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ABSTRACT 

The concept of a residuated mapping relates to the concept of Galois con­

nections; both arise in the theory of partially ordered sets. They have been 

applied in mathematical theories (e.g., category theory and formal concept 

analysis) and in theoretical computer science. The computation of residu­

ated approximations between two lattices is influenced by lattice properties, 

e.g. distributivity. 

In previous work, it has been proven that, for any mapping / : L —> Q 

between two complete lattices L and Q, there exists a largest residuated 

mapping py dominated by / , and the notion of "the shadow cry of / " is 

introduced. A complete lattice Q is completely distributive if, and only if, 

the shadow of any mapping / : L —> Q from any complete lattice L to Q is 

residuated. 

Our objective herein is to study the characterization of the skeleton of a 

poset and to initiate the creation of a structure theory for finite lattices of 

small widths. We introduce the notion of the skeleton Z of a lattice L and 

apply it to find a more efficient algorithm to calculate the umbral number 

for any mapping from a ~ finite lattice to a complete lattice. 

We take a maximal autonomous chain containing x as an equivalent class 

[x] of x. The lattice L is based on the sets {[x] | x e L }. The umbral number 

iii 
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for any mapping / : L —> Q between two complete lattices is related to the 

property of L. Let L be a lattice satisfying the condition that [x] is finite 

for all x e L; such an L is called ~ finite. We define L0 = {f\[x]\ x e L} 

and f0 = f\io. The umbral number for any isotone mapping / is equal to 

the umbral number for f0, and e r r = ay \f0 for any ordinal number a. Let 

UL,Q be the maximal umbral number for all isotone mappings / : L —> Q 

between two complete lattices. If L is a ~ finite lattice, then UL,Q = UL0,Q-

The computation of UL0,Q is less than or equal to that of UL,Q, we have a more 

efficient method to calculate the umbral number UL,Q. 

The previous results indicate that the umbral number U^Q determined by 

two lattices is determined by their structure, so we want to find out the struc­

ture of finite lattices of small widths. We completely determine the structure 

of lattices of width 2 and initiate a method to illuminate the structure of lat­

tices of larger width. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Overview 

As an algebraic system, a partially ordered set consists of a set and a 

binary operation (a partially order relation between two elements). A resid-

uated mapping is a special morphism between two partially ordered sets and 

has better property than another mapping, Galois connections. Recently, M. 

F. Janowitz has suggested that residuated mappings may play a role in the 

theory of cluster analysis [11]. 

For any mapping / : L —> Q from a complete lattice L to a complete 

lattice Q, Andreka, Greechie and Strecker developed the "shadow" o f / t o 

obtain the maximal residuated mapping "dominated by" / (the residuated 

approximation pf o f / ) . If a mapping / is not residuated, iterations of um-

bral mapping converge to pf for / , the least ordinal number a such that 

cry = pf is called the umbral number of/, Uf. It is proven that (1) Q is 

completely distributive iff1 cry is residuated for any complete lattice L and 

any mapping / : L —> Q, (2) L is completely distributive iff / W is residual 

for any complete lattice Q and any mapping / : L —> Q, (3) L is infinitely 
1 We use "iff" to represent "if and only if. 
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distributive iff /^+) is residual for every finite lattice Q and any mapping 

/ : L —» Q. Hence, the maximal number UL,Q for any f : L -> Q between 

two complete lattices L and Q is determined by the properties of such two 

lattices. 

1.2 Research Objectives 

Our object is to study (1) the relation between the structure of L and the 

umbral number for an isotone mapping f : L —> Q between two lattices L 

and Q, and (2) the structure of finite lattices. 

First of all, we present the concept of "the order skeleton of a poset" and 

use it to solve the previous two problems. The order skeleton P of a poset 

P is based on an equivalent relation ~, and [x] is the equivalent class under 

~. When we apply ~ to a lattice L, the relation ~ becomes a congruence 

relation on L. Let J3[x] be a fixed element in [x], for any element x in L; 

we obtain the/?-skeleton S^ of L which is a copy of L, and for any (3, it is 

always true that S L = L. 

In a ~ finite lattice L, the maximal autonomous chain [x] is finite for any 

x in L, and there exists a join subcomplete sub-semilattice L0 of L which is 

the union of /\[x] for x. L0 is a specials-skeleton of I and L0 = L. I f / is 

isotone, then f0 = f\Lo is isotone and Uf = u/0. By using of f0 we can speed 

up the computation of the umbral number Uf, and we prove that UL,Q from 

a ~ finite lattice L to a complete lattice Q is less than or equal to 1 if L0 is 

distributive. 
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Further, we study the structure of a finite lattice with its skeleton and 

obtain some useful results about finite lattices of width 2 and 3. 

1.3 Organization 

Chapter 1 gives a brief introduction about the research and the objectives. 

Chapter 2 provides the background and the previous work. In Chapter 3, we 

introduce order skeletons of posets and lattices, and in Chapter 4, we focus 

on the computation of umbral mappings. 

Chapter 5 introduces and studies concepts with the potential of increas­

ing our understanding of the structure of finite lattices. Chapter 6 gives a 

complete description of the structure of finite lattices of width 2 and it dis­

cusses salient results in lattices of width 3. The summary of our work and 

some suggestions about future work are given in Chapter 7. 



CHAPTER 2 

REVIEW OF POSETS AND LATTICES 

2.1 Posets 

The cardinality of a set P, denoted by \P\, is the number of elements 

of P. For a non-negative integer n, the product set A\ X ... X A„ ofn sets, 

A\, ...,An, is defined by A\X...xAn := {(x\,... ,xn) | x\ e A\, ...,xn e An}. l If 

A\ = ... = An = A, then we write An :- A\ x...xAn, and for n = 0, we define 

A0 := {0}. An n-ary operation (or function) on A is any function / from 

An to A, n is the arity (or type) off; an operation / on A is unary, binary, 

ternary or finitary if its arity is 1,2, 3, or a finite non-negative integer. 

An algebraic structure consists of a pair (A,{fa\a e I}) where A is a 

nonempty set and, for each a in the indexing set /, there is an n such that 

fa:A
n-^Aisa finitary operation on A; if I = {a\, ...,cfy} is finite and 

faj is of type nt where, by convention, nt > «/+i (/ = 1,... , k - 1), then the 

algebraic structure is of type n\,...,rik. If a subset B of an algebra^ is itself 

an algebra under the operation of A restricted to B, (i.e., fa(x\, ...,x„.) e B 

for x\, ...,x„, G B ), then B is called a subalgebra of A. Let (A,fa) and 

(B,ga) for a e I be algebraic structures of type n\,..., «^; a homomorphism 

'We use ":=" to indicate that the object to the left of the equality is defined by the object to the right of 
the equality. 
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(p : A —» B is a mapping between algebraic structures A and 5 such that 

<p(fa(x\,..., xai)) = ga(<p(xi),..., <p(xa.)) for each a e I, xt eA,<p maps ̂  onto 

B; if the mapping ^ is also one-to-one, i.e., for any yt e B, there exists an 

unique (p~l(yd e A such that fa((f~
{(yi), ...,ip~l(yai)) = (p~l(ga(y\,-,yai)), 

then ip is called an isomorphism, expressed by A - B. If A = B, then we 

usually substitute endomorphism for homomorphism and automorphism 

for isomorphism. 

Let P be a nonempty set, a relation on P is a subset R c Px P. R may 

satisfy some of these properties: 

(a) reflexive. IfxeP, then xRx holds. 

(b) symmetric. If, for x,y e P, xRy holds, thenyRx holds. 

(c) antisymmetric. If, for x,y e P, xRy and yRx hold, then x = y. 

(d) transitive. If, for x,y,z e P, xRy and yRz hold, then xRz holds. 

A relation R on a set P is an equivalence relation iff it is reflexive, sym­

metric and transitive. A relation R on a set P is a partial order relation 

iff it is reflexive, antisymmetric and transitive. A partially relation is usu­

ally written <. The pair (P, <) is called a partially ordered set (or poset); 

we sometimes refer to it simply as P. The converse of a relation < is the 

relation <* such that x <* y iff y < x. The dual poset of a poset (P, <) 

is (P*, <*) where P* = P and <* is the converse of <. If the dual poset of 

a poset P is isomorphic with the poset P, then the poset P is a self-dual 

poset. A nonempty subset S of a poset P is a subposet of P if there is a 
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one-to-one function f : S —> P such that x < y => f(x) < f(y) for x,y e S. 

Let P and Q be two posets. If there is a bijection function f '. P —> Q 

such that, for all a, b e P, a < b => f{a) < f(b) and, for all c, d e Q, 

c < d => f~l(c) < f~l(d), then / is a poset isomorphism and P = Q. 

The strict inequality x < y (or, equivalently, y > x) means that x < y 

and x t y. We say that x is covered by y (or y covers x), in symbol x < y 

(or ̂  > x ) , if x < y, and there is no element z such that x < z < y. 

A poset P can be represented by a Hasse diagram. In such a diagram, a 

point represents an element in P and a line that goes from x up to y means 

that x < y. 

A nonempty subset / of a poset P is called an order ideal (or simply an 

ideal) of P if x e / and y < x imply y e I. A nonempty subset F of a poset 

P is called an order filter (or simply a filter) of P if x e F axi&y > x imply 

yeF. 

Let P be a poset, x e P and A Q P, then 

i x := {y e P | y < x}, Tx := [y e P | x < .y}, U := U (I a). 
aeA 

The subset I x (resp., t ^) is called the principal ideal (resp., principal 

filter) generated by x. Let Sep and let s e S, then the element s is called 

a maximal (resp.2, minimal) element of S if, for x e S, s < x (resp., x < s) 

implies x = s. For S c P, Max(S) is the set of all maximal elements of 5 , 

i.e, Max{S) := {x e S | x is a maximal element in S}; Min(S) is the set of all 
2 We use "resp." to represent "respectively". 
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minimal elements of S, i.e, Min(S) := {x e S \ x is a minimal element in S). 

Every finite poset has at least one minimal and one maximal element, but an 

infinite poset may have neither. For example, the set of integers, with natural 

ordering, is an infinte poset having neither minimal nor maximal element. 

In some posets there are more than one minimal or maximal elements. 

Let Sep and s e P, s is an upper (resp., lower) bound of S if x < s 

(resp., s < x) holds for all x e S. S may have no bound or many different 

bounds. If, for S Q P, there exists an upper (resp., lower) bound a e P 

such that a < x (resp., x < a) holds for all upper (resp., lower ) bounds x 

of S, then a is called the least upper (resp., greatest lower) bound of S. 

The least upper (resp., greatest lower) bound of a subset S of P, if it exists, 

is unique. The least upper bound of S is sometimes called the supremum 

or join of S denoted by \J S, and the greatest lower bound of S is called 

the infimum or meet of S denoted by f\ S. For any a and b of a poset P, 

the join and meet of {a, b], if they exist, are denoted by a V b and a A b, 

respectively. Let S Q P. If an element x in P is the least upper bound (resp., 

greatest lower bound) of S and also x e S, then x is called the greatest 

(resp., least) element of S and Max(S) = {x} (resp., Min(S) = {%}). The 

least element of a poset, if it exists, is called 0, and the greatest element of a 

poset, if it exists, is called 1. A poset P is a bounded poset if it has both 0 

and 1. If P has a least element 0, then an element x of P is an atom if 0 •< x; 

if P has a largest element 1, then an element x of P is a coatom if x < 1. 
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2.2 Lattices 

If, for any x and y in a poset L, the join (resp., meet) of the set {x,y} 

exists, then the poset L is a join-semilattice (resp. meet-semilattice). If L 

is both join-semilattice and meet-semilattice, it is a lattice. Often the lattice 

L is expressed as (L, V, A). A bounded lattice is a lattice which has both 0 

and 1. If there is a join (resp., a meet) for every subset of a lattice L, then L 

is join complete (resp., meet complete). Any join complete lattice is also 

a meet complete lattice, and vice versa. If, for any subset S of a poset L, 

both V S and /\ S exist, then I is a complete lattice. A complete lattice is 

a bounded lattice. The power set of a set M, written 2?(M), is the set of 

all subsets of M. (£P(M), c) is an example of a complete lattice in which, 

for S c &>(M), \/S = {JS and /\S = f)S. A finite lattice is a complete 

lattice, but a complete lattice may not be a finite lattice. For example, the 

set of real numbers in [0,1] under natural ordering is a complete lattice, not 

a finite lattice. 

A lattice (L, V, A) is an algebraic structure where V and A are binary 

operations, this algebra satisfies the following axioms for all x,y,z e L: 

Commutative laws: x\/ y =yV x and x A y = y A x. 

Associative laws: xV(y Vz) = (xVy) Vz and x A(y Az) = (xA>>) Az. 

Absorption laws: x V (x A y) = x and x A (x v y) - x. 

Idempotent laws: x V x = x and x A x = x. 

Any algebra (L, v, A) of type 2, 2 that is a lattice is said to correspond to 
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the poset (L, <) in case, for a, b e L, a < b is equivalent to a V b = b and 

a A b = a. 

Let (L, v, A) and (M, u, n) be two lattices, and there exists a function 0 : 

L —» M. The function 0 is a lattice isomorphic iff 0 is a bijection function 

such that, for all x,y e L, 0(x Vy) = 0(x) U 0(y) and 0(x Ay) = 0(x) n 0(y). 

If (I , v, A) is a lattice corresponding to the poset (L, <), then (L*, V*, A*) 

is the lattice corresponding to the poset (L*, <*) such that aV* b = a Kb and 

a A* b = ay b for a, b e L = L*\ the lattice (Z,*, V*, A*) is called the dual 

lattice of (L, v, A). If the dual lattice of a lattice L is isomorphic with the 

lattice L, then the lattice L is a self-dual lattice. 

We call a statement A a lattice theoretical proposition if it includes only 

v, A and variables. If we interchange V and A in A, we obtain the dual of 

proposition^. 

Lattice Theoretical Duality Principle: [17] 

The dual of any true lattice theoretical proposition is itself a true lattice 

theoretical proposition. 

Theorem 2.2.1. In a lattice L, the following are equivalent: 

xV(yAz) = ( iVj; )A(xVz) for all x,y,z e L (2.2.1) 

x A(yV z) = (x Ay)V (xAz) for all x,y, z eL (2.2.2) 

Proof. Let x,y,z € L and let a := ( I A J ' ) V ( X A z). If the Formula 2.2.1 

holds, then we have a = ((xAy)Vx)A ((x A y) V z) by the Formula 2.2.1; 

thus a = x A ((x V z) A (y V z)), since (x Ay) V x = x by commutative law and 
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absorption law, and (x Ay) V z = (x V z) A (y V z) by commutative law and the 

Formula 2.2.1; so a = (x A (x V z)) A (y V z) = x A (y V z) by associative law 

and absorption law, hence the Formula 2.2.2 holds. Dually, if the Formula 

2.2.2 holds, then the Formula 2.2.1 holds. • 

A lattice L is a distributive lattice if it satisfies the Formula 2.2.1 or the 

Formula 2.2.2. 

A nonempty subset S of a lattice L is a sublattice of L if S is a subalgebra 

of L. Thus, if S c I and 5 * 0, then, for a, 6 e 5 , a V 6 e S and a A 6 e S. 

A nonempty subset 5 of a lattice L is a join sub-semilattice (resp. meet 

sub-semilattice) if S c Z, and S ± ®, then, for a, b e S, a V b e S (resp., 

A lattice is distributive iff no sublattice of it is isomorphic with either the 

lattice M3 of Figure 2.1 or the lattice JV5 of Figure 2.2 [1]. 

Figure 2.1 M3. F i g u r e 2 2 ^ 

Lemma 2.2.2. A lattice L is a distributive lattice iff the dual lattice L* is a 

distributive lattice. 

Proof. A lattice L is a distributive lattice iff L has no sublattice isomorphic 
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with either M3 or N5; L has no sublattice isomorphic with either M3 or N5 iff 

L* has no sublattice isomorphic with either M3 or N5; L* has no sublattice 

isomorphic with either M3 or N5 iff L* is a distributive lattice. Hence, L is a 

distributive lattice iff L* is a distributive lattice. • 

By the notation \Jyt (resp., f\yl) we mean the least upper bound (resp., 
i€l iel 

greatest lower bound) of the family [yr}/6/. Let L be a complete lattice with 

x e L, I be an index set and [y, | / e /} be a subset of L. We consider the 

following infinite distributive laws: 

* A ( V ^ = V ( X A - ^ '
 (2-2-3) 

iel iel 

xv(/\yd = f\(xvyi). (2.2 A) 
iel iel 

If L is join complete and L satisfies the Formula 2.2.3, then L is an in­

finitely distributive lattice. The following example shows that the property 

of being infinitely distributive is not a self-dual. Let N be the set of non-

negative integers and a, b € N, a A b is their greatest common divisor, and 

the a\/b is their least common multiple. (N, V, A) is a complete lattice where 

the least element is 1 and the greatest element is 0, which follows from the 

representation of the greatest common divisor and the least common multi­

ple in terms of their prime factors. Also, from this representation, one can 

prove that the lattice N satisfies the Formula 2.2.4; but it does not satisfy the 

Formula 2.2.3. For example, {«/}(/' = 1,.., 00) is the set of all odd positive in-
00 00 00 00 

tegers, then2A(V at) = 2A0 = 2, but \J(2l\at) = V 1 = 1 * 2 = 2 A ( V at). 
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Let / be an index set and K(i) be a set for each i e /. Define F := {f \ f : 

/ —> U K(i) and /(/) e K(i) }. Then F is the set of all functions choosing, 
iel 

for each index i of /, some element /(/') in ^(0- A complete lattice L is 

completely meet distributive if /\ V xik = V /\xuf{i) holds; a com-
ielkeKO) ' f(i)eF iel 

plete lattice L is completely join distributive if V A xik - A V xif(t) 
i€lkeK(i) ' ftfeFiel 

holds. In fact, a completely join distributive lattice is a completely meet 

distributive lattice. In the light of this comment, we have that a lattice L is 

completely distributive iff it is completely join distributive. 

In the light of this comment, we have that a completely meet distributive 

(resp., join distributive) lattice is an infinitely meet distributive (resp., join 

distributive) lattice, an infinitely meet distributive (resp., join distributive) 

lattice is a distributive lattice. 



CHAPTER 3 

ORDER SKELETONS 

3.1 Order Skeleton of a Poset 

If A and B are sets, then A - B :- [x e A\ x ^ B }. A poset P is called 

a linearly ordered set or chain if x < y oxy < x holds for all x,y e P. Let 

x and y be two elements in P. If x ^ y andy ^ x, then x is parallel with y, 

we express it by x \\ y. 

Let a,b e P. Define four types interval as follows, 

closed interval: [a, b] := {x e P \ a < x < b }, 

open interval: (a, b) := {x € P \ a < x < b }, 

left-open, right-closed interval: (a, b] := {x e P \ a < x < b }, 

left-closed, right-open interval: [a, b) := {x e P \ a < x < b }. 

Note that we define [a, b] even if a £ b, in which case [a, b] = 0. A 

similar comment also applies to the other intervals just defined. 

Let x be an element in a poset P. Define 

7r(x):={.ye JP|.y| |x}. 

Note that n(x) = P - ((t x) U ( | x)). The set 7r(x) is the set of elements 

which are parallel with x. 

Let ~ be the binary relation defined by x ~ y for x,y e P in case 

13 
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x ft y and n(x) = n(z) for all z e [x,y] U [y, x]. 

A nonempty subset S of a poset P is called an autonomous set iff, for 

any x e P - S, (1) x < y for somey e S implies that x < s for all s e S, and 

(2) y < x for some y e S implies that s < x for all s e S. An autonomous 

chain is a chain that is also an autonomous set. 

Lemma 3.1.1. Let P be a poset and x,y e P. Then the following statements 

are equivalent. 

(\)x~y, 

(2) we have m $ n, (\m- In) U (In- f m) = [m,n] U [n, m] and 

(im- in) U (in- im) - [m,n] U [n,m]form,n e [x,y] U \y,x], 

(3) [x,y] U [y, x] is an autonomous chain. 

Proof. (1) => (2) Let x ~ y. Suppose m,n e [x,y] U [y,x]. Then m ^ n and 

7r(m) = 7r(x) = 7r(«). We may assume that m <n. Then [m, n] c T m- | « and 

(t /w- T «) U (T n- t w) = T m- t«. Let a e t w - T «, then a £ n(m) = n(n) 

and n •£ a, so a < n and a e [m, n]. Thus fm— In Q [m, n] = [m, n] U [n, m]. 

Hence (f m- f «) U ( | n- f m) = [w,«] = [m,«] U [w,/w]. Similarly 

(im- in) U (1« - im) ~ [m,n] U [«,m\. 

