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ABSTRACT

Interface problems arise when dealing with physical problems composed of differ-
ent materials or of the same material at different states Because of the irregularity
along interfaces, many common numerical methods do not work, or work poorly, for
interface problems Matrix-coefficient elliptic and elasticity equations with oscillatory
solutions and sharp-edged interfaces are especially complicated and challenging for
most existing methods An accurate and efficient method 1s desired

In 1999, the boundary condition capturing method was proposed to deal with
Poisson equations with iterfaces whose variable coefficients and solutions may be
discontinuous In 2003, a weak formulation was derived Built on previous work that
solves elliptic interface problems with two domains 1n two dimensions, this disserta-
tion 1mproves the accuracy in the presence of sharp-edged mterfaces and extends to
elasticity interface problems with two domains in two dimensions, elliptic interface
problems with three domains in two dimensions, and elliptic interface problems with
two domains 1n three dimensions

The method used 1n this dissertation is a non-traditional finite element method
The test function basis 1s chosen to be the standard finite element basis independent
of the interface, and the solution basis 1s chosen to be piecewise linear, satisfying the
jump conditions across the interface These two bases are different, which leads to

the non-symmetric matrix generated by this method, but the resulting linear system

11



W
of equations 1s shown to be positive definite under certain assumptions in all the four
topics mentioned 1n this dissertation This method has matrix coefficients and lower-
order terms, and uses the non-body-fitting grid, which makes 1t easy to deal with
different kinds of interfaces, like the examples “Star”, “Happy face”, “Chess board”,
to name a few

The methods used 1n this dissertation solve the non-smooth interface case and
promuse results for oscillatory solutions Numerical experiments show that this method

1s second-order accurate in the L norm for piecewise smooth solutions



APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to
reproduce, by appropriate methods, upon request, any or all portions of this Dissertation It 1s understood
that “proper request” consists of the agreement, on the part of the requesting party, that said reproduction
1s for his personal use and that subsequent reproduction will not occur without written approval of the
author of this Dissertation Further, any portions of the Dissertation used m books, papers, and other
works must be appropriately referenced to this Dissertation

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions of this Dissertation

07 S
Author (//; //7’/{; %//”/M%/% ’
/ /
Date ﬂ?/ﬂé/) V//

GS Form 14
(5/03)



TABLE OF CONTENTS

ABSTRACT
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
ACKNOWLEDGEMENTS
CHAPTER 1 INTRODUCTION
11 Problems and Formulations
12 The Current Method
13 Outhne of This Dissertation
CHAPTER 2 PREVIOUS WORK
CHAPTER 3 2-D ELLIPTIC PROBLEM WITH TWO DOMAINS
31 Equations and Weak Formulations
32 Numerical Method
33 Numerical Experiments
CHAPTER 4 2-D ELASTICITY PROBLEM WITH TWO DOMAINS
41 The Weak Formulations
42 Numerical Method
4 3 Numerical Experiments

CHAPTER 5 2-D ELLIPTIC PROBLEM WITH THREE DOMAINS

V1

11

V111

X111

XV

11

11

14

23

38

38

41

44

39



51 Equations and Weak Formulations
52 Numerical Method
53 Numerical Experiments
CHAPTER 6 3-D ELLIPTIC PROBLEM WITH TWO DOMAINS
61 Equations and Weak Formulations
6 2 Numerical Method
63 Numerical Experiments
CHAPTER 7 CONCLUSIONS AND FUTURE WORK

BIBLIOGRAPHY

Vil

59

62

67

75

75

77

81

91

92



Table 31

Table 3 2

Table 3 3

Table 3 4

Table 35

Table 3 6

Table 37

Table 3 8

Table 39

Table 3 10

Table 3 11

Table 4 1

Table 4 2

Table 4 3

Table 4 4

Table 4 5

Table 5 1

Table 5 2

Table 5 3

LIST OF TABLES

Star Results of the new developed method

Star Results using the method described in [39)]
Example taken from [22]

Example taken from [17]

Chess board Results of the new developed method
Chess board Results using the method described 1 [15]
Singular point on the interface in two dimensions
Happy face without lower-order terms

