (3) 
facets-Strict 
futureAssertion (6). 

. genStringAssertion. 
inTopic 
keClarifyingCoIlection 

. maximumDurationOfType. 

. nodelnSystem 
overlappingExtemalConcept 
scientificName 
subcollectionOfWithRelationTo (2)._ 

superTaxons (2). 

Figure 2.6 Assertions Associated with #$Dog (Part 1). 



28 

synonymousExternalConcept (3)._ 

(TypeCapableFn behaviorCapable) (3). 

.Arg 2 (239) 

Jsa (5)_ 

genls (125). 

disiointWith (4) 
argllsa(3) 
arg2Isa 
choicesForlnPredSpecTask (2). 
cn:IsA (2) 
collectionIntersection2 
conceptuallyRelated (6)_ 

conditionAffectsOrgType (12)._ 

evincesBinding (30) 
fieldStudies 
genericallylsa 

JnstitutionalFocus (3)._ 

interArgCondIsa2-l 
ISNodeRawMeaning 
linkFromToInSystem 
mtTopic (3) 
namedAfter 
numberOfResuItsThatSupportBinding (16) 
relationAHExists 
relationAHInstance (5) 
relationExistsInstance 
relationlnstanceAU 
resultGenl 
resultlsa 
typeGenls (7) 
typelntendedForConsumptionByType 
typicalCareRequirementForType 
wnLikelySynsetMapping 

Figure 2.7 Assertions Associated with #$Dog (Part 2). 
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Arg 3(19) 

amountForGenValueColAndPred (4) 
arglsa (3) 
collectionIntersection2 (2) 

interArglsa2-1 
relationAHExists (2) 
relationAHExistsMany 
relationAlHnstance (2) 

subFieldsAppliedTo 
subcolIectionOfWithRelationFrom 
subcollectionOfWithRelationToType (2) 

Arg 4(4) 

denotation (4) 

AH NARTs (12) 
Arg 1 (4) 

Arg_2(5) 

Arg 3 (3) 

All isa Rules (17) 
Antecedent (16) 

.Consequent 

All genls Rules 
Antecedent 

Miscellaneous (191) 

Figure 2.8 Assertions Associated with #$Dog (Part 3). 



CHAPTER 3 

TEXT SUMMARIZATION USING CONCEPT 
WEIGHT PROPAGATION METHOD 

This chapter describes our methods for document summarization to generate key 

concepts, extract key sentences, and create new sentences. We use ResearchCyc to map 

the word to its corresponding concepts. We choose ResearchCyc for the following 

reasons. Compared to Wordnet, ResearchCyc is coarse grained in terms of sense 

distinction, thus it is easier to make sense disambiguation with ResearchCyc. 

ResearchCyc has 300,000 constants and more than 3,000,000 assertions to relate these 

concepts. ResearchCyc has enough constants to cover the natural language words. And, 

we can use the ResearchCyc commands to map words to their corresponding 

ResearchCyc concepts. 

3.1 Introduction 

Our goal is to create a domain-independent text summarization system. Thus, we 

only use domain-independent features. In this project, we generate text summary based 

on concept distributions and concept hierarchies. 

We generate a summary by the semantic meaning contribution of each word or 

phrase. Some researchers used #$nearestlsa, #$nearest-IsaOfType and 

#$conceptuallyRelated to resolve sense disambiguation at local sentence and paragraph 

level (Jon 2006). We resolve this problem at global document level. At first, we map the 

30 
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phrases and words to the corresponding Cyc concepts, and increase the weight of each of 

those concepts. Then, we propagate the weight three levels upward to create the concept 

representation for the document. By propagating the weight, we will favor the more 

generalized terms over the specific ones when we generate text summary. We 

semantically annotate each word by its corresponding Cyc concept and assign the Cyc 

concept's weight to the word. For each sentence, we add the weight of each content word 

and normalize it by the number of terms, and assign the weight to the sentence. Then, we 

sort the sentence weight in descending order, and output the top 5-10 sentences with 

highest weight. The procedures are shown in Figure 3.1 and Figure 3.2. These figures 

outline the steps needed to generate new concepts, extract key sentences (Choi & Huang, 

2009), and create new sentences to summarize the document. These steps are described in 

more detail in the following subsections. 

3.2 Filter and Map Phrases to Cyc Concepts 

The first issue is to map words within a document to Cyc concepts. There are two 

steps: first we map phrases to Cyc concepts, then map the single words which are not 

covered within a phrase to Cyc concept. 

There are two reasons: first, sometimes a phrase has a semantic meaning different 

from combining the words within the phrase, like "hot dog" means a kind of food instead 

of a kind of hot animal; second, a phrase is easier to be mapped to Cyc concept, each 

word may have several semantic meanings, combining the words together does not 

multiply the semantic meanings of the phrase carries, instead reducing the semantic 

meanings. The words within the phrase serve as confinement among themselves instead 

of a multiplier. For example, "Apple" could mean 1) a kind of fruit or 2) a computer 
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company. Juice means a kind of liquid. "Apple juice" only has one meaning, a kind of 

juice. 

Start 

Preprocessing: 
Segment the document into paragraphs 

Call Stanford Parser to generate 
• part-of-speech tagged text 
• phrase structure trees 
• typed dependency 

Use n-gram (with n from 5 down to 2) 
method to segment noun phrases into phrases 

Map the above phrases to Cyc concepts; add 1 
to the concepts' weights 

Map content words (verbs, nouns, adjectives, 
adverbs) to Cyc concepts; add 1 to the 
concepts' weights 

Up-propagate the concepts' weight with 
ratio of 0.1 

Part 2 

Figure 3.1 Flow Chart of Text Summarization System (Part 1). 



33 

(PartT) 

+ 
For each word or phrase, use WSD method to 
get the right mapped concept, tag the word or 
phrase with this concept, assign the concept's 
weight to the word or phrase. 

Sort the concepts 
according to their 
weights 

Output the top 
10 Key concepts 

For each sentence, sum 
the words' weight 
together, and average the 
sentence weight by the 
term number of the 
sentence, 

For each sentence, from the 
Stanford parser's typed 
dependency, build the triple 
relationship: Subject, Predicate 
and Object 

Sort the sentences 
by their weight, 
output top 10 
sentences 

Build compatibility matrix based on the 
compatibility between the sentences 

Build sentence cluster based on the 
compatibility matrix 

Create new sentences for each cluster. 

Output the new generated sentences 

Figure 3.2 Flow Chart of Text Summarization System (Part 2). 
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MP 
i 
1 

PRP 

1 
1 

VP 

VBP 

leach IN 

in 

DT 

1 

——~ 

NN 

1 
the cornput 

___=__=-=-

PP 

NP 

NN 

1 
er science 

ROOT 
1 
1 
c 

_ - _____ 

IMP 

PP 

NN IN 

1 1 ^ 
department of NNP 

1 
1 

Louisiana 

NP 

NNP 
1 
! 

Tech 

l 
1 

NNP 
I 
! 

University 

Parsing: "I teach in the computer science department of Louisiana Tech 
University." 

Figure 3.3 An Example of Phrase Structure 

For phrases, since Cyc only has direct mapping from noun phrases to Cyc 

concepts, we only handle noun phrases. We use Stanford parser to parse the sentence to 

get the sentence's context-free phrase structure grammar representation. We extract the 

noun phrases from the representation. For each noun phrase, we apply n-gram word 

selection (n from 5 to 2) and filter out the noun phrase. The n-gram word selection 

extracts word sequences with n consecutive words from the candidate list. After we get 

the sequences for 5-gram, we try and filter out the noun phrase. The n-gram word 

selection extracts word sequences with n consecutive words from the candidate list. After 

we get the sequences for 5-gram, we try to use Cyc command "all-denots-of-string" to get 

their corresponding Cyc concept. If any phrase is mapped to Cyc a concept, the process 



35 

the computer science department of Louisiana Tech University 

the computer science department of Louisiana Tech University 

the computer science department of Louisiana Tech University 

Figure 3.4 N-gram Parse: n=5. 

deletes the sequence from the noun phrase, and then adds the weight of their 

corresponding Cyc concept by 1. If they do not map to any Cyc concept, the process 

applies the 4-gram method, and then repeats until all the words in the noun phrase are 

deleted or after the 2-gram extraction method is applied. 

For example, we use a simple sentence written by a TA, "I teach in the 

computer science department of Louisiana Tech University." After we parse the sentence 

by the Stanford Parser, we get the results shown in Figure 3.3. 

We extract the phrases labeled as "NP"(means noun phrase), "I" and "the 

computer science department of Louisiana Tech University." Since "I" just has one word, 

it is not a noun phrase, so we just ignore it for the moment. 

Apply the 5-gram method to the noun phrase "the computer science department of 

the computer science department of Louisiana Tech University 

the computer science department of Louisiana Tech University 

the computer science department of Louisiana Tech University 

Figure 3.5 N-gram Parse: n=4. 
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the computer science 

the computer science department 

department of Louisiana Tech University 

of Louisiana Tech University 

the computer science department of Louisiana Tech University 

Figure 3.6 N-gram Parse: n=3. 

Louisiana Tech University," and we get the following sequences "the computer science 

department of," "computer science department of Louisiana," "science department of 

Louisiana Tech," and "department of Louisiana Tech University" in Figure 3.4. Start 

from the first sequence, and use the Cyc command "all-denots-of-string" to check if the 

sequence has a corresponding Cyc concept. 

None of the above 5-gram segment has a corresponding CYC concept, so we use 

the 4-gram extraction method, and we get "the computer science department," "computer 

science department of," "science department of Louisiana," "and department of Louisiana 

Tech," and "of Louisiana Tech University" in Figure 3.5. We use CYC command "all-

denots-of-string" to check if the sequence has a corresponding CYC concept. 

None of the above 4-gram segments has a corresponding Cyc concept, so we use 

the 3-gram extraction method, and we get "the computer science," "computer science 

department," "science department of," "department of Louisiana," "of Louisiana Tech," 

and "Louisiana Tech University" in Figure 3.6. We use Cyc command "all-denots-of-

string" to check if the sequence has a corresponding Cyc concept. This time we have two 

catches: "computer science department" is mapped to Cyc concept 

"#$ComputerScienceDepartment" and "Louisiana Tech University" is mapped to 
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"#$LouisianaTechUniversity." we increase the weight of #$ComputerScienceDepartrnent 

by 1 and increase the weight of #$LouisianaTechUniversity by 1. The weight will be a 

fundamental element when we extract sentences from the document. After we delete 

these two sequences, we have two segments, "the" and "of." Since each of them just has 

one word in it, it cannot be a phrase, so we just stop the collocation checking for the 

phrase. The following figures show the segmenting process: The noun phrase is "the 

computer science department of Louisiana Tech University." 

3.3 Map Word to Cyc Concept 

In this step, we use Stanford parser to parse each sentence, and get the part-of-

speech for each word within the sentence. Table 3.1 and 3.2 are used to show some of the 

Table 3.1 Cycl Predicate for Relating Natural Language Word to Cyc Concepts. 

Example queries 

(and 
(denotation ?Word ?POS ?NUM 
?TERM) 
(wordForms ?WORD nounStrings 
"apple") 
(genls ?POS Noun)) 

(and 
(denotation ?Word ?POS ?NUM 
?TERM) 
(wordForms ?WORD verbStrings 
"eat") 
(genls ?POS Verb)) 
(and 
(denotation ?Word ?POS ?NUM 
?TERM) 
(wordForms ?WORD adjectiveStrings 
"beautiful")(genls ?POS Adjective)) 

Output 

Word 
Apple-

TheWord 

Apple-

TheWord 

Eat-

TheWord 

Slow-

TheWord 

POS 

Proper 

-CountNoun 

Count 

Noun 

Verb 

Adverb 

wt 

0 

0 

0 

0 

TERM 

Applelnc 

(FruitFn 

AppleTree) 

EatingEvent 

(LowAmountFn 

Speed) 
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Table 3.2 Concepts and Their Original Weights. 

Concept 

Greyhound-Dog 

Harrier-TheDog 

Terrier-TheDog 

Wolf 

Dog 

Weight 

50 

40 

8 

10 

20 

concepts of this step. By using the part-of-speech tagging, we can significantly reduce the 

word's semantic meaning set. For example, the word "saw," if it is tagged with a noun, 

means "a tool that you use for cutting wood;" if it is tagged with a verb, it could mean "to 

cut something using a saw," or past tense of "see." If we know it is a noun word, we just 

map it to "saw: a tool that you use for cutting wood." After we get the part-of-speech for 

each content word, we take the word and its part-of-speech as argument and use Cyc 

#$Denotation to map the word to its corresponding Cyc concept. At this moment, the 

word can still be mapped to several Cyc concepts. We will choose the right concept for 

each word later. Then, we map the word to its Cyc Concepts, we check if the current 

word is in stop word list, if they just set their weight as 1, otherwise increase the weight 

of each of the concepts by 1. The stop word list is shown in Appendix A, which we 

created based on a list provided on www.thebananatree.org (2007). 

The Cyc ontology includes a variety of predicates which relate an English word or 

phrase to Cyc concepts. For example, #$denotation is a predicate which relates a 

#$LexicalWord, "SpeechPart", and "sense number" to Cyc concepts. In this project, we 

handle noun, verb, adjective and adverb, because only these words will significantly 

http://www.thebananatree.org
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contribute to the document content. The samples of the "denotation" command for noun, 

verb, adjective and adverb are shown in Table 3.1. 

From Table 3.1, we can see "apple" is mapped to 2 corresponding Cyc concepts, 

"Applelnc" and "(FruitFn AppleTree)." Change "apple" to any noun word, and we can 

get the noun word's corresponding Cyc concepts; "eat" is mapped to 1 corresponding 

Cyc concept "EatingEvent." Change "eat" to any verb word, and we can get the verb's 

corresponding Cyc concepts; "slowly" is mapped to 1 corresponding Cyc concept 

"(LowAmountFn Speed)." Change "slowly" to any adverbs, we can get the adverb 

word's corresponding Cyc concepts; "beautiful" is mapped to 1 corresponding Cyc 

concept "StunnmglyBeautiful." Change "beautiful" to any adjectives, we can get the 

adjective word's corresponding Cyc concepts. 

3.4 Propagate Concept Weights Upward 

The process continues by propagating the weight of each concept three levels 

upward, each level scaled down by a ratio of 0.1. By propagating the weight upward, we 

favor the more generalized concepts. The propagation will help for Word Sense 

Disambiguation later. For example, we have five concepts: Greyhound-Dog, Harrier-

TheDog, Terrier-FunctionalGroup, Wolf, and Dog; their weights are 50, 40, 8, 10, and 

20. Propagate the concepts' weight three levels up. The original concept, weight table is 

shown in Table 3.2 and the concepts' graph structure is shown in Figure 3.7. 

At each level's propagation and for each concept, we use Cyc command "min-

genls" to get their parents and then propagate the weight to their parents. Thus, each 

concept's weight equals its original weight plus its children's weight multiplied by 0.1. 

Its grandchildren's weight is multiplied by 0.01. Its great-grandchildren's weight is 
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Table 3.3 Propagated Concept Hierarchy Weight after 3-Level Propagation 

Concept/WT 

Current 

Greyhound-Dog/50 

Harrier-TheDog /40 

Terrier-
FunctionalGroup /8 

Wolf/10 

Dog/20 

Concept/WT 

Parent 

Hound/5 

Hound/4 

Dog/0.8 

CanisGenus/1 

CanisGenus/2 

Domesticated 

Animal/2 

Concept/WT 

Grandparent 

Dog 0.5 

Dog/0.4 

CanisGenus/0.08 

DomesticatedAnimal/0.08 

CanineAnimal/0.1 

CanineAnimal/0.2 

TameAnimal/0.2 

NonPersonAnimal/0.2 

Concept/WT 

Grandgrandparent 

CanisGenus/0.05 

DomesticatedAnimal/0.05 

CanisGenus/0.04 

DomesticatedAnimal/0.04 

CanineAnimal/0.008 

TameAnimal/0.008 

NonPersonAnimal/0.008 

Carnivore/0.01 

C ami voreOrder/0.01 

TerrestrialOrganism/0.01 

Carnivore/0.02 

CarnivoreOrder/0.02 

TerrestrialOrganism/0.02 

Animal/0.02 

Animal/0.02 

multiplied by 0.001. Table 3.3 represents Current concept, its parents, its grandparents, its 

great-grandparents and their propagated weight. Table 3.4 represents Concept and their 

final weight after three levels of propagation. Figure 3.8 is the concept hierarchy structure 

after three-level propagation. 

3.5 Choose the Right Concept for Each Word 

We choose concept for a word based on the assumption that one word keeps the 

same semantic meaning throughout the document. The semantic meanings of the key 

concepts occurred within the document should be close to some extent. For example, if a 

document is talking about fruit, "pear" occurred in the document, and "apple," "banana" 
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might also occur in the document. If "dog" occurred in the document, it's conceptually 

related words like "bite" and "bark" might also occur in the document. 

In this project, we choose the right concept for each word based on weight. The 

steps are outlined as follows: 

For each word or phrase within the sentence, retrieve its corresponding Cyc concepts, 

1. If the word has only one corresponding Cyc concept, label the word with this 

concept and retrieve the concept's weight and assign the weight to the word, or 

else go to step 2. This weight will be used when we extract sentences from the 

document. 

Table 3.4 Concepts and Their Final Weights after 3-Level Propagation. 

Concepts 

Greyhound-Dog 

Harrier-TheDog 

Terrier-FunctionalGroup 

Wolf 

Dog 

Hound 

CanisGenus 

DomesticatedAnimal 

CanineAnimal 

TameAnimal 

NonPersonAnimal 

Carnivore 

CarnivoreOrder 

Terrestrial Organism 

Animal 

Weights 

50 

40 

8 

10 

21.7 

9 

3.17 

2.17 

0.308 

0.208 

0.208 

0.03 

0.03 

0.03 

0.04 
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2. If the word has more than one corresponding concept, retrieve their weights. If 

one concept's weight is higher than the others, choose the concept with the 

highest weight and label the word with this concept and assign its weight to the 

word, else go to step 3. 

3. If we could not determine the word's concept based on its corresponding Cyc 

concepts' weight, we will try to choose the right concept based on their parents' 

weight. 

For each one of the word's corresponding Cyc concepts, 

a. Use SubL command "min-genls" to retrieve its parents and their parents' 

weight, 

b. If one Cyc concept's parents' weight is more than the others, take this 

concept as the word's corresponding Cyc concept, label the word with this 

concept, and assign the concept's weight to the word, or else go to step 4. 

CanisGenus 

DomesticatedAnimal \-/ 

Dog (20) l 

Terrier-FunctionalGroup (8) 

Wolf (10) 

Harrier-TheDog (40) Greyhound-Dog (50) 

Figure 3.7 Nodes with Their Original Weights. 
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4. If we could not determine the right concept for the word, we will try to solve this 

problem by using the weights of the concepts' conceptually related concepts. 

For each candidate concept 

a. Use Cyc predicate #$conceptuallyRelated to retrieve the concept's related 

concept. 

b. For each retrieved related Cyc concept, retrieve its weight, and sum the 

weight together. 

c. If one concept's conceptually related concepts' weight sum is higher than 

others, take this Cyc concept as the word's corresponding Cyc concept, 

label the word with this concept and assign the concept's weight to it. 

