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ABSTRACT

The main subject of this research is the neuromuscular junction (NMJ). The NMJ

is a biological structure composed of the interface between a neuron and a muscle cell.

Currently, there is not a fully three dimensional model of diffusion-reaction processes

occurring in the NMJ. Developing a useful predictive model of this structure will assist in

the therapeutic efforts to restore and rehabilitate NMJ function to humans and in

developing strategies to prevent damage to the NMJ. This research work developed ID

mass transport and full 3D reaction diffusion models. A new finite difference scheme is

presented for solving ID mass diffusion with Neumann boundary condition in cylindrical
coordinates, which can be applied in neuromuscular junction processes. This new scheme

is obtained based on the Crank-Nicholson method, together with a non-traditional

second-order finite difference approximation for the boundary condition. The scheme is

proved to be unconditionally stable, and the solution system is a tri-diagonal linear

system which can be easily solved by the Thomas algorithm. The scheme is tested by

several examples. Results show that our scheme is promising. Finally, the scheme can be

readily generalized to the multi-dimensional cases.

A three-dimensional model of the reaction-diffusion processes of a

neurotransmitter and its ligand receptor in a disk-shaped volume is established which

represents the transmission process of acetylcholine in the synaptic cleft in the
neuromuscular junction. The behavior of the reaction-diffusion system is described by a
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three-dimensional diffusion equation with nonlinear reaction terms due to the rate

processes of acetylcholine with the receptor. A new stable and accurate numerical

method is used to solve the equations with Neumann boundaries in cylindrical

coordinates. The simulation analysis agrees with experimental measurements of end-plate

current and agrees well with the results of the conformational state of the acetylcholine

receptor as a function of time and acetylcholine concentration of earlier investigations
with a smaller error compared to experiments. An asymmetric emission of acetylcholine

in the synaptic cleft and the subsequent effects on open receptor population is simulated.

Sensitivity of the open receptor dynamics to the changes in the diffusion parameters and

neuromuscular junction volume is investigated. The effects of anisotropic diffusion and

non-symmetric emission of transmitter at the pre-synaptic membrane is simulated.
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CHAPTER 1

INTRODUCTION

1.1 General Overview

The main subject of this research is the neuromuscular junction (NMJ). The NMJ

is a biological structure composed of the interface between a neuron and a myocyte

(muscle cell). The NMJ is a type of synapse: a region between two cells through which

they signal each other. The synapse is a biological structure common to animals and is a
core feature of intercellular signaling and communication. Neurons play a central role in

cognition and movement (the two defining behaviors of animals), and the synapse is the

primary mode of neuron function. The NMJ is the site where all animal movement

initiates; consequently, it has long been a subject of intense biological study [l]-[8].

The NMJ is small and delicate, and its structure and function are both highly

complex. These characteristics make the NMJ a difficult system to investigate

quantitatively. The present mechanical probes used to quantify NMJ behavior are

extremely invasive at the scale of interest [9], [10]. When used naively, these tools can

perturb NMJ behavior beyond normal, or even disrupt it into nonftinctionality. Some
chemical methods exist as well; however, it is very difficult to isolate specific reactions

in a chemical network (almost by definition, because an isolated entity is not part of

1
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a network). A change in one reaction tends to propagate throughout the entire network.

Two other important issues are: (1) technology has produced instruments which can be so

sensitive that it is nearly impossible to isolate them from environmental disturbances, and

(2) under certain conditions it can be difficult to discriminate between "signal" and

"noise"; at the molecular scale data is inherently noisy.

There are two principle types of neuro probes to perform electro-physiological

measurement:

a. Shank type (metal or silicon)

The shank type are usually arranged in arrays and used for single cell culture or

brain slices. These electrodes have diameters between 10-30 µ??.

b. Glass micro-pipette

The glass micro-pipettes are used in voltage and current clamped experiments. The

micro-pipettes have an inner diameter on the order of 0.5 µ??.

A voltage clamp experiment makes it possible to measure the magnitude of the ionic

current crossing a cell's membrane at any given voltage. Conversely, a current clamp

experiment records the potential of a cell membrane for some constant current injected

into the cell. A voltage clamp experiment is commonly used to measure current flowing

through the end plate membrane. This is crucial because the current is directly

proportional to the number of ions crossing the membrane. The ions cross the membrane

through voltage gated channels, which open only when the membrane voltage within a

particular range

Historically, many of the genius-level creative insights which led to fundamental

explanations of universal processes were possible because the analyst's ability to
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recognize symmetries in the system, and to reduce these symmetries to equations and

theorems [H]. However, in complex systems, it can be difficult to determine at what

scale symmetries might be recognized, even if they exist. The complexity of biological

systems, in particular, tends to resist creative insight applied in the traditional way.
To address these difficulties, mathematical models of the NMJ have been

developed to assist in the analysis and explanation of experimental results and provide a

systematic approach which can be used by analysts who need not have traditional genius

abilities [11], [12]-[1 5].

A mathematical model of a system is much easier to manipulate than the real

system. For example, the components of a mathematical model can be defined as controls
or variables in any combination. The system behavior can be simulated with different

combinations, and the results can be analyzed. In this way, artificial experiments can be

calculated before committing the resources to accomplish actual experiments [16] -[1 9].

Many biological processes consist of a long series of coupled events of which only a few

can be directly measured experimentally. The event of interest may not be directly

measureable or might be the termination of a series of imperfectly known steps. With a

mathematical model, one can hypothesize various mechanistic events and iteratively

compare the results of the model with experiment. Models can be used to quantify the

connectivity of processes which are coupled through several degrees of separation [12],

[13].

As with all components of every biological system, the NMJ is subject to injury,

disease, and senescence. Developing a useful analytical and predictive model of this
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structure will assist in the therapeutic efforts to restore and rehabilitate NMJ function to

humans and in developing strategies to prevent damage to the NMJ.

1.2 Research Objectives

The objective of this research is to develop a model of neuromuscular junction

processes in three dimensions. The model should describe and explain observed behavior

and predict results of new experiments and observations. Our coordinates of reference

will be the cylindrical coordinate system, since the NMJ can be considered as a cylinder.

To achieve our objective, several steps will be pursued as follows:

(1) Develop a stable ID mass transport model for Neumann boundary conditions.

(2) Test the ID model with known analytical solution and experimental data.

(3) Extend the ID model to a full 3D reaction-diffusion model for the core

acetylcholine and cholinergic receptor processes in the neuromuscular

junction.

(4) Develop a numerical scheme for solving the 3D model.

(5) Analyze the stability of the 3D numerical scheme.

(6) Test the 3D scheme by comparing the existing experimental and numerical

results.

(7) Apply the numerical scheme to investigate the acetylcholine distribution and

open receptor population in the NMJ during an action potential under

simulated absence of enzyme activity.

1.3 Organization of the Dissertation

In Chapter 1, a general review of the main idea of the work is given; the objective

of this dissertation is proposed; and the organization of this research is described.
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Chapter 2 describes the fundamentals of neuromuscular junction and reviews the

related previous work done by other researchers.

Chapter 3 specifies the problem description for ID mass transport and 3D

reaction-diffusion models including governing equation with associated initial and

boundary conditions.

Chapter 4 describes the numerical schemes for solving ID diffusion and 3D

reaction-diffusion models. A novel numerical method to implement the Neumann

boundary conditions in cylindrical coordinates is delineated. The 3D reaction-diffusion

scheme including algorithm is discussed in detail. The stability analysis for the obtained

finite difference schemes is included in this chapter.

In Chapter 5, results and discussion are described. The first section explains the

results of ID mass transport model while the second section considers 3D reaction-

diffusion solutions.

In Chapter 6, we give the conclusions of our work and suggest future research

work.



CHAPTER 2

BACKGROUND AND PREVIOUS WORK

2.1 Reaction-Diffusion in Neuromuscular Junction

2.1.1 Synapse Structure

It has been stated that the region where activity is transmitted between cells which

share a physical interface is called a synapse, and the synapse is an important mode used

for intercellular communication. Three general synapse classes exist: chemical, electrical,

and immunological; and there are several types of chemical synapses. The fundamental

structure of all synapses can be separated into three components: (1) the presynaptic

membrane, (2) the postsynaptic membrane, and (3) the synaptic gap (cleft), which

separates the membranes. The basic structure of a chemical synapse is especially well

described by these three components, while electrical and immunological synapses have

additional features which distinguish them as individual types. Note that because all

synapses share structural characteristics, the study (experimental and simulation) of any

one type can lead to insights about the similarities and differences of the others [l]-[3].

2.1.2 Neuromuscular Junction

Nerve cells can be a part of two types of synapses; in one case, a neuron connects

to another neuron; and in the other case, a neuron connects to a myocyte. This work

6



concerns the case of a neuron connecting to a myocyte, identified as the NMJ, and it is in

this region that a neuron signals a muscle fiber to contract. The NMJ is a chemical

synapse, and therefore, consists of three main portions: the neuron (presynaptic

membrane), the region where the neuron connects to the myocyte, called the motor end-

plate (postsynaptic membrane), and the cleft separating these portions where the

chemistry of muscle movement is initiated. An important feature specific to the NMJ is

the junctional folds which are embed in the postsynaptic membrane [l]-[5], [20].

A global illustration of the NMJ is shown in Figure 2.1, where a neuron is
attached to a muscle fiber at the motor end-plate. At the neuromuscular junction, the

motor-nerve fiber loses its fatty myelin sheath and branches into fine terminals, and each

terminal lies in a shallow gutter-like depression on the surface of the muscle cell [2], [4].

Synapse

Motor Neuron

Vesciles

m
m®
m

m

Neurotransmitter (Ach)

Muscle

Ach Receptors

Figure 2.1 A global illustration of the NMJ.

At the nerve-muscle interface, the membranes of the neuron and the myocyte are

separated by a fluid-filled cleft approximately 50 nanometers (nm) wide. About every

micrometer along the nerve presynaptic membrane there are specialized areas which are
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associated with clusters of tiny vesicles, each containing on the order of 10,000

molecules of the neurotransmitter acetylcholine (Ach). In the muscle membrane, directly

opposite from the vesicle clusters, are the junctional folds (not shown in Figure 2.1). At

the crests of these folds and part of the way down into them, are structures known as

acetylcholine receptors. These receptors are specialized protein molecules embedded in

the membrane of the motor-end-plate and can be found anywhere on the surface of a

muscle cell [2], [5]-[8]. The receptors are tightly packed in these regions. Qualitatively,

the receptors are densely packed and concentrated along the ridges of the motor end-plate

surface and are very sparse in the junctional fold troughs. That placement makes sense

because the acetylcholine receptors are localized in the regions of periodic high

acetylcholine concentration.

2.1.3 A Basic Neuromuscular Junction Processes

A voltage impulse arriving at the presynaptic nerve terminal causes an influx of

calcium (Ca+2) ions across its membrane. This influx induces several hundred of the

synaptic vesicles to fuse with the presynaptic membrane at specialized regions called
active zones as shown in Figure 2.2. As can be seen in Figure 2.2, this influx of Calcium

ions free the vesicles' content of acetylcholine molecules into the synaptic cleft [2]. The

transmitter diffuses rapidly across the cleft to the muscle cell membrane where it

combines with the embedded receptor molecules as shown in Figure 2.3. Each receptor

can bind two acetylcholine molecules, and the acetylcholine molecules stay attached for

about 1 millisecond (ms) [2], [6].



Voltage Impulse

Vesicles €>

___________·

Pre-Synaptic

Figure 2.2 Normal reaction initialization.

Within 0.3 milliseconds after each acetylcholine packet or vesicle load is released,

it causes approximately 2,000 receptors in the muscle-cell membrane to change their

conformation into an open state. In this open state, the receptors are channels which can

pass both sodium (Na+) and potassium (K+) ions through the membrane. Each individual
channel has a specific conductance known as "Single Channel Conductance". This

conductance changes with the exchange of ions through the post-synaptic membrane. The

measured value of a single channel conductance is approximately 42 pS (pico Siemens).

This value is a crucial parameter to estimate the number of open receptors extracted from

experimentally measured data. This flow of ions (Na+ into the muscle, and K+ out) gives
rise to a net electric current that short-circuits the normal potential of -90 millivolts (mV)

across the resting cell membrane [3].
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O
O Ach

At

O
Q Binding Site

Lipid Bilayer

Figure 2.3 Acetylcholine diffusion in the neuromuscular junction.

This brief depolarization is known as the "end-plate potential" or the "excitatory

postsynaptic potential". Under normal conditions, the end-plate potential exceeds the

threshold value for initiating an impulse that spreads through the entire muscle-cell
membrane and causes the muscle-cell to contract. Other protein structures in the

membrane powered by adenosine triphosphate (ATP), called protein pumps, actively

transport Na+ and K+ ions continuously through the membrane in their opposite directions,

respectively. This simultaneous process consumes energy and restores the depolarized
membrane back to its normal resting potential when the open receptors return to their

closed state [5]. Acetylcholine molecules would linger in the synaptic cleft, diffusing

from one receptor to another on the post-synaptic membrane and opening additional

channels, if it were not for the enzyme acetylcholinesterase, which catalytically breaks

acetylcholine down into acetate and choline molecules as Figure 2.4 illustrates.
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m
i

Vesicles

m

Pre-Synaptic
CLEFT

Post-Synaptic

ï

m

Ach Esterase

Figure 2.4 Ach Esterase in the neuromuscular junction.

The molecules of this enzyme are not embedded in the muscle cell membrane like

the acetylcholine receptors; instead, they are immobilized within a loose matrix of

collagen and mucopolysaccaride fibers that extend throughout the synaptic cleft and deep

into the junctional folds [2]-[8].

Acetylcholinesterase destroys about a third of the acetylcholine molecules before

they even reach the receptors and then rapidly cleaves those remaining as they detach

from the receptors. The speed with which acetylcholine is bound to the receptors and

inactivated makes it possible for the entire process of neuromuscular transmission to be

repeated up to several hundred times per second [2]-[5].

The acetylcholine receptor is comprised of five subunits; three are designated as ß, d,

and ?; and two with identical structure designated as a. Each a-unit can bind one

acetylcholine molecule at a special acetylcholine binding site. These receptors are

normally closed in the absence of ligand binding, and can open within approximately 20
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microseconds of an appropriate ligand binding event. The receptor subsequently closes

after dissociation of at least one ligand from the receptor [1], [4].

The response of the acetylcholine receptor can be separated into two steps. Each

receptor, which is normally in the closed state, binds two acetylcholine molecules, one to

each subunit a, to form what is called a %ö«d-receptor complex. After binding, this

complex undergoes a conformation transition which opens a pore into the muscle

membrane that is permeable to Na+, K+, and Ca+2. The binding and unbinding steps are
relatively slow; transitions to and from the open state of the pore are, in contrast,

relatively rapid. Thus, channel openings occur in short bursts which can last several

milliseconds, and which represent the lifetime of the ligand-receptor complex. During the

burst, the channel flickers open and shut [21]-[27].

The rapid depolarization and re-polarization events which constitute the many-times-

per-second neuromuscular transmission process are possible, in part, because of the

activity of the Cholinesterase protein. There are at least two kinds of Cholinesterase found

in humans: acetylcholinesterase and butyrylcholinesterase. The difference between them

is that each has a preference to react with its root-named effector molecule (the substrate),

acetylcholine and butyrylcholine, respectively [27], [28]. Acetylcholine and

butyrylcholine are both transmitter-type molecules with similar chemistry, and each

Cholinesterase can react with the other's substrate as well, though not preferentially.

Acetylcholinesterase is found primarily in the blood and neural synapses, while

butyrylcholinesterase is located primarily in the liver [27].

As stated earlier, the function of acetylcholinesterase is to deactivate

acetylcholine. Like most enzymes, acetylcholinesterase is a large polymer where the



13

conformation and inter-molecular and intra-molecular forces of its structure play

important roles in its function. Because of these conditions, the portion of this molecule

where its chemical activity is located may be significantly smaller than the body of the

entire molecule (in other cases, the entire molecular body may be used to build the active

region). In addition, the molecule could have multiple active regions. Consequently,

descriptions of the chemical kinetics of enzymes usually focus on their active sites: their

characterization and number; rather than quantifying the properties of individual enzyme

molecules [29].

