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ABSTRACT

Energy exchange between electrons and phonons in metal provides the best
example in describing non-equilibrium heating during the ultrafast transient. In times
comparable to the thermalization and relaxation time of electrons and phonons, which are
in the range of a few to several tens of picoseconds, heat continuously flows from hot
electrons to cold phonons through mutual collisions. Consequently, electron temperature
continuously decreases whereas phonon temperature continuously increases until thermal
equilibrium is reached. Tien developed the well-known parabolic two-step model for
describing the non-equilibrium heating in the electron-phonon system in 1992, and Tzou
developed the parabolic model for the non-equilibrium heating in an N-carrier system in
one-dimensional (1D) Cartesian coordinates in 2009.

In the early 1990s, it was discovered that biological tissue, along with a number of
other common materials, exhibits a relatively long thermal relaxation (or lag) time before
equilibrium heating. Because a biological cell may contain proteins, water, and dissolved
minerals, the non-equilibrium heating may also exist in the biological cell when exposed
to ultrafast heating.

This dissertation considers the generalized micro heat transfer models in an N-
carrier system with the Neumann boundary condition in 1D and three-dimensional (3D)
spherical coordinates, which can be applied to describe the non-equilibrium in biological
cells. The generalized models in 1D and 3D spherical coordinates are shown to be well-

posed.

iii



v

An improved unconditionally stable Crank-Nicholson (CN) scheme is presented
for solving the generalized model in 1D spherical coordinates, where a second-order
accurate finite difference scheme for the Neumann boundary condition is developed so
that the overall truncation error of the 1D improved CN scheme is second-order. Two
improved unconditionally stable CN schemes are then presented for solving the
generalized mode: in 3D spherical coordinates. In particular, two second-order accurate
finite difference schemes for the Neumann boundary condition are developed so that
overall truncation errors of 3D improved CN schemes are second-order with respect to
the spatial variable . The stability of the 1D improved CN scheme and two 3D improved
CN schemes is proved.

The convergence rates of the solution of the 1D improved CN scheme are
calculated by a numerical example. Results show that the convergence rates 6f the 1D
improved CN scheme are about 2 with respect to both spatial and temporal variables
respectively, while the convergence rates of the CN scheme with the convectional
scheme for the Neumann boundary condition are about 1 and about 2 with respect to the
spatial and temporal variables, respectively.

The convergence rates of the numerical solution of two 3D improved CN schemes
are calculated by two examples. Results show that the convergence rate of both 3D
improved CN schemes are about 2 with respect to the spatial variable », while the

convergence rate of the 3D CN scheme is about 1 with respect to the spatial variable r.
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CHAPTER ONE

INTRODUCTION

Chapter One provides the introduction to this dissertation. There are three sections
in Chapter One: general overview, research objectives and organization of the

dissertation.

1.1 General Overview

Energy exchange in metal between the electron and the phonon during the
ultrafast transient laser pulse is in non-equilibrium heating. In the range of a few to
several tens of picoseconds, heat continuously flows from hot electrons to cold phonons
through mutual collisions. When the phonon temperature continuously increases, the
electron temperature continuously decreases until thermal equilibrium is reached. Tien
developed the well-known parabolic two-step model for describing the non-equilibrium
heating in the electron-phonon system in 1992 [1], [2].

Most multi-carrier systems in nature are in thermal non-equilibrium. For instance,
non-equilibrium heating may exist in porous media that already involve a more
complicated system than the Two-carrier system. Also, the phase change in wicked heat
pipes may involve non-equilibrium heating and energy dissipation among the solid wick,
liquid, and vapor phases.

The N-carrier system is the latest progress in micro heat transfer modeling in the

past years. The first paper of an N-carrier system was published in 2009, and described a



parabolic model in an N-carrier system in Cartesian coordinates [3]. Dai et al. developed
a fourth-order finite difference scheme for the parabolic model in Cartesian coordinates
[4], and a stable finite difference scheme for thermal analysis in an N-carrier system [5].
Dai et al also developed a hyperbolic model in an N-carrier system in Cartesian
coordinates [6], and a compact LOD scheme for solving a model in N-carrier system with
the Neumann boundary condition [7].

In the early 1990s, it was discovered that biological tissue, along with a number of
other common materials, exhibits a relatively long thermal relaxation (or lag) time before
equilibrium heating [8]. Because a biological cell may contain proteins, water, and
dissolved minerals, the non-equilibrium heating may also exist in the biological cell when

exposed to ultrafast heating.

1.2 Research Objectives
The objective of this dissertation is to extend the parabolic two-step model in an
N-carrier system in 1D Cartesian coordinates to the generalized N-carrier system model
in 1D and 3D spherical coordinates. Also, the project will develop numerical schemes to
solve the parabolic model in an N-carrier system in 1D and 3D spherical coordinates.
In detail, research objectives of this dissertation include
1) To develop the parabolic model in an N-carrier system in 1D and 3D spherical
coordinates;
2) To prove the well-posedness of the parabolic model in 1D and 3D spherical
coordinates;
3) To develop improved CN schemes for solving the parabolic model in 1D and

3D spherical coordinates;



4) To prove the stability of improved CN schemes;
5) To provide numerical examples to illustrate the availability of the models and

the schemes in 1D and 3D spherical coordinates.

1.3 Organization of the Dissertation

Chapter One provides an introduction for this dissertation with a general overview,
research objectives and organization of the dissertation.

Chapter Two examines the background and previous work for this dissertation.
Macro heat transfer will also be discussed in the chapter, as is the two-step model in a
Two-carrier system for micro heat transfer in parabolic format. Also reviewed is the latest
progress of the model in an N-carrier system of recent years.

Chapter Three develops the parabolic model in an N-carrier system in 1D and 3D
spherical coordinates. The initial condition and the boundary condition for the model will
also be discussed. Also, the well-posedness of the model will be proved in Chapter Three.

Chapter Four develops improved CN schemes for solving the model. The 1D
improved CN scheme for solving the model in 1D and 3D spherical coordinates is
developed. The stability of the 1D improved CN scheme will also be proved in the
chapter, and a general algorithm as the solver for the linear system from the scheme. Also,
two 3D improved CN schemes for solving the model in 3D spherical coordinates will be
provided. The stability of the two second-order schemes will be proved in Chapter Four.
Also, a general algorithm as the solver for the linear system from the two schemes is
provided.

Chapter Five provides numerical examples for the model and the scheme

developed in Chapter Three and in Chapter Four. /;-norm errors and convergence rates



will be provided in Chapter Five. Also, numerical solutions and exact solutions will be
plotted in Chapter Five.
Chapter Six contains a conclusion of this dissertation. Also, future research is

discussed in Chapter Six.



CHAPTER TWO

BACKGROUND AND PREVIOUS WORK

Chapter Two provides background and reviews the research done previous to this
dissertation. The background section includes a short review of macro heat transfer and
micro heat transfer. Also reviewed is the latest progress of the model in an N-carrier

system.

2.1 Macro Heat Transfer

Heat transfer is the process of energy transition from carriers with high
temperature to carriers with low temperature [9], [10]. There are three modes of heat
transfer: conduction, convection and radiation.

This dissertation will only consider heat conduction. Macro heat conduction
describes macroscopic behavior of conduction of thermal energy. Macro heat conduction
can be modeled by the macro heat conduction equation. The macro heat conduction
equation can be derived from Fourier’s law in differential form and the first law of
thermodynamics (conservation of energy) [9], [10]

C%—J;=kV2T+Q, @.1)

where T is the temperature, C is the volumetric heat capacity, & is thermal conductivity, O

is the heat source and V* is the Laplace operator. In different coordinates, Laplace



operator V* can be expressed in different forms. In Cartesian coordinates (x, y, z), Laplace

operator can be expressed as

2 2 2
V2T=67;+a];+aT. (2.2)
ox* oyt oz
In spherical coordinates (7, 6, ¢), by substituting the transformation
x=rsingcosd, y=rsingsinf, z=rcosg, (2.3)

into Eq. (2.2), the Laplace operator from Cartesian coordinates to spherical coordinates

can be transformed to

VT = —!—é—(rz or
r> or or

SR Y .4 P O
r’sing o¢ 0¢ ) r’sin’¢ 06°

One can introduce x = cos¢ , and Eq. (2.4a) can be transformed to an alternative form

2
o D) oo
rPor\ or) r (1—,u )69 r? ou ou

2.2 Micro Heat Transfer

Micro heet transfer modeling is the study of the physical mechanism and
mathematical modeling of heat transfer in micro scale. Reviews of micro heat transfer
modeling can be seen in [11]-[16].

Micro heat transfer requires collisions among energy carriers. Micro heat transfer
by two carriers (7wo-carrier system), such as phonon-electron interaction in metal, has
been well studied for many years. At the micro scale, the process of heat transfer is
determined by phonon-electron interaction in metallic films and by phonon scattering in
dielectric films, conductors and semiconductors [17]. The general properties of micro

heat conduction in phonon-electron system can be found in [1]. A well studied



engineering example of the Two-carrier system is the micro heat transfer induced by
ultrashort-pulsed lasers during the ultrafast transient [18]-[54].

2.2.1 Parabolic Model in a Two-carrier
System in Cartesian Coordinates

The early version of the two-step model was developed by Kaganov et al. in 1957
[55] and by Anisimov et al. in 1974 [26]. Qiu and Tien developed the parabolic two-step
model in 1992 [1], [2]. In the two-step model, the first step is the heating of electron gas,

which can be expressed as

%L -k V1, -G (1, -T)) 0. 2.5)

and the second step is the heating of metal lattice, which can be expressed as

or, _
ot

C, G(T.-T,), (2.5b)

e

where T is the temperature, C, is the volumetric heat capacity for electron, C;is the
volumetric heat capacity for lattice, G is the phonon-electron coupling factor and %, is the
thermal conductivity of electron gas.

In the non-equilibrium heating in the electron-phonon system, which is different
from macro heat transfer, the intensity of heat flow is proportional to the temperature
difference between the electron and the phonon. To mathematically describe this
phenomenon, a coupling factor G is defined, which is a thermophysical property of
carriers in micro heat transfer.

There are applications of the two-step model in Cartesian coordinates, Eq. (2.5),
to engineering problems. Wang et al. applied a two-dimensional parabolic two-step
model to study micro heat transfer in a two-dimensional single-layered thin film exposed

to ultrashort-pulsed laser in [14], [56]-[59]. Zhang et al. applied a 3D parabolic two-step



model to study micro heat transfer in a two-dimensional single-layered thin film exposed
to ultrashort-pulsed laser in [16], [60], [61].

2.2.2 Parabolic Model in a Two-carrier
System in Spherical Coordinates

A parabolic two-step model in a Two-carrier system in 3D spherical coordinates

(r,0,¢) is developed in [11], [12], [62], [63]

CeaTe=£i£(r2 8T)+ ke a(sinqﬁaT)

ot ror\' or) rsingogl o4
k o'T
FR.T ~G(T -T)+0, 2.6
7 sin’ ¢ 0" (L.-7)+2Q (2.62)
oT: _
Ci— =G(T,-T), (2.6b)

where T is the temperature, C, is the volumetric heat capacity for electron, C; is the
volumetric heat capacity for metal lattice, G is the coupling factor between phonon and
electron and a positive constant, and £, is the thermal conductivity of electron gas.

The parabolic two-step model in 3D spherical coordinates, Eq. (2.6), is applied to
study a microsphere subjected to an ultrafast laser pulse [12], [63]. A parabolic two-step
model in 3D spherical coordinates is developed in [11], [62] to study heat transfer in a

microsphere exposed to ultrashort-pulsed lasers.

2.3 Previous Work
The N-carrier system is one of the latest developments of micro heat transfer
modeling [3]-[7]. A brief review of current papers of the model in an N-carrier system is

also discussed.



The following assumptions to the N-carrier system studied are: 1) there is perfect
thermal contact among different energy carriers; 2) the coupling factor G,, is only
decided by the physical properties of the carrier; 3) heat convection and radiation is not
considered; 4) and all N-carrier systems are stationary [3]-[7].

2.3.1 Parabolic Model in an N-carrier
System in Cartesian Coordinates

Tzou developed a parabolic model for a generalized N-carrier system [3]

aTl(x,t)
oo

- 6 I (x ) ZG‘"’[T (x,1)=Tw(x.0) ]+ O (%.1), (2.7a)

OT . (x,t)
Cn ot

k aTm xt) ZGmm[Tm(Xt Tm(x t):l

N

- Z Gom [T ot )—Tm‘(xaf)]+Q,,,(x,t), (2.7b)
6TN(x,t)
CN—_—at

= kn 0 Tgxx t) ZG,,,N[T,, xt TN x,t ]+QN(xt (2.7¢)

where T, (m=1,---,N) are the temperature of carriers, C,(m=1,--,N) are heat

capacities and constants, k,(m=1,--,N) are conductivities and constants, G,,, are

coupling factors between m-carrier and my-carrier and positive constants, and

0,(m=1,---,N) are heat sources. In Eq. (2.7), a positive sign denotes energy gain of the
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system, and negative sign denotes energy loss from the system. Energy exchange among

carriers in Eq. (2.7) can be seen in Figure 2.1 [3].

Gni(T- TN)

GioTr- Ty

— ~—
Gom(T>- T’”)\ e @

Figure 2.1 Energy exchanges in an N-carrier system.

mN (Tm T; N)

If parabolic two-step models for the Two-carrier system and the N-carrier system
are solved by finite difference schemes, the order of accuracy of the finite difference
scheme depends on the quality of discretization of Laplace operator Egs. (2.2) and (2.4).
The fourth-order finite difference scheme for Laplace operator in Cartesian coordinates is

developed in [4]:

(7). = ATw), +(T)..,
L] e el ], =5k s

%[(Tm)u]l —5[(Tm)m]2 =, (2.8b)

6 (7 ’")xxl _5[(T m)xx],-l = [ - A;z , (2.8¢)
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where 7, (m=1,---,N) are the temperature of carriers.

In [4], the authors apply the fourth-order scheme for Laplace operator to the
parabolic model in an N-carrier system in Cartesian coordinates. The stability of the
fourth-order scheme in matrix form is proved by discrete energy method. A numerical
example of a Three-carrier system in 1D Cartesian coordinates shows the match between
numerical solution and exact solution with second-order accuracy.

2.3.2 Hyperbolic Model in an N-carrier
System in Cartesian Coordinates

Dai et al. develops a hyperbolic model for micro heat transfer of a generalized N-

carrier system in [6]

) 5o fnriof). o
- aa—zw 4,=—kVT\, (2.9b)
OT (%,t) o - -~
C. - =—V-qm+;Gm,m[Tm,(xrt)—T'"(x’t)}

N

+Y Gom |:T,,,(;c,t)—T,,,l(;c,t)}+Qm(;c,t), (2.9¢)

m=m+l

rmaa—é;w_l =—kVTn> (2.9¢)

oT v(x.t) o 3 R B
CN——at— =-V.q, _;GmN[Tm(x,t)—TN(x,t)} +QN(x,t), (2.99)
Twn a% +a = _kNVTN s (29g)

ot
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where T,(m=1,---,N) are temperatures, C,(m=1---,N) are heat capacities and
constants, k,(m=1,---,N) are conductivities and constants, G,, are coupling factors

between m-carrier and m; and positive constants, Q,(m=1,---,N) are heat sources, g,

are the heat fluxes associated with carriers respectively, and 7, are the relaxation time
(the mean free time) for carriers.

Well-posedness of the hyperbolic model is proved. An improved CN scheme is
developed, and the stability is proved in the paper. A numerical example of Three-carrier
system in 1D Cartesian coordinates shows the match between numerical solution and

exact solution with second-order accuracy.

2.4  Conclusion
Chapter Two discussed the background and previous work for this dissertation.
Parabolic models and hyperbolic models for micro heat transfer models are reviewed.
This dissertation will consider the parabolic model in an N-carrier system in 1D and 3D
spherical coordinates, and develop an improved scheme to solve the model. The model

can then be applied to study the heat transfer in biological cells.



CHAPTER THREE

MATHEMATICAL MODEL

The parabolic models in an N-carrier system in 1D and 3D spherical coordinates
are developed in Chapter Three. The initial condition and the boundary condition of the
two models are discussed. Also, the well-posedness of the two models is proved in

Chapter Three.

31 Governing Equations
3.1.1 1D Case
Basing on the micro heat transfer in an N-carrier system Eq. (2.7) in [3], we

develop a parabolic model in 1D spherical coordinates as follows:

or!r-t) _ ki , OT(r,t
C 3(; ) r? 6r( r )] ZG""I: rt T,,,(r t):|+Q1 ’"t (3.1a)

c aT,,,(r,t) _ka O 0 [ aTm(r t J "'Zlem[Tm r t) Tm r t)]

ot r* or

- ZN: Grm [Tm(r"‘)—Tm, (r,t)]+Qm(r,t), (3.1b)

m=m+l

c oT (r.1) _kn0f oT x(.1)
" r’ or or
N-1

+Y G| Tn(rt)=Tu(r.1) |+ 0, (r.1), (3.1c)

m=1

13
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where T, are temperatures, C,, are heat capacities and constants, %, are conductivities
and constants, G, is the coupling factor between m-carrier and m;-carrier and positive
constants, and Q, are heat sources.

To further increase accuracy, the initial condition is set as the exact solution of the

model when
T.(r,0)=T.(r), m=1---N. (3.2)

Also, it is assumed that there is no heat loss in a very short time period, so the

boundary condition for T,, at r = L is considered as

oT.(L.t)
or

=0, m=1---N, (3.3)
where L is the right boundary of the radial distance .
3.1.2 3D Case

Following the International Organization for Standards, the three coordinates

(r,9,¢) for 3D spherical coordinates are defined as follows: for a point in 3D spherical

coordinates, the radial distance r, ranging 0 <r <1, is the distance between the point and
the origin, the zenith angle @, ranging 0 <8 <2, is the angle between the point and the
positive z-axis, and the azimuth angle ¢ ranging 0<¢ <7, is the angle between the
point and the positive x-axis.

In order to analyze the micro non-equilibrium heating in 3D spherical coordinates,

similar to Eq. (3.1), parabolic model in an N-carrier system is developed as:

1

Or\(r0. 1) k& . or\(r,0, 1,t)
ot r* or or
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ke PT(r0.mt) k3 (,  \OT(r.0,u1)
rz(l—,uz) 06° +r2 a,u[(l ,u)

N
=Y G| Ti(7,0 2.1) =T, (7,0, 1,1) |+ O, (7,0, p1.1), (3.4a)

c 6T,,,(r,6’,,u,t) =ﬁi 2 8T,,,(r,t9,,u,t) N k., asz(r,Q,,u,t)
K ot ¥’ or or r’ (1—;12) 06?

k, 0 OT (7,0, 1.t -
+r—2a[(1—ﬂ2)“—(a;l—'_)J+;Gm‘ml:Tm, (r,e,lu,t)—Tm(r,e,,u,t):l

N
= Gom | Tu(r,0.18,8) =T, (r,0,11,1) |+ 0, (7.0, p1,1), (3.4b)

m=m+]

oT (.6, 1,1) [y 0 ( , aTN(r,é’,ﬂ,t)J
Cy—— 2= 2
ot r* or or

kN azTN(ragau:t)_i_ﬁi (1_ﬂ2)aTN(r,0,/l,t)
r(1-4*) 06’ r* du ou

N-1
+ZGmN[Tm(r9€9ﬂ:t)_TN(r595ﬂ7t)]+QN(r3071Ll9t) > (34C)

where 0<r<[,0<0<27 and u=cos¢ with 0<¢ <7, T, are temperatures, C, are
heat capacities and constants, f, are conductivities and constants, G,, is the coupling
factor between m-carrier and m;-carrier and positive constants, and Q) are heat sources.
To further increase accuracy, the initial condition is set as the exact solution of the
model when ¢ =0
T.(r,0,1,0) =T, (r,0, 1), m=1,---N . 3.5)
It is assumed that there is no heat loss in a very short time period, so the boundary

condition for T, at r = L is considered as:
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OT (L0, p,t) _ 0

>m=1>"'N7 (363.)
or

where L is the right boundary of the radial distance r. Also, it is assumed that:

T,,,(r,H,y,t)=T,,,(r,¢9+27r,,u,t), (3.6b)

T.(r.0,-1,t)=T,(r,6,1,t)=0. (3.6¢)

3.2  Well-posedness
3.2.1 1D Case

Section 3.2.1 proves the well-posedness of the parabolic model in an N-carrier
system in 1D spherical coordinates Eq. (3.1). Proof is offered that there is a solution for
the parabolic model in an N-carrier system in 1D spherical coordinates. The solution is
uniquely decided by the initial condition Eq. (3.2), and the solution depends on the initial
condition continuously [64].

In order to simplify the proof of the well-posedness of the parabolic model in an
N-carrier system in 1D spherical coordinates, it is assume d that coefficients C, are
positive constants, coefficients f, are positive constants and the solution 7, of the
parabolic model in an N-carrier system in 1D spherical coordinates continuously depends
on the initial condition.