Animal 
(20*0.001+20*0.001=0.04) 

*0.1 

TameAnimal 
=20*0.01+8* 

DomesticatedAnimal(20*0.1+ (. * 
8*0.01+50*0.001+40*0.001=2.17) 

Dog(20+50*0.01+40*0.01+8*0.1==21.7) i, 

Carnivore CarnivoreOrder 
) (10*0.001+20*0.0 (10*0.001+20*0.001=0.03) 

-' TerrestrialOjganism 
(10*0.001+20*0.001=0.03) 

. . _ . . . „ w CanineAnimal (10*0.01+20*0.01 
^ jNonPersonAmmal=2 ^ + g*Q QQl 

*0.1 

Wolf (10) 

Terrier-FunctionalGroup(8) 

CanisGenus (10*0.1+20*0.1+8*0.01+ 
.150*0.001+40*0.001=3.17) 

Hound (50*0.1+40*0.1=9) 

Harrier-TheDog(40) Greyhound-Dog(50) 

Figure 3.8 Concept Hierarchy after 3-Level Propagation. 
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3.5.1 WSD by Concepts' Weight 

Since the weight of each concept is the sum of its original weight and its children, 

grandchildren, great-grandchildren's weight, when we compare the word's corresponding 

Cyc concepts' weight, we not only consider the word's corresponding Cyc concepts' 

occurrence frequency, but also their children, grandchildren, great-grandchildren's 

occurrences within the document. 

For example, we have a word "WD;" it has two corresponding Cyc concept, one is 

XO, the other is YO. Their hierarchical structure is shown in Figure 3.9. 

c: means children 

gc: means grandchildren 

gcc . means great-grandchildren 

XO has children Xcl, Xc2; grandchildren Xgcll, Xgcl2, and Xgc2 and great­

grandchildren Xgcc21 and Xgcc22. 

YO has children Ycl, Yc2, Yc3; grandchildren Ygcll, Ygcl2 and Ygc2 and Ygc3; and 

great-grandchildren Ygccl, Ygcc21 and Ygcc22. 

XO YO 

Xgc2 
Xgcll Xgcl2 

Xggc21 Xgcc22 

Ygcll 

Yggcl 

Yc3 

Ygc2 O Ygc3 

Yggc21 Yggc22 

Figure 3.9 Hierarchical Structure of Concepts XO, YO. 
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Their weights can be computed as 

Wt(XO) = Wt(XO) + 0.1 Wt (Xcl) +0.1Wt (Xc2) + O.OlWt (Xgcll) + O.OlWt (Xgcl2) + 

0.0lWt (Xgc2) +0.001 Wt (Xgcc21) + 0.00 lWt (gcc22) 

Wt(YO) = Wt(YO) + O.lWt(Ycl) +0.1Wt(Yc2) +0.1Wt(Yc3)+0.01Wt(Ygcll) + 

0.01Wt(Ygcl2) + 0.01Wt(Ygc2) + 0.01Wt(Ygc3) +0.001 Wt(Ygccl) +0.001 

Wt(Ygcc21) + 0.001Wt(Ygcc22) 

If Wt(XO) is greater than Wt(YO), choose XO as the word corresponding Cyc 

concept. If Wt(YO) is greater than Wt(XO), choose YO as the word corresponding Cyc 

concept. If they are equal, compare their parents' weight. 

3.5.2 WSD by Concepts' 
Parents' Weights 

By comparing the weights of the parent nodes, we not only consider the 

occurrence number of parent nodes, current node, current node's children, grandchildren, 

but also their peer level concepts and their children, and grandchildren. 

The weight of the parent node is the sum of its occurrence and the propagated 

weight from its children, grandchildren, and great grandchildren. For example, we could 

not determine which one to choose for word "WD" based on the weight of X0 and YO, so 

we try to disambiguate the senses based on their parents' nodes' weight. For parents Xp, 

Yp's hierarchical structure is shown in Figure 3.10. 

X0 has peer XpO, XpO has child Xpl, grandchildren Xp2. 

YO has peer YpO, YpO has child Ypl and grandchildren Yp21 and Yp22. 

XP andYP's weights can be computed as 
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Wt (XP) = Wt (XP) +0.1Wt(X0) +0.1 Wt (XpO) + O.OlWt (Xcl) +0.01 Wt (Xc2) + 

O.OlWt (Xpl) + O.OOlWt (Xgcll) +0.001Wt (Xgcl2) + O.OOlWt (Xgc2) +0.00lWt( 

Xp2). 

Wt(YP) = Wt(YP)+ O.lWt(YO) +0.1Wt(YpO) + O.OlWt(Ycl) +0.01Wt(Yc2) 

+0.01Wt(Yc3)+0.01Wt(Ypl)+0.001Wt(Ygcll) + 0.001Wt(Ygcl2) + 0.001 Wt(Ygc2) + 

0.001Wt(Ygc3) +0.001 Wt(Yp21) +0.001 Wt(Yp22). 

If Wt (XP) is greater than Wt (YP), choose XO as the word corresponding Cyc 

concept. If Wt (YP) is greater than Wt (XP), choose YO as the word corresponding Cyc 

concept. If they are equal, compare their conceptually related terms' weight. 

XP 
XO'parent 

Xgcll 

XpO, XO's peer 

UXpl 

Xp2 

Xgc2 
fgcl l 

YP 
YO'parent 

YpO, YO's peer 

Yc3 / \ 

Ygc2 6 O O 
YaC3 Y P 2lY P 22 

X°cc22 
Yggc21 Yggc22 

Figure 3.10 Hierarchical Structure of Concepts Xp, Yp. 

3.5.3 WSD by Concepts' Conceptually 
Related Concepts 

If we could not disambiguate between XO and YO based on their parents' weight, 

we try to solve the problem by comparing their conceptually related concepts' weight. 
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When we use conceptually related concepts disambiguate concepts, we not only consider 

the conceptually related concepts and their children, grandchildren and great­

grandchildren. For example, XO has conceptually related concepts Xcrl, Xcr2, Xcr3, 

Xcr4, and Xcr5. YO has conceptually related concepts Ycrl, Ycr2 and Ycr3. Their 

weights are determined by their original weights and propagated weight from their 

children, grandchildren and great-grandchildren. 

Find all the Cyc concept conceptually related to XO and YO, as shown in Figure 

3.11. Find all the children, grandchildren, great-grandchildren for all the conceptually 

related concepts of XO and YO as in Figure 3.12. 

The weights of XO and YO's conceptually related concepts can be computed as 

Wt(ConceptuallyRelated(X))=Wt(Xcrl)+ Wt(Xcr2)+ Wt(Xcr3)+ Wt(Xcr4)+ Wt(Xcr5) 

Wt (Xcrl)= Wt(Xcrl)+ 0.1Wt( Xcrlcl) 

Wt(Xcr2)= Wt(Xc2)+ 0.1Wt( Xcrlc2) +0.01Wt(Xcrlgcl) +0.01Wt(Xcrlgc2) +0.001 

Wt(Xcrlggcl) +0.001 Wt(Xcrlggc2) 

Wt(Xcr3)= Wt(Xcrl) 

Wt(Xcr4)= Wt(Xcr4)+ 0.1 Wt( Xcrlc4) 

Wt(Xcr5)= Wt(Xcr5)+ 0.1 Wt( Xcrlc5) 

^ Xcrl 
j r O Ycrl 

s' ^-~--^~J^ ^^---^conceptuallyRelated 
^—-^conceptuallyRelated ^ ^ ^ ^ 

X0 C ^ •<_) Xcr3 ' ^ Z " * 0 Y c r 2 

^ \ ^ ~ " ~ * 0 Xcr4 ^ ~ " ^ \ ^ ^ 

^ 3 Xcr5 

Figure 3.11 Concepts X0, Y0 and Their Conceptually Related Concepts. 
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Xcrl Xcrlcl 
"O Xcrlgcl 

xo 
crlggc2 

"O Xcrlc5 
conceptuallyRelated Xcr5 

Ycrlgcl 

Ycrlcl 

OYcrlggcl 

conceptuallyRelated 

Figure 3.12 Concepts XO, YO and Their Conceptually Related Concepts' 
Hierarchical Structure. 

Wt(ConceptuallyRelated(Y))=Wt(Ycrl)+ Wt(Ycr2)+ Wt(Ycr3) 

Wt(Ycr l )=Wt(Ycr l )+0 .1Wt( Ycrlcl) )+0.01Wt(Ycrlgcl) +0.01Wt(Ycrlgc2) +0.001 Wt(Ycrlggcl) 

Wt(Ycr2)= Wt(Ycr2)+ 0.1 Wt( Ycr2cl) 

Wt(Ycr3)= Wt(Ycr3)+ 0.1 Wt( Ycr3cl) )+ 0.01Wt(Ycr3gcl) +0.01Wt(Ycr3gc2) 

Compare the value of Wt(ConceptuallyRelated(X)) and Wt(Conceptually-

Related(Y)), if Wt(ConceptuallyRelated(X)) is greater than Wt(ConceptuallyRelated(Y)), 

choose X0 as the word corresponding Cyc concept, or else choose Y0. 

In our WSD, step by step, we consider the current concepts' occurrence frequency 

and their children, grandchildren and great-grandchildren, concepts' peer and parent, and 
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conceptually related concepts and conceptually related concepts' children, grandchildren 

and great-grandchildren. So we have a good chance to choose the right sense for a word. 

3.6 Sentence Extraction 

In this project, we extract key sentences based on the weight of the sentences. We 

provide two sets of output. The first set output is for output sentences ordered by the 

sentence weights. The other set of output is for output sentences ordered by their order 

occurred in the original document. 

1. The first set of output sentences are computed in the following steps: 

(A) Compute the weight for each sentence 

For each sentence, 

(1) For each phrase or word within a sentence, retrieve its corresponding Cyc 

concept and retrieve the Cyc concept's weight. If the word is a close-class 

word, assign its weight as 0.0. 

(2) Sum the weight together, average the weight by the term number in the 

sentence. Term is defined as a word or phrase which has a Cyc corresponding 

concept. For example, "Louisiana Tech University" has one Cyc corresponding 

concept #$LouisianaTechUniversity, "Louisiana Tech University" will be 

considered as one term unit. "Dog" has one Cyc corresponding concept 

#$LouisianaTechUniversity, "Louisiana Tech University" will be considered as 

one term unit. 

(B) Sort the sentences in descending order according to their weights. 

(C) Output the top 5-10 sentences. 

2. The second set of output sentences are computed as following steps: 
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(A2) Is the same as (A) 

(B2) Is the same as (B) 

(C2) Choose the top 5-10 sentences, reorder the sentences according to their order 

occurred in the original document. 

(D2) Output the rearranged sentences. 

3.7 Generate New Sentences 

In this dissertation, we generate new sentences based on the sentences' 

compatibility. Sentences compatibility is built on the assumption that two sentences' 

subjects, predicates and objects are compatible with each other (Choi, 2008). Two 

concepts are considered compatible if 

a) they are the same concepts; 

b) one concept is the other concept's immediate super class; 

c) two concepts are conceptually related. 

We then Cluster the compatible sentences together and generate a new sentence 

for each cluster. A new sentence is generated by a method to create a new concept for a 

class of compatible terms is as follows: 

1) If all the concepts are the same, output the original word; 

2) If one concept is the immediate super class of other concepts, output this concept's 

corresponding natural language word. 

3) If all of the concepts have the same immediate super class, output this super class's 

corresponding natural language word. 

i) Create a new subject from all the subjects in the cluster using the method 

above; 
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ii) Create a new predicate from all the predicates in the cluster using the 

method above; 

iii) Create a new object from all the object s in the cluster using the method 

above. 

Output the new subject, predicate and object as a new sentence. 



CHAPTER 4 

EXPERIMENT AND RESULTS 

In this chapter, we discuss testing process and show the results of our 

experiments. First, we generated new concepts based on the propagated concept 

hierarchy. Second, two sets of summarizing experiments were presented. The first part is 

the summary generation based on sentence extraction. The second part is summary 

generation based on new sentence generation. 

4.1 Extract Key Concepts 

The extracted key concepts could be both original mapped concepts and new 

generated concepts based on concept propagation. We process a file which introduces 

horses as our source document (PBS 1999). The extracted key concepts ordered by their 

weights are shown below: 

#$Horse 

#$Animal 

#$BiologicalSpecies 

#$Toe 

(#$FrequentPerformerFn #$HerdingSomeAnimals) 

#$Hoof 

#$ancestors 

#$possesses 

#$Explorer 

#$Prairie 

52 
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4.2 Extract Sentences to Summarize Document 

We use Java to interface with Stanford Parser to extract the part-of-speech tagging 

for each word within a sentence, and to extract phrase tree structure to filter out noun 

phrases. We use Java to interface with ResearchCyc map words and phrases to Cyc 

concept. We use SubL language to propagate the concepts' weight along Cyc concept 

hierarchy. 

We ran several tests to evaluate the performance of our system. The testing 

documents are downloaded from online WebPages. We show a sample of our system 

output, compare our results with Microsoft AutoSummarizer. The original document is 

from PBS link (1999). The output from Microsoft AutoSummarizer is shown in Figure 

4.1. The output from our system is shown in Figure 4.2. From the comparison, we can 

see that 80% of the outputs from both systems are the same sentences. For the other 20% 

of the outputs, some output sentences from our systems are better than those from 

Microsoft AutoSummarizer output; some output sentences from Microsoft 

AutoSummarizer are better than those from our system. Our results are comparable to 

Microsoft AutoSummarizer's result. We tested several other documents, and got the 

almost the same performance. Consider that we only use one feature: the concept weight, 

the performance is very encouraging. We can improve our system by adding other 

features such as title, location and cue words. 



54 

Even today, as HORSES shows, tens of thousands of wild horses roam the 
American West. 

In North America, however, horses were wiped out. 

Instead, paleontologists have uncovered fossils that show that horse ancestors 
varied in size: some large early horses gave way later to smaller ones. 

The only survivors were horses in Asia and several zebras. 

The horse we know today, however, evolved from an ancestor that was quite 
different. 

But the star of the show is the animal that scientists call Equus caballus, the 
modern horse species that includes everything from miniature Shetland ponies to 
massive draft horses able to pull astounding loads. 

These days, however, researchers have a far more complex picture of horse 
evolution — and they have given the dawn horse a much less colorful name. 

There are also rare glimpses of the world's most endangered horse, and an inside 
look at the art of the horse whisperers, the trainers who through their gentle touch 
can transform a wild bucking bronco into a stately show horse. 

So where did the modern horses come from, the ones that spawned America's 
cowboy myth? 

When fossil hunters first discovered the bones of this creature a century ago, they 
named it Eohippus —"the dawn horse" — and believed it was the first link in an 
evolutionary chain that led directly to today's horse. 

Figure 4.1 Output From Our Automatic Text Summarization System. 
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There are also rare glimpses of the world most endangered horse, and an inside 
look at the art of the horse whisperers, the trainers who through their gentle touch 
can transform a wild bucking bronco into a stately show horse. 

But the star of the show is the animal that scientists call Equus caballus, the 
modern horse species that includes everything from miniature Shetland ponies to 
massive draft horses able to pull astounding loads. 

The horse we know today, however, evolved from an ancestor that was quite 
different. 

Interestingly, in modern horses, one toe has become the hoof, and the others 
remain as vestigial bumps higher up the leg. 

When fossil hunters first discovered the bones of this creature a century ago, they 
named it Eohippus? the dawn horse? ? and believed it was the first link in an 
evolutionary chain that led directly to today horse. 

Less than 10,000 years ago, however, many of these horse-like species became 
extinct, along with other browsing animals such as mammoths. 

The only survivors were horses in Asia and several zebras. 

In North America, however, horses were wiped out. 

So where did the modern horses come from, the ones that spawned America's 

cowboy myth? 

Even today, as HORSES shows, tens of thousands of wild horses roam the 
American West. 

Figure 4.2 Output From Microsoft AutoSummarizer. 

4.3 Generate New Sentences 

This part demonstrates step by step implementations and results of the summary 

generation process based on generating new sentences. We generate a simple document 

and use it to demonstrate sentence generation process. 
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4.3.1 Generate New Sentences from 
Manually Composed Text 

We manually composed a document which consists of sentences listed in Figure 

4.3. Each sentence only consists of one subject, one predicate and one object. 

The sentence generation steps are as following: 

1. Extract subject, predicate and object triple (SPO) from each sentence and map 

the subject, predicate and object to their Cyc corresponding concepts based on 

the context. Save the concept representation of the triples and their original 

words into ResearchCyc knowledgebase. The SPOs of the above document are 

shown in Figure 4.4. 

2. Compute the number N of new created SPOs in ResearchCyc, create a N*N 

matrix Commatrix, assign 1 to Commatrix(i,j); if SPO(i)'s subject, predicate 

Crows eat celery. 
Doves eat eggplant. 
Ibis eat potato. 
Ravens eat cabbage. 
Cats eat dogs. 
Cats eat foxes. 
Cats eat wolf. 
Cats eat greyhounds. 
Cats eat terriers. 
Cats eat harriers. 
Cats eat hyenas. 
Cats eat jackals. 
Tigers eat venison. 
Tigers eat beef. 
Tigers eat pork. 
Wolves drink strawberries. 
Jackals eat blueberries. 
Dogs eat banana. 
Coyotes eat cherries. 

Figure 4.3 Original Document. 
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0 (#$Dove #$EatingEvent (#$FruitFn #$EggplantPlant) (#$TheList "Doves" "eat" 
"eggplant" "1")) 
1 (#$Ibis #$EatingEvent (#$RootFn #$PotatoPlant) (#$TheList "Ibis" "eat" 
"potato" "2")) 
2 (#$Cat #$EatingEvent #$Dog (#$TheList "Cats" "eat" "dogs" "4")) 
3 (#$Cat #$EatingEvent #$Fox (#$TheList "Cats" "eat" "foxes" "5")) 
4 (#$Cat #$EatingEvent #$Wolf (#$TheList "Cats" "eat" "wolf" "6")) 
5 (#$Cat #$EatingEvent #$Greyhound-Dog (#$TheList "Cats" "eat" "greyhounds" 
"7")) 
6 (#$Cat #$EatingEvent #$Terrier-FunctionalGroup (#$TheList "Cats" "eat" 
"terriers" "8")) 
7 (#$Cat #$EatingEvent #$Harrier-TheDog (#$TheList "Cats" "eat" "harriers" 
"9")) 
8 (#$Cat #$EatingEvent #$Hyena (#$TheList "Cats" "eat" "hyenas" "10")) 
9 (#$Cat #$EatingEvent #$Jackal (#$TheList "Cats" "eat" "jackals" "11")) 
10 (#$Tiger #$EatingEvent #$Venison (#$TheList "Tigers" "eat" "venison" "12")) 
11 (#$Tiger #$EatingEvent #$Beef (#$TheList "Tigers" "eat" "beef" "13")) 
12 (#$Tiger #$EatingEvent #$Pork (#$TheList "Tigers" "eat" "pork" "14")) 
13 (#$Wolf #$DrinkingEvent (#$FruitFn #$StrawberryPlant) (#$TheList "Wolves" 
"drink" "strawberries" "15")) 
14 (#$Jackal #$EatingEvent (#$FruitFn #$BlueberryBush) (#$TheList "Jackals" 
"eat" "blueberries" "16")) 
15 (#$Dog #$EatingEvent (#$FruitFn #$BananaTree) (#$TheList "Dogs" "eat" 
"banana" "17")) 
16 (#$Coyote-Animal #$EatingEvent (#$FruitFn #$CherryTree) (#$TheList 
"Coyotes" "eat" "cherries" "18")) 

Figure 4.4 SPO (Subject, Predicate, and Object) Representation of the Text. 

and object are compatible to SPO(j)'s corresponding subject, predicate and 

object, respectively, the measurement of compatibility is as follows: 

X and Y are compatible if 

a. if X and Y are the same concepts; 

b. if X and Y have the same parents; 

c. if X is Y's parents, or Y is X's parents; 

d. if X is conceptually related to Y or vice versa. 
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The Compatible Matrix Commatrix of the document is in Figure 4.5. 