Happy face without lower-order terms in [15]
Happy face with lower-order terms

Conclusion of numerical experiments

Circle shape interface

Face shape interface

Star shape interface

Singular point on the interface

Special form of coefficients

Interface with the shape of two circles

Interface with the shape of an eclipse

Two circles touching

V11l

28

28

29

31

32

33

34

35

36

37

37

43

50

53

56

98

69

71

72



Table 5 4

Table 6 1

Table 6 2

Table 6 3

Table 6 4

Table 6 5

Table 6 6

Interface with the shape of a star in a circle
Intersection of two balls

Intersection of three balls

Intersection of four balls

Example of three-dimensional problems Two balls 1
Example of three-dimensional problems Two balls 2

Singular point on the interface in three dimensions

1X

74

83

85

86

87

89

90



Figure 3 1
Figure 3 2
Figure 3 3
Figure 3 4
Figure 3 5
Figure 3 6
Figure 3 7
Figure 3 8
Figure 3 9
Figure 3 10
Figure 3 11
Figure 3 12
Figure 3 13
Figure 3 14
Figure 3 15
Figure 4 1
Figure 4 2
Figure 4 3

Figure 4 4

LIST OF FIGURES

A unmiform triangulation
The regular cell

The nterface cell Case 1
The ghost pomnt

The nterface cell Case 2
Quadrature rule

Star shape mnterface Case a
Star shape mnterface Case b
Star shape interface Case ¢
Example taken from [22]

Example taken from [17]

Interface with the shape of a chess board

A singular point at (0, 0)

Happy face without lower-order terms

Happy face with lower-order terms

Setup of the problem with a uniform triangulation
The solution u; with a smooth circular interface
The solution us with a smooth circular interface

The solution u; with a “Happy face” interface

15

17

17

18

20

21

26

27

27

29

30

31

33

35

37

40

47

47

49



Figure 4 5
Figure 4 6
Figure 4 7
Figure 4 8

Figure 4 9

Figure 4 10

Figure 4 11
Figure 51
Figure 5 2
Figure 5 3
Figure 54
Figure 5 5
Figure 5 6
Figure 5 7
Figure 6 1
Figure 6 2
Figure 6 3
Figure 6 4
Figure 6 5
Figure 6 6
Figure 6 7
Figure 6 8

Figure 6 9

The solution uy; with a “Happy face” interface
The solution u; with a “Star” interface

The solution uy with a “Star” nterface

The solution u; with a singular pomnt on the interface

The solution uy; with a singular point on the interface

The solution u; with coefficients of special form
The solution uy with coefficients of special form
A uniform triangulation

One triangle cell

Interface triangle A belongs to A

Interface with the shape of two circles

Interface with the shape of an eclipse

Two circles touching

Interface with the shape of a star in a circle
Setup of the problem

Cube cells of three-dimensional problems
Tetrahedralization of three-dimensional problems
Case 1 The mterface segment 1s a triangle
Case 2 The mnterface segment 1s a polygon
Intersection of two balls

Intersection of three balls

Intersection of four balls

Example of three-dimensional problems Two balls 1

X1

50

52

53

55

95

57

o7

60

63

65

69

70

72

74

76

78

78

79

79

83

84

85

87



Figure 6 10 Example of three-dimensional problems Two balls 2

Figure 6 11 Singular point on the interface in three dimensions

X1

88

90



<

Of

o0

r

(u,v) or u v

Yu

NOMENCLATURE

Whole domain

Closure of the domain
Subdomain

Boundary of the domain

Interface

n

u v= Z(UWZ)

1=1
VU = (aluv a2ua 3 anu)T

n

vV u= Z(@ul)

1=1

{u w1s defined on 2, and / udr < oo}
Q

{u u and Vu belong to L*(Q)}

{ue H'Y(Q) wu =0 on 00}

|2lleo = maz{|z:l, |zal, ,|2al}

1 nQ
Xa =
0 otherwise

Interface segment 1in two dimensions
Interface segment 1n three dimensions

Interface cell in two dimensions

X111



A

Interface cell in three dimensions

level-set function

v

n = ——— 18 a unit normal vector

| v 4l
h 1s the grid size

X1v



ACKNOWLEDGEMENTS

On the completion of my dissertation, I would like to take this opportunity to
thank my teachers, my family, and my friends

I especially appreciate the guidance of my advisor, Dr Songming Hou, for his
constant encouragement and guidance during my Ph D program Dr Hou provided
generous help to me both i my life and in research  Without his precious advice and
suggestions, I would not have today’s achievement

I am also grateful to the teachers in the Department of Mathematics and Statistics,
who gave me comprehensive knowledge during the past three academic years I also
appreciate the feed-back from my dissertation committee members