(2) => (3) Suppose that condition (2) holds. Then [x,y] U [y, x] is a chain. 

We claim that [x,y] U [y, x] is an autonomous set. Let p e P-([x,y] U [y, x]) 

and a e [x,y] U [y, x]. If p < a, then p < x and /? < y, thus /? < 6 for 

all 6 e [x,x| U [y, x]. If a < p, then x < p and 7 < />, thus b < p for all 

6 e [x,.y] U [y,x]. 

(3) => (1) Suppose that [x,y] U [y, x] is an autonomous chain. We may 
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assume that x < y. Let z e [x,y], then | x = [x,z]U | z and | z = [x,z]U | x , 

thus (Tx) U ( U ) = [x,z] U (Tz) U (ix) = ([x,z]U ix) U (Tz) = (U) U (Tz), 

so 7T(JC) = 7r(z). Hence x ~ y. D 

When x < _y, we have the following restatement of this Lemma. 

Corollary 3.1.2. Let P be a poset, x,y e P and x < y. Then the following 

statements are equivalent. 

(\)x~y, 

{2) for any m,n e [x,y], we have m $ n; ifm < n, then ^m— t n - \?n, n] 

and In— lm — [m,n], 

(3) [x,y] is an autonomous chain. 

Lemma 3.1.3. The relation ~ defined on P is an equivalent relation. 

Proof. The relation ~ is reflexive since x Jft x and [x, x] = {x}. 

We claim that ~ is symmetric. If x ~ y, theny ~ x by the definition of ~. 

We claim that ~ is transitive. Let x,y,z € P with x ~ y and j ; ~ z. Since 

n{x) = n{y) = n(z), the three elements x,y and z are in a chain. We may 

assume that x < z. If y < x, then [x, z] is a subset of an autonomous chain 

[y,z], thus [x,z] is an autonomous chain. If z < y, then [x,z] is a subset of 

an autonomous chain [x,j>], so [x,z] is an autonomous chain. If y e [x,z], 

then [x,z] is the union of two autonomous chains [x,y] and [y,z], it follows 

that [x, z] is an autonomous chain. Therefore x ~ z. • 

Let P be a poset with x e P, define [x] := {y \ x ~ y }. 

The order skeleton (or simply the skeleton) of P, (P, <), is defined as 

follows: 
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P:=([x]\xeP), 

[x] < [y] iff there exist x\ e [x] andji e [y] such that x\ <y>\. 

Lemma 3.1.4. Let P be aposet. Then 

(1) (P, <) w a poset; 

{2) for x e P, [x] is a maximal autonomous chain containing x. 

Proof. (1) The relation < is reflexive since x e [x] and x < x. 

We claim that < is antisymmetric. If [x] < [y] and [y] < [x], then there 

exist x\,x2 e [x] and^i,^2 e [y] such that x\ <y\ and 72 < x2. Since^i ~ y2 

and x\ <y\, we have xi ft y2 by the definition of ~, i.e., xi < y2 ory2 < x\. 

If xi < y2, theny2 e [xi,x2], so^ ~ y2 ~ x; if_y2 < *i, then xi e [y2»^i], so 

x ~ xi ~ y. Hence x ~ y and [x] = [y]. 

We claim that < is transitive. Let [x], [y], [z] e P with [x] < [y] and 

[y] < [z], then there exist xi e [x], j i , ^ € [y] and zi € [z] such that xj < y\ 

and ^2 ^ ^i- Since ^i ~ y2 and xi < y\, we have xi jf y2. If xi < y2, then 

x\ < y2 < z\, so [x] < [z]; if3̂ 2 ^ *i, then xi € [y2>.yi] and x ~ x\ ~ y, so 

W = [y] < [z]. 

(2) Since x ~ x, we have x e [x]. Suppose that [a, b] is an autonomous 

chain such that [x] c [a, b]. For any c e [a, b], [x, c] U [c, x] is a subset of 

the autonomous chain [a, b], so [x, c] U [c, x] is an autonomous chain, thus 

x ~ c by Lemma 3.1.1. Hence, c 6 [x] and [x] = [a, b]. Therefore, [x] is a 

maximal autonomous chain containing x. • 

Lemma 3.1.5. Let P be a poset with x,y e P, then 

(i)M = M <*x~y, 
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(2) x\\yinPe> [x] \\ [y] in P, 

(3) if there exist x\ e [x] andy\ e [y] such that x\ < y\ and X\ * y\ hold, 

then [x] < [y], 

(4) if[x] < \y], thenx\ <y\ andx\ + y\ hold for all x\ e [x] andy\ e [y], 

(5) [x] < [y] <=> x ~ y or x < y with x + y, 

(6) [x] ~ [y] in P o [x] = [y], 

(7) x <y andn(x) = n(y) iff^x = [x,y]U 1y and ly = [x,y]U |x , 

(8) ify e [x] a«t/ V M exists, then 1> = [y, V M ] U T (VM), 

(9) ify e [x] arcd AW exists, then iy = [AM^]U i (AMX 

(10) //"AM exists, then (f\[x],x] c [#], 

(11) if\/ [x] exists, then [x, V M ) ^ M> 

(12) if /\[x] exists and /\[x] < y < x, then ( ^ [ i ] , x] = (A[x],y] U [y, x], 

(13) if\J[x] exists andx <y< VM> tnen M V M ) - M^] u [y> V M 1 

(14) / / A M « « ^ V M escŵ , then [x]U{AM> V M ) = [AM> x]U[x, VM]-

Proof (1) We only need prove that [x] = [y] implies x ~ y. Since x € [x] 

and [x] = [y], we have x e [y] and x ~ y. 

(2) Let x || y. Then, for a e [x] and b e [y], we have y e n(x) = n(a), 

thus, a e n(y) = n(b). Hence [x] ^ [y] and [y] ^ M> i-e-> M II M- To prove 

the converse, let [x] || [y], then x £ y a n d j ^ x from the definition of the 

ordering in P. Hence x\\y. 

(3) This proof follows from the definition of P and part (1). 

(4) Let [x] < [y] with Xi e [x] andyi € [y]. Since [x] < [y], we have 

y\ ^ xi; also since xi ^ y\ by part (2), it follows that xi < y\. Since 
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[*i] = W gt [y] = [yi], we have xi + yx by part (1). 

(5) The proof of «= follows from part (1) and (3), the proof of => follows 

from part (1) and (4). 

(6) We only need to prove [x] ~ [y] in P implies [x] = [y]. Let [x] ~ [y] 

in P. Then [x] ft [y] in P and x j[ y in P. We claim that x ~ y. But 

suppose not. Then, there exists z e [x,y] U [y, x] such that 7r(x) t n(z), thus 

[z] € [[x], [y]] U [[y], [x]] and 7r([x]) £ 7r([z]), so [x] * [y] in P contradicting 

the hypothesis [x] ~ [y] in P. Hence, x ~ y and [x] = [y]. 

(7) Let x < y and 7r(x) = n(y). Since x < y, we have [x,y] U (Ty) c | x. 

Let p e | x, then /? £ 7r(x) = 7r(y), i.e /? < y or y < p, thus /? e [x,y] 

or /? € t y. So t x c [x,y]U T 7- Hence | x = [x,y]U T 7- Similarly 

iy= [x,y]U ix. 

Suppose that Tx = [x,y]U ty and iy = [x,y]U ix. Then x < y. Also, we 

have (Tx) U (ix) = Wxl U (Ty)U J,x = (Ty) U (|x,y]U ix) = (Ty) U (iy). 

Hence, 7r(x) = 7r(y). 

(8) Assume that y e [x] and VW exists in P. Then y < \J[x] and 

[y, VW]U T (VW) £ Ty. Let z e Ty, then [y] < [z]. If [y] = [z], then 

z e M - W> thus z e [y> VW]; if [y] < tzL then w < z for all w e [x], so 

VW < z. Thus Ty c [y, VM]u T(VW)- Hence Ty = [y, VW]u T(VW)-

(9) This proof is dual to the proof of (8). 

(10) Let z e (A W> *]• Then z ft x\ for xi e [x] since z £ 7r(x) = 7r(xi), 

and z is not less than all element in [x] since A W < z- Hence, there exists 

p e [x] such that p < z. Thus, z e [p, x] c [x]. Hence (A W>x] £ W-
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(11) This proof is similar to that of (10). 

(12) Let y e [/\[x],x], m e n (/\[x],y\ and \y, x] are the subsets of the 

autonomous chain [x] by (10); also since the intersection of (AW.xl a n d 

[y, x] is not empty, we have (/\[x],x] = (A[x],y] U [y, x]. 

(13) This proof is dual to that of (12). 

(14) We have (A W W Q [x] and [x, VW) ^ W by part (10) and part 

(11), so that [AOL*] u W VW] £ W u (AM. VW)- If.y e W> m e n 

AW ^ y ^ VW and.y # *, thus;/ e [AWW u W VW]- it follows that 

W u [AW. VW] £ [AW. *] u W VW]- Hence the formula holds. n 

Let T be a nonempty poset as an index set and Pt (t e T) be a family 

of pairwise disjoint nonempty posets that are disjoint from T. In [14] the 

lexicographic sum Lex{Pt \ t e T) is defined to be \J Pt, and, for any 
teT 

pi,p2 eLex{Pt},pi <p2iff 

(1) for some t\,t2 e T, t\ < t2, p\ € Pu andp2 e P,2, or 

(2) for some t e T, p\,p2 e P/ and pi </>, pi. 

Theorem 3.1.6. Any poset P is isomorphic to the lexicographic sum of a 

family of maximal autonomous chains [x]for x e P, i.e., P = Lex{Pt \ 

t e T] when T = P and for t e T, Pt = [x], when t = [x]; in brief 

P = Lex{[x] | W e P } . 

Proof. We take T = P. P = (J Pt becomes P = \J [x], (i.e., P = \JP) 

which is true, since ~ is reflexive. Since P c &(P) and [x] e &{P) for all 

x e ^ w e have P e &>(&>{P)) and ? n [ x ] = 0 for all [x] 6 P. For all p e P, 

there exists teT such that p e Pt and t = [x]. Let p\ e Ph with t\ = \x{\ 
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and p2 e Ph with t2 = [x2]. Then p\ < p2 iff (1) p\ < p2 with /»i * /?2 

or, (2) pi < /?2 with /?i ~ p2, i.e., (1) ?i < t2, px e Ph and p2 e Ph or, (2) 

h = h, P\,P2 e Ph - Pt2 and pi < p2. Hence, P is the lexicographic sum 

of[x]for[x]e P. u 

A poset P is a skeleton if P = P via the bijection mapping ~ sending x 

to [x]. 

Lemma 3.1.7. A poset P is a skeleton iff[x] = {x}/or any x e P. 

Proof. Assume that P is a skeleton, so that P = P. Let x e P and >> € [x], 

then [x] = [y]; also since ~ is one-to-one, we havejy = x. Hence, [x] = {x}. 

Assume that [x] = {x} for all x e P. Then ~ : P —> P is one-to-one. 

Since ~ : P —» P is a onto by the definition of ~, the mapping ~ is a poset 

isomorphism. Hence P = P. • 

Let P be a poset. We define 

T\[x\'-={/3'.P-+P\P([x])e[x]}, 
[X]€? 

and, for/? e fl [x], 
[x]eP 

S*:=p(P) = {p([x])\[x]e?}QP, 

We call (S%, < \SP) theyg-skeleton of P. We write <SP for < \se. 

Lemma 3.1.8. Let P be a poset and let ft £ fl [*]• Then 
[X]€P 

(1) x ~ P([x])for all x e P; 

(2) x e S$ ** x = P([x]); 

(3) let x,y e Sp with x ~ y, then x = y; 

(4) let x,y e Sp with x + y, then x + y; 
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(5) Sp is a subposet ofP, i.e., for x,y e Sp, x <SP y o x < y; 

(6)P = Sp
pforanype U [x]; 

[x]eP 

(7) P s P. 

Proof. (1) and (2) These proofs follow directly from the definition of the 

function p. 

(3) Let x,yeS$ with x ~ y. Then [x] = [y]. So x = /?([*]) = /?([y]) = y. 

(4) This proof follows from (3). 

(5) The proof follows from the definition of <sp, 

(6) The function f3 : P -» Sp is onto by the definition of /3-skeleton. Let 

A M ) = P(\y]), then [x] = [6(x)] = \fi(y)] = \y] since /?([*]) e [x] and 

A M ) € [y]> s o /5 is one-to-one. 

Let [x] < [y]. If [x] < [y], then/?([x]) < J3(\y]) by Lemma 3.1.5 part 

(4); if [x] = [y], then fi([x]) = j3(\y]). Hence £([*]) < £([y]). Suppose 

that/3([x]) < J3(\y]). There are two cases: in the first case, /?([x]) ~ /3([y]), 

thus x ~ j3([x]) ~ f3(\y]) ~ y; in the second case, /3([x]) * /?([y]), thus 

W = \fi([x])] < Wily])] = \y] since fi([x]) < /?([y]) with A W ) e [x] and 

/5([y]) € [y]. Hence, [x] < [y]. 

Therefore, P = S^. 

(7) By abuse of notation, we define ~ : P —> P by ~ ([x]) = [[x]]. Then 

~ is clearly onto. Let [[x]], [[y]] e P with [[x]] = [[y]], then [x] ~ [y] in P 

by Lemma 3.1.5 part (1), and [x] = [y] by Lemma 3.1.5 part (6). Hence ~ 

is one-to-one. 
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If M < [y] in P, then [[x]] < [[y]] in A If [[*]] < [[y]], then [x] ~ [y] or 

[x] < [y] with [x] + [y] by Lemma 3.1.5 part (5); [x] ~ [y] implies [x] = [y], 

since [[x]] = [[y]] and ~ is one-to-one. Hence, [x] < [y]. 

Therefore, P = P. n 

Lemma 3.1.9. Let P be aposet and(3 e n [x]. 
[x]eP 

(1) Ifx,y e P with x<y, then(5{[x]) < AM)-

(2)IfT QSp
pand u is a minimal upper bound ofT in P, then /3([u]) is a 

minimal upper bound of T in Sp. 

(3)IfT QS^and v is a maximal lower bound ofT in P, then A M ) is a 

maximal lower bound ofT in Sp. 

(4) Ifx Ay exists for x,y € P, then [x]A[y] exists in Pand[x]A{y] = [xAy]. 

(5)IfxVyexistsforx,y € P, then [x]V[y] exists in Pand[x]V\y] = [xVy]. 

Proof (1) Let x < y, then [AM)] = [x] < [y] = (AM)L by Lemma 3.1.5 

(5) either A M ) ~ J3(\y]) or A M ) < A M ) with J3[x] + J3\y]. Thus either 

A M ) = A M ) by Lemma 3.1.8 part (3) or A M ) < j3(\y]). Hence, in either 

case, A M ) < AM)-

(2) Let T c Sp and u be a minimal upper bound of T7 in P, then f < u for 

all r e T, thus [f] < [w] and t = AM) < A M ) for all r e T by (1). Hence, 

A M ) is an upper bound of T in 5^, and therefore, also in P. 

Let z be any upper bound of T in 5^. Then z is a upper bound of T in 

P and z j: u since w is a minimal upper bound of T in P. If z ~ w, then 

z ~ A M ) since A M ) ~ u> m u s z = A M ) by Lemma 3.1.8 part (3) since 
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z,j3{[u\) e Sp\ if z * w, then z £ [w]; since /2([w]) ~ u and z < w, we have 

z •£ /?([«]). So z r̂,/s /3(M). Hence yS([w]) is a minimal upper bound of T in 

zp. 

(3) This proof is dual to that of (2). 

(4) Let x,y e P, then either x ft y or x \\ y holds. If x ft y, we may 

assume that x < y. So [x] < [y] and [x] A [y] = [x] = [JC Ay]. Hence, we may 

assume x \\ y, then [x] || [y] by Lemma 3.1.5 part (2). Since x Ay < x, we 

have [x Ay] < [x]. Similarly, [x Ay] < [y]. Hence, [x Ay] is a lower bound 

of [x] and [y]. Let [s] be any lower bound of [x] and [y]. Then [s] < [x] 

and [s] < [y] since [x] || [y]. Thus, s < x and 5 < y by Lemma 3.1.5 part 

(4), so s < x Ay and [s] < [x Ay]. Therefore, [x] A [y] exists in P and 

[x]A[y] = [xAy]. 

(5) This proof is dual to that of (4). • 

3.2 Order Skeleton of a Lattice 

For completeness, we provide a direct proof that the relation ~ on a lattice 

L is a congruence relation. 

Lemma 3.2.1. Let L be a lattice. Then L is also a lattice, in fact, L = L/ ~. 

Proof. Let a ~ a\ and b ~ b\.W& claim that aV b ~ a\V b\. Lemma 3.1.9 

part (5) indicates that [a]v[Z>] and [ a i j v ^ ] exist, moreover [aVb] = [a]w[b] 

and [a\ V b{\ = [a\] V [b{]\ also since [a] = [a\] and [b] = [b\], it follows 

that [a V b] = [a\ V b{\. By Lemma 3.1.5 part (1) we have a V b ~ «i V Z?i. 

Dually a A b ~ a\ A b\. n 
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Corollary 3.2.2. Let L be a lattice, then ~ : L —> L is a lattice homomor-

phism. Hence, for x,y € L, [x V y] = [x] V [y] and [x /\y\ = [x] A [y]. 

An element x of a lattice L is called join-irreducible ( resp., meet-

irreducible) if x = \J A (resp., x = /\ A) for any finite subset A Q L implies 

that x e A. An element x is called join-reducible (resp., meet-reducible) 

if there exists a finite subset AQL such that x = \J A (resp., x = f\A) and 

x £ A. Thus, an element x e L is join-irreducible (resp., meet-irreducible) 

iff it is not join-reducible (resp., meet-reducible). Let J(L) and M{L) be the 

set of all join-irreducible elements of L and the set of all meet-irreducible 

elements of L, respectively. Let J~(L) and M~{L) be the set of all join-

reducible elements of L and the set of all meet-reducible elements of L, 

respectively. Thus, M~(L) = L - M(L) and J~(L) = L - J(L). Note that 

1 € M~(L) and 0 e J~(L\ since 0 is a finite set, 1 = /\ 0 and 0 = V 0- An 

element x is called completely join-irreducible (resp., completely meet-

irreducible) if, for any A c L, x = V A (resp., x = /\A) implies that x e A. 

An element x is called completely join-reducible (resp., completely meet-

reducible) if there exists some AQL such that x = \J A (resp., x = /\A) 

and x £ A. The set of all completely join-reducible elements and the set 

of all completely meet-reducible elements of L are denoted by J~(L) and 

M~(L), respectively; the set of all completely join-irreducible elements and 

the set of all completely meet-irreducible elements of L are denoted by JC(L) 

and MC(L), respectively. Thus M;(L) = L - MC{L) and j;(L) = L - JC(L). 

Obviously, J~{L) Q J;(L) and AT(Z) c M~C(L). Note that (1) 1 e M;(L), 
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since 1 = A 0 w i t h 1 £ 0; (2) 0 G J;(L), since 0 = V 0 with 0 £ 0. 

Lemma 3.2.3. Let L be a complete lattice with x e L. 

(1) If[x] n M~(L) ± 0, ftew [x] n M~(£) = {VW) W [x] € M~(L). 

(2) //[x] n .T(L) * 0, tf*e« [x] n J~(L) = {AW} awrf [x] e J~(L). 

(3) #"[*] n AT(L) n J~(L) * 0, //raw [x] = {x} awtf [x] G AT(Z) n J~(Z). 

(4) |M~(Z)| = |AT(L)| «/irf|./~(Z)| = \J~(L)\. 

(5) Lef V W e [x]. //"V W € MC(L) awe/ V W < 1, then |CVWI = 1. 

(6) Let A W G W- # A W e JC(L)) aw^/0 < AW, ^ « |C A W | = 1. 

(7) Let a e L and lety G [x]. If a \\ x, then x V a = y V a and x/\a-y/\a. 

Proof. (1) Suppose that [x] n M~(L) * 0. Lety G [x] n M~(L), then there 

exist a,b e L such that j = a A b and j g {a,Z>}, so a || 6 and 7r(y) =£ 7r(a); 

thus, we have y < a and y + a, so [y] < [a] by Lemma 3.1.5 part (3); 

therefore, z < a for all z e [y] = [x] by Lemma 3.1.5 part (4). Hence, 

VW ^ a ' similarly VW ^ ^; it follows that V W ^ oAfc - y. Since 

y e W> w e havey < VW- Therefore,^ = VW> i-e-> W n M~(L) = (VW)-

Since [x] = [y] = [a A b] = [a] A [b] and [a] \\ [b], we have [x] $ {[a], [b]}. 

Hence, [x] G M~(L). 

(2) This proof is dual to that of (1). 