3. Cluster the SPOs based on the compatibility matrix 

The generated clusters are shown in Figure 4.6. 

4. Create a new sentence for each cluster 

a. Create a new subject 

• if all the subjects of the cluster are same, take this subject as the final subject; 

• if the subjects of the cluster have the same parents, retrieve their parents as 

the final subject; 

• call getGeneratePhrase() method to output the natural language phrase of the 

final subject; 

• if the phrase is count noun, insert quantifier "Some" before the phrase, and 

output the phrase; 

b. Create a new predicate 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

3 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

4 
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0 
0 
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0 
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0 
0 
0 
0 

7 
0 
0 
0 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

8 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

9 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 

10 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

11 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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0 
0 
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12 
0 
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0 
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0 
0 
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0 
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1 
1 
1 
0 
0 
0 
0 

13 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

14 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
0 

15 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

16 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

Figure 4.5 Compatible Matrix. 
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(10 11 12) 
(3 8 9) 
(2 4 9) 
(13 14) 
(5 7) 

Figure 4.6 Compatible Clusters. 

• if all the predicates of the cluster are the same, take this predicate as the 

final predicate; 

• if the predicates of the cluster have the same parents, retrieve their parents 

as the final predicate; 

• call getGeneratePhrase() method to output the natural language phrase of 

the final predicate. 

c. Create a new object 

• if all the objects of the cluster are the same, take this object as the final 

object; 

• if the objects of the cluster have the same parents, retrieve their parents as 

the final object; 

• call getGeneratePhrase() method to output the natural language phrase of 

the final object and output the phrase. The new generated sentences are 

as shown in Figure 4.7. 
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"Tigers eat mammal meat." 
"Cats eat scavenger." 
"Cats eat Canis." 
"Some Canis consume 
"Cats eat hound dog." 

fruit." 

Figure 4.7 New Generated Sentences for the Document. 

4.3.2 Generate New Sentences 
From Science Articles 

To test our text summarization system, we use three science-related articles. The 

generated results are listed below. We extract some text from the following webpage 

"http://en.wikipedia.org/wiki/Dog," we get the following results. 

(a)Top 10 key concepts generated from the document 

#$Dog 
#$BiologicalSubspecies 
#$Wolf 
#$Animal 
#$BiologicalSpecies 
(#$UnitOfCountFn #$HomoSapiens) 
#$possesses 
#$Action 
#$CanisGenus 
#$YearsDuration 

(b)New generated sentences 

"Dogs be carnivore." 

(c) Extracted top 10 sentences 

Dogs are highly social animals. 
Mixed breed dogs and purebred dogs are both suitable as companions, pets, 
working dogs , or competitors in dog sports. 
Dogs have thicker skins than similarly-sized wolves. 
The English word dog , in common usage , refers to the domestic pet dog , Canis 
lupus familiaris. 
The dog has developed into hundreds of varied breeds. 
Despite these differences, dogs are able to distinguish dogs from other kinds of 

http://en.wikipedia.org/wiki/Dog
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animal. 
These considerations affect both pets and the show dogs entered in dog shows. 
Some members of the family have "dog "in their common names, such as the 
Raccoon. 
Dog and the African Wild Dog. 
Intelligence Dogs are valued for their intelligence. 
Dogs require fewer calories to function than wolves. 

We use a science article about tree tomato, and get following result (Morton, 1987-A). 

(a) Top 10 key concepts generated from the document 

#$Fruit 
#$Tree-ThePlant 
(#$FruitFn #$TomatoPlant) 
#$FactoryBuildingComplex 
#$Seed 
#$TreeBranch 
#$Leaf 
#$Virus 
#$FieldOfStudy 
#$Sugar-Table 

(b) New generated sentence 

"Some plant parts be subject." 

"Some external anatomical parts be things." 

(c) Extracted top 10 sentences 

The tree tomato, Cyphomandra betacea Sendt. 
Tree tomato flowers are normally self-pollinating. 
It fruits satisfactorily in northern greenhouses. 
Red fruits are chosen for the fresh fruit markets because of their appealing color. 
In South America and the Caribbean, the fruits are subject to attack by fruit flies 
Anastrepha sp. 
The tree tomato is not tropical but subtropical. 
In Haiti it grows and fruits to perfection at 6,000 ft (1,830 m). 
In Colombia, the tree tomato has been found to be the preferred host of the tree 
tomato worm ( Neoleucinodes sp). 
Tree tomato mosaic virus causes pale mottling on leaves and sometimes on the 
fruits which has not been considered a serious disadvantage. 
Otherwise, the tree will develop a broad top with fruits only on the outer fringe. 

We use a science article about grapefruit, and get following result (Morton, 1987-B). 

(a)Top 10 key concepts generated from the document 
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#$Fruit 

(#$FruitFn #$GrapefruitTree) 

#$Tree-ThePlant 

#$Florida-State 

#$Seed 

(#$FruitFn #$OrangeTree) 

#$Texas-State 

#$pulp 

#$possesses 

#$GeographicalRegion 

(b) New generated sentence 

"Pulp be colored." 

"Fruits be thing." 

"Grapefruit be thing." 

"Pulp be tangible thing." 

"Fruit be round." 

These tests show that our system is able to create new key concepts and new 

sentences to summarize documents. 



CHAPTER 5 

CONCLUSION AND FUTURE DIRECTION 

In this project, we develop a system that can generate an extraction based 

summary and can generate new sentences to summarize a document. To generate an 

extraction based summary, we used Stanford parser to tag words and phrases with their 

part-of-speeches, and used ResearchCyc to map those words and phrases to concepts. We 

propagate the weight of the concepts along ResearchCyc hierarchy. In addition, we also 

disambiguate between concepts and annotate each phrase and word with the 

disambiguated concept. We also label the phrase or word with the concept's weight and 

sum the weight of each phrase and word in each sentence as the sentence's weight. Then, 

we extract sentences with some of the highest weights. To generate new sentences to 

summarize the document, we extract the subject, predicate, and object for each sentence. 

We build clusters for the compatible sentences and then generate a new sentence for each 

cluster. Test results show that our sentence extraction method has performance equal to 

that of currently used by Microsoft systems. Our system is the first system to be able to 

generate abstract concepts and to create new sentences to summarize documents. Thus 

not comparison is done on these methods. Our tests show that our approaches are viable 

and have great potential for future usage and development. 

Some future research directions are outlined as follows. For the current project, 

we used Stanford parser for syntax parsing. The performance of Stanford parser is 
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86.36% according to Fl measure. It is very close to the current state of the art 

performance (Klein 2003). However, there are syntax parsers which have better 

performances such as ENGCG. The performance of ENGCG is 99.7-100% of all words 

retain the appropriate part-of-speech tagging and about 97-98% of all words retain the 

appropriate typed dependency tagging. Since the mapping from a word or phrase to 

ResearchCyc concept is dependent on the part of speech tagging, by using a more 

accurate syntax parser, the performance of our document summarization system will 

improve. 

For the word sense disambiguation, we only use the global features to make sense 

disambiguation, which is based on the assumption that a word that occurs in a document 

will keep the same meaning throughout the document. It simplifies the word sense 

disambiguation process but might affect the accuracy of the performance. In the future, 

we can integrate the technique which uses local context to resolve sense ambiguity. 

For future improvements, we can use the characteristics of Cyc to make sense 

disambiguation at sentence level. For most of the Cyc's constant, it has a corresponding 

defining "microtheory". We can use #$defining-mt predicate to retrieve which 

microtheory the constant is defined in. All the assertions and constants defined in the 

microtheory share some assumptions. We can make sense disambiguation based on the 

algorithm as shown in Figure 5.1. 

Cyc encodes important lexical information in various forms of "sem trans" 

(semantic translation) assertions. The semantic templates specify how the interpretations 

of a headword and its complements (which includes the subject, in the case of verb 

should be fused together to represent the semantics for some larger constituent (relative 

to some #$SubcategorizationFrame). Based on the semantic template, we can 
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disambiguate word sense on the sentence level. By integrating sentence level sense 

disambiguation to our global features based sense disambiguation, we can improve the 

accuracy of our word sense disambiguation to further improve the performance of our 

system. 

Domain specific text summarization systems outperform open domain text 

summarization. In the future, we can use automatic text classification methods to classify 

a document into some predefined category, and add the features inherent to the category 

to our system. The domain knowledge will have use create better summary. 

In this project, we use ResearchCyc as our knowledgebase, which consists of 

about 300,000 concepts and 3,000,000 assertions. Cycorp has another version of the 

knowledgebase called full Cyc, which consist of over 328,000 concepts and over 

3,500,000 assertions. The performance of our word sense disambiguation and new 

sentences generation process is dependent on the concept hierarchy. The knowledgebase 

we are using is not well balanced. For future project, we should use a commercial and 

more powerful version of ResearchCyc called Full Cyc, which will allow our system to 

generate more and better sentences to summarize a document. 



1. Retrieve the defining microtheory for each word in the sentence 

(a)For each word in the sentence, 
Use Cyc predicate #$Denotation, the word and its part-of-speech as 
arguments to retrieve its Cyc corresponding concepts. (b)For each of the 

corresponding concepts, 
Use defining-Mt predicate to retrieve the microtheory for which the concept 
is defined in. Increase the weight of this microtheory by 1. 

2. Build a link between two concepts if they are related by any predicate 

For all the concepts retrieved during the last step, for each pair of concept, use 
subl command "assertions-mention-terms" to check if the two concepts are 
related; if they are related, build a link between them 

3. Word sense disambiguation by the weight the word's defining theory weight 

For each word in the sentence, 

If it has only one corresponding concept, choose that concept, then it is done. 

If it has more than one corresponding concepts, 
For each of the corresponding concepts, 

Retrieve its defining microtheory's weight. Compare the weights 
if one concept's defining microtheory's weight is higher than all the 
others, map the word to that concept, it is done, or else 

For each of the corresponding concepts, 
Follow the link built from step 2; follow the links to retrieve the 
linked concepts. 
For each concept, retrieved the linked concepts' defining microtheory 
's weight, and sum them together. Save this sum as the concept's 

Associated weight. Compare the concept s' associated weight, if one 
concept's the concept's associated weight is higher than all the others, 
map the word to that concept. 
If the disambiguation cannot be resolved, leave it to be resolved by 
global disambiguation system. 

Figure 5.1 Sentence Level Word Sense Disambiguation. 
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a 
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an 
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SOURCE CODE 

B-l Retrieve Cyc concept Z's weight 
(define gou(Z) 
(csetq x 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq Z 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(ret x) 
) 

B-2 Retrieve the concept with highest weight from the list 
(define maxx(fqlistmx) 
(csetq currentmax -1) 
(csetq midx 0) 
(csetq maxIdxGroup nil) 
(csome (fqitem fqlistmx) 

(pif (> fqitem currentmax) 
(progn 

(csetq currentmax fqitem) 
(csetq maxIdxGroup (list midx)) 

) 
(pif (equalp fqitem currentmax) (cpush midx maxIdxGroup) ) 

) 
(cine midx) 
) 
(ret maxIdxGroup) 
) 

B-3 Increase Cyc concept Z's weight by v 
(define qa(Z v) 

(csetq x 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq value 
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(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq z b) #$ConWeightMt))) 
(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS*NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$freq Z (car (car x))) #$ConWeightMt))) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq Z (+ (car (car x)) v ) ) #$ConWeightMt))) 
) 

) 
) 

B-4 First level propagation along the Cyc hierarchy 
( define prop l(z) 
(csetq x 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
(LIST #$freq 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(csetq xcl 0) 
(csome (xs x ) (print (car xs)) (print (car (cdr xs))) 
(csetq yxs 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS (car xs)))) 
) 
(csetq yinisa 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-isa (car xs)))) 
) 
(pif (> (list-length yinisa) 0) 
(csome (yinisaitem yinisa) 
(cpushnew yinisaitem yxs) 
) 
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) 
(csetq xcxs 0) 
(csome (xsxs yxs ) (print xsxs) 

(csetq chazhi 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?ry)) 
(LIST #$rongyu xsxs 
(QUOTE ?ry)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(pif (cor 

(equalp xsxs #$Collection) 
(equalp xsxs #$Thing) 
(equalp xsxs #$Individual) 
(equalp xsxs #$SetOrCollection) 
(equalp xsxs #$PartiallyIntangibleIndividual) 
(equalp xsxs #$TemporalThing) 
(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$PartiallyTangible) 
(equalp xsxs #$PartiallyIntangible) 
(equalp xsxs #$Intangible) 
(equalp xsxs #$SpatialThing) 
(equalp xsxs #$TemporalThing) 
(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$SpatialThing-Localized) 
(equalp xsxs #$lntangiblelndividual) 
(equalp xsxs #$IntangibleExistingThing) 
(equalp xsxs #$CompositeTangibleAndIntangibleObject) 
(equalp xsxs #$TimeInterval) 
(equalp xsxs #$Situation) 
(equalp xsxs #$Event) 
(equalp xsxs #$PhysicalEvent) 
(equalp xsxs #$Configuration) 
(equalp xsxs #$MathematicalOrComputationalThing) 
(equalp xsxs #$MathematicalThing) 
(equalp xsxs #$MathematicalObject) 
(equalp xsxs #$SetOrCollection) 

) (print chazhi) 
(pif (equalp chazhi nil) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 

(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyu xsxs (* z (car (cdr xs)) )) #$ConWeightMt))) 
(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
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(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS*NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$rongyu xsxs (car (car chazhi))) #$ConWeightMt))) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyu xsxs (+ (* z (car (cdr xs))) (car (car chazhi))) 
) #$ConWeightMt))) 

) 
)))) 
) 
) 

B-5 Second level propagation along the Cyc hierarchy 
( define propf 1 (z) 
(csetq x 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
(LIST #$rongyu 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(csome (xrs x ) 

(csetq pinlv 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq (car xrs) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL)) 
(pif (equalp pinlv nil) 
(WITH-BOOKKEEPING-INEO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xrs) (car (cdr xrs)) ) #$ConWeightMt))) 
(progn 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
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( 
(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS*NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$freq (car xrs) (car (car pinlv))) #$ConWeightMt))) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xrs) (+ (car (cdr xrs)) (car (car pinlv))) 

) #$ConWeightMt))) 
) 

) 
(csetq yxs 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS (car xrs)))) 

) 
(csetq yinisa 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-isa (car xrs)))) 
) 

(pif (> (list-length yinisa) 0) 
(csome (yinisaitem yinisa) 
(cpush yinisaitem yxs) 
) 
) 

(csetq xcxs 0) 
(csome (xsxs yxs) 
(csetq chazhi 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?ry)) 
(LIST #$rongyul xsxs 
(QUOTE ?ry)) #$ConWeightMt 0 NIL NIL NIL) 
) 

(pif (cor 
(equalp xsxs #$Collection) 
(equalp xsxs #$Thing) 
(equalp xsxs #$Individual) 
(equalp xsxs #$SetOrCollection) 
(equalp xsxs #$PartiallyIntangibleIndividual) 
(equalp xsxs #$TemporalThing) 
(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$PartiallyTangible) 
(equalp xsxs #$PartiallyIntangible ) 
(equalp xsxs #$Intangible) 
(equalp xsxs #$SpatialThing) 
(equalp xsxs #$TemporalThing) 
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(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$SpatialThing-Localized) 
(equalp xsxs #$lntangiblelndividual) 
(equalp xsxs #$IntangibleExistingThing) 
(equalp xsxs #$CompositeTangibleAndIntangibleObject) 
(equalp xsxs #$TimeInterval) 
(equalp xsxs #$Situation) 
(equalp xsxs #$Event) 
(equalp xsxs #$PhysicalEvent) 
(equalp xsxs #$Configuration) 
(equalp xsxs #$MathematicalOrComputationalThing) 
(equalp xsxs #$MathematicalThing) 
(equalp xsxs #$MathematicalObject) 
(equalp xsxs #$SetOrCollection) 

) 
(print chazhi) 
(pif (equalp chazhi nil) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 

(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyul xsxs (* z (car (cdr xrs)) )) #$ConWeightMt))) 
(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS * NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UN ASSERT-NOW 
(LIST #$rongyul xsxs (car (car chazhi))) #$ConWeightMt))) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyul xsxs (+ (* z (car (cdr xrs))) (car (car chazhi))) 
) #$ConWeightMt))) 

))) ) ) 
(csetq finalrongyu 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
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(LIST#$rongyul 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(csetq xfl 0) 
(csome (xfs finalrongyu) 

(csetq fpinlv 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq (car xfs) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) ) 
(pif (equalp fpinlv nil) 
(WLTH-B OOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 

( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xfs) (car (cdr xfs)) ) #$ConWeightMt))) 

(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 

( 
(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS*NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$freq (car xfs) (car (car fpinlv))) #$ConWeightMt))) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xfs) (+ (car (cdr xfs)) (car (car fpinlv))) 
) #$ConWeightMt))) ))) ) ) 

B-6 Third level propagation along the Cyc hierarchy 
(define propf2(z) 
( 
clet 
( 
(x 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 



(LIST #$rongyu 1 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
) 
(csetq xrl 0) 
(csome (xrs x) 
(csetq yxs 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS (car xrs)))) 

) 
(csetq yinisa 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-isa (car xrs)))) 

) 
(pif (> (list-length yinisa) 0) 

(csome (yinisaitem yinisa) 
(cpush yinisaitem yxs) 
) 
) 

(csetq xcxs 0) 
(csome (xsxs yxs) 
(print xsxs) 

(csetq chazhi 
(ASK-TEMPLATE 

(LIST 
(QUOTE ?ry)) 
(LIST #$rongyu2 xsxs 
(QUOTE ?ry)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(print chazhi) 

(pif 
(cor 

(equalp xsxs #$Collection) 
(equalp xsxs #$Thing) 
(equalp xsxs #$Individual) 
(equalp xsxs #$SetOrCollection) 
(equalp xsxs #$PartiallyIntangibleIndividual) 
(equalp xsxs #$TemporalThing ) 
(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$PartiallyTangible) 
(equalp xsxs #$PartiallyIntangible) 
(equalp xsxs #$Intangible) 
(equalp xsxs #$SpatialThing) 
(equalp xsxs #$TemporalThing) 
(equalp xsxs #$SomethingExisting) 
(equalp xsxs #$SpatialThing-Localized) 
(equalp xsxs #$lntangiblelndividual) 
(equalp xsxs #$IntangibleExistingThing) 
(equalp xsxs #$CompositeTangibleAndIntangibleObjec 
(equalp xsxs #$TimeInterval) 
(equalp xsxs #$Situation) 
(equalp xsxs #$Event) 
(equalp xsxs #$PhysicalEvent) 
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(equalp xsxs #$Configuration) 
(equalp xsxs #$MathematicalOrComputationalThing) 
(equalp xsxs #$MathematicalThing) 
(equalp xsxs #$MathematicalObject) 
(equalp xsxs #$SetOrCollection) 

) 
(print chazhi) 

(pif (equalp chazhi nil) 
(WITH-B OOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 

( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyu2 xsxs (* z (car (cdr xrs)) )) #$ConWeightMt))) 
(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*REQUERE-CASE-INSENSITIVE-NAME-UNIQUENESS * NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$rongyu2 xsxs (car (car chazhi))) #$ConWeightMt))) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$rongyu2 xsxs (+ (* z (car (cdr xrs))) (car (car chazhi))) 
) #$ConWeightMt))) 

) 
) 
) 

(+ xcxs 1) 
(pwhen (< xcxs (list-length yxs))) 
) 
) 

(csetq finalrongyu 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
(LIST #$rongyu2 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 
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) 
(csetq xfl 0) 
(csome (xfs finalrongyu) 
(csetq fpinlv 
(ASK-TEMPLATE 

(LIST 
(QUOTE ?freqc)) 
(LIST #$freq (car xfs) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(pif (equalp fpinlv nil) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 

(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xfs) (car (cdr xfs)) ) #$ConWeightMt))) 

(progn 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*REQUIRE-CASE-INSENSITIVE-NAME-UNIQUENESS*NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$freq (car xfs) (car (car fpinlv))) #$ConWeightMt))) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 

(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$freq (car xfs) (+ (car (cdr xfs)) (car (car fpinlv))) 
) #$ConWeightMt))) 

) 
) 
) 
) 
) 

B-7 Word sense disambiguation 
(define wsd(ar) 
(csetq fqlist nil) 

(csome (xar ar) 
(csetq pinlv 
(ASK-TEMPLATE 
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(LIST 
(QUOTE ?freqc)) 
(LIST #$freq xar 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(pif (equalp fqlist nil) 

(csetq fqlist (car pinlv)) 
(csetq fqlist (cpush (car (car pinlv)) fqlist)) 

) 
) 
(print fqlist) 
(csetq fqlist 1 nil) 
(csome (fql fqlist) 
(cpush fql fqlistl) 
) 
(print "fqlistl=") (print fqlistl) 

(csetq currentlevel (maxx fqlistl)) 
(print currentlevel) 
(pif (equalp 1 (list-length currentlevel)) 
(progn 

(csetq conweightpair nil) 
(cpush (nth (car currentlevel) fqlistl) conweightpair) 
(cpush (nth (car currentlevel) ar) conweightpair) 
(ret conweightpair) 

) 
(progn 

(ret (parentwsd currentlevel ar fqlistl)) 
) 

) 
) 
B-8 Parent level word sense disambiguation 
(define parentwsd (currentlevel ar fqlistl) 

(csetq maxparentGP (MAKE-VECTOR (list-length currentlevel))) 
(csetq maxparentmax (MAKE-VECTOR (list-length currentlevel))) 
(csetq maxparentweight (MAKE-VECTOR (list-length currentlevel))) 
(csetq idx 0) 
(csome (clitem currentlevel) 

(csetq pitem 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS (nth clitem ar) ))) 
) 
(csetq yinisa 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-isa (nth clitem ar)))) 
) 
(pif (> (list-length yinisa) 0) 
(csome (yinisaitem yinisa) 
(cpush yinisaitem pitem) 
) 
) 

(SET-AREF maxparentGP idx pitem) 
(pif (equalp pitem nil) 
(SET-AREF maxparentweight idx 0) 
(progn 



(pif (equalp (list-length pitem) 1) 
(progn 
(csetq pinlvp 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST#$freq (car pitem) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 
) 
(SET-AREF maxparentmax idx 0) 
(SET-AREF maxparentweight idx (car (car pinlvp))) 

) 
(progn 
(csetq pfqlist nil) 
(csome (xarp pitem) 

(csetq ppinlv 
(ASK-TEMPLATE 

(LIST 
(QUOTE ?freqc)) 
(LIST #$freq xarp 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(pif (equalp pfqlist nil) 

(pif (equalp ppinlv nil) 
(csetq pfqlist (cpush 0 pfqlist)) 

(csetq pfqlist (car ppinlv)) 
) 

(pif (equalp ppinlv nil) 
(csetq pfqlist (cpush 0 pfqlist)) 
(csetq pfqlist (cpush (car (car ppinlv)) pfqlist)) 

) 
) 

) 
(csetq pfqlistl nil) 
(csome (pfql pfqlist) 
(cpush pfql pfqlistl) 
) 
(csetq parentlevel (maxx pfqlistl)) 
(SET-AREF maxparentmax idx parentlevel) 
(SET-AREF maxparentweight idx (nth (car parentlevel) pfqlistl)) 

) ) ) ) 
(cine idx) 
) 
(csetq xinzu nil) 
(csetq qishi (- (list-length currentlevel) 1)) 
(cdotimes (idxl (list-length currentlevel)) 

(pif (equalp (aref maxparentweight (- qishi idxl)) nil) 
(cpush 0 xinzu) 
(cpush (aref maxparentweight (- qishi idxl)) xinzu) 

) 
) 
(csetq plevelresult (maxx xinzu)) 
(pif (equalp (list-length plevelresult) 1) 

(progn 
(csetq conweightpairp nil) 
(cpush (nth (nth (car plevelresult) currentlevel) fqlistl) conweig 
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(cpush (nth (nth (car plevelresult) currentlevel) ar) conweightpairp) 
(ret conweightpairp) 

) 
(progn 

(csetq gran nil) 
(csome (xyz plevelresult) 

(cpush (nth (nth xyz currentlevel) ar) gran) 
) 
(ret (conceptrelate gran)) 

) 
) 

) 

B-9 Word sense disambiguation by conceptuallyrelated terms 
(define conceptrelate(grandlevelresult) 

(csetq cepgroup (MAKE-VECTOR (list-length grandlevelresult))) 
(csetq cepgroupweight (MAKE-VECTOR (list-length grandlevelresult))) 
(csetq cepcondidate (MAKE-VECTOR (list-length grandlevelresult))) 
(cdotimes (crelidx (list-length grandlevelresult)) 
(set-aref cepcondidate crelidx (nth crelidx grandlevelresult)) 
) 
(csetq grandlevelsize (list-length grandlevelresult)) 
(cdotimes (cepidx grandlevelsize) 

(csetq cepcluster 
(ASK-TEMPLATE 

(LIST 
(QUOTE ?relaterm)) 
(LIST #$conceptuallyRelated (aref cepcondidate cepidx ) 
(QUOTE ?relaterm)) #$EverythingPSC 0 NIL NIL NIL) 

) 
(csetq cepcluster 1 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?relaterm)) 
(LIST #$conceptuallyRelated (QUOTE ?relaterm) 

(aref cepcondidate cepidx )) #$EverythingPSC 0 NIL NIL NIL) 
) 

(csome (cp cepclusterl) 
(csetq bflag 0) 
(csome (cpo cepcluster) 
(pif (equalp (car cp) (car cpo)) 
(csetq bflag 1) 
) 
) 

(pif (equalp bflag 0) (cpush cp cepcluster) ) 
) 

(csetq cweight 0) 
(csome (cepitem cepcluster) 

(csetq cpinlv 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq (car cepitem) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 

) 
(pif (equalp cpinlv nil) 
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(print "NOne") 
(csetq cweight (+ cweight (car (car cpinlv)))) 

) 
) 
(SET-AREF cepgroupweight cepidx cweight) 

) 
(csetq cepzu nil) 
(csetq cqishi (- (list-length plevelresult) 1)) 
(cdotimes (cidxl (list-length plevelresult)) 
(pif (equalp (aref cepgroupweight (- cqishi cidxl)) nil) 

(cpush 0 cepzu) 
(cpush (aref cepgroupweight (- cqishi cidxl)) cepzu) 

) 
) 
(csetq ceplevelresult (maxx cepzu)) 
(csetq conweightpair nil) 
(csetq pinlv 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?freqc)) 
(LIST #$freq (nth (car ceplevelresult) grandlevelresult) 
(QUOTE ?freqc)) #$ConWeightMt 0 NIL NIL NIL) 
) 

(cpush (car (car pinlv)) conweightpair) 
(cpush (nth (car ceplevelresult) grandlevelresult) conweightpair) 
(ret conweightpair) 

) 

B-10 Cluster sentences and generate new sentences 
(define clusterspo(spo clusterqueue) 

(cdolist (cqueue clusterqueue) 
(csetq plist nil) 
(cdolist (cqO cqueue) 

(csetq plistx nil) 
(cdolist (cql cqueue) 

(pif (equalp (compatible (nth cqO spo) (nth cql spo)) 1) 
(cpushnew cq 1 plistx) 

) 
) 

(csetq plist (append plist (list plistx))) 
) 
(csetq maxlen 1) 
(csetq maxlist (nth 0 plist)) 
(cdolist (pi plist) 

(pif (>= (list-length pi) maxlen) 
(progn 

(csetq maxlen (list-length pi)) 
(csetq maxlist pi) 

) 
) 
) 
(csetq spl nil) 
(csetq ppl nil) 
(csetq opl nil) 
(cdolist (pi maxlist) 

(cpushnew (first (nth pi spo)) spl) 
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(cpushnew (second (nth pi spo)) ppl) 
(cpushnew (third (nth pi spo)) opl) 

) 
(csetq gened nil) 

(pif (> (list-length spl) 1) 
(csetq gened (list (gen spl))) 
(csetq gened (list spl)) 

) 
(pif (> (list-length ppl) 1) 

(csetq gened (append gened (list (gen ppl)))) 
(csetq gened (append gened (list ppl))) 

) 

(pif (> (list-length opl) 1) 
(csetq gened (append gened (list (gen opl)))) 
(csetq gened (append gened (list opl))) 

) 
) 

(csetq Generalizedsentence nil) 
(csetq kongge " ") 
(pif (equalp (list-length (first gened )) 1) 

(csetq Generalizedsentence (second (fourth (nth (first maxlist) spo)))) 
(progn 

(csetq Generalizedsentence "Some ") 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (cum (generate-

phrase (second (first gened )))))) 
) 

) 
(csetq Generalizedsentence (string-capitalize Generalizedsentence 0 1)) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence kongge)) 

(pif (equalp (list-length (second gened)) 1) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (generate-phrase 

(first (second gened))))) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (generate-phrase 

(second (second gened))))) 

) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence kongge)) 

(pif (equalp (list-length (third gened )) 1) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (fourth (fourth 

(nth (first maxlist) spo))))) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (generate-

phrase (second (third gened))))) 
) 

(gen maxlist) 
) 

) 

B-ll Add plural forms to the generated concept 
(define cum(Generalizedsentence) 

(csetq oriphrase Generalizedsentence) 
(csetq sublen (search " " (reverse oriphrase))) 
(pif (equalp sublen nil) 

(csetq subseqlen nil) 
(csetq subseqlen (- (length oriphrase) (search " " (reverse oriphrase)))) 

) 
(pif (equalp subseqlen nil) 



(csetq mainnoun oriphrase) 
(csetq mainnoun (subseq oriphrase subseqlen)) 

) 
(csetq Noun_TheWord 

(ASK-TEMPLATE 
(LIST (QUOTE ?fl) ) 
(LIST #$wordForms (QUOTE ?fl) #$nounStrings mainnoun) 
#$GeneralEnglishMt 0 NIL NIL NIL 
) 

) 
(csetq word_POS 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
) 
(LIST #$posForms 
(caar NounJTheWord) 
(QUOTE ?fl) 

) #$GeneralEnglishMt 0 NIL NIL NIL) 
) 
(csetq countnounl 0) 

(csome (itt word_POS) 
(print (car itt)) 
(pif (equalp (car itt) #$CountNoun) 

(csetq countnounl 1) 
) 

) 
(pif (equalp countnounl 1) 

(progn 
(csetq word_PLIist 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
) 
(LIST #$plural 
(caar Noun_TheWord) 
(QUOTE ?fl) 
) #$GeneralEnglishMt 0 NIL NIL NIL) 
) 
(csetq word_PL (caar word_PLlist) ) 
(pif (equalp subseqlen nil) 

(ret word_PL) 
(ret (cconcatenate (subseq Generalizedsentence 0 subseqlen) word 

) 
) 
(ret Generalizedsentence) 

) 
) 

B-12 Check if two concepts are compatible 
(define compatpartP (partx party) 
(csetq comflag 0) 

(pif (equalp partx party) 
(progn 
(csetq comflag 1) 
(ret comflag) 
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) 
) 
(csetq parentgenx 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS partx ))) 
) 

(cpushnew partx parentgenx) 
(csetq parentgeny 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS party))) 

) 
(cpushnew party parentgeny) 
(csome (gx parentgenx) 

(csome (gy parentgeny) 
(pif (equalp gx gy) 

(progn 
(csetq comflag 1) 
(ret comflag) 

) 
) 

) 
) 
(pif (CYC-QUERY (quote (#$nearestGenls partx party)) #$EverythingPSC) 

(csetq comflag 1) 
(pif (CYC-QUERY (quote (#$nearestGenls party partx)) #$EverythingPSC) 

(progn 
(csetq comflag 1) 
(ret comflag) 

) 
) 
) 
(pif (CYC-QUERY (quote (#$nearestlsa partx party)) #$EverythingPSC) 

(csetq comflag 1) 
(pif (CYC-QUERY (quote (#$nearestlsa party partx)) #$EverythingPSC) 

(progn 
(csetq comflag 1) 
(ret comflag) 

))) (ret comflag) 
) 

B-13 Add new element to the cluster 
(define clusterspo(spo clusterqueue) 

(cdolist (cqueue clusterqueue) 
(print 'new_cluster) (print cqueue) 
(csetq plist nil) 
(cdolist (cqO cqueue) 

csetq plistx nil) 
(cdolist (cql cqueue) 

(pif (equalp (compatible (nth cqO spo) (nth cql spo)) 1) 
(cpushnew cql plistx) 

) 
) 
(csetq plist (append plist (list plistx))) 

) 
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(csetq maxlen 1) 
(csetq maxlist (nth 0 plist)) 
(cdolist (pi plist) 
(pif (>= (list-length pi) maxlen) 
(progn 
(csetq maxlen (list-length pi)) 
(csetq maxlist pi) 
) 
) 
) 
(csetq spl nil) 
(csetq ppl nil) 
(csetq opl nil) 
(cdolist (pi maxlist) 

(cpushnew (first (nth pi spo)) spl) 
(cpushnew (second (nth pi spo)) ppl) 
(cpushnew (third (nth pi spo)) opl) 

) 
(csetq gened nil) 
(pif (> (list-length spl) 1) 

(csetq gened (list (gen spl))) 
(csetq gened (list spl)) 

) 
(pif (> (list-length ppl) 1) 

(csetq gened (append gened (list (gen ppl)))) 
(csetq gened (append gened (list ppl))) 

) 

(pif (> (list-length opl) 1) 
(csetq gened (append gened (list (gen opl)))) 

(csetq gened (append gened (list opl))) 
) 

(csetq Generalizedsentence nil) 
(csetq kongge"") 
(pif (equalp (list-length (first gened )) 1) 

(csetq Generalizedsentence (generate-phrase (car (first gened )))) 
(progn 

(csetq Generalizedsentence "Some ") 
(csetq Generalizedsentence (cconcatenate Generalizedsentence 

(cum (generate-phrase (second (first gened )))))) 
) 

) 
(csetq Generalizedsentence (string-capitalize Generalizedsentence 0 1)) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence kongge)) 
(pif (equalp (list-length (second gened)) 1) 

(progn 
(csetq Generalizedsentence (cconcatenate Generalizedsentence 

(generate-phrase (first (second gened ))))) 
) 
(progn 

(csetq Generalizedsentence (cconcatenate Generalizedsentence 
(generate-phrase (second (second gened ))))) 

) 
) 

(csetq Generalizedsentence (cconcatenate Generalizedsentence kongge)) 



(pif (equalp (list-length (third gened )) 1) 
(csetq Generalizedsentence (cconcatenate Generalizedsentence 

(generate-phrase (first (third gened ))))) 
(progn 

(csetq Generalizedsentence (cconcatenate Generalizedsentence " some 
(csetq Generalizedsentence (cconcatenate Generalizedsentence (cum 

(generate-phrase (second (third gened )))))) 
) 

) 
(gen maxlist) 

) 
) 

B-14 Check if partx and party is parent-child relation 
(define genparent(partx party) 
(csetq parentgenx 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS partx ))) 
) 

(csetq parentgeny 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS party))) 
) 

(csome (gx parentgenx) 
(csome (gy parentgeny) 

(pif (equalp gx gy) 
(ret gx) 

) 
) 

) 
(ret nil) 

) 

B-15 Generate a new generalized concept from a list of concepts 
(define gen(maxlist) 
(csetq qx nil) 
(cpushnew (first maxlist) qx) 
(cdolist (partx maxlist) 

(cdolist (party qx) 
(pif (equalp partx party) 

(cpushnew partx qx) 
(progn 

(csetq tparent (genparent partx party)) 
(pif (equalp tparent nil) 

(print nil) 
(cpushnew tparent qx) 

) 
) 

) 
) 

) 
(pif (> (list-length qx) 1) 
) 
(csome (mxt maxlist) 
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(csetq parentgenxl 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS mxt ))) 

) 
(csome (pxl parentgenxl) 

(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-ASSERT-NOW 
(LIST #$xkid pxl mxt) #$TextSummarizationMt))) 
) 
) 
(csetq liuyel 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
(LIST #$xkid 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$TextSummarizationMt 0 NIL NIL NIL) 

) 
(csetq depot nil) 
(csome (Ix liuyel) 
(cpushnew (FIRST lx) depot) 
) 
(csetq maxw 1) 
(csetq maxitem (first maxlist)) 
(csome (dpt depot) 

(csetq liuyl 
(ASK-TEMPLATE 
(LIST 

(QUOTE ?freqc)) 
(LIST #$xkid 
dpt 
(QUOTE ?freqc)) #$TextSummarizationMt 0 NIL NIL NIL) 

) 
(pif (> (list-length liuyl) maxw) 
(progn 
(csetq maxitem dpt) 
(csetq maxw (list-length liuyl))(print 'greater) 
) ) ) 

(csetq spechildren 
(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl)) 
(LIST #$nearestGenls 
(QUOTE ?fl) 
maxitem) #$EverythingPSC 0 NIL NIL NIL) 

) 
(csetq addquantifier (list maxitem)) 
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(pif (> (list-length spechildren) maxw) 
(cpush #$thereExists addquantifier) 

) 
(csetq x 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?freqc)) 
(LIST #$xkid 
(QUOTE ?fl) 
(QUOTE ?freqc)) #$TextSummanzationMt 0 NIL NIL NIL) 
) 

(csome (xkiddl x) 
(WITH-BOOKKEEPING-INFO 
(NEW-BOOKKEEPING-INFO NIL 
(THE-DATE) NIL 
(THE-SECOND)) 
(CLET 
( 
(*REQUIRE-C ASE-INSENSITIVE-NAME-UNIQUENESS * NIL) 
(*THE-CYCLIST* NIL) 
(*KE-PURPOSE* NIL)) 
(KE-UNASSERT-NOW 
(LIST #$xkid (car xkiddl) (second xkiddl)) #$TextSummarizationMt))) 
) 

(ret addquantifier) 

B-16 generate new sentences from cluster list 
(define assemblel() 
(csetq SPOs (open "2 SPO.txt" rdirection :output)) 
(csetq Commatrix (open "3 Commatrix.txt" :direction :output)) 
(csetq Comclusters (open "4 Comclusters.txt" :direction :output)) 
(csetq genes (open "6 generalized.txt" :direction :output)) 
(csetq sents (open "7 Gsentences.txt" :direction :output)) 
(csetq clustersentences (open "5 ComclustersWithSentences.txt" idirection :output)) 
(csetq spo 