My gratitude also goes to my beloved family Through these years, they have been
standing behind me, sparing no effort to support me, giving me loving consideration
and great confidence

Finally, but not lastly, I would like to thank my friends, especially Wer Wang,
who gave me a lot of help to work out my problems during the difficult course of the

dissertation, and encouraged me a lot 1n the three years of study here

XV



CHAPTER 1

INTRODUCTION

1 1 Problems and Formulations

In the physical world, there are many problems whose solutions are separated by
mterfaces Determining the flow pattern of blood in the heart that 1s separated by
heart valves, or finding the electric potential of a macromolecule that 1s infused into
an 1onic solvent (e g water) are two examples of such problems [7] This kind of
problem 1s called an interface problem Interface problems have wide application 1n
flmd dynamics, biomathematics, and material science among other fields

In this dissertation, the focus 1s on elliptic and elasticity interface problems For

elliptic problems, the partial differential equation 1s

~-V (B(z) vulz)) = f(z), z€Q\T, (11)
with jump conditions
[ it = @) - 0 (0) = ata)
(12)
(B u) nlp(z)=n (8%(z) vuf(z)) —n (67(z) vu(z)) = b(z),



For elasticity problems, the partial differential equation 1s

=V (Bi(z)Vui(z)) =V (B2(2)Vua(z)) = fi(2),
zeQ\l, (14

=V (B3(z)Vur(2)) =V (Ba(2)Vuz(x)) = fa(),

with jump conditions

(

[ (2) = uf (z) — v (z) = m(2),

[ualy (z) = ug

(z) = uy (z) = az(z),
n (87 (2)Vuf (z) + B3 (z)VuF (z))—
n (Br (2)Vuy (z) + B; (2) Vi (z)) = bi(2),

no (B3 (2)Vui (2) + B7 (2)Vug (2))-

| 7 (85 (2)Vuy (2) + By (2) Vg (2)) = ba(z),

and boundary conditions

u1(z) = g1(2),
x € 0f) (16)

uz(z) = g2(),

In electrostatics, for example, 8 represents the dielectric coefficient It 1s about
2 1n a macromolecule, 80 in water f represents the charge density Solving the
interface problem gives the electric potential u In material science, u represents the
potential or the pressure, and § 1s about 1 for air, 12 — 13 for sihcon Usually, the
balance laws across mterfaces bring out the jump conditions (7]

Since an 1wrregular domain can be embedded into a regular domain, the original
boundary condition can be changed to jump conditions, and a boundary value prob-
lem for an irregular domain can be converted into an interface problem for a regular

domain [7]



1 2 The Current Method

This dissertation further generalizes the method mntroduced 1n [15, 16] A finite
element formulation was used to solve the elliptic and elasticity interface problems
The theorems in [15] are generalized 1n this dissertation and proofs are provided It
was also proved that the resulting linear system 1s (unsymmetric) positive definite 1if
B 1s positive definite and lower-order terms are not present The numerical results
show that this method is second-order accurate in the L* norm for piecewise smooth
solutions

The 1dea of solving elliptic and elasticity interface problems is shown 1n the fol-
lowing steps
(1) Set up the partition of the domain In two-dimensional models, the whole domain
1s cut 1nto right triangles In three-dimensional models, the whole domain 1s cut into
similar tetrahedrons
(2) On the interface cells, locate the end points of the interface segment In two
dimensions, for the case of two domains, the interface segment 1s a straight line, for
the case of three domains, the interface segment can either be one straight line or
three straight lines connected at one point The interface segment 1s denoted by I'%
In three dimensions, the interface segment would be a triangle or a polygon, and 1s
denoted by I'"* The locations of the interface segments can be calculated from the
level-set function ¢ = ¢(x,,y,) The jump condition a 1s defined at these end points,

and another jump condition b 1s defined at the center point of the interface segment



(3) Use the jump conditions a and b to calculate the numerical solution at end points
on the interface segment For elliptic interface problems, the numerical solution at
end points should be the linear combination of the jump condition values mentioned
above and the values of interface cell vertices For elasticity interface problems, 1t 1s a
little more complicated than the elliptic case Because there are two solutions defined
on each nterface cell, the number of jump conditions and the number of vertices
would double

(4) Calculate the integration on the left hand side of Equations 11 and 14 on each
cell For a regular cell, 1t would be easy to integrate because all the functions are
supposed to be continuous on this cell For an interface cell, if 1t 1s separated into two
different subdomains by the interface, the integration consists of two different func-
tional integrations If the interface cell 1s separated into three different subdomains
by the interfaces, the integration consists of three different functional integrations In
order to make this method more accurate, the Gaussian quadrature rule 1s used for
integration 1n this dissertation