Theorem 1. The parabolic model in an N-carrier system in 1D spherical coordinates Eq.
(3.1) is well-posed with respect to the initial condition Eq. (3.2) and heat source terms.
Proof. To analyze the well-posedness of the generalized micro heat transfer model in 1D

spherical coordinates for non-equilibrium heating in an N-carrier system in 1D spherical

coordinates, multiplying Eq. (3.1a) byr*T,(r,t), Eq. (3.1b) by r*T,(r,r) and Eq. (3.1c)
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by rzTN(r,t) , summing together over m=2,---,N -1, rearranging the equation, this

gives:

iCmaTma(tr,f)rsz(rt ka ( aT"'(rt))T,,,(r,t)

or

‘ZGmm[T (7)) =T (rs1) T u(r-1) ZQ ()P T (rt)dr . (3.7)

m.m, =1

Integrating both sides of Eq. (3.7) over the interval 1<r < L results in

L N L
IZC aT,,,(r ) P T.(r.t)d J' ko a%[rz ———aTm(r’t))Tm(r,t)dr
o m=l 0

m=1 or
IiG [T,,, rt Tm(r t)]rT rt)dr+jZQ rt rT (r, t)dr (3.8)

The term on the left-hand-side (LHS) of Eq. (3.8) can be written as:

L oT.(r1) ., o1 .
jZCm——at——Tm(r,t)r dr =5(§!Cme(r,t)r dr}. 3.9

Applying integration by parts (Green’s Theorem: ﬂ ANeg-f Ag)dA j ( & —g——= f )a’ )

and the boundary condition Eq. (3.3), the first term of right-hand-side (RHS) of Eq. (3.9)

can be simplified to

© Cmmmmny 1

al ol , 6T,,,(r,t)
Zk,,, 5 (r Py ]Tm(r,t)dr

m=1

_ —kmj‘irz(aT ';(r”’) J dr. (3.10)
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Substituting Egs. (3.9) and (3.10) into Eq. (3.8), multiplying the result by 2 leads to

L N

> U}:cr (r.t)r 2drj+2k | Z,{ala.(rif_)] -

o m=1 o m=l

+2j Z Gom |:T,,, rt) =T, (r.1) :]r T.(7.1) J-Z Q. (r. )T, (r.t)dr. (3.11)

o mm=1
m<m,

After the non-negative term in LHS of Eq. (3.11) is dropped, the result is

o U.ZC,,,T,,,(r t)rler<2IZQ (r,0)r* T, (r.t)dr . (3.12)

o m=1 o m=l

Using Cauchy-Schwartz’s inequality (2ab < &4+ lb2 for £ > 0) results in
£

N
2JZQ (r, )T (7, t)err<ch,,,T,,, r t)rzdr+jZELQ yridr. (3.13)
o m=1 o m=l o m=l
Linking Eq. (3.12) and Eq. (3.13) provides a result of
9 JL.EN_:C Ta(r.t)rdr
o\ " "
L N N
<[>c.ri(r t)err+jo—Q;(r,t)r2dr. (3.14)
o m=l m=1 m
Letting
L N
F(t)= [ caai(r)rdr (3.152)
o m=1
and
L N 1
o(f)=| ZC_Q;(r,f)err, (3.15b)
o m=l m

and substituting Eqgs. (3.15a) and (3.15b) into Eq. (3.14) leads to



19

<F()+0(r). (3.16)

Integrating Eq. (3.16) with respect to¢ results in

!6};( dz<jF(s ds+j'cb(s (3.17)
that is,
F(t)—F(O)SjF(s)ds+jd>(s)ds. (3.18)

Using Gronwall’s lemma [64] (If Q(r)20 and (r)>0 are continuous function

such that Q(r)<Z +Z I(//(s (s)ds holds for all ¢ in [t,r,], where Z; and Z; are

positive constants, then Q(r)<Z, exp[ZZII//(s)ds] holds for all 7 in [¢,1,]) provides

for any time fon 0<¢<y,,

F(r)< J:.I-F(s)ds+{F(O)+j:(D(s)dsjl < e‘I:F(O)+j:(D(s)ds} (3.19)

Finally, substituting Eqs. (3.15a) and (3.15b) back into Eq. (3.19) results in an

energy estimate for the N-carrier system in 1D spherical coordinates as follows:

L wN
IZCme r 1) ridr

o m=1

Se’“l:ij:CmT,,, r O)rzdr+:”Z Q (r t 2drjl (3.20)

m=1 0 o m=l m
where 0 <t <y,, that is, the solution of the parabolic model in an N-carrier system in 1D

spherical coordinates, Eq. (3.1), is unique and is continuously dependent on the initial



20

condition and heat source terms, implying that the parabolic model in an N-carrier system
in 1D spherical coordinates is well-posed. n
3.2.2 3D Case

This section will prove the well-posedness of the parabolic model in an N-carrier
system in 3D spherical coordinates Eq. (3.4). Before proving that the parabolic model in

an N-carrier system in 3D spherical coordinates is well-posed, the coefficients (,, are

positive constants, the coefficients k, are positive constants and the solutions
T (r,H, ,u,t) of the parabolic model in an N-carrier system in 3D spherical coordinates

continuously depend on the initial condition are assumed.
Theorem 2. The parabolic model in an N-carrier system in 3D spherical coordinates Eq.
(3.4) is well-posed with respect to the initial condition Eq (3.5) and heat source terms.

Proof. To analyze the well-posedness of the parabolic model in an N-carrier system in

3D spherical coordinates, multiplying Eq. (3.4a) by rZTl(r,é’, ,u,t) , Eq. (3.4b) by
¥’Ta(r,0,u,t) and Eq. (3.4c) by r’Ty(r,0,u,t) , then summing together over

m=2,--- N —1 and rearranging the equation, this gives:

X 3T.(r,0,u.t) N d( ,0Ta(r.0,p,1)
;C,,,———at——rsz(r,H,,u,t) = ;Tm(r,e,,u,t)km é—r—(r —

y 1 7. (r.0,11)
-y o8

3 G [T 0,0 =T (10,1 T (60, 11

m,m =1
m<m,

ul 6 2 aTm ,QS ’t
Tm(rsgsﬂat)+z_lkm 5;((1_:” )——(%}Tm(r,ﬁ,ﬂ,t)

N
+°0,(r,0,1,0) P Tu(r, 0, 1) . (3.21)
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Integrating both sides of Eq. (3.21) over all governing equations in 1<r<L,1<0<2x
and —1< <1, this gives:

127

I

jJL.ZN:k ai[ 2 OLulr.0,111) eﬂ’t)} (.0, 11,t)drd6d

L ¥ P
[>c. I.(r, 9’”) PT, (7,0, 1.t drd6d

m=1

~

kn O'Ta(r.0,1,1)
+” 0;(1_/12) o T (r,0,u,t)drd0d p

L N
f > 0,(r.0,11,1) T, (r,0, u,t)drdOd s . (3.22)
0

m=1

The term on the LHS of Eq. (3.22) can be written as:

j']fj'icm a—Tm(—rgMTm(i‘,@,ﬂ,t)rzdrdedﬂ

0 TS ]:nz(r,g,lu,t) 2
:5(_10 !’Zc ARG 0) v rapan | (3.23)

By Green’s Theorem (”(Afg— ng)dAzI(—Z—j; _% f S ) and the boundary
D C n

condition Eq. (3.6), the first term of RHS of Eq. (3.23) can be simplified as:

.[ .f j ikmi(rza—Tm—(—%@]n(r,e, s t)drd0d p1
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2

A

Similarly, the second and third terms on the RHS of Eq. (3.23) can be simplied as follows:

t N OT w(7,0, 115t
>k ( To{r- 01 )]drdedy. (3.242)

m=1

Nk, OTa(r.0,u0)
J- !;(1_#2) 50 T(V@,ut)drd@d,u

L N 2
> K (aT ’"(Sg’” ’t)J drd6d u (3.24b)

and

ou

szk'"%((l‘ﬂz)w}m (0, p1,t)drdOd

= —HTZN: ka(1- ﬂz)(@ﬂg“_”)} drdodu . (3.24¢)

Substituting Eqgs. (3.23) and (3.24) into Eq. (3.22), multiplying both sides by 2 and

rearranging, this gives:

jj’ic T2 (r,6, pi,1) Zdrdedyjuﬁjzk (M)ddedy

o m=1 10 o m=l

=2”in T (720, 1) drdOd . (3.25)

After the non-negative term in LHS of Eq. (3.25) is dropped,
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127

N L N
Z T2 (7,6, 1, zdrdedyjszjsz 0,77 T(r,0, 1.1) drd6dd 1 (3.26)

m -10

2

0

is obtained. Using Cauchy-Schwartz’s inequality (2ab < g4°+ lb2 for £ >0) results in
£

]

ot

j iersz(r,H,ﬂ,t)drdey

127

J113

-1

127z L

L
I CuT3(r. O, t)rdrdodu+ [ [ [ Y CLQ (r,0, u,t)r’drdOd . (3.27)

Substituting Eq. (3.26) into Eq. (3.27) leads to

%[iTj C T:(7.6, 1, )rzdrdﬁd,uj

-1 0 ¢ m=l

127

L L oy 1
J' > CuTi(r, 60, 1) P drdOd i+ j ”ZE—Q;(r,e, pot)rdrd0dy. (3.28)
=1

Denoting
F(t)= rﬂjicmﬂ: (7.0, u,t)r’drd0d 1 (3.29a)
and
(1) = rﬁiigfn(r, 0, p,t)r’drdfdp (3.29b)
%55 %7 Cn

substituting Eqs. (3.28) and (3.29) into Eq. (3.27), and integrating both sides with respect

tot provides:
<[F(s)ds+[o(s)ds. (3.30)

Using Gronwall’s lemma [64], results in for any time # in [O,to] leads to
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F(r)= le F(s)ds+':F(0)+_[CD(s)ds} <e' [F(O)+_[d>(s)ds}. (3.31)
Finally, substituting Eqs. (3.29a) and (3.29b) back into Eq. (3.31) results in

J

-10

2r

C,Tu(r.0,p,t)r’drdfd u

m
1

3
[

© Sy 1
N¢E

I

that is, the solution to the parabolic model in an N-carrier system in 3D spherical

N 1
m

{Hchm (.6, 11,0) 2drdt9dy+_”

N
o m=l 0 o1 =

ZEI-Q;(r,e, y,t)rzdrded,u] :

coordinates is unique and is continuously dependent on the initial condition and heat
sources, implying that the parabolic model in an N-carrier system in 3D spherical

coordinates is well-posed. N



CHAPTER FOUR

NUMERICAL METHOD

Improved CN schemes for solving the model in 1D and 3D spherical coordinates
are developed in Chapter Four. The stability of improved CN schemes is proved in this
chapter. Also provided are general algorithms as the solver for the linear system from the

improved schemes.

4.1 Finite Difference Schemes

4.1.1 1D Improved CN Scheme
To develop a finite difference scheme, (T,,,), is denoted as the numerical
approximation of (T, )(iAr), where Ar and At are the r - directional spatial and temporal

mesh sizes, respectively, and r, =iAr, 0<i<I+1, that ([ +1)Ar =L . Also, to briefly

describe the 1D improved CN scheme, the following difference operators are defined:

P, {(Tm)l"} - r,-i% (Tm)lz;z(TM)i _riz_% (T'”)iA_r(zT”’)i-l , (4.12)

The generalized micro heat transfer model, Eq. (3.1), can be solved using the

well-known second-order accurate and unconditionally stable CN scheme as follows:

25
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CIM ~kp {W (7, ]}

At v

S eufm [y ]-m ) o). 420

cm@%}”—’”ik—;"ﬂ{m[(n)f]}+§Gm.m{w (@) ]-w )]

’;. m =1
N

=Y Gulm[@)]-m (@) e, (4.2b)

m =m+1

CN——————(T”)THA;(T”)T = %P{W (@) ]}

+NZI: Gl (T -7 (1) 2 (4.20)

To develop a numerical scheme, one usually adds a 1D fictitious boundary condition at

the spherical center, » = 0,

aT.(0,1)

=0, m=1,---N.
or

The boundary condition Eq. (3.3) and the 1D fictitious boundary condition can be

discretized by the conventional first-order method as [65]
(Tn),=(Tn), (4.3a)

(T.),.,=(T.);- (4.3b)
However, the above numerical scheme provides only first-order accuracy with

respect to the spatial variable », which can be seen in the numerical example in Chapter

Five.



27

The reason why the problem happens is probably the conventional method Eq.
(4.3) is a first-order approximation of the Neumann boundary condition Eq. (3.3),
although the CN scheme Eq. (4.2) has second-order accuracy. Furthermore, the
discretization for the boundary condition Eq. (4.3) needs an additional point for the
boundary. Thus, as one of contributions of this dissertation, the conventional method Eq.
(4.3) is improved to second-order accuracy. This method shows advantages especially
when L is in micro scale.

A 1D second-order scheme for the boundary condition, Eq. (3.3) and 1D fictitious
boundary condition, is obtained by firstly designing a mesh, where the distance between

the spherical center » = 0 and the actual left boundary r; is set as SAr and the distance

between the spherical boundary » = L and the actual right boundary 7; is set as f,Ar, as

shown in Figure 4.1.

l BiAr } ‘ Ar ‘ l BoAr ’

® ® ® —@- ® ® @
L

0 r Vo Vi rr

Figure 4.1 Mesh and locations of grid points of the 1D improved CN scheme in spherical
coordinates.

rz aT"’ (r’t)

The finite difference approximation of ﬂ( 3
r

j at the left boundary »,
or

is obtained as follows:
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)

or or

; 1 ,0T,(r—pBArt
= 2 ;I:Tm(rz,f)—Tm(rbt):l_Xr_rlz (har ; )’

4.4)

. Ar )
where a,b, , are constants to be determined and ri= r1+7- Expressing each term of

LHS and RHS of Eq. (4.4) into Taylor series at r; shows:
LHS =br (T,), (r,,t)+2br,(T,) (7.1)

and

RHS=§r§|:Ar(Tm)r(rl,t) (not)+ ( ), (% )}
—irf[(Tm),(n,f)—ﬂlAr(Tm),,.( D+ ), ) o(er)
—| @ (1), ()| 20 |0, ()

+——{§r; —rfﬂf}(Tm )r, (rl,t)+O(Ar2) X

Matching LHS and RHS above, the following equations are obtained:

1 2 2
———(ar%—rlj = Zbrl . (4.521)
a l 2 4 ]D
7'3 rlﬁl Fis ( 3 )

225 =0. (4.5¢)
33
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Dividing Eq. (4.5a) by Eq. (4.5b) and then replacing ar] by 31’8’ from Eq. (4.5¢)
2

shows a quadratic equation with respect to f; as:

pl-p-1=0. (4.6)

Solving the above equations with respect to #, with 20 results in 8, = J§2+1 , and
hence

a__np _ (4.7)

Thus, after dropping the truncation error O(Arz) , a second-order finite difference

approximation at 7, is obtained:

i(rzaT'"(r’t)jz @[ ()] B g

or or bAF* 3 Ar ' or
OTw(r:t) ] .
Symmetrically, the finite difference approximation of GEL"Z —T—a(—g] is expressed at
v r

the right boundary », as follows:

b*

Kl rzéTm(r,t) 1 L 0Ta(r+ BARE)
Ar or Ar

or or VA A2 rlz_% [T'"(”IJ)"T'"("’-‘J):I’ (4.9)
1

. . Ar )
where g,b, 3, are constants to be determined and , 1= r1—7- By expressing each
2

term of LHS and RHS of Eq. (4.9) in Taylor series, and then matching both sides, the

following equations are obtained:

i(rf i lj =2p'r, (4.102)

2
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rf,82+a—r21 =p7r’, (4.10b)
2 -5
rgﬁg_%rj_lzo. (4.10c)
2

Dividing Eq. (4.10a) by Eq. (4.10b) and then replacing a*rlz_ , by 3r°; from Eq. (4.10¢)
2

results in a quadratic equation with respect to S as:
(3r,+3Ar),B22+2A,b’2—r, =0. 4.11)

If the number of grid points / is given, then the grid size and the coordinates of the grid
points can be determined as follows:

L

Ar=———
I+8+p,-1

,r=(i=14B)Ar, i=1,-, 1. (4.12)

Substituting Eq. (4.12) into Eq. (4.11) and then solving above equations respecting to f3,

with #,>0 results in

:\/4+3(ﬂ1+1)(ﬂ1+1—1)—1

B, 3(,31'*'1) , (4.13a)
and
a rif
e____TiF2 4.13b
¥V 1
=2 3

Thus, after dropping the truncation error O(Arz) , a second-order finite difference

approximation at r; is obtained:

a( ,oTu(rt)) 1 ,0Tu(r,+BANE) 4 » "
E(rz or ],_b'Arr’ or pA rj—%[(T'")’_(T”)"‘] (19

Using the boundary condition, Eq. (3.3), Eqs. (4.9) and (4.14) can be simplified to
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a aTvm rst a 2 n n
2[ A -], @159
5 2 aT,,,(r,t) a‘ 9 n n
5; r or ®- b*Arz r, 1 |:(T”')1 _(T'”)I—l:| : (415b)
; 2

It should be pointed out that the boundary condition, Eq. (3.3), is directly substituted into
Egs. (4.9) and (4.14) without discretization. Applying Eq. (4.15a) to Eq. (4.2a) results in

the 1D improved CN scheme at ¢, :

N ALY
—Z Gulw [(r). ]-W[(r.) ) (4.163)
e PO et e Son ()] (0]
-3 Gl ]z ) e (4.160)
LSO o (0]
X G [(r)]-w [ ] (2 (4.160)

By keeping Eq. (4.2b) unchanged, and applying Eq. (4.15b) to Eq. (4.2¢), the 1D

improved CN scheme at ¢, is obtained:

(), (1), k.d . .
C, AL = 'rl_zb*Arr,_%V"VVz[(T‘)ljl

1

"ZG{W () ]-w[ ()l o)™ (4.17a)
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L) e a1 (5 )] 0]

At r] bAr 1

=
n

N

=X Gy ][ (@) ) (4.17b)

m=m+l

Cu v, ()]

N-1 1
Y Gu{ W[ (2., () 0. 4.17¢)
m=1
Hence, the 1D improved CN scheme is obtained: Eq. (4.2) for interior points r;
(i =2,-,1 —1) and Eq. (4.16) for grid point r; and Eq. (4.17) for grid point ; for a
second-order discretization of the parabolic model in an N-carrier system in 1D spherical

coordinates. The truncation error of the 1D improved CN scheme is (A12+Ar2) at all

grid points [rm,t 1j,izl,---l.
n+E

4.1.2 3D First Improved CN Scheme
A finite difference schemes is developed by denoting (T,,,);k as the numerical
approximation of (Tm)(iAr, jAQ,kA,u,nAt), where Ar,A6,An and At are the r,0,u -
directional spatial and temporal mesh sizes, respectively, and 7, =iAr , 6, = jAO ,
=kAp, 0<i<I+1,0<j<J+1, 0<k<K, so that (I+1)Ar=L, JAG@=2r and
KAp=2.In order to briefly describe the 3D first improved CN scheme, following finite

difference operators are defined:

, (4.18a)

1

. ]
iy Ar? "5 Ar?

B P 2 M 8 2
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o (Ta) = 2T+ (W),
Pe[(T'")ijk:I:( )wk ( )"" ( )U—lk

(A6

, (4.18b)

PJ(T m)f,'-k]=[1—u2 ](T'")”“‘_(T'")"”‘—[l—uz ](T'")"’*_(T'”)’f“, (4.18¢)

<) (sw)

— (Tm):,jk _(T”’):'—Xjk

ViT.), » , (4.18d)
Th)., —(Tn).
ValT),, (72), A; )”‘”, (4.18¢)

w (Ta),=(TH),
V;(Tm)ijk = ( )IjkAlL(l )ljk—l .

(4.18)

n
i

Also, the time average of mesh function (T'”)jk is defined as:

wfir]-CR e

2
The parabolic model in an N-carrier system in 3D spherical coordinates Eq. (3.4)

can be solved using the 3D CN scheme as follows:

n+l n
(Tl)ijk _(Tl)ijk :Z%Pr

e IO e e A AL

i

bp [ )-Seml@n]-mley @) @
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‘ZN: Gmm{ [(T |- W[( )UJ}+(QM)Z;%, (4.19b)

m=m+l

. (TN)qkAt(TN)”" I;N { [(TN)yk]} %} { [(TN)U'J}

i i

A D R (R R s

i

The initial condition is set to be (T,,,);k = (T 0 ),-,k‘ To develop a numerical scheme,

m

one usually adds a 3D fictitious boundary condition at center, » = 0:

or
The boundary condition Eq. (3.6) and the 3D fictitious boundary condition can be

discretized by the first-order method as:

(T’")z 1k (T"’)IJ 124 ( '")Z,Ok :(Tm):k ’ (4.203)
(T2);o=(Tn), =0 (4.20b)

for any time level n, where m=1,---,N . For clarity (T,)  is the approximation of

-1k

T, (r,~AG, 1, ,nAt) . Egs. (3.6a) and the 3D fictitious boundary condition may be

m

discretized using the conventional first-order method as [65]

(T =(r.), m=Le (4200

(Tm)1+ljk (T"')Ijk’ =L, N. (420d)

However, the above numerical scheme provides only a first-order accurate solution with
respect to the spatial variable r, which can be seen in Chapter Five. Thus, Chapter Four,

we improve the finite difference scheme at the boundary, Egs. (3.6a) and 3D fictitious
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boundary condition, so that both the unconditional stability of schemes and the accurate
numerical solutions can be achieved. This is important because the length L could be in
microscale, and a higher-order accurate and unconditionally stable scheme will provide a
more accurate solution in a small grid size.