The activity of acetylcholinesterase is extremely high. Each active site of this

enzyme is able to hydrolyze approximately 14,000 acetylcholine molecules per second at

normal body temperature [30], which is also close to the theoretical number of molecular

collisions at that same temperature [28]. Typical chemical reactions depend on the

number of collisions between molecules and their orientation relative to each other. Some

orientations result in a reaction and some do not. For acetylcholinesterase, this high

activity means that essentially every collision between acetylcholinesterase and

acetylcholine molecules results in a reaction and enzymes with that property are termed

"diffusion limited". Qualitatively, this "diffusion limited" means the reaction speed of

acetylcholinesterase is controlled only by how quickly acetylcholine molecules can reach

the active sites. Some enzymes are thought to accelerate catalysis to this limit by using

dipolar electric fields to pre-orient their substrate to the optimal position as it is drawn in

to the enzyme's active site [31]-[34]. The ability to catalyze a reaction with every

substrate collision also makes acetylcholine a very reliable enzyme, and reliability is a
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useful and important attribute for an enzyme whose function is such an integral part of

movement and cognition.

2.2 Normal Chemical Kinetics in the Neuromuscular Junction

The chemical reactions associated with the NMJ which occur in the synaptic cleft

can be described by the following chemical stoichiometric Equations (2.1) through (2.6):

2kR
A + R ^ AR, (2.1)

k-R

^AR
A + AR ^ A2R, (2.2)

Kopen
A2R ^ A2R°ven, (2.3)

^close

UE1
A + E t* AE, (2.4)

fc£_!

AE ^* acE, (2·5)
acE —» E + products. (2-6)

where A, R, AR, A2R, A2Rope" are the molar concentration of the acetylcholine, unbound

receptors, single bound acetylcholine receptors, double bound closed acetylcholine

receptors, and double bound open acetylcholine receptors, respectively; E, AE, and acE

are the acetylcholinesterase, Michaelis ligand-substrate complex, and acylate enzyme

respectively; kR,k.^kAR,k.AR>kdose,k0pen,kEi,kE.1,kE2,'äx\di kE3 are the reaction rate constants

[2], [6].

Equations (2.1) through (2.6) represent the full kinetic cycle of acetylcholine

initially reacting with acetylcholinesterase and proceeding to the final renewal of the
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enzyme. The first step shows acetylcholine, A, reacting with acetylcholinesterase, E,

reversibly to form the Michaelis complex of AE. The forward reaction, controlled by the

rate constant kE¡, is several orders of magnitude faster than the reverse reaction

controlled by kE.¡. In the next step, species AE then irreversibly reacts to form the

acylated enzyme intermediate acE, where the reaction rate is controlled by the constant

kE2. The final step shows how acE then decomposes back to acetylcholinesterase and

reaction products, where the rate is controlled by the rate constant kE¡ and one of the

reaction products is choline. This final step regenerates the enzyme and is the major

resource for acetylcholine replacement because choline is a precursor of acetylcholine.

Water is also a reactant in this last step, but in this case, water is treated as an excess

solvent, and as such, its concentration does not change and so is not included in the

reaction kinetics [9], [10], [26], [28].

Equation (2.1) represents the first acetylcholine molecule reversibly binding to the

closed receptor. Because there are two sites available for docking, a numerical factor of
two is included with the kinetic rate constant 2kR, which controls the forward binding

reaction. Because only one acetylcholine molecule can dissociate from the receptor in the

reverse reaction, the kinetic rate constant k.R does not require an additional multiplicative

factor.

The two-step process kinetics of acetylcholine receptor function is represented by

Equation (2.1). Just as in Equation (2.2), the first step of this equation shows a second

acetylcholine molecule binding reversibly to the ligand-receptor complex AR. Only one

position for binding exists on the receptor in this case, so the forward kinetic rate

constant, kAR, does not require a multiplicative factor. In the reverse reaction, either of the



16

two acetylcholine molecules could dissociate from the closed ligand-receptor complex

A2R so the numerical factor of two is included with the kinetic rate constant 2LAr. The

second step of Equation (2.3) shows the closed, double-bound, ligand-receptor complex

reversibly changing from the closed conformation to the open conformation, A2Rope"

(forward reaction), and back to the closed conformation (reverse reaction). The forward

and backward reactions are controlled by the kinetic rate constants kopen and kciose,

respectively. It is at this step where the redistribution of sodium and potassium ions

through this open channel leads to the eventual contraction of the muscle cell. Several

experiments and kinetic-thermodynamic analyses [31], [35]-[38] have shown that the

conformational change from A2R to A2Rope" is energetically favored, so that a channel

which has two molecules of acetylcholine bound to it will spend most of its time of

existence in the open condition. Figure 2.5 depicts the normal receptor kinetics. This

process does not include a complete set of the normal chemical reactions in a NMJ. A

complete inhibition of the enzyme is assumed in the current model. This research is

focused to develop a numerical scheme that can capture the dynamics of the diffusion-

reaction in a NMJ in a simple case. The future work may include a more comprehensive

set of chemical reactions including enzyme and diffusion of a toxic inhibitor.
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Pre-Synaptic
,^^LUgiUglll^UlWU^^.

A + R <-> AR

A + AR <-> A2R
A2Rclose <-> A2R°P'

Post Synaptic

Figure 2.5 Normal receptor chemical kinetics.

2.3 Previous Works

The synaptic chemical transmission is an important part of the transport of

neuronal signals, and investigation of the molecular events was instrumental in creating

neurotransmitter theory. Analysis of such behavior can be best accomplished with the

transmission process represented as a reaction-diffusion simulation for the

neurotransmitter because comprehensive analysis that is exclusively experimental is

impractical for the molecular processes in the cleft. Unless great care is taken, the tools

used to collect the data can disrupt the physical system so badly that it ceases natural

function.

In response, mathematical models of NMJ processes have been developed [39]-

[57]. The fundamental NMJ transmission process involves the dynamic behavior of Ach

in diffusion through the synaptic gap and its reactions with the receptors at the end-plate.

This transmission process is essentially diffusion coupled with chemical reactions, and
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the analysis of this process is best approached mathematically with diffusion-reaction

kinetics [58], [59].

Diffusion-reaction kinetic systems are analyzed with systems of coupled

nonlinear partial differential equations (PDEs). Nonlinear PDE systems usually do not

have analytic solutions and need to be solved with numerical methods [60]-[63]. A few

analytical models of NMJ processes have been developed in spite of the complexity

associated with this system [47], [50], [51]. However, these analytical models either do

not incorporate the complete reaction kinetics or use assumptions which simplify the

geometry or spatial dimensions. The bulk of the published researches which achieve a

more complete description of the NMJ diffusion-reaction processes are based on

numerical solutions [39]-[46], [47]-[49], [52]-[57]. Finite difference discretization is one

numerical technique commonly chosen to solve coupled nonlinear PDEs. Applying this

method results in transforming a system of nonlinear PDEs into a system of coupled

nonlinear algebraic equations [62].

A brief summary of several published mathematical investigations of the dynamic

behavior of the NMJ which were especially pertinent to the research presented here,

follows in the next section.

2.3.1 Magleby Model

One of the first investigations is the work done by K. L. Magleby and C. F.

Stevens in 1972 [64]. Their work coupled the chemical reactions in the cleft to the

voltage and current behavior at the junction end-plate and focused on deriving

expressions for the end-plate current and receptor state/conformation. The assumptions
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and definitions used to build their model reflect the available computational resources

and what was then known about NMJ chemistry:

• The NMJ volume was assumed to be well mixed.

• One Ach molecule reacted with a single receptor.

• The receptors behaved independently of each other.

• Only three receptor states exist: unbound, bound-closed, and bound-open.

• The end-plate conductance was proportional to the number of bound-open

receptors

The study covered the reactions of Ach and the receptor.

kR
A + R ^ AR, (2.7)

^open
AR ^ ARopen. (2.8)

^close

This assumption of a well-mixed volume avoided the need for partial differential

equations or a space coordinate [64]. The nomenclature used by Magleby is listed in

Table 2.1 . The resulting governing Equations (2.9) through (2.12):

Table 2.1 The nomenclature used by Magleby [64]

Nomenclature Definition

V volume of cleft

/(O time course of Ach emittance from presynaptic membrane

g end-plate conductance

single receptor conductance
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G(t — t) I kernel characterizing diffusion out of the cleft volume

g = Y(AR°ven), (2.9)

d(ARd°tPen) = -kopen(ARor™) + kclose(AR), (2.10)
^^- = kopen(AR°r>en) + kR(A)[R0 - (AR0*™) - (AR)], (2.1 1)

-(Klose + k.R)(AR),

V^T = /(O - /W - t)(?t) dr. (2.12)
The initial conditions are assumed to be:

Gi)(O) = (A,), (AR°Pen)(0) = 0, (AR)(O) = O (2.13)

The integro-differential equation is eliminated through appropriate use of

simplification, substitution, and conservation relations. This study demonstrated that the

observed exponential decay of end-plate currents could be coupled to a rate of receptor

conformational change and not by the decay of Ach concentration in the cleft [39].

2.3.2 Rosenberry Model

Rosenberry, in 1979 [65], developed a model using homogeneous reaction spaces.

Simulations using one-space and two-spaces were applied, each using the full normal

NMJ chemistry:

2kR
A + R ^ AR, (2.14)

k-R

"¦open
A +AR ^ A2R°ven, (2.15)

Gelose
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IcE1
A + E + ^ AE,

kE_x
(2.16)

kE2
AE —> acE,

kE-,

(2.17)

acE —> E + products. (2-18)
The two-space model was found to match more of the experimental results.

Sophisticated mass (chemical species) conservation relations and dimensional scaling

methods were used to (1) extend the one-space homogeneous reaction into the two-space

homogeneous reaction model, and (2) reduce the number of independent variables in the

system. Because of the choice of homogeneous reaction space, no location coordinates

were needed. Loss of Ach from diffusion was compensated for by a reactive term which

was proportional to the amount of Ach in the cleft. The nomenclature used by Rosenberry

is listed in Table 2.2. The resulting governing Equations (2.19) through (2.22) :

Table 2.2 The nomenclature used by Rosenberry [65]

Nomenclature Definition

Time

KM equilibrium constant

Kt equilibrium constant

kD diffusional loss constant

dt

d(AR)
dt

-i

= kR(A)(R) - k.R(AR) (2.19)

= {1 + k) {-[/c*(iî) + kEi(E) + klA{A) + k-*(ARV (2·20)
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i2dt } = kR(A)(A2R) - 2k_R(A2R°r>n (2.21)
^T = Í1 + ^)1 {kE^E^A) - ^3(ac£)} (2-22)

The initial conditions assumed to be:

(AR)(O) = O1 (A)(O) = (A0), (A2R0^)(O) = 0, (acE)(0) = 0 (2.23)

An analog computer was used to generate solutions for the equations. The two-

space model predicted current amplitudes and time constants within a factor of two of

those observed experimentally. This result indicated that the current time courses and

amplitudes were determined primarily by the receptor behavior with Ach, and indirectly,

Ach with the enzyme esterase [65].

2.3.3 Wathey Model

The Wathey [66] model treated the NMJ as the space between two circular planes

where Ach diffused radially and symmetrically from the center towards the boundary.

The full normal cleft reaction chemistry was simulated, depicted by Equations (2.25)

through (2.28).

2kR
A + R ^ AR, (2.24)

k-R

K

Gelose

lopen
A +AR ^ A2R°Pen, (2.25)

A + E + H2O -4 AE, (2·26)

AE —* E + products. (2.27)
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The geometry and coordinate system were chosen to be a thin disk and cylindrical,

respectively, as shown in Figure 2.6. Ach was assumed to instantaneously appear in the

cleft as a radially symmetric distribution, and subsequently diffusing, while

simultaneously reacting with receptor and enzyme species uniformly distributed

throughout the volume. The diffusion occurs along the radial direction. The diffusion

along the transverse direction is assumed instantaneous. The radial direction is about 1 0

times larger than transverse which makes this instantaneous diffusion a valid assumption.

A pulse of Ach appears in the center of the disk and diffuses out radially.

-2L-

Ach diffuses out radially

îPulse of Ach

I
Figure 2.6 Schematic of the model where L is the radius, w the width, Ach is released at
center of disk and diffuse out radially out of the cleft and instantaneously reach receptors

(R) concentrated at the opposite edge.

Conservation relations were used to reduce the number of independent variables

in the system. The nomenclature used by Wathey is listed in Table 2.3. The resulting

governing Equations (2.28) through (2.31):
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Table 2.3 The nomenclature used by Wathey [66]

Nomenclature Definition

radial coordinate

Time

V vesicle radius

a Ach molecules emitted

radius of cleft

(E0) initial amount of esterase

(Ro) initial amount of receptor

DA diffusion coefficient

d(A)
dt = DA

d2(A) Id(A)
dr2 r dr -JcE1(A)KEo)-(AE)]

d(AR)
dt

-2kR(A)[(R0) - (AR) - (A2R°r>en)] - kopen(A)(AR)

+ k.R(AR) + 2kclose(A2R°Pen)

= 2kR(A)[(R0) - (AR) - (A2R0^)] + 2kclose(A2R°^en)

- koven(A)(AR) - k.R(AR)

d(A2R°ven)
di

d{AE)

= kopen(A)(AR) - 2kclose(A2R°Pen)

dt = kE1(A)[(E0)-(AE)]-kE2(A)

(2.28)

(2.29)

(2.30)

(2.31)

The initial conditions were assumed to be:
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(AXr,,?)=??4-2?2 + 1 if O < r < V
if r>V

(2.32)

The boundary conditions for A were assumed to be:

GO(w,t) = o, 3M)
dr

=0
r=0

(2.33)

2.3.4 Friboulet Model

Friboulet and Thomas [67] presented a model with disk geometry where the Ach

diffused transversely across the cleft, reacting with uniformly distributed enzyme, and

subsequently reacted with receptors at the post-synaptic membrane as illustrated in

Figure 2.7.

(a)
A

A

A

A

A

A

R

R

R

R

R

R

-W-

(b)

Figure 2.7 Schematic of the model (a) Critical area, where s is the surface area, w the
width; (b) width of the disk where Ach (A) is homogenously distributed, Ach is released

at one edge and diffuse through the width to reach receptors (R) concentrated at the
opposite edge.



26

The reactions of normal NMJ chemistry were considered, as shown in the

Equations (2.34) through (2.35):

2kR
A + R ^ AR, (2.34)

k-R

kR
A + AR ^ A2R, (2.35)

2/C-«

^open
A2R ^ A2R°ven, (2.36)

H-close

IcE1
A + E ^ AE, (2.37)

kE_x

AE 5 acE, (2-38)

acE —-I E + products. (2.39)
The NMJ geometry was modeled as a thin disk. Ach was assumed to form a uniform

distribution at the presynaptic membrane, then diffuse transversely across the cleft to the

receptors at the post synaptic membrane, while reacting with esterase enzyme distributed

uniformly in the cleft volume.

The loss of Ach from the gap was modeled mathematically as a reactive "sink"

term. Several independent variables were removed from the system with the use of

conservation relations among the chemical species. The Table 2.4 shows the

nomenclature used by Friboulet. The resulting Equations are (2.40) through (2.45):

Table 2.4 The nomenclature used by Friboulet [67]

Nomenclature Definition
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transverse coordinate

Time

DA diffusion coefficient

(A0) initial amount of Ach

(E0) initial amount of esterase

(K0) initial amount of receptor

Width of the cleft

d{A) = DA^- kR(A){2[(RQ) - (AR) - (A2R) - (A2R0^)] + (AR)]dt

d(AR)
dt

dz2

+k_R[(AR) + 2(,42i?)] + kE_t(AE)

-kE_1(Ä)[(E0)-(AE)-(acE)]

= kR(A){2[(R0) - (AR) - (A2R) - (A2ROV^)] - (AR)]

+k.R[2(A2R) - (AR)]

3(A2R)
dt = kR(A)(AR) + kclose(A2R°Pen) - 2k_R(A2R) - kopen(A2R)

d(A2R°Pen)
Ft = koven(A2R) - kclose(A2R°ven)

d(AE)
dt = kE^A^Eo) - (AE) - (acE)] - (kE2 + kE.x) (AE)

d(acE)
dt = kE2(AE) - kE3(acE)

The initial conditions for ODE' s are assumed to be:

(AR)(O) = 0,04£)(0) = 0, OM)(O) = 0,G42J?open)(0) = 0,(acE)(0) = 0
The initial conditions for PDE assumed to be:

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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(???,?) = (A0) (2.47)

The boundary conditions for A are assumed to be:

d(A)
(AXzmax,t) = 0,-max'-J "' dx

2.3.5 Naka Model

= 0 (2.48)
z=0

Naka and Shiba [68] extended the work of Rosenberry, Wathey, and Friboulet

into a two dimensional space geometrically modeled as an axis-symmetrical thin disk.

Full normal NMJ chemistry was included.