(3) Let W n AT(L) n .T (L), then VW = AW with [JC] € M~{L)n ./~(Z) 

by (1) and (2). Since f\[x\<x< \J[x], it follows that [x] = {x}. 

(4) Define ~ : M~(Z) -> M~(L) by ~ (x) = [x]. We claim that ~ is 

onto. Since [0] G M~{L) and 0 e M~(L), we may assume that [x] G M~(L) 

and [x] gt [0]. Then there exists [a], [b] G Z such that [x] = [a] A [6] 
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and x £ {[a], [b]}. Thus, [a] || [6] and <z || £ by Lemma 3.1.5 part (2); so 

a Ab £ M~(L); since [x] = [a] A [6] = [a A b] by Corollary 3.2.2, we have 

~ (x) = ~ (a A b) = [x]. We claim that ~ is one-to-one. Let [y], [z] £ M~(L) 

with [y] = [z]. By (1) [y] n M~(Z) = VM and [z] n M~(L) = Vl>], so that 

~_1 (M) = V M = VM = ~_1 (W). Hence |M~(Z)| = |M~(L)|. Dually 

|J~(Z)| = \J~(L)\. 

(5) Let;/ = V W e Mc(L)n[x] andy < 1. We claim that Cy gt 0. Suppose 

not. Then;/ = A(T.y _ ivl) contradicting_y e MC{L). Let a e Cy. For any 

z > y, we have zjffl, otherwise, y = a Az <£ {a,z} contradicts y <t M~(L); 

also z £ a sincey < a, thus a < z. Hence, |Cy[x]l = \Cy\ = \{a}\ = 1. 

(6) This proof is dual to that of (5). 

(7) Let;/ £ [x]. By definition of ~, a || xiff a \\y. Since a £ n(x)-7r(xVa), 

we have x + x V a. Since x < x V a and _y ~ x, we have y < x V a, so 

y V <ar < x V a. Similarly x V a < y V a. Hence, x V a = y V a. Dually 

x A a = y Aa. • 

Figure 3.1 An example of a skeleton containing an interval which is not a 
skeleton. 
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A lattice L is a skeleton if L = L via a lattice isomorphism ~. Figure 3.1 

presents an example of a skeleton having an interval [x,y], which is not a 

skeleton. 



CHAPTER 4 

RESIDUATED APPROXIMATIONS 

AND UMBRAL MAPPINGS 

4.1 Residuated Mappings 

Let X, Y, Z be sets, we denote the composition of functions / : X -> Y 

and g : Y -> Z by g o / ; so (g o /)(x) = g(/(x)) for all x e X. 

Let P, Q be posets, a mapping f : P -> Q is isotone if it satisfies x < y 

implies f(x) < f(y) for all x,y e P; the mapping / is antitone if x < y 

implies f(y) < f(x) for all x,y e P. 

An isotone mapping / : P —> Q is a residuated mapping iff there is 

an isotone mapping g : Q —> P such that (g o f){p) > p for all p e P and 

(f°g)(q) < q for all ^ e Q. Such a mapping g is called a residual mapping 

corresponding to / . The following Lemma proves that such a g is uniquely 

determined by / . 

Lemma 4.1.1. Let f : P —> Q be a residuated mapping between two posets, 

then the residual off is unique. 

Proof Let g and h be residual mappings corresponding to / . Then for all 

q £ Q, g(q) <(ho f)(g(q)) = (hofo g)(q) = h((f o g)(q)) < h(q) since 

h and g are residual mappings corresponding to / ; so g(q) < h(q) and, by 

28 
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symmetry, we have h{q) < g(q). Hence g(q) = h{q) for all q e Q, i.e., 

g = h. D 

The following lemma proves that the concept of being a residuated map­

ping is dual to the concept of being a residual mapping. 

Lemma 4.1.2. Let P, Q be two posets. If f : P —> Q is a residuated map­

ping, then f : P* —» Q* is a residual mapping, and vice verse. 

Proof. Suppose / : P —> Q is a residuated mapping, then there is a residual 

mapping g : Q —> P such that (g o f)(p) > p holds for all p e P and 

(fog)(q) < q holds for all q e Q, so (gof)(p) <* p holds for all p e P* and 

if ° ^)(^) ^* q holds for all q e Q*. The mapping g is isotone from Q* to 

P* since, for q\, q2 e ^* with gi < 2̂? Q'l ^ ^2 holds in g andg^i ) > g{qi) 

holds in P, thus g(#i) < g(^2) holds in P*. Hence / is a residual mapping 

from P* to Q*. Similarly if / is a residual mapping from P to Q, then / is a 

residuated mapping from P* to Q*. • 

A residuated mapping / is also uniquely determined by the residual 

mapping g corresponding to / . Often we write g := f+ and / := g~, so 

f = g~ = (f+T :=f+-andg = f+ = (g-)+ := g" +. We write Res(P, Q) for 

the set of all residuated mappings from P to Q and Res+(Q, P) for the set of 

all residual mappings from Q to P. 

Let f : P —> Q and g : Q —» P be two antitone mappings between two 

posets P and £). The pair (/, g) is a Galois connection iff (g o /)(/?) > p 

for all /? e P and ( / o g){q) > q for all q e Q. We define Ga/(P, 0 := 
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{/ | / : P —> Q and g : Q —> P such that (/, g) is a Galois connection 

between P and 0 . The following lemma shows the connection between 

Galois connections and residuated mappings. 

Lemma 4.1.3. Let P and Q beposets. Every isotone mapping f : P —> Q is 

residuated iff the pair of mappings (f, f+) is a Galois connections between 

P and Q\ i.e. Res(P, Q) = Gal(P, 0 ) . 

Proof. Let / e Res(P, Q), then there exists an isotone f+'.Q-^P such 

that (J+ o f)(p) > p holds for all p e P and (f o f+){q) < q holds for all 

q e Q, thus (f+ o f){p) > p holds in P and (f o /+)(^) >* q holds in 0*. 

The mapping / : P —» Q* is antitone since / : P —> £? is isotone, and 

the mapping / + : Q* —> P is antitone since / + : £) —> P is isotone. So 

/ 6 Ga/(P, Q*). Hence 7?e5(P, 0 c Gal(P, Q*). It is similar to prove that 

Gal(P, Q*) c Pe^(P, 0 . Therefore Uej(P, Q) = Ga/(P, 0*)- n 

Information obtained regarding the computation of residuated mappings 

may be thought of as information obtained regarding the computation of 

Galois connection. In the sequel we consider only residuated mappings. 

By Lemma 4.1.2 and Lemma 4.1.3 we have the following corollary. 

Corollary 4.1.4. Let P and Q beposets. Then Res(P, Q) = Res+(P*, Q*) 

andRes+(P*, 0 ) = Gal(P, 0 ) . 

Let / : P —> Q be a residuated mapping between two posets with q e Q. 

We define f~l(i q) := {p e P \ f(p) < q). The following lemma gives a 

necessary and sufficient condition that an isotone mapping / is residuated. 
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Lemma 4.1.5. Given two posets P and Q, an isotone mapping f : P —> Q 

is residuated iff, for any q e Q, there exists a greatest element in f~l(i q). 

Proof. I f / is residuated, then there is an isotone mapping g : Q —> P such 

that (1) g(f(p)) > p for all p e P, (2) f(g(q)) < q for all q e Q. We 

have g(q) e f~l(i q) for any q e Q by (2). Now let z e / _ 1 ( i <?)> s 0 that 

/(z) < ^ and z < g(/(z)) by (1). Since g is isotone and f(z) < q, we have 

g(f(z)) < g(q), so z < g(/(z)) < g(q); therefore, g(q) is the greatest element 

™f-\lq). 

Conversely assume that, for any q e Q, there exists a greatest element in 

f~l(iq); call itg(q) so thatg : Q —» P. Then g is isotone since, for q\ < q2, 

it follows that/- ' (I tf i) c / " H i ^ ) , sog(^0 < g(q2). Sinceg(^) e / " H l ^ ) , 

f{g{q)) < q holds. Now, let p e P, then /(/?) e g and g(f(p)) is the greatest 

element in f~l{if{p)) by the definition of g; since /? is in f~\lf(p)), we 

have /? < g{f{p)). Hence / is residuated. • 

For / : L —> Q between two complete lattices, define 

Af{x):={qeQ\x<\J r\iq)l 

Lemma 4.1.6. Let f : P —> Q be a residuated mapping between two posets 

and I be an index set. If \J xa exists in P, then V f(xa) exists in Q and 
ael ae/ 

/ ( V * a ) = V/(*«)• 
ael asl 

Proof Let / : P —> g be residuated. If / = 0, then there exists 0 in P and 

V xa = 0; since / is isotone, we have f(\J xa) > V / (x a ) = 0 and there 
ael ael ael 
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exists 0 in Q; moreover, {xa \ a e 1} c f~l(l 0) and 0 e Af(\J xa) = 
ael 

Af(0), s o t h a t / ( V ^ a ) = /(0) = 0 = V/(*<*)• If / * 0. We have 

/ ( V xa) ^ f(xa) since / is isotone. Let q > f(xa) for all a e I, then 
ae/ 

/+(g) > f+(f(xa)) = {f+° f){*a) > xa and therefore f+(q) > V xa; hence 
ore/ 

<7 > if o f+){q) = /(/*(*)) > / ( V *«)• Therefore V /(**) exists in Q and 
ae/ are/ 

/ ( V * « ) = V / ( * « ) • n 
are/ are/ 

Let P be a poset and S c P . w e denote f(S) = {f(s) \s eS}. 

The following corollary shows that an isotone mapping between two 

complete lattices is residuated iff it preserves all existing joins. 

Corollary 4.1.7. Let f : P —> Q be an isotone mapping between two com­

plete lattices P and Q. Then the mapping f is a residuated mapping iff 

/ ( V xa) - V f(xa)for all index sets I with xa e P. 
are/ ae / 

Proof. By the Lemma 4.1.6, i f / is residuated, then / ( V xa) = V f(xa) 
are/ ae/ 

for all subsets {xa | a e 1} c P. Assume that / ( V xa) = \f f(xa). Let 
ael ae/ 

gfo) = V r H l q) for * € 0. If f \ l q) = 0, then / ^ ( i <?) £ /- ' (J , 0) 

and g{q) = 0, thus /(0) = 0. We may assume that / _ 1 ( i #) ± 0- Then g is 

isotone since, for qx < q2> f'\l q\) Q f~\l q2) holds, so g{qx) < g(q2). 

For p e P, we have g(f(p)) = V / _ 1 ( i f(p))\ since /? e / ^ ( i f(p)), it 

follows gC/-(p)) = \ff-\i f{p)) > p. Now let q e Q; then /(gfo)) = 

fiVf-'d q)) = V / C T H i ?)), and /(z) < <? holds for all z e / " H i ?), so 

/&(?)) = V f(f~l(l q)) ^ q- Hence, / is residuated. • 

file:///ff-/i
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4.2 Umbral Mappings 

4.2.1 Umbral Number 

In this section, let / : L —> Q be a mapping between two complete 

lattices L and Q. 

Define the mapping / ( + ) : Q —> L as follows; for q £ Q, 

f+\q) := \/{xeL\ f(x) < q) = \/T'dq)-

Define the mapping / ( _ ) : Q —> Z as follows; for q & Q, 

f~\q) := /\{xeL\q< /(*)} = / ^ ( T ? ) -

Define the mapping cry : Z, —> Q as follows; for x e Z, 

The mapping oy is called the shadow of/ in [2]. Note that 

crf(x) = f\Af{x) = /\{qeQ\x< \/r\iq)) 

= /\{qeQ\x<f+\q)} 

= (f+)t\x) = /+)(-}(x). 

A mapping / may be not isotone, but / ^ and / ^ are isotone. Since, for 

q\,qi e Q with q\ < q2, we have {x e L\ f(x) < qi} Q {x e L\ f(x) < q2}, 

so t h a t / % , ) = V ( x ^ l /(*) < 91} < V(* € L | /(*) < ?2} = f+\q2). 

Hence, /*+) is isotone. Similarly, we can prove that f^ is isotone. 

The proofs of the following theorems in this section are given in [2] or 

[8]. 
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Theorem 4.2.1. Let f : L —> Q be a mapping between two complete lat­

tices. 

(l)Iff is residuated, then f^ is the residual mapping f+, i.e., f^ = / + . 

(2) Iff is residual, then f^ is the residuated mapping f~, i.e., / ^ = f~. 

(3) Iff^ = f+, then o~f is residuated. 

(4) If f^ = f~, then o~f is residuated. 

Proof. (1) The mapping/^+) for any mapping/is always isotone. Lety e L, 

theny e {x e L \ f(x) < f(y)}, soy<\J{xeL\ f(x) < f(y)} = f+){f(y)). 

Let q € Q, then / + ) ( g ) = \/{x e L\ f{x) < q}. Let q e Q. By Corollary 

4.1.7 we have / ( / % ) ) = / (V{* e L \ f(x) < q}) = V /CO = 
ze{xeL\f(x)<q) 

V f{z) < q- Hence /^+) is a residual mapping corresponding to / . Since 

/ + is the unique residual of / by Lemma 4.1.1, we have f^ = f+. 

(2) This proof is dual to (1). 

(3) Note that crf(x) = /\Af(x) = Aiq e Q \ x < / + ) (#)} . I f / + ) is 

residual, then Af(x) has a least element qx. Also x < f^+\qx) ^ f^+\q) 

holds for any q e Af(x) since / ( + ) is isotone. Hence q e A/(x) <=> qx < q <=> 

x < / % ) . 

(4) This proof is similar to (3). • 

Let f : L —> Q and g : L —> Q be two mappings between two posets. 

Define / < g to mean that /(x) < g(x) for each x € L, sometimes we write 

g > f for / < g. We say / is "dominated by" g if / < g. 
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Theorem 4.2.2. For any mapping f : L —> Q between two complete lattices 

L and Q, there is a largest residuated mapping p/ dominated by f. 

Proof. Let H := {h : L —> Q\ h < f and h is residuated}. Then H + 0 since 

there exists 0 in Q and the mapping g satisfying g(x) = 0 for all x e L is 

contained in H. Define p/(x) := V Kx) f° r all * € L. Since h < / , we have 

P/ = V h < f. 

We claim that pf is residuated. Let SQL. Since /?(V S) = V ^C5) f° r 

any/ze / / ,wehavep / (V5*)= V ^ ( V ^ ) = V (V K*)) = V( V Ks)) = 
h&H heH ssS szS h&H 

V Pf(s). By Corollary 4.1.7 p / is residuated. Since any residuated mapping 

dominated by / is less than or equal to py, the residuated mapping py is the 

largest residuated mapping dominated by / . • 

Following the definition in [2], we call the p/ in the previous theorem the 

residuated approximation off. 

For any ordinal number a, we define the umbral mapping cr^ as fol­

lows: 
f or = 0, 

cr" (x) := < cry \ for a successor ordinal a, 

f\ oy, for a limit ordinal. 

In Theorem 4.2.3 we prove that, for any mapping / : L —> Q between 

two complete lattices L and Q, f > o~f > cP^ > ... > p / is true. Moreover, 

we prove, in Corollary 4.2.10, that there always exists a least ordinal a such 
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that crty = p/. We call this a the umbral number u/ off. 

Theorem 4.2.3. Let f : L —» Q be a mapping between two complete lat­

tices. Then 

(1) erf is isotone; 

(2) pf<o-f< f; 

(3) ifo~f is residuated, then o~f = pj; 

(4) iff is residuated, then f — o~f - pf. 

Proof. (1) Since oy = (/(+))(_-) is the composition of two isotone functions 

f^ and f(~\ o~f is isotone. 

(2) For i e I , we have cry(x) < f(x) since f(x) e A/(x). Let q e ^/(x), 

then x < V/_1(vl #); since p / is a residuated mapping under / , we have 

pf(x) < Pf{yr\iq)) = v P/(W) = v P/W < v /(w) < ?. 
we/ - ' ( ^ ) / (w )< 9 / (w )< 9 

Hence p/(x) < /\ ^4/(x) = cry(x), so p/ < erf. 

(3) If o-f is residuated, then cry < p /by Theorem 4.2.2; and since pf < o~f 

by (2), we have cry = pf. 

(4) If / is residuated, then / < pf, and since py < / by (2), we have 

/ = pf. Therefore / = o~f = pf. • 

Let Q1 be the set of all mappings from a complete lattice L to a complete 

lattice g, i.e., ^ := {/ | / : L -» 0 }• We define uLQ := V wy and 

«z, := \/{UL,Q I g is any complete lattice } if uL exists. 

Theorem 4.2.4. Let L be a complete lattice. IfL is completely distributive, 

then, for any complete lattice Q and any f : L —» Q, f^+^ is residual and o~f 
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is residuated, i.e., ui = 1. 

Proof. Let K Q Q. For any q e K, {x | / (*) < A ^ } £ {* I / (*) ^ q)\ i.e., 

^A^ - ^?- Thus V A/\K<\/ Aq. Since L is completely distributive, 

V ^ A K ^ A(V^) = V ( A « ( # 

Let m e Y\ Aq and go € ^- Then m(#o) £ ^ 0
 a n d f(m(ao)) ^ #o- Since 

A /»(?) < m(^o), we have / ( A m(q)) < f(m(q0)) < q0, thus A ™{q) e Aqo 

q£K qzK q€K 

and A m(a) e 0 Aq = A^K, hence A m(#) ^ V^A*" anc^ 
geA" geAT geAT 

V ( A « ( ? ) ) < V ^ 
we f l Aq qeK 

qeK 

Therefore, V ^ A * = A ( V ^ i.e., f+(AK) = A f+(q). By Theorem 
q&K qeK 

4.2.1 part (3) cry is residuated. • 

The proof of the following corollary is similar to the above proof. 

Corollary 4.2.5. Let f : L —» Q be a mapping from a complete lattice L 

to a finite lattice Q.IfL is infinitely distributive, then the mapping f^+^ is 

residual. 

4.2.2 Some Insight into Umbral Mappings 

Lemma 4.2.6. Let L and Q be complete lattices. Iff : L —> Q is an isotone 

mapping with x e L, then 

(1) T/(*) £ Af(x) andcrf(x) = f(x) A ( A W * ) - T/(*))), 

(2) oy(jc) < fix) implies Af(x)~ 1f(x) t 0. 
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Proof. (1) Let q e T / 0 ) , then x < / + ) ( / (x ) ) < f+\q) and g € Af(x). Thus 

T / 0 ) £ Af(x). Hence 

°"/(x) = f\AAx) 
= /\((T/W) u (^(x) - T/(*))) 

= ( A ( T / ( * ) » A (A w x ) - ?•/"<*>» 
= /(*) A (/\(Af(x) - T/(x))). 

(2) This can be deduced directly from (1). • 

Lemma 4.2.7. Let f : L —> Q bean isotone mapping between two complete 

lattices L and Q. 

(\)Ifqe Af{x), then *\q c ,4/(x). 

(2) Ifq £ A fix), then IqD Af{x) = 0. 

(3) IfL = (la) U (To) and fid) £ q, then f+)iq) < a. 

Proof. (1) Let q e ^/(x). For g0 e T tf, we have JC < / + ) ( ^ ) < /+ )(^o) and 

go ^ ^/0*0- Hence ^q Q Af{x). 

(2) Let 4 t Af{x), then x £ f+\q). If g0 e J, g, then / % 0 ) < / % ) 

and x £ f^+\qo), so go £ ^/(*)- Hence | g n ^4/(x) = 0. 

(3) Let £ = (1 a) U (t a) and / (a ) £ q. Suppose f+\q) £ a. Then 

a < / ( + )(^) holds since L = (ia)U (fa). There exists xo e {x e L \ fix) < q) 

such that a < XQ\ otherwise, any element in {x e L \ fix) < q) is less than or 

equal to a, so f^+\q) = \/{x e L \ fix) < q) < a contradicting f^+\q) £ a. 

Thus, fid) < /(XQ) < q since / is isotone, which contradicts fid) £ q. • 



39 

Theorem 4.2.8. Let f : L —» Q be an isotone mapping between two com­

plete lattices. Then f is residuated ijfo~f{x) = fix) for all x e J~(L). 

Proof. By Corollary 4.1.7 we need only to show the sufficiency. We claim 

that f{\J A) = V f(a) for any A c L. We have f{\] A) > V f(a) since 
aeA aeA 

f is isotone. If \J A e A, we have f{\J A) = V f(a) because \f A e A. 
aeA 

lf\/A £ A, then \J A e J;(L) and f{\J A) = o~f{\J A) by the hypothesis. 