Based on the work in Section 4.1.1 of Chapter Four, the 3D first improved CN
scheme for the parabolic model Eq. (3.4) at »; and r; is developed. At r;, the 3D first

improved CN scheme can be developed as follows:

NN k,ar3
C, (Tl)ljkAt(T )”"‘ szr {W, [(Tm)zﬂ,}} ﬁf’e {W: [(Tl :,jk]}

At ribAr

-3 Gun [, T [ (), 0N @2ty

S R ACON IS YA NSO R ICED

1 m=]

Similarly, the 3D first improved CN scheme at r; is developed as follows:

() -(r), k4T

AUl -

Se[@),]

I
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T A(COM B R UAT N SATCAM A RNNCEES

I

* 2
A » Lk "
R i i)

e ) Lol w ]

=Y Gl ][ et (4220)

il k *r21
0 €0 Sy [, e )]

At r’b Ar

?T‘

ZB,{VV,[TN)M]} ZGM{ (), ]- [(TN)M]} Ho)E @220)

1
Hence, the 3D first improved CN scheme consists of Eq. (4.19) for interior grid point r;

where i =2,---,/ -1, and Eq. (4.21) for the left boundary r; and Eq. (4.22) for the right

boundary r;. It can be seen that the truncation error for the scheme with respect to r has
the order of Ar? at all grid points (r;,ej,/lptHlJ.
2

4.1.3 3D Second Improved CN Scheme

It is noted that that the above improved finite difference scheme consists of the

n-1

3D fictitious boundary condition. If the fictitious condition is noted, the value of ( )o,k

at the center is needed to determine in Eq. (4.19) when i = 1. To this end, the mesh in

Figure 4.1 is first modified as shown in Figure 4.2.
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l Ar ‘ \ﬂzAr[

o —© | J @ @ @ —@ @
0 r

£ £ 7

1

Figure 4.2 Mesh and locations of grid points of the 3D second improved CN scheme in
spherical coordinates.

Following the idea in [65], multiplying both sides of Eq. (3.4a) byr?, and then
integrating both sides over 0<r<g,0<0<2x, and -1< <1 with respect to r,6, u

results in:

IQI (r,@,,u,t)drd@d,u. (4.23)
0

oT,(r,0, p,t

Replacing o ) , []}(r,&,,u,t)—Tm (r,H,,u,t)] and O (r,0,u,t) with those

values at the spherical center r = 0, calculating integrals in Eq. (4.23) and using boundary

condition Eq. (3.6b) leads to
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im
-10 r m=2 3

12z zaT I",g,/l,t 4 3N 4 3
- [[re 28D 4, 472" S, (1), -(2),]+42 00,
Here, denote (Tm)0 =T,(0,0,4,1),m=1,--,N , and (@), =9.(0,6,4,t) . Deriving the

equation and setting ¢ = %’: results in the 3D second improved CN scheme at spherical

center » = 0:

(7). =(1), 3k, \
o " Ve = N gy Am @),
At 27Z'Ar ‘ ﬂ == V t [(Tl)\]k]

Ci

-Sufr ) ]-m[r]+@)* (424

m=2

Using a similar process for Eq. (3.4b) and (3.4¢) leads to

(Tn); ~(Tu),

- i Gom {W [(z.); -7, [(T )0}} o), (4.24b)

X Gu{W[ ()] W)+ @) (4240



39

Hence, the 3D second improved CN scheme consists of Eq. (4.19) for interior grid point

r;where i=2,---,/—1, and Eq. (4.24) for the left boundary r; and Eq. (4.22) for the right

boundary r;. Again, it can be seen that the truncation error for the scheme with respect to

r has an order of A/ at all grid points (;;,6’]., Mt ) .
n+z

42  Stability

4.2.1 Stability of 1D Improved CN Scheme

Proving the stability of the 1D improved CN scheme requires firstly building two

lemmas, Lemma 1 and Lemma 2. The stability is proved basing on the two lemmas. The

key to prove the stability of the 1D improved CN scheme is to consider the left boundary

r1, interior points 7, (i =2,--,1— 1) and the right boundary r; separately.

Lemma 1. For any mesh function (T,,,)? ,

()" () () =) ]

where 1<m<N.

[y T-[@)T}

Lemma 2. For any mesh function (7.,)’,

N-1
ArZ;P’ [(T”’)z:‘(T"’)z +r§V;(T”‘)2'(T”’)1 _rj_%VF(T”')l (T”’)I

N

= —AI’Z r:’_l[V;(Tm):T .

m=2 2

Proof.

(4.25)

(4.26)
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+r2%V;(Tm)z'(Tm):—rf_%v;(Tm):'(Tm):

! I-1
= 2 VAT (T0) = D VAT (T)]
i=3 2 i=1 2

HrAVHTn), (7o), = VATa), (1),

I 7 ;
=2 VAT ()= X AT () = [T, [

2

Theorem 3. The 1D improved CN scheme, Egs. (4.2), (4.16) and (4.17), is

unconditionally stable with respect to the initial condition (T,,.):) = (Tnf’ )’_ and source terms.
Proof By multiplying Eq. (4.2a) by /AW, [(Tl):'] , Eq. (4.2b) by ArW, [(T,,,):':|,

1<m<N, Eq. (4.2¢) by r’ArW, [(TN):'], Eq. (4.6a) by rIZAréW, [(T,)q, Eq. (4.6b) by
a
b b ' n
Fiar 2w, [(7.))), Ea. 4.60) by riar= W[(TN) ], Eq. @.72) by r;Arim[(Tl),}, Eq.
a

(4.7b) by ,Ar b—W, [(T,,,):] , Eq. (4.7¢) by riAr !)—W, I:(T N):] , adding them together over
a a

1<m< N, and using Lemma 1 and Lemma 2, this gives:

arrcaler T-{e Tl el T-{@)])

-1

i=2

+z;_ r,{[(Tm)"”] () ” —Argk,,,:zzrz_é{VW,[(Tm) ]}
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+Z w,[(1.)](@.) 2+ A ()]0 (4.27)

Dropping negative terms in RHS of Eq. (4.27) provides the result:
225 ez @ T[T e )T -[@)T)
Lpllwy T-[eyTheon > @yl

nleyjertLmleyleyh.

Using Cauchy-Schwartz’s inequality leads to

2(Qm)7+% . [(Tm):'“ +(Tm)} < C,,,[(Tm):'”+(T,,,):']2 + El—[(Qm)T%T

m

<20, {[(T,,,):’“T+[(Tm)f}2}+cim{(gm)f*5]z. (4.29)

Substitating Eq, (4.29) into Eq, (4.28), and mltplying both sdes by A¢ results n
Y e[ T[T} ey T- [y}
Ll T-LeaThs2waSe (@) T+a)])

oS Ay W@ el sl
D Y AR O ¥ R Rt [CRAl | SCES

Denoting

N

F(n)=28r) . {grl[(m T+ rf[(rm)j‘]2+f‘-;ri[(rm)j]2}, (431a)
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and

X b, . Ll A T
CD(")=A’Z:,CL{;H [(Qm), } 2 [(Q,,,), } +2 [(QM)I 2} } (4.31b)

i=2 a
and substituting Eq. (4.31a) and Eq. (4.31b) into Eq. (4.30), this gives:
F(n+1)

(1 +At)

(1 Ar) £m)+ (1- At)q)()

(1+At) (1+At) A
( ){(1 At) Fn=1)+ (1-Ar )q)(n 1)j| (1_—tAt5®(n)

< (1+Ar) m (1+A1) (1+At)1 (1+Ar)

_((1—A1)J F(O)+(1—AI){1+(1—At)+m+(1——At) }gn'?)s (n,)

SGT:Z;) (F(O)+53335®(" )) 432)

Using the inequalities (1+£) <¢™ for £>0 and (l—.e)_1 <e* forO<e <—12— results in

(1+A1)"™" < o and (1-At)" < ™. Multiplying the two inequalities together results in
(1+ar) " (1-ar)
< e(n+1)Al . eZ(n+1)At - e3(n+])Al . (433)

Substituting Eq. (4.33) into Eq. (4.32) leads to

F(n+l)£e3(”*‘)“( (0)+ max®(n ))se3’°(F(O)+maXCD(nl)),

0<n <n 0<n<n
that is, for any 0 <(n+1)Ar <t,, the scheme is unconditionally stable with respect to the

initial condition and heat source terms. =
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4.2.2 Stability of 3D First
Improved CN Scheme

Proving the stability of the 3D first improved CN scheme requires building

Lemma 3. Next, the stability will be proved basing on Lemma 1 and Lemma 3.
Lemma 3. For any mesh function (T,,,)jk with satisfying the boundary condition, Eq.

(3.6) has

NZP [T J T AT (T VAT (2,

=‘Nzr 1[ . ]k] , (4.34a)

263" pu[(r.), ] (1), =063 [va(z.), ] (4.34b)

=t

AﬂZP,,[(Tm ,k] o), =-Au2[(l K ;j ] (4.34c)

forany 1<i</.

Proof. The LHS of Eq. (4.34a) can be changed to

I-1

LHSzi;{HE[(Tm)M (Tm)f,k] [(Tm),,,E (T.)" l,k]} (T.),,

n

VAT W), (Tn),, —rj_%v;(Tm),ﬁ (),

2
L n n . n n
= Z rf_%v;(Tm)ijk ) (T'")i—ljk - z ri%v;(Tm)’-jk ) (Tm)ijk
i=3 i=2

+7’3V (Tm)ljk (T )ljk—r 1V (Tm)ljk (Tm)ljk

/

1
= Z r,'z_%V;(T"');k ’ (T”')i—ljk - er__;:V;(Tm)ijk ) (Tm)ijk
i=2

i=2
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= —Ai‘grf_%[V;(Tm);kT . n

Proof of Eq. (4.34b) and Eq. (4.34c) is similar to Eq. (4.26a). Now the stability of the 3D
first improved CN scheme can be proved.

Theorem 4. The 3D first improved CN scheme, Egs. (4.19), (4.21) and (4.22), is
unconditionally stable with respect to the initial condition (7,) =(T, O)ijk and source

ijk "

terms.

Proof ~ Multiplying Bq. (4.19a) by 2ArAGAuAtW, [(Tl);,] , Eq. (4.19b) by
rAr AGAUALTY, [(T,,,)';J , Eq. (4.19¢) by pArAOAuAW, [(TN)ZJ for interior points

=2,--,1—1; multiplying Eq. (4.21a) by rf%ArAGA,uAtW, [(Tl):‘jk] , Eq. (4.21b) by

72 Araonua, [(7.),] > Ea. (@21¢) by 22 arnonunw [(7.);,] for the left
a a

n

boundary; multiplying Eq. (4.22a) by rﬁb—‘ArAé’A,uAtW, [(Tl)zjk:l Eq. (4.22b) by
a

LA NN 4 [(T,,,)’;J , Eq. (422¢) by riArAeAﬂAtm[(TN);], adding all
a i

equations together over 1<m<N,1<i<[,1<j<J-1L1<k<K-1, and applying

Lemma 3 and Lemma 4, this gives:
J-1 K-1

_A,AaAﬂzcmzz{ P CAME ARSI (W AN

j=0 k=1

+z_:{[(Tm);'T_[(TM) ]} B4 ArAGAUAL

M=
R“
M
T'M~.
T ‘N
-
<
=
r
~
I
\;‘ x
==

+ArA¢9AuAtZ k,,.z 4 rzl{v,W, [(T'");J}z

m=1
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DA EERV A CON

+ArA9A,uAtZN:k 2}2(1- 2 )2{ E [(Tm)n,k}}z
DN I R L [CAA

WMMGMZZ{ ) @),

=1

+;rz{w,[(rm>;,]—w,[(Tm,x;k}}z+f,—ir%{wr[m):;]—w[<Tm>:;k]}2}

. 2 n 'l+l b* n n-c»l
W[ (1), )@ + %[ (7). ], (433)
Since -(-1—15_ 0, (1 ,u; ,)2 0 and G,, =0, dropping non-negative terms in LHS of
78 2

Eq. (4.35) leads to

%ArAﬁA,uZN:C ZI:Z{S{[ “T-[(), ]}

m=1

1-1

STl E R T[T

< ArAeAﬂAtiiKz]:{%rZW I:(T Uk](Q )ljk

. om=1l j=0 k=1

+Z#VV,[(T,");] 0,) + AT, @) (4.36)

Applying Cauchy-Schwartz’s inequality provides the result of
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@ [+ ) g s T ]). @

Substituting Eq. (4.37) into Eq. (4.36) leads to

CCH VSN (ANE AN
S -l ey T -]
A B

+ArAOAyAthmgZ{grf{[(ﬂ)]"; ]2 + [(T"’):fk}z}

< ArAGA,uAtZ

+:Z;"f{[(T AR [(Tm);]z}+§r?{[(rm)21’f SR INCED

Denoting

F(n):NAHAyAigc{ (r.),]r +Z[ T, ]+ :[(Tm);,,}zri} (4.39%)

and

__N

) Arfgfﬂgjz;;‘;{%[ l,k} irf[(Qm);ﬂ +%[(Qm);ﬂ},(4.39b)

i=2
and substituting Eq. (4.39a) and Eq. (4.39b) into Eq. (4.38), this gives:
F(n+1)

< (1+Ar)

< O ey

(1+Ar)| (1+Ar) A A
S(l_m){(l_m)“"‘l)*l ; o (n-1)|+7 L _o(n)
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< (1+At))"HF(0) (1+At)|:1 (1+ar)’ s (HAt)“}man)(n)

(1-a7) NN ) R ) D (R W
< 8“:23] (F(o)+%a§q>(n )) (4.40)

Using the inequalities (1+£)" <¢™ fore>0 and (1-¢) <¢* for O<e <% results in

(1+A2)™" < ™9 and (1-Ar)™ < ¢** . Multiplying the two inequalities together leads to

(1+At)"+l(1_At)‘("+1) < e(n+1)At . eZ(n+l)At — e3(n+1)At ) (441)

Substituting Eq. (4.41) into Eq. (4.40) results in

F(n+1)SeM(F(O)+ max®(n) )< [F(o)+ max® (7 ))

0<n, sn
that is, for any 0 < (n + 1) At <t,, the scheme is unconditionally stable with respect to the

initial condition and source terms. n

4.2.3 Stability of 3D Second
Improved CN Scheme

Proving the stability of the 3D second improved CN scheme requires building

Lemma 4. The stability will be proved basing on Lemma 1 and Lemma 4.

Lemma 4. For any mesh function (7.,)’, ,

$'$ {Arz P (T T+ VAT (1) =7 VAT (Tm),,k}

J=0 k=1 i=2

—AYSY e 1[ ()] (4.42a)

i=2 j=0 k=1

ABZPG[(T,,, ] =—A92[vg(rm } =11 (4.42b)
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10 WA (LA NEEY) | (SF) AN AR

Proof.
J-1 K-1 )
s =3 S S [, ) [ ),
.
+r2‘zv;(Tm):ljk'(T'”),(:jk—rj_lav;(T'")'I;k.(T"’)’I;k}
J-1 k-1 1 ., ) I-1 ., .,
= Zo ;{er_%v;(T’")ijk ) (T'")i—ljk - er_%V;(Tm)ijk ) (Tm)ijk
j=0 k=1 i= i=

+rlv (Tw):y (T)yu—r %V;(Tm);k'(Tm);k}

DDAPIRICR AR FERAA RSN

j=0 k=l =1

Proof of Eq. (4.42b) and Eq. (4.42c) is similar to Eq. (4.42a). The stability of the 3D
second improved CN scheme is proved.

Theorem 5. The 3D second improved CN scheme, Eqs. (4.19), (4.22) and (4.24), is

m

unconditionally stable with respect to the initial condition (T,,,)Z_k =(T 0 )ijk and source

terms.

Proof ~ Multiplying Eq. (4.192) by r’ArAGAUAW, [(TI)ZJ , Eq. (4.19b) by
riArAOALALWY, [(T,,,):k] , Eq. (4.19¢c) by riArAGAUAWY, [(TN)';J for interior points

i=1--,]-1; multiplying Eq. (4.24a) by %—rlArAtW [(T) ] Eq. (4.24b) by
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2 n 2 n
TﬂrﬁArAtW [(7.),,] - Ba. @4.240) by —37£r2%ArAtW, (74, ] for the left boundary;

multiplying Eq.  (422a) by 2l ArAGAA, [(Tl)jjk] , Eq. (422b) by
a

ri%ArAQA,uAtW, [(7.),,] - Ba (4220) by riaraonuarw, [(T,,)jjk] for the right

boundary, adding together over 1<m< N, 0<i<], 0<j<J-1, 1Lk<K-1 and

applying Lemma 1 and Lemma 4, this gives:

vy eSS E ) T[]

m=1 =0 k=l

(SR

=

+A9Aﬂg{[(n);;‘]z—[(Tm);;k]z}rz+A9Aﬂz_ﬁ{[(rm);;‘]z-[(Tm);;,j}ri

+ArA6?A,uAtZk 2 _ r2 {VW[( "), ]}2

N J K-l l 1-1

+ArA0AyAthAi;k ,:2(1_#" %ZJ{Z‘,{VZWI I:(T’”)nkil} +_{V‘W [( )IJJ}Z

caonpl [(Tm)m}(gm);;;%}. (4.43)
a
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2

. 1
Since (1—)_ >0, (1 M 1]2 0 and G,., 20, the positive terms in LHS of Eq. (4.43)
My 2

can be dropped, and this gives:

N J-1 K- - VH'l
<arard’S ‘{27er () vaome rm[(r.), ) .)
=1 j= = i=1

ik

+A8 (1), ] (.);)- (4.44)

Using Cauchy-Schwartz’s inequality results in

@[ vy ] s ey ] rel@a T[] @

Substituting Eq. (4.45) into Eq. (4.44) leads to

J-1 K-1

OXOPIAES (ORI (COANE

Jj=0 k=1

a3 [ T[T sose 2 [ - T}

2

NN 24 nal & ) el 2 b‘ i it 2
<ArAt;2cm;kZ: L(QM)OZ +A€Au;ri[(Qm)vk2} +A6’Ay;:r§L(Qm)mz}

j=

+ArAtZC,,,jZ;I::{2T” {[ YT+ (@ )]}+AOAyz {[ o ]2+[(Tm)f,-k]2}

+A9Ay§; r: {[(T,,,)Iﬂ:]2 + [(T,,,);J2 }} : (4.46)

Denoting
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F(n)=aray e,y S {i’irl[(n S WE(CAAR r;[(Tm);;,,T}m.Ma)

and
o(m-way 552 (0]
+A6’A,ui nz{(QM);:%:l +AOAL b—:rf[(gm)jj]z} , (4.47b)
i=1 a

and substituting Eq. (4.47) into Eq. (4.46), this gives:
o (n + 1)
(1+ar) At

(1-4v) Fm)+ (1-Ar)

(1+Ani(1+47) Ny _ ;
o o pla- s g2y 2 ()

(1-Ar)| (1-Ar)

®(n)

S((HAt)Jn . (1+At)[1+(l+At) R }max )

(1-Ar) (1-ar)]  (1-Ar) (1 At)  [osmn
< (%%3]’” (F(0)+%2%<D(n] )) . (4.48)

Using the inequalities (1+¢) <¢™ for £>0 and (1—-8)_'Se“ for 0<¢ <% results in

(1+A1)"™ < ™% and (1-Af)" < . Multiplying the two inequalities together leads to
(1+At)n+1(1_At)—(n+l) < e(n+1)At . ez(;m)m - e}(n+l)Al ] (4.49)
After substituting Eq. (4.49) into Eq. (4.48),

F(n+1)<ew(p(o)+maxq>(n)) ( (0)+ max®( ))

0<n, <i 0<n <n
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is obtained, that is, for any 0<(n+1)At <t,, the scheme is unconditionally stable with

respect to the initial condition and heat source terms. =

4.3 General Algorithms

4.3.1 1D Case

In Section 4.3.1, an algorithm for the 1D improved CN scheme with temperature
T}, T and Ty is developed for the purpose of coding. A Gauss-Seidel method is used to
solve the linear system from the 1D improved CN scheme. In detail, the algorithm work

through following steps:

Step 1. Set the initial value for (7,)’, (7.,) and (T) by Eq. (3.2);

Step 2. Solve (Tl):'+1 through Eqs. (4.2a), (4.16a) and (4.17a);

Step 3. Substitute the value of (7,)"" into Egs. (4.2b), (4.16b) and (4.17b), solve (T.,)""
through Egs. (4.2b), (4.16b) and (4.17b);

Step 5. Substitute new value of (T,,,)I'_'+1 into Egs. (4.2¢), (4.16¢c) and (4.17c), solve

(T.)" through Egs. (4.2¢), (4.16¢) and (4.17c);

Step 6. Check the convergence of Gauss-Seidel iteration, with a tolerance and a small

number tol, if the following condition:

<tol,

i

n+l(new) n+i(old)
- (Tl)i

max|(7.)

n+l(new) n+l1(old)
—(T») <tol,

i

max “(Tm)

max ”(TN):Hl(new)_( N):H—l(ald) <tol

are satisfied, stop;
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n+l

Step 7. Update new value of (Tl):'+1 AT.) " and (T N):M to the current time step #.