The reactions of normal NMJ chemistry were considered as shown in the

Equations (2.49) through (2.54):

2kR
A + R ^ AR, (2.49)

^AR
A +AR ^ A2R, (2.50)

n-open
A2R ^ A2R°Pen, (2.51)

K-close

IiE1
A + E ^ AE, (2.52)

AE ^ acE, (2·53)

acE —» E + products. (2-54)
Acetylcholine simultaneously diffused transversely across the gap from the

presynaptic membrane to the post-synaptic membrane, radially out of the gap, and

reacted with receptors and enzyme. The extension into two dimensions enabled an
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examination of anisotropic effects in the NMJ processes. All chemical species in the

normal reactions were computed directly in the simulation as independent variables

except for unbound receptor. Cylindrical coordinates were chosen, as shown in Figure 2.8:

w

AchE

¦2a-

Ach

i
-^ Radial diffusion

Transverse diffusion

Ach AchE

d <r

Figure 2.8 Reaction-diffusion system for Ach in a two dimensional square space of axis-
symmetrical disc of the synaptic cleft. A quantum of Ach molecules are released from the

release area indicated as a pore on the presynaptic membrane. The radius of the release
area is denoted by a [68].

Table 2.5 provides the nomenclature used by Naka. The chemistry and the model

assumptions lead to Equations (2.55) through (2.60) :

Table 2.5 The nomenclature used by Naka [68]

Nomenclature Definition

transverse coordinate

radial coordinate

Time

D7 transverse diffusion coefficient
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Dr radial diffusion coefficient

(40 initial amount of Ach

(E0) initial amount of esterase

(K0) initial amount of receptor

radius of cleft

width of the cleft

d(A) d2(A)- D7 ~rV + Drdt dz2
d2(A) Id(A)

Or2
+

r dr - kE^A)^) - (AE) - (acE)]

+kE.,(AE) - 2kR(A)[(R0) - (AR) - (A2R) - (A2R0^)]

+k.R(AR) - kR(A)(AR) + 2k.R(A2R)

d(AR)
dt

d(A2R)
dt

= -2kR(A)[(R0) - (AR) - (A2R) - (A2Ropen)] + k.R(AR)

+kR(A)(AR)-2k.R(A2R)

= -kR(A)(AR) + 2k_R(A2R) - kopen(A2R) + kclose(A2R°r>en)

d(A2Ropen)
Wt = koven(A2R) - kclose(A2R°Pen)

d(AE)
dt = kE^A^Eo) - (AE) - (acE)] - kE^(AE) - kE2(AE)

d(acE)
dt = kE2(AE) - kE3(acE)

The initial conditions for ODE' s are assumed to be:

(AR)(O) = 0,(A2R)(O) = 0, (AE)(O) = 0,(A2R°*en)(0) = 0,(acE)(0) = 0
The initial conditions for PDE assumed to be:

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)
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(AXr1O) = (A0) (2.62)

The boundary conditions for ? are assumed to be:

d(A)(A)(rmax>t) = 0,
d(A)

= 0,r=0 dz
d(A)

z=0 OZ
= 0 (2.63)dr

This work analyzed anisotropic effects in the NMJ. The ability to study anisotropy is a

fundamental advantage of multi-dimensional simulations.

2.3.6 Other Work

The simulations of NMJ reaction-diffusion activity done after year 2000 have

concentrated on using the numerical method of finite element analysis. This method is

well suited to handle complex geometries, such as the structure of the receptors and

junctional folds found in the NMJ [69]-[71].

An investigation by Kuzenetsov and Hooman [72] modeled aspects of

intracellular mass transport in axons. In this case, the nonlinear PDEs contained terms

representing active transport as well as diffusion and reaction, and the boundary
conditions differed from those in the NMJ. However, it is interesting to note that those

PDEs were also solved with finite difference approximation.

Currently, there is not a fully three dimensional model of diffusion-reaction

processes occurring in the NMJ, wherein the system is modeled as a disk using the

cylindrical coordinate system. Development of such a 3D model will allow us to

investigate how the spatial distribution of physical properties in the NMJ affects the

behavior of processes in the NMJ, in particular, how nonsymmetrical emission of Ach

affects the diffusion-reaction process. Thus, the aim of this dissertation research is to

develop such a fully 3D model which will include normal chemical kinetics.



CHAPTER 3

MATHEMATICAL MODELS

In Chapter 3, we consider ID mass diffusion, 3D reaction-diffusion, and propose

mathematical models for ID mass diffusion and 3D reaction-diffusion models,

respectively [73] -[8O].

3.1 Modeling for ID Mass Diffusion

Three dimensional mass transport in the neuromuscular junction using cylindrical

coordinates may be reduced to the one dimensional problem shown in Figure 3.1 under

the following conditions:

a. Uniformly distributed release of Ach in the pre-synaptic membrane at t=0.

b. An instantaneous transport of Ach from pre-synaptic membrane to post-synaptic

membrane occurs.

c. Ach only diffuses symmetrically out of the cleft along the radial coordinate.

d. Pre-synaptic and post-synaptic membranes are impermeable to Ach. These

membranes are treated as insulated boundaries for Ach diffusion. Ach can only

diffuse out of the cleft through radial diffusion.

e. The concentration of Ach out of the cleft is assumed to be zero.

32



33

Pre Synaptic

Post Synaptic

Figure 3.1 ID mass transport in the neuromuscular junction.

As such, a one-dimensional mass transport equation with initial and boundary

conditions discussed above in cylindrical coordinates is given by the following Equations

(3.1) through (3.3):

dA(r,t) DA d / dA(r,t)
dt = — -t- (r : J) + S(r,t), 0<r<R,t>0,r or\ or )dr

A(r,0)= A0(r),

dA(0,t) dA(R,t) = 0,

(3.1)

(3.2)

(3.3)
dr dr

where A(r,t) is the mass concentration, DA is the diffusion coefficient, S(r,t) is the

source term and R is the radius [66], [73].

3.2 Modeling for 3D Reaction-Diffusion

The NMJ is a three dimensional reaction-diffusion system. Ach is released in the

presynaptic membrane, and receptors are located on the post-synaptic membrane. Ach

transports across the cleft and reacts with receptors. It also diffuses out of the cleft along
the radial direction. A three dimensional model is crucial to capture the fine scale

dynamics of this reaction-diffusion system. 3D modeling is essential to study (a)
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anisotropie diffusion along radial, transverse and angular direction and (b) asymmetric

Ach injection at different location in the pre-synaptic membrane.

The six major chemical reactions occurring in the cleft which are included in the

model are listed as follows:

2kR
A + R ^ AR, (3.4)

kAR
A +AR ^ A2R, (3.5)

2k-AR
L·
n-open

A2R ^ A2R°Pen, (3.6)
Gelose

where A, R, AR, A2R, A2R0**1" are the molar concentration of the acetylcholine, unbound

receptors, single-bound acetylcholine receptors, double-bound closed acetylcholine

receptors, and double-bound open acetylcholine receptors respectively, and Icr, Lr, Iíar, k.

AR , kciose, kopen are the forward and backward reaction constants for R, AR, A2R, A2Rope",
respectively. These reactions involve free acetylcholine and the immobilized four

receptor species, all of which are imbedded on the surface of the post-synaptic membrane

[2]-[5], [68].

The NMJ is considered to be a three-dimensional molecular transport-reaction

system, in which its geometry is the space between two circular planes of equal area. The

volume is bounded at the top by the pre-synaptic membrane and at the bottom by the post

synaptic membrane, and open to the external environment at the edge, as shown in Figure
3.2
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m
Pre-Synaptic

Vesicles
m »

Post Synaptic
Membrane

Muscle

Figure 3.2 Schematic diagram of the neuromuscular junction.

To develop a 3D model, we first position the cylindrical coordinates into the

considered volume as shown in Figures 3.3 and 3.4, together which illustrate how the

cylindrical coordinates are superimposed over the chosen geometry and related terms.

Table 3.1 shows the magnitude of geometric dimensions, reaction rate constants,

diffusion coefficients, and other parameters.

Pre-Synaptic Membrane

Synaptic Gap

Post Synaptic Membrane

(a)

I ·??(?,F,?)

(b)

Figure 3.3 (a) Schematic diagram of the neuromuscular junction synaptic gap and (b)
cylindrical coordinate system.
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Annulus Sector

(a) (b)

Figure 3.4 (a) Annulus, sector and disk modeled in a cylindrical coordinate system; (b)
The arrangement of the annuii, sectors, and disks as modeled in the synaptic gap.

Table 3.1 Magnitude of geometric dimensions, reaction rate constants, diffusion
coefficients, and other parameters as used in the model [64]-[69]

Name Value (units) Units/Constant
3.OxIO7 M-1S"1[R. 3.OxIO7 M"1 STTTT"

k-R 1.0x10" S" 1.0x10* S"

3.0x10' M-1S"'*AP 3.OxIO7 NT'S"
fc_AR. 1.0x1 04 S"1 1.0x10* S"

2.OxIO4 M-1S"1^open 2.0xl04 M-1S-1
tclnse OJxW S" 0.75x1 0J S"

2.OxIO-6 cm"'/sDr 0.7x1 0"6 cm-2/s
2.OxIO"6 cm"2/sD<¡L. 0.7x1 0'6 cm''/s
2.OxIO"0 cm"2/sD7 0.7XlO"0 cm"2/s

rmax 5.OxIO"3 cm 5.0x10° cm=0.5um
5.OxIO"6 cm 5.0x10"° cm=0.05um

0.75xlOj S"1Vr 1.561IxIO"15 cmJ
N1lAiL· 6.022x1 0^J mol"1

The reaction rates of the chemical equations given above can be expressed by the

following Equations (3.7) through (3.10) :



dt

d(AR)
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d(R) = -2kR(A)(R) + k_R(AR), (3-7)

dt = 2kR(A)(R) - k.R(AR) - kAR(A)(AR) + 2k.AR(A2R), (3.8)

d(i42Ì?) = kAD(.A)(AR) - 2k_¿D(A-,R~) - knnaJA->R) + krln<JA?R0Pen), (3.9)
dt

d«AftPen) = kopen(A2R) - kclose(A2R°v™). (3.10)
The acetylcholine is transported across the cleft and reacts with the receptors

located on the postsynaptic membrane. The reaction rate for diffusing acetylcholine must

be written as a diffusion-reaction equation in cylindrical coordinates:

-kAR(AXAR) + 2k_AR(A2R) , (3.11)

where Dr, ?f, ?f , are diffusion coefficients along radial, angular and transverse direction,
and 0 < r < rmax, 0 < ? < L, 0 < f < 2p. Here, rmax and L are radius and length of the

cleft, respectively.

The boundary conditions for ? are assumed to be:

dQ4)(r, f,?,?) _Q dQ4)(r,0,¿,t)_o (3n)
dz ' dz

C4)(r,0 + 27T,z,t) = ?(?,f,?,?), (3.13)

C4)(O,0,z,t) = A0 (rmax^,z,t) = 0. (3.14)

The initial conditions for [A), (R), (AR), (A2R), (A2Ropen ) are assumed to be:

(??t,f,?,?) = G4)o,O?)(r,0,z,O) = (A)0, (3.15)

G4i?)(r,0,z,O) = O42i?)(r,0,z,O) = (A2R0^Xr, f, z,0) = 0. (3.16)
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Here, A0 is given by Equation (4.49), (A)0 = 1.4 x 1014 and (A)0 = 15,700 ([2], [64]-

[69]).

The above 3D model includes several nonlinear terms, which make it very

difficult to find an analytic solution. Therefore, it is indispensable to develop a numerical

method for solving the above 3D model.



CHAPTER 4

NUMERICAL METHOD

In this chapter, we will develop finite difference schemes for solving ID mass

diffusion model and 3D reaction-diffusion model proposed in Chapter 3.

4.1 Finite Difference Scheme for ID Mass Diffusion Model

To obtain a second-order accurate finite difference scheme for solving the ID

mass diffusion model, we first design a mesh, where the distance between the actual left

boundary and T1 is assumed to be O1 Ar, and the distance between the actual right

boundary and ?µ is O2Ar, as shown in Figure 4. 1 .

<*-T??

rM-i rM m

R

Figure 4.1 : Grid points and nomenclature for the present numerical scheme.

39
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We assume that the number of interior grid points is M. As such, the grid size and

the coordinates of the grid points can be determined as follows:

Ar = (4.1)? + T-1'

Ti = (I-I + O1)Ar1 i = 1, ... , M. (4.2)

We denote A? to be the approximation of A(r¿ , tn ), where tn = nAt and At is the time

increment. At the interior points r¿ (2 < /' < M - 1), we employ a weighted Crank-

Nicolson scheme for the diffusion equation as follows:

Af+1 -Af 1= (1 + ?):
/171+1 ?p+? ??+? _ ?p+???+1 ?? „ ?? 71I-I

?+2 Ar ?~2 ArAt 2r¿ Ar

? J 2r¡ Ar I ?+2 Ar t~ Ar
+ S*** (4.3)

where ? is a relaxation factor with 0 < ? < 1 . Note that the insulated boundary consider is

usually discretized using the first order finite difference approximation or the second

order approximation with a ghost point. However, the ghost point method cannot be

,. , , · ,· · , 3?(t,f,?) DA d ( dA(r,4>,t)\ , ?f??{?) ,applied to multi-dimensional case such as ——— = ~^:lr —~¡¿.—) + ~rT~JIT where
[l 32M)I— -grrj is difficult to find. In this dissertation,

we propose a novel numerical approximation dealing with the insulated boundary
condition.

To this end, first, we express the finite difference approximation for — \r —J at
T1 , which is the point next to the left boundary, as follows:

4I(1^)1 = -h ? w»') -A^t)] -Tr ri d¿^ - 8^* (44>
Ar

where a, b, T, are constants to be determined and rs= rx+ — . It should be pointed out that2 2
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Equation (4.4) is an improvement of the combined compact finite difference methods

[81]-[83], by introducing the parameter Q1 in order to increase the order of accuracy. If

each term of Equation (4.4) is expanded into Taylor series at T1, we will obtain the left-

hand-side (LHS) and right-hand-side (RHS) results of Equation (4.4) as follows:

LHS = Or1AjT(T1, t) + OA7-(T1, t), (4.5)

RHS =
a

?G? r3Ar¿ J
Ar2 Ar3

ArAr (T1, t) + —Arr (T1, t) + — Arz (rlt t)

ArTl
2 a„2

Ar(T11I) - Q1ArArr(rx,t) +
B1 Ar ¦Ar3(rltt) +0(Ar2)

Ar at'3 - T1
2

ArraArra+t???-G?ß?
Ar(T1, t) + [-|rs + T1O1] ArAr1, t)

A^(T1, t) + 0(Ar2). (4.6)

Matching both sides give:

U-

a
-G3+ T1T1

L ¿ 2

a

-^r1-T1Q1'
¦J 2

= brlt

= 0.

(4.7)

(4.8)

(4.9)

Dividing Equation (4.7) by Equation (4.8), replacing ari by T1O12 from Equation (4.9)
2

and then using the fact that T1 = O1Ar, we obtain a quadratic equation with respect to O1 as:

O12 -3O1 -4 = 0. (4.10)

Solving the above equation for O1 with O1 > 0, one may obtain:

(4.11)O1 =
3 + VTÖ5

12
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/O1 1\ a T1 Q1a= T1O11 b= r3{T + -), - = (412)^T + 3)
Thus, a second-order finite difference approximation at T1 can be obtained by dropping

the truncation error0 (Ar2):

Symmetrically, we can express the finite difference approximation of — (r —J at ?
which is the point next to the right boundary, as:

d / dA(r,t)\ 1 OA , n ? Nb* — (r I =irrM—(rM + 92Ar,t)dr\ dr )M Ar dr

M >

M

a"

Ar2 rM-i M'"' V - A(-r"-l> t)]' (4·14)
where a*,b*, O2 are constants to be determined and rM_x = rM - Ar Again, matching

both sides in Taylor series gives:

TÂr»-a"r»-ù = b'· <415)
rM02+yrM_i = b*rM, (4.16)

rM(ö2)2-jVi = a (4·17)
Dividing Equation (4.15) by Equation (4.16) and then replacing a*r _i by 3rM(02)2

2

from Equation (4.17), we obtain a quadratic equation with respect to O2 as:

(6rM + 3 Ar)O22 + 2ArO2 - 2rM = 0 (4.18)
Substituting rM = (M - 1 + O1) Ar from Equation(4.2) into Equation (4.18) and then

solving for O2 with O2 > 0, one may obtain:
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0, = Vi + 6(2A1 + 2M - I)(A1 + M-I)-I
3(2O1 + 2M - 1)

and hence,

a*

fe*
rM ?2

^?+¥

(4.19)

(4.20)

As such a second-order finite difference approximation at rM can be obtained:

d ( dA(r, t)\ 1 &4 , ? A _

a'

b* ??2 rM-\ [A(-Tm> V " ^G"-1' t)]- (4.21)

Using the Neumann boundary condition, Equation (3.3), one may simplify Equations

(4.13) and (4.21) to

d ( dA(r,t)\ a r , ^ , „4r_H1*^r§M(r2't)-"(ri't)1· (4.22)

1(^), a -?^?w*.o -*cw)i («3)
Thus, we develop a weighted Crank- Nicolson scheme for the diffusion equation at T1 and

rM together with Equation (4.3) can be written as follows:

Aî+1 - A1I N aDA AT1 - A1I+11 ?^ 1 =(1 + ?)-^G3 0? *?? ò T1 2 2??2

+ (1- ?) T-^r3 I. 2 +S¿ 2,Or1 2 2??2 l
(4.24)

1 = (1 + ?)
??