(ASK-TEMPLATE 
(LIST 
(QUOTE ?fl) 
(QUOTE ?f2) 
(QUOTE ?f3) 
(QUOTE ?f4) 
) 
(LIST #$zwb 
(QUOTE ?fl) 
(QUOTE ?f2) 
(QUOTE ?f3) 
(QUOTE ?f4) 
) #$TextSummarizationMt 0 NIL NIL NIL) 

) 
(csetq spolen (list-length spo)) 
(csetq ss 0) 
(csetq spc " ") 
(csome (sbi spo) 
(format SPOs "~%") 
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(format SPOs "~4D " ss ) 
(prinl sbi SPOs) 
(prinl (first sbi)) (prinl ' ) (prinl (second sbi)) (prinl ' ) 
(prinl (third sbi)) (prinl ' ) (prinl (fourth sbi)) 
(print ss) (cine ss) 

) 
(close SPOs) 
(csetq compmatrix (MAKE-VECTOR spolen)) 
(cdotimes (nlens spolen) 

(set-aref compmatrix nlens (MAKE-VECTOR spolen) ) 
) 
(cdotimes (nleny spolen) 

(print '_) 
(cdotimes (nlenx spolen) 

(pif (> nlenx nleny) 
(progn 
(csetq ctemp (compatible (nth nlenx spo ) (nth nleny spo ))) 
(set-aref (aref compmatrix nleny) nlenx ctemp) 

) 
(pif (< nlenx nleny) 

(set-aref (aref compmatrix nleny) nlenx 0) 
(set-aref (aref compmatrix nleny) nlenx 1) 

) ) ) ) 
(csetq spc " ") 
(format Commatrix "~4A" spc ) 
(cdotimes (nlenz spolen) 

(format Commatrix "~4D" nlenz ) 
) 
(format Commatrix "~%" ) 
(cdotimes (nleny spolen) 

(format Commatrix "~4D" nleny) 
(cdotimes (nlenx spolen) 

(format Commatrix "~4D" (aref (aref compmatrix nleny) nlenx)) 
) 
(format Commatrix "~%" ) 

) 
(close Commatrix) 
(csetq unclustered nil) 
(csetq clusterqueue nil) 
(csetq candchainlen (- spolen 1)) 
(cdotimes (nleny candchainlen)(print'_) 

(csetq newcluster nil) 
(csetq deltalen (- spolen nleny)) ;(cdec deltalen) 
(cdotimes (dnum deltalen) 

(csetq colm (+ dnum nleny)) 
(pif (> (aref (aref compmatrix nleny) colm ) 0) 

(csetq newcluster (append newcluster (list colm))) 
) 

) 
(pif (equalp (list-length newcluster) 2) 

(pif (equalp (list-length clusterqueue) 0) 
(csetq clusterqueue (list newcluster)) 
(csetq clusterqueue (append clusterqueue (list newcluster))) 

) 

(pif (> (list-length newcluster) 2) 
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(progn 
(pif (equalp (list-length unclustered) 0) 
(csetq unclustered (list newcluster)) 
(csetq unclustered (append unclustered (list newcluster))) 
) 

) 
) 
) 

) 
(pif (> (list-length unclustered) 0) 

(csome ( unc unclustered ) 
(print 'unc) (print unc) 

(csetq clusterqueue (validate unc compmatrix clusterqueue)) 
) 
) 

(csetq clusterqueue (filter clusterqueue)) 
(clusterspo spo clusterqueue) 
(close clustersentences) 
(close Comclusters) 
(close genes) 
(close sents) 
) 

B-17 Build compatible clusters from compatible matrix 
(define validate (unlist compmatrix clusterqueue) 

(csetq unvalid nil) 
(csetq unvalid (append unvalid (list unlist))) 
(cdo 

( 
(cmptime 0(1+ cmptime)) 
(ckrepeat nil (>= cmptime (list-length unvalid))) 

) 
((eval ckrepeat)) 
(progn 

(csetq unvaliditem (nth cmptime unvalid)) 
(csetq chainlen (list-length unvaliditem 
(csetq fy (- chainlen 1)) 
(csetq fx -1) 
(csetq breakx 0) 
(cdo 

((iy0(l+iy))) 
((cor (equalp breakx 1) (>= iy (- chainlen 1)))) 

(cdo 
( ( ix(+iyl ) ( l+ix)» 
((cor (equalp breakx 1) (>= ix chainlen))) 
(progn 

(pif (equalp (aref (aref compmatrix (nth iy unvaliditem)) (nth ix unvaliditem)) 0) 
(progn 

(csetq breakx 1) 
(csetq fy iy) 
(csetq fx ix) 

) ) ) ) ) 
(pif (equalp breakx 0) 

(csetq clusterqueue (append clusterqueue (list unvaliditem))) 
(progn 

(csetq processeditem nil) 
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(pif (> fy 0) 
(cdotimes (iiy fy) 

(csetq processeditem (append processeditem (list (nth iiy unvaliditem)))) 
) 

) 
(csetq miditeml nil) 
(csetq miditem2 nil) 
(cdotimes (iv (- (list-length unvaliditem) fy )) 

(pif (equalp iv 0) 
(csetq miditeml (LIST (nth fy unvaliditem))) 
(pif (equalp (+ fy iv) fx) 

(csetq miditem2 (append miditem2 (list (nth (+ fy iv) unvaliditem)))) 
(progn 

(csetq miditeml (append miditeml (list (nth (+ fy iv) unvaliditem)))) 
(csetq miditem2 (append miditem2 (list (nth (+ fy iv) unvaliditem)))) 

) ) ) ) 
(csetq finiteml (append processeditem miditeml)) 
(csetq finitem2 (append processeditem miditem2 )) 
(csetq unvalid (append unvalid (list finiteml ))) 
(csetq unvalid (append unvalid (list finitem2 ))) 

) ) ) ) 
(ret clusterqueue) 
) 

B-18 Filter out the small cluster which is covered by the big cluster in the cluster list 
(define filter (queuef) 
(csetq queuelen (list-length queuef)) 
(csetq queuelenmatrix (MAKE-VECTOR queuelen)) 
(csetq queuematrix (MAKE-VECTOR queuelen)) 
(csetq enter 0) 
(csome (queueitem queuef) 

(set-aref queuelenmatrix enter (list-length queueitem)) 
(cine enter) 

) 
(csetq leftlen queuelen) 
(csetq newlen 0) 
(cdo 

( 
(emptime 0(1+ emptime)) 
(ckrepeat nil (cor (>= emptime queuelen ) (>= newlen queuelen)) ) 

) 
((eval ckrepeat)) 
(progn 

(csetq buff nil) 
(csetq maxq 0) 
(cdotimes (ctm queuelen) 

(pif (> (aref queuelenmatrix ctm) maxq ) 
(progn 

(csetq maxq (aref queuelenmatrix ctm)) 
(csetq buff nil) 
(cpush ctm buff) 

) 
(pif (equalp (aref queuelenmatrix ctm) maxq ) 
(cpush ctm buff) 

) ) ) 
(cdotimes (eds (list-length buff)) 
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(set-aref queuematrix (- queuelen 1 cds newlen) (nth (nth cds buff) queuef)) 
(set-aref queuelenmatrix (nth cds buff) 0) 

) 
(csetq newlen (+ newlen (list-length buff))) 

) 
) 
(cdotimes (iqg queuelen) 
(pif (equalp (aref queuematrix iqg) nil) 
(iqg) 
) 
) 
(csetq qlen_l (- queuelen 1)) 

(cdotimes (ql qlen_l) 
(csetq tmp (aref queuematrix ql)) 
(cdotimes (qll (- qlen_l ql)) 

(csetq tmp 1 (aref queuematrix (+ql qll 1))) 
(csetq qqf (containq tmp tmpl)) 
(pif (= qqf 1) 

(set-aref queuematrix ql nil) 
) ) ) 

(csetq xqueue nil) 
(cdotimes (iqg queuelen) 

(pif (equalp (aref queuematrix iqg) nil) 
(csetq fp 0) 

(cpush (aref queuematrix iqg) xqueue) 
) 
) 
(ret xqueue) 
) 

B-19 Check if cluster vA is covered by cluster vB, or cluster vV is covered by cluster vA 
(define containq(vA vB) (print vA)(print vB) 
(csetq qs 0) 
(cdolist (la vA) 

(csetq qf 1) 
(pif (equalp qf 1) 

(progn 
(csetq abf 0) 
(cdolist (lb vB) 

(pif (equalp la lb) 
(csetq abf 1) 

) 
) 
(pif (equalp abf 0) 

(csetq qf 0) 
) 

) 
) 
(csetq qs (+ qs qf)) 

) 
(pif (equalp qs (list-length vA)) 

(csetq finq 1) 
(csetq finq 0) 

) 
(ret finq) 
) 
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B-20 Check if sentence compx is compatible to compy 
(define compatible(compx compy) 
(csetq subx (first compx)) 
(csetq suby (first compy)) 
(csetq predx (second compx)) 
(csetq predy (second compy)) 
(csetq objx (third compx)) 
(csetq objy (third compy)) 
(csetq sf (compatpart subx suby))(print subx)(prinl suby)(prinl sf) 
(csetq pf (compatpart predx predy))(print predx)(prinl predy)(prinl pf) 
(csetq of (compatpart objx objy))(print objx)(prinl objy)(prinl of) 
(csetq chkf (+ sf pf of)) 
(pif (EQUALP chkf 3) 

(retl) (retO) 
) 
) 

B-21 Check if concept partx and party compatible 
(define compatpart (partx party) 
(csetq comflag 0) 
(pif (equalp partx party) 

(progn 
(csetq comflag 1) 
(ret comflag) 
) 

) 
(csetq parentgenx 

(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS partx ))) 
) 

(csetq parentgeny 
(REMOVE-DUPLICATES 
(WITH-ALL-MTS 
(MIN-GENLS party))) 
) 

(csome (gx parentgenx) 
(csome (gy parentgeny) 

(pif (equalp gx gy) 
(progn 

(csetq comflag 1) 
(ret comflag) 

) 
) 

) 
) 
(pif (CYC-QUERY (quote (#$nearestGenls partx party)) #$EverythingPSC) 

(csetq comflag 1) 
(pif (CYC-QUERY (quote (#$nearestGenls party partx)) #$EverythingPSC) 

(progn 
(csetq comflag 1) 
(ret comflag) 

) 
) 

) 
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(pif (CYC-QUERY (quote (#$nearestlsa partx party)) #$EverythingPSC) 
(csetq comflag 1) 
(pif (CYC-QUERY (quote (#$nearestlsa party partx)) #$EverythingPSC) 

(progn 
(csetq comflag 1) 
(ret comflag) 
) 

) 
) 
(pif (CYC-QUERY (quote (#$conceptuallyRelated partx party)) #$EverythingPSC) 
(csetq comflag 1) 
(pif (CYC-QUERY (quote (#$conceptuallyRelated party partx)) #$EverythingPSC) 

(progn 
(csetq comflag 1) 
(ret comflag) 
) 

) 
) 
(ret comflag) 
) 

B-22 Programs to call Stanford parser to parse file and map words & phrases to Cyc concepts to 
1. generate top 10 key concept 
2. generate new key sentences 
3. extract top 10 key sentences 

package edu.Stanford.nlp.parser.lexparser; 
import edu.stanford.nlp.trees. AbstractTreebankLanguagePack; 
import edu.stanford.nlp.fsm.ExactGrammarCompactor; 
import edu.Stanford.nip.io.NumberRangeFileFilter; 
import edu.Stanford.nip.io.NumberRangesFileFilter; 
import edu.stanford.nlp.ling.HasTag; 
import edu.stanford.nlp.ling.HasWord; 
import edu.stanford.nlp.ling.Sentence; 
import edu.stanford.nlp.objectbank.TokenizerFactory; 
import edu.stanford.nlp.parser.ViterbiParser; 
import edu.stanford.nlp.process.DocumentPreprocessor; 
import edu.stanford.nlp.process.Function; 
import edu.stanford.nlp.process.WhitespaceTokenizer; 
import edu.stanford.nlp.trees.*; 
import edu.stanford.nlp.util.Pair; 
import edu.Stanford.nip.util.*; 
import Java.io.*; 
import java.net.URL; 
import java.net.URLConnection; 
import Java.text.DecimalFormat; 
import Java.text.NumberFormat; 
import Java.util.*; 
import java.util. zip. GZIPInputStream; 
import java.util.zip.GZIPOutputStream; 
import org.opencyc.cycobject.*; 
import org.opencyc.util.*; 
import org.opencyc.api.*; 

class SubPredObj group 
{ 
ArrayList<String[]> mtrx ; 
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ArrayList<Integer[]> itrx ; 
ArrayList<zhuweibin> zwb; 

SubPredObjgroup(ArrayList<String[]> mtrxO, ArrayList<Integer[]>itrxO, ArrayList<zhuweibin> zwbO ) 

{ 
mtrx = mtrxO; 
itrx = itrxO; 
zwb = zwbO; 
} 
ArrayList<String[]> getmtrx() 
{ return mtrx; 

} 
ArrayList<Integer[]> getitrx() 
{ return itrx; 

} 
ArrayList<zhuweibin> getzwb() 
{ return zwb; 

class nppair 
{ int length; 

double weight; 
CycFortf] concepts; 
nppair(ArrayList<CycFort> outfort, int In) 
{ length= In; 

concepts=new CycFort[outfort.size()]; 
for(int i=0;i<outfort.size();i++) 
concepts[i]=outfort.get(i); 

} 
public int getlength() 

{ 
return length; 

} 
public void setweight(CycAccess cycAccess) 

{ 
try{ 
String temp=concepts[0].cyclify(); 

CycList kua=null; 
if(temp.startsWith("#$")) 
kua=cycAccess.converseList("(gou "+temp+")"); 
if(temp.starts With("(")) 
kua=cycAccess.converseList("(gou (quote "+temp +"))"); 
String biang; 
String biangl; 
double weightO=0.0; 
if(kua!=null) 

{ 
biang=kua.first().toString(); 
biangl =biang.substring( 1 ,biang.length()-1); 

weightO=new Double(biangl); 

} 
if(concepts.length==l) weight=weightO; 
else 

if(concepts. length> 1) 

{ 



int loc=0; 
String biangi; 
String biangli; 
double weightOi; 
weightOi=weightO; 
for(int i=l; i<concepts.length; i++) 

{ 
String tempi=concepts[i].cyclify(); 

CycList kuai=null; 
if( tempi.startsWith("#$")) 
kuai=cycAccess.converseList("(gou "+tempi+")"); 
if( tempi.startsWith("(")) 
kuai=cycAccess.converseList("(gou (quote "+tempi + 
if(kuai!=null) 

{ 
biangi=kuai .first() .toStringO; 
biangi i=biangi.substring(l,biangi.length()-l); 
weightOi=new Double(biangli); 

} 
if(weightOi>weightO) loc=i; 

} 
weight=weightOi; 
if(loc!=0) 

{ 
CycFort ftemp=concepts[loc]; 
concepts[loc]=concepts[0]; 
concepts[0]=concepts[loc]; 

} 
) 

} catch (Exception e) {e.printStackTrace();} 

} 

public int size() 
{return concepts.length;} 

public CycFort nppairitem(int i) 
{return concepts[i];} 

public double getweight() 
{return weight;} 

} 

class nppairlist 

{ 
int length; 
ArrayList<nppair> nplist; 
nppairlist() 
{ 

nplist=new ArrayList<nppair>(); 
length=0; 

} 

public void add(nppair outpr) 

{ 
nplist.add(outpr); 



length++; 
} 

public int size() 
{return length; } 

public nppair getnppair(int i) 
{return nplist.get(i);} 

} 

class cizuji 
{ 
int start; 
int len; 
ArrayList<CycFort> cizu; 
cizuji(int st, int In, ArrayList<CycFort> czu) 
{ 
start=st; 
len=ln; 
cizu=czu; 
} 

public int getstart() 
{ 
return start; 
} 
public int getlength() 
{ 
return len; 
} 

public ArrayList<CycFort> getcizu() 
{ 
return cizu; 
} 
} 

class zhuweibin 
{ 
int zhu, wei, bin; 

public zhuweibin(int zzhu, int wwei, int bbin) 
{ 
zhu=zzhu; 
wei=wwei; 
bin=bbin; 

} 
public int getzhu() 
{ 
return zhu; 
} 

public int getwei() 
{ 
return wei; 



} 

public int getbin() 

{ 
return bin; 

} 
} 

class constituentpair 

{ 
int gov, dep; 
public constituentpair(int gg, int dd) 

{ 
gov=gg; 
dep=dd; 

} 
public int getgov() 

{ 
return gov; 

} 

public int getdepO 

{ 
return dep; 

} 
} 

class tui 

{ 
CycFort[] qun; 
CycFort[] keng; 
Doublef] kengq; 
CycFort[] tou; 
CycFort[][] wei; 
boolean[] cheng; 
Double[] weiq; 
CycAccess cycAccess; 
ArrayList<ArrayList<CycFort» zuzu=new ArrayList<ArrayList<CycFort»(); 
public tui( ArrayList<CycFort> kengO, ArrayList<Double> kengqO, ArrayList<CycFort> touO, 
ArrayList<ArrayList<CycFort» weiO,CycAccess cycA) 
{ 
cycAccess=cycA; 
keng=new CycFort[keng0.size()]; 
for(int i=0; i<keng0.size();i++) 
keng[i]=keng0.get(i); 

kengq=new Double[kengq0.size()]; 
for(int i=0; i<kengq0.size();i++) 
kengq[i]=kengq0.get(i); 
tou=new CycFort[tou0.size()]; 
for(int i=0; i<tou0.size();i++) 
tou[i]=(CycFort)(tou0.get(i)); 
weiq=new Double[tou.length]; 
wei=new CycFort[wei0.size()][]; 
for(int i=0; i<wei0.size();i++) 
{ 



ArrayList<CycFort> xu=wei0.get(i); 
wei[i]=new CycFort[xu.size()]; 
for(intj=0;j<xu.size();j++) 
wei[i][j]=xu.get(j); 
} 
cheng=new boolean[tou.length]; 
for(int i=0;i<tou0.size();i++) 
cheng[i]=false; 
for(int i=0;i<tou0.size();i++) 
{ 
ArrayList<CycFort> huahua=new AiTayList<CycFort>(); 
zuzu.add(huahua); 
} 
} 
public ArrayList<CycFort> appd(CycFort jiao) 
{ 
ArrayList<CycFort> rong=new AiTayList<CycFort>(); 
for(int i=0; i<tou.length;i++) 
{ 
CycFort temp=tou[i]; 
if(j i ao .equals(temp)) 
{ 
if(cheng[i]) return zuzu get(i); 
for(intj=0;j<wei[i].length ;j++) 
{ 

boolean shi=true; 
for(int k=0;k<keng.length;k++) 
if(wei[i][j].equals(keng[k])){ rong.add(wei[i][j]); shi=false; break;} 
if(shi) 
{ 
ArrayList<CycFort> xx=appd(wei[i][j]); 
for(int m=0;m<xx.size();m++) 
rong.add(xx.get(m)); 
} 
int xia=rong.size(); 