(5) Set up the system matrix

(6) Calculate the integration on the right hand side of Equations 11 and 1 4 on each
cell Use the same technique as above

(7) Solve the linear system of equations Because the system matrix 1s non-symmetric,
the biconjugate gradient stabilized method 1s used 1n this dissertation

(8) Draw the figure and analyze the result



1 3 Outhine of This Dissertation

The study of elliptic and elasticity interface problems has a long history In
Chapter 2, the main previous work 1n this field 1s introduced

Chapter 3 builds on the method 1n {15] A more accurate finite element method 1s
proposed to solve elliptic equations with sharp-edged interfaces with 8 being uniformly
elliptic (therefore positive definite) and lower-order terms present Experimental re-
sults show that the order of accuracy for sharp-edged interfaces was improved from
0 8th to close to second order

In Chapter 4, the numerical method 1n [16] 1s extended to solve the elasticity prob-
lem with sharp-edged interfaces The method 1s simpler compared to that developed
in [12] and 1t can be applied for more general problems since the (3, are allowed to
be matrices Also, the proof of the positive defimite property of the system matrix 1s
provided, and numerical results are second-order accurate

Solving the elliptic problem with three domains 1s a new and challenging work In
Chapter 5, this method 1s used to deal with three-domain problems The appearance
of the triple junction point 1s a new challenge The method 1s extended and numerical
results demonstrate near second-order accuracy for piecewise smooth solutions

In Chapter 6, this method 1s extended to solve the three-dimensional elliptic prob-
lem with two domains Three-dimensional problems are always more complicated,and
solving 1t accurately would be a big challenge However, this method can deal with
three dimensions simply and accurately All the results can achieve second-order

accuracy



CHAPTER 2

PREVIOUS WORK

Although the importance of elliptic and elasticity interface problems has been
well recogmzed 1n a variety of disciplines, designing highly efficient methods for these
problems 1s a difficult job because of the low global regularity of the solution Since
1977, after the pioneering work of Peskin [30], much attention has been paid to the
numerical solution of elliptic interface equations on regular Cartesian grids In many
studies, simple Cartesian grids are preferred In this way, the complicated procedure
of generating an unstructured grid can be bypassed, and well-developed fast algebraic
solvers can be used

In [30, 31], in order to simulate the flow patten of blood in the heart, Peskin

i

proposed the “immersed boundary” method, which used an improved numerical ap-
proximation of the d-function In [32], 1n order to compute two-phase flow, a level-set
method was combined with the “immersed boundary” method The level-set method
was used to “capture” the interface between two flluds This method can get first-
order accuracy even in multiple spatial dimensions

In [25, 26], the interface 1s smooth but irregular They extend the solution to a

rectangular region by using Fredholm integral equations This equation can deal with

interface conditions [u] # 0 and [u,] =0 The discrete Laplacian was evaluated using
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these jump conditions When a fast Poisson solver 1s used to compute the extended
solution, 1t can achieve second or higher-order accuracy

In [6], second-order elliptic problems with two-dimensional convex polygonal do-
mains are solved with a fimite element method It can achieve second-order accuracy
in the energy norm and nearly second-order accuracy mn the L? norm when the inter-
faces are smooth but of arbitrary shape, and 1t can be extended to solve self-adjoint
elliptic problems

The “immersed mterface” method was proposed in [17] This method incorporates
the interface conditions into the finite difference stencil, preserving that neither of the
two jump conditions are zero It can get second-order accuracy The corresponding
linear system is neither positive definite nor symmetric Various applications and
extensions of the “immersed nterface” method are provided 1n [21]

In [18], on the basis of the “immersed interface” method, a fast iterative method
was proposed to solve constant coeflicient problems with the interface conditions
[u] = 0 and [Bu,] # 0 Before using the immersed interface method, the differential
equation 1s preconditioned The discretization can guarantee second-order accuracy
A GMRES 1teration 1s used to solve the Schur complement system The number of
iterations 1s independent of the jump 1n the coefficients and the mesh size

In [19, 20], the immersed finite element methods (IFEM) were developed using
non-body-fitted Cartesian meshes for homogeneous jump conditions The 1dea 1s
to modify the basis functions so that the homogeneous jump conditions are satis-
fled Both non-conforming and conforming IFEM were developed m [20] for two-