4.3.2 3D Case
In Section 4.3.2, for the purpose of coding, an algorithm for the 3D first improved
CN scheme and the 3D second improved CN with the temperature 7}, T, and Ty is

developed. A Gauss-Seidel method is used to solve the linear system from the two

improved schemes. In details, the algorithm works through following steps:

n

Step 1. Set the initial value for (Tl):'k , (7)., and (T N);k by Eq. (3.5);

ijk

Step 2. For the 3D first improved CN scheme, solve (T,):k by Egs. (4.19a), (4.21a) and

(4.22a), and for the 3D second improved CN scheme, solve (Tl);k by Egs. (4.19a),
(4.22a) and (4.24a);

Step 3. For the 3D first improved CN scheme, solve (T,,,);k by substituting the value of
(Tx);: into Egs. (4.19b), (4.21b) and (4.22b), and for in the 3D second improved

CN scheme, solve (T,,,);k by substituting the value of (Tl);;] into Eqgs. (4.19b),
(4.22b) and (4.24b);

Step 4. For the 3D first improved CN scheme, solve (T N)"_k by substituting the value of

i

(T,,,):;1 into Egs. (4.20c), (4.21c) and (4.22c), and for the 3D second improved

CN scheme, solve (T N);k by substituting the value of (Tm),: into Egs. (4.19c),
(4.22¢) and (4.24c);

Step 6. Check the convergence of Gauss-Seidel iteration, with a tolerance and a small

number tol, if the following condition:
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max (7)) ~ (7)) < ol

ijk

max ”(Tm);:l(ne‘v) _ (Tm)n+1(ald) < tOl ’

ik

max “(TN);:-I("W) _ (TN)n+1(oId) <tol

ijk

are satisfied, stop;

Step 7. Update new value to (T,)Z;1 , (T,,,)Z: and (T N);’: to current time step ».



CHAPTER FIVE

NUMERICAL EXAMPLES

In Chapter Five, three numerical examples are provided to verify the availability
of the parabolic models in an N-carrier system and improved CN schemes in Chapter

Three and in Chapter Four.

5.1 1D Case
The first example Eq. (5.1) is in 1D spherical coordinates, which is satisfied with
the governing equation Eq. (3.1). It is solved by the 1D improved CN scheme Egs. (4.2),
(4.16) and (4.17) and the 1D CN scheme Egs. (4.2) and (4.3).
5.1.1 Example Description
This example is a Three-carrier system with three variables 7, 7> and T3. The

governing equation for this example is:

or, 2 0 zaTl) 2 2
o _rz o (}" ar w (T1 Tz) w (Tl T:)
PR 5 —xt ol
27 e ™ cosar+—me ' Sinwr, (5.1a)
r
or, 2 6(26T2) ) 4 ..
== 7 +724T,-T,) - ~T3)+—me ™ sinrr, 5.1b
ot 2 or ¥ or T (Tl Tz) T (Tz Ta) r”e r ( )
or, 2 0 26T3J s ) 3 ..
A + —T3)+ —T3)+—me™™ sinzr . 5.1c
5 rzar( A (T.—T3)+=*(T\-Ts) ~e (5.1¢)

55
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The boundary condition for this is Eq. (3.3), and the initial condition for this example is

T,= %cos zr, T,=coszr and T, = %cos zr . The exact solution for Eq. (5.1) is:

T = %e‘”” coszr , (5.2a)

T.=e ™ coszr, (5.2b)
3

T3=Ze *coszr. (5.2¢)

In the 1D improved CN scheme, the grid step size Ar and the time step size At are set as
following combination: 2x107 and 2x1073, 10 and 1072, 5x10* and 5x10*. In the 1D
CN scheme, the grid step size Ar and the time step size At are set as following
combination: 2x10% and 2x107 , 10° and 107 , 5 x10° and 5x10°°. Also, the upper
boundary for time #y as 1.0 is set in this example. The schemes are programed by Fortran
77, and the source code can be found in APPENDIX.
5.1.2 Results and Analysis

In order to evaluate the difference between the numerical solution and the exact

solution for each scheme, />-norm error is defined as

E(I,Ar)= max \/%ii{(rm)f—(mm )7}2 , (5.3)

where (T,,,)j is the numerical solution for the carrier m, and (T,,,“““ ):' is the exact

solution for the carrier m.

In order to analyze the order of the scheme, the convergence rates are defined as

| E(I,Ar) 54
8 B(1,.40) (-42)

22
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and

(5.4b)

[ £020]

E(I,As1)

with respect to the spatial variable r and the temporal variable ¢, respectively.

The maximum />-norm error Eq. (5.3) and comparisons of convergence rates Eq.
(5.4) are in Table 5.1 and Table 5.2. The /;-norm errors along the time ¢ for both schemes
are plotted in Figure 5.1. The numerical result for the 1D improved CN scheme are
plotted in Figure 5.2, Figure 5.3 and Figure 5.4, and the numerical result for the 1D CN
scheme are plotted in Figure 5.5, Figure 5.6 and Figure 5.7.

Table 1 will show the numerical result when A7 = 107, I = 51, 101, and 201 for
the the 1D improved CN scheme, and I = 50, 100, and 200 for the 1D CN scheme,

respectively.

Table 5.1 Comparison of /;-norm errors and convergence rates with respect to r of the
1D improved CN scheme and the 1D CN scheme with 0 <¢< 1.0, Ar=10".

I>-norm error for CONVEroence I>-norm error for convergence
grid | the 1D improved rati the 1D CN rati
CN scheme scheme
=51 4.02888x10™ - 6.04009%10 -
=101 1.00495x10™ 2.003 3.00986x1072 1.005
=201 2.49340%107 2.011 1.50240x1072 1.002

As shown in Table 1, the convergence rate of the 1D improved CN scheme is
about 2 with respect to the spatial variable », while the one for the 1D CN scheme is
about 1 with respect to the spatial variable r. Furthermore, comparing the /,-norm errors
of numerical solutions between the 1D improved CN scheme and the 1D CN scheme in
Table 5.1 will show that the 1D improved CN scheme is more accurate than the 1D CN

scheme.
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In order to calculate the convergence rate with respect to the temporal variable 7, /
= 10° for the 1D improved CN scheme, = 10° for the 1D CN scheme, and At = 2x1072,
1072, and 5x107 are chosen, respectively. Table 5.2 shows that the convergence rates of
both schemes with respect to the temporal variable ¢ are about 2, and />-norm errors of the
numerical solution of both schemes are nearly same. There are as expected because the
truncation error of the 1D improved CN scheme is O(Af) with respect to the temporal

variable .

Table 5.2 Comparison of /;-norm errors and convergence rates with respect to ¢ of the 1D
the improved CN scheme and the 1D CN scheme.

I>-norm error for I>-norm error for
At the 1D improved convergence the 1D CN convergence
CN method rate scheme rate
0.02 2.95456x107 - 2.95151x10” -
0.01 7.36237x10™ 2.005 7.33922x10 2.008
0.005 1.83243x10™ 2.006 1.81036x10™ 2.019

Figure 5.1 shows l-norm errors of the 1D improved CN scheme and the 1D CN
scheme along the time ¢ with 0 <¢ < 1.0. From Figure 5.1 it can be seen that, when Ar =
107 and At = 102, the 1D improved CN scheme will produce a />-norm error about 107,
so the 1D CN scheme is second-order accuracy, which can also be seen in Table 5.1.
Figure 5.1 shows that, when Ar = 107° and Ar = 10'5, the 1D CN scheme will produce a />-
norm error about 10'5, so the 1D CN scheme is first-order, which can also be seen in
Table 5.1. Also, from Figure 5.1, the 1D improved CN scheme is more accurate than the
1D CN scheme.

Figure 5.2 is the distribution of the temperature 7, along the radial distance r at
different time: (a) ¢ = 0.1 (b) t =0.2 and (c) ¢ = 1.0. Figure 5.3 is the change of

temperature 7> along the radial distance r at different time (a) t = 0.1 (b)  =0.2 and (c) t =
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1.0. Figure 5.4 is the change of the temperature 73 along the radial distance r at different
time (a) = 0.1 (b) ¥ =0.2 and (c) # = 1.0.

Figure 5.5 is the distribution of the temperature 7 along the radial distance r at
different time: (a) + = 0.1 (b) r =0.2 and (c) ¢+ = 1.0. Figure 5.6 is the change of
temperature 7> along the radial distance r at different time (a) = 0.1 (b) #=0.2 and (¢) ¢ =
1.0. Figure 5.7 is the change of the temperature 73 along the radial distance r at different
time (a) t=0.1 (b) #=0.2 and (c) £ = 1.0.

Figure 5.2, Figure 5.3 and Figure 5.4 show that: there is a match between the
numerical solution and the exact solution in (a), (b) and (c¢). Also, from Figure 5.2, Figure
5.3 and Figure 5.4, it is can be seen that the temperature is 7; > T, > T3, which is
satisfied with our hypothesis in Figure 2.1.

Figure 5.5, Figure 5.6 and Figure 5.7 show that: in (a), (b) there is a match
between the numerical solution and the exact solution, but in (c) the numerical solution

and the exact solution do not match.
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Figure 5.1 Comparison of />-norm errors between the 1D improved CN scheme and the

1D CN scheme along the time ¢.
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Figure 5.2 Distribution of the temperature 7; from the 1D improved CN scheme along
the radial distance r at different time (a) r = 0.1 (b) 7 =0.2 and (c) = 1.0 with Ar = 2x107,

1073 and 5x10™,
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Figure 5.3 Distribution of the temperature 7> from the 1D improved CN scheme along
the radial distance r at different time (a) £ =0.1 (b) £ =0.2 and (c) = 1.0 with Ar = 2x 102,

107 and 5x10™,
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Figure 5.4 Distribution of the temperature T from the 1D improved CN scheme along
the radial distance r at different time (a) t = 0.1 (b) t=0.2 and (c) t = 1.0 with Ar = 2x107,
107 and 5x10™,
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Figure 5.5 Distribution of the temperature T from the 1D CN scheme along the radial
distance r at different time (a) t=0.1 (b) ¢ =O.26 and (c) £ = 1.0 with Ar =2x107, 10" and
5x107.
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Figure 5.6 Distribution of the temperature 7, from the 1D CN along the radial distance r
at different time (a) #= 0.1 (b) £ =0.2 and (c) ¢ = 1.0 with Ar = 2x10?, 10" and 5x10°.
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Figure 5.7 Distribution of the temperature 73 from the 1D improved CN scheme along
the radial distance r at different time (a) £ = 0.1 (b) 7=0.2 and (c) ¢ = 1.0 with Ar =2x107,
10” and 5x10°.
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5.2 3D First Improved CN Scheme Case
The second example Eq. (5.5) is in 3D spherical coordinates, which is satisfied
with the governing equation Eq. (3.4). It is solved by the 3D first improved CN scheme
Egs. (4.19), (4.21) and (4.22) and the 3D CN scheme Egs. (4.19) and (4.20).
5.2.1 Example Description
This example is a Three-carrier system with variable 7, T, and T3. The governing

equation for this example is:

CANEX O NS .
ot r’or or ) r (1—;1)60 r* ou ou

~*(T\—T:)+2x° e cosmrsinO(1- ) + é7re"’1’ sinzrsin@(1- 4*)
r

2152 e " cosmr sint9(2,u2 —1) , (5.5a)
r

aTzz_zz_g(rzarzj+ : 2 : aT22+%_a_ (1-y2)aTz
r (l—,u)@& r* ou ou

~7*(T.—T3)+ 7" e ™ cosrsind(1 —,u2)+i7re"’z’ sinzrsin6(1- )
r

—%e"'z’ coszrsin@(24° -1) , (5.5b)
¥

2
6T3=£23__a_(r26T3)+ - ks - 87’23+k_23_5_ (l_luz)aTs
ot r°or or r (1—,u)66’ r° ou ou

+7*(T\—Ts) +3—7re‘”" sinzrsin 61 —,uz)—%e"’l’ coszrsin@ (24 -1). (5.5¢)

The boundary condition for this example is Eq. (4.3), and the initial condition for this

example is
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legcosmsin@(l—yz), TZ:cosmsinQ(l—yz),n=%cosnrsin¢9(1—,u2).

The exact solution for Eq. (5.5) is:

T, =%e"’1’005ﬂr sin6’(1—,u2), (5.62)

T.=e""cosmrsind(1- ), (5.6b)
3, . )

T3=Ze i cos7rrsm9(1—,u ) (3.6¢)

In the 3D first improved CN scheme and the 3D CN scheme, the time step size At
is set as 10™, and the grid size is set as: 10x60x60, 20x60x 60 and 40x60x60. Also,
the upper boundary for time ¢, is set as 0.2 in this example. The scheme is programmed
by Fortran 77, and the source code can be found in APPENDIX.

5.2.2 Results and Analysis
In order to evaluate the difference between the numerical solution and the exact

solution for each scheme, we define the /,-norm error is defined as

3 !
B(1.8)= pax (23 S {(r), - 0

m=1 i=1

where (7,,)

. . . . n .
;k is the numerical solution for the carrier m, and (Tme’“‘”’ )ijk is the exact

solution from each scheme of the carrier m.

The convergence rate is defined as

E(I,Ar)

with respect to the spatial variable r.
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The maximum /;-norm error Eq. (5.7) and comparisons of convergence rates Eq.
(5.8) are in Table 5.3. I;-norm errors along the time ¢ for both schemes are plotted in
Figure 5.8. Numerical results for the two schemes are plotted from Figure 5.9 to Figure
5.14.

Table 5.3 shows the comparison of /;-norm errors and convergence rates between

the 3D first improved CN scheme and the 3D CN scheme with 0 <7<0.2, Ar =10,

Table 5.3 Comparison of /;-norm errors and convergence rates between the 3D first

improved CN scheme and the 3D CN scheme with 0 <t<0.2, At =107".
d 3D first improved CN  convergence | 3D CN scheme /-  convergence
ert scheme /,-norm error rate norm error rate
11x60%60 9.36135x107 - 2.56083 x10™ -
21x60x60 2.58204 x107 1.858 1.39055 x10™! 0.881
41x60x60 9.44232 x10™ 1.452 7.25757 x102 0.939

As shown in Table 5.3, the convergence rate of the 3D first improved CN scheme
is 1.858 and 1.452 with respect to the spatial variable r, while the one for the 3D CN
scheme is 0.881 and 0.939 with respect to the spatial variable . The result looks lower
than that as expected. This is probably because the grid is not finer enough. However, due
to the limitation of the computer, it will be difficult to choose a finer gird. Further study
may be needed. Furthermore, comparing the />-norm errors of solutions between the 3D
first improved CN scheme and the 3D CN scheme in Table 5.3 shows that the 3D first
improved CN scheme is more accurate than the 3D CN scheme.

Figure 5.8 shows the comparison of /;-norm errors between the 3D first improved
CN scheme and the 3D CN scheme. Figure 5.8 shows that, the 3D first improved CN

scheme will produce a /,;-norm error much lower than the 3D CN scheme.
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Figure 5.9 is the comparison of contours of the solution 77 in the cross section of
4 =% at + = 0.1obtained using (a) the 3D first improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution. Figure 5.10 is the comparison of contours of the
solution of 77 in the cross section of 8 =0 and & =7 at ¢ =0.10obtained using (a) the 3D
first improved CN scheme and (b) the 3D CN scheme with (c¢) the exact solution.

Figure 5.11 is the comparison of contours of the solution 75 in the cross section of
0 =% at ¢t = 0.1obtained using (a) the 3D first improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution. Figure 5.12 is the comparison of contours of the
solution of 77 in the cross section of & =0 and & =7 at t = 0.10obtained using (a) the 3D
first improved CN scheme and (b) the 3D CN scheme with (c) the exact solution.

Figure 5.13 is the comparison of contours of the solution 7 in the cross section of
7 =% at ¢ = 0.1obtained using (a) the 3D first improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution. Figure 5.14 is the comparison of contours of the
solution of 73 in the cross section of § =0 and € =7 at ¢ = 0.10obtained using (a) the 3D
first improved CN scheme and (b) the 3D CN scheme with (c) the exact solution.

Figure 5.9 to Figure 5.14 show that: there is a match between the numerical
solution from the 3D first improved CN scheme in (a) and the exact solution in (c), but
the numerical solution of the 3D CN scheme in (b) and the exact solution in (¢) do not
match.

Figure 5.9 to Figure 5.14 also show that the temperature is 77> T>> T3, which is

satisfied with the hypothesis in Figure 2.1.
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Figure 5.8 Comparison of /;-norm errors between the 3D first improved CN scheme and
the 3D CN scheme.
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Figure 5.9 Comparison of contours of the solution 77} in the cross section of 8 = By at

t =0.1 obtained using (a) the 3D first improved CN scheme and (b) the 3D CN scheme
with (c) the exact solution.
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Figure 5.10 Comparison of contours of the solution of 7; in the cross section of € =0
and 6 = at ¢t =0.1obtained using (a) the 3D first improved CN scheme and (b) the 3D
CN scheme with (c) the exact solution.
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Figure 5.11 Comparison of contours of the solution 7 in the cross section of § = 5 at

¢t =0.1 obtained using (a) the 3D first improved CN scheme and (b) the 3D CN scheme

with (c) the exact solution.
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Figure 5.12 Comparison of contours of the solution of 7 in the cross section of 8 =0
and @ =7 at t =0.1 obtained using (a) the 3D first improved CN scheme and (b) the 3D
CN scheme with (c) the exact solution.
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Figure 5.13 Comparison of contours of the solution 73 in the cross section of 6 = By at

¢t =0.1 obtained using (a) the 3D first improved CN scheme and (b) the 3D CN scheme

with (c) the exact solution.
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Figure 5.14 Comparison of contours of the solution of 73 in the cross section of & =0
and @ =7 at ¢t =0.1 obtained using (a) the 3D first improved CN scheme and (b) the 3D
CN scheme with (c) the exact solution.
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5.3 3D Second Improved CN Scheme Case
The third example Eq. (5.9) is in 3D spherical coordinates, which is satisfied with
the governing equation Eq. (3.4). It is solved by the 3D second improved CN scheme Egs.
(4.19), (4.22) and (4.24) and the 3D CN scheme Eqgs. (4.19) and (4.20).
5.3.1 Example Description
This example is a Three-carrier system with variable T, 7> and T3. The governing

equation for this example is:

or, 2 o( ,0r 2 9T, 20 2\ 0T, 2
ah_<2 9 £ 90 0-2)2 - -
ot r’or (r or )+r2 (1-p*) 86° T ou {( #) :l w(1-T)

27 e ™ cosmr sin¢9(l - i’ ) + Eﬁe"’“ sin 777 sin 0(1 - /12)
r

—;Z—e"“’ cos 77 sin 9(2;12 - 1)
r

+7’e " sin@(1- y2)+§1ize-”" sin6 (24 -1), (5.9a)
¥

0T, _ 2 0 .0T 2 0T, 2 © 1\ OT, 2
=5, =—(1- - _
ot r2 6r(r ar )+r2(1_’u2) 692 +r2 aﬂ[( H ) a’u] w (TZ T})

+7% e " cos 7r sin 9(1 -y’ ) + iﬂ'e_’ﬁ sin 77 sin 49(1 - /12)
r

—ge‘”" coszr sin9(2,u2 —1)
r

+7rze"’z’sino9(1—,uz)+£2e"”’siné’(z;t2 —1), (5.9b)
r

2
6T3=_1g_3__a_(rzan)+ ks _OTs ks O f_ )9
or r*or or rz(l—,u ) 00> r* ou ou
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5 9 _ .
+;ﬂ'e z’smﬂrsme(l—,uz)——zjje l’cos7rr51n0(2,u2—1)

2

72[ e""’siné’(l—,uz)+—297e""’sin6’(2,u2 ~1). (5.9¢)

+
The boundary condition for this is Eq. (4.3), and the initial condition for this example is:
5 . ,
T, = Z(cos zr —l)sme(l—,u. ) ,
T,=(coszr —l)sinH(l —-,uz),

T,= 3(cosrrr ~1)sin@(1- ).