} 
cheng[i]=true; 
zuzu.set(i,rong); 
break; 
} 
} 
return rong; 
} 

public CycFort proc() 
{ 
for(int i=0;i<tou.length;i++) 
{ 
CycFort temp=tou[i]; 
appd(temp); 
} 
for(int sq=0;sq<tou.length;sq++) 
{ 
CycFort cf=(CycFort)(tou[sq]) ; 
ArrayList<CycFort> zx=zuzu.get(sq); 
int ho= zx.size(); 
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} 
for(int i=0;i<zuzu.size();i++) 

{ 
ArrayList<CycFort> kaihua=zuzu.get(i); 
for(int j=0;j<kaihua.size()-l;j++) 
for(intk=j+l;k<kaihua.size();k++) 
if(kaihua.get(j).equals(kaihua.get(k))) 
kaihua.remove(k); 
double sum=0; 
try{ 
CycList kua=cyc Access.converseList("(gou "+tou[i].cyclify()+")"); 
if(kua!=null) 
{ 
String biang=kua.first().toString(); 
String biangl=biang.substring(l,biang.length()-l); 

sum=new Double(biangl); 
} 

for(int m=0;m<kaihua.size();m++) 

{ 
CycList kual=cycAccess.converseList("(gou "+kaihua.get(m).cyclify()+")"); 
String biang=kua.first().toString(); 
String biang 1 =biang.substring( 1 ,biang.length()-1); 
Double bia=new Double(biang 1); 
sum+=bia; 

} 
} catch (Exception e) {e.printStackTrace();} 

weiq[i]=sum; 
} 
int to=0; 
in tba=- l ; 
double zui=0.0; 
for(int i=0;i<kengq.length;i++) 
{ 
if(kengq[i]>zui) 

{ 
to=i; 
zui=kengq[i]; 

} 
} 
for(int i=0;i<weiq.length;i++) 

{ 
if(weiq[i]>zui) 

{ 
ba=i; 
zui=weiq[i]; 

} 
} 
CycFort zda; 
if(ba>=0) zda=tou[ba]; 
elsezda=keng[to]; 
return zda; 
} 
} 

class pospair 

{ 
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String word, pos; 
public pospair(String wword, String ppos) 

{ 
word=new String(wword); 
pos=new String(ppos); 

} 
public String getword() 

{ 
return word; 

} 

public String getpos() 

i 
return pos; 

} 
} 

class weightpair 

{ 
double senweight; 
int senorder; 
public weightpair(double weight, int order) 
{ 
sen wei ght= weight; 
senorder=order; 

} 
public double getweight() 

{ 
return senweight; 

} 

public int getorder() 

{ 
return senorder; 

} 
} 

class sumtree 

{ 
ArrayList<CycFort> pit; 
ArrayList<CycFort> siblings; 
ArrayList<CycFort> kid; 
public sumtree(ArrayList<CycFort> pt,ArrayList<CycFort> sib,ArrayList<CycFort> kd) 
{ 
prt=pt; 
siblings=sib; 
kid=kd; 
} 

public ArrayList<CycFort> getparent() 

{ 
return pit; 

} 
public ArrayList<CycFort> getsiblings() 

{ 
return siblings; 



} 
public ArrayList<CycFort> getchildren() 

{ 
return kid; 

} 
} 

SubPredObjgroup extractSubPredObj(String[][] WordArray,int sentenceorder,int num.Print Writer pw, 
PrintWriter pw3, Tree ansTree.TreebankLanguagePack tlp,List sentence) 

{ 
boolean vx=false; 
boolean sx=false; 
boolean ox=false; 
String sv=new String(); 
String ss=new StringO; 
String so=new StringO; 
int locpos=-l; 

ArrayList<String[]> mtrx=new ArrayList<String[]>(); 
ArrayList<Integer[]> itrx=new AiTayList<Integer[]>(); 
Filter<Dependency> dependencyFilter; 
GrammaticalStructureFactory gsf; 

Filter<String> puncWordFilter = tlp.punctuationWordRejectFilter(); 
gsf = tlp.grammaticalStructureFactory(puncWordFilter); 
GrammaticalStructure gs = gsf.newGrammaticalStructure(ansTree); 
Collection<TypedDependency> sss=gs.typedDependenciesCollapsed();= 
ArrayList<constituentpair> subj=new ArrayList<constituentpair>(); 
ArrayList<constituentpair> psubj-new ArrayList<constituentpair>(); 
ArrayList<constituentpair> obj=new AiTayList<constituentpair>(); 
ArrayList<constituentpair> agent=new ArrayList<constituentpair>(); 
ArrayList<constituentpair> cop=new ArrayList<constituentpair>(); 
p w3 .println(sentence.toStringO); 
for (TypedDependency td : sss) { 

String gv=td.gov().value(); 
String rln= td.reln().toString(); 
String dp=td.dep().value(); 
int govldx = td.gov().index(); 
int dpldx = td.dep().index(); 
constituentpair xin=new constituentpair(govIdx-l,dpldx-1); 
pw3.println(td.toString()); 
if(rln.indexOf("agent")>=0) agent.add(xin); 
if(rln.indexOf("dobj")>=0) obj.add(xin); 
if(rln.indexOf("nsubjpass")>=0) psubj.add(xin); 
if(rln.indexOf("cop")>=0) cop.add(xin); 
if((rln.indexOf("nsubj")>=0)&&(rln.indexOf("nsubjpass")<0)) subj.add(xin); 
if((rln.indexOf("subj")>=0)||(rln.indexOf("agent")>=0)) 

{ 
Integer locps=td.gov().index(); 
Integer locpss=td.dep().index(); 
locpos=locps. intV alue(); 
vx=true; 
sx=true; 
sv=gv; 
ss=dp; 
int inspct=-1; 
for(int ivt=0;ivt<itrx.size();ivt++) 

{ 



if(locpos==itrx.get(i vt)[ 1 ]) {inspct=i vt;break;} 

} 
if(inspct==-l) 

{ 
String[] spo=new String[3]; 
Integer[] spol=new Integer[3]; 
if(rln.indexOf("nsubjpass")>=0) 

{ 
spo[2]-ss; spol[2]=locpss; 
spo[l]=sv; spol[l]=locps; 

} 
else 

{ 
spo[0]=ss; spol[0]=locpss; 
spo[l]=sv; spol[l]=locps; 

} 
mtrx.add(spo); 

itrx.add(spol); 

} 
else 

{ 
if(rln.indexOf("nsubjpass")>=0) 

{ 
String[] xs=mtrx.get(inspct); 
xs[2]=ss; 
mtrx.set(inspct,xs); 
Integer[] xsx=itrx.get(inspct); 
xsx[2]=locpss; 
itrx.set(inspct,xsx); 

} 
else{ 
String[] xs=mtrx.get(inspct); 
xs[0]=ss; 
mtrx. set(inspct,xs); 
Integerf] xsx=itrx.get(inspct); 
xsx[0]=locpss; 
itrx.set(inspct,xsx); 
} 
} 
} 
if(rln.indexOf("obj")>=0) 

{ 
vx=true; 
ox=true; 
Integer locpsl=govIdx; 
int locposl=locpsl.intValue(); 
Integer locpssl=dpIdx; 
sv=gv; 
so=dp; 
int inspct=-l; 
for(int ivt=0;ivt<itrx.size();ivt++) 
if(locpos 1 ==itrx. get(i vt) [ 1 ]) {inspct=i vt;break;} 

if(inspct==-l) 

{ 
if(rln.indexOf("iobj")>=0) 

{ 



Integerf] spol=new Integer[4]; 
Stringf] spo=new String[4]; 
spo[3]=so;spol [3]=locpssl; 
spo[ 1 ]=sv;spo 1 [ 1 ]=locps 1; 
itrx.add(spol); 
mtrx.add(spo); 

} 
if(rln.indexOf("dobj")>=0) 

{ 
Integer[] spol=new Integer[3]; 
String[] spo=new String[3]; 
spo[2]=so;spol [2]=locpssl; 
spo[l]=sv;spol[l]=locpsl; 
itrx.add(spol); 
mtrx.add(spo); 
} 

} 
else 

{ 
String[] xs=mtrx.get(inspct); 
if(rln.indexOf("dobj")>=0) 

{ 
xs[2]=so; 
mtrx.set(inspct,xs); 
Integer[] xsx=itrx.get(inspct); 
xsx[2]=locpssl; 
itrx.set(inspct,xsx); 
} 
if(rln.indexOf("iobj")>=0) 

{ 
String[] xsl=new String[4] ; 
xsl[0]=xs[0]; 
xs l [ l ]=xs[ l ] ; 
xsl[2]=xs[2]; 
xsl[3]=so; 
mtrx. set(inspct,xs 1); 
Integerf] xsx=itrx get(inspct); 
Integerf] xsxl^new Integer[4] ; 
xsxl[0]=xsx[0]; 
xsxl[ l]=xsx[l] ; 
xsxl[2]=xsx[2]; 
xsxl[3]=locpssl; 
itrx.set(inspct,xsxl); 
} 
} 
} 

} 
pw.println(sentence.toStringO); 
if(agent!=null) 

if(agent.size()>0) 
for(int ag=0;ag<agent.size();ag++) 
{ 
constituentpair bao=agent.get(ag); 
int gao=bao.getgov(); 
int gaol=bao.getdep(); 
pw.println(gao+" "+gaol); 
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pw.println(WordArray[sentenceorder][gao]+" "+WordArray[sentenceorder][gaol]); 
) 

if(psubj !=null) 
if(psubj.size()>0) 

for(int ps=0;ps<psubj.size();ps++) 
{ 
constituentpair bao=psubj .get(ps); 
int gao=bao.getgov(); 

• int gaol=bao.getdep(); 
pw.println(gao+" "+gaol); 
pw.println(WordArray[sentenceorder][gao]+" "+WordArray[sentenceorder][gaol]); 

} 
if(obj!=null) 
if(obj.size()>0) 

for(int ob=0;ob<obj.size();ob++) 
{ 
constituentpair bao=obj.get(ob); 
int gao=bao.getgov(); 
int gaol=bao.getdep(); 
pw.println(gao+" "+gaol); 
pw.print!n(WordArray[sentenceorder][gao]+" "+WordArray[sentenceorder][gaol]); 
} 

if(subj !=null) 
if(subj.size()>0) 

for(int sj=0;sj<subj.size();sj++) 
{ 
constituentpair bao=subj.get(sj); 
int gao=bao.getgov(); 
int gaol=bao.getdep(); 
pw.println(gao+" "+gaol); 
pw.println(WordArray[sentenceorder][gao]+" "+WordArray[sentenceorder][gaol]); 
} 

if(cop!=null) 
if(cop.size()>0) 

for(int cp=0;cp<cop.size();cp++) 
{ 
constituentpair bao=cop.get(cp); 
int gao=bao.getgov(); 
int gaol=bao.getdep(); 
pw.println(gao+" "+gaol); 
pw.println(WordArray[sentenceorder][gao]+" "+WordAiTay[sentenceorder][gaol]); 
} 

ArrayList<zhuweibin> tmps=new ArrayList<zhuweibin>(); 
if(subj.size()>0) 
{ 
for(int ii=0; ii<subj.size(); ii++) 
{ 
int gg=subj.get(ii).getgov(); 
int dd=subj.get(ii).getdep(); 
boolean flg=false; 
if(obj.size()>0) 
for(int jj=0;jj<obj .size();jj++) 
{ 
constituentpair ctmp=obj.get(jj); 
int ipp=ctmp.getgov(); 
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if(gg==ipp) 
{ 
zhuweibin zhwbb=new zhuweibin(dd,gg,ctmp.getdep()); 
tmps.add(zhwbb); 
flg=true; 
break; 
} 
} 
if(!flg) 
{ 
if(cop.size()>0) 
for(int jj=0;jj<cop.size();jj++) 
{ 
constituentpair ctmp=cop.get(jj); 
int ipp=ctmp.getgov(); 
if(gg==ipp) 
{ 
zhuweibin zhwbb=new zhuweibin(dd, ctmp.getdep(),gg ); 
tmps. add(zhwbb); 
flg=true; 
break; 
} 
} 
} 
} 
} 
if(psubj.size()>0) 
{ 
for(int ii=0; ii<psubj.size(); ii++) 
{ 
int gg=psubj.get(ii).getgov(); 
int dd=psubj.get(ii).getdep(); 
if(agent.size()>0) 
for(intjj=0;jj<agent.size();jj++) 
{ 
constituentpair ctmp=agent.get(jj); 
int ipp=ctmp.getgov(); 
if(gg==ipp) 
{ 
zhuweibin zhwbb=new zhuweibin(ctmp.getdep(),gg, dd ); 

tmps.add(zhwbb); 
break; 
} 
} 

} 
} 
SubPredObjgroup sporesult=new SubPredObjgroup(mtrx,itrx,tmps); 
return sporesult; 

} 

public int jiansuo(Tree diyi) 
{ 

int crt=-l; 



I l l 

if(diyi.isLeaf()) 

{ 
crt=gongli++; 
qishi.add(crt); 
wei.add(l); 
kuk.add(diyi); 
} 
else 

{ 
Tree[] yu=diyi.children() ; 
crt=jiansuo(yu[0]); 
if(yu.length>l) 
{ 
for(int j=l ;j<yu.length;j++) 
jiansuo(yu[j]); 

} 
kuk.add(diyi); 
qishi.add(crt); 
wei.add(yu.length); 
} 

return crt; 

} 

public static ArrayList<String> advprocess(CycAccess cycAccess, CycFort mtel,String wordtable) 

{ 
char c[]=new char[l];c[0]='\"';String t=new String(c); 
ArrayList alst=new ArrayList(); 
CycVariablecvl=CycObjectFactory.makeCycVariable("?WORD"); 
CycVariable cv2=CycObjectFactory.makeCycVariable(" ?POS"); 
CycVariable cv3=CycObjectFactory.makeCycVariable("?NUM"); 
Cyc Variable cv4=CycObjectFactory.makeCycVariable("?TERM"); 
alst.add(cvl); 
alst.add(cv2); 
alst.add(cv3); 
alst.add(cv4); 
String sssf=new String("(#$and (#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD 
#$adverbStrings "); 
String nounword=new String(wordtable.toLowerCase()); 
String tttf=new String(t+nounword+t); 
String vvvf=new String (") (#$genls ?POS #$Adverb))"); 
CycList cll=cycAccess.makeCycList(sssf+tttf+vvvf); 
ArrayList<String> tp= new ArrayList<String>(); 
boolean connart=false; 
try{ 
CycList res=cyc Access. askWith Variables(cl 1 ,alst,mte 1); 
CycListVisitorclvO=res.cycListVisitor(); 
if( !clv0.hasMoreElements()) 
{ 
CycList xinfa=cycAccess.getDenotsOfString(wordtable.toLowerCase()); 
if( Ixinfa.isEmptyO) 

{ 
for(int ti=0;ti<xinfa.size();ti++) 

{ 
if (xinfa.get(ti) instanceof CycConstant || xinfa.get(ti) instanceof CycNart) 

{ 
tp.add(DefaultCycObject.cyclify(xinfa.get(ti)).toString()); 



connart=true; 
} 

} 
} 
} 
int yx=0; 
while(clv0.hasMoreElements()) 
{ 
if(yx%4<3)clv0.nextElement(); 
else 
{ 
Object advtemp=clv0.nextElement(); 
if (advtemp instanceof CycConstant || advtemp instanceof CycNart) 
{ 
tp.add(DefaultCycObject.cyclify( advtemp).toStringO); 
connart=true; 
} 
} 

yx++; 
} 
}catch(Exception e){System.out.println("can not find ");} 
ArrayList<String> nncycs=new AiTayList<String>(); 

if(connart) 
{ 
int shu=0; 
String[] tpl=new String[tp.size()]; 
tpl[0]=tp.get(0); 
shu=l; 
for(int ii=l;ii<tp.size();ii++) 
{ 
String tmp=tp.get(ii); 
Boolean bmp=false; 
for(int jj=0;jj<shu;jj++) 
{ 
if(tmp.equals(tpl[jj])) 
{ 
bmp=tme; break; 
} 
} 
if(!bmp){ tpl[shu]=tmp;shu++; System.out.println("IN not equal "+tmp);} 
} 
for(int ii=0;ii<shu;ii++) 
{ 
nncycs.add(tpl[ii]); 
} 
return nncycs; 
} 
return null; 

} 

public static ArrayList<String> adjprocess(Cyc Access eye Access, CycFort mtel, String wordtable) 
{ 
char c[]=new char[l]; c[0]='Y";String t=new String(c); 
ArrayList alst=new ArrayList(); 
CycVariable cvl=CycObjectFactory.makeCycVariable("?WORD"); 
CycVariable cv2=CycObjectFactory.makeCycVariable("?POS"); 
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CycVariablecv3=CycObjectFactory.makeCycVariable("?NUM"); 
CycVariablecv4=CycObjectFactory.makeCycVariable("?TERM"); 
alst.add(cvl); 
alst.add(cv2); 
alst.add(cv3); 
alst.add(cv4); 
String sssf=new String("(#$and (#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD 
#$adjStrings "); 
String nounword=new String(wordtable.toLowerCase()); 
String tttf=new String(t+nounword+t); 
String vvvf=new String (") (#$genls ?POS #$Adjective))"); 
CycList cll=cycAccess.makeCycList(sssf+tttf+vvvf); 
ArrayList<String> tp= new ArrayList<String>(); 
boolean connart=false; 
try{ 
CycList res=cycAccess.askWithVariables(cll,alst,mtel); 
CycListVisitor clvO=res.cycListVisitor(); 
if( !cl v0.hasMoreElements()) 
{ 
CycList xinfa=cyc Access.getDenotsOfString(wordtable.toLowerCase()); 
if(!xinfa.isEmpty()) 
{ 
for(int ti=0;ti<xinfa.size();ti++) 
if (xinfa.get(ti) instanceof CycConstant || xinfa.get(ti) instanceof CycNart) 
{ 
tp.add(DefaultCycObject.cyclify(xinfa.get(ti)).toString()); 
connart=true; 
} 
} 
} 
int yx=0; 
while(clv0.hasMoreElements()) 
{ 
if(yx%4<3)clv0.nextElement(); 
else 
{ 
Object adjtemp=clv0.nextElement(); 
if (adjtemp instanceof CycConstant || adjtemp instanceof CycNart) 
{ 
tp.add(DefaultCycObject.cyclify(adjtemp).toString()); 
connart=true; 
} 
} 

yx++; 
} 
}catch(Exception e){System.out.println("can not find ");} 
ArrayList<String> nncycs=new ArrayList<String>(); 

if(connart) 
{ 
int shu=0; 
String[] tpl=new String[tp.size()]; 
tpl[0]=tp.get(0); 
shu=l; 
for(int ii=l;ii<tp.size();ii++) 
{ 
String tmp=tp.get(ii); 
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Boolean bmp=false; 
for(intjj=0;jj<shu;jj++) 
{ 
if(tmp.equals(tpl[jj])) 
{ 
bmp=true; break; 
} 
} 
if(!bmp){ tpl[shu]=tmp;shu++; System.out.println("IN not equal "+tmp);} 
} 
for(int ii=0;ii<shu;ii++) 
nncycs.add(tpl[ii]); 
return nncycs; 
} 
return null; 