Since a e / - 1 } ( V f(a)) for all aeA, it follows that A c / - ^ V f{a)) and 

VA < V/-°( V /(«)), thus V /(a) € ^ V 4 so o-fWA) < V /(«); 
oe^ aeA aeA 

hence, / ( V ^) = oy(V ^) < V /(«)• Theorefore, / ( V -4) = V /(*)• • 

The length of a chain consisting of r+1 elements, say xo < x\ < ... < xr, 

is r. The height of a poset P is the least cardinality which is greater than or 

equal to the length of any chain in P; we denote it by height(P). 

Example 4.2.1. For the isotone mapping / in Figure 4.1, of is residuated, 

but cr) is not, so u/ = 3 > 2 = height(Q). Thus, Uf is not necessarily 

bounded by the height of Q. 

If / : L —> Q and a,b e P with a < b, then the restriction of f to the 

interval [a, b] is denoted by f\[a,b]- Thus ay|[0iA] : [a, b] —» £? *s m e shadow of 

the function /|[a>&], and cryl^j is the restriction of cry to the interval [a, b]. 

We now show that these functions may be different. 

Example 4.2.2. For the isotone mapping / in Figure 4.2, o-f\[ab] is a one-to-

one mapping while o-f\\a,b] is the zero mapping, which is not one-to-one, so 
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/ 

rr{2) 

°f 

rr (3) 

Figure 4.1 An isotone mapping /with uj > height(Q). 

f /I Ml = aS\[aM 

^f aS\[a,b) 

•b-S 

Figure 4.2 An example of a mapping / with o-f\[ab] ±<Jf\\a,b\-

Let P and Q be disjoint lattices with x, 1 e P and 0 j 6 2 s u ch m a t 

[x, \]p = [0,y]Q, and let cp : [x,l]p —» [05<y]g be a lattice isomorphism. 

Then the quasi vertical sum of P and Q (over [JC, 1], via <p), denoted by the 

symbol QVS(P, Q, [x, l]P, ip)t or QVS{P, Q) if [x, 1> and cp are understood, 
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is the disjoint union of P - [x, 1] with Q and is partially ordered by the rule 

u<v inQVS{P,Q,[x,\]P)i? 

(1) u, v E P - [x, l]p with u <P v, or 

(2) u e P - [x, \]P and v e [0,y]Q with u </> <£_1(v), or 

(3) u,v e Q with w <g v, or 

(4)u e P -[x,l]P,v e Q- [0,y]Q and there exists w e [0,y]Q such that 

w <Q v and w </> ^_1(w). 

The Hasse diagram for QVS(P, Q, [x, \]P) is obtained by placing the di­

agram for Q over the one for P, overlapping [x, \]P with [0,;/]g. 

If xp = \p (and, therefore,yQ = Og), then QVS(P, Q, [x, \]p) is the quasi 

vertical sum of P and Q over {1^}; we call it the vertical sum of P and Q, 

and denote it by VS(P, Q). Thus, every vertical sum of lattices is a (trivial) 

quasi vertical sum of lattices. The Hasse diagram for VS(P, Q) is obtained 

by placing the diagram for Q above the one for P, then removing \p from 

the resulting diagram. Loosely speaking, one may think of identifying Og 

with \P and taking the transitive closure of <Q U <P for the ordering on 

VS(P, Q). The most important elementary fact about VS(P, Q) is this: if 

xePandye Q, thenx <y in VS(P, Q). 

Example 4.2.3. Let n be an integer greater than 0. Figure 4.3 presents a 

lattice Ln and an isotone mapping / : Ln -» Ln with Uf = n, showing that 

the umbral number of an isotone mapping / might be any positive integer. 

We now define the lattice Ln inductively. The Mi is the nondistributive 
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lattice having five elements consisting of the bounds and three atoms a, b, c 

given in Figure 2.1, thus M3 is a quintuple (a, b, c, 0,1) such that a, b and 

c are both atoms and coatoms. Let Pr be a family of disjoint copies of 

M3, let cii be the element of/5, corresponding to a in M3. Define Li to be 

Pi and L2 to be the quasi vertical sum of P2 and L\ over [a2, l]/»2; there 

exists a lattice isomorphism ^ such that ^(#2) - ®LX
 a n d <£>(lp2) = a\, i.e., 

L2 = QVS(P2,L\, [a2, l]p2). Assuming that the lattice Z,„ has been defined, 

the lattice Ln is the quasi vertical sum of Pn and Ln-\ over [a„, l]/>n, i.e, 

Ln = QVS(Pn,Ln-\, [a„, l]p„). The bounds of L„ are an+\ and #0- For each 

i, Lt-\ = [at, GQ\. For convenience, we regard L/_i as the sublattice of Lt for 

1 < / < n, in the natural way L,-_i = I,-|[a/>fl0]. 

The isotone mapping f : Ln —> Ln is defined to be: 

a\, if x e {ao,a\}, 

fix) := 02» ifx e («2,<30) - {<3i}, 

x, otherwise. 

It is easy to verify that 

crf(x) = \ 

ci2, if x e {cio,a\}, 

«3, if x e (#3,^1) - {«2}5 

/(x), otherwise. 



/ °f 

On-1 

an+l 

O-n-l 

&n+l 

,(2) 

«0 0 

2̂ 4 

(n) 
af'.ZPf 

^K^~^ 

^~^>^ys-\-. 

«3 

On-1 

an 

Mi, . • - * • - ; • > . 

«n+l 

ivn Ln 

Figure 4.3 An isotone mapping / : L„ —> Z„ with w/ = «. 

Iterating to obtain the umbral mapping ay , we have 

ai+x, if x G {«;_!,«/}, 

°"/ (*) = ^ <2/+2, if X € (ai+2, at) ~ {«/+!}, 

Finally, 

r0-i) cry ;(x), otherwise. 

o*\x) = 
an+\, if x € [an+\,an-\], 

l»-\) cr\ \x), otherwise. 
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It is easy to verify that crP preserves joins, so that the mapping cry is 

residuated, i.e., cry - p/ and w/ = n. 
oo oo 

Let 0 £ |J A and define the lattice Lu := {0} U (J Lz, with the induced 

ordering (making 0 the bottom element). Since L„ is a sublattice of Lm if 

n < m, the function fn : L„ ^ Ln induces a function / : Lu —> L^ as 

follows: for x e Z,w, /(x) = f„(x) if x e Z„; if x e Ln D Lm with n <m, then 

L„ is a sublattice of Z,OT, so fm{x) = y^(x). The umbral number uj might be 
CO. 

It is an open question as to whether or not, for any ordinal number a, 

there exists a lattice Ma and a function / : Ma —> Ma such that u/ = a. 

Example 4.2.4. Figure 4.4 gives another example to show that, for an isotone 

mapping f : L —> Q from a lattice Z, of height 2 to a lattice Q, the umbral 

number u/ of / might be any positive integer. Let L be the horizontal sum 

of In {n > 2) chains of height 2 and Q := {0,1} U {Z>u | 1 < i < n - 1} U {by \ 

1 < i < n - \, 2i < j < Ai - \). Define < on L to the following transitive 

closure of the relation 

(bi,i,bi+hi), 0<i<n-l 

(bt,u bi+lJ), 0<i<n-\,2i<j<4i-\ 

(biA, bi-ij, \<i<n, 2(i - 1) < j < Ai - 1) 

(bij, bi+YJ, \<i<n~2,2i<j<Ai-\) 

^Qn=< 



1 ---- . 6o,i 

Figure 4.4 An isotone mapping / from a lattice L of height 2 to 
Q such that Uf-n. 

The isotone mapping f : L -* Qis defined to be: 

/ ( * ) := 

&o,i. i f* = 1, 

b„y\, if x = 0, 

b\tu ifxe{ai,a2), 

b\j, ifx = aj+i,j>2 
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It is easy to verify that 

(Tf{x) 

buu if xe {I,aua2}, 

60,i, ifx = 0, 

b2,\, ifxe{a3,a4}, 

\b2j, if x = aj+l, j > 4. 

Iterating to obtain the umbral mapping cry, we have 

bn, if x e {\,a\,a2, ...,a2i-\,a2i], 

of(x) = \ 
bot\, ifx = 0, 

bi+\,i, ^x e {a2j+i,a2i+2}, 

bt+ij, if x = aj+u j > 2i. 

Finally, cr"\x) = 0 for all x e L, hence Uf = n. 

Let / : L —> Q be a mapping between two finite lattices. If Uf > 2, then 

the decreasing sequence / > oy > cry > ... > p / is finite. The image of 

any element decreases at most height(Q) times before it reaches 0; thus all 

elements are mapped to 0 in less than \L\ x height(Q) iterations of umbral 

mapping. Hence uj < \L\ x height(Q). 

Given two complete L and Q, the following lemma in [7] gives the upper 

bound of Uf for all / : L —> Q. 

Lemma 4.2.9. Let f : L —» Q be any mapping between two complete lat­

tices. Then UL,Q < \L\\Q\. 
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Proof. Let S := {cr^ QLxQ\ a is an ordinal number and cr^ ± cr{"+x)). 

Since cr^° e 0 1 for all ordinals number a, it follows that \S\ < \Q\{L] and 5 

is a set. For any ordinal number a, there exists xa e L and qa £ Q such that 

^ a ) (x a ) = <?a > o * + W Define g : <S -* L x g by g ( ^ a ) ) := (xa, <?a). We 

claim that g is one-to-one. Suppose that cry, cry e S and g(cry) = g{cr:), 

then (xa, qa) = gip^f) = gicrf) = (xp, qp), so xa = x^ and ga = qp. We 

claim that a = /?. Suppose not. We may assume that a < /S; since a + 1 < (3 

and xa = x^, we have qp = cry(xp) = crj.\xa) < cr?+ \xa) < cr?\xa) = qa 

contradicting qa = qp- So a = B and cry' = cry. Therefore, g is one-to-one 

and |5 | < \L\\Q\. • 

Corollary 4.2.10. Let f : L —> Q be a mapping between two complete 

lattices. Then there exists an ordinal number a such that cry = pf. Hence 

the residuated approximation can always be calculated using the umbral 

mappings. 

4.3 Umbral Mappings Based on ~ Finite Lattices 

A lattice L is called a ~ finite lattice if, for all x e L, [x] is a finite chain. 

Lemma 4.3.1. Let L be a ~ finite lattice with x e L. 

(1) The subset [x] is a finite chain. 

(2) Both /\[x] and \J[x~\ exist, and /\[x], \J[x] e [x]. 

(3) Ifx e J~(L), then x = f\[x}. 

(4) Ifx e M;(L), then x = \J[x]. 
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(5) Let A c L. lf\j A £ A, then, for any u e A, there exists v e A such 

that [u] || [v] or [u] < [v], i.e., there is no w e A such that [a] < [w]for all 

a e A. 

(6) Let A c L. If \/A £ A, then V(AM) = V(VM)-
aeA aeA 

Proof (1) and (2) come directly from the definition of ~ finite lattice. 

(3) Let x e 7~(L). Then there exists A Q L such that x = \J A and 

x <£ A. By Lemma 3.1.5 part (9) we have i x = [AW,x]U 1(AW)> s o that 

x = \jA = y(An lx)=y(An([/\[x],x]u i(AM))) = (V(^[A[x],i]))v 

(\/(An J, (AW)))- W e claim that A n [AW.*] = ®> otherwise it is a subset 

of a finite chain [x], namely A n [AW. *]> and x = \J(A n[/\[x],x]), thus 

x e A contradicting x g A. Hence x = \/(An J, (A[x])) and x < /\[x]; also 

since /\[x] < x is always true, it follows that x = AW-

(4) This proof is dual to (3). 

(5) Let x = \J A. Suppose that there exists w e A such that [a] < [w] 

for all aeA. Then a < \f[w] for all a e A, so x = \J A < \J[w]. Since 

x - V A £ A, the element x is a completely join-reducible element; thus, 

x - AW by part (3)- Since w < x = AW and M is finite, we have 

[w] < [x] and V M < x- Hence x < \f[w] < x, a contradiction. 

(6) We have V (AW) < V A < V (VW) since /\[a] < a < VW for all 
aeA aeA 

aeA. Let z = V (AM)- Since L is ~ finite and AW ^ z for all a € A, we 

have [a] = [AM] ^ M for all a e A. Since there is no element w in A such 

that [a] < [w] for all a e A, but [a] < [z] for all a € A by part (5), it follows 
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that z <£ A, so that [a] < [z] for all a e A, thus, \/[a] < z for all a e A, so 

V ( V W ) ^ = V (AM). Hence \ M = V ( A M ) = V(VM)- • 
a€y4 aeA aeA aeA 

Let I be ~ finite with x e L. Then /\[x] exists for all x e £ since [x] is 

finite. We define 

x0 := AW-

The mapping f30, defined by/30(x) := x0, is in F] W- The yS0-skeleton, 
[x]€l 

(£o, ^ l i j , of a ~ finite lattice L is defined to be 

A nonempty subset Mof a lattice L is a join subcomplete sub-semilattice 

(resp., meet subcomplete sub-semilattice) if it is closed under arbitrary 

existing joins (resp., meets) of nonempty subsets of M, as calculated in L, 

i.e., if 0 ± S c Mand \fLS (resp., /\LS) exists, then \/LS e M(resp., 

/\LS e M). A nonempty subset of a lattice is a subcomplete sublattice 

if it is both a join subcomplete sub-semilattice and meet subcomplete sub-

semilattice. 

Theorem 4.3.2. Let L be a ~ finite lattice. 

(i) J;(L) = rc{L0). 

(2) L0 is a join subcomplete sub-semilattice ofL. 

Proof. (1) Let x e J^iL). Then there exists A c L such that x = V ^ £ A. 

By Lemma 4.3.1 part (6) x = V #o and by Lemma 4.3.1 part (3) x = x0, 
aeA 

thus x e L0 and a0 e L0 for all a e A. So x is the least upper bound of 

{ a0 | a e A } in L0 and x g { a0 | a e ,4 } since «0 < a < x for all aeA. 

Hence, x e J~{L0) and J~(L) c J~{L0). 



50 

Now let JK e J~(L0). Then there exists T c L0 such that y = VLo T and 

y t T. Since T Q L andy € L, y is a upper bound of 7 in L andy <£ T. Let z 

be any upper bound of T in Z,, then [t] < [z] for all t e T,so by Lemma 4.3.1 

part (5) [t] < [z] for all t e T. Thus, z0 e L0 and f < z0 for all f e T. Since 

z0 is a upper bound of 71 in L0 and _y = \JLo T, we have _y < z0 < z, so that 

y is the least upper bound of T in L. Hence, y e J^{L) and J~(X0) c J~(L). 

Therefore, J~(L) = J~(L0). 

(2) This follows from part (1). • 

Let / : L —> Q be a mapping from a ~ finite lattice L to a complete lattice 

Q, define / 0 : L0 -» £> by 

/o '•= f\L0-

Lemma 4.3.3. £ e / / \ L —> Q be an isotone mapping from a ~ finite lattice 

L to a complete lattice Q, then Of = of\L ofor any ordinal number a. 

Proof. If a = 0, then a-f = f0 = f\Lo = of\Lo by the definition of f0. 

Suppose that of = of\Lo for all0 < a. If a is a limit ordinal number, 

then ay = f\Of = A (07 L0) = 07 l v If or is not a limit ordinal, then 
Jo p<a Jo /3<a J J 
>)=A<rf»=A(<rf U = ̂ l 
Jo j3<a Jo p<a J J 

afl) = of~\0 holds for an ordinal a. We claim cr(f = v{f\Lo- Recall 

that, for all x e L, Aa^){x) = [q e A \ x < \f(crfl))-l(i q)) and, for 
f •* 

all x e L0, A^a-x^x) = {q e Q\x < V C ^ r ' V C l q)}. Now fix x € L 
fo J° 

and let j^ e A^-v^x). Then x < \J{o\ ') (iy). Moreover, we have x < 
fo J° 

N&£Wly) < Vivf-'Yily) since (afl))-\iy) c (crf-l)y\ly) 

holds, thus y e A^a-i^x) and A^a-\)(x) c A^a-i^x). Now let z e A^a-»(x) 
f fo f f 
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andS := (tf'Wlz), then x < Mipf'Wiz) = \fS.U\JS eS, then 

<r(?-l\x) = o-(f_1)(x) < o-(f_1)(V 5) < z, thus z e A^-^x) by Lemma 4.2.6 
•/o w - " / w ^ " / v v « / - = ' . — - - ^ ^ 

part (1), so /* <*-•)(*) c ^ ( «-D(X) . If V S £ S, then V 5 = V $o by Lemma 
/ °̂ seS 

.(«-D^ ^ c // ./v\ * ^ ,>-!),«. ^ - ^(«-D/ 4.3.1 part (6); thus V 0 7 Vo) e 4 ^ 1 (*) and o ^ u(s0) = crK"~L,(s0) < 
S€S J° J° J° J 

cr(?-l\s) < z for all s e S. Hence V o-{^l\s0) < V <r{?~l\s) < z and 
3 szS Jo s<=S J 

z e A^a-\)(x) by Lemma 4.2.7 part (1). So A^a-i^x) c Aa(a-\){x). Therefore, 
fo 

.(<*) _ ^ ( o O l D ^ (ff-i)(x) = Aia-»(x) and cry = <ry\Lo. 
"f U fo J° J 

By the Lemma 4.3.3 we have the following conclusion. 

Theorem 4.3.4. Let f : L —» Q be an isotone mapping from a ~ finite 

lattice L to a complete lattice Q. Then 

(1) cry is residuated iff cry is residuatedfor any ordinal number a, 
Jo J 

(2) uf = ufo. 

Proof. (1) By Theorem 4.2.8 cr{f is residuated iff cr(?+1)(x) = cr{f(x) for 
Jo Jo Jo 

all x e J:(L0); we have cr(
f
a+1)(x) = cr{"+l\x) and cr{f(x) = cr{f{x) for all 

J Jo J Jo 

x e j;(L) by Theorem 4.3.2 part (1) and Lemma 4.3.3, cr^+1)(x) = af\x) 

for all x e J~{L) iff erf is residuated by Theorem 4.2.8. Hence, erf is 

residuated iff erf* is residuated. 

(2) This follows directly from part (1). a 

Corollary 4.3.5. Let f : L —» Q be an isotone mapping from a ~ finite 

lattice L to a complete lattice Q. IfL0 is completely distributive, then o~f is 

residuated. 



52 

Proof. Since L is ~ finite, L0 exists. Let / : L -» ^ be an isotone map­

ping and / 0 = / | i o . Since L0 is completely distributive, the shadow o~fo is 

residuated by Theorem 4.2.4; thus, oy is residuated by Theorem 4.3.4. • 

Let L and Q be finite lattices. Then there are |£)||L| different mappings 

/ : L —> Q from L to Q. In order to calculate UL,Q, we need to check ev­

ery mapping / ; if / is isotone, then we iterate its umbral mappings until 

we obtain p/, the iteration number is «/. We use the constant c to stand 

for the average time for the calculation of one shadow, such a constant c 

depends on the program that calculates the shadow of / and the computer 

running the program. The total time Totaliu^g) to calculate UL,Q is ap-
ieiILI 

proximately Total{ui Q) = c * YJ uf\ le t fo — f\i , then the total time 
fzQL 

\Q\\Lo\ 

Total{uLo,Q) to calculate uLog is Total{uLo,Q) = c * £ ufo. If \L0\ < \L\, 
MQL° 

then Total{uLotQ) «c Total(uLtQ) yet uLtQ = uLotQ. 

Theorem 4.3.6. Let S be a subcomplete lattice of a complete lattice L and 

the mapping f : S —> Q be an isotone mapping from S into a complete 
A 

lattice Q with f(0s) = 0. Then there exists an isotone mapping f : L —» Q 

such that o-f\s = cry for any ordinal number a. 

Proof. Define xs := /\((\x)nS) for* e L. Thenx5 e S. Forx € S, xs = x, 

we define f(x) := f(xs). We claim that / is isotone. Let x,y e L with x <y, 

then(T.y)nS Q (U)nS, thusxs <ys. Hence/(*) = f(xs) < f(ys) = f(y). 

We will prove that oty = o*?\ a n d o~^\®s) = 0 for any ordinal number a. 
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Let a = 0, then (rf\s = f\s = / = o-f and /(0) = /(0) = 0 by the 

hypothesis. 

Suppose that <rf\s = erf and crf\s(0) = crf (0) = 0 for allyS < a. If 
J J J J 

a is a limit ordinal number, then cr^\ = /\ (crf'ls) = A °g - °"? and 

o-(?\(0) = cr(Qr)(0) = 0. If or is not a limit ordinal number, then cr(a_1)|5 = 

rf-l) and <rf-l\0s) = 0. Obviously tf\Os) = 0. Let g := £r^_1) and 

g := cr(f)_1. Then g_1(l q) and &_1(i #) f°r any ^ e g are nonempty since 

g(05) = 0. Ifg(x) < g(\s), then (|x) n 5 * 0, thus x < A((T*) nS) = x5. 