4
The exact solution for Eq. (5.9) is:
T,= %e‘”"(cos zr=1)sing(1-4*), (5.102)
T.=e ™ (coszr—1)sin6(1-p*), (5.10b)
7, =2 ¢ (cos a7 —1)sind (1- 7). (5.100)

In the 3D second improved CN scheme and the 3D CN scheme, the time step size
At is set as 107, and the grid size is set as: 10x60x60, 20x60x60 and 40x 60x 60.
Also, we set the upper bound for time #) as 0.2 in this example. The scheme is
programmed by Fortran 77, and the source code can be found in APPENDIX.
5.3.2 Results and Analysis

The maximum />-norm error Eq. (5.7) and comparisons of convergence rates Eq.
(5.8) are in Table 5.4. The /;-norm error along the time ¢ for both schemes are plotted in
Figure 5.15. Numerical results for the two schemes are plotted from Figure 5.16 to Figure

5.21.
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Table 5.4 shows the comparison of /;-norm errors and convergence rates between

the 3D second improved scheme and the 3D CN scheme with 0 <7<0.2, Ar=10™.

Table 5.4 Comparison of /;-norm errors and convergence rates between the 3D second

improved CN scheme and the 3D CN scheme with 0 <t<0.2, At=10".
. 3D second improved convergence 3D CN scheme convergence
grid CN scheme ]
1,-norm error rate 2-horm error rate
10x60x60 1.08186x10™ - 2.78749x10™ -
20%x60%60 2.10944x10 2.359 1.44811x10™ 0.945
40x60x60 5.49806x10™ 1.940 7.34437x107 0.980

As shown in Table 5.4, the convergence rate of the 3D second improved scheme
is about 2 with respect to the spatial variable r, while the one for the 3D CN scheme is
about 1 with respect to the spatial variable . Furthermore, comparing the />-norm errors
of solutions between the 3D second improved scheme and the 3D CN scheme in Table
5.4 shows that the 3D second improved scheme is more accurate than the 3D CN scheme.

Figure 5.15 shows the comparison of /;-norm errors betw een the 3D second
improved CN scheme and the 3D CN scheme. From Figure 5.15 it can be seen that, the
3D second improved scheme will produce a />-norm error much lower than the 3D CN
scheme.

Figure 5.16 is the comparison of contours of the solution 77 in the cross section of
7] =% at ¢t = 0.1obtained using (a) the 3D second improved CN scheme and (b) the 3D

CN scheme with (c) the exact solution. Figure 5.17 is the comparison of contours of the
solution of 7} in the cross section of # =0 and € = 7 at t = 0.1obtained using (a) the 3D

second improved CN scheme and (b) the 3D CN scheme with (c) the exact solution.
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Figure 5.18 is the comparison of contours of the solution 7> in the cross section of
o =z2r— at t =0.1obtained using (a) the 3D second improved CN scheme and (b) the 3D

CN scheme with (c) the exact solution. Figure 5.19 is the comparison of contours of the

solution of 73 in the cross section of & =0 and § =z at r = 0.1obtained using (a) the 3D

second improved CN scheme and (b) the 3D CN scheme with (¢) the exact solution.
Figure 5.20 is the comparison of contours of the solution 73 in the cross section of

0 =—Z— at ¢ =0.1obtained using (a) the 3D second improved CN scheme and (b) the 3D

CN scheme with (c) the exact solution. Figure 5.21 is the comparison of contours of the
solution of 73 in the cross section of & =0 and € =7 at ¢ = (.1obtained using (a) the 3D
second improved CN scheme and (b) the 3D CN scheme with (c) the exact solution.

Figure 5.16 to Figure 5.21 show that: there is a good match between the numerical
solution from the 3D second improved CN scheme in (a) and the exact solution in (c), but
the numerical solution of the 3D CN scheme in (b) and the exact solution in (c) do not
match.

From Figure 5.16 to Figure 5.21, it is can be seen that the temperature is 7; > T, >

T3, which is satisfied with the hypothesis in Figure 2.1.
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Figure 5.15 Comparison of />-norm errors between the 3D second improved CN scheme
and the 3D CN scheme.
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Figure 5.16 Comparison of contours of the solution 77 in the cross section of 6 = 3 at

t =0.1 obtained using (a) the 3D second improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution.
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Figure 5.17 Comparison of contours of the solution of 77 in the cross section of =0
and @ =7 at ¢t =0.1 obtained using (a) the 3D second improved CN scheme and (b) the

3D CN scheme with (¢) the exact solution.
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Figure 5.18 Comparison of contours of the solution 77 in the cross section of 8 = 5 at

¢t =0.1 obtained using (a) the 3D second improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution.
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Figure 5.19 Comparison of contours of the solution of 7> in the cross section of 8 =0
and @ =7 at t=0.1 obtained using (a) the 3D second improved CN scheme and (b) the

3D CN scheme with (c) the exact solution.
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Figure 5.20 Comparison of contours of the solution T3 in the cross section of & = 7 at

t = 0.1 obtained using (a) the 3D second improved CN scheme and (b) the 3D CN

scheme with (c) the exact solution.
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Figure 5.21 Comparison of contours of the solution of 73 in the cross section of =0
and @ =7 at t=0.1 obtained using (a) the 3D second improved CN scheme and (b) the
3D CN scheme with (c) the exact solution.



CHAPTER SIX

CONCLUSION

This dissertation developed the parabolic models for the non-equilibrium heating
in an N-carrier system in 1D and 3D spherical coordinates, respectively.

For 1D case, the well-posedness of the parabolic model in an N-carrier system in
1D spherical coordinates is proved. To solve the model, 1D improved CN scheme is
developed. Also, the stability of the 1D improved CN scheme is proved.

A numerical example for 1D improved CN scheme is provided. Results shows
that, to achieve a match between the numerical solution and the exact solution, while the
1D CN scheme needs a grid of 7= 10°, the 1D improved CN scheme only needs a grid of
1=10".

The convergence rates for the 1D improved CN scheme and the 1D CN scheme
are calculated, and the results show that the convergence rate of the 1D improved CN
scheme is about 2 with respect to both spatial and temporal variables, and the
convergence rate of the 1D CN scheme is about 1 and about 2 with respect to both spatial
and temporal variables, respectively.

For 3D case, the well-posedness of the parabolic model in an N-carrier system in
3D spherical coordinates is proved. To solve the model, two improved CN scheme are
developed: the 3D first improved CN scheme and the 3D second improved CN scheme.

Also, the stability of the two improved CN schemes is proved.
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A numerical example for each 3D improved CN scheme is provided respectively.
Results shows that, with the grid of 41x60x 60, both the 3D first improved CN scheme
and the 3D second improved CN scheme provide a match between the numerical solution
and the exact solution, but the 3D CN scheme does not.

The convergence rates for the 3D CN scheme, the 3D first improved CN scheme
and the 3D second improved CN scheme are calculated, and results show that the
convergence rate of both the 3D first improved CN scheme and the 3D second improved
CN scheme are about 2 with respect to spatial variable, and the convergence rate of 3D
CN scheme is about 1 with respect to the spatial variable.

Since the parabolic two-step model may lose accuracy when the laser pulse
duration is much shorter than the electron-lattice thermal relaxation time [2], [48], the
future research is needed to develop the hyperbolic model in an N-carrier system in

spherical coordinates.



APPENDIX

SOURCE CODE FOR NUMERICAL EXAMPLES
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1. SOURCE CODE FOR 1D
IMPROVED CN SCHEME

C 2-time level 1D improved CN
C Mar. 2009

C Main Program
DIMENSION t1(0:1005),2(0:1005),t3(0:1005)
DIMENSION r(0:1005),rh(0:1005),t1_exact(0:1005)
DIMENSION t2_exact(0:1005),t3_exact(0:1005)
DIMENSION tl01d(0:1005),t1 new(0:1005),R201d(0:1005)
DIMENSION
22new(0:1005),8301d(0:1005),t3new(0:1005)
DIMENSION d1(0:1005),d2(0:1005),d3(0:1005)
DIMENSION £1(0:1005),12(0:1005),£3(0:1005)
DIMENSION a(0:1005),b(0:1005),c(0:1005),e(0:1005)
DIMENSION errorT1(0:1005),errorT2(0:1005)
DIMENSION
errorT3(0:1005),error_max(0:1005),1f{0:1005)
DOUBLE PRECISION t1,12,t3,tlold,tInew,t20ld,2new
DOUBLE PRECISION t3o0ld,3new,d1,d2,d3,f1,£2.3
DOUBLE PRECISION
ab,cetl exactt2 exactt3_exact
DOUBLE PRECISION cl,¢2,c3,errorT1,errorT2,errorT3
DOUBLE PRECISION error_max,err,max_err,rrt,r,rth
DOUBLE PRECISION dt,dr,pi,tol
DOUBLE PRECISION templ, temp2, temp3, temp4
DOUBLE PRECISION thetal theta2,aa,bb,th

C II: number of grid

C NN: number of time step

C value assignment
thetal =(sqrt(5.0)+1.0)/2.0
d=0.001
11=1001
NN=1000
pi=3.14159265358979323846
th=thetal+11
theta2=(sqrt(4.0+3.0*th*(th-1.0))-1.0)/(3.0%th)
dr=1.0/(11-1.0+thetal +theta2)
rrt=dt/(dr*dr)
DO =11
t(i)=thetal *dr+(i-1)*dr
ENDDO
DO i=1,1I-1
rth(i)=r(i)+0.5*dr
ENDDO

tol=1.0e-14
cl=1.25
¢2=1.00
¢3=0.75
aa=r(1)*r(1)*thetal
$  N((@(1)H0.5*dr)*(r(1)+0.5*dr)*(thetal /2.0+1.0/3.0))
bb=r(Il)*r(IN)*theta2
$  /((r(IN)-0.5*dr)*(r(11)-0.5*dr)*(theta2/2.0+1.0/3.0))
C PRINT *, aa, bb
C initial condition
DO i=L,I
C time level (n-1)
t1(i)=cl *cos(pi*r(i))
R2(i)=c2*cos(pi*r(i))
t3(iy=c3*cos(pi*r(i))
ENDDO
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C Begin time iteration
n=0

C Begin Gauss-Seidel Iteration

1 DOi=LI

tlold(i)=t1(i)
2old()=t2(i)
t3old(i)=t3(i)
ENDDO

C Begin Thomas Algorithm
DO i=2,1I-1
b(i)=rrt*rh(i-1)*rh(i-1)/(r(i)*r(i))
a(i)=1.0+rrt*(th(i-1)*rh(i-
1+rh()*rh(i))/(r()* (i) +dt*pi*pi
c)=rrt*rh(Qy*rh(i)/(r(i)*r(i))
ENDDO
a(1)=1.0+rrt*rh(1)y*rh(1)*aa/(r(1)*r(1))+dt*pi*pi
c(1)=rrt*rh(1)*rh(1)*aa/(r(1)*r(1))
b(1)=0.0
a(Il)=1.0+rrt*th(II-1)*rh(IT-1y*bb/(r(D)*r(ID)+dt*pi*pi
b(l)=rrt*rh(I1-1)*rh(II-1)*bb/r(T)*r(II))
o(IN=0.0
e(0)=0.0
DO i=1,11
e(i)y=c(i)/(a@i)-b(iy*e(i-1))
ENDDO

C Thomas Algorithm for tl
2 d1(1)=(1.0-rrt*rh(1)*rh(1)*aa/(r(1)*r(1))-dt*pi*pi)*t1(1)
& +rrt*rh(1y*rh(1y*aa*t1(2)/(r(1)*r(1))
& +dt*pi*pi*(t201d(1)+2(1))/2.0
& +dt*pi*pi*(t3o0ld(1)+H3(1))/2.0
& +2.0*dt*exp(-pi*pi*dt*(nt0.5))* pi*pi*cos(pi*r(1))
& +5.0*dt*exp(-pi*pi*dt*(n+0.5)y*pi*sin(pi*r(1))/r(1)

d1(ID=(1.0-rrt*ch(T1-1)* ch(TI- 1 )*bb/(r(TD) *r(11))
-dt*pi*piy*t1(II)

+rrt*rh(I1-1)*rh(II-1)*bb*t1(T- D/(r(ID)*r(I1))
+dt*pi*pi* (t201d(ID)+2(11))/2.0

+dt*pi*pi* (t30ld(M)+3(IN))2.0
+2.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*pi*cos(pi*r(Il))
+5.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(Il))/r(Il)

PR

DO i=2,1I-1

d1(i)=rrt*rh(i-1)*rh(i-1)*t1(i-1)/(r()*r(i))

+(1.0-rrt*(th(i-1)*rh(i-1)+rh(i)*rh(i))/(r(i)*r(i))

-dt*pi*pi)*t1(i)

+rrt*rh(i)*rh(i)*t1(i+ /(e *r(i))

+dt*pi*pi* (t20ld(i)+2(i))/2.0

+dt*pi*pi*(30ld(i)+3(i))/2.0

& +2.0*dt*exp(-pitpi*de*(nt0.5))* pi* pi*cos(pi*r(i))

& +5.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(i))/r(i)
ENDDO

PR

£1(0)=0.0

DO i=1,1T

£1(G)=(d1(i)+b(i)* £1(-1))/(a(i)-b(i)*e(i-1))
ENDDO

tlnew(lI+1)=0.0

DO =111

m=II+1-i
tInew(m)=e(m)*tlnew(m+1)+f1(m)
ENDDO

C Thomas Algorithm for 2
d2(1)=(1.0-rrt*rh(1)*rh(1y*aa/(r(1)*r(1))-dt*pi* pi)*12(1)
& +rrt*th(1)*th(1)*aa*2Q)/(r(1y*1(1))



& +dt*pi*pi*(tinew(1)+t1(1))/2.0

& +dt*pi*pi*(t3o0ld(1)y+3(1))/2.0

& +dt*exp(-pi*pi*dt*(n+0.5))* pi*pi*cos(pi*r(1))

& +4.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(1))/r(1)

d2(1y=(1.0-rrt*rh(IE-1)*rh(II-1)*bb/(r(l1)*r(11))

& -dt*pi*pi)*t2(1)

& +rrt*rh(Il-1)*rh(II-1)*bb*t2(1I- 1)/(r(I)*r(I1))

& +dt*pi*pi*(tinew(ID)+t1(I1))/2.0

& +dt*pi*pi*(3old(I)*t3(11))/2.0

& +dt*exp(-pi*pi*dt*(n+0.5))* pi*pi* cos(pi*r(1l))

& +4.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(i))/r(1)

DO i=2.1I-1
d2(i)=rrt*rh(i-1)*rh(i-1)*2(-1)/(r(Q)*r(D))

& +H(1.0-rrt*(rh(i-1)*rh(i-1)+rh(i)*rh(i))/(t(i)*r(i))

& -dt*pi*pi)*t2(i)

& -rrt*rh(i)*rh()*2(i+1)/(r(i)*r(i))

& +dt*pi*pi* (tinew(i)+t1(i))2.0

& +dt*pi*pi*(t3old(i)+3(i))/2.0

& +dt*exp(-pi*pi*dt*(n+0.5))*pi*pi*cos(pi*r(i))

& +4.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(i))/r(i)
ENDDO

£2(0)=0.0

DO i=1,11
2(1)=(d2())+b(iy*2(i-1))/(a(@)-b(iy*e(i-1))
ENDDO

2new(l1+1)=0.0

DO i=1,11

m=1I+1-i
2new(m)=e(m)*t2Znew(m-+1)+f2(m)
ENDDO

C Thomas Algorithm for 8
d3(1)=(1.0-rrt*rh(1)*rh(1)*aa/(r(1)*r(1))-dt*pi*pi)*13(1)

& +rrt*rh(1)*rh(1)*aa*t32)/(r(1)*r(1))

& +dt*pi*pi*(tlnew(1)+t1(1))/2.0

& +dt*pi*pi*(2new(1)+2(1)2.0

& +3.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(1))/r(1)

d3QTy=(1.0-rrt*ch(II-1)*rh(lI-1)*bb/(r(I) *r(I1))

& -di*pi*pi)*B3(ID)

& +rrt*rh(I-1)*rth(I-1)*bb* 31 1)/(r(ID*r(I1))

& +dt*pi*pi*(tlnew(l)+t1(1))/2.0

& +dt*pi*pi*(Rnew(ID)+2(I))/2.0

& +3.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(IN))/r(il)

DO i=2,1I-1
d3(t)=rrt*rh(i-1)*rh(i-1)*t3(i-1)/(r(i) *r(i))

& +(1.0-rrt*(th(i-1)*rh(i-1)+rh(i)*rh(D)/(r(iy*r(i))

& -dt*pi*pi)*t3(i)

& +rrt*rh(i)*rh(y*e3(i+1)/(r(i)*r(i))

& +dt*pi*pi*(tInew(i)+t1(i))2.0

& +dt*pi*pi*(2new(i)+2(i))2.0

& +3.0*dt*exp(-pi*pi*dt*(n+0.5))*pi*sin(pi*r(i))/r(i)
ENDDO

£3(0)=0.0
DO =11l
£3()=(d3G)+b(i)*£3(-1))/(a(i)-b(i)*e(i-1))
ENDDO

3new(l1+1)=0.0

DO i=1,1I

m=11+1-i
t3new(m)=e(m)*t3new(m+1)+f3(m)
ENDDO

C calculate err

max_err=0.0
DO i=1,Ii
err=abs(tlnew(i)-t1old(i))
IF(err.GT.max_err)THEN
max_err=err
ENDIF
err=abs(t2new(i)-t20ld(i))
IF(err.GT.max_err)THEN
max_err=err
ENDIF
err=abs(t3new(i)-t30ld(i))
IF(err. GT.max_err)THEN
max_err=err
ENDIF
ENDDO
IF(max_err.le.tol)GOTO 3
C  print *, max_err
DO i=L,II
tlold(i)=tinew(i)
t2old(i)=t2new(i)
t3old(iy=t3new(i)
ENDDO
GOTO2
C end Gauss-Seidel Iteration
C Calculate exact solutions
3 DOi=L1I
t1_exact(i)=c1*exp(-pi*pi*dt*(n+1.0))*cos(pi*r())
t2_exact(i}=c2*exp(-pi*pi*dt*(n+1.0))*cos(pi*r(i))
13_exact(i)=c3*exp(-pi*pi*dt*(n+1.0))*cos(pi*r(i))
ENDDO
C Calculate err
DO i=1,II
errorT1(i)=abs(tlnew(i)-t1_exact(i))
errorT2(i)=abs(t2new(i)-t2_exact(i))
errorT3(i)=abs(t3new(i)-13_exact(i))
ENDDO

temp1=0.0
temp2=0.0
temp3=0.0
temp4=0.0

error_max(n)=0.0
DO =Ll

templ=tempi+errorT1(i)*errorT1(i)
temp2=temp2+errorT2(i)*emorT2(i)
temp3=temp3-+errorT3(i)*emrorT3(i)

ENDDO

temp4=temp+temp2-+temp3
error_max(n)=sqrt(dr*temp4/3.0)

C Next time iteration
n=n+l
PRINT *n
IF(n. EQNN)GOTO 4

DO i=1,1I
t1(i)=tlnew(i)
2(i)=t2new(i)
t3(i)=t3new(i)
ENDDO

GOTO 1
C Output

4  OPEN(unit=77,file=N=50ar3.dat)
DO n=1,NN
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WRITE(77,1000) n*dt,error_max(n)
ENDDO

1000 FORMAT(f18.6, ¢18.10)
END

2. SOURCE CODE FOR 3D FIRST
IMPROVED CN SCHEME

C 2-time level 3D first improved CN
C nsystem36.f
C Oct. 2009

DIMENSION t1(0:50,-1:110,0:110),t2(0:50,-1:110,0:110)

DIMENSION t3(0:50,-
1:110,0:110),gamma(0:50),gammah(0:50)

DIMENSION phi(-1:110),u(0:110),uh(0:110)

DIMENSION t1_exact(0:50,-
1:110,0:110),t2_exact(0:50,-1:110,0:110)

DIMENSION t3_exact(0:50,-1:110,0:110),t1oldgs(0:50,-
1:110,0:110)

DIMENSION tinewgs(0:50,-1:110,0:110),t20ldgs(0:50,-
1:110,0:110)

DIMENSION t2newgs(0:50,-1:110,0:110),t301dgs(0:50,-
1:110,0:110)

DIMENSION t3newgs(0:50,-1:110,0:110),t101dj(0:50,-
1:110,0:110)

DIMENSION t1new;j(0:50,-1:110,0:110),t201dj(0:50.-
1:110,0:110)

DIMENSION t2newj(0:50,-1:110,0:110),t301dj(0:50,-
1:110,0:110)