+ (1-?)

2? ??

??+1 /??+1
i4¿+1 /Ij /Ij ^i-I

r. ? : r. ?
l+ñ Ar ?~2

D,
2r¿Ar

?? _ ¿???+1 ??
Ar

-r. i-
'-2

?71 _ ?"71I 71I-I
??

Ar

+ S1 \ (4.25)
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?*G) ??+1 — ??+1M (? , ?a ?? ?? -14M-ITt -_(1 + û))F77r"-5 2?^
a*D„? .. ^M — ^M-I , ^?+2
ò*rM M- 2Ar2 + 5; (4.26)

where ? is a parameter with O < ? < 1. It can be seen that the truncation error of the new

scheme when ? = 0 (which is a Crank-Nicolson type of scheme) has an order of ??2

+ Ar2 at all grid points (r¿ , t ?), j = 1,· · ·, M. It should be pointed out that if the present
2

scheme is written in matrix form, one may see that the system for obtaining

{/4f+1}¿=1 M is a tridiagonal linear system ,

b, cx 0 ···
a2 b2 C2 0
0 a} b3 C3

0
0

0

0
0

0 aM-I

0 'M

M + l
1

«+]
2

n+1
3

I n+1
M-I

? n+1

n+1
1

n+1
2

n+1
3

n+1
M-I

fn+l
M

which can be easily solved by the Thomas algorithm [62].

4.2 Finite Difference Scheme for 3D Mass Diffusion - Reaction Model

To develop an accurate finite difference scheme for the above problem, we first

designed a mesh, where the grids along the radial (r), angular (0), and transverse (z)

directions are shown in Figure 4.2. In particular, the distance between the actual left

boundary (z = 0) and (z = 1) is assumed to be O1Az, and the distance between the actual

right boundary (z = L) and (z = k) is assumed to be B2Az, as shown in Figure 4.2 (c), in

order to develop an accurate finite difference scheme incorporating with the Neumann

boundary condition along the z-direction.
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·%- -ó—p-
? ,, i

h0] ???
¦?-

?

O

(a)

(e)

O—O
??, ??-^ra

K-I K

Figure 4.2 (a) Grid points along r-direction; (b) Grid points along f-direction for the
numerical scheme; (c) Grid points along z-direction for the numerical scheme.

2p

We denote ? = ??t,f) = )à(f),zk = (j - 1 + O1)Az , where Ar = - ,?f =

— and ?? = are grid sizes along the r, f, and z-direction, respectively; and

1 < i < I , 1 <j <J,l<k < K . Here, we obtain Q1 = Q1=- , as seen in the

derivation later. We denote A^jk is the approximation of ?(???,;?0, kAz, nAt), where ?
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is time level and ?? is time increment. Similar notations are used for A, R, AR, A2R,

A2Rope".

We employ a standard fourth-order Runge-Kutta (RK) method to solve Equations

(3.7) through (3.10). For simplicity, species (R) is presented as follows:

KU = RUj,k + ¿ (rkl + 2rk2 + 2rk3 + rfc4)> (4·27)
where coefficients for the Runge-Kutta method (rkl, rkl, rkZ, rkA) are determined as:

rkl = At (-lkR (^??? (Rfjk) + k_R ARfa), (4.28)
rkl = At {-lkR {^??? (Rnjk + rfcl/2.o) - k.R (ARfa + ^) ), (4.29)

rk3 = At (-2*? ($*±&? (A^ + rklR/1.0) - k.R (ARfa + ^) ), (4.30)
rkA = At {-lkR ($*±&? (R" k + rk-i) + k-R(ARfa + rkS) ), (4.31)

where 1 < i < I -l,l<j < / - 1, l<k < K. Similarly, values for species R, AR,

A2R, A2Rope" are computed.

To solve Equation (3.1 1), we employ a Crank- Nicolson finite difference scheme

at interior points, k=2 ,...,K-I, as follows:
??+1 — ?? ? G ??+1 — ??+1 A1If1 — /Ii1+1.,'Ai i U — A¡ i ?, Ur I Ai+iJ,k- AiJ,k ^i.j.k ni-l,j,k*i,j,k ™-i,j,k _ ur

At Ir1 Ar 1+2 Ar l~2 Ar
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_2kR ^? + <??^?? + ^?+ k_R ARIjJ1 + ARfJj1

_k (AfJj + Afj ? / A2RfJj + A2RIjA

+ 2?_?? 2 ¦ ^
To obtain a new finite difference scheme for the Neumann boundary condition,

Equation (3.12), we first design a mesh, where the distance between the actual left

boundary and Z1 is assumed to be O1Az, and the distance between the actual right

boundary and zK is ?2?? , as shown in Figure 4.2 (c). For simplicity, we denote

(A) (r, f, ?, t) and Az as A (z, t) , and h , respectively, and then express the finite
d2A (z t)difference approximation of 2' at Z1 , which is the grid point next to the left

boundary, as follows:

J2AjZ11J) a IdA(Z1-O1Kt)b -^1- = T2 [A(Z2, t) - A(Z1, t)] - , (4-33)
where a, 0,O1 are are constants to be determined. If Equation (4.33) is rewritten as

follows:

d2A(zlPt) 1 OA(Z1- B1Kt) a G?, . „, ?? ????\b ? I J + - \ = T2- [A(Z2, t) - A(Zl,t)l (4.34)dz2 h oz h¿

we may see that the above equation is an improvement of the combined compact finite

difference method (where the first and second-order derivatives are included [76]-[78])

by introducing the parameter Q1 in order to raise the order of accuracy. The first-order

derivative is kept in Equation (4.33) so that the Neumann boundary condition can be

applied directly without discretizing. Expanding each term of Equation (4.33) into Taylor

series at Z1, we obtain the right-hand-side (RHS) result of Equation (4.33) as follows:
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a

RHS= -pth¿
h2 h3

hA2(zltt) + ?A22(Z1,*) + -A2S(Z1,*)
1

h

2u29t h
A2(Z1,*)- O1KA22(Z1,*)+ ——- A2Z(Z1, *) + O (h2)

= - [a - I]A2(Z1, t) + [| + O1] A22(Z1, t) + - [| - O12] A2S (Z1, t)
+ 0(h2) (4.35)

Matching both sides gives:

1 V3 V3
a = l, b=-+T, Ö1=T (4.36)

Thus, substituting the values of a, b, O1 in Equation (4.36) into Equation (4.33) and

dropping the truncation error 0(h2) , we obtain a second-order finite difference

approximation at Z1 as

32A(Z1, t) a 1 OA(Z1 - Q1K, t)
dz2 - bh2 IMz2. 0 - A(Z1, t)] - (4.37)

d2A (z,t)
Symmetrically, we can express the finite difference approximation of —"" \" at zK ,

which is the grid point next to the right boundary, as

, t d2A(zK, t) 1 dA(zK + e2h, t) a*- —[A(zK,t)- A(Z1C-^i)] (4.38)
dz2 h dz

where a*, b*, 92 are are constants to be determined. Again, matching both sides in Taylor

series gives

1 V3 V3
a* = l, b*=-+—, ?2= — (4.39)

2 ' 3 ' ~? 3

and hence a second-order finite difference approximation at zK for the right boundary can

be obtained as
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d2A(zK,t) 1 dA(zK+e2h,t) a* [A(zK,t)- A(Z^t)] (4.40)
dz2 b*h dz b*h2

If the number of interior grid points K is given, then the grid size and the coordinates of

the grid points can be determined as follows:
L

h = zk = (k - 1 + O1)K k = l,...,K. (4.41)K + 0!+O2-I'

Using the Neumann boundary condition, Equation (3.12), one may simplify Equations

(4.37) and (4.40) to

ò2A(zx,t) a
dz2

d2A(zK,t)

bh2

a

[A(z2,t)- A(Z1, i)],

[A(zK,t)~ A(zK_x,t)l

(4.42)

(4.43)
dz2 b*h2

Thus for the location Z1 , we apply the second-order finite difference

?2 (A)approximation obtained in the above for —— to Equation (3.12) and obtain a finite

difference scheme as follows:

171+1 y|n+l /lrt+1/4"+I _ An

At

Dr

Dr
2G(?? r-4

/jn+i _ ??+t ?«+? _ ?p+í??+?,/,? ni,i,\ ??,)? ni-iJ,ir. ? — —
Ar

2? Ar r<4
An — AV- .•"¿+lj.l ni,j,l

Ar
-r. ?

l~2

Ar

An — An"ij.k 71I-Ij,!
Ar

D1'F
Irf

?p+1 _ 94/1+1 , An+1 An -IAV-. A-AV-.7MJ+!,! ???,),1 ^ 71IJ-I,! 71IJ + !,! £,??,},1 ~ 71IJ-I1!
?f2 ?f<

D2. a An+1 — An+1 An — An??,),2 ??,),2 ni,j,2 7Mj,!
Az2

+
Az2

_2tB(d2i±^)(^l^)+fc.R ARVf1 4- ARV.
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-kAR
(AfJX + Afj ? ( A2RlH + A*RUJ¿

+ 2k. (A2R°Pen)fJX + (A2Ropen)fjí',1
AR' (4.44)

where a = 1, ? = ± + ????1<? < / - 1 , 0 < ; < / - 1.
Similarly, for the location zK , we apply the second-order finite difference

d2(A)approximation obtained in the above for —7- to Equation (3.11) and obtain a finite

difference scheme as follows:

/jn+i _ A?, r)71U1K 71U1K _ ur
At 2? Ar

¿n+i ??+1 ?p+? _ ?p+?Ai+i,j,K ??,?,? ^iJ,K 71I-IJ1K
r. 1 — r, 1

l+2 Ar l"2

Dr
Ir1Ar l+2

?? _ AtI71IH-Ij1K nl,),K
Ar

-r. 1
l"2

Ar

4n — An

Ar

D,F
2 ri

??+1 _ 9/4n+1 4- ??+1 ?? — ??? 4- ??Ai,j+1,K ???,?,? ^ 71U-I1K 71U-Hl1K ???,],? t 71Ij-I1K
?0: ?02

D2, a* 4?+1 _ ??+1 ?? — ????,?,? 71U-K-I , ??,),? ??,),?-1
Az2 Az2

_2iiR (¿We + Kj ? ? RfJk + R?jA | k ^ARfJt +AR?JiK
-k 'AfJi+AfJA(A2RfJk + A2Rf1JS

AR

+ 2k. (A2R0^fJi + (A2R0PmJ1K
AR' (4.45)

where a* = 1, b* = - + — and 1 < i </-l,0<; </-l.2 3

Initial conditions are discretized as

10 _ r ? ? dû —7U/,* — (7^o) u.fc » ^¿,/,fc — (Ro)i,j,k > (4.46)
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ARfjk = M,;*).. k = (A2R°r>oen)lj.k = O , (4.47)
where 1 < i < I — 1 ,1 <j <J — 1, 1 < k < K. The discrete boundary condition for

AiJ1K 1S

AIj1K = Al0ik,Al_lik = Alj_lik,AlJik = {A0\jik (4.48)

It is noted that when i=\, Equation (4.32) needs the value of A°jk . Here, we evaluate it
using an average of the nearest J points in the neighborhood surrounding the grid point at

r=0 as follows:

7-1

^*=^S?^ (4·49)
It should be pointed out that the finite difference scheme, Equation (3.11), is

unconditionally stable, and the proof can be seen in the next section.

Thus, an Algorithm for obtaining the values of species (A, R, AR, AjR, A2Ropen) at
time level n+1 from time level ? can be described as follows:

• Guess the values of species (A, R, AR, A2R, A2Rope") at time level n+1 .

• Obtain the values of species (A,R, AR, A2R, A2Rope") at time level n+1 by using the

Runge-Kutta method, as seen in Equations (1 1)-(1 2).

• Substitute those updated values of species (A, R, AR, A2R, A2R°pen) at time level

n+1 into Equation (13). As such, Equation (13) becomes a linear system for

unknown variable (A). Solve the obtained linear system by using an iterative
, , ., . . ~ /¦¦ ¦ i\ .n+l(new) An+l(old)method until a criterion for convergence max (i,j, k) A1 jk — Aijk

e is satisfied.
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Repeat steps 2 and 3 until a criterion for overall convergence is satisfied.

4.3 Stability for ID Finite Difference Scheme

We now show that our present scheme, Equations (4.24) through (4.26), is

unconditionally stable. For the simplicity, we first introduce two finite difference

operators:

d<* — Aq An — AqPr[An = r.A^-P--r. 1^-^,q = n,n+l. (4-50)1 ? J j+2 Ar2 j~2 Ar2

We then multiply Equation (4.24) by 2T1Ar^ [A1I+1 + A^] , Equation (4.25) by
2TjAr[AJ+1 + AJ], 2 < j < M - 1, Equation (16c) by 2rMAr^[AM+1 + AM], and add
all of them together. This gives

M-I
2Ar b „ „,_ r „,„. 2Aràt -t?at? - m2) + -^ S ? ([^+1I2 - [^]2)

7=2

+ ^^rM([AM+1]2-[AM]2)
M-I

= ArDA S pr [AJ+1 + AJ] · [AJ+1 + Aj]
J'=2

+DAr3Vr[A¡+1 + A%] · [A^+1 + Al]
2

-DArM !Vr[AV1 + AM] ¦ [Al+1 + AM]M 2

M-I

+ù>DAAr ^ Pr [AJ+1 - AJ] ¦ [Aj+1 + Aj]
J'=2
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+?t<

+???t??? [AZ+1 - ?%] · [A1I+1 + ??]
2

-<oDAr !Vr[Al+1 - ??] · [???+1 + ???]
? 2

( U 1 ^Z,1 1 ?* 1
2^r1S1"4* . [??+1 + ^] + £ 2T)Sp · [^+1 + ^] + 2-rMs;

(4.51)

[j4m + ??\ j

Denoting ?t) = Af+1 + Aj for the purpose of simple notation, the first three terms
(FTT) on the right-hand-side can be simplified to

M-I

FTT = ^^{rjJUj+1 - Uj] - r.JUj - UjJ) · Uj + DAr3VrU2 · U11=2 2

-DArM_iVfUM ' UMM 2

M M-I

= DAY r.iVfUj · Uj-X -DaY r iVfUj · Uj + OArtfrU2 · IZ1Z_l 7 ? i—t J 2 2_____ 2 ·*-^ ¦" 27=3 2 7=2

M 2

M M

= Da S r7-7f^ ' y-1 ~°?S rj-iVfUj ' Uj7=2 2 7=2 2
M

= -DA^2_tr._1VrUj'VrUj7=2 2
M

= -DAAr Y r._i(Ff [A?+1 + Af])2. (4.52)^J 7 t7=2 2

Similarly, letting V, = A7J1+1 - Af, the next three terms (NTT) on the right-hand-side can
be simplified to
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M-I

??? = ?^? {r. JVy+1 - V] - r i[Vj - V^1]) · Uj + <ùOArtffVz · U1
y=2 2

m 2

M M-I

= ??? Y r. i7f V,· · UL1 - ??? Y r._i7f V) · U¡ + o)DAr3VfV2 · U1
2 *-TÍ 7 2J =3 J =2

? 2

M M

= ??? Y^ r.iVfVj · Uhl - ??? ^ r._i7f V) · ?/,;=2 2 7=2 2
M

= -??^?G > r.iVfVj · Ff ?/,
7=2 2

M

= -??,?G > r 1((VrAf+1)2 - (VrAfY). (4.53)fe J'J
By Cauchy-Schwartz's inequality (2ab < ea2 +-b2), e > 0, we have

2S^ · [AJ+1 + Af] < [Af+1 + Af]2 + [Sj+2]2
< 2 ([Af+1]2 + [Af]2) + [S^2Y, (4-54)

for anyy. Substituting Equations (4.41) through (4.43) into Equation (4.40) and dropping

the negative term -DAAr S?=2t,-?(??[??+1 + Af])2 on the RHS, we can simplify
' 2

Equation (4.40) to
M-I

^ri(Mr]2_w]2) + ^2,([,rf-^]2)
7=2



+
2Ar ft

M

At -rM([AnM+1]2 - [AlY) + OD4Ar Y r i((VfAf+1)2 - (VrAf)2)
7=2

M-I

< 2Ar-V1C[AF1]2 + [A1I]2) + 2Ar ^ ? ([Af+1]2 + [Af]2)
j=2

j2 M-I j.