// else nncyc.add(null); 
} 

public static ArrayList<String> verbprocess(CycAccess cycAccess, CycFort mtel,String wordtable) 
{ 
char c[]=new char[l]; 
c[0]=V; 
String t=new String(c); 
ArrayList alst=new ArrayList(); 
CycVariable cvl=CycObjectFactory.makeCycVariable("?WORD"); 
CycVariablecv2=CycObjectFactory.makeCycVariable("?POS"); 
Cyc Variable cv3=CycObjectFactory.makeCycVariable("?NUM"); 
CycVariablecv4=CycObjectFactory.makeCycVariable("?TERM"); 
alst.add(cvl); 
alst.add(cv2); 
alst.add(cv3); 
alst.add(cv4); 
String sssf=new String("(#$and (#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD 
#$verbStrings "); 
String nounword=new String(wordtable.toLowerCase()); 
String tttf=new String(t+nounword+t); 
String vvvf=new String (") (#$genls ?POS #$Verb))"); 
CycListcll=cycAccess.makeCycList(sssf+tttf+vvvf); 
ArrayList<String> tp= new ArrayList<String>(); 
boolean connart=false; 
try{ 
CycList res=cycAccess.askWithVariables(cll,alst,mtel); 
CycListVisitor clvO=res.cycListVisitor(); 
if( !clv0.hasMoreElements()) 
{ 
CycList xinfa=cycAccess.getDenotsOfString(wordtable.toLowerCase()); 
if( !xinfa.isEmpty()) 
{ 
for(int ti=0;ti<xinfa.size();ti++) 
{ 
if (xinfa.get(ti) instanceof CycConstant || xinfa.get(ti) instanceof CycNart) 
{ 

tp.add(DefaultCycObject.cyclify(xinfa.get(ti)).toString()); 
connart=true; 
) 

} 
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} 
} 
int yx=0; 

while(clvO.hasMoreElementsQ) 

{ 
if(yx%4<3)clv0.nextElement(); 
else 

{ 
Object verbtemp=clv0.nextElement(); 
if (verbtemp instanceof CycConstant || verbtemp instanceof CycNart) 

{ 
tp.add(DefaultCycObject.cyclify(verbtemp).toString()); 
connart=true; 
} 
} 

yx++; 

} 
}catch(Exception e){System.out.println("can not find ");} 
ArrayList<String> nncycs=new ArrayList<String>(); 

if(connart) 
{ 
int shu=0; 
Stringf] tpl=new String[tp.size()]; 
tpl[0]=tp.get(0); 
shu=]; 
forfint ii=l;ii<tp.size();ii++) 
{ 
String tmp=tp.get(ii); 
Boolean bmp=false; 
for(intjj=0;jj<shu;jj++) 
{ 
if(tmp.equals(tpl[jj])) 

{ 
bmp=true; break; 

} 
} 
if(!bmp){ tpl[shu]=tmp;shu++; System.out.println("IN not equal "+tmp);} 

} 
for(int ii=0;ii<shu;ii++) 
nncycs.add(tpl[ii]); 

return nncycs; 

} 
return null; 

} 

public static ArrayList<String> nnprocess(CycAccess eye Access, CycFort mtel,String wordtable) 

{ 
char c[]=new char[l]; c[0]=Y"; String t=new String(c); 
Array Li st alst=new ArrayList(); 
CycVariable cvl=CycObjectFactory.makeCycVariable("?WORD"); 
CycVariable cv2=CycObjectFactory.makeCycVariable("?POS"); 
CycVariablecv3=CycObjectFactory.makeCycVariable("?NUM"); 
CycVariablecv4=CycObjectFactory.makeCycVariable("?TERM"); 
alst.add(cvl); 
alst.add(cv2); 
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alst.add(cv3); 
alst.add(cv4); 
String sssf=new String("(#$and (#$denotation ?WORD ?POS ?NUM ?TERM) (#$wordForms ?WORD 
#$nounStrings "); 
String nounword=new String(wordtab]e.substring(0,l)+woidtable.substring(l).toLowerCase()); 
String tttf=new String(t+nounword+t); 
String vvvf=new String (") (#$genls ?POS #$Noun))"); 
CycList cll=cycAccess.makeCycList(sssf+tttf+vvvf); 
ArrayList<String> tp= new ArrayList<String>(); 
boolean connart=false; 
try{ 
CycList res=cycAccess.askWithVariables(cll,alst,mtel); 
System.out.println(res.removeDuplicates()); 
CycListVisitor clvO=res.cycListVisitor(); 
if((wordtable.charAt(0)<=90) && (wordtable.charAt(0)>=65)) 

{ 
String qtestO=new String("(#$termPhrases ?WHAT 7CONSTRAINT "); 
String qtest2=new String(")"); 
String qtestfinal=new String(qtest0+t+nounword+t+qtest2); 
ArrayList qalstr=new ArrayList(); 
CycVariableqcvlr-CycObjectFactory.makeCycVariable('"?WHAT"); 
CycVariable qcv3r=CycObjectFactory.makeCycVariable("?CONSTRAINT"); 
qalstr.add(qcvlr), 
qalstr.add(qcv3r); 
CycList qc=cycAccess.makeCycList(qtestfinal); 
CycList qresr=cycAccess.askWithVariables(qc,qalstr,mte 1); 
CycListVisitor clvOO=qresr.cycListVisitor(); 
if(clvOO.hasMoreElements()) 
{ 
while(clvOO.hasMoreElements()) 

{ 
Object nntemp=clvOO.nextElement(); 
if (nntemp instanceof CycConstant || nntemp instanceof CycNart) 

{ 
tp.add(DefaultCycObject.cyclify(nntemp).toString()); 
connart=true; 

} 
clvOO.nextElement(); 

} 
} 

} 
if( !clv0.hasMoreElements()) 

{ 
CycList xinfa=cycAccess.getDenotsOfString(wordtable.toLowerCase()); 
if( !xinfa.isEmpty()) 

{ 
for(int ti=0;ti<xinfa.size();ti++) 

{ 
if (xinfa.get(ti) instanceof CycConstant || xinfa.get(ti) instanceof CycNart) 

{ 
tp.add(DefaultCycObject.cyclify(xinfa.get(ti)).toString()); 
connart=true; 

} 
} 
} 
else 



{ 
String qtestO=new String("(#$termPhrases ?WHAT ?CONSTRAINT "); 
String qtest2=new String(")"); 
String qtestfinal=new String(qtest0+t+nounword+t+qtest2); 
ArrayList qalstr=new ArrayList(); 
CycVariable qcvlr=CycObjectFactory.makeCycVariable("?WHAT"); 
CycVariable qcv3r=CycObjectFactory.makeCycVariab]e("?CONSTRAINT"); 
qalstr.add(qcvlr); 
qalstr. add(qc v3r); 
CycList qc=cycAccess.makeCycList(qtestfinal); 
CycList qresr=cycAccess.askWithVariables(qc,qalstr,mtel); 
CycListVisitor clvOO=qresr.cycListVisitor(); 
if(clvOO.hasMoreElements()) 

{ 
while(clvOO.hasMoreElements()) 
{ 
Obj ect nntemp=cl vOO .nextElement(); 
if (nntemp instanceof CycConstant || nntemp instanceof CycNart) 
{ 
tp.add(DefaultCycObject.cyclify(nntemp).toString()); 
connart=true; 
} 
clvOO.nextElement(); 

} 
i 
/ 
} 
} 
int yx=0; 
if(clv0.hasMoreElements()) 
{ 
while(clv0.hasMoreElements()) 
{ 
if(yx%4<3)clv0.nextElement(); 
else 
{ 
Object nntemp=clv0.nextElement(); 
if (nntemp instanceof CycConstant || nntemp instanceof CycNart) 
{ 
tp.add(DefaultCycObject.cyclify(nntemp).toString()); 
connart=true; 
} 
} 

yx++; 
} 
} 
}catch(Exception e){System.out.println("can not find ");} 
ArrayList<String> nncycs=new ArrayList<String>(); 

if(connart) 
{ 
int shu=0; 
String[] tpl=new String[tp.size()]; 
tpl[0]=tp.get(0); 
shu=l; 
for(int ii=l;ii<tp.size();ii++) 
{ 
String tmp=tp.get(ii); 



Boolean bmp=false; 
for(intjj=0;jj<shu;jj++) 
{ 
if(tmp.equals(tpl [jj])) 
{ 
bmp=true; break; 
} 
} 
if(!bmp){ tpl[shu]=tmp;shu++; System.out.println("IN not equal "+tmp);} 
} 
for(int ii=0;ii<shu;ii++) 
nncycs.add(tpl[ii]); 
return nncycs; 
} 

else return null; 
} 

public static ArrayList<cizuji> npprocess(CycAccess cycAccess,int num.int i,Tree temp,CycFort 
mtc,CycFort mtl) 
{ 
ArrayList<cizuji> czj=new ArrayList<cizuji>(); 
try{ 
List<Tree> ltree=temp.getLeaves(); 
int nplen=ltree.size(); 
String[] lString=new String[nplen]; 
for(intk=0; k<nplen; k++) lString[k]=ltree.get(k).toString(); 
if(nplen<2)return czj; 
ArrayList<Integer> remainsegpos=new ArrayList<Integer>(); 
ArrayList<Integer> remainseglen=new ArrayList<Integer>(); 
remainsegpos. add(O); 
remainseglen.add(nplen); 
int maxlen; 

for(int stepsize=5; stepsize>l; stepsize—) 
{ 
int ttp=0; 
int x=remainseglen.size(); 
if(x==0)continue; 
for(intpq=0;pq<remainseglen.size();pq++) 
if(ttp<remainseglen.get(pq))ttp=remainseglen.get(pq); 
maxlen=ttp; 
ArrayList<Integer> altodelete=new ArrayList<Integer>(); 
if(maxlen<stepsize)continue; 
int limtO=remainseglen.size(); 
for(int segno=0; segno<limtO;segno++) 
{ 
int stackend=remainseglen.size(); 
if(remainseglen.get(segno)<stepsize)continue; 
ArrayList<Integer> cycstartpos=new ArrayList<Integer>(); 
ArrayList<Integer> cycstartlen=new ArrayList<Integer>(); 
for(int ss=remainsegpos.get(segno); ss<=remainsegpos.get(segno)+remainseglen.get(segno)-stepsize; 
{ 
int www=remainsegpos.get(segno)+remainseglen.get(segno)-stepsize; 
{ 
String stepsizeString=new StringQ; 
for(int sgg=0; sgg<stepsize; sgg++) 
{ 
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stepsizeString+=lString[ss+sgg]; 
if(sgg!=stepsize-l)stepsizeString+=" "; 

} 
Cyclist jieguo=cyc Access. getDenotsOfString(stepsizeString); 
if( Ijieguo.isEmptyO) 
{ ArrayList<CycFort> tang=new ArrayList<CycFort>(); 

for(int tn=0;tn<jieguo.size();tn++) 
tang.add((CycFort)(jieguo.get(tn))); 
cizuji wei=new cizuji(ss,stepsize, tang); 
czj.add(wei); 
cycstartpos.add(ss); 
cycstartlen.add(stepsize); 
ss=ss+stepsize-l; 

} 
} 

} 
if(cycstartpos. size()>0) 

{ 
altodelete.add(segno); 

int cycsegsize=cycstartpos.size(); 
for(int cc=cycsegsize-l; cc>0; cc—) 

{ 
if(cycstartpos.get(cc)==cycstartpos.get(cc-l)+cycstartlen.get(cc-l)) { 

cycstartlen.set(cc-l, cycstartlen.get(cc)+cycstartlen.get(cc-l)); 
cycstartpos.remove(cc); 
cycstartlen.remove(cc); 

} 
1 
cycsegsize=cycstartpos.size(); 
if(cycstartpos.get(0)!=remainsegpos.get(segno)) 
{ 

remainsegpos. add(remainsegpos. get(segno)); 
remainseglen.add(cycstartpos.get(0)); 
for(intqt=0;qt<cycstartpos.size();qt++) 
remainsegpos. add(cycstartpos.get(qt)+cycstartlen.get(qt)); 
for(int qts=l; qts<cycstartpos.size(); qts++) 
remainseglen.add(cycstartpos.get(qts)-remainsegpos.get(stackend+qts+l)); 
remainseglen.add(remainsegpos.get(segno)+remainseglen.get(segno)-
remainsegpos.get(stackend+cycsegsize)); 

} 
else 

{ 
for(int qt=0;qt<cycstartpos.size();qt++) 
remainsegpos.add(cycstartpos.get(qt)+cycstartlen.get(qt)); 
for(int qts=0;qts<cycstartpos.size()-l ;qts++) 
remainseglen.add(cycstartpos.get(qts+l)-remainsegpos.get(stackend+qts)); 
remainseglen.add(remainsegpos.get(segno)+remainseglen.get(segno)-

remainsegpos.get(stackend+cycsegsize-l)); 

} 
} 

int xsize=remainsegpos.size(); 
for(int kk=xsize-l ;kk>=limtO;kk—) 

{ 
if(remainseglen.get(kk)<2) { remainsegpos.remove(kk); remainseglen.remove(kk); } 

} 
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int lenel=altodelete.size(); 
if(lenel>0) 
for(int ad=0;ad<lenel;ad++) 

{ 
int emp=altodelete.get(ad); 
remainsegpos.remove(emp); 
remainseglen.remove(emp); 

}catch(Exception e){System.out.println("error in NP processing"); 
return czj; 

public void extractsentence(double[] weightO, int[] cishu01,List<List<? extends H a s W o r d » document) 

{ 
try{ 

for(int d=0;d<cishu01 .length;d++) 

{ 
if(cishu01[d]<l) cishu01[d]=l; 
weight0[d]/=cishu01 [d]; 
if(cishu01[d]<4)weight0[d]=0.01; 
} 

weightpair[] weightl=new weightpair[document.size()]; 
for(int wl=0;wl<weight0.1ength;wl++) 
{ weightl[wl]=new weightpair(weightO[wl],wl); } 
int[] wg=new intfweightO.length]; 
for(intqq=0;qq<weightl.length-l;qq++) 
{ 
double bs=weightl [qq].getweight(); 
int bt=qq; 
double bsl=bs; 

for(int ww=qq+l;ww<weightl.length;ww++) 

{ 
bs 1 =weight 1 [ ww] .getweight(); 
if(bsl>bs) 
{ 
bt=ww; 
bs=bsl; 

wg[qq]=bt; 
weightpair ppt=weightl[qq]; 
weightl[qq]=weightl[bt]; 
weightl[bt]=ppt; 

} 
int seglen=document.size()/3; 
FileWriter bypo = new java.io.FileWriter( "ByPosition.txt", false); 
PrintWriter bypoout = new java.io.PrintWriter( bypo, true ); 
FileWriter bypol = new java.io.FileWriter( "ByPosition5.txt", false ); 

PrintWriter bypooutl = new java.io.PrintWriter( bypol, true ); 
int geshu=0; 
for(int gg=0;gg<weight0.1ength;gg++) 
{ 
if(weightO[gg]>=weightl[seglen-l].getweight()) 



{ 
bypoout.println(document.get(gg)+ " "); 
bypoout.println(); 
bypoout.println(weightO[gg]+ " "); 
geshu++; 
if(geshu==seglen) break; 

} 
} 
double weightmax; 
if(seglen<=10) weigbtmax=weightl[seglen-l].getweight(); 
else weightmax=weightl[9].getweight(); 
for(int gg=0;gg<weight0.1ength;gg++) 
{ 
if(weightO[gg]>=weightmax) 

{ 
if(geshu<10) bypooutl.println(document.get(gg)+ "\n"); 
geshu++; 
if(geshu—seglen) break; 

} 
} 
bypoout.closeQ; 
bypooutl.close(); 
FileWriter byimport = new Java.io.FileWriter( "zByImportance.txt", false ); 
PrintWriter byimportout = new Java.io.PrintWriter( byimport, true ); 
FileWriter byimport5 = new java.io.FileWriter( "zByImportance5.txt", false ); 
PrintWriter byimportout5 = new java.io.PrintWriter( byimport5, t rue); 
for(int gg=0; gg<seglen;gg++) 
{ 
byimportout.println(document.get(weightl[gg].getorder())); 
byimportout.println(weight 1 [gg] .getweight()+" cishu "+cishuO 1 [weight 1 [gg] .ge 
if(gg<10)byimportout5.println(document.get(weightl[gg].getorder())+"\n"); 
} 
byimportout.close(); 
byimportout5 .close(); 

} catch (Exception ioe) { 
System.out.println("wrong in extract"); 

} 
} 

boolean ifstop(String wd, Stringf] stoplist) 

{ 
int len=stoplist.length; 

boolean checked=false; 
for(int i=0; i<len; i++) 
{ 

if(stoplist[i].equals(wd)) 

{ 
checked=true; 
break; 

} 
} 
if(checked)System.out.println("caught in func "+wd); 
return checked; 

} 

public String processfile(String filenameO) 



{ 
int i=0; 

String filename - filenameO +"Y"; 
String thisLine; 
try 
{ 

FilelnputStream pfin = new FilelnputStream(filenameO); 
BufferedReader plnput = new BufferedReader (new InputStreamReader(pfin)); 
File Writer prout = new java.io.FileWriter( filename, false ); 
PrintWriter proutl - new Java.io.PrintWriter( prout, true ); 
while ((thisLine = plnput.readLineO) != null) 
{ 
int tm=thisLine.length(); 
if(tm<=0) continue; 
char t=thisLine.charAt(tm-l); 
if( (t<=57)&&(t>=48) || (t<=90)&&(t>=65)|| (t<= 122)&&(t>=97)) proutl.println(thisLine+"."); 
else proutLprintln(thisLine); 
} 
plnput. close(); 
prout l.close(); 
} 
catch (IOException ioe) { 
ioe.printStackTrace(); 
} 
return filename; 

} 

public boolean pushconfreq(CycObject newfort,ArrayList<CycObject>content, ArrayList<Integer> fq) 
{ 
boolean newterm=true; 
if(content.size()==0) 
{ 
content, add(newfort); 
fq.add(l); 

} 
else 
{ 
for(int i=0;i<content.size();i++) 
{ 

if(newfort.equals(content.get(i))) 
{ 

fq.set(i,fq.get(i)+l); 
newterm=false; 
break; 

} 
) 
if(newterm) 

{ 
content.add(newfort); 
fq.add(l); 

} 
} 
return newterm; 

} 



private void parseFiles(String[] args, int arglndex, boolean tokenized, TokenizerFactory 
tokenizerFactory, DocumentPreprocessor documentPreprocessor, boolean fromXML, 
String sentenceDelimiter, Function<List<HasWord>, List<HasWord» escaper, int tagDelimiter) { 
PrintWriter pwOut = op.tlpParams.pw(); 
PrintWriter pwErr = op.tlpParams.pw(System.err); 
TreePrint treePrint = getTreePrint(); 
int numWords = 0; 
int numSents = 0; 
int numUnparsable = 0; 
int numNoMemory = 0; 
int numFallback = 0; 
int numSkipped — 0; 
Timing timer = new TimingO; 
TreebankLanguagePack tip = op.tlpParams.treebankLanguagePack(); 
// set the tokenizer 
if (tokenized) { 

tokenizerFactory = WhitespaceTokenizer.factoryO; 
} 
if (tokenizerFactory == null) { 

tokenizerFactory = tlp.getTokenizerFactory(); 
} 
documentPreprocessor.setTokenizerFactory(tokenizerFactory); 
documentPreprocessor.setSentenceFinalPuncWords(tlp.sentenceFinalPunctuationWords()); 
documentPreprocessor.setEncoding(op.tlpParams.getlnputEncodingO); 
boolean saidMemMessage = false; 
timer.startO; 
for (int i = arglndex; i < args.length; i++) { 