DIMENSION t3new;j(0:50,-1:110,0:110),errorT1(0:50,-
1:110,0:110)

DIMENSION errorT2(0:50,-1:110,0:110),errorT3(0:50,-
1:110,0:110)

DIMENSION error_max(0:5010)

DOUBLE PRECISION
t1,12,83,Q1dt,Q2dt,Q3dt,d1,d2,d3,abc,cl,c2,c3

DOUBLE PRECISIOM
tloldgs,tlnewgs,t20ldgs,t2newgs,t3oldgs,t3newgs

DOUBLE PRECISION
tloldj,t1new;j,t20ldj t2newj,t3oldj,t3new;j

DOUBLE PRECISION
t1_exactt2_exact,t3_exactabl,abr

DOUBLE PRECISION
errorT1,errorT2 errorT3,error_max

DOUBLE PRECISION
eITOr_Maxj,error_maxgs,errj,ergs,emr

DOUBLE PRECISION err_max,tr,tp,ts,gamma,gammah

DOUBLE PRECISION phi,u,uh,thetal theta2,th

DOUBLE PRECISION dt,dgamma,dphi,du,pi,tolj tolgs

DOUBLE PRECISION
crl,cr2,cs,cpl,cp2,templ, temp2,temp3,temp4

DOUBLE PRECISION
clldt,c12dt,c13dt,c21dt,c22dt,c23dt,c31dt,c32dt
C value assignment

dt=0.0001

1I=11

JJ=60

KK=60

NN=1000

pi=3.14159265358979323846

thetal=(sqrt(5.0)+1.0)/2.0

th=thetal+II

theta2=(sqrt(4.0+3.0*th*(th-1.0))-1.0)/(3.0*th)
C the first order scheme
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C thetal=1.0

C theta2=1.0
dgamma=1.0/(1I-1.0+thetal +theta2)
dphi=2.0*pi/JJ
du=2.0/KK
tr=dt/(dgamma* dgamma)
ts=dt/(dphi*dphi)
tp=dt/(du*du)
tolgs=1.0D-6
tolj=1.0D-8
ci=1.25
¢2=1.00
¢3=0.75

DO i=LIl

gamma(i)=(thetal +(i-1))*dgamma
ENDDO

DO i=L,1-1
gammah(iy=gamma(i)+0.5*dgamma
ENDDO

DO j=0,JJ-1
phi(j)=j*dphi
ENDDO

DO k=0,KK
u(k)y=k*du-1.0
ENDDO

DO k=0,KK-1
uh(k)=u(k)+0.5*du
ENDDO

abl=gamma(l)*gamma(l)*thetal
&  /(gammah(1)*gammah(1)*(thetal/2.0+1.0/3.0))
abr=gamma(Il)*gamma(Il)*theta2
&  /(gammah(II-1)*gammah(II-1)*(theta2/2.0+1.0/3.0))
C the first order scheme
C abl=1.0
Cc abr=1.0
C initial condition
DO =11
DO j=0,1J-1
DO k=0,KK
t1(ij,k)y=cl*cos(pi* gamma(i))*sin(phi(G))* (1.0-u(k)*uk))
£2(i,j,k)=c2*cos(pi*gamma(i))*sin(phi(j))*(1.0-u(k)*u(k))
13(i,j,k)=c3*cos(pi*gamma(i))*sin(phi(j))*(1.0-u(k)*u(k))
ENDDO
ENDDO
ENDDO

C boundary condition
DO i=1,II
DO j=0,JJ-1
t1(i,j,0)=0.0
2(i,j,00=0.0
13(i,4,0)=0.0
t1(i,j,KK)=0.0
12(i,j,KK)=0.0
13(i,j,KK)=0.0
ENDDO
ENDDO

DO i=1,It

DO k=0,KK
t1(i,-1,K)=t1(i,JJ-1,k)
12(i,-1,K)=t2(i,JJ-1,k)
13(,-1 O=63G.,J3-1 k)
t1(1,J1K)=t1(,0,k)
126,11 K)=2(,0,k)
133,11, K)=13(,0.k)
ENDDO

ENDDO



C Begin time iteration
n=0

C Begin Gauss-Seidel Iteration

I DOi=LI

DO j=-1,]J
DO k=0,KK
tloldgs(i,j,k)=t1(i,j,k)
2oldgs(i,j,k)=t2(i,j,k)
t3oldgs(i,j,k)=t3(i,j.k)
ENDDO
ENDDO
ENDDO

C Jacobi for T1
C initial condition for Jacobi
2 DOi=L1
DO j=-1,J]
DO k=0,KK
tloldj(ij,k)=tloldgs(ij.k)
ENDDO
ENDDO
ENDDO
CRHS
3 DO j=0,]I-1
DO k=1,KK-1
cl1dt=dt*2.0*pi*pi*exp(-
pi*pi*dt*(n+0.5))* cos(pi*gamma(1))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(1)*gamma(l )*(1.0-u(k)*u(k))

c12dt=dt*5.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(1))
& *sin(phi())*(1.0-uk)*u(k))*gamma(1)*(1 0-uk)*u(k))

c13dt=dt*6.0*cl *exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(1))
& *sin(phi())*(2.0*uk)*u(k)-1.0)*(1.0-u(k)*u(k))

Qldt=c11dt+cl2dt-c13dt

crl=gammah(1)*gammah(1)*tr*(1.0-uk)*u(k))
cs=ts

cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(1)*gamma(1)*(1.0-
u(k)*u(k))+abl*cri+2.0*cs+cpl+cp2

& +dt*pi*pi*gamma(l)*gamma(l)*(1.0-u(k)*uck))

dl=abl*cr1*tloldj(2,j,k)+abl*cri*t1(2,j,k)

& +(gamma(l)*gamma(1)*(1.0-u(k)*u(k))

& -abl*cr1-2.0*cs-cpl-cp2

& -dt*pi*pi*gamma(l)*gamma(1)*(1.0-
u)*uk)))*t1(1,j.k)

& +es*tloldj(1 j+1,ky+es*t1(1,j+1,k)

& +es*tloldj(lj-1,k)+es*t1(1,j-1.k)

& +epl*tloldi(Ljk+1)+ept*tl(14,k+1)
+cp2*tloldj(l ,j k-1)y+cp2*t1(1,j.k-1)
+dt*pi*pi*(t20ldgs(L,j.k)*+2(1,j,k))
*gamma(1)*gamma(1)*(1.0-u(k)*u(k))/2.0
+dt*pi*pi*(3oldgs(L,j.k)+3(1,.k))
*gamma(1)*gamma(1)*(1.0-u(k)*u(k))/2.0+Ql1dt

PR

tlnewj(1,jk)=d1/abc
ENDDO
ENDDO

DO i=2,II-1
DO j=0,JJ-1
DO k=1,KK-1
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cl1dt=dt*2.0*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(i)*gammaf(i)*(1.0-u(k)*u(k))

c12dt=dt*5.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(i))
& *sin(phi())*(1.0-u(k)*u(k))*gamma(i)*(1.0-u(k)*u(k))

c13dt=dt*6.0*cl*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))
& *sin(phi(3))*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))

Qldt=cl1dt+ci2dt-c13dt

crl=gammah(i)*gammah(i)*tr*(1.0-uk)*uk))
cr2=gammah(i-1)*gammah(i-1)*tr*(1.0-u(k)*u(k))
cs=ts

cpl=(1.0-uh{k)*uh{k))*tp*(1.0-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(i)*gamma(i)*(1.0-
u(k)y*u(k))+crl+cr2+2.0*cs
& +cplHcp2+dt*pi*pi*gamma(i)* gamma(i)*(1.0-
u()*ulk))
dl=crl*tloldj(i+1,j,k)+crl *t1(i+1,5,k)
& +(gamma(i)*gamma(i)*(1.0-u(k)*u(k))-crl-cr2-2.0*cs-
cpl-cp2
& -dt*pi*pi*gamma(iy*gamma(i)*(1.0-
u(k)*uk))*t1(ij.k)
& +er2*tloldj(i-1,j,ky+er2*t1(i-1,5,k)
& +cs*tloldj(i,j+1,k)+es*tl(ij+1,k)
& +cs*tloldj(i,j-1,k)+es*t1(i,j-1,k)
& +cpl*tloldi(ijk++epl*tl(ijk+1)
& +cp2*tloldi(i,j,k-1)+cp2*tl(i,j.k-1)
& +dt*pi*pi*(t20ldgs(i,j,k)+2(i,j.k))
& *gamma(i)*gammag@)*(1.0-u(k)*uck))2.0
& +dt*pi*pi*(t3oldgs(ij,k)+t3(ij,k))
& *gamma(i)*gamma(i)*(1.0-uk)*u(k))/2.0+Q1dt

tInewj(i,j,k)=d1/abc
ENDDO
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1
cl1dt=dt*2.0*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(Il))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(il)*gamma(ll)*(1.0-u(k)*u(k))

c12dt=dt*5.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi* gamma(ll))
& *sin(phi(j))*(1.0-uk)*u(k))* gamma(ll)*(1.0-u(k)*u(k))

c13dt=dt*6.0*cl *exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(Il))
& *sin(phi(G))*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))

Qldt=cl1dt+c12dt-c13dt

cr2=gammah(II-1)*gammah(II-1)*tr*(1.0-u(k)*u(k))
cs=ts

cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
¢p2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(Il)*gamma(Il)*(1.0-
u(k)*u(k))+abr*cr2+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(Il)*gamma(Il)*(1.0-u(k)*u(k))



d1=abr*cr2*tloldj(II-1,j,k)+abr*cr2*t1(Il-1,j,k)

& +H(gamma(ITy*gamma(II)*(1.0-u(k)*u(k))-abr*cr2-
2.0*cs-cpl-cp2

& -pi*pi*dt*gamma(ll)*gamma(il)*(1.0-
u(k)*u(k))*t1(Lj.k)

& +cs*tloldj(llj+1.k)+cs*t1(ILj+1.k)
+cs*tloldj(IL,j-1,k)+cs*t1(IL,j-1,k)
+cpl*tloldi(Il,j,k+1)+cpl*t1 (ILj k+1)
+cp2*tloldi(IL,j,k-1)+cp2*t1 (ILj,k-1)
+dt*pi*pi*(2oldgs(Lj,k)+t2(1Lj,k))

*gamma(Il)* gamma(ll)*(1.0-u(k)*u(k))2.0
+dt*pi*pi* (t3oldgs(l,j,k)+t3(1L,j,k))
& *gamma(ll)*gamma(lD)*(1.0-u(k)*u(k))/2.0+Q1dt

PRERRR

tlnew;j(ILj,k)=d1/abc
ENDDO
ENDDO

C boundary condition
DO =11
DO j=0,JJ-1
tinewj(i,),0)=0
tInewj(i,j,KK)=0
ENDDO
ENDDO

DO i=1,1I

DO k=0,KK
tlnewj(i,-1,k)=t1newj(i,JJ-1,k)
tInewj(i,JJ k)=t1newj(i,0.k)
ENDDO

ENDDO

C error for Jacobi
error_maxj=0.0
DO i=L,1I
DO j=0,1J-1
DO k=1,KK-1
errj=abs(tInewj(i,j.k)-t1 oldj(i,j.k))
IF(errj.GT.error_maxj)THEN
€ITor_maxj=ertj
ENDIF
ENDDO
ENDDO
ENDDO

C update for Jacobi
DO i=L,II
DO j=-1,JJ
DO k=0,KK
tloldj(ij.k)y=tlnewj(i,j.k)
ENDDO
ENDDO
ENDDO

C  print ¥, "1",error_maxj
IF(error_maxj.GT.tolj)GOTO 3

C update from Jacobi to Gauss-Seidel
DO i=1,II
DO j=-1,J
DO k=0,KK
tInewgs(i,j,k)=t1newj(i,j,k)
ENDDO
ENDDO
ENDDO

C Jacobi for T2

C initial condition for Jacobi
DO =111
DO j=-1,]]

DO k=0,KK
2oldj(ij,k)=t2oldgs(ij,k)
ENDDO
ENDDO
ENDDO

4 DO j=0,JJ-1

DO k=1,KK-1

c21dt=dt*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(1))

& *sin(phi(j))*(1.0-
u(ky*u(k))*gamma(1)*gamma(l)*(1.0-u(k)*u(k))

€22dt=dt*4.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(1))

& *sin(phi(j))*(1.0-u(k)*u(k))* gamma(1)*(1.0-u(k)*u(k))

c23dt=dt*6.0*c2*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(1))
& *sin(phi(j))*(2.0*uk)*u(k)-1.0)*(1.0-u(k)*u(k))

Q2dt=c21dt+c22dt-c23dt

crl=gammah(1)*gammah(1)*tr*(1.0-u(k)*u(k))
cs=ts
cp1=(1.0-uh(k)*uh(k))*tp*(1.0-uk)*u(k))
cp2=(1.0-uh(k-1)*vh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(1)*gamma(1)*(1.0-
u(k)*u(k))+abl*cr1+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(l * gamma(1)*(1.0-u(k)*u(k))
d2=abl*cr1*Qoldj(2,j,k)+abl*cr1*€2(2,j.k)
& +(gamma(l)*gamma(1)*(1.0-u(k)*u(k))-abl*crl-
2.0*cs-cpl-cp2
& -dt*pi*pi*gamma(l)*gamma(l)*(1.0-
u(k)*u(k)))*t2(1,j,k)
& +es*oldj(l j+1Lk)+es*2(1 j+1,k)
& +es*2oldj(1,5-1,k)+es*2(1j-1,k)
& +epl*t2oldi(1,j,k+1)y+cpl*82(1,j,k+1)
& +ep2*20ldi(l j,k-Urtep2*2(1 j k-1)
& +dt*pi*pi*(tlnewgs(l,j,k)+1(1,j.k)
& *gamma(l)*gamma(1)*(1.0-u(k)*u(k))/2.0
& +dt*pi*pi*(t3oldgs(1,,k)+H3(1 5,k)
& *gamma(l)*gamma(1)*(1.0-u(k)*u(k))/2.0+Q2dt

t2new;j(1,i.k)=d2/abc
ENDDO
ENDDO

DO i=2,1I-1
DO j=0,JJ-1
DO k=1,KK-1
c21dt=dt*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi* gamma(i))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(i)*gamma(i)*(1.0-u(ky*u(k))

c22dt=dt*4.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(i))

& *sin(phi(j))*(1.0-u(k)*u(k))*gamma(i)*(1.0-u(k)*u(k))

c23dt=dt*6.0*c2*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))
& *sin(phi(j))*(2.0*uk)*u(k)-1.0)*(1.0-uk)*u(k))

Q2dt=c21dt+c22dt-c23dt
crl=gammah(i)*gammah(i)*tr*(1.0-u(k)*u(k))

cr2=gammah(i-1)*gammah(i-1)*tr*(1.0-u(k) *u(k))
cs=ts



cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(i)*gamma(i)*(1.0-
u(k)*uk))+erl+cr2+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(i)*gamma(i)*(1.0-u(k)*u(k))
d2=cr1*t20ldj(i+1,j,k)+cr1 *22(i+1,j,k)
& +(gamma(i)*gamma(i)*(1.0-u(k)*u(k))-crl-cr2-2.0*cs-
cpl-cp2
& -dt*pi*pi*gamma(i)*gamma(i)*(1.0-
uk)*uk))*2(ij,k)
& +cr2*2oldj(i-1,3,k)+er2*2(i-1,5,k)
& +es*2oldj(i,j+1.k)+es*2(i,j+1.k)
& +cs*2oldj(i,j-1,k)+cs*12(,j-1,k)
& +epl*2oldj(ij.k+1)+cpl*2(ij.k+1)
& +cp2*t2oldj(iy k-1)+cp2*12(i,j.k-1)
& +dt*pi*pi*(tlnewgs(i,j,k)+1(3i,j,k))
& *gamma(i)*gamma()*(1.0-u(k)*u(k))/2.0
& +dt*pi*pi*(t3oldgs(ij,k)+3(i,j.k))
& *gamma(iy*gamma@)*(1.0-u(k)*u(k))/2.0+Q2dt

2newj(i,j,k)=d2/abc
ENDDO
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1
c21dt=dt*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(Il))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(ll)*gamma(I})*(1.0-u(k)*u(k))

22dt=dt*4.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(ll))
& *sin(phi(j))*(1.0-u(k)*u(k))* gamma(lly*(1.0-u(k)*u(k))

€23dt=dt*6.0*c2*exp(-
pi*pi*dt*(n+0.5))* cos(pi*gamma(Il))
& *sin(phi(§))*(2.0*uk)*u(k)-1.0)*(1.0-u(k)*u(k))

Q2dt=c21dt+c22dt-c23dt

cr2=gammah(Il-1)*gammah(lI-1)*tr*(1.0-u(k)*u(k))
cs=ts

cpl=(1.0-uh(k)*uhdk))*tp*(1.0-u(k)*uk))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-uk)*uck))

abc=gamma(I)* gamma(Il)*(1.0-
u(k)*uck))+abr*cr2+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(Il)*gamma(ll)*(1.0-u(k)*u(k))
d2=abr*cr2*201dj(11-1,j,k)+abr*cr2*2(11-1,5,k)
& +(gamma(ll)*gamma(lI)*(1.0-u(k)*u(k))-abr*cr2-
2.0*cs-cpl-cp2
& -dt*pi*pi*gamma(ll)*gamma(ll)*(1.0-
u(k)*u(k))*2(ILj k)
& +es*oldj(ILj+1,k)+cs*2(ILj+1,k)
& +es*2oldj(ILj-1,k)+cs*2(1L,j-1,k)
& +epl*t20ldj(IL,j,k+1)+cpl*2(1L,j,k+1)
& +cp2*t2oldj(ILj,k-1)+cp2*2(1L,j k-1)
& +dt*pi*pi*(tlnewgs(llj,k)+t1(IL;j,k))
& *gamma(I)*gamma(Il)*(1.0-u(k)*u(k))/2.0
& +dt*pi*pi*(t3oldgs(IL,j k)+H3(L,j.k))
& *gamma(Il)*gamma(Il)*(1.0-u(k)*u(k))/2.0+Q2dt

t2newj(IL,j,k)=d2/abc
ENDDO
ENDDO

C boundary condition
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DO i=1II

DO j=0,JJ-1
2newj(i,j,0)=0.0
2newj(i,j,KK)=0.0
ENDDO

ENDDO

DO i=1,li

DO k=0,KK
t2newj(i,-1,k)=t2newj(i,JJ-1,k)
2newj(i,J) k)=t2new;j(i,0,k)
ENDDO

ENDDO

C error for Jacobi
error_maxj=0.0
DO i=1,I1
DO j=0,JJ-1
DO k=1,KK-1
errj=abs(t2newj(i,j k)-2oldj(i,j,k))
IF(errj.GT.error_maxj)THEN
error_maxj=errj
ENDIF
ENDDO
ENDDO
ENDDO

C update for Jacobi
DO =111
DO j=-1,1}
DO k=0,KK
20ldj(i,j,k)=t2newj(ij.k)
ENDDO
ENDDO
ENDDO

C  print *, "2" error_max;j
IF(error_maxj.GT.tolj)GOTO 4

C update from Jacobi to Gauss-Seidel
DO i=1,II
DOj=-1,JJ
DO k=0,KK
t2newgs(i,j,k)=2new;j(i,j,k)
ENDDO
ENDDO
ENDDO

C Jacobi for T3

C initial condition for Jacobi
DO i=1,11
DO j=-1,1J
DO k=0,KK
t3oldj(ij,k)=t3oldgs(i,j.k)
ENDDO
ENDDO
ENDDO

5 DOj=0JJ-1
DO k=1,KK-1
c31dt=dt*3.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(l))
& *sin(phi(j))*(1.0-uk)*u(k))*gamma(l)*(1.0-
u(k)*u(k))
¢32dt=dt*6.0*c3*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(l))
& *sin(phi())*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))

Q3dt=c31dt-c32dt



crl=gammah(1)*gammaah(1)*tr*(1.0-u(k)*u(k))
cs=ts

cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(1)*gamma(1)*(1.0-
u(k)*u(k))+abl*cr1+2.0*cs+cpl+cp2

& +dt*pi*pi*gamma(l)*gamma(1)*(1.0-u(k)*u(k))

d3=abl*cr1*Boldj(2.j,k)+abl*crl *3(2,j,k)

& +(gamma(l)*gamma(1)*(1.0-u(k)*u(k))-abl*crl-

2.0*cs-cpl-cp2

& -dt*pi*pi*gamma(ly*gamma(1)*(1.0-
uk)y*uk))*t3(1,3.k)

& +os*B3oldj(1 j+1,k)+cs*3(1 j+1,k)
+es*B3oldj(1j-1.k)+es*B(1,j-1.k)
+epl*30ldj(1 jk+1)+opl *3(1j,k+1)
+cp2*t3oldj(1.j.k-1)+cp2*t3(1,j,k-1)
+dt*pi*pi*(tlnewgs(1,j,k)+1(1,i.k))
*gamma(1)*gamma(1)*(1.0-u(k)*u(k))”2.0
+dt¥*pi*pi*(2newgs(1,j,k)+2(1,j,k))