+2?G^G?(µ?+1]2 + [^]2) +
ft* 1-.2

rn+2
°M )¦

Multiplying Equation (4.44) by At and letting

ft
M-I

F(n) ? 2Ar(^r1 1 [A^]2 + £ rj[Af]2 + ^rM[AnM]
M

+ù)DAArAt y r. X(VfAfY,

F(p) = Ari -rt
a

n+zz
S 2

7=2

,2 M-I

J'=2 L

ft* S 2

Equation (4.44) can be further simplified to
1+??

F(n + 1) < 1-?? F(n) +
At

1-At F (ri)

1 + At 1+?? , N At , ^ At< - · [- -F(n - 1) + — F(? - I)] + — F (ri)1-At Ll-At 1-At 1-At

(4

(4

(4

/1 + ??\?+1 , ? At
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1 + ??>1 + At /1 + ?\- /1 + ??\ max F (/e)
0<fc<n

?+1

< filiti) [F(O) + max F(*)1. (4-58)Vl - At/ L 0<k<n J

Using the inequalities (1 + e)? < enefor e > 0 and (1 - e)-1 < e2e for 0 < e < - , we

obtain (1 + At)n+1 < ß(?+1)?? and (1 - At)-1 < e2àt , and hence, when At is
sufficiently small, the solution to the present scheme satisfies

F(n + 1) < ß3(?+1)?? Ff(O) + max 0(/c)l < e3t° [f(0) + max F(/?)1 (4.59)L 0<k<n J t 0<fc<n J

for any 0 < (n + I)At < t0. Hence, for any 0 < nAt < t0, we obtain
M-I

Ö V- r.^2 Ö*
M

7=2 7=2

< e3t° <
M-I

2[^r1[An2 + ^Tj[Af]2 +^rM[A%]
M

7 = 2

0?2+ 0)DAàràt) r.jXVfA))í—¡ 7 ?
7=2

+eJt° max F?— T10<k<n-l \ a
fe+i

,2 M-I
+

7=2 L

b*
+ ^M

k+±5 2°M (4.60)

implying that the scheme is unconditionally stable with respect to the initial condition
and source term.

4.4 Stability for 3D Finite Difference Scheme

To analyze the stability of the finite difference scheme, Equation (4.32), with the

initial and boundary conditions, Equations (4.46) through (4.49), we first define the

following difference operators:
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Prtäj*] = l+2

¿? — An An — An .^i+lj.k Aij,k Aij,k ni-lj,k
(Ar)*

— r. i-
l~2 (Ar)'

An — ? An 4- Anvn -. _ ^JtI1It LRu,k -r Ai,j-ljc
^lAij,ki - (?f)2

An — ? An 4- AnpX.n 1 = AiJ*+i CAi,)X ^ Ai.j,k-im^ljjci - (??)2
An — Anu .n - AÜ.X Al-lJ.kVfAiJJc - ??
An — An? — h)M ni,j-l,kWLk = ?f

An — An? — Aij,k ni,j,k-l
AzVzni,j,k —

¿n+l , ¿?

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

We assume that the values of species (A, R, AR, A2R, A2Rope") at time level n+1 have

already been known since they are calculated ahead based on the Runge-Kutta method.

As such, Equation (4-32) can be simplified to, at interior points, k=2, ...,K-I,

Àjj.k ~ Ai,j,k _Dr ' r „ ,-. Dri
At = -f Pr[WtIAiJj1]] + -f ^{WtfeD + DgPx{Wt\AÎJJC]}

cij,k y 2 J ji-j-k (4.68)

where 1 < i < I - 1 , 1 < j <J - 1; at the location zh

??+1 ?? ?« G) n G)

At

Hu y 2 J 7^1 (4.69)

1 \Í3where a = 1, b = - + — and 1 < i < / - 1 , 0 < ;' </ - 1; and at the location zK,
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¿n+l _ ¿? n /-) ?* ?

_ ?+2 M¿,M+^M\ ,^2 (4.70)

where a* = 1, b* = ì + ? and 1 < i < / - 1 , 0 < ; < / - 1. Here, C¿J fc2 and /¿; k2,
which are from the values of species (A,R, AR, A2R, A2Rope"), are considered to be

positive coefficient and a source term respectively.

Theorem. The finite difference scheme Equations (4.68) through (4.70), with initial and

boundary conditions, Equations (4.46) through (4.49), is unconditionally stable with

respect to the initial condition and source term.

Proof. Assume that A1 and A2 are two solutions obtained based on Equations (4.68)

through (4.70) with same boundary conditions but different initial conditions and source

terms fx and f2 respectively. Letting A = A1- A2 and / = J1 - f2, then A and f satisfy

Equations (4.68, 4.69, 4.70) with the boundary conditions
7-1

Afjjc = Afa, <_1? = <;_1)k, AfJik = 0, An0Jik =^^,,fc (4.71)
for 1 < ; < / - 1 , 0 < k <K.

We then multiply Equation (4.68) by 2??? At[A^]1 + Afjk] for interior points, k=2, ...,

K-I; multiply Equation (4.69) by 2^r¿Az At[Af^ + AfJ1]; multiply Equation (4.70) by
2 ^??? At[AlJi + AfjK]. This gives

2???{^(µ^]2-[<,1]2)



K-I

+ S H"]2 - ^]2) + ?(^]2 - to·*]2)*
fc=2

^1 b*
fc=2

+2AZaA^[WtIAfJ11I)[AiJi + i4fJtl]r¿ a

b*

k=2

+ MnD2[UKU + KjAKU + Kj.i]

+ 2?? £ pM\a?j*\ÌIa?jì + KiA - UKl1K + KiAKÏÏ + ??,??
K-I

k=2

- AzAtrffljJWïî + 4jJ2 + ^ <J[^S + ^J2
k=2

+ S tôwti + ??,J + £/¡$[¿83 + ^mD
k=2

Since the third term on the RHS of Equation (4.72) can be simplified to
K-I

2??£ P2MKj1MKU + ??*] + UKU + KiAKU + Kj,i\
k=2

~^AKj1K + Kj1K\ iAi,j,K + Kj,K¡'
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K-I

= Yf?Muì+i + A?jMi] - MAÎÏÏ + 41J-J) lAÏÏÎ + Au*\
k=2

+V2[AfJi + Afc][Affi + AIj11] - V1[AtU + KikMjjc + Afj,K]
?

= y ^z[AiJ,k + AiJ1Ic][AiJ1Ii-I + AiJ.k-l]·
k=3

K-I

- X V¿ [AfJi + AfJJt][A^Î + A?JJC] + V2[A^Ii + AÎj*][AÏÏÎ + Af^1]
-ViK + tìK+tì

/c=2

K

= -AzJ V2[AfJi + Aljik]2 (4.73)
fc=2

n++-1
and C1 ¦ 1 2[Afji + AIj1] > 0, one may drop the third and fourth terms on the RHS of
Equation (4.71) and simplify it to

Uzr^AVlf -[AlJ)
+ S fas»1]2 - ^]2) + ? (t·4^]2 - 1·4«"]2)1

fc=2

< 2AzAtADr{^Pr{W^J}[<+11 + AIj11]
K~1 h*
k=2

+2Az^{^{Wt[A?j.iWuÌ + AljAr¿ a

è*S ?^?????*1 + ^-J + ^MwtfeBKS + <,·,*])+
fc=2
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+2AzAtn^ f£*[Afti +AIj11]
K-I'¦^-G ,1 fi* _ . 1

+ Z CT^1 + ^.J +^/^+ ^* (4·74)
fc=2

Summing Equation (4.74) over i and j, where 1 < i < / - 1 , 0 < ;' < / - 1 , and

multiplying the result by ???0 , we obtain
/-17-1

2?G?f??^2,?{-([^?]2 - Km]2)
¿=i y=o

+ S (Wi]" - fef) + £(WSl2 - Wurf)}
k=2

_____ {< 2???f?????t?^{-?^??\???1}}[?^1+???1}
b*+ £ Pr{Wt\Alj,k]Mj,l + ^jJ + ^M^fecBK» + ?1,?

k=2

1-1 J-I

+2Ar?fAzAt££-^ {- P*{Wt [^1IPKi + ¿?j.J
^-1 ft*
k=2

4^ h ?V1 V^ JO _n+~,+2Ar?fAzAt 2^)-1 rt{-ft,j,ilAUÌ + 4!/.J
¿=1 J=O

K-I

+ S ûiwî + ^j + £/$[<» + Aii.A- (4·75>
fc=2

Using the similar argument in Equation (4.72) together with Equation (4.71), we have
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/-? 1-1 7-1 /

2ArY£pr{Wt\AÌJik]}[Aftì + Afa] = -Ar^ J^r^V, [Afa + <,,fc]2 (4.76)
y=o i=l

;-i

7=0 ¿ = 1

/-1

2A0^P4M/t[<;,fcl}[^;ti +^J = -?f^????? + ?^]2 (4.77)
7=0 J=O

for any 1 <j <J - 1 ,0 < k < K. Substituting Equations (4.76) through (4.77) into

Equation (4.75), we may drop the first two terms on the RHS of Equation (4.75) and

simplify it to

/-1 7-1 .

2ArA0Az]T£r¿{-([<,ti]2 - [^J2)
¿=i y=o

K-I

+ S H"]2 - toJ2) + ?0^?2 - fei2))
k=2

7-?7_1 ?, ?
2Ar?fAzAt^¿^j/^KÍ + 4j.J

¿=i 7=0

K-I
u* ?-? ?+

k=2

(4.78)

Using the Cauchy-Schwartz's inequality (ixy < e?2 + ^y2)and (x + y)2 < 2x2 + 2y2,
we have

n2

O^S3 + ^l s s [C.5] + 2 ;{[^Ki]2 + IGiA (479>
2^[^+<m] S^fC/l2 + 4{[^"]2 + [^]2)' <4'80>

O4SS+^HC +2 ([-4Sl2 + KJ2) <481)
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for any 2 < k < K - 1. Substituting Equation (4.79)-(4.81) into Equation (4.78) and then

denoting

/-1/-1 K-I
b*A(Ti) = 2?t?f??S£ rt{- [??£]2 + £ [Affi]2 + _ [^]2) (4.82)

i=i y=o fc=2

F(n) = ???f??S-G?S^???^1]2 +S??^? +%
we can further simplify Equation (4.78) to

l + ?? N At?(? + 1) < 7zA(n) + -? p J7Cn)

}.

1-?? 1-??

<
1 + ??
1 - At Ll - ??

1 + ?? , ? ??i4(n-l)+- — F(n-l)1-?? +î^F(n)
/1 + ??\?+1 , ?

??

1-??

1 + ?? /1 + At ?
1 + - t-+- +1-??

/1 + ??\

Vl - ??/ max FCn1)

< max /5Yn1)
OSn1Sn

n+l

(4.83)

/1 + ??\
< h t-) [.4(O) + max FCn1)]. (4-84)Vl - ??/ L OSn1Sn

Using the inequalities (1 + e)? < en£for e > 0 and (1 - e)-1 < e2£ for 0 < e < \ , we
obtain

ACn + 1) < ß3???[?(0) + max F(Ti1)]
OSn1Sn (4.85)

<e3to[A(0)+ max F(Ti1)].
OSn1Sn

For any (1 + t?)?? < f0, implying the scheme is unconditionally stable with respect to the
initial condition and source term.



CHAPTER 5

RESULTS AND DISCUSSIONS

5.1 ID Example

To test the accuracy of our present scheme, we first consider a simple ID

diffusion problem in cylindrical coordinates as follows:

dA DA d ( dA\ p ,. , N ,, t.— = ——r—+-e-7r ^m(TTr) (5.1)dt r dr\ dr) r

where A(r, t) is the mass concentration, DA is the diffusion coefficient, and R is the radius.
The initial condition assumed to be

A(x, G)= cos(Trr) (5.2)

and the boundary condition is

M(O, Q = M(I, Q = o (5 3)
dr dr

It can be seen that the exact solution to this problem is

A(r, t) = e-nH cos(nr). (5·4)
The schematic diagram showing the description of the problem is shown in Figure 5.1.
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Outer Surface is insulated = Neumann BC

Center is insulated =
Neumann BC

I
Initial condition to

define A at t=0

Figure 5.1 : Schematic for numerical example 1 .

Convergence rates of the scheme can be obtained by calculating the I2 - norm

error of the numerical solution compared with the exact solution as follows:

E(M1At)= max
0<???<1.0

M

Ar^[Af -AExact(n,tn)y (5.5)

i=l

Suppose that E(M1At) = 0(Atp + At«) . If At is small enough, then E(M1At)

q and q « log2 ' * A for the convergence0(AtP + At«). Consequently, gg| « 2
rate with respect to variable r. On the other hand, if Ar is small enough, we have ? «

loa-, — for the convergence rate with respect to variable t.a¿ ÍE(M,At/2)i °

To compare our numerical result with other methods, we also employ the current

popular ghost point method [62] for solving the above problem, where a mesh is shown

in Figure 5.2 and is given by Equation (5.6) and i = 1, ¦ ¦ ;N.

An+l _An !

+

At

2?

2Ar
AfX - 2Af+1 + AtI + 4±i - 1^ + A"-i

Ar Ar

An+X — An+1 An — An??+1 ??-1 , ??+1 ??-1
2Ar 2Ar

H— e ? 2^ sin(7rr¿j (5.6)

65
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Ghost Point

'¦i K

-??--^

Ghost Point

? T2 G i GG?-? O 1N+ 1
?? R

Figure 5.2 Grid points and nomenclature for the ghost point numerical
scheme.

Here, rN+1 is a ghost point outside the right boundary of the system. In the ghost

point method, it is assumed that A1^+1 = A^^1 for any time level n. Thus, when i = N, one

may substitute A^1+1 = A1^_1 in Equation (5.6) to eliminate the fictitious value A^+1. On

the other hand, at the boundary point r0 , one may obtain from the boundary condition

shown in Equation (5.7).

Hm
r->0

and

d2A(r,t) ldA(r,t)
r dr

p

dr'
= 2 d2i4(0,t)

dr2

lim —e p tsin(nr) =n2e p f
r^o r

(5.7)

(5.8)

Thus, Equation (5.6) at r = 0 can be discretized as:

Ar1 - An0 1
At Ar

A1I+1 - 2?£+1 +A1IX1 ?? - 24g + A1I1
Ar Ar

+p2ß-p2(?+?)?? (5·9)
Table 5.1 shows the I2 - norm errors and convergence rates with respect to variable r

when At = 10"5 and the number of grid points M = N = 51, 101, and 201 for the present

scheme, Equations (4.24) through (4.26), and the ghost point scheme, Equations (5.7)

through (5.8). From the Table 5.1, one may see that the errors and convergence rates for
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both schemes are about the same, which is expected because both of them are second-

order accurate in truncation error.

-5Table 5.1 h- norm error and convergences rates when At = 10 and 0 < t < 1.0

GRIDS Equation (4.24-
4.26)
h - norm error

Equation(4.24)-
(4.26)
Rate

Equation
(5.6H5.9)
¡2 - norm error

Equation (5.6)-
(5.9)
Rate

51
101
201

2.11 x 1O-4
5.25 x 10~5
1.31 x 10~5

2.01
2.01

2.11 x 10~4
5.00 x 10-5
1.28 x 1O-5

2.08
1.97

Figure 5.3 shows the numerical solution obtained by the present scheme using

201 grid points as compared with the exact solution at t = 0.1, 0.2 and 1.0. It can be seen

from Figure 5.3 that there are no significant differences between these two solutions. The

straigt lines represent the numerical and the solid circles show the analytical solution. The

solutions approach to thermal equalibilrium with increasing the duration of the simulation.
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0.4

0.3

0.2

0.1

^ 0

-0.1

-0.2

-0.3

" ' 0 0.2 0.4 0.6 0.8 1
r

Figure 5.3 Numerical solution obtained by the present method versus the
analytical solution with M = 201, ?? =10"6 and t = 0.1,0.2,1.0.