If^<g(l5),then 

\fg-\lq) = V{x e £ I &*> = ^f"1^ = ^F1^) = S(^s) < q) 

= \J{xseS\g(xs)<q} 

= \Jg~\lq)-

we have that, for x € S, 

= /\{qzQ\*<\Jg-laq)} 

= g(x) A /\{q < g(\) \giqmdx< \fg-\iq)} 

= g(*s) A /\{q < g(ls) I g(xs) £ q and xs < \J g~\lq)} 

= /\{qeQ\xs<\/g-laq)} 

= Crg(xS) = (T(p(xS). 

Therefore, cr{p\s = erf and (r{p\s(0) = cr^\0) for any ordinal a. • 

file:///fg-/lq
file:///fg-/iq)}
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A pentagon is a quintuple (a, b, c, u, v) such that a, b, c,u,v e L, ct\a - v, 

cV b = wand v < b < a < u. Let & := {M3, Lu L2, L3, L4, L5, L6, L7, L%} be 

the lattices presented in Figure 4.5. 

LQ L-J L§ 

Figure 4.5 Non-distributive lattices. 

Lemma 4.3.7. Let L be a lattice. Ifo~f is residuated for any isotone map­

ping f : L —> N$, then L does not contain a sublattice isomorphic to a 

lattice in J£'. 

Proof. Suppose that L contains a sublattice S isomorphic to a lattice in &'. 

Use the labeling in ^ , note that S = {0,1, a,p,y, aV/3,/3 V 7, a Aj3,j3 A 7} 

where 0,l,a,j3,y are distinct and fixed while others might not be distinct. 

Let Q := {u, v, w, 1 Q, 0Q} be a pentagon. 
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Let fs : S —> Q be the following mapping, 

0 e , i f x e {O.orAjS}, 

/̂ W = 

l e , i fxe{l ,aV/? , /?Vy}, 

v, if x = a, 

w, \fx=P, 

u, if x = 7, 

v, if x = a A y > 0. 

It is easy to verify that fs is isotone and 

aA/3, ifq = 0Q, 

\f^l(iq) = 
1, if qe{u, l e } , 

or, if g = v, 

I/?, if# = w. 

Thus, crfs{a) = /\{V,U,IQ) = v and cr/s(/3) = /\{U,W,IQ} = 0, but 

o-fs(a Vj3) = u. It follows that o-fs(a V/?) = u ± v V 0 = (Tfs{a) V <Tfs(/3). 

By Theorem 4.3.6, there is an isotone mapping / : L —> Q such that 

crf(a V /3) = crys(ar V/3) £ ays(a) V (Tfs{J3) = crf(a) V (rf(/3). Hence cry-

is not residuated. n 

Lemma 4.3.8. Let f : L -* N5 be a mapping from a ~ finite lattice L into 

N$. Ifcrf is residuated for any isotone mapping f, then L has no sublattice 

isomorphic to a lattice in 3£. 
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Proof. Suppose that L has sublattice S isomorphic to a lattice in &. By 

Lemma 4.3.7 there exists g : S -» N5 such that crg is not residuated, by 

theorem 4.3.6 there exists f : L -> N5 with f\s = g such that ay is not 

residuated. • 

The following lemma is given in [16]. 

Lemma 4.3.9. Let L be a lattice. The following statements are equivalent. 

(1) no sublattice ofL is isomorphic to a lattice in &'. 

(2) L is distributive. 

Specializing to the case in which L is a lattice with no infinite chains, we 

have the following theorem. 

Theorem 4.3.10. Let L be a lattice with no infinite chains. The following 

statements are equivalent. 

(1) cry is residuated for any complete lattice Q and isotone mapping 

(2) L has no sublattice isomorphic to a lattice in 3?. 

(3) L is distributive. 

Proof. (1) => (2) follows from Lemma 4.3.8. (2) => (3) follows from 

Lemma 4.3.9. We only need to prove (3) => (1). Let / : L —> Q be an 

isotone mapping from L to a complete lattice Q. Let L be distributive. Since 

L has no infinite chains, L has no infinite chains and, for any SQL, there 

exists a finite subset A of L such that \J S = \J A. Thus, Z is distributive 
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implies L is completely distributive. Since L0 = L, it follows that L0 is com­

pletely distributive. Thus, oyo is residual by Theorem 4.2.4. Hence ay is 

residuated by Theorem 4.3.4. n 

Let {Li)i€j be a collection of pairwise disjoint bounded lattice such that 

\Lt\ > 3 and |/| > 1. Let P = \J(Lt - {0,-, 1,-}) be partially ordered by the rule 

x < y iff there exists i e I such that {x,y} e Lj - {0,, lz} with x < y in Lt. In 

[1], the horizontal sum of {£/},-<=/ is the lattice formed by adjoining a largest 

element 1 and a least element 0 to P and is denoted L - HS(Lj : /' e /) . 

Some elementary facts about horizontal sum of {Li}iej are: 

(l) |Col> l a n d l C 1 ^ 1. 

(2) If x e Li - {Of, 1/} and y e Lj - {0y, ly} with i £ j , then x \\ y in 

HS{Li :iel). 

(3)0 ^ 1. 

The lattice L in Figure 4.6 is not ~ finite. The skeleton L is distributive 

does not imply that ay for an isotone mapping / is residuted. In this exam­

ple, [a, b] is an interval by N© 1 and Q is the horizontal sum of a chain with 

3 elements and N© 1. In this figure, N is denoted by the dotted lines and the 

mappings are depicted by the dashed lines; any integer iL in [a, b] is mapped 

to the corresponding integer ig of Q by the isotone mapping / . Note that L 

is isomorphic to 3 which is a distributive lattice of width 3 and 9 elements, 

but <Tf is not residuated because V °"/(zi) = 0 < oy( V N). 
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°s 

L Q L Q 

Figure 4.6 An example such that L is distributive, but cry is not residuated. 

In [8] it is proven that if / : L —» Q is an isotone mapping from an 

infinitely distributive lattice L to a finite lattice Q, then ay is residuated. But 

o-f might not be residuated if L is not infinitely distributive. Let L\ be the 

subcomplete lattice of <N0; 1cm, gcd > generated by {2' | / G N } U {3-' | j e N}, 

let Q be the horizontal sum of three-element chain and N © 1 (the non-

negative integers starting from 0 with a new top element 1). The lattice Q is 

drawn in the codomain of the function / in Figure 4.6. Let z be the unique 

atom in the three-element chain. Define the mapping / as follows: 

0Q, if x = 0L, 

fix) := 
z, if x = 2',i e N, 

j , ifx = 3J,jeN, 

\Q, otherwise. 

Note that, crf{\u) = z, cr0) = 0 and V 3y' = lLr Thus, o-}l(0) is not a 
ySN J 

principle ideal in L\ and cry is not residuated. 
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The L\ in the previous example provides an example showing that the 

converse of Lemma 4.3.8 does not hold. The complete lattice L\ is a ~ 

finite lattice and no sublattice of L\ is isomorphic to a lattice in &. But cry 

is not residuated. 

Discussion 

A complete lattice L is a bi-skeletonizable lattice if [x] = [/\[x], V W] 

for all x e L. Note that, for a bi-skeletonizable lattice L, L0 is a join sub-

complete sub-semilattice of L, but J~{L0) c J~{L) might happen. 

Let / : L —> Q be an isotone mapping from a bi-skeletonizable lattice 

L to a complete lattice Q, UL,Q =£ wz,0,g might happen. We know that if L is 

completely distributive and L is ~ finite, then w^g < 1. 

(Question 1) Is UL,Q < 2 true if L is completely distributive and bi-

skeletonizable? 

Let / : L —> Q be an isotone mapping between any two complete lattices. 

(Question 2) Does wL,e < Min(\L\, \Q\) hold? 



CHAPTER 5 

FINITE LATTICES 

5.1 Introduction 

Our initial investigation focused on the calculation of the residuated ap­

proximation of a mapping between two complete lattices. In order to de­

velop the theory, we concentrated on lattices of small widths, in particular 

lattices of width 2 and, to a lesser extent, width 3. After obtaining our results 

on residuated approximations, we returned to develop a theory of lattices of 

small widths. We give a complete description of the structure of lattices of 

width 2 in the next chapter. This description, while it has not yet yielded 

a complete description of lattices of width 3, has provided insight on the 

structure of lattices of larger width. 

An antichain S is a subset of a poset P such that a \\ b holds for any two 

distinct elements a,b e S. The set of antichains of a poset P is denoted by 

Tip. We define 

np := {{x\,...,Xk} | *i,...,jcjt e P andxj \\ xj for 1 < i < j < k), 

xp := U rf>-
k>\ 

The width, denoted w(P), of a poset P is the least cardinality which is 

60 
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greater than or equal to the cardinality of any antichain of P. Obviously any 

poset of width 1 is a chain. 

Theorem 5.1.1. (Dilworth's Chain Decomposition Theorem [6]) 

Let P be a finite poset of width w. Then P is a union ofw chains. 

This theorem is known to be true for any poset of width w [14], but we 

shall apply it only to posets of finite width. 

Corollary 5.1.2. A poset P of width w is a union ofw disjoint chains. 

Proof. Let P be a poset of width 1. Then P is a chain. 

Assume that any poset of width k is a union of k disjoint chains. Let P 

be a poset of width k + 1. We take Co as a maximal chain in P, then P - Co 

is a poset of width k. By assumption P - Co is a union of A: disjoint chains 

Q (1 < i < k), i.e., P- Co = (J C/. Since Co is disjoint with other k chains 
l<i<Jfc 

Cj, P is a union of k + 1 disjoint chains C, (0 < i < k), i.e., P = (J C,. • 
0<;<A: 

The following definitions and lemmas are given in [9]. The proofs of the 

first two lemmas are straightforward and we omit them. 

Lemma 5.1.3. If & is a nonempty set of ideals of a finite poset P, then \J S 

and H <3 are ideals of P. 

Lemma 5.1.4. Let g be a family of sets such that, for A, B e & AnB, AUB e 

3- Then ($, c) is a distributive lattice in which the operations V and A 

coincide with U and n, respectively. 

Lemma 5.1.5. Let 3 be the set of all ideals of a finite poset (P, <). Then 

(3, c) is a distributive lattice. 
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Proof. This follows immediately from Lemma 5.1.3 and Lemma 5.1.4. • 

Recall that TTP is the set of all antichains of the poset P. Note that for any 

0 * S c P, if Majc(S) gt 0, then Mox(5) e 7i>. 

Definition 5.1.1. Let P be a finite poset. For A,B enp, AQ B iff IA Q IB, 

i.e., for every element a in A, there exists b e B such that a < b. For 

A, Be TIP, we define Av\B := Max{{lA) n (J, B)) and A U B := Max(A U B). 

Thus, An B and A U B are again antichains in P, since P is finite. 

We now prove that Tip is a lattice and the operations U and n are the join 

and meet operations of Tip. 

Lemma 5.1.6. Let P be a finite poset. Then 

( l ) E w a partial order relation on the set Tip; 

(2) (7Tp, U, n) is a lattice. 

Proof. (1) The reflexivity and transitivity follow directly from the definition 

of E. We only need to prove it is antisymmetric. 

Let A,B € np, A E B and B E A. For any a\ € A, there is a b e B 

such that a\ < b; also for such a b, there is a2 € A such that b < aj. Thus, 

a\ < b < a2- Since a\, «2 € 4̂ and 4̂ e 7i>, we have a\ = a2 = b, so A Q B. 

By symmetry, B c A. Hence, A = B. 

(2) Let A, B e nP, then Max{A u 5) e TTP and , U , 1 5 c J, Max(v4 U 5), 

thus ^ E Max(^ U 5) and 5 E MajcG4 U B). Hence, Max(^ U B) is a 

upper bound of A and 5 in Tip. Suppose that 7 is a upper bound of A and 

5 in TIP, so that ^ E Y and 5 E Y. Then | ^ c | 7 and J, 5 c I Y, thus 
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(iA) U (IB) c | Y. Since P is finite, we have (IA) U ( | 5 ) = |Max{A U B). 

So Max{A U 5) E F. Therefore, Max(^ U 5) is the least upper bound of A 

and B, i.e., v4 U B is the least upper bound of A and 5 in np. 

Let >4,5 e TI>, then Max((| ^) n (J, 5)) € ;r/», | (M<auc((l ̂ ) n ( | B))) c 

| ^ and | (Max((| ^ ) n (J, 5))) c | 5 , thus Max((| A) n ( | 5)) E ^ and 

Max((| >4) n (J, B)) E 5. Hence Max((| ^ ) n ( | B)) is a lower bound of A 

and 5 in 7z>. Suppose that X is any lower bound of A and B in 7i>. Then 

| X c [A and | X c 15 , thus, IXQ(IA) n (15). Since P is finite, we have 

(lA)n(lB) =l(Max((lA)n(lB))). SoXE Max(CU)n( |5) ) . Therefore, 

Max((lA) n (15)) is the greatest lower bound of ,4 and B, i.e., ,4 n 5 is the 

greatest lower bound of A and B. D 

The following lemma shows the relation between ideals and antichains. 

Lemma 5.1.7. Let (P, <) be a poset, 3 its set of ideals and np its set of 

antichains. Define f : np —» 3 to be f{A) := | A for A e np. Then f is an 

injection ofnp into 3. 

Proof. Note that IA e 3 for any nonempty subset^ of P. Let B,C enp and 

/ ( 5 ) = /(C), then | B = | C so B E C and C E 5. Since E is antisymmetric, 

we have B = C. Therefore, / is an injection of np into 3 . • 

We now prove that, if P is finite, then the function / in Lemma 5.1.7 is a 

bijection. 

Lemma 5.1.8. IfP is a finite poset, then the f in Lemma 5.1.7 is an order 

isomorphism from {np, E) onto (3, c). 
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Proof. We proved that / is an injection in Lemma 5.1.7. To see that / 

preserves order, note that, for X,Y e nP,X Q Y implies that J,X c I F, i.e., 

f(X) c f{Y). We need to prove / is surjective. 

Let / e 3 and A = Max(I), then A is an antichain. We claim that I = IA. 

Since P is finite, any element of I is less than or equal to a maximal element 

of I, so I c I A; since A Q I and every element of IA is less than or equal 

to an element of A, we have I A c 7 by the definition of ideal. Hence 

I = l A = f(A). It follows that / is surjective. • 

If P is not finite, then the function / in Lemma 5.1.7 might not be surjec-

tion. For example, P is the set of rational numbers with usual ordering and 

np is the set of one-element subsets of P; thus, np is countable, but the set 3 

is equipotent with the set of real numbers, hence, |3 | > |7Tp|. 

Lemma 5.1.9. IfP is a finite poset, then (np, E) is a distributive lattice with 

smallest element 0 and largest element Max(P). 

Proof. This follows from Lemma 5.1.4 and Lemma 5.1.8. • 

A poset (P, <) of width w is a union of w disjoint chains C\,..., Cw by 

the Corollary to Dilworth's Theorem. Recall that nw
p is the set of antichains 

of the poset P which have w elements. If A e -rip1, then A has exactly one 

element at in common with each chain C,- for / = 1,..., w. We now prove 

that 7Tp is a sublattice of the lattice np. 

Lemma 5.1.10. Let P be a poset of width w and P be a union of chains 

C],..., Cw. If A = {a\,..., aw} e n^ and B - {b\,..., bw} e np1, where at, bt e Ct 
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for i = 1,..., w, then 

(l)A^B^> at < bifor i = 1,..., w; 

(2) let Si = Max{{cii,bi}) and U = Min{{aubi\) for 1 < i < w, and let 

S = {s( | 1 < / < w} andl = {/,-1 1 < i < w}, then S,Le nw
p; 

(3) furthermore, A U B = S and A n B = L so that nw
p is a sublattice of 

7TP. 

Proof (1) Assume that A E B. Let / be a fixed element of {1,..., w}. Then 

there exists bj such that a{ < bj. If j = /, then we are done. If j ± i, then 

at < bj. We have at ft bt since at, bt e Ct. We claim that at < bt, otherwise 

bt < af < bj, a contradiction. Hence at < bj for all / G {1,..., w}. The proof 

of <= is immediate from the definition of E. 

(2) We now prove that S e nP. Suppose not. There exist i,j e (1,. . . , w} 

with i t j and st < Sj. The following four cases are the possible cases, since 

sk = Max({ak, bk\) for k e {1,2, ...,w}. 

Case 1. Sj = au Sj = aj. Thus, at = s, < Sj = aj contradicting A e iiw
p. 

Case 2. Si - bt, Sj - bj. Thus, bt = s, < Sj = bj contradicting B e -rip*. 

Case 3. st — a^Sj = bj. Thus, bt < at and at = st < Sj = bj, so that 

bj < bj, contradicting B € nj. 

Case 4. st = bi, Sj = aj. Thus, at < bt and bj = s( < Sj - aj, so that 

ai < aj, contradicting A e nw
p. 

The assumption that S[ < Sj leads to a contradiction, since we arrive at a 

contradiction in each case. Therefore, S e iip and also \S\ - w, i.e., S e n^p. 
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The proof of L e nw
p is dual to that of S e nw

p. 

(3) Since au bt < st for all i e {1,..., w}, we have AQS and 5 E 5 , thus S 

is a upper bound of A and 5. Let C/ := {ut | 1 < i < w) e 7xw
p with A,B Q U. 

Since P is a union of the w chains C\,..., Cw and, for each z, at, bj, itj e C„ it 

follows that at tf bt, at < ut and bt < ut, thus st = Max{{au bj}) < ut. Hence, 

S C U. Therefore, A u B = S and A U 5 e 7tw
p. Dually ^ n £ e ^ and 

i n 5 = L. Sonw
p is a sublattice of7tP. o 

If P is finite, then n™ is a finite lattice with bounds LK71"?) a n d ["K71"?); 

moreover, 7r̂  is a distributive lattice since 7z> is a distributive lattice. 

5.2 Significant Intervals and Components in Finite Lattices 

For X e nL, let ix := [ A ^ V ^ l An interval [a, 6] is ^-determined if 

there is X e nk
L such that [a, b] = ix; X is called a ^-determinant of [a, b]. 

Given [a, Z>] e L with a < b, it is possible that [a, b] = ix = iy where X enk
L, 

Y e 7r£ with y =£ A:, so an interval can have different determinants of different 

sizes. For example, the boolean lattice with 3 atoms, which we denote as 2 , 

has the set of the three atoms as a 3-determinant, the set of three coatoms as 

a 3-determinant and {x, x'} as a 2-determinant for any x such that 0 < x < 1, 

where x' is the complement of x. Not all intervals have a ^-determinant for 

some k, e.g. a chain with more than 2 elements has no ^-determinant for any 

k. 

For 2 < k < w, %{L) := {ix I X e nk
L}. The set % under c is a finite 

poset. A ^-determined interval [a, b] is in Min{@k{L)) (resp., Max(@k(L))) if 
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[c, d] c [a, b] (resp., [a, 6] c [c, J]) for [c, rf] e ^ ( L ) implies [c, d] = [a, 6]. 

Define 

^ := |J ML). 
2<k<w 

An element x in L is a nodal element iff Z, = (t x) U ( | x). It is easy to 

see that x is nodal iff TT(JC) = 0. An interval [a, b] of L is a nodal interval if 

a < b and [a, b] consists only of nodal elements of L. 

Note that 

(1) every nodal interval has more than 1 element; 

(2) any nodal interval is an autonomous chain; 

(3) there is no determinant for a nodal interval, i.e., for a nodal interval 

[a, b], there is no k such that X enk
L and [a, b] = ix\ 

(4) for a lattice L, no nodal interval exists in L. 

Lemma 5.2.1. Let L be a lattice. 

(1) If[x,y], \y,z] are two nodal intervals in L, then [x,z] = [x,y] U [y,z] 

is a nodal interval in L. 

(2) If[x,y], [x, z] are two nodal intervals in L, then [x, j>Vz] = [x,_y]U[x, z] 

is a nodal interval in L andy V z € {y, z). 

(3) If[y, x], [z, x] are two nodal intervals in L, then \y/\z, x] = [y, x]U[z, x] 

is a nodal interval in L andy A z 6 {y,z}. 

(4) If[x,y] is a nodal interval in L andz e [x,y], then [x,z] and [z,y] are 

nodal intervals. 

Proof. (1) Obviously [x,^] U [y,z] c [x,z]. Let w € [x,z]. Since y is 
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a nodal element, we have w < y or y < w; thus, w e [x,y] U [y,z], so 

[x,z] c [x,^] U [y,z] and w is a nodal element. Hence [x,z] = [x,y] U [y,z] 

and [x, z] is a nodal interval. 