PR

t3newj(1,j,k)=d3/abc
ENDDO
ENDDO

DO i=2,1I-1

DO j=0,7J-1

DO k=1,KK-1

c31dt=dt*3.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(i))

& *sin(phi(j))*(1.0-uk)*u(k))*gamma(iy*(1.0-u(k)*u(k))

c32dt=dt*6.0*c3*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))

& *sin(phi(§))*(2.0*uk)*u(k)-1.0)*(1.0-uk)*uk))

Q3dt=c31dt-c32dt

crl=gammah(i)*gammah(i)*tr*(1.0-u(k)*u(k))

cr2=gammah(i-1)* gammah(i-1)*tr*(1.0-u(k)*u(k))

cs=ts
cpl=(1.0-uh(k)*uh))*tp*(1.0-uk)*uck))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(i)*gamma(i)*(1.0-
u(k)*uk))+erl+cr2+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(i)*gamma(i)*(1.0-u(k)*u(k))
d3=cr1*t3oldj(i+1,j,k)+er1 *3(i+1,5,k)

& -+(gamma(i)*gamma(i)*(1.0-u(k)*u(k))-cri-cr2-2.0*cs-

cpl-cp2

& -pi*pi*dt*gamma(i)*gamma(i)*(1.0-
u()*u(k)))*13(i,j.k)

& +er2*3oldj(i-1,,k)+er2*3(i-1,5,k)

& +es*t3oldj(ij+1.k)y+es*t3(i,j+1.k)

& +es*t3oldj(i,j-1.k)+es*t3(ij-1,k)

& +epl*t3oldj(i,j k+1)+epl*3(i,j.k+1)

& +cp2*t3oldj(i,j,k-1)+cp2*t3(i,j,k-1)

& +dt*pi*pi*(t1newgs(ij,k)+t1(i,j.k))

& *gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0

& +dt*pi*pi*(2newgs(i,j,k)H2(1,),k))

& *gamma(i)*gamma()*(1.0-u(k)*u(k))/2.0+Q3dt

Bnewj(i,j,k)=d3/abc
ENDDO
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1

*gamma(1)*gamma(1)*(1.0-u(k)*u(k))/2.0+Q3dt

c31dt=dt*3.0*pi*exp(-

pi*pi*dt*(n+0.5))*sin(pi*gamma(ll))
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& *sin(phi(j))*(1.0-u(k)*u(k))*gamma(ll)*(1.0-u(k)*u(k))

¢32dt=dt*6.0*c3*exp(-

pi*pi*dt*(n+0.5))*cos(pi* gamma(Il))

& *sin(phi(j))*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))
Q3dt=c31dt-c32dt
cr2=gammah(IT-1)* gammah(II-1)*tr*(1.0-u(k)*u(k))
g;=lt=s(1.0-uh(k)*uh(k))*tp*(l.O-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(Il)*gamma(II)*(1.0-

u(k)*u(k))+abr*cr2+2.0*cs+cpl+cp2

& +dt*pi*pi*gamma(Il)*gamma(il)*(1.0-u(k)*u(k))
d3=abr*cr2*t3oldj(1i-1,j,k)+abr*cr2 *13(11-1,i,k)
& +(gamma(ll)*gamma(ll)*(1.0-u(k)*u(k))-abr*cr2-

2.0*cs-cpl-cp2

& -dt*pi*pi*gamma(ll)*gamma(ll)*(1.0-

u(ky*u))*3(IL),k)

& +cs*Boldji(ILj+1,k)+es*B3(ILj+1,K)
+es*Boldj(ILj-1,k)+es*B(IL,j-1,k)
+epl*Boldj(ILjk+1+opl *B(ILjk+1)
+cp2*t30ldj(ILj,k-11+cp2*3(ILj k-1)
+dt*pi*pi*(tinewgs(IL,j,k)+t1(ILj.k))
*gamma(ll)*gamma(ll)*(1.0-u(k)*u(k))/2.0
+dt*pi*pi*(t2newgs(ILj,k)+t2(1L,j.k))
*gamma(ll)* gamma(ID)*(1.0-u(k)*u(k))/2.0+Q3dt

PR

t3newj(I1,j,k)=d3/abc
ENDDO
ENDDO

C boundary condition

DO i=L,11

DO j=0,JJ-1
3newj(i,j,0)=0
t3newj(i,j,KK)=0
ENDDO
ENDDO

DO =11

DO k=0,KK
t3newj(i,-1,k)=t3newj(i,JJ-1,k)
t3newj(i,J I k)=t3new;j(i,0.k)
ENDDO

ENDDO

C error for Jacobi

error_maxj=0.0

DO i=1,1I

DO j=0,JJ-1

DO k=1,KK-1
errj=abs(t3new;j(i,j k)-t3oldj(ij.k))
IF(errj.GT.error_maxj)THEN
€ITOT_maxj=errj

ENDIF

ENDDO

ENDDO

ENDDO

C update for Jacobi

DO i=11I
DO j=-1,J

DO k=0,KK
t301d(i,j,k)=t3newj(ij.k)
ENDDO



ENDDO
ENDDO

C  print *, "3",error_maxj
IF(error_maxj.GT.toj)GOTO 5

C update from Jacobi to Gauss-Seidel

err=abs(t2newgs(i,j,k)}-t2_exact(i,j,k))
1F(err.GT .err_max)THEN
eIT_max=err

ENDIF
err=abs(t3newgs(i,j,k)-t3_exact(i,j,k))
IF(err.GT.err_max)THEN
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DO i=LII eIT_max=err
DO j=-1,1J ENDIF
DO k=0,KK ENDDO
t3newgs(i,j.k)=t3newj(i,j.k) ENDDO
ENDDO ENDDO
ENDDO C PRINT *, max_err
ENDDO
C Calculate L2-err
C calculate err for Gauss-Seidel DO i=1,1I
error_maxgs=0.0 DO j=0,JJ-1
DOi=11 DO k=1,KK-1
DO j=0,JJ-1 errorT 1(i,j,k)=abs(tInewgs(i,j,k)}-t1_exact(i,j,k))
DO k=1,KK-1 errorT2(i,j. k)=abs(t2newgs(i,j,k)-t2_exact(i,j.k))
errgs=abs(tlnewgs(i,j,k)-t1 oldgs(i,j.k)) errorT3(i,j.k)=abs(t3newgs(i,j,k)-t3_exact(ij,k))
1F(errgs.GT .error_maxgs)THEN ENDDO
€ITOr_Maxgs=errgs ENDDO
ENDIF ENDDO
errgs=abs(2newgs(i,j.k)-t2oldgs(i,j,k))
IF(errgs.GT.error_maxgs)THEN temp1=0.0
€ITOr_Mmaxgs=errgs temp2=0.0
ENDIF temp3=0.0
errgs=abs(3newgs(i,j.k)-t3oldgs(i,,k)) tempd=0.0
IF(errgs.GT.error_maxgs)THEN error_max(n)=0.0
€ITOI_Maxgs=errgs DO i=L,11
ENDIF DO j=0,JJ-1
ENDDO DO k=1 KK-1
ENDDO templ=templ+errorT1(i,j,k)*errorT1(i,j,k)
ENDDO temp2=temp2-+errorT2(i,j.k)*errorT2(i,j,k)
IF(error_maxgs.LE. tolgs)GOTO 6 temp3=temp3+errorT3(i,j.k)*errorT3(i,j,k)
C  print ¥, max_err ENDDO
DO i=1,l1 ENDDO
DO j=-11J ENDDO
DO k=0,KK temp4=templ-+temp2-+temp3
tloldgs(ij,k)=tInewgs(i,j,k) error_max(n)=sqrt{dgamma*dphi* du*temp4)
t20ldgs(i,j,k)=t2newgs(i,j,k) PRINT * n, error_max(n)
3oldgs(i,j,k)=t3newgs(i,j,k)
ENDDO C Next time iteration
ENDDO n=n+1
ENDDO IF(n.EQNN)GOTO 7
GOTO 2
C End Gauss-Seidel Iteration DO =111
DO j=-1,1J
C Calculate exact solutions DO k=0,KK
6 DOi=LIl t1(i,j,k)=tlnewgs(i,j,k)
DO j=0,JJ-1 12(i,3.k)=t2newgs(i,j,k)
DO k=1,KK-1 13(i4,k)=t3newgs(i,j,k)
t1_exact(i,j,k)=c1*cos(pi*gamma(i))*sin(phi(j)) ENDDO
& *(1.0-uk)*u(k))*exp(-pi*pi*dt*(n+1.0)) ENDDO
12_exact(i,j,k)=c2*cos(pi*gamma(i))*sin(phi(j)) ENDDO
& *(1.0-u(k)*u(k;)*exp(-pi*pi*dt*(n+1.0))
t3_exact(i,j,k)=c3*cos(pi*gamma(i))*sin(phi(j)) GOTO 1t
& *(1.0-u(k)*u(k))*exp(-pi*pi*dt*(n+1.0))
ENDDO C Output
ENDDO 7 OPEN(unit=77, file=N=50ar3_I=11_o02.dat')
ENDDO DO n=1,NN-1
C Calculate max err WRITE(77,1000) n*dt,error_max(n)
err_max=0.0 ENDDO
DO i=1,II 1000 FORMAT(f18.6, €18.10)
DO j=0,JJ-1 END
DO k=1,KK-1

err=abs(tlnewgs(i,j,k)-t1_exact(i,j,k))
IF(err.GT.err_max)THEN
err_max=err

ENDIF



3. SOURCE CODE FOR 3D SECOND
IMPROVED CN SCHEME

C 2-time level 3D second improved CN
C nsystemd4
C Jan. 2010

DIMENSION t1(0:50,-1:110,0:110),£2(0:50,-1:110,0:110)

DIMENSION t3(0:50,-
1:110,0:110),gamma(0:50),gzammah(0:50)

DIMENSION phi(-1:110),u(0:110),uh(0:110)

DIMENSION t1_exact(0:50,-
1:110,0:110),2_exact(0:50,-1:110,0:110)

DIMENSION t3_exact(0:50,-1:110,0:110),t101dgs(0:50.-
1:110,0:110)

DIMENSION tlnewgs(0:50,-1:110,0:110),t20ldgs(0:50,-
1:110,0:110)

DIMENSION t2newgs(0:50,-1:110,0:110),t30ldgs(0:50,-
1:110,0:110)

DIMENSION t3newgs(0:50,-1:110,0:110),t101dj(0:50,-
1:110,0:110)

DIMENSION t1newj(0:50,-1:110,0:110),t201dj(0:50,-
1:110,0:110)

DIMENSION t2newj(0:50,-1:110,0:110),t301dj(0:50,-
1:110,0:110)

DIMENSION t3newj(0:50,-1:110,0:110),errorT1(0:50,-
1:110,0:110)

DIMENSION errorT2(0:50,-1:110,0:110),errorT3(0:50,-
1:110,0:110)

DIMENSION error_max(0:5010)

DOUBLE PRECISION
t1,62,t3,Q1dt,Q2dt,Q3dt,d1,d2,d3,abc,c1,c2,¢c3

DOUBLE PRECISION
tloldgs,tlnewgs,t2oldgs,t2newgs,t3oldgs,.t3newgs

DOUBLE PRECISION
tloldj,t1newj,t20ldj t2newj,t3oldj,t3new;j

DOUBLE PRECISION
tl_exactt2_exact,t3_exact,abl,abr

DOUBLE PRECISION
errorT1,errorT2,errorT3,error_max

DOUBLE PRECISION
€IT0r_INaxj,error_Mmaxgs,errj,errgs,em

DOUBLE PRECISION err_max,tr,tp,ts,gamma,gammah

DOUBLE PRECISION phi,u,uh,thetal theta2 th, f1, f2,
3

DOUBLE PRECISION dt,dgamma,dphi,du,pi,tolj,tolgs

DOUBLE PRECISION
crler2,cs,cpl,cp2,templ temp2,temp3,temp4

DOUBLE PRECISION c11dt,cl12dt,c13dt,cl14dt,cl5dt

DOUBLE PRECISION c21dt,c22dt,c23dt,c24dt,c25dt

DOUBLE PRECISION c31dt,c32dt,c33dt,c34dt

C value assignment
dt=0.0001
I1=10
JI=60
KK=60
NN=1000
pi=3.14159265358979323846
thetal=1.0
th=thetal-+II
theta2=(sqrt(4.0+3.0*th*(th-1.0))-1.0)/(3.0*th)
C the first order scheme
C thetal=1.0
C theta2=1.0
dgamma=1.0/(II-1.0+thetal +theta2)
dphi=2.0*pi/J)
du=2.0/KK
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tr=dt/(dgamma*dgamma)
ts=dt/(dphi*dphi)
tp=dt/(du*du)
tolgs=1.0D-6

tolj=1.0D-8

cl=1.25

€2=1.00

c3=0.75

DO i=0,1
gamma(i)=(thetal+(i-1))*dgamma
ENDDO

DO i=0,11-1
gammah(i)=gamma(i)+0.5*dgamma
ENDDO

DO j=0,3J-1

phi(j)=j*dphi

ENDDO

DO k=0,KK

u(k)=k*du-1.0

ENDDO

DO k=0,KK-1

uh(k)=u(k)+0.5*du

ENDDO

abl=1.0
abr=gamma(iI)*gamma(il)*theta2
&  /(gammah(II-1)*gammah(ll-1)*(theta2/2.0+1.0/3.0))
C the first order scheme
C abl=1.0
C abr=1.0
C initial condition
DO i=1,11
DO j=0,JJ-1
DO k=1,KK-1
t1(ij,k)=cl*(cos(pi*gamma(i))-1.0)*sin(phi(j))*(1.0-
u(k)*u(k))
12(i,j,k)=c2*(cos(pi* gamma(i))-1.0)*sin(phi(j))*(1.0-
u(k)y*u(k))
t3(ij,k)y=c3*(cos(pi* gamma(i))-1.0)*sin(phi(j))*(1.0-
u(k)*u(k))
ENDDO
ENDDO
ENDDO

C boundary condition
DO =11t
DO j=0,JJ-1
t1(i,j,0)=0.0
2(i,j,0)=0.0
3(1,4,0)=0.0
t1(i,j,KK)=0.0
2(i,,KK)=0.0
1331,j,KK)=0.0
ENDDO
ENDDO

DOi=1,11

DO k=0,KK
t1G,-1,K)=t1(i,JJ-1,k)
12(i,-1,K)=2(i,J-1,k)
13(i,-1,)=13G,JJ-1.k)
116,33, K)=t1(,0,k)
12G,11,K)=12(,0,%)
13(i,J7,K)=t3(1,0,k)
ENDDO

ENDDO

£1=0.0
DO j=0,7J-1



DO k=0,KK-1
fl=f1+t1(1,j,k)
ENDDO

ENDDO

DO j=0,3J-1

DO k=0,KK-1
t1(0,j.K)=F1/(JJ*KK)
ENDDO

ENDDO

£2=0.0
DO j=0,JJ-1

DO k=0,KK-1
2=02+2(1,j,K)
ENDDO

ENDDO

DO j=0,JJ-1

DO k=0,KK-1
£2(0,,K)=2/(11*KK)
ENDDO

ENDDO

£3=0.0

DO j=0,JJ-1
DO k=0,KK-1
B=f3+t3(1,j,k)
ENDDO
ENDDO

DO j=0,JJ-1
DO k=0,KK-1
13(0,3,K)=F3/(JJ*KK)
ENDDO
ENDDO

C Begin time iteration
n=0

C Begin Gauss-Seidel Iteration

1 DOi=01II

DO j=1,1J
DO k=0,KK
tloldgs(i,j.k)=t1(ij.k)
oldgs(i,j,k)=t2(i,j.k)
t3oldgs(i,j,k)=t3(i,j,k)
ENDDO
ENDDO
ENDDO

C Jacobi for T1
C initial condition for Jacobi
2 DOi=0,1
DO j=-1,JJ
DO k=0,KK
tloldj(i,j,k)=tloldgs(ij,k)
ENDDO
ENDDO
ENDDO

C RHS
3 DOi=LlI-1

DO j=0,J3-1

DO k=1,KK-1

cl1dt=dt*2.0*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))

& *sin(phi(j))*(1.0-

utk)*u(k))* gamma(i)y* gamma()*(1.0-u(ky*u(k))

c12dt=dt*5.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(i))
& *sin(phi(j))*(1.0-u(k)*u(k))*gamma(i)*(1.0-u(k)*u(k))
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cl3dt=-dt*6.0*cl *exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(i))
& *sin(phi(j))*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))

cl4dt=dt*6.0%c1 *exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(2.0*u(k)*u(k)-1.0)*(1.0-uk)*u(k))

¢15dt=dt*0.5*pi*pi*exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(i)*gamma(i)*(1.0-u(k)*u(k))

Qldt=clldt+cl12dt+cl3dt+cl4dt+c15dt

crl=gammah(i)*gammah(i)*tr*(1.0-u(k)*u(k))
cr2=gammah(i-1)*gammah(i-1)*tr*(1.0-u(k)*u(k))
cs=ts

cp1=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
¢p2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(i)* gamma(i)*(1.0-
u(k)*u(k))+crl+cr2+2.0*cs

& +cpl+ep2+dt*pi*pi*gamma(i)*gamma(i)*(1.0-
u(k)*u(k))

di=crl*tloldj(i+1,j,k)+cr1 *t1(i+1,j,k)

& +(gamma(i)*gamma(i)*(1.0-u(k)*u(k))-crl-cr2-2.0*cs-
cpl-cp2

& -dt*pi*pi*gamma(i)*gamma(i)*(1.0-
uky*uk))*t1(i,j.k)

& +er2*tloldj(i-1,k)+er2*t1(i-1,i,k)

& +cs*tloldj(i,j+1.k)+es*tl(ij+1,k)

& +es*tloldji,j-1,k)+es*ti(ij-1,k)
+cpl*tloldj(i,j.k+1)+cpl *t1(i,j,k+1)
+ep2*tloldj(i,j.k-1)+cp2*tl(i,j k-1)
+dt*pi*pi*(t20ldgs(ij,k)+2(1,j,k))
*gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0
+dt*pi*pi* (t3oldgs(ij,k)+t3(i..k))
*gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0+Ql1dt