In order to evaluate the stability of both numerical schemes, we consider the

initial condition to be a step function, where M = N = 51, and at the first 20 grid points

the value of the function is 10 and at other points the function is zero, as shown in Figure

5.4. Results at t = 0.024, 0.06, 0.12 when At = 0.001, 0.0025, 0.005, respectively, are

plotted in Figure 5.5. It can be seen that at At = 0.001 and 0.0025 both numerical schemes

produce a smooth solution; however, at At = 0.005, the ghost point method produces an

oscillatory solution around ? = 0.4. This solution indicates that our scheme can handle

extreme gradients better than the standard approach when applied to solve similar

problems.

T I I I

— Numerical Solution
• Analytical Solution

«-t=0.02
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10

«H

A ?
0.4

Figure 5.4 Step function for the initial condition.

9

8

7

6

~ 5

3

***»*
t=0.024,At=0.001

\
V

XXXxx-

*v \t=0.06,At=0.0025,^xx-^ \

------- Ghost Point
+ Current Method

------- Ghost Point
x Current Method

-^- Ghost Point
o Current Method

t=0.12,At=0.005

*x~s<rxiryc>

0.2 0.4 0.6 0.8

Figure 5.5 Comparison of our present method and the ghost point method solutions
at the various time and time increments ?? = 0.001, 0.0025, 0.005,

M = N= 51 and Ar = 0.02.
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It should be pointed out that the ghost point scheme cannot be generalized to

multidimensional diffusion equation cases such as:

dA(r,4>,t) = DA d /dA(r,<t>,t)\ + ?f?2?(?,f,1) ^lQ)dt r dr\ dr ) r2 3f2
Where 0 < r < R, 0 < f < lu.

Because Hm7-^0 ~^ttj is difficult to find and, hence, we cannot obtain a

numerical scheme like Equation (5.10) at r = 0 . On the other hand, our present scheme

can be easily generalized to the multi-dimensional diffusion equation cases because we

avoid the approximation at r = 0.

5.2 ID Diffusion in Neuromuscular Junction

Finally, we employ our present scheme to solve a practical diffusion problem in

neuromuscular junction where the Neumann boundary is applied at the center, and the

Dirichlet boundary is assumed in the other end as shown in Figure 5.6.

A= Ainf = at outer boundary = Dirichelet BC

Center is insulated =
Neumann. BC

O
A is distributed along the cleft

at time =0

Figure 5.6. Neuromuscular model schematic.
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An initial distribution of Acetylcholine is assumed across the cleft at t = 0. Figure

5.7 shows ID axially symmetric neuromuscular junction model, where the standard

diffusion equation in cylindrical coordinate system is given by:

dA(r,t) DA d / dA(r,t)
dt r dr\ dr )¦ 0 < r < R, t > 0,

and the associated initial and boundary conditions are:

i4(r,0) = 1-r2

dA(0,t)
dr = 0 , A(R,t) = 0

(5.11)

(5.12)

(5.13)

Pre-synaptic Membrane

T 1 ?
1 2 N-I

A

¦Radial Diffusion-

N

Post-synaptic Membrane

Figure 5.7. Neuromuscular junction model.

The above diffusion problem can be solved by using our present scheme. Since

A(R, t) = 0 is not a Neumann boundary condition, we choose T2 = 1.0 and use only

Equations (4.24) and (4.25) with 2 < i < N in our scheme. It is noted that an analytical

solution to the two-dimensional diffusion in cylindrical coordinates is given in [63],
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where the transient diffusion in a circular cylinder is analyzed using an infinite series of

Bessel functions, and the analytical solution is obtained by computing the series

coefficients based on numerical integration and then summing the series solution for

various r values with enough terms being used in the series to assure adequate satisfaction

of the initial and boundary conditions. The model parameters for the analytical solution

with physical significance are chosen to be the width of the cleft = 0.5 ? 10 cm, the

radius of the cleft = 5.5 ? IO-5 cm, and the diffusion coefficient for Acetylcholine = 2.0 ?

10"6cm2/ms[64]-[69].

Our numerical solution is seen to be in good agreement with the analytical

solution. Both solutions for different time periods are illustrated in Figure 5.8, and they

show that the concentration distribution of acetylcholine along the radius is less than 2%

of its initial value in the cleft after 3 ms. These results are also supported by earlier

experimental investigations and simulations [10], [26], [35], [39], [40] which demonstrate

that under conditions of normal diffusion-reaction or pure diffusion, the acetylcholine

entering the NMJ during a signal event will typically be cleared from the NMJ in an

elapsed time on the order of 5 ms.
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Figure 5.8. Acetylcholine diffusion in the neuromuscular junction.

5.3 3D Reaction-Diffusion Model Results and Discussion

To verify our model and numerical method, a complete description of the

processes in the neuromuscular junction was developed, except for the reactions of

acetylcholinesterase enzyme. This exclusion is equivalent to the behavior of the NMJ

when the enzyme is totally inhibited and non-functional. This exclusion allows the

comparison of our results with the results of other investigations which had simulated

diffusion and reaction under completely inhibited enzyme conditions.

The behavior of the cholinergic receptors, particularly their open conformational

state, is the foundation of descriptions of NMJ activity. Virtually all functional models of

Numerical Solution t
Analytical Solution t = 0
Numerical Solution t = 1 ms
Analytical Solution t = 1 ms
Numerical Solution t = 2ms
Analytical Solution t = 2ms
Numerical Solution t = 3ms
Analytical Solution t = 3ms
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the NMJ focus on relating the receptor conformational state to the other properties of

interest [3 9] -[5 7]. A good test of the integrity of a model is how well the state of the

receptors can be directly or indirectly coupled to a measurable property.

The amount of current generated during the time course of an action potential by a

neuron is a property which can be measured directly. It has been demonstrated that the

magnitude of current during an NMJ action potential is directly proportional to the

number of cholinegeric receptors which are in the conducting state [66] as expressed by:

lepit) = YrE NAv Vr A2R0*en(t), (5.14)

where /ep(t) is the end-plate current, E is the potential across the end-plate, ?? is the
conductance of a single receptor channel, A2Ropen(t) is the concentration of receptors in

the open state, NAv is Avogadro's number and VR is the volume occupied by the

embedded receptors in the computation model. An accurate model should precisely

predict the number of open receptors with time which are converted into current profile

using Equation (5.14). Therefore, in order to test the validity of a neural synapse model,

the simulated current should be compared with the experimentally measured values

during an action potential. Rosenberry [65] provided an explicit graph of the

experimentally measured magnitude of current as a function of time at the post synaptic

NMJ membrane, with totally inactive enzyme. This invaluable data is utilized as

reference to compare and determine the accuracy of ours and others' models.

Figure 5.9 shows the end-plate current simulated by the present model, the

Friboulet model [67], and the Naka model [68] as compared with the experimentally

measured current obtained in [65]. This current is taken as reference for the subsequent

comparison. The simulated current data of each model, /ep(t), was calculated with
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Equation (5.14) using the simulated number of open receptors, ?? E NAv VR A2Ropen{t),

E = 70 mV [65], and yfi = 42 pS [22]-[24]. The conductance of a single channel and the

membrane potential were assumed to be constant during the time course of the action

potential. It can be seen from Figure 5.9 that the result obtained based on the present

model is very close to the experimental data.

? 10-9

o Rosenberry Experiment
+ Naka Model
+ Friboulet Model

3D Model

2 3 4
Time (sec) ? 10"

Figure 5.9. Experimentally measured Rosenberry current data compared with simulated
current ofNaka, Friboulet and 3D Model.

Figure 5.10 depicts the time course of the number of open receptors in the NMJ

during an action potential with completely inhibited enzyme. The reference number of
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open receptors is derived from the experimental current data in [65] and is based on the

Equation (5.15),

/ep(t)NAvVRA2R°t>en(t) = YrE'
(5.15)

while the simulated receptor data is graphed directly. From Figure 5.10, one may see that

the Friboulet simulation predicts that in the absence of enzyme hydrolysis the number of

open receptors in the NMJ peaks at approximately2 100, and exhibits exponential decay

for a period of at least 6 ms. However, our results peak at the experimentally derived

reference value with a negligible error and depict a slower rise time than those of

Friboulet [67].

2200

2 1600
Q.
F

o Rosenberry Experiment
+ Naka Model
+ Friboulet Model

3D Model

O 1000

f 800

600IP

x 10"

Figure 5.10 Open receptors derived from experimental current compared with computed
simulated open receptor ofNaka, Friboulet and 3D.
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The Friboulet model's decay rate is significantly slower than ours. The Naka

model and our model have equitable rise times. Naka model's decay phase is significantly

faster than ours. His simulation predicts a peak open receptor number of about 1900

which is lower than the measured value. Our 3D model accurately overlaps with

experimentally measured curve and captures the true dynamics of transport-reaction of
the NMJ.

Figure 5.11 examines the influence of the width of the NMJ on the kinetics of

receptor opening during the release of acetylcholine. When the width is simulated as

wider than normal, one would expect an increased diffusional loss of acetylcholine which

manifests as an overall decrease in the number of open receptors with time. When the

width is less than normal, a decrease in diffusional loss is expected, leading to an overall

increase in the number open receptors with time. The simulated kinetic results match the

expectations at widths of 0.025 µ??, 0.05 µp? (normal width), and 0.1 µ??, indicating our

model is behaving correctly in this regime.
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Figure 5.11 Sensitivity of open receptor dynamics to the transverse dimension.

Figures 5.12 through 5.14 depict the influence of the diffusion constant for each

coordinate on the open receptor kinetics. In each graph, two of the diffusion constants are

held constant while the remaining is perturbed above and below its normal value. Figures

5.12 through 5.14 show that the receptor kinetics is affected when the radial diffusion and
transverse diffusion constants are varied, and the kinetics are not affected by varying the

angular diffusion constant. Figure 5.12 shows the sensitivity of open receptor dynamics
to different radial diffusivities. The concentration decay period increases with increasing

radius as expected.
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Figure 5.12 Sensitivity of open receptor dynamics to different radial diffusivities
(Dr). The values of angular (?f) and transverse diffusivities (Dz) are 0.7 x

1(T6 cm2/s.

Anisotropy describes a region with different properties at different locations.

Direct measurements of Ach concentration in space and time in the NMJ are difficult to

obtain. Ach diffusion inside the NMJ has been determined indirectly through measurment

of external NMJ properties and mathematical models [26],[39],[40],[57],[65]-[68]. The

investigators vary different combinations of parameters, initial conditions, and boundary

conditions; then compare the results of the simulation with measured experimental

results. Simulations which generate results that fit experiments are candidates which

might represent actual conditions in the NMJ.
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The NMJ models of Magleby, Wathey, and Friboulet were well mixed or one

dimensional, and so were not suitable to simulate the possibility of anisotropic diffusion

affecting the course of an end-plate current. The two dimensional model of Naka and

Shiba was one of the first investigations to systematically test the sensitivity of the end-

plate current behavior to diffusion of Ach in the radial and transverse directions. They

varied the magnitude range of the transverse and radial diffusion constants (Dz and Dr,

respectively) and analyzed their effects on the maximum number of open receptors, the

time to reach the maximum number of open receptors, and the rate of decay from

maximum open receptors. Their simulation indicated that radial Ach diffusion has a

larger effect on receptor states (and end-plate current) than transverse diffusion. A

simulated Dr value of -1.0x1 0"6 cmV1 reproduced the characteristic behavior of the

transmission process with no significant deviations with Dz greater than 2.0x10" cm s" .

This functional sensitivity to diffusion in different directions suggests anisotropy is a

factor inside the NMJ.

This analysis suggests our model can predict anisotropic effects in the radial and

transverse directions, as demonstrated in the Naka model [68]. One would not expect any

indications of anisotropic angular diffusion associated with an angularly symmetric initial

distribution of acetylcholine, and Figure 5.13 supports this expectation. However, if we

have non-symmetric angular distribution of the initial Ach concentration we may observe

the appearance of angular concentration gradient. The other scenario where we may see

the similar angular gradients is if the model is constructed with different diffusive

properties in different regions (sectors) of the cleft.



81

2500

2000
en

?
¦*—?
Q.
F

& 1500
f
Cl
O

F
JZl
E

1000

500

0&
0

? D =0.25e-6phi
----- D =0.7e-6

phi
+ D =4.0e-6phi

3 4
time(sec) ? 10-3
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Figure 5.14 shows the sensitivity of open receptor dynamics to different

transverse diffusivities. The maximum number of open receptors increases with

increasing transverse diffusivities because relatively more Ach reaches the receptors

which are located directly across (transversely) the pre-synaptic membrane. The

maximum number of open receptors decreases with decreasing transverse diffusivities

because relatively less Ach reaches the receptors, but Ach is still diffusing radially out of
the cleft with the same rate.
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Figure 5.15 shows how the time course of open receptors changes when the

acetylcholine vesicle is initially diffused from different sector locations in the cleft. These

locations represent asymmetric initial distributions of acetylcholine molecules at the

presynaptic membrane. Freeze fracture assays [3] have shown that acetylcholine can

enter the NMJ at different locations on the presynaptic membrane, and the locations

represented in the legend of Figure 5.15 simulate these events. The number of receptors

opened by acetylcholine decreases as acetylcholine is emitted closer to the edge of the

NMJ. This behavior is expected because more acetylcholine is lost to diffusion before it

reacts with receptors when emitted close to the edge. The effects of simultaneously
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emitting acetylcholine at different locations on the NMJ processes will be investigated in
the future.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have presented a novel finite difference scheme for solving a ID diffusion

equation with the Neumann boundary condition in cylindrical coordinates, which can be

applied to neuromuscular junction problems. The new finite difference scheme is

unconditionally stable, is second-order accurate, and efficiently computes solutions for

the Neumann boundary near the zero coordinate. It has been tested against equations with

a known analytical solution, and the results matched well with the analytic solution [63].

Also, it has been tested with equations that model real systems which have been

simulated by other investigators, and the results match the simulated solutions of those

published works in [65]-[68]. When parameters and dimensions which represent those of

the real neuromuscular junction are used in our simulation, the results are supported by

data collected from published experiments [10], [65]. Numerical results obtained here are

relevant to physical reality and manage to capture a relevant portrayal of the actual

process. Finally, our present scheme can be easily generalized to the multi-dimensional
diffusion-reaction cases.

We have proposed a full 3D model of acetylcholine and acetylcholine receptor

dynamics in the neuromuscular junction under conditions of inactivated enzyme.

84
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An improved Crank-Nicolson finite difference scheme is presented for solving

the 3D model with Neumann boundary condition in cylindrical coordinates. In particular,

a new, stable and accurate finite difference scheme is developed for the Neumann

boundary condition. The simulation analysis agrees well with experimental

measurements of end-plate current, and it duplicates the open receptor results of earlier

investigations. Sensitivity of the open receptor dynamics to the changes in the diffusion

parameters has been studied. We present the first simulation of asymmetric emission of

acetylcholine in the synaptic cleft and an analysis of the subsequent effects on open

receptor population as a function of time. Results show that the population of open

receptors decreases as acetylcholine is emitted closer to the edge of the NMJ.

Our 3D model is more accurate compared to Friboulet's ID and Naka's 2D

models under the conditions of completely inactivated enzyme. Our model tracks the

experimental decay rate more closely than Friboulet and Naka. Friboulet's model

underestimated the decay phase of the measured curve, while Naka overestimated. The

Friboulet model and our simulation estimated the same peak value but Naka's model

predicted a peak lower than the experimentally measured data. Our 3D model accurately

overlaps with the experimental curve and simulates behavior which is closer to the true

dynamics of transport-reaction in the NMJ.

6.2 Future Work

Future investigations will focus in-depth study of anisotropic diffusion in the cleft

and asymmetric distribution of vesicles in the pre-synaptic membrane. Several

anisotropic diffusion studies are suggested. These studies include simultaneous

acetylcholine emissions at different locations on the presynaptic membrane and staggered
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acetylcholine emissions. The established experimental technique of freeze fracture

microscopy [3], [84], would provide a framework against which to compare simulation
results, and the simulated detail resolved by the number of disks, annuii, and sectors

would, in principle, be limited only by the available computing power.

It will also be possible to test this new numerical scheme with active enzyme in

the NMJ. The addition of the acetylcholinesterase reactions to the cleft chemistry model

would allow further comparisons with earlier simulations and experiments concerning

NMJ processes from other investigations [55], [57].

The rise of terrorism has created an interest in the physiological consequences

when humans are exposed to neurotoxins, especially nerve gases developed for military

use, most of which are acetylcholinesterase inhibitors [85]-[93]. The process of

acetylcholinesterase inhibition has been extensively studied. However, the science of

regenerating the inhibited enzyme back to a functional state is advancing, and therapeutic

protocols which address acetylcholinesterase inhibition exist. The in vitro kinetic models

of this therapy are well established [94]-[99], but an effective therapy for living systems

will require investigation of models that reflect a structure closer to that of the living

systems. A model of the regeneration kinetics of acetylcholinesterase in the cleft using
the model and numerical methods elucidated in this research is a step closer to that goal.