(2) Since y is a nodal element, we have y < z or z < y. We may assume 

that;; < z. Then [x,y] c [x,z]. Hence, [*,>>] U [x,z] = [x,z] = [x,y V z]. 

(3) This is dual to (2). 

(4) This statement follows directly from the definition of nodal interval. 

• 

Definition 5.2.1. Let L be a finite lattice of width w. We now define the 

notion of a significant interval. We first define a w-significant interval, then 

a j-significant interval with 1 < j < w, after that a 1-significant interval. 

An interval ix is a w-significant interval ifix € Min(!3?w(L)). 

Assume that the k-significant intervals have been defined for all k with 

j < k < w. An interval ix is a j-significant interval with 1 < j < w if 

ix € Min{S>j{L)) and there is no k-significant interval iy with j < k < w 

such that ix Q iy-

An interval is a 1-significant interval if it is a maximal nodal interval. 

An interval is a significant interval if it is a k-significant interval for 

some integer kin [1, w]. 

For 1 < k < w, let yj^kiL) be the set of k-significant intervals ofL, and 

let yJ?(L) be the set of significant intervals ofL, i.e, 

yj^k{L) '.= {ix I ix is a k-significant interval}, 
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y J?(L) := U ^ ^ kip} - the set of all significant intervals o/L. 
\<k<w 

Note that 

(1) for X, Y e nL with ix e yj\x\{L) and iY e yj?m{L), if \X\ = \Y\, 

then ix = iy; if 1̂ 1 < \Y\, then z> £ />; 

(2) for ix e ^ J ^ | ^ ( I ) with l e ^ and |X| > 1, if there is an interval iY 

such that iY c z'x, then w(z» < w(z» - 1, since the ix is a minimal interval 

in %,(£) ; 

(3) for any /> = [ A X, V X] with X € nL and |X| > 1, A X e AT(I) and 

V ^ € / ~ ( I ) hold. 

The next lemma follows from the minimality of a y'-significant interval. 

Lemma 5.2.2. Let L be a finite lattice and ix be a j-significant interval with 

X e TTJ
L and j > 1. 

(1) Ifiy Q ix with Y e TT^, then iy = ix-

(2) Ifz e (/\X,\J X), then z is not a nodal element. 

Proof. (1) Since a y-significant interval ix does not contain any y'-determined 

interval as a proper sublattice by the definition of significant interval, iy Q ix 

with Y e T^L implies iy = ix. 

(2) Suppose that there is a nodal element z in (A X, \J X). Then either 

J c | z o r I c | z , since X e nL. We may assume that l c | z , Thus, 

V X < z < V X. Since we arrive at a contradiction, there is no such z. u 

We now prove that the width of a significant interval ix e ^J^\x\(L) is 

\X\ and that the width of the intersection of distinct significant intervals is 
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less than the width of either of them. 

Theorem 5.2.3. Let L be a finite lattice of width w with w > 1. 

(\)LetXenL with 2 < \X\ < w and ix e y^\x\{L), then w{ix) = \X\. 

(2) Let X,Y € nL with ix e yylx](L) and iY e yj\Y\{L), and let 

2 < \X\, |Y\. lfw{ix n />) = w(z'z) or w(iY), then ix = />. Alternatively, if 

ix ± iy, tnen wQx H z» ^ M/«(|^| - 1, |7| - 1), i.e., w(ix n z>) £ w(z» a«d 

w(z> n Z » ^ w(z>). 

Proo/ (1) Let X e ^ with 2 < |Z| < w and z> e ^ J ^ ^ ( L ) , so w(z» > W-

We claim that w(ix) >• |X|- Suppose not, then w(ix) > \X\ and there exists 

S e 7TL such that 5 c /x and |S| > \X\, thus z5 c / z and is e ^siC^). There 

exists if Q is such that z> e M;«(^S|(Z,)) since L is finite. Let F c T and 

F e 7r^. Then |F| = \X\ and z> ^ 'V £ z's c ix\ and since z> € @\x\(L) and 

z'x e Mm(^xi(^)), we have iY = z> = ix. Since z> e y J^^L), there is no 

/c-significant interval iz with |X| < k such that z> c iz\ and since z> = iT, 

there is no ^-significant interval iz with |X| < k such that z> c ix\ since 

|T| = \S\ > \X\, there is no ^-significant interval iz with \T\ < k such that 

z> c iz. Hence, z> e ^ J ^ S ^ L ) with \S\ > \X\ and z> = z>, contradicting 

1* e J ^ W ( L ) . Therefore, w(z» = |*|. 

(2) Let X, F G TTL with ix e yyw(L), iY e yJm{L) and w(ix n z» = 

wO'z)- We claim that ix = z>. Suppose z> £ iY. Since z>, z> e ^ J^ (L) , 

we have z> £ z> and z> fi iY c z>. Since w(z> D iY) = w(ix), there exists 

Z c ixn iY and Z e TT^1, SO Z C /^ and iz Q ix; similarly Z c iY and z'z c iY. 



71 

Hence iz Q ix n iY c ix and iz e @\x\(L), contradicting ix e Min(fyx\(L)). 

Hence, z> = />. Similarly, if wfo n />) = w(/», then z> = z>. D 

The following lemma and corollary indicate that there exist a least y-

determinant and a largest y-determinant in a y-significant interval (2 < j). 

Lemma 5.2.4. Let j > 1 and let ix be a j-significant interval in a finite 

lattice L. If Y,Z are j-determinants of ix, then Y n Z and Y U Z are _/-

determinants ofix. 

Proof. By applying Lemma 5.1.10 part (2) and (3) with P = ix, we have 

Y n Z c ix and Y n Z e TT[; since z> is a y'-significant interval, we have 

iYnZ = ix. Hence Y n Z is a y-determinant of (y. Similarly, 7 u Z is also a 

y-determinant of ix. D 

Corollary 5.2.5. Let y > 1 a«<i /e? z> be a j-significant interval in a finite 

lattice L, then there exist a least j-determinant and a largest j-determinant 

ofix-

Proof Since L is finite, the interval ix is finite and there are only finitely 

many y'-determinants of ix. By Lemma 5.2.4, if {X\, ...,Xn) is the set of all 

/-determinants of the y'-significant interval ix, then X\ n X2 n ... n X„ is the 

least y-determinant of ix and X\ U X2 U ... U ^ is the largest y-determinant 

of ix in the ordering c. • 

The following lemmas show the relation between two w-significant in­

tervals. 
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Lemma 5.2.6. Let L be a lattice of width w with w > 1 and let X,Y e n™ 

with ix, iy <= yj?w{L). 

(\)U\X)\\{/\Y)iff{\jX)\\<Nn 

(2)Ax<AYiff\jx<yY, 

(3)/\X=/\YiffyX=VY. 

Proof. (1) Let (f\X) || (A Y). We claim that (V^O II (V Y). Suppose not, 

we may assume that (V^O < (V Y). Since X,YQXuY,by Lemma 5.1.10 

Xu Y e nw
L and we have /\Y < (f\X) v ( A 7 ) < /\{Xu Y) and V Y = 

{\JX)y{\JY)< \/(XuY). L e t z e X u 7 , t h e n z e X o r z e 7,thusz< V ^ 

orz< V^; hence z < V Y since V ^ < V Y. It follows V(^U 7) <\JY. 

Hence V(^U Y) = \J Y. Since A F < A ^ U 7 < V ^ U 7 = V Y, we 

have A Y e z> - z'xuy so that /̂ uy c z>, contradicting the fact that iy is a 

w-significant interval. The proof of the converse is dual to the above proof. 

(2) Suppose A X < A Y. Since (A X) % (A Y), we have {\J X) % (\J Y) 

by part (1). If V ^ < V F, then \JY<\JX; since A * £ *V and A * e z>, 

we have iy = [/\ Y, V Y] c [AX, V^] = h, contradicting the fact that ix 

is a w-significant interval. Hence \J X < \/ Y. The proof of the converse is 

dual to the above proof. 

(3) Suppose AX = A Y. By (1) ( V I ) X (V Y) since (A*) tf (A Y); 

and by (2) V ^ < V ^ since A ^ ^ A Y\ similarly V Y * \JX. Hence 

V ^ = V^-

The proof of the converse is dual to the above proof. • 
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For two significant intervals ix and iy in a finite lattice of width w > 1, 

we define 

ix<iyi^AX</\Y; 

ix \\ iy iff AX \\/\Y. 

Lemma 5.2.7. Let L be a finite lattice of width w with w > 1 and let ix, iy 

be two w-significant intervals in L with X, Y e nw
L. Ifix II iy, then 

(l)A(lu7)<V(inn 

(2) (/\X)V(/\Y)e ixny and{\J X) V (V Y) e iXUY. 

Proof. (1) By Lemma 5.1.10 part (2) we haveXn Y,Xu Y e nw
L, so V ( ^ n Y) 

is not parallel with all elements in X U Y. Since ix II iy, it follows that 

X £ Y and Y £ X, otherwise, X E Y or Y E X, thus A ^ < A ̂  or 

A y ^ A ^ b y Lemma 5.1.10 part (1), i.e., ix -If />, contradicting ix II /y. 

Since w = \X\ = \XuY\ also holds, we have I n Y <£ X a n d X n Y £ Y, thus 

there exist u e X n(X\l Y) andv e Y n(Xn Y) such that u, v < V ( ^ n 7) 

since I n Y e TTL. Also, since Xu Y c J u 7, u e I , v e Y and I , 7 e ^ , we 

have V ( ^ n Y) £ z for any z e Xu Y. Also, since XU Y e nw
L and w(I) = w, 

\/(X n 7) is not parallel with some s e X U 7, so 5 < \/(X n Y). Hence, 

/\(XuY)<s< V ( I n 7 ) . 

(2) Since XnY E l j E Xu7, we have /\X, f\Y e [/\(XnY), /\(XuY)], 

so A(XnY) < ( A I ) v ( A T ) < A ( ^ u 7 ) a n d A ( ^ u 7 ) < V ( ^ n 7 ) b y 

part (1). Hence, (/\X) v (A 7) e W . The proof of (\J X) A (V 7) e /Xuy 

is a dual argument. • 
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The next lemma states that in a finite lattice L of width w > 1 when­

ever two sets X, 7 in TC[ determine distinct significant intervals ix £ iy, the 

intersection X D 7 has cardinality at most w - 2. 

Lemma 5.2.8. Let L be a finite lattice of width w > 1 with X,Y e nw
L and 

\Xr\Y\ = w-\. Ifix, iy e ySw(L), then ix = iy. 

Proof. Let X - (X n Y) = [a] and Y - (X n 7) = {6}. Since o e l - F 

and 6 e 7 - X, we have a ^ b. If a \\ b, then, by the hypothesis that 

\XnY\ = w-\, (XD Y)U {a, b) e ^ + 1 contradicting w(L) = w. Thus, a tf b. 

We may assume that a < b. Note that 

A^ = (A(*n 7)) A a < (A(^n 7)) A 6 = A Y 

yx= (\J(Xn Y))wa< (V(*n 7)) v z> = V Y. 

Let c = ((/\(X n 7)) A b) V a, then a = ( (A(^ n 7 ) ) A a ) V f l < c < 

((A(^fl Y))Ab)V b = b.Wz claim that /\X* /\Y. Suppose A ^ < A ^ 

First note that for z e Xn Y, z =£ a, b. We claim that for 2 € Xn Y,c\\z holds; 

for if z < c, then z < c < b, contradicting z,b e 7 with z ^ 6; if c < z, then 

a < c < z, contradicting a,z e X with z ^ a. Thus, N := (XD 7) U {c} e n™. 

Since A F = (A(XnY))Ab <c< (/\(XnY))Va < (\/(XnY))Va = \ /X, i t 

follows that TV c [(/\(Xn 7)) A b, (\/(Xn Y)Va)] = [/\Y,V X]. Also since 

AX<AY,wehavQ[AN,yN]Q[/\Y,\fX]c[AX,\/X],soiN£3>w(L) 

and /# C *>, contradicting ix e Min(@w(L)). Hence, A ^ ^ A ^- Since 

A ^ < A Y, we have A ^ = A Y, so that V ^ = V Y by Lemma 5.2.6 part 

(3). Therefore, ix = iy. • 
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Definition 5.2.2. Let L be a finite lattice of width w. Now we define the 

notion of a component. We first define a w-component, then a j-component 

with 1 < j < w, after that a 1-component. 

An interval ix is a w-component ifix e Max{2#w{L)). 

Assume that the k-components have been defined for all k with j <k <w. 

An interval ix is a j-component with 1 < j < w if'ix e Max(@j(L)) and 

there is no k-component iy with j < k <w such that ix Q iy-

An interval interval is a 1-component if it is a maximal nodal interval. 

An interval is a component if it is a k-component for some 1 < k < w. 

For 1 < k < w, let Compel) be the set of k-components of L, and let 

CompiL) be the set of components ofL, i.e., 

CompkiL) := {ix I ix is a k-component ofL), 

CompiL) :- [j Compk{L). 
\<k<w 

Note that 

(1) CompiL) is the set of all components of L; 

(2) the 1-components of L are precisely the 1-significant intervals of L; 

(3) for any y-component ix with X e 7r£ and j > 2, both /\X e M~{L) 

and \/XeJ~(L) hold. 
Let P be a finite poset, we define 

Cx := {p e P | p < x}, Cx := {p e P \ x < p). 

So Cx is the set of all elements that x covers, and Cx is the set of all 

elements that cover x. Note that if Cx = {y}, then ly - [x - {x}. 
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Let X e nP, 

Cx '•= Min({y e P \ x < y for some x e X)). 

Note that 

(1) Cx e Tip, Cx = Mintf X-X) and XnCx = 0; 

(2) if X = {x}, then Cx = Cx\ 

(3) Cx = 0 irTX c Max{P). 

Theorem 5.2.9. Every finite lattice L is the union of its components, i.e., 

L = U Comp(L). 

Proof. Let L be a finite lattice with \L\ > 2. Obviously \J Comp{L) c I . In 

order to prove the reverse inclusion, we prove that, for x e L, there exists a 

component which contains x. The following three cases are an exhaustive 

set of possible cases. 

Case 1: such x is a nodal element with \CX\ = 1 or \CX\ = 1. We may 

assume \CX\ = 1. Let Cx = {y}, then y is a nodal element and [x,y] is a nodal 

interval. Thus, x is in a nodal interval, so x is in some 1-component. 

Case 2: such x is a nodal element with \CX\ > 1 or \CX\ > 1. We may 

assume \CX\ = n > 1. Then x e [x, V Cx] and [x, V Cx] e ^„(Z,). Thus there 

exists /z G Max(@n(L)) such that [x, V C*] £ h- Suppose that x is not in 

any ^-component with n < k. Thus, iz is not contained in any ^-component 

with n < k. Hence iz e Compn(L) with x e iz. 

Case 3: such x is not a nodal element. Thus, 7r(x) is a nonempty poset. 

Let j = w(7r(x)). Suppose that x is not in any ^-component with j + 1 < k. 
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Then there exists 7 G 7r{ such that 7 c 7r(x). Thus, z'{jc}uy € @>j+\{L) with 

{x} U 7 G 7r{+1. Since L is finite, there exists iz G A/a*(^/+i(Z,)) such that 

/(x(uy c z'z. Since x is not in any ix e Compk{L) with _/+1 < /c, it follows that 

z'z is not contained in any ix G Compk(L) with y'+1 < /c. So, z'z e Compj+\{L) 

with x 6 z'z. 

Therefore L is the union of its components. • 

Since ~ : L —> Z is a lattice homomorphism, we have the following 

results: 

{\)XenLmXeTT~L; 

(2) fr G @lx](L) iff /> € % ( Z ) ; 

(3) ix e yyk(L) iff ix € ^J^^(Z), and | J ^ ( L ) | = | ^ ^ ( Z ) | ; 

(4) z> € Compk(L) iff z'ĵ  € Compk{L), and |Com/?(Z,)| = |Com;?(Z)|. 

Recall that a lattice L is a skeleton if Z, = Z via the mapping ~ : X —> Z. 

Lemma 5.2.10. Le? L /3e a finite skeleton. 

(l)Ifxe M(L), then Cx c y~(L). 

(2) 7/x G J(Z), ftew C* c M~(L). 

(3) 7/x G M(L) n J(Z), r/ie« Cx c J~(L) andCx c M~(L). 

(4) 77zere z's «o 1-significant interval in L. 

(5) 7/7 G nL, then 1 7 - 7 = TC7. 

Prao/ (1) Let x G M(L). Then \CX\ = 1 holds since L is finite. Let C* = {y}. 

Then Tx = [x,y] U }y. We claim that;; G J~(L)\ otherwise, Cy = {x} and 

[x,y] u U = l^so(T*)uCU) = ([*,x|u 1»uCU) = (T )̂u([x,y]u Ix) = 
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(TJO U (iy) and, since [x,y] = {x,y}, we have^ ~ x; thus by Lemma 3.1.7 

y = x, a contradiction. Hence, Cx c J~(L). 

(2) This is dual to (1). 

(3) This follows directly from (1) and (2). 

(4) Suppose that [x,y] is a nodal interval. Then x < y and x ~ y, by 

Lemma 3.1.7 y = x contradicting x < y. Hence no nodal interval exists in L. 

(5) If Y = {1}, then '[Y-Y = <D=/[CY. Here we may assume that 

Y gt {1}. Then t Y - Y ± 0. Clearly t CY c f 7 - 7. To show the reverse 

inclusion, let p e"[ Y - Y. Since Z, is finite, there exists a € M«(T Y - Y) 

such that a < p, thus a e C y and /? e t Cy, so T F - F £ T Cy. Therefore, 

T 7 - 7 = TCy. D 



CHAPTER 6 

FINITE LATTICES OF WIDTH 2 AND 3 

6.1 Finite Lattices of Width 2 

In this section we apply the concepts of significant interval and compo­

nent to lattices of width 2. We create a complete description, accounting to 

a structure theory, of finite lattices of width 2. 

6.1.1 Properties of Finite Lattices of Width 2 

For any x in a lattice L of width 2, n{x) has the following properties. 

Lemma 6.1.1. Let L be a lattice of width 2 and let x e L with n(x) ± 0. 

Then 

(1) 7i(x) is a chain; 

(2) ify < f\ 7T(X), then y < x; 

(3) ify > V n(x), then y > x. 

Proof (1) Let a, b e 7r(x). Then a \\ x and b \\ x. Since w(L) = 2, we have 

a Jf b. Hence n(x) is a chain. 

(2) Let j ; < /\n(x). Thenj £ n(x) and y jf x. We claim that x ^ y, 

otherwise, x < y < /\ n{x) < a for any a € n(x), so x < a contradicting 

a e 7r(x). Hence y < x. 

79 
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(3) This proof is dual to (2). • 

The following lemma indicates that, in a lattices of width 2, all meet-

reducible elements form a chain and all join-reducible elements form a 

chain. 

Lemma 6.1.2. Let L be a lattice of width 2, then 

(1) M~{L) is a chain. 

(2) J~{L) is a chain. 

Proof. (1) Since w(L) = 2, there exists {a, b] e n2
L, so a A b € M~(L) 

and therefore M~(L) & 0. Let x,y e M~(I) with x t- y, then there exist 

{a\,a2}, {b\, b2} e 7r£ such that x = a\ A a2 andy = b\ A 62. By Dilworth's 

theorem L is a union of chains C\ and C2. Let a\,b\ e Ci and «2» °2 e C2, 

then «i Jft 61 and «2 If b2. We may assume that a\ < b\. \ia2 < b2, then 

x = a] A a2 < b\ A b2 = y. Thus we may assume that b2 < a2, so that 

x < b\ A a2 and y <b\ A a2, and hence x V y < b\ A a2. Since a\ < 61 and 

61 || 62, it follows that b2 £ a\. Since 62 ^ #2 and «i || 02? it follows that 

a\ £ b2. Hence a\ || b2. Since xVy<a2 and «i || a2, we have #i ^ x V y, 

similarly b2 £ x V y. Also since «i || b2 and w(Z) = 2, either x V _y < a\ 

or x V y < b2. Thus, since x V y < b\ A a2, x < x V y < a\ A a2 = x or 

y < x V y < b\ A b2 = y. Hence, xV>, = xorxV_y=_y, i.e., y < x or x < y. 

(2) This proof is dual to (1). • 

The following lemma indicates the relation between a meet-reducible 

element (or a join-reducible element) x and the element y parallel with x. 
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Lemma 6.1.3. Let L be a lattice of width 2 with x,y e L. 

(1) Ifx e M~(L) andy \\ x, then x < x V y. 

(2) Ifx e J~(L) andy \\ x, then x /\y < x. 

Proof (1) Suppose that x £ x V y. Then there exists z e (x,xVy). Since 

x € M~(L), there exists {a, b) e n\ such that x - a Kb. Since a \\ b and 

w(L) = 2, we havey Jf a ory Jfi b; sincey \\ x, it follows a £ y,b £ y and 

y £ a A b, i.e., y < a andy \\ b, ory \\ a and,y < b. We may assume that 

y < a and y \\ b. We claim that z \\ y and z \\ b. Since x < z and x \\ y, it 

follows that z ^ y; also since z < x V _y, we have y £ z, so z \\ y. Since z < a 

and a || &, it follows that b £ z; also since a A b = x < z, we have z ^ 6, so 

z || b. Thus, [y, Z>,z} e n3
L contradicting w(L) = 2. Hence, x < x V y. 

(2) This proof is dual to that of (1). D 

In a finite lattice L of width 2, yy^L) = 0 and Compk{L) = 0 for any 

k > 2 since 7r* = 0 for any k > 2. 

The following lemma shows the property of a 2-significant interval. 

Theorem 6.1.4. Let L be a finite lattice of width 2 and x,y e L with x < y. 

The following statements are equivalent: 

(1) [x,y] is a 2-significant interval; 

(2) |CX| - 2 andy = V Cx; 

(})\0>\ = 2andx = /\C?; 

(4) [x,y] is the horizontal sum of 2 chains; 
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(5) there are two distinct chains C\, C2 in L such that both are maximal 

autonomous chains in L and [x,y] = {x,y} U C\ U C2; 

(6) there are a,b e [x,y] such that [x,y] = HS({x,y} U [a], {x,y} U [b]). 

Proof. (1) => (2) : Since [x,y] is a 2-significant interval in L, there is X e n\ 

such that [x,y] = [f\X, \f X], so x e M~(L) and \CX\ = 2. Let Cx = {a, b}. 

Then i{a^} Q ix- Since ix e ^ ^ ( L ) , we have i{a>b] = ix and 7 = V Cx. 

(2) => (3) : Let Cx = {a, b) and 7 = a V 6. Then 7 e ./~(X)- Also since 

w(L) = 2, we have \Cy\ = 2. Since {a, b), Cy e TT| and {a, Z>}, (7 c J, y, it 

follows that {a,b} Q Cy tmdx = a Ab < /\ Cy. We claim that x - /\Cy. 

Suppose not. Then x < f\ Cy; thus, a < /\ Cy or b < /\ Cy since Cx = {a, b); 

since A Cy < y = a V b, it is not possible that both a < /\ Cy and b < /\ Cy. 

We may assume a < /\ Cy and b || A C . Then y = aV b < (/\Cy)v b <y 

so that >> = (A Cy) V 6. Since A Cy < (A C7) V b by Lemma 6.1.3 part (1), 

we have \Cy\ = 2 and A Cy < y, a contradiction. 

(3) => (4) : Let Cy = {</, e} and x = A C?. Then (JC, d] n (JC, e] = 0; 

otherwise, let z e (x, d] n (x, e], then x < z < t / A e = A ^ = JC, a 

contradiction, so [x,j] is the horizontal sum of two chains {y} U [x, d] and 

\y}U[x,e]. 

(4) => (5) : Let Cx = {a, 6}, Ci = [a,7) and C2 = [6,7). Then Cj and C2 

are finite disjoint chains. We only need to prove C\ and C2 are autonomous 

chains. Let t e L- C\ with t < u for some w 6 Ci. If t \\ b, then / Jft a since 

a || b and w(L) = 2; thus, t < a since t £ C\. Moreover, if t Jf b, then b £ t. 
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Otherwise, b < t <u and a <u <y, so y = aVb<u<y, a contradiction; 

sot < b and t < u A b = x since [x,y] is the horizontal sum of C\ U {x,y} and 

C2 U {x,y}; hence, t < a. In either case, 7 is less than or equal to all elements 

in C\. Dually, if u < t for some u e C\, then / is larger than or equal to the 

largest element in C\. Hence, C\ is an autonomous chain. Since x < a and 

\J[a,y) < y with x,y £ [«], the chain C\ is a maximal autonomous chain. 

Similarly, C2 is an maximal autonomous chain. 

(5) => (6) : Suppose that L contains two distinct maximal autonomous 

chains C\ and C2 where [x,y] = {x,y} U C\ U C2. Let a e C\ and b € C2, 

then C\ = [a] and C2 = [̂ ] since C\ and C2 are autonomous chains, thus 

[x,y] is the horizontal sum of two chains {x,y} U [a] and {x,.y} U [b], i.e., 

[x,.y] = HS({x,y} U [a], {x,.y} U [b]). 

(6) =» (1) : Let [x,y] = //^({JC, j} U [a], {x,y} U [6]). We have a || 6 and 

[x,y] e S>2(L)- Since [x,y] is the horizontal sum of two chains {x,y} U [a] 

and {x,y} U [6], it follows that [x,y] e Min(@2(L))- Hence, [x,y] is a 2-

significant interval. n 

Theorem 6.1.4 shows that any 2-significant interval is the horizontal sum 

of two chains, as depicted in Figure 6.1, the number of elements in each 

chain may be any number larger than 3; in the Hasse diagram of [x,y] in 

order to embrace this universality, we use a dotted-line to connect the least 

element and the largest element in an autonomous chain. 
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x = ACy 

Figure 6.1 A generic 2-significant interval [x,y]. 

Corollary 6.1.5. Let a finite lattice L be a skeleton of width 2 and x,y e L 

with x < y. The following statements are equivalent: 

(1) [x,y] is a 2-significant interval; 

(2) \CX\ = 2 andy = V Cx; 

(3)\Cy\ = 2andx= /\Cy; 

(4) [x,y] is the horizontal sum of 2 chains; 

(5) there are two distinct chains C\, C2 in L such that both are autonomous 

chains in L and [x,y] = {x,y} U C\ U C2/ 

(6) there are a,b G [x,y] such that [x,y] = HS({x,y} U [a], {x,y} U [b]); 

(7) x € M"{[x,y\), y 6 J~([x,y]) and \[x,y]\ = 4; 

(S)Cx = Cyand\Cx\ = 2. 

Proof The statements of (1) - (6) are the same as those in Theorem 6.1.4. 

(6) => (7): Since [x,y] = HS({x,y}U[a], {x,y}U[b]),bothx e M~([x,y]) 

andy e J~([x,y]) hold. Since L is a finite skeleton, we have \[a]\ = 1 and 

\[b]\ = 1, so that 0,x] = {x,y} U [a] U [6] = {x,y, a, b) and |[x, j ] | = 4. 

(7) => (8): Since |[x,y]\ = 4, we have \(x,y)\ = 2. Let (x,y) = {a, b}, then 

a\\b since x e M~([x,y]); hence Cx = {a, b) = Cy and \CX\ = 2. 
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(8) => (6): Suppose \CX\ = 2 and Cx = Cy. Let Cx = {a, b), then [x,y] = 

[x,y, a, b) = HS({x,y} U [a], {x,y} U [b]). • 

The following lemma shows that if [x,y] is a 2-significant interval; then 

the open interval (x,y) contains at most one join-reducible element of L and 

that join-reducible element, if it exists, covers x. 

Lemma 6.1.6. Let L be a finite lattice of width 2. If[x,y] is a 2-significant 

interval with Cx = {a, b), then 

(1) (a,y) c n(b) and(b,y) c n(a); 

(2) (a,y) c J(L) and{b,y) c J{L); 

(3) J~(L) O (x,y) c {a, b] and \J~(L) n {x,y)\ < 1. 

Proof. (1) Let z € (tf,.y). Since a \\ b and a < z, we have z £ b; since a < z 

and z < _y = « V b, it follows that b ^ z; so z e 7r(Z?). Hence, («,>") c 7r(&). 

Similarly, (Z>,̂ ) c ^-(a). 

(2) Let z G (a,;/). Suppose z e J~(L). Then z \\ b by (1). Thus, we have 

z A b < z, by Lemma 6.1.3 part (2), and b e J(L), by Lemma 6.1.2 part (2); 

also since x < b, we have z A 6 = x < a < z contradicting z A b < z. Hence 

z e J(L). Similarly, (b,y) c ./(£). 

(3) From part (1) and (2) we have (x,y) n J~(L) c {a, Z?}. Since a || Z) and 

J~(L) is a chain by Lemma 6.1.3 part (2), it follows that J~(L)n(x,y) c {a, b) 

and |J~(L) n (x,y)\ < 1. D 

The following lemma shows that if [x,y] is a 2-significant interval, then 

the open interval (x,y) contains at most one meet-reducible element of L 
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and that meet-reducible element, if it exists, is covered by y. 

Lemma 6.1.7. Let L be a finite lattice of width 2. If[x,y] is a 2-significant 

interval with Cy - {c, d), then 

(1) (x, c) c n{d) and (x, d) c n(c); 

(2) (x, c) c M{L) and (x, d) c M(L); 

(3) M~(L) n (x,^) c {c, d\ and\M~(L) 0 (x,y)\ < 1. 

Proof. This proof is dual to that of Lemma 6.1.6. • 

The following lemma shows the relation between any two distinct 2-

significant intervals. 

Lemma 6.1.8. Let L be a finite lattice of width 2, let \x\,y\\ and \xi,yi\ be 

distinct 2-significant intervals. Then 

(1) xi < X2 or X2 < xi, 

(2) xi < x2 iffyi < y2, 

(3)x2 <x i iffy2 <y\. 

Proof. (1) By Theorem 6.1.4 x\,x2 e M~{L), and x\ Jft x2 by Lemma 6.1.2 

part (1); since [xi,ji] and [x2,^2] are distinct 2-significant intervals, we have 

xi ^ x2 by Lemma 5.2.6 part (3). Hence, xi < x2 or x2 < x\. 

(2) and (3) follow from Lemma 5.2.6 part (2). • 

In a finite lattice L of width 2, Theorem 6.1.4 shows that, for x e M~(L), 

there is a 2-significant interval [x, V Cx] with V Cx e J~(L); dually, for 

y e J~{L), there is a 2-significant interval [/\Cy,y] with f\Cy e M~(L). 

Lemma 6.1.2 indicates that the set consisting of the least elements of the 
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2-significant intervals is a chain and, dually, the set consisting of the largest 

elements of the 2-significant intervals is a chain. Lemma 6.1.8 shows that 

for two distinct elements x\ and x2 in M~(L), [x\, V CXl] and [x2, V CX2] 

are two distinct 2-significant; dually for two distinct elements y\ and y2 

in J~(L), [f\ Cyi,y\] and [f\ Cyi,y2] are two distinct 2-significant intervals. 

Hence, there is a bijective correspondence between yy2(L) and M~(L) 

and between S?J2{L) and J~(L). Thus |AT(Z,)| = | J ^ 2 ( £ ) I = l</~(£)l- We 

may write M~(L) = {m, | 1 < i < \M~(L)\ and m\,m2 < • •• < m\M~(Q\}, 

J~(L) = [jf | 1 < i < \J~(L)\ and j \ < j 2 < ... < j\j~(L)\l These are 

called the standard numberings of the M~{L) and J~{L), respectively. Let 

yj2{L) = {[xhyi] | 1 < / < \M~(L)\, xt G ht(L) and j / € J~{L)}. It gives 

the standard numbering of yj^^L). 

Lemma 6.1.9. Let L be a finite lattice of width 2, let mi G M~(L) and 

ji e J~(L)for 1 < i < |M~(X)|. Then [mz-,yz] is a 2-significant interval and 

exactly one of the following obtains: 

( 1 ) % I . ; ' M $(mujd, 

(2) mi+\ G (m/,7/) and j t . x <£ {muji), 

(3) y;_i G (muji) andmi+x g (mhji), 

(4) m/+i,y/-i G (/«,-,y,-) andmi+x \\ j)-h 

(5) mi+uji-i G (/«,•,;',•) andji-x < mi+x. 

Proof The conditions are evidently mutually exclusive. If z = 1, then 

[mi,y"i] is a 2-significant interval and, either (1) or (2) holds, since m\ is 
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the least meet-reducible element and j \ is the least join-reducible element 

in L. 

Suppose that, for i - k, [mk, jk] is a 2-significant interval and it is one of 

the above 5 intervals. We claim that [mk+\,jk+i] is a 2-significant interval 

and it is one of the above 5 intervals. Since [m^jk] € yjr
2(L), we have 

j k = \/ mk by Theorem 6.1.4 part (2); also since mk < mk+\ and j k + \ is the 

least join-reducible element in T j k - {jk}, it follows that jk+\ = V mk+\ by 

Lemma 6.1.8 part (2), so [mk+i,jk+\] is a 2-significant interval by Theorem 

6.1.4 part (2). If mk+x <£ (mk,jk), then j k £ (mk+ujk+i), so that either (1) 

or (2) holds. If mk+\ e (mk,jk), then j k e {mk+\,jk+\) by Lemma 6.1.6 part 

(3). There exists at most one meet-reducible element in (^+1,7^+1), namely 

(if it is in the interval) mk+2, by Lemma 6.1.7 part (3). mk+2 £ (mk+\,jk+\) 

implies that (3) holds. If mk+2 e (mk+\,jk+i) and mk+2 \\ j k , then (4) holds; if 

mk+2 e (mk+\,jk+i) and mk+2 if j k , then mk+i < j k by Lemma 6.1.6 part (3) 

and mk+2 < j k + \ by Lemma 6.1.7 part (3); since [mk+ \,jk+\] £ ^^i(L), we 

have jk < mk+2, i.e., (5) holds. Therefore, [mi,ji\ is a 2-significant interval 

for 1 < / < |M~(L)| and one of (l)-(5) holds. • 

Lemma 6.1.9 shows that any 2-significant interval is isomorphic to one 

of the six types in Figure 6.2. In the diagrams we use the symbol A to repre­

sent the least element in another 2-significant interval and the symbol V to 

represent the largest element in another 2-significant interval; if one point is 

the least element in a 2-significant interval and the largest element element 
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in another 2-significant interval, then we use the symbol $ to represent it. 

For 1 < / < 5, a 2-significant interval [x,y] is of type i + 1 iff [x,y] satisfies 

(z) of Lemma 6.1.9. 

type 1 type 2 type 3 type 4 type 5 type 6 

9 O P 4^Q 9 P f \ > f ? 

iMUUUM 
o < ^ <^ < ^ < ^ <]> 

Figure 6.2 Six types of significant intervals in a finite lattice of width 2 
and their skeletons. 

6.1.2 The Structure of a Finite Lattice of Width 2 

Now, we are close to being able to characterize the structure of finite 

lattices of width 2. 

Theorem 6.1.10. Every finite lattice L of width 2 is the union of its signifi­

cant intervals. 

Proof Let x e L. If \CX\ = 2, then [x, \f Cx] is a 2-significant interval by 

Theorem 6.1.4. 

If \CX\ = 2, then [/\ Cxx, x] is a 2-significant interval by Theorem 6.1.4. 
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If \CX\ = \CX\ = 1 and n(x) = 0, then x is a nodal element, and there is a 

maximal nodal interval containing x, such interval is a 1-significant interval. 

If \CX\ = \CX\ = 1 and n{x) t 0. Then x A (A n(x)) is a meet-reducible 

element of L in | x and x V (V ?r(X)) is a join-reducible element of L in | x. 

Thus, M~(L)n i x gt 0 and ./~(L)n T * * 0. Since the set of all meet-

reducible elements in | x is a finite chain and the set of all join-reducible 

elements is another finite chain in T x, there exist the largest meet-reducible 

element m in | x and the least join-reducible element y in | x, so % is in the 

interval [m,j]. We claim that [m,j] is a 2-significant interval. Let Cm -

{a, b}, then a < x or b < x since m < x and Cw = {a, b}. We may assume that 

a < x, then x •£ b since « || Z>, and b •£ x since |CX| = 1, so x \\ b. We have 

aV b £ x. We claim that aV b ^ x, otherwise, m<a<(aVb)Ax<x and 

(aWb)Ax e M~{L) contradicting that m is the largest element in M~(L)n ix. 

Hence, x < aV b and j < a v b since y € ./~(X) n (T x). We have y ^ 6 

since x < j and x || b. Also y jf 6, otherwise, we have b A j < j by Lemma 

6.1.3 part (2) and m < b A j < b since m < a < x < j and m < b; thus 

m - b A j < j contradicting m < x < j . So b < j and a < x < j . Hence 

aV b < j and j = a v b. Therefore, [m, y] is a 2-significant interval by 

Theorem 6.1.4. D 

Let Cfc = {0,1,2,..., k) be a chain with the k + 1 elements. We use bold 

font in order to distinguish the set Cx, of elements in L covering x, from the 

chain C*. 
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In a finite lattice L of width 2, a significant interval [x,y] is a 1-significant 

or 2-significant interval. It is one of six types intervals shown in Figure 6.2. 

We denote the types of significant intervals [x,y] as follows: 

Type([x,x|) = (1, Cs), if [x,y] is a 1-significant interval with [x,y] = Cs; 

Type([x,>>]) = (2, Cs, Ct), if [x,y] is a 2-significant interval with [x,y] = 

HS(CS, Ct), and all elements in (x,y) are meet-irreducible and join-irreducible; 

Type([x,xl) = (3, Cs, Ct), if [x,y] is a 2-significant interval with [x,y] = 

HS(CS, Ct), there is one meet-reducible element in Cs n Cy and all elements 

in (x,y) are join-irreducible; 

Type([x,x|) = (4, Cs, Ct), if [x,>-] is a 2-significant interval with [x,xl = 

HS(CS, Ct), there is one join-reducible element in Cs n Cx and all elements 

in (x,y) are meet-irreducible; 

Type([x,>r]) = (57 Cy, Ct), if [x,>-] is a 2-significant interval with [x,^] = 

HS(CS, Ct), there are one meet-reducible element in Cs n Cy and one join-

reducible element in Ct n Cx\ 

Type([x,>>]) = (6, Cs, Ct), if [x,j>] is a 2-significant interval with [x,y] = 

HS(CS, Ct), there are one meet-reducible element in Cs n Cy and one join-

reducible element in CSC\CX. 

We abbreviate the denotations of the types of significant intervals as fol­

lows: 

(1, Cs) is abbreviated (\,s), 

(2, Cs, Ct) is abbreviated (2, s, t), 
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(3, Cj, C,) is abbreviated (3, s, t), 

(4, Cs, Ct) is abbreviated (4, s, t), 

(5, Cj, Cr) is abbreviated (5, s, i), 

(6, C$, Q) is abbreviated (6, s, t). 

Note that in a finite lattice L of width 2, a 1-significant interval is self-

dual; since a 2-significant interval is the horizontal sum of two chains, a 

2-significant interval is self-dual; so any significant interval [x,y] is self-

dual, i.e., [x,y] = [x,y]*. Note that [x,y] e S?J(L) iff [x,y]* e yj?(U), 

and [x,y] e 5? Jk{L) iff [x,y]* e yj?k(U) for k = 1,2. 

Lemma 6.1.11. Le? [x,;y] arcd [z, w] be significant intervals in a finite lat­

tice L of width 2, then x jf z and y % w. 

Proof. By duality, we need only prove that x Jft z. If x or z is nodal, the 

result holds. Hence we may assume that [x, y] and [z, w] are 2-significant 

intervals, then x Jft z by Lemma 6.1.8. • 

Since the set of the least elements of significant intervals forms a chain, 

we may list all significant intervals in increasing order of least element of 

these intervals, (i.e., yj^(L) = {[x(, v,] | i = 1, ...,k, and *i < ... < Xk}). We 

say that the intervals [x^yi] and [xi+i,yi+i] are adjacent for 1 < i < k - 1. 

Note that 

( l )*i = Oandy* = 1; 

(2) two 1-significant intervals are not adjacent. 



93 

Lemma 6.1.12. Let L be a finite lattice of width 2 and [xi,yi\ e yj?{L)for 

i> 1. 

(1) Ifx{ is a nodal element, then [x\,yi\ = VS([x\,yj-\], [x;,>>;]). 

(2) Ifxi is not nodal, then [xuyt] = QVS([x\,yi-i], [xuyi\\ [xuyi-\\). 

Proof. (1) Since [xz,^] e yj^(L) and xt is a nodal element, x(- is the 

largest element in the significant interval [X;_I,JK;_I], SO X;- = yi-\\ also 

since [xi,^] = [xi,^_i] U [xuyi\, we have [xuyi\ = [xuyt-i] U [x,,^] = 

^ ( [ X i , ^ - ! ] , ^ , ^ ] ) . 