PR

tinewj(i,j,k)=d1/abc
ENDDO
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1
c11dt=dt*2.0*pi*pi*exp(-
pi*pi*dt*(n+0.5))* cos(pi* gamma(Il))
& *sin(phi(j))*(1.0-
uk)*uk))*gamma(Ily* gamma(ll) *(1.0-u(k)*u(k))

c12dt=dt*5.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(Il))
& *sin(phi(i))*(1.0-uk)*u(k))* gamma(il)*(1.0-u(k)*u(k))

c13dt=-dt*6.0*cl *exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(ll))
& *sin(phi())*(2.0*u(k)*u(k)-1.0y*(1.0-u(k)*u(k))

cl4dt=dt*6.0*c1*exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(2.0*uk)*u(k)-1.0y*(1.0-uk)*u(k))

c15dt=dt*0.5*pi*pi*exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(ll)*gamma(Il)*(1.0-u(k)*u(k))
Qldt=c11dt+c12dt+c13dt+cl4dt+clSdt

cr2=gammah(II-1)*gammah(II-1)*tr*(1.0-u(k)*u(k))
cs=ts
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cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k)) ENDIF
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k)) ENDDO
ENDDO
abc=gamma(Il)*gamma(ll)*(1.0- ENDDO
u(k)*u(k))+abr*cr2+2.0*cs+cpl+cp2
& +dt*pi*pi*gamma(ll)*gamma(ll)*(1.0-u(k)*u(k)) C update for Jacobi
dl=abr*cr2*tloldj(II-1,j,k)+abr*er2 *t1(II-1 j k) DO i=0,I1
& +(gamma(ll)*gammu(I[)*(1.0-u(k)*u(k))-abr*cr2- DO j=-1,J)
2.0*cs-cpl-cp2 DO k=0,KK
& -pi*pi*dt*gamma(ll)*gamma(ll)*(1.0- tloldj(i,j,k)=tlnewj(i,j,k)
uk)*u(k))*t1(ILj,k) ENDDO
& +es*tloldj(ILj+1,k)+cs*t1 (AL, j+1,k) ENDDO
& +cs*tloldj(ILj-1,k)+cs*t1(IL,j-1.k) ENDDO
& +cpl*tloldj(Il,j,k+1)+cpl *t1(ILj,k+1) C  print *, "1",error_maxj
& +ep2*tloldj(Il,j k-1)+ep2*t1(iLj k-1) IF(error_maxj.GT.tolj)GOTO 3
& +dt*pi*pi*(t20ldgs(L,j,k)+t2(1Lj,k))
& *gamma(ll)*gamma(lI)*(1.0-u(k)*u(k))/2.0 C update from Jacobi to Gauss-Seidel
& +dt*pi*pi*(t3oldgs(IL,j,k)+3(1Lj k) DO i=0,11
& *gamma(ll)*gamma(il)*(1.0-uk)*u(k))/2.0+Q1dt DO j=-1,1J
DO k=0, KK
tInewj(IL,j,k)=d1/abc tInewgs(i,j,k)=t1new;j(i,j,k)
ENDDO ENDDO
ENDDO ENDDO
ENDDO
C boundary condition C Jacobi for T2
DO i=1,lI C initial condition for Jacobi
DO j=0,JJ-1 DO i=0,11
tlnew;j(i,j,0)=0.0 DO j=-1,JJ
tlnew;j(i,j,KK)=0.0 DO k=0,KK
ENDDO 201dj(i,j,k)=t2oldgs(i,j.k)
ENDDO ENDDO
ENDDO
DO i=1,II ENDDO
DO k=0,KK
tinewj(i,-1,k)=tinewj(i,JJ-1,k) 4 DO =111
tInew;j(i,JJ.k)=t1newj(i,0,k) DO j=0,JJ-1
ENDDO DO k=1,KK-1
ENDDO c21dt=dt*pi*pi*exp(-
pi*pi*dt*(n+0.5))* cos(pi* gamma(i))
C update & *sin(phi())*(1.0-
f1=0.0 u(k)*u(k))*gamma(i)*gamma()* (1.0-u(k)*u(k))
DO j=0,1J-1
DO k=0,KK-1 €22dt=dt*4.0*pi*exp(-
fl=fl+tInew;j(1,j,k)+t1(1,j,k) pi*pi*dt*(n+0.5))*sin(pi* gammaqi))
ENDDO & *sin(phi@))*(1.0-uk)*uk))*gamma(i)*(1.0-uk)*uk))
ENDDO
c23dt=-dt*6.0*c2*exp(-
DO j=0,JJ-1 pi*pi*dt*(n+0.5))*cos(pi*gamma(i))
DO k=1,KK-1 & *sin(phi())*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))

abc=1.0+6.0*dt/(dgamma*dgamma)+dt*pi*pi
c24dt=dt*6.0*c2*exp(-pi*pi*dt*(n+0.5))

d1=(1.0-6.0*dt/(dgamma*dgamma)-dt*pi*pi)*t1(0,j,k) & *sin(phi(j))*(2.0*u(k)*u(k)-1.0)*(1.0-u(k)*u(k))
& +dt*3.0*du*f1/(JJ*dgamma* dgamma)
& +dt*pi*pi*(20ldgs(C,j,k)+2(0,.k))/2.0 c25dt=dt*pi*pi*exp(-pi*pi*dt*(n+0.5))
& +dt*pi*pi*(t30ldgs(0,5,k)+3(0,5.k))/2.0 & *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(i)*gammai)*(1.0-u(k)*u(k))
tinew;j(0,5,k)=d1/abc
ENDDO Q2dt=c21dt+c22dt+c23dt+c24dt+c25dt
ENDDO
crl=gammah(i)* gammah(i)*tr*(1.0-u(k)*u(k))
cr2=gammah(i-1)*gammah(i-1)*tr*(1.0-u(k) *u(k))
C error for Jacobi cs=ts
error_maxj=0.0 cpl=(1.0-uh(k)*uh(k))*tp*(1.0-uk)*u(k))
DO =111 cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*uk))
DO j=0,JJ-1
DO k=1,KK-1 abc=gamma(i)* gamma(i)*(1.0-
errj=abs(t1new;j(i,j.k)-t1 oldj(ij.k)) u(k)*u(k))+crl+cr2+2.0*cs+cpl+cp2
IF(errj.GT.error_maxj)THEN & +dt*pi*pi*gamma(i)*gamma(iy*(1.0-u(k)*u(k))

€rror_maxj=errj d2=cr1*t20ldj(i+1,j,k)+crl *2(i+1,5,k)



& +(gamma(i)*gamma(i}*(1.0-u(k)*u(k))-crl-cr2-2.0*cs-

cpl-cp2

& -dt*pi*pi*gamma(i)*gamma(i)*(1.0-
U(k)*U(k)))*tZ(w k)
& +er2*oldj(i-1,5,k)+er2*t2(i-1,,k)
+es*t2oldj(i,j+1,k)+es*2(ij+1,k)
+cs*t20ldj(i,j-1,k)+cs*t2(i,j-1,k)
+cpl*20ldj(i,j.k+1)+epl*2(ij.k+1)
+ep2*t20ldj(ij,k-1)+cp2*12(i,j.k-1)
+dt*pi*pi*(tlnewgs(i,j,k)+1(i,j,k))
*gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0
+dt*pi*pi*(t30ldgs(ij,k)+3(i,j.k))
& *gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0+Q2dt

RPRRPRRRR

t2new;j(i,j K)=d2/abc
ENDDO
ENDDO
ENDDO

DO j=0,1J-1
DO k=1,KK-1
c21dt=dt*pi*pi*exp(-
pi*pi*dt*(n+0.5))*cos(pi* gamma(ll))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(lf)*gamma(Il)*(1.0-u(k)*u(k))

c22dt=dt*4.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(il))

& *sin(phi(i))*(1.0-u(k)*u(k))* gamma(l)*(1.0-u(k)*u(k))

c23dt=-dt*6.0*c2*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(ll))
& *sin(phi())*(2.0*uk)*u(k)-1.0)*(1.0-uk)*u(k))

c24dt=dt*6.0*c2*exp(-pi*pi*dt*(n+0.5))
& *sin(phi())*(2.0*uk)*u(k)-1.0)*(1.0-uk)*uck))

c25dt=dt*pi*pi*exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(1.0-
u(ky*u(k))*gamma(Il)* gamma(ll)*(1.0-u(k)*u(k))

Q2dt=c21dt+c22dt+c23dt+c24dt+c25dt

cr2=gammah(II-1)*gammah(II-1)*tr*(1.0-u(k)*u(k))
cs=ts

cp1=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
ep2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-uk)*u(k))

abc=gamma(Il)*gamma(ll)*(1.0-
u(k)*u(k))+abr*cr2+2.0*cs+eplicp2
& +dt*pi*pi*gamma(ll)*gamma(Il)* (1.0-u(k)*u(k))
d2=abr*cr2*t20ldj(II-1,j,k)+abr*cr2*€2(II-1,j,k)
& +(gamma(Il)*gamma(Il)*(1.0-u(k)*u(k))-abr*cr2-
2.0*cs-cpl-cp2
& -dt*pi*pi*gamma(ll)*gamma(ll)*(1.0-
uk)*u(k)))*2(Lj.k)
& +es*2oldj(Ilj+1,k)+es*2(1Lj+1.k)
& +cs*oldj(ILj-1,k)+es*2(IL;-1,k)
& +epl*t20ldj(ILj,k+1)+cpl*2(ILj,k+1)
& +cp2*t20ldi(I1,j,k-1)+cp2*2(1L,.k-1)
& +dt*pi*pi*(tinewgs(ILj,k)+t1(11j,k))
& *gamma(Il)*gamma(ll)*(1.0-u(k)*u(k))/2.0
& +dt*pi*pi*(t3oldgs(li,j,k)+t3(11j,k))
& *gamma(ll)*gamma(Il)*(1.0-u(k)*u(k))2.0+Q2dt

2newj(1L,j,k)=d2/abc
ENDDO
ENDDO
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C boundary condition
DO i=LI
DO j=0,11-1
2newj(i,j,0)=0.0
2newj(i,j,KK)=0.0
ENDDO
ENDDO

DO i=1,II

DO k=0,KK
t2newj(i,-1.k)=t2newj(i,JJ-1,k)
t2newj(i,JJ k)y=t2new;j(i,0.k)
ENDDO

ENDDO

C update
2=0.0
DO j=0,JJ-1
DO k=0,KK-1
R2=02+t2newj(1,j.k)+t2(1,j,k)
ENDDO
ENDDO

DO j=0,1J-1
DO k=1,KK-1
abc=1.0+6.0* dt/(dgamma*dgamma)+dt*pi*pi

d2=(1.0-6.0*dt/(dgamma*dgamma)-dt*pi*pi)*t2(0,j,k)
& +dt*3.0*du*f2/(J]*dgamma*dgamma)

& +dt*pi*pi*(tinewgs(0,j,k)+1(0,5,k))/2.0

& +dt*pi*pi*(t30ldgs(0,,k)+3(0,j,k))2.0

©2newj(0,j.k)=d2/abc
ENDDO
ENDDO

C error for Jacobi
error_maxj=0.0
DO i=1,II
DO j=0,JJ-1
DO k=1,KK-1
errj=abs(t2newj(i,j,k)-t20ldj(i,j,k))
IF(ertj.GT.emror_maxj)THEN
€ITor_maxj=errj
ENDIF
ENDDO
ENDDO
ENDDO

C update for Jacobi
DO i=0,11
DO j=-1,1]
DO k=0,KK
t201dj(ij,k)=t2new;j(i,jk)
ENDDO
ENDDO
ENDDO

C  print *, "2" error_max;j
IF(error_max;j.GT.tolj)GOTO 4

C update from Jacobi to Gauss-Seidel
DO i=0,11
DO j=-1,1J
DO k=0,KK
t2newgs(i,j,k)y=t2newj(i,j.k)
ENDDO
ENDDO
ENDDO

C Jacobi for T3



C initial condition for Jacobi
DO i=0,II
DO =111
DO k=0,KK
t3oldj(ij.k)=t3oldgs(ij.k)
ENDDO
ENDDO
ENDDO

5 DOi=LI-1

DO j=0,13-1

DO k=1,KK-1

c31dt=dt*3.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(i))

& *sin(phi(j))*(1.0-u(k)*u(k))*gamma(i)*(1.0-u(k)*u(k))

c32dt=-dt*6.0*c3*exp(-
pi*pi*dt*(n+0.5))* cos(pi* gamma(i))
& *sin(phi())*(2.0*uk)*u(k)-1.0)*(1.0-uk)*u(k))

¢33d=dt*6.0*c3*exp(-pi*pi*dt*(n+0.5))
& *sin(@hi())*(2.0*uk)*u(k)-1.0)*(1.0-uk)*u(k))

c34dt=dt* 1 5*pi*pi*exp(-pi*pi* dt*(n+0.5))
& *sin(phi())*(1.0-
u(k)*u(k))*gamma(i)* gamma(i)*(1.0-u(k)*u(k))

Q3dt=c31dt+c32dt+c33dt+c34dt

crl=gammah(i)*gammah(i)*tr*(1.0-u(k)*u(k))
cr2=gammah(i-1)*gammah(i-1)*tr*(1.0-u(k)*u(k))
cs=ts

cpl=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
cp2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(i)*gamma(i)*(1.0-
u(k)*uk))+erl+cr2+2.0*cs+epl+cp2
& +dt*pi*pi*gamma(i)*gamma(i)*(1.0-u(k)*u(k))
d3=cr1*t3oldj(i+1.j.k)+cr1 *3(i+1,5,k)
& +(gamma(i)*gamma(i)*(1.0-u(k)*u(k))-crl-cr2-2.0*cs-
cpl-cp2
& -pi*pi*dt*gamma(i)*gamma(i)*(1.0-
u(k)*u(k)))*t3(ij,k)
& +er2*t3oldj(i-1.4.k)+er2*t3(i-1,j,k)
& +es*Boldj(i,j+1,k)+es*13(i,j+1,k)
& +es*3oldj(ij-1.k)+es*t3(,j-1,k)
& +epl*Boldj(i,j.k+1)+cpl*3(i,j.k+1)
& +cp2*t3oldj(ij,k-1)+ep2*t3(ij.k-1)
& +dt*pi*pi*(tinewgs(i,j,k)+1(3,5,k))
& *gamma(i)*gamma(i)*(1.0-u(k)*u(k))/2.0
& +dt*pi*pi*(2newgs(i,j,k)H2(i,k))
& *gamma(i)*gamma(i)*(1.0-uk)*uck))/2.0+Q3dt

3newj(ij.k)=d3/abc
ENDDO
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1
c31dt=dt*3.0*pi*exp(-
pi*pi*dt*(n+0.5))*sin(pi*gamma(Il))
& *sin(phi(j))*(1.0-u(k)*u(k))* gamma(ID)*(1.0-u(k)*u(k))
c32dt=-dt*6.0*c3*exp(-
pi*pi*dt*(n+0.5))*cos(pi*gamma(ll))
& *sin(phi(j))*(2.0*uk)*u(k)-1.0)*(1.0-u(k)*u(k))

c33dt=dt*6.0*c3*exp(-pi*pi*dt*(n+0.5))
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& *sin(phi))*Q2.0*uk)*u(k)-1.0)*(1.0-uk)*u(k))

c34dt=dt*1.5*pi*pi*exp(-pi*pi*dt*(n+0.5))
& *sin(phi(j))*(1.0-
u(k)*u(k))*gamma(il)* gamma(i)*(1.0-u(k)*u(k))

Q3dt=c31dt+c32dt+c33dt+c34dt

cr2=gammah(lI-1)*gammah(II-1)*tr*(1.0-u(k)*u(k))
cs=ts

cp1=(1.0-uh(k)*uh(k))*tp*(1.0-u(k)*u(k))
op2=(1.0-uh(k-1)*uh(k-1))*tp*(1.0-u(k)*u(k))

abc=gamma(Il)*gamma(Il)*(1.0-
u(k)*u(k))+abr*cr2+2.0*cs+cpl+cp2

& +dt*pi*pi*gamma(ll)*gamma(II)*(1.0-u(k)*u(k))

d3=abr*cr2*t3oldj(II-1,j,k)+abr*cr2*13(1l-1,j,k)

& +(gamma(ll)*gamma(Il)*(1.0-u(k)*u(k))-abr*cr2-
2.0*cs-cpl-cp2

& -dt*pi*pi*gamma(ll)*gamma(Il)*(1.0-
u)*uk))*B(1Lj.k)

& +es*t3oldj(Ij+1,k)+es*B(Lj+1.k)
+cs*t3oldj(ILj- 1,k)+cs*t3(1L,5-1,k)
+cpl*t3oldj(IL),k+1)+cpl *t3(1Lj,k+1)
+cp2*t3oldj(IL,,k-1)y+ep2*3(1L,j.k-1)
+dt*pi*pi*(tInewgs(ll,j,k)+t1(ILj.k))
*gamma(Il)*gamma(ll)*(1.0-u(k)*u(k))/2.0
+dt*pi*pi* (t2newgs(11,j,k)+t2(1Lj,k))
*gamma(Il)* gamma(Il)*(1.0-u(k)*u(k))/2.0+Q3dt

SRR

t3newj(1L,j,k)=d3/abc
ENDDO
ENDDO

C boundary condition
DO i=L,II
DO j=0,J3-1
t3newj(i,j,0)=0.0
3new;j(i,j,KK)=0.0
ENDDO
ENDDO

DO i=L,ll

DO k=0,KK
t3newj(i,-1,k)=t3new;j(i,JJ-1,k)
3newj(i,JJ k)y=t3new;j(i,0.k)
ENDDO

ENDDO

C update
3=0.0
DO j=0,JJ-1
DO k=0,KK-1
3=13+t3newj(1,j.k)+t3(1,j,k)
ENDDO
ENDDO

DO j=0,JJ-1
DO k=1,KK-1
abc=1.0+6.0*dt/(dgamma*dgamma)+dt*pi*pi

d3=(1.0-6.0*dt/(dgamma*dgamma)-dt*pi*pi)*t3(0,j.k)
& +dt*3.0*du*f3/(JJ*dgamma*dgamma)

& +dt*pi*pi*(tlnewgs(0,),k)+1(0,4.k)/2.0

& +dt*pi*pi*(t2newgs(0,j,k)+2(0,j.k))/2.0

t3new;j(0,j.k)=d3/abc
ENDDO
ENDDO



C error for Jacobi
error_maxj=0.0
DO i=1,II
DO j=0,1J-1
DO k=1,KK-1
errj=abs(t3newj(i,j.k)-t30ldj(i,j,k))
IF(errj.GT.error_maxj)THEN
error_maxj=errj
ENDIF
ENDDO
ENDDO
ENDDO

C update for Jacobi
DO =0,
DO j=-1,J]
DO k=0,KK
t30ldj(i,j,k)=t3new;j(i,j,k)
ENDDO
ENDDO
ENDDO

C  print *, "3" error_maxj
IF(error_maxj.GT.tolj)GOTO 5§

C update from Jacobi to Gauss-Seidel
DO i=0,11
DO j=-1,1J
DO k=0,KK
t3newgs(i,j,k)=t3newj(i,j.k)
ENDDO
ENDDO
ENDDO

C calculate err for Gauss-Seidel
error_maxgs=0.0
DO =Ll
DO j=0,3J-1
DO k=1,KK-1
errgs=abs(tlnewgs(i,j.k)-t1oldgs(i,j,k))
IF(errgs.GT.error_maxgs)THEN
€ITOr_Maxgs=errgs
ENDIF
errgs=abs(2newgs(i,j.k)-t2oldgs(i,j,k))
IF(errgs.GT.error_maxgs)THEN
SITOI_Maxgs=errgs
ENDIF
errgs=abs(t3newgs(i,j.k)-t30ldgs(i,j,k))
IF(errgs.GT.error_maxgs)THEN
€ITOr_maxgs=errgs
ENDIF
ENDDO
ENDDO
ENDDO
IF(error_maxgs.LE. tolgs)GOTO 6
C  print ¥, max_err
DO i=0,11
DO j=-1,3)
DO k=0,KK
tloldgs(ij,k)=tInewgs(i,j,k)
t2o0ldgs(i,j,k)=t2newgs(i,j,k)
t3oldgs(i,j,k)=t3newgs(i,j,k)
ENDDO
ENDDO
ENDDO
GOTO2
C End Gauss-Seide! Iteration
C Calculate exact solutions
6 DOi=LI
DO j=0,JJ-1
DO k=1,KK-1
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tl_exact(i,j,k)=cl*(cos(pi*gamma(i))-1.0)*sin(phi(j))
& *(1.0-u(k)*u(k)) *exp(-pi*pi*dt*(n+1.0))

t2_exact(i,j,k)=c2*(cos(pi*gamma(i))-1.0)*sin(phi(j))
& *(1.0-u(k)*u(k))*exp(-pi*pi*dt*(n+1.0))

t3_exact(i,j,k)y=c3*(cos(pi*gamma(i))-1.0)*sin(phi(j))
& *(1.0-u(k)*u(k)) *exp(-pi*pi*dt*(n+1.0))

ENDDO

ENDDO

ENDDO

C Calculate max err

C

err_max=0.0
DO i=1,11
DO j=0,JJ-1
DO k=1,KK-1
err=abs(tlnewgs(i,j,k)-t1 _exact(i,j.k))
IF(err.GT.err_max)THEN
err_max=err
ENDIF
err=abs(2newgs(i,j,k)-2_exact(i,j,k))
IF(err.GT.err_max)THEN
err_max=err
ENDIF
err=abs(t3newgs(i,j,k)-t3_exact(i,j,k))
IF(err.GT.err_max)THEN
eIr_max=err
ENDIF
ENDDO
ENDDO
ENDDO

PRINT *, max_err

C Calculate L2-err

DO =111

DO j=0,JJ-1

DO k=1,KK-1

error T1(i,j,k)=abs(tlnewgs(i,j,k)}tl_exact(ij.k))
errorT2(i,j,k)=abs(2newgs(i,j,k)}-2_exact(ij,k))
errorT3(i,j,k)=abs(t3newgs(i,j,k)-t3_exact(ij,k))
ENDDO

ENDDO

ENDDO

temp1=0.0

temp2=0.0

temp3=0.0

temp4=0.0

error_max(n)=0.0

DO =11

DO j=0,JJ-1

PO k=1 KK-1
templ=templ+errorT1(ij k) *errorT1(i,j,k)
temp2=temp2-+errorT2(i,j k) *errorT2(i,j,k)
temp3=temp3+errorT3(i,j.k)*errorT3(i,j,k)
ENDDO

ENDDO

ENDDO

temp4=temp1 +temp2-+iemp3
error_max(n)=sqrt(dgamma*dphi*du*temp4)
PRINT * n, error_max(n)

C Next time iteration

n=n+1
IF(n.EQ.NN)GOTO 7

DO i=0,11

DO j=-1,1J

DO k=0,KK
t1(i,j,k)=tlnewgs(i,j.k)
12(i,j,k)=t2newgs(i,j,k)
13(i,j,k)=t3newgs(i,j,k)
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ENDDO 7 OPEN(unit=77 file="N=50ar3_I=40_o2.dat')

ENDDO DO n=1,NN-1

ENDDO WRITE(77,1000) n*dt,error_max(n)
ENDDO

GOTO 1 CLOSE(77)

1000 FORMATI(f18.6, ¢18.10)
C Output END
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