String filename = processfile(args[i]); 
try{ 
List<List<? extends HasWord» document; // initialized just below 
if(fromXML) { 

document = documentPreprocessor.getSentencesFromXML(filename, sentenceDelimiter, true); 
} else { 
document - documentPreprocessor.getSentencesFromText 
(filename, escaper, sentenceDelimiter, tagDelimiter); 
} 
System.err.prinfln("Parsing file: " + filename + " with " + document.size() + " sentences."); 
PrintWriter pwo = pwOut; 
if (Test.writeOutputFiles) { 

String ext = Test.outputFilesExtension == null ? "stp": 
Test.outputFilesExtension; 
String fname = filename + "." + ext; 
if (Test.outputFilesDirectory != null) { 
String fseparator = System.getProperty("file.separator"); 
if (fseparator == null || fseparator.equals("")) { 
fseparator = "/"; 

} 
int ind = fname.lastIndexOf(fseparator); 
fname = fname.substring(ind +1); 
if ( ! "".equals(Test.outputFilesDirectory)) { 
fname = Test.outputFilesDirectory + fseparator + fname; 

} 
} 
try{ 

pwo = op.tlpParams.pw(new FileOutputStream(fname)); 
} catch (IOException ioe) { 
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ioe.printStackTrace(); 

int num = 0; 
treePrint.printHeader(pwo, op.tlpParams.getOutputEncoding()); 
Log.makeLogO; 
Log.current.println("Initializing Cyc server connection, and caching frequently used terms."); 
FileWriter sent = new Java. io.FileWriter( "/home/mei/researchcyc-l.O/server/cyc/run/Sentences.txt" 
false ); 

PrintWriter sentl - new Java.io.PrintWriter( sent, true); 
CycAccess cycAccess; 

int nono=0; 
ArrayList<ArrayList<String[]» zuhe=new ArrayList<ArrayList<String[]»(); 
ArrayList<ArrayList<Integer[]» zuhex=new ArrayList<ArrayList<Integer[]»(); 
int[] cishu= new int[document.size()]; 
int[] wordcount=new int[document.size()]; 
int[] conceptno=new int[document.size()]; 
int[] punctno=new int[document.size()]; 
int[] closepuncno=new int[document.size()]; 
String[][] WordArray=new String[document.size()][]; / 
String[][] wordforms=new Stringfdocument.size()][]; 
String[][] PosArray=new String[document.size()][]; 
Double[][] FreqArray=new Double[document.size()][]; 
int[][] pFreqArray=new int[document.size()][]; 
nppairlist[] npgrouplist=new nppairlist[document.size()] ; 
CycFort[][] CycFortArray=new CycFort[document.size()][]; 
String[][] CycStringArray=new String[document.size()][]; 
CycFort[][][] CycFortGroupArray=new CycFort[document.size()][][]; 
String[][][] CycStringGroupArray=new String[document.size()][][]; 
int[][] biaozhi=new int[document.size()][]; 
ArrayList<String> testnonCyc=new ArrayList<String>(); 
ArrayList<Double> testnonCycFreq=new ArrayList<Double>(); 
ArrayList<String> nonCyc=new ArrayList<String>(); 
ArrayList<Double> nonCycFreq=new ArrayList<Double>(); 
double[] weightO=new double[document.size()]; 
int[] cishu01=new int[document.size()]; 
int sentenceorder=0; 
ArrayList<?>[] zwbb=new ArrayList<?>[document.size()] ; 
try 
{ 
cycAccess = new CycAccess(); 
cyc Access.traceOn(); 
CycFort mtc=cycAccess.getKnownConstantByName("EnglishMt"); 
CycFortmtl=cycAccess.getKnownConstantByName("PennTagDataMt"); 

CycFort mte=cyc Access.getKnownConstantByName("EverythingPSC"); 
CycFort gemt=cycAccess.getKnownConstantByName("GeneralEnglishMt"); 
CycFort pmt = cycAccess.getKnownConstantByName("ConWeightMt"); 
CycConstant uvmt=cycAccess.getConstantByName( "UniversalVocabularyMt"); 
CycConstant countNoO=cycAccess.getConstantByName("freq"); 
CycConstant zhuwb=cycAccess.getConstantByName("zwb"); 
String[] stoplist=new String[548]; 
BufferedReader br = new BufferedReader(new FileReader("stoplistl.txt")); 
int lln=0; 
String thisLine; 
while ((thisLine = br.readLine()) != null) 
stoplist[lln++]=thisLine; 



125 

br.close(); 
FileWriter swsd = new Java.io.FileWriter( "sentencewsd.txt", false ); 
Print Writer swsdout = new Java. io.PrintWriter( swsd, true ); 
FileWriter ofw = new Java.io.FileWriter( "generalized.txt", false ); 
PrintWriter pout = new Java.io.PrintWriter( ofw, true ); 
FileWriter fw = new Java.io.FileWriter( "double.txt", false ); 
PrintWriter pw = new Java.io.PrintWriter( fw, true ); 
FileWriter fwl = new Java.io.FileWriter( "triple.txt", false ); 
PrintWriter pwl = new java.io.PrintWriter( fwl, true ); 
FileWriter fw3 = new Java.io.FileWriter( "fullGrammR.txt", false ); 
PrintWriter pw3 = new Java.io.PrintWriter( fw3, true ); 
FileWriter fw4 = new Java.io.FileWriter( "keyword.txt", false ); 
PrintWriter pw4 = new Java.io.PrintWriter( fw4, true ); 
FileWriter fr = new Java.io.FileWriter( "count.txt", false ); 
PrintWriter wr = new Java.io.PrintWriter( fr, true ); 

num=-l; 
String[][] penntocyc=new String[16][2]; 

penntocyc[0][0]=new String("#$regularDegree"); penntocyc[0][l]= new String("JJ"); 
penntocyc[l][0]=new String("#$comparativeDegree"); penntocyc[l][l]= new String("JIR"); 
penntocyc[2][0]=new String("#$superlativeDegree"); penntocyc[2][l]= new String("JJS"); 
penntocyc[3][0]=new String("#$regularAdverb"); penntocyc[3][l]= new String("RB"); 
penntocyc[4][0]=new String("#$comparativeAdverb"); penntocyc[4][l]= new 

String("RBR"); 
penntocyc[5][0]=new String("#$superlativeAdverb"); penntocyc[5][l]= new String("RBS"); 
penntocyc[6][0]=new String("#$tensed"); penntocyc[6][l]= new String("VB"); 
penntocyc[7][0]=new String("#$pastTense-Generic"); penntocyc[7][l]= new String("VBD"); 
penntocyc[8][0]=new String("#$presentParticiple"); penntocyc[8][l]= new String("VBG"); 
penntocyc[9][0]=new String("#$perfect-Generic"); penntocyc[9][l]= new String("VBN"); 
penntocyc[10][0]=new String("#$pluralVerb-Generic"); penntocyc[10][l]= new 

String("VBP"); 
penntocyc[ll][0]=new String("#$singularVerb-Generic"); penntocyc[ll][l]= new 

String("VBZ"); 
penntocyc[12][0]=new String("#$nonPlural-Generic"); penntocyc[12][l]= new 

String("NN"); 
penntocyc[13][0]=new String("#$plural-Generic"); penntocyc[13][l]= new String("NNS"); 
penntocyc[14][0]=new String("#$pnSingular"); penntocyc[14][l]= new String("NNP"); 
penntocyc[15][0]=new String("#$pnPlural"); penntocyc[15][l]= new String("NNPS"); 
Formatter formatter = new Formatter(sentl, Locale.US); 
for (List sentence : document) 

{ 
num++; 
formatter.format("%5d ", num); 
sentl .println(sentence); 

numSents++; 
int len = sentence.size(); 

biaozhi[num]=new intflen]; 
for(int zi=0;zi<len;zi++) 
biaozhi[num][zi]=-l;sentenceorder=num; 
Word Array [sentenceorder]=new String[len]; 
wordforms[sentenceorder]=new String[len]; 
PosArray[sentenceorder]=new String[len]; 
FreqArray[sentenceorder]=new Double[len]; 
pFreqArray[sentenceorder]=new int[len]; 
CycFortArray[sentenceorder]=new CycFort[len]; 
CycStringArray[sentenceorder]=new String[len]; 



// CycFortArray[sentenceorder]=new CycFort[len]; 
CycStringGroupArray[sentenceorder]=new String[len] []; 

CycFortGroupArray[sentenceorder]=new CycFort[len][]; 
numWords += len; 
pwErr.println("Parsing [sent. " + num + " len. " + len + " ] : " + sentence); 

Tree ansTree = null; 
try{ 

if ( ! parse(sentence)) { 
pwErr.print("Sentence couldn't be parsed by grammar."); 
if (pparser != null && pparser.hasParse() && fallbackToPCFG) { 

pwErr.println("... falling back to PCFG parse."); 
ansTree = getBestPCFGParse(); 
numFallback++; 

} else { 
pwErr.println(); 
numUnparsable++; 

} 
} else { 
ansTree = getBesfParse(); 

Tree trgbp=ansTree; 
kuk=new ArrayList<Tree>(); 
qishi=new ArrayList<Integer>(); 
wei=new ArrayList<Integer>(); 
gongli=0; 
jiansuo(ansTree); 

Tree[] treechid=trgbp.children(); 
List<Tree> allchildren=new ArrayList<Tree>(); 
ArrayList<Integer> juyustart = new ArrayList<Integer>(); 
ArrayList<Integer> juyulen = new ArrayList<Integer>(); 
allchildren.add(treechid[0]); 
juyustart.add(O); 
juyulen.add(Trees.leaves(ansTree).size()); 
Iterator listcon=allchildren.iterator(); 
int ghgh=0; 

for (int ilist=0; ilist<allchildren.size(); ilist++) 

{ 
Tree temp=allchildren.get(ilist); 
int tempstart=juyustart.get(ilist); 
int templen=juyulen.get(ilist); 
String LabelOfNode=new String(temp.label().toString()); 
Tree[] allchid=temp.children(); 
if(LabelOfNode.equals("NP")) 
{ 

List<Tree> kak=Trees.leaves(temp); 
boolean fg=false; 
if(fg) 
{ 
for (int jlist=0; jlisKallchid.length; jlist++) 
allchildren.add(allchid[jlist]); 
juyustart.add(juyulen.get(juyulen.size()-l)+juyustart.get(juyustart.size()-l)); 
juyulen.add(allchid.length); 
} 
else 

{ 
ArrayList<cizuji> guog= npprocess(cycAccess,num, i,temp, mtc, mtl) ; 

if(!guog.isEmpty()) 



if(npgrouplist[num]==null)npgrouplist[num]=new nppairlist(); 
for(int yi=0;yi<guog.size();yi++) 
{ 
cizuji zhang=guog.get(yi); 
int qi=zhang.getstart(); 
int chang=zhang.getlength(); 
pFreq Array [num] [qi+tempstart]=-npgrouplist[num] .size()-1; 
ArrayList<CycFort> npcycfort=zhang. getcizu(); 
nppair currentnp=new nppair(npcycfort,chang); 
npgrouplist[num].add(currentnp); 
ArrayList<String> zu=new ArrayList<String>(); 
for(int q=0;q<npcycfort.size();q++) 
zu.add(DefaultCycObject.cyclify(npcycfort.get(q)).toString()); 
for(int wu=0;wu<chang;wu++) 
{ 
biaozhi[num][tempstart+qi]=qi; 
CycStringGroupArray[sentenceorder][tempstart+qi]=new Stringfzu.size 
} 
for(int liu=0;liu<zu.size();liu++) 
{ 
CycStringGroupAiTay[sentenceorder][tempstart+qi][liu]=zu.get(liu); 
String target=zu.get(liu); 
if(target.startsWith("#$"))cycAccess.converseList("(qa "+target+" 1)"); 
else 
{ 

if(target.startsWith("(")) 
{ 
//if(target instanceof CycNart) 
{ 
String mumu=new String("(qa (quote "+target +" ) 1)"); 
cycAccess.converseList(mumu); 
} 
} 

} 
} 
} 

if(!(LabelOfNode.equals("NP"))) 
{ 
for (int jlist=0; jlistollchid.length; jlist++) 

{ 
allchildren.add(allchid[jlist]); 
Tree feil=allchid[jlist]; 
int wrt=-1; 
for(int gfd=0;gfd<kuk.size();gfd++) 
{ 
Tree fei2=kuk.get(gfd); 
if(fei2==feil) 
{ 
wrt=gfd; 
break; 



juyustart.add(qishi.get(wrt)); 
juyulen.add(wei.get(wrt)); 

} 
} 
ghgh++; 

LabeledScoredConstituentFactory lcf=new LabeledScoredConstituentFactoryO; 
Set<Constituent> trcon=ansTree.constituents(); 
Iterator itcon=trcon.iterator(); 

Array Li st<Tree> subtrees = new ArrayList<Tree>(); 
Array Li st<pospair> senpos=new ArrayList<pospair>(); 
for(int j=0;j<ansTree.numChildren() ;j++) 
{ 
Tree branch=ansTree.getChild(j); 
if(!branch.isLeaf())subtrees.add(branch); 

} 
for(int k=0;k<subtrees.size();k++) 

{ 
Tree node=subtrees.get(k); 
int nodesize=node.numChildren(); 
if(nodesize>l) 

{ 
for(int kl=0;kl<nodesize;kl++) 

{ 
Tree branchl=node.getChild(kl); 

// subtrees.add(branchl); 
subtrees. add(k+1 ,branch 1); 
} 
} 
if(nodesize==l) 
{ 
Tree branch2=node:firstChild(); 
if(branch2.isLeaf()) 

{ 
String wd, ps; 
wd=branch2. value(); 
ps=node.value(); 
pospair pspair=new pospair(wd,ps); 
senpos.add(pspair); 
} 
else subtrees.add(k+l,branch2); 

} 
} 

intj=0; 
for(int iO=senpos.size()-1 ;iO>=0;iO—) 

{ 
pospair temp=senpos.get(iO); 
WordArray[sentenceorder][j]=temp.getword(); 
PosArray[sentenceorder] [j]=temp. getpos(); 
String cycpos=null; 
for(int qy=0;qy<16;qy++) 
{ 
if(PosArray[sentenceorder][j].equals(penntocyc[qy][l])) 

{ 
cycpos=penntocyc[qy] [0]; 



break; 
} 
> 
if(cycpos!=null) 
{ 
String getlexword=new String("(#$wordForms ?WHAT "+cycpos+" 
\""+Word Array [sentenceorder][j]+"\")"); 
//String getlexword=new String("#$wordForms ?WHAT "+cycpos+" 

\" "+WordArray [sentenceorder] [j]+"\""); 
CycList getlexwordlist=cycAccess.makeCycList(getlexword); 
CycVariable lexq=CycObjectFactory.makeCycVariable("?WHAT"); 
CycList lexqres=cycAccess.askWithVariable(getlexwordlist,lexq,mtc); 
if(lexqres !=null) 

if(lexqres.size()>0) 
{ 
String lxword=DefauItCycObject.cyclify(lexqres.first()).toString(); 
wordforms[sentenceorder][j]=lxword; 
} 

} 

} 
SubPredObj group spo=extractSubPredObj( 
WordArray,sentenceorder,num,pw,pw3,ansTree,tlp,sentence); 

zwbb[sentenceorder]=spo.getzwb(); 
ArrayList<zhuweibin> tmps=spo.getzwb(); 
zuhe.add(spo.getmtrx()); zuhex.add(spo.getitrx()); 
pw 1 .println(sentence.toStringO); 
if(tmps!=null) 
if(tmps.size()>0) 
for(int sj=0;sj<tmps.size();sj++) 
{ 
pwl.println(tmps.get(sj).getzhu()+" "+tmps.get(sj).getwei()+" "+tmps.get(sj).getbin()); 
pwl.println(WordArray[sentenceorder][tmps.get(sj).getzhu()]+" 

"+WordArray[sentenceorder][tmps.get(sj).getwei()]+" 
"+WordArray[sentenceorder][tmps.get(sj).getbin()]); 

} 
for(int sws=0;sws<WordArray [sentenceorder]. length ;sws++) 
swsdout.print(WordArray[sentenceorder][sws]+" |") ; 
swsdout.println(); 
int count_nonword_num=0; 
CycObject[][] senlevelwsd=senWSD(cycAccess, WordArray[sentenceorder], 
PosArray[sentenceorder]); 
for(int sws=0;sws<WordArray[sentenceorder].length;sws++) 

{ 
swsdout.print(WordArray[sentenceorder][sws]+" | "); 
if((senlevelwsd[sws]!=null)&&(senlevelwsd[sws].length>0)) 

{ for(int ww=0;ww<senlevelwsd[sws].length;ww++) 
swsdout.print(senlevelwsd [sws] [ww] .toString()+" "); 

} 
swsdout.println(); 

} 

wordcount[sentenceorder]=WordArray [sentenceorder] .length-count_nonword_num; 
sentenceorder++; wr.println(); 



CycConstant tap=cyc Access.getConstantByName("is-Underspecified"); 
cycAccess.assertGaf(pmt,countNoO,tap,l); 

} catch (OutOfMemoryError e) { 
if (Test.maxLength != -OxDEADBEEF) { 

// this means they explicitly asked for a length they cannot handle. Throw exception. 
pwErr.println("NOT ENOUGH MEMORY " + Test.maxLength); 
throw e; 

} else { 
if ( ! saidMemMessage) { 

printOutOfMemory(pwErr); 
saidMemMessage = true; 

} 
if (pparser.hasParseO && fallbackToPCFG) { 

try{ 
String what = "dependency"; 
if (dparser.hasParse()) { 

what = "factored"; 
} 
pwErr.println("Sentence too long for " + what + " parser. Falling back to PCFG parse..."); 
ansTree = getBesfPCFGParse(); 
numFallback++; 

} catch (OutOfMemoryError oome) { 
oome.printStackTrace(); 
numNoMemory++; 
pwErr.println("No memory to gather PCFG parse. Skipping..."); 
pparser.nudgeDownArraySize(); 

} 
} else { 
pwErr.println("Sentence has no parse using PCFG grammar Skipping..."); 
numSkipped++; 

} 
} 

} catch (UnsupportedOperationException uoe) { 
pwErr.println("Sentence too long (or zero words)."); 
numWords -= len; 
numSkipped++; 

} 
try{ 

treePrint.printTree(ansTree, Integer.toString(num), pwo); 
} catch (RuntimeException re) { 
pwErr.println("TreePrint.printTree skipped: out of memory"); 
re.printStackTrace(); 
numNoMemory++; 
try { 

treePrint.printTree(null, Integer.toString(num), pwo); 
} catch (Exception e) { 
e.printStackTrace(); 

} 
} 

} 
sentl.close(); 
wr.close(); 
swsdout.close(); 
eye Access.converseList("(propl "+"0.05)"); 
cycAccess.converseList("(propfl "+"0.05)"); 



cycAccess.converseList("(propf2 "+"0.05)"); 
} 
catch (Exception e) { 

Log.current.errorPrintln(e.getMessage()); 
Log.current.printStackTrace(e); 

} 
treePrint.printFooter(pwo); 
if (Test.writeOutputFiles) { 
pwo.closeO; 

} 
System.err.println("Parsed file: " + filename + " [" + num + " sentences]."); 

} catch (IOException e) { 
pwErr.println("ERROR: Couldn't open file: " 4- filename); 

} 
} // end for each file args[arglndex] 
long millis = timer.stop(); 
if (saidMemMessage) { 
printOutOfMemory(p wErr); 

} 

} 
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