APPENDIX

SOURCE CODE IN FORTRAN OF THE NUMERICAL

METHOD
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C ID Code
C Declaration of variables
C and data structures

DIMENSION u 1(0: 100001),
& u2(0:100001),unew(0: 100001

DIMENSION r(0: 100001),
& rh(0:100001),s(l:100000)

DIMENSION d(l:100001),
& arph(0: 1 0000 l),v(0: 100001)

DIMENSIONa(1: 100001),
& b(l:100001),c(l: 100001)

DOUBLE PRECISION ul,u2,
& cl,c2,da,rL,unew

DOUBLE PRECISION a,b,c,d,
& r,rh,beta,theta,arph,v,dt,dr

DOUBLE PRECISION L cleft,
& pi,
C Assignment of constants

N=IOO
nT=l;
dt=le-4
sigma=0.001
pi=3. 14 159265358979323846
rL=5.5E-5
L_cleft =0.55e-5
da=2.0D-9
theta=(3.0+sqrt(105.0))/12.0
dr=rL/(N+theta-1.0)
beta=dt/(dr*dr)
w=1.0
DO i=l,N
r(i)=(i-l)*dr+theta*dr
rh(i)=(i-0.5)*dr+theta*dr
ENDDO
rab=r( 1 )*theta/(rh( 1 )*(0.5 *theta+ 1 .0/3 .0))
cl=da*beta*rab*rh(l)
c2=da*beta

C initial condition
DOi=I5N-I
Ul(O=O-KOMi))

ENDDO
ul(N)=0.0
u2(N)=0.0

C Begin time iteration
nn=0

C Begin Thomas Algorithm
C(I)=(1.0+w)*cl
a(l)=2.0*r(l)+(l-0+w)*cl

b(l)=0.0
1 d(l)=(2.0*r(l)-(1.0-
& w)*cl)*ul(l)+(1.0-w)*cl*ul(2)

DO i=2,N-l
b(i)=(1.0+w)*c2*rh(i-l)
a(i)=2.0*r(0+(10+w)*c2*

& (rh(i-l)+rh(i))
c(i)=(l.0+w)*c2*rh(i)
d(i)=(1.0-w)*c2*rh(i-l)*ul

& (i-l)+(2.0*r(0-(10-w)*c2*rh(i-l)
& -(1.0-w)*c2*rh(i))*ul(i)
& +(1.0-w)*c2*rh(i)*ul(i+l)

ENDDO
c(N-l)=0.0
d(N-l)=d(N-l)+(1.0-w)*c2*

& rh(N-l)*u2(N)
afh(0)=0.0
DOi= 1,N-I
3F1?(0=e(0/^(0-?0*3f??(?))
ENDDO
v(0)=0.0
DOi= 1,N-I
v(i)=(d(i)+b(i)*v(i- 1 ))/(a(i)-b(i)*

& afh(i-l))
ENDDO
unew(N)=0.0
DOi= 1,N-I
m=N-i
unew(m)=afh(m)*unew(m+ 1 )+v(m)
ENDDO
DOi= 1,N-I
u2(i)=unew(i)
ENDDO

C Next time iteration
nn=nn+l
PRINT *,nn
IF(nn.EQ.nT)GOTO 4
DOi=I5N-I
ul(i)=u2(i)
ENDDO
GOTO 1

C Output
4 OPEN(unit=6,file='result 1 .dat')

DOi=I,N
write(6,1000)r(i),u2(i)

ENDDO
1000 FORMAT(fl8.10, el8.10)

END



C Main Program "3D Reaction
& Diffusion"

DIMENSION ul(0:201,-l:201, 1:201)
DIMENSION u2(0:20 1,-1:20 1,1:201)
DIMENSION u3(0:20 1 ,- 1 :20 1 , 1 :20 1 )
DIMENSION u4(0:201,-l:201,l:201)
DIMENSION u5(0:201,-l:201, 1:201)
DIMENSION ulave(0:201,

& -1:201,1:201)
DIMENSION u2ave(0:201,

& -1:201,1:201)
DIMENSION u3ave(0:201,

& -1:201,1:201)
DIMENSION u4ave(0:201,

& -1:201,1:201)
DIMENSION u5ave(0:201,

& -1:201,1:201)
DIMENSION u0(0:201)
DIMENSION constantl(0:201,

& -1:201,1:201)

DIMENSION constant2(0:201,
& -1:201,1:201)

DIMENSION constant3(0:201,
& -1:201,1:201)

DIMENSION ulnl (0:201,
& -1:201, l:201),uln2(0:201,-l:201, 1:201)

DIMENSION ulnext(0:201,
& -1:201,1:201)

DIMENSION u2next(0:201,
& -1:201,1:201)

DIMENSION u3next(0:201,
& -1:201,1:201)

DIMENSION u4next(0:201,
& -1:201,1:201)

DIMENSION u5next(0:201,
& -1:201,1:201)

DIMENSION error(0:20 1,-1:20 1,1:201)
DIMENSION r(0:201),rh(0:201),theta

& (-l:201),z( 1:201)
DIMENSION areasec(0:201,

& -1:201,1:201)
DIMENSION volumesec(0:201,

& -1:201,1:201)
DOUBLE PRECISION

& ul,u2,u3,rL,unew,ulnl,uln2,u4,u5
DOUBLE PRECISION

& u 1 next,u2next,u3next,u4next,u5next
DOUBLE PRECISION

& r,rh,betal ,beta2,beta3,dt,dr,dtheta,dz
DOUBLE PRECISION a,b,aa,bb
DOUBLE PRECISION

& thetal ,theta2,pi,u20,constantl ,constant2
DOUBLE PRECISION constant3
DOUBLE PRECISION dar,datheta,daz

DOUBLE PRECISION
& ckrl2,ckr21,errormax,error,rth,cl,c2

DOUBLE PRECISION
& ckr34,ckr43,ckr56,ckr65

DOUBLE PRECISION
& rklsl,rkls2,rkls3,rkls4

DOUBLE PRECISION
& rk2sl,rk2s2,rk2s3,rk2s4

DOUBLE PRECISION
& rk3sl,rk3s2,rk3s3,rk3s4

DOUBLE PRECISION
& rk4sl,rk4s2,rk4s3,rk4s4

DOUBLE PRECISION CHCl,sum 1
DOUBLE PRECISION

& ts 1 ,ts2,ts3,ts4,ts5,sumu 1 ,sumu2,sumu3
DOUBLE PRECISION sumu4,sumu5
DOUBLE PRECISION

& areasec,volumesec,psul,
& psu2,psu3,psu4,psu5

DOUBLE PRECISION
& ulave,u2ave,u3ave,
& u4ave,u5ave,ul initial

integer iout
parameter(iout= 1 000)
character*255 myfilename
number=0

C Time Loop Start
DO ifn=l,3 ! filenameindex
number= number+ 1
IF (ifh .EQ. 1) THEN
dar=0.7e-6
ENDIF
IF (ifh .EQ. 2) THEN
dar=3.5e-7
ENDIF
IF (ifh .EQ. 3) THEN
dar=4.0e-7
ENDIF
DOk= 1,Kz
DO j = 0, Jtheta
DO i = 0, Ir
ul(ij,k)=0.0
u2(ij,k)=0.0
u3(ij,k)=0.0
u4(ij,k)=0.0
u5(ij,k)=0.0
ulave(i,j,k)=0.0
u2ave(ij,k)=0.0
u3ave(ij,k)=0.0
u4ave(i,j,k)=0.0
u5ave(i,j,k)=0.0
constanti (ij,k)=0.0
constant2(ij,k)=0.0
constant3(i,j,k)=0.0
ulnl(ij,k)=0.0
uln2(ij,k)=0.0
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ulnext(i,j,k)=0.0
u2next(ij,k)=0.0
u3next(ij,k)=0.0
u4next(ij,k)=0.0
u5next(ij,k)=0.0
ENDDO
ENDDO
ENDDO

nT = 700000
C Chemical Reaction
C ul is A, u2 is R u3 is AR
C Time increament

dt=le-8
C Number of rings

Ir= 25
C Number of sectors

Jtheta=25
C Number of Disks

Kz=25
C pi value

pi=3. 14 159265358979323846
C Diffusion co-efficient along r

datheta=dar
daz=dar
ulinitial=1.55e-2
u20=1.6725e-002

C /(mole/litre) second
ckr56=2.0e4

C /second
C ckr65=5.0e3

ckr65=5.0e3
C /(mole/litre) second

ckrl2=3.0e7
C /second

ckr21=1.0e4
C /(mole/litre) second

ckr34=ckrl2
C /second

ckr43=ckr21
C Diffusion co-efficient along r
C datheta=2.0e-6
C Diffusion co-efficient along r
C daz=2.0e-6
C Radious of the cleft cm

rL=5.0e-5
C Thickness of cleft cm

rth=5.0e-6
C radial increament

dr=rL/Ir
C angular increament

dtheta=2.0*pi/Jtheta
C transverse increament

a= 1.0
b=0.5+sqrt(3.0)/3.0

aa=a/b
bb=a/b
thetal=sqrt(3.0)/3.0
theta2=sqrt(3.0)/3.0
dz=rth/(Kz- 1 .0+theta 1 +theta2)
betal=dt/(dr*dr)
beta2= dt/(dtheta*dtheta)
beta3= dt/(dz*dz)

C Axial vector
DO i = 0, Ir
r(i) = i*dr
ENDDO
DO i = 1, Ir
rh(i)=(i-l)*dr+0.5*dr
ENDDO

C Angular Vector
DO j = 0, Jtheta
thetaO)=j*dtheta
ENDDO

C Transverse Vector
DOk= 1,Kz
z(k) = thetal*dz+(k-l)*dz
ENDDO

C ul initial condition
DOk= 1,1
DO j = 0, Jtheta- 1
DO i =1, Ir-I
ul(ij,k)=ulinitial !0.8875e-2
ENDDO
ENDDO
ENDDO
DO k = ??,??
DO j = 0, Jtheta- 1
DO i = 0, Ir
u2(ij,k) = u20
ENDDO
ENDDO
ENDDO

C u3 initial condition
DOk= 1,Kz
DO j = 0, Jtheta- 1
DO i = 0, Ir
u3(i j,k) = 0.0
ENDDO
ENDDO
ENDDO

C Step 1
C Value at the outermost ring is known = 0

DOk= 1,Kz
DO j = 0,Jtheta- 1
ul(lrj,k) = 0.0
ENDDO
ENDDO
DOk= 1,Kz
DO i= 1,Ir-I
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11

C
1

&
&
&

&
&
&
&
&

u 1 (i,- 1 ,k)= u 1 (i,Jtheta- 1 ,k)
ul(i,Jtheta,k)=ul(i,0,k)
ENDDO
ENDDO
DOk= 1,Kz
DO i= 1,Ir
u2(i,-l,k)=ul(i,Jtheta-l,k)
u2(i,Jtheta,k)=ul(i,0,k)
ENDDO
ENDDO
DO k = 1,Kz
DO i= 1,Ir
u3(i,- 1 ,k)= u 1 (i,Jtheta- 1 ,k)
u3(i,Jtheta,k)=ul(i,0,k)
ENDDO
ENDDO
nn=0
DOk= 1,Kz
DO j = -l,Jtheta
DO i= 1,Ir
ulnl(ij,k) = ul(ij,k)

ENDDO
ENDDO
ENDDO
Zero Point Solution
DO k= 1,Kz
sum 1=0.0
DO j = O, Jtheta- 1
sum 1 =(sum 1 +u 1 ( 1 j ,k))
ENDDO
uO(k)=suml /Jtheta
ENDDO
It=O
DOk= 1,Kz
DO j = O, Jtheta- 1
ulnl(Oj,k)=uO(k)
ul(Oj,k) =uO(k)
ENDDO
ENDDO
1 RK loop
DOk= 1,Kz
DO j = - 1 , Jtheta
DO i = O, Ir

rklsl=dt*
((-2.0*ckrl2*(ulnl(i,j,k)
+ul(ij,k))/2.0)*u2(ij,k) +
ckr21*(u3(ij,k)))

rkls2=dt*
((2.0*ckrl2*(ulnl(i,j,k)
+ul(ij,k))/2.0)*u2(i,j,k)
-ckr21*(u3(i,j,k))
-ckr34*((ulnl(ij,k)+
ul(ij,k))/2.0)*u3(i,j,k)

& + 2.0*ckr43*u4(i,j,k))
rkls3= dt*(ckr34*((ulnl(i,j,k)

& +ul(ij,k))/2.0)*u3(ij,k)
& - 2.0*ckr43*u4(i,j,k)
& - ckr56*u4(ij,k)+ ckr65*u5(i,j,k) )

rkls4= dt*(ckr56*u4(ij,k)
& -ckr65*u5(i,j,k) )

rk2sl=dt*((-2.0*ckrl2*
& (ulnl(ij,k)+ul(ij,k))
& /2.0)*(u2(i,j,k)+rklsl/2.0)
& +ckr21*(u3(i,j,k)+rklsl/2.0))

rk2s2=dt*((2.0*ckrl2*
& (ulnl(ij,k)+ul(ij,k))
& /2.0)*(u2(ij,k)+rkls2/2.0)
& -ckr21*(u3(ij,k)+rkls2/2.0)
& -ckr34*((ulnl(i,j,k)+ul(ij,k))
& /2.0)*(u3(i,j,k)+rkls2/2.0)
& + 2.0*ckr43*(u4(ij,k)+rkls2/2.0))

rk2s3= dt*(ckr34*((ulnl(i,j,k)
& +ul(i,j,k))/2.0)*(u3(i,j,k) +rkls2/2.0)
& -2.0*ckr43*(u4(i,j,k)+rkls2
& /2.0) - ckr56*(u4(i,j,k)+rkls2/2.0)
& +ckr65*(u5(ij,k)+rkls2/2.0))

rk2s4= dt*(ckr56*(u4(i,j,k)+rkls2
& /2.0) -ckr65*(u5(i,j,k)+rkls2/2.0) )

rk3sl=dt*((2.0*ckrl2*(ulnl(ij,k)
& +ul(i,j,k))/2.0)*(u2(ij,k) +rk2sl/2.0)
& + ckr21*(u3(ij,k)+rk2s 1/2.0))

rk3s2=dt*((2.0*ckrl2*(ulnl(ij,k)+ul(ij,k))
& /2.0) *(u2(ij,k) +rk2s2/2.0)
& - ckr2 1 *(u3(i,j,k)+rk2s2/2.0)
& - ckr34*((ulnl(ij,k)+ul(i,j,k))/2.0)*
& (u3(ij,k)+rk2s2/2.0)
& + 2.0*ckr43*(u4(i,j,k)+rk2s2/2.0) )

rk3s3= dt*(ckr34*((ulnl(i,j,k)
& +ul(ij,k))/2.0)*(u3(ij,k) +rk2s3/2.0)
& - 2.0*ckr43*(u4(ij,k)+rk2s3/2.0)
& - ckr56*(u4(i,j,k)+rk2s3/2.0)
& + ckr65*(u5(ij,k)+rk2s3/2.0) )

rk3s4= dt*(ckr56*(u4(ij,k)+rk2s4
& /2.0) -ckr65*(u5(i j,k)+rk2s4/2.0) )

rk4sl=dt*((-2.0*ckrl2*(ulnl(ij,k)+
& ul(ij,k))/2.0)*(u2(ij,k)
& +rk3sl) + ckr21*(u3(ij,k)+rk3sl))

rk4s2= dt*((2.0*ckrl2*
& (ulnl(ij,k)+ul(i,j,k))/2.0)
& *(u2(ij,k)+rk3s2)
& -ckr21*(u3(ij,k)+rk3s2)
& -ckr34*((ulnl(ij,k)+ul(ij,k))
& /2.0)*(u3(ij,k)+rk3s2)
& + 2.0*ckr43*(u4(ij,k)+rk3s2))

rk4s3= dt*(ckr34*((ulnl(ij,k)
& +ul(ij,k))/2.0)*(u3(i,j,k) +rk3s3)
& - 2.0*ckr43*(u4(ij,k)+rk3s3)
& - ckr56*(u4(ij,k)+rk3s3)
& + ckr65*(u5(ij,k)+rk3s3) )
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rk4s4=dt*(ckr56*(u4(ij,k)+rk3s4)
& -ckr65*(u5(i,j,k)+rk3s4))

u2next(ij,k)=u2(i,j,k)+(rklsl+2.0*rk2sl
& +2.0*rk3sl+rk4sl)/6.0

u3next(i,j,k)=u3(i,j,k)+(rkls2+2.0*rk2s2
& +2.0*rk3s2+rk4s2)/6.0

u4next(i,j,k)=u4(i,j,k)+(rkls3+2.0*rk2s3
& +2.0*rk3s3+rk4s3)/6.0

u5next(i,j,k)=u5(i,j,k)+(rkls4+2.0*rk2s4
& +2.0*rk3s4+rk4s4)/6.0

ENDDO
ENDDO
ENDDO
DOk= 1,Kz
DO j = - 1 , Jtheta
DO i = O, Ir
constanti (i j,k)= ( u2next(ij,k)