(2) Since xt is not nodal and [xj,yi\ is a significant interval, [xi,yi\ must be 

a 2-significant interval and 7r(x/) + 0; by Lemma 6.1.6 part (3) x; is covered 

by some join-reducible element^; by corollary 6.1.5 part (3) [/\ Cy,y] is a 

2-significant interval which is adjacent to the 2-significant interval [x/,j/], 

so xt < y = yt-\ and [xi,>-r-i] n [x;,>v] = {*r,.y/-i}; it follows that [xi,j>;] is 

the quasi vertical sum of [xi,j>/-i] and [Xj,yi\ over [xj,yi-\], (i.e., [xi,j>;] = 

QVS([xi,yi-i], [xhyj], [*/,j>,--i])). • 

Theorem 6.1.13. Let L be a finite lattice of width 2 and let [xi,yi] be any 

significant interval in L with \ < i < n and x\ < X2 < ... < xn. Let 

L\ = [xuyi], L2 = [xuy2] = QVS(LU [x2,y2]), ... , and Ln = [xuyn] = 

QVS(Ln-i, [xn,yn]), then L = Ln. 

Proof. We claim that Ln = QVS(Ln-\, [xn,yn]). 

Let n = 2. Then [xi ,^] = QVS{[x\,y\\, [x2,yi]) = by Lemma 6.1.12. 
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Suppose that, for n = k, Lk = QVS(Lk-\,[xk,yk]) holds. Let n = k + 1. 

Then Lk+l = [xuyk+l] = QVS{Lk, [xk+uyk+x\) by Lemma 6.1.12. 

Since JCI = 0, y„ = 1 and L is the union of all significant intervals by 

Theorem 6.1.10, we have L = Ln. D 

The previous theorem states that a finite lattice of width 2 is "the quasi 

vertical sum of a sequence of its significant intervals". 

Figure 6.3 The Hasse diagram and the enhanced Hasse diagram of a pro­
totypical finite lattice, L\g, of width 2. 

A finite lattice L of width 2 is the union of a collection of significant 

intervals which are 1-significant or 2-significant intervals. The significant 

interval identification notation (siin) for a 1-significant or 2-significant 

interval [x,y] is defined as follows: the first number is 0, the second number 

is an ordinal number identifying where this interval lies in the sequence of 

intervals, the remaining 2 or 3 numbers are the numbers (1, s) or (i, s, t) as 

described above. Thus we can represent L as a sequence of siins. 

o 
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0,1,1,2 0,2,2,2,4 0,3,1,3 0,4,3,2,2 0,5,5,2,3 0,6,6,2,2 0,7,4,2,3 

Figure 6.4 The z'th significant interval of L\g is highlighted, notated and 
the siin presented below it. 

Figure 6.3 shows the Hasse diagram of a finite lattice of width 2 and all 

its siins. When we use A , V and/or $ to indicate significant intervals in 

a Hasse diagram, we refer to the diagram as an enhanced Hasse diagram. 

In the enhanced Hasse diagram, for each element labelled A , the interval 

[A, V] from A up to the least element labelled V is a significant interval. 

In Figure 6.3 we show the Hasse diagram of a finite lattice L\g of width 2; 

furthermore we redraw the Hasse diagram with the symbols A, V and A 

V ; in Figure 6.4 we highlight every significant interval on L\g and give the 

siin notation for an interval. Thus we can describe the lattice L\$ by the se­

quence of numbers of siins (0,1,1,2), (0,2,2,2,4), (0,3,1,3), (0,4,3,2,2), 

(0,5,5,2,3), (0,6,6,2,2), and (0,7,4,2,3). Dropping the parentheses and 

concatenating we arrive at a complete determination of the lattice L\g by the 
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sequence of numbers "0, 1, 1, 2, 0, 2, 2, 2, 4, 0, 3, 1, 3, 0, 4, 3, 2, 2, 0, 5, 5, 

2, 3, 0, 6, 6, 2, 2, 0, 7, 4, 2, 3". 

Figure 6.5 shows the lattice L\g and its skeleton, and there is no 1-

significant interval in its skeleton. 

Figure 6.5 The lattice L\g and its skeleton. 

In this section we will study the structure of a finite skeleton of width 2. 

Lemma 6.1.14. Let L be a finite skeleton of width 2. Then 

(1) L is the union of 2-significant intervals; 

(2) L is the union of 2-components; 

(3) every 2-significant interval has 4 elements and a unique 2-determinant; 

(4) L is a distributive lattice. 

Proof (1) This follows from Theorem 6.1.10. 

(2) This follows from Theorem 5.2.9. 
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(3) Let [x,y] be a 2-significant interval. There are a, b e [x,y] such that 

[x,y] = //£({*,>>} U [a], {x,y} U [6]) by Theorem 6.1.4 part (6). Since L is a 

skeleton, |[a]\ = \[b]\ = 1 by Lemma 3.1.7, thus [x,y] = HS({x,y,a},{x,y,b}). 

Hence, \[x,y]\ = \{x,y, a, b}\ - 4 and [x,y] has unique 2-determinant {a, b). 

(4) Since L is of width 2, L has no sublattice isomorphic to Mj. We claim 

that L has no sublattice isomorphic to N$. Suppose not. Let (a, b, c, u, v) be 

a pentagon in L. Since L is a skeleton, we have a -P b, so there is some 

/̂ € [b, a) such that d € M~(L) or some <i e (6,«] such that d € J~(L). 

We may assume that there is d e [b, a) such that d e M~(L), it follows that 

c\l d = c\l b and d < cw dby Lemma 6.1.3 part (1); since c \\ a, we have 

cwd^a; since J < a and d < cV d,we have a £ cV d, thus a || c V J, so 

a || c V 6 contradicting the fact that (a, b, c, u, v) is a pentagon. Hence, L is 

distributive. • 

In fact any significant interval ix in a skeleton of width 2 is a 2-significant 

interval since there is no 1-significant interval in a skeleton, and ix = ix by 

the function ~ : ix —> />• 

Lemma 6.1.15. Let L be a finite skeleton of width 2 and [x,y] be a 2-

component. If {a, b) is a 2-determinant of[x,y], then 

(\){a,b}cM(L)nJ(L), 

(2) {a, b}nCx±(b and {a, b}nCy ± 0. 

Proof. (1) Let [x,y] be a 2-component and {a, b) be a 2-determinant of [x,y]. 

Then x = a A b and y = a V b. We claim that a 6 M(L). Suppose that 
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a e M~(L). Then a < aV b = yby Lemma 6.1.3 part (1). Let w = Ca - {y}. 

Then w ^ b since a < w and a \\ b. We have b ^ w, otherwise, y - a V b < w 

contradicting Ca = {y,w}. So w \\ b. Since w \\ y andy e J~{L), we have 

w € J(L). Also since w Ab <w and Cw = {a}, it follows that w A b < a and 

x = aAb<wAb<aAb = x. Hence, x = w A b. Since y = aV b < w V b 

and w ^ _y, we have _y < w v b. Thus [x,j] c [w A b,w v b] e ^{V) 

contradicting the maximality of a 2-component [x,y]. Dually, a e J(L). 

Hence a e M(L) n J(I) . By symmetry b e M{L) n J(L). 

(2) Suppose that {a, b} n Cx = 0. Since ct || b and w(Z) = 2, we have 

a # V Cx or Z? jf V Cx", also since [x, V Cx] = {x, V Cx} U Cx by Lemma 

6.1.14 part (3), it follows that V Cx < a or V Cx < b. We may assume 

V Cx < a, then V Cx < b or V Cx \\ b since a \\ b. \f\JCx < b, then 

x < V Cx < aAb contradicting aAb = x. If V Cx \\ b, then (V Cx)Ab <\J Cx 

by Lemma 6.1.3 part (2), thus x < (V Cx) Ab < aAb contradicting a A b = x. 

Hence, {a, b}C\Cx± 0. Dually, {a, b}nCy ±<d. D 

6.2 Finite Lattices of Width 3 

6.2.1 Properties of Finite Lattices of Width 3 

Let ix and z> be two 3-significant intervals in L with X, Y e n3
L. The 

following Theorem shows the relation between ix and z>. 

Theorem 6.2.1. Let L be a finite lattice of width 3 and let ix and iy be 3-

significant intervals in L with X,Y e n3
L. Then / \ X < f\ Y and \J X < V Y, 

or f\Y < /\Xand\JY < \J X. 
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Proof. The lattice L is a union of three chains C\, C2 and C3 by Dilworth's 

Theorem. LetX = {x\,X2,x3} and F = {71,^2,73} with xuyi e Ct for each 

i e {1,2,3}. We claim that (A^O If (A Y). Suppose that (A^O || (A Y). 

Then (V X) || (V Y) by Lemma 5.2.6 part (1), thus I ^ 7 a n d 7 ^ X W e 

may assume that^i < x\, y2 ^ *2 and X3 < y3. Then Jf|_| 7 = {x\,X2,y?,}, 

XUY = {yi,y2,x3}, A Y < yx < xx < \J X, A Y < y2 < x2 < V X and 

A * < x3 < y3 < V Y. Let a = ( A * ) V (A Y) and 6 = (V^O A (V 7). 

then /\X,/\Y<a<b< y X,y Y. Since [a, V X] c z>, we have ix -

{[a,\J X]) U (ix - [a, \J X\). Since A Y < x\ and /\X ^ *i, we have a < Xi, 

similarly a < x2, a < y3 and x3 < b hold. Hence, 2 < \X C\ [a, \J X\\ < 3. 

But \X n [a, \/X]\ & 3, since f\X < a follows from the supposition that 

/\X || A Y. Therefore, \Xn [a, \/X]\ = 2 and a £ x3. 

We claim that {x\,x2,a V X3} e TT3
L and {xi, X2, a V X3} c [a, \/X]. Since 

a < y3 and X3 < y3, we have « v X3 < ^3; also sinceXu Y = {xi,x2,y3} e n3
L 

by Lemma 5.1.10 part (2) and (3), we have x\ £ aVx3; similarly x2 £ aVx3. 

Since {xi,X2,X3} e 7^, it follows that a V X3 ^ xi and a v X3 ^ X2. Hence 

{xi,X2,a v X3} e n3
L. Since a < x\ < \/ X and a < x2 < \JX, it follows 

that xi,X2 e [a, V^G- We have a < aV x3 < b < \/ X since X3 < Z? and 

a < 6. Thus xi,x2 ,a V x3 € [a, \/X\. Hence, /{^^av^} c [a, \JX] c z> 

contradicting ix is a 3-significant interval. Therefore, (/\X) Jft (/\ Y). By 

Lemma 5.2.6 part (2), if A X < f\ Y, then V X < V Y; by Lemma 5.2.6 part 

(3), if A Y < /\X, then V Y < \JX. u 



100 

AY\/^AX 

Figure 6.6 Two significant intervals ix and iy in a lattice with A ^ II A ^ 

and V^II V^-

For ix,iy e S^^^L), A ^ II A Y might happen. Figure 6.6 gives an 

example. In this example, X = {x\,X2, *3, ^4} and {y\,y2,yi,y4}-

The following corollary to Theorem 6.2.1 shows that, in a finite lattice L 

of width 3, the union of two 3-significant intervals is a sublattice of L. 

Corollary 6.2.2. Let ix, iy be two 3-significant intervals in a finite lattice L 

of width 3. Then ix U iy is a sublattice ofL. 

Proof. Wehave A ^ < A ^and V ^ < V Y, or A Y < /\Xand\/Y< \J X 

by Theorem 6.2.1. We may assume that A ^ < /\Yand\/X < V Y. Let 

a, b e ix U iy. If a, b e ix, then a A b, a V b e ix, so a A b, a V b e ix U /y. 

Similarly if a, 6 e />, then a A b,a w b e ix U z>. We may assume that 

a € z> and 6 e />, so that /\X < a < \/X and A Y < b < V Y\ thus, 

A X = ( A ^ ) A{f\Y) < a Ab < a < \X zn& f\Y < b < aV b < 

(\/X)v (\J Y) = \f Y. Hence a A b,aV b e ixU iY. Therefore, ix U z> is a 
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sublattice of L. • 

6.2.2 The Structure of a Finite Lattice of Width 3 

Lemma 6.2.3. Let L be a finite lattice of width 3, let [xi,>>i] and [x2,yi\ be 

distinct 3-significant intervals. Then 

(1) Xi < X2 or x2 < X\, 

(2) x\ < x2 iffyi < yi, 

(3)x2 <x\ iffy! <y\. 

Proof. (1) Since [xi,.yi] and t ^ , ^ ] are 3-significant intervals, there exist 

Z\ and Z2 in n\ such that [xi,.yi] = z'z, and fe.^] = iz2- By Theorem 6.2.1 

we have A hx # A h2, i.e., x\ Jft x2; since [xi,j>i] and [^2.^2] are distinct 

3-significant intervals, we have x\ + x2 by Lemma 5.2.6 part (3). Hence 

x\ < x2 or X2 < x\. 

(2) and (3) follow from Lemma 5.2.6 part (2). • 

Since the set of the least elements of the 3-significant intervals forms 

a chain, we may list all 3-significant intervals in increasing order of least 

element of these intervals, i.e., S?<#i{l) - {[x/,^/] | xi < X2 < ... < x*}. 

Lemma 6.2.4. Let L be a lattice of width 3 and let \x\,y{\, [x2,.y2] e @7>{L) 

with x\ < x2. Ifw([x2,yi]) = 2, then [x\,y2] - ([*i,.Vi] U [^2^2]) is an empty 

set or a chain. 

Proof Since w([x2,.yi]) = 2, there exists {a,b} e 7r? ,. Suppose that 

[xuyi] - (|>i,j'i] U [x2,y2]) * 0- Let z e [xi,^2] - G>i,;>i] U [x2,y2]). 
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We claim that z \\ a and z \\ b. Since x2 < a, z < y2 and z $. [x2,yi\, we 

have a •£ z; since a < y\, x\ < z and z £ [xi,.yi], we have z ^ a; so a \\ z; 

by symmetry b \\ z. Since [a, b,z} e n\ for z e [^1,^2] - ([^1^1] U L^*.)^])? 

any two elements in [JCI,^]
 _

 ([^I^I]
 u [x2>.y2]) are comparable. Hence, 

1*1,72] - fl>i,J>i] U [x2,yi\) is a chain. n 



CHAPTER 7 

SUMMARY AND DISCUSSION 

In this dissertation, we develop the equivalent relation ~ on a poset P, 

the blocks of which are the maximal autonomous chains of the poset P. The 

order skeleton P of P is the poset formed by the blocks of ~. The mapping 

~ : P -» P from a poset P to its order skeleton P is an order-epimorphism, 

P may be recaptured from P as a lexicographic sum of P and the chains 

{[x] | x € P). Specifying to a lattice L, ~ is a congruence relation on L and 

the mapping ~: L —> Z is the canonical epimorphism, so that Z is realized 

asZ/~ . 

In order to solve some problems about a lattice, firstly, we can create a 

similar problem based on its order skeleton, then work on the similar prob­

lem; finally, we seek the solution for the initial problem. We handle the fol­

lowing two problems by applying the order skeleton. The first one concerns 

the calculation of the residuated approximation, the second one concerns 

the structure of finite lattices of small widths. 

For any isotone mapping / : L —> Q between two complete lattices, it 

has been known that the umbral number Uf of / is small given sufficient 

distributivity of L or Q. We proved that in fact, Uf is small when there is 
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sufficient distributivity of L or Q. For a ~ finite lattice L, we proved that 

Uf = Uf0, where f0 is essentially a function from L to Q, induced by / . 

We find that the skeleton of any finite lattices of width 2 is distributive. 

Moreover, we have some results about the structure of finite lattices of width 

3. Combining order skeleton and antichain helps to reveal the structure of 

finite lattices of larger width. Future research will focus on developing a 

structure theory of finite lattices. 



APPENDIX A 

SOURCE CODE 

To support this research, we developed a software named ISRMap which 

provided the following functions: 

(1) Draw and edit the Hasse diagrams of posets. 

(2) Judge whether a poset is a lattice. 

(3) Calculate and list all isotone mappings between two finite posets. 

(4) Calculate and list all umbral mappings for any isotone mapping be­

tween two finite lattices. 

(5) Calculate the umbral number Uf for any mapping / : L —» Q between 

two finite lattices and list the UL,Q. 

We used this program to examine many examples which generated in­

tuition for the creation of the relevant theorems. For some examples, we 

uploaded the computing task on LONI (Louisiana Optical Network Initia­

tive) to finish the computation. Having so generated intuition, we proceeded 

to write the dissertation without any reference to the program. Our results 

depend on the program in no way - except for the initial intuition. However, 

for completeness, we present the source code. 

We use a one-dimension array called "points" to represent elements in 
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a lattice and a two-dimension array called "partial" to represent the partial 

ordering relation between two elements in a lattice. 

struct points { 

char label[6]; 

char imagelabel[6]; 

int index; 

int imageindex; 

}; 

struct partial{ 

int index; //to save the index of upper point. 

CString label; //to save the label of upper point, 

int distance;//to save the distance between two points. 

} ; 

Now we describe the purposes of the following functions: 

1. the function CISRMapDoc::fplus is to compute the f^\ 

2. the function CISRMapDoc::fminus is to compute the / ^ ; 

3. the function CISRMapDoc::OnCalSha is to compute cry. 

void CISRMapDoc::fplus(struct p a r t i a l p[][MAXNODE], 

s t r u c t p a r t i a l q[][MAXNODE]){ 

i n t i , j ; 
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bool nullmap; 

for(i = 0; i<nq; i++){ 

backplus[i]=qpoint[i].imageindex; 

qpoint[i].imageindex = -1; 

qpoint[i].imagelabel = ""; 

} 

for(i = 0; i<np; i++){ 

if(qpoint[ppoint[i].imageindex].imageindex == -1){ 

qpoint[ppoint[i].imageindex].imageindex = i; 

qpoint[ppoint[i].imageindex].imagelabel = 

ppoint[i].label; 

} 

else{ 

qpoint[ppoint[i].imageindex].imageindex=pjoin[i] 

[qpoint[ppoint[i].imageindex].imageindex][1]; 

qpoint[ppoint[i].imageindex].imagelabel=ppoint 

[qpoint[ppoint[i].imageindex].imageindex].label; 

} 

} 

nullmap = true; 

if(qpoint[qlowest[l]].imageindex == -1){ 

qpoint[qlowest[l]].imageindex=plowest[l]; 

qpoint[qlowest[l]].imagelabel=ppoint[plowest[l]].label; 
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} 

while(nullmap){ 

nullmap = false; 

for(i = 0; i<nq; i++){ 

i£(qpoint[i].imageindex == -1) 

nullmap = true; 

//to get fplus for point i. 

for(j = 0; j<nq; j++){ 

if((i!=j)&&(qpartial[i] [j] .label— 

qpoint[i].label)){ 

//point j under point i. 

ifCqpoint[j].imageindex == -1){ 

//point j not mapped any point in P. 

break; 

} 

if(qpoint[i].imageindex == -1){ 

qpoint[i].imageindex = qpoint[j].imageindex; 

qpoint[i].imagelabel = qpoint[j].imagelabel; 

} 

else{ 

qpoint[i].imageindex=pjoin[qpoint[i].imageindex] 

[qpoint[j].imageindex][1]; 

qpoint[i].imagelabel = 



ppoint[qpoint[i].imageindex].label; 

} 

} 

} 

} 

} 

} 

void CISRMapDoc::fminus(struct partial p[][MAXNODE], 

struct partial q[][MAXNODE]){ 

int i, j, k; 

bool nullmap; 

for(i = 0; i<np; i++) 

backpmap[i] = -1; 

for(i = 0; i<nq; i++){ 

if(backpmap[qpoint[i].imageindex] == -1) 

backpmap[qpoint[i].imageindex] = i; 

else 

backpmap[qpoint[i] .imageindex] = 

qmeet[i][backpmap[qpoint[i].imageindex]][1]; 

} 

nullmap = true; 

if(backpmap[plowest[l]] == -1) 



1 

backpmap[plowest[l]] = qlowest[l]; 

while(nullmap){ 

nullmap = false; 

for(i = ®; i<np; i++){ 

if(backpmap[i] == -1) 

nullmap = true; 

//to get fminus for point i. 

for(j = 0; j<np; j++){ 

if((i!=j)&&(ppartial[i][j].label== 

ppoint[j].label)){ 

//point j above point i. 

if(backpmap[j] == -1)//point j not mapped. 

continue; 

if(backpmap[i] == -1) 

backpmap[i] = backpmap[j]; 

else 

backpmap[i]=qmeet[backpmap[i]] [backpmap[j]] [1]; 

} 

} 

} 

} 



Ill 

void CISRMapDoc::OnCalSha(){ 

char num[12]; 

if(!checkres()){ 

numsh++; 

preprocessO ; 

fplus(qpartial, ppartial); 

fminus(ppartial, qpartial); 

UpdateAllViews(NULL); 

showhintC"", " " ) ; 

} 

memset(num, '\®'> 12); 

memcpy(num, "SHADOW: ",8); 

_itoa(numsh, num+8, 10); 

showhintC", num) ; 

} 
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