& + u2(i,j,k) )/2.0
ENDDO
ENDDO
ENDDO
DOk= 1,Kz
DO j = -1, Jtheta
DO i = O, Ir
constant2(i,j,k)= ( u3next(i j,k)

& + u3(ij,k) )/2.0
ENDDO
ENDDO
ENDDO
DOk= 1,Kz
DO j = -l, Jtheta
DO i= 0,Ir
constant3(iJ,k)= ( u4next(i,j,k)

& + u4(ij,k) )/2.0
ENDDO
ENDDO
ENDDO
k=l
DO j=0, Jtheta- 1
DO i =1, Ir-I
CHC 1 = (2.0*r(i)+betal *dar*(rh(i+l )+rh(i)))

& + 2.0*beta2*datheta/r(i)+beta3*r(i)
& *daz*aa
& + 2.0*dt*r(i)*ckrl2*constantl(i,j,k)
& + 1.0*dt*r(i)*ckr34*constant2(i,j,k)

uln2(ij,k)=( betal*dar*rh(i+l)*ulnl
& (i+lj,k&)+betal*dar*rh(i)*ulnl(i-l,j,k)
& +beta2*datheta/r(i)*(ulnl(ij+l,k)
& +ulnl(ij-l,k))+aa*beta3*r(i)*daz
& *ulnl(ij,2)
& +betal*dar*(rh(i+l)*(ul(i+lj,k)
& -ul(i,j,k))-rh(i)*(ul(ij,k)-ul(i-lj,k)))
& +beta2*datheta/r(i)*(ul(ij+l,k)
& -2.0*ul(i,j,k)+ul(i,j-l,k))
& +aa*(beta3*daz*r(i))*(ul(ij,2)
& -ul(ij,k))-2.0*dt*r(i)*ckrl2*

& constantl(i,j,k)*ul(i,j,k)
& +2.0*dt*r(i)*ckr2 1 *constant2(i,j,k)
& -1 .0*dt*r(i)*ckr34*constant2(ij,k)
& *ul(i,j,k)
& +4.0*dt*r(i)*ckr43*constant3(i,j,k)
& +2.0*r(i)*ul(i,j,k))*l/CHCl

ENDDO
ENDDO
k=Kz
DO j = 0, Jtheta- 1
DO i =1, Ir-I
CHCl= (2.0*r(i)+betal*dar*(rh(i+l)

& +rh(i)))
& + 2.0*beta2*datheta/r(i)+l .0*beta3*r(i)
& *daz*bb + 2.0*dt*r(i)*ckrl2*constantl
& (i j,k)+l .0*dt*r(i)*ckr34*constant2(ij,k)

uln2(ij,k)=(betal*dar*rh(i+l)*ulnl
& (i+lj,k)+betal*dar*rh(i)*ulnl(i-lj,k)
& +beta2*datheta/r(i)*(u In 1 (ij+ 1 ,k)
& +ulnl(ij-l,k))+bb*beta3*r(i)*daz
& *ulnl(ij,k-l)
& +betal*dar*(rh(i+l)*(ul(i+lj,k)
& -ul(ij,k)) -rh(i)*(ul(i,j,k)-ul(i-l,j,k)))
& +beta2*datheta/r(i)*(ul(ij+l,k)
& -2.0*ul(i,j,k)+ul(i,j-l,k))
& -bb*beta3*daz*r(i)*(ul(i,j,k)
& -ul(i,j,k-l))
& -2.0*dt*r(i)*ckrl2*constantl(ij,k)
& *ul(i,j,k)+2.0*dt*r(i)*ckr21
& *constant2(i,j,k)
& -1.0*dt*r(i)*ckr34*constant2(ij,k)
& *ul(i,j,k)+4.0*dt*r(i)*ckr43
& *constant3(i,j,k)
& +2.0*r(i)*ul(ij,k) )*1/CHC1

ENDDO
ENDDO
DO k = 2,Kz-l
DO j = O, Jtheta- 1
DO i =1, Ir-I
CHCl= (2.0*r(i)+betal*dar*(rh(i+l)

& +rh(i)))
& + 2.0*beta2*datheta/r(i)+2.0*beta3
& *r(i)*daz + 2.0*dt*r(i)*ckrl2
& *constantl(ij,k)
& + 1.0*dt*r(i)*ckr34*constant2(ij,k)

uln2(ij,k)=( betal*dar*rh(i+l)
& *ulnl(i+lj,k)+betal*dar*rh(i)
& *ulnl(i-lj,k)
& +beta2*datheta/r(i)*(ulnl(ij+l,k)
& +ulnl(ij-l,k))
& +beta3*r(i)*daz*(ulnl(ij,k+l)+
& ulnl(ij,k-l)) + betal*dar*(rh(i+l)
& *(ul(i+l,j,k)-ul(i,j,k))
& -rh(i)*(ul(i,j,k)-ul(i-l,j,k)))

& +beta2*datheta/r(i)
& *(ul(ij+l,k>2.0*ul(i,j,k)+ul(ij-l,k))
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& +beta3*daz*r(i)
& *(ul(ij,k+l)-2.0*ul(ij,k)+ul(i,j,k-l))
& -2.0*dt*r(i)*ckrl2*constantl(ij,k)
& *ul(ij,k)+2.0*dt*r(i)*ckr21
& *constant2(ij,k)
& -1 .0*dt*r(i)*ckr34*constant2(i,j,k)
& *ul(ij,k)+4.0*dt*r(i)*ckr43
& *constant3(i,j,k)
& +2.0*r(i)*ul(ij,k) )*1/CHC1

ENDDO
ENDDO
ENDDO
DOk= 1,Kz
DO i =1, Ir-I
uln2(i,-l,k)= uln2(i,Jtheta-l,k)
u 1 n2(i,Jtheta,k)=u 1 n2(i,0,k)
ENDDO
ENDDO
DOk= 1,Kz
sum 1=0.0
DO j = 0, Jtheta-1
sum 1 =(sum 1 +u 1 n2( 1 j ,k))
ENDDO
uO(k)=suml/Jtheta
ENDDO
DOk= 1,Kz
DO j = 0, Jtheta-1
uln2(0j,k)=u0(k)

ENDDO
ENDDO

C Find maximum error
DOk= 1,Kz
DO j = 0, Jtheta-1
DO i =1, Ir-I
error(i j,k)=abs(ul n2(i,j,k)-u 1 ? 1 (i,j,k))
ENDDO
ENDDO
ENDDO
errormax=0.00000001
DO i= 1,Ir-I
DO j = 0, Jtheta-1
DO k = 1,Kz
IF (error(ij,k) .GT. errormax) then

erroimax = error(ij,k)
ENDIF
ENDDO
ENDDO
ENDDO
IF (errormax .LT. 1 .Oe-6) GOTO 2
DO k=l,Kz
DO j = -l, Jtheta
DO i =1, Ir-I

ulnl(ij,k)=uln2(ij,k)
ENDDO

ENDDO
ENDDO
It=It+ 1
GOTOl

2 nn=nn+l
DOk= 1,Kz
DO j = -l, Jtheta
DO i= 1,Ir-I
ul(ij,k)=uln2(ij,k)
ENDDO
ENDDO
ENDDO
DOk= 1,Kz
DO j = -1, Jtheta
DO i = O, Ir
u2(i j,k) = u2next(ij,k)
u3(i j,k) = u3next(ij,k)
u4(ij,k) = u4next(i,j,k)
u5(ij,k) = u5next(ij,k)
ENDDO
ENDDO
ENDDO
PRINT *,nn

C Avarageforul start
DO k=l,Kz
DO i=l,Ir
DO j=0,Jtheta-1
IF (i .EQ. 1) THEN
IF (Q .GE. O ) .AND. (j .LT. Jtheta-1 ))

& THEN
areasec(i,j,k)=( 1 .0/2.0)*dtheta*dr*dr
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*dz

C u2(i,Jtheta,k)=u2(i,0,k)
ulave(ij,k) = ((ul(0j,k) + ul(ij,k)

& + ul(ij+l,k))/3.0) *areasec(i,j,k)*dz
ENDIF
IF(j .EQ. Jtheta-1 ) THEN
areasec(ij,k)=(1.0/2.0)*dtheta*dr*dr
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*dz
ulave(ij,k) = ((ul(0j,k) + ul(ij,k)

& + ul(i,0,k))/3.0) *areasec(ij,k) *dz
ENDIF
ENDIF
IF(i.GT. I)THEN
IF (Q .GE. O ) .AND. (j .LT. Jtheta-1 ))

& THEN
areasec(ij,k)=(1.0/2.0)*dtheta*dr*dr*(2

& *i-l)
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)*dz
ulave(i,j,k) = ((ul(i-lj,k) + ul

& (i-lj+l,k) + ul(ij,k)+ul(ij+l,k))
& /4.0) *areasec(ij,k)*dz

ENDIF
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IF (J .EQ. Jtheta-l ) THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)
volumesec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)*dz
ulave(ij,k) = ((ul(i-l j,k) + ul

& (i- 1,0,1c)+ ul(ij,k)+ ul(i,0,k))/4.0)
& *areasec(ij,k) *dz

ENDIF
ENDIF
ENDDO
ENDDO
ENDDO

C Avarage for ul End
C Ul End Here!!!!!!!!!!!!
C Time avarage for u2,u3,u4,u5 start
C

DO k=Kz,Kz
DO i=l,Ir
DO j=0,Jtheta-l
IF(LEQ. I)THEN
IF ((j .GE. 0 ) .AND. (j .LT. Jtheta-l ))

& THEN
areasec(ij,k)=(1.0/2.0)*dtheta*dr*dr
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*dz
u2ave(ij,k) = ((u2(0j,k) + u2(ij,k)

& + u2(ij+l,k))/3.0) *areasec(i,j,k)
& *dz*1.0

u3ave(ij,k) = ((u3(0j,k) + u3(i,j,k)
& +u3(ij+l,k))/3.0)
& * areasec(ij ,k)* dz* 1 .0

u4ave(i,j,k) = ((u4(0j,k)
& + u4(ij,k) + u4(ij+l,k))/3.0)
& * areasec(ij ,k) * dz* 1 .0

u5ave(ij,k) = ((u5(0j,k) + u5(i,j,k)
& + u5(ij+l,k))/3.0) *areasec(i,j,k)
& *dz*1.0

ENDIF
IF G EQ. Jtheta-l ) THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*dz
u2ave(i,j,k) = ((u2(0j,k) + u2(i,j,k)

& + u2(i,0,k))/3.0) *areasec(ij,k) *dz* 1 .0
u3ave(ij,k) = ((u3(0j,k) + u3(ij,k)

& +u3(i,j+l,k))/3.0)
& *areasec(i,j,k)*dz* 1 .0

u4ave(ij,k) = ((u4(0j,k) + u4(ij,k)
& + u4(ij+l,k))/3.0)*areasec(i,j,k)*dz*1.0

u5ave(ij,k) = ((u5(0j,k) + u5(ij,k)
& + u5(ij+l,k))/3.0)*areasec(i,j,k)*dz*1.0

ENDIF
ENDIF
IF(LGT. I)THEN
IF (Q .GE. 0 ) .AND. (j .LT. Jtheta-l ))

& THEN
areasec(ij,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)
volumesec(i,j ,k)=( 1 . 0/2 .0)* dtheta* dr* dr*

& (2*i-l)*dz
u2ave(ij,k) = ((u2(i-l,j,k) + u2

& (i-l,j+l,k) + u2(ij,k)+ u2(i,j+l,k))
& /4.0) *areasec(ij,k)
& *dz*1.0

u3ave(ij,k) = ((u3(i-lj,k) + u3
& (i-lj+l,k) + u3(ij,k)+ u3(ij+l,k))
& /4.0) *areasec(i,j,k)
& *dz*1.0

u4ave(ij,k) = ((u4(i-l,j,k) + u4
& (M j+l,k) + u4(ij,k)+ u4(i,j+l,k))
& /4.0) *areasec(ij,k)
& *dz*1.0

u5ave(ij,k) = ((u5(i-l,j,k) + u5
& (i-l,j+l,k) + u5(ij,k)+ u5(ij+l,k))
& /4.0) *areasec(ij,k)
& *dz*1.0

ENDIF
IF(J-EQ. Jtheta-l ) THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)*dz
u2ave(ij,k) = ((u2(i-l j,k) + u2(i-l,0,k)

& + u2(i,j,k)+ u2(i,0,k))/4.0)
& *areasec(ij,k)*dz* 1 .0

u3ave(ij,k) = ((u3(i-lj,k) + u3
& (i-lj+l,k) + u3(ij,k)+
& u3(i,j+l,k))/4.0)*areasec(ij,k)
& *dz*1.0

u4ave(ij,k) = ((u4(i-l j,k) + u4
& (i-l,j+l,k) + u4(ij,k)+ u4(ij+l,k))
& /4.0) *areasec(ij,k)
& *dz*1.0

u5ave(ij,k) = ((u5(i-l,j,k) + u5
& (i-1 j+l,k)+ u5(ij,k)+ u5(i,j+l,k))
& /4.0) *areasec(ij,k)
& *dz*1.0

ENDIF
ENDIF
ENDDO
ENDDO
ENDDO

C Time avarage for u2 End
C Volume start here Volume start

DO k=l,Kz
DO i=l,Ir
DO j=0,Jtheta-l
IF(LEQ. I)THEN
IF ((j .GE. 0 ) .AND. (j .LT. Jtheta-l ))

& THEN
areasec(ij,k)=(1.0/2.0)*dtheta*dr*dr
volumesec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*dz
ENDIF
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IF (j .EQ. Jtheta-1 ) THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr
volumesec(ij,k)=(1.0/2.0)*dtheta*dr*dr*dz
ENDIF
ENDIF
IF(LGT. I)THEN
IF ((J .GE. O ) .AND. (j .LT. Jtheta-1 ))

& THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)
volumesec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)*dz
ENDIF
IF (j .EQ. Jtheta-1 ) THEN
areasec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)
volumesec(i,j,k)=(1.0/2.0)*dtheta*dr*dr*

& (2*i-l)*dz
ENDIF
ENDIF
ENDDO
ENDDO
ENDDO

C
C Volume End

if (mod(nn,iout).eq.O) then
sumu 1=0.0
sumu2=0.0
sumu3=0.0
sumu4=0.0
sumu5=0.0
cvol =0.0
DO k=l,Kz
DO i=l,Ir
DO j=0,Jtheta-1
sumu 1 =u 1 ave(ij,k)+sumu 1
cvol=volumesec(ij,k)+cvol
ENDDO
ENDDO
ENDDO

DO k=Kz,Kz
DO i=l,Ir
DO j=0,Jtheta-1
sumu2=u2ave(i,j,k)+sumu2
sumu3=u3ave(i,j,k)+sumu3
sumu4=u4ave(i,j ,k)+sumu4
sumu5=u5ave(ij,k)+sumu5
ENDDO
ENDDO
ENDDO

C open (file='testl.dat', unit=number)
write(myfilename, 1 00) number

100 format('file_',i3.3,'.dat')
open (file=myfilename, unit=number)

write(number,1000) dt*nn,sumul,
& sumu2,sumu3,sumu4,sumu5,
& sumul*6.02e23*1.0e-
& 3,sumu2*6.02e23*1.0e-
& 3,sumu3*6.02e23*1.0e-3,
& sumu4*6.02e23*l.?e-
? 3,sumu5*6.02e23*1.0e-3,
& psul,psu2,psu3,psu4,psu5
1000 FORMAT(el8.10,el8.10,el8.10,el8.10,
& el8.10,el8.10,
& el8.10,el8.10,el8.10,
& el8.10,el8.10,
& el8.10,el8.10,el8.10,el8.10,el8.10)
C IF(nn.EQ.nT)GOTO 4

endif

IF(nn.EQ.nT) CLOSE(number)
IF(nn.EQ.nT) GOTO 4

GOTO 1 1
C Time Loop END
4 ENDDO

C Program END Statement
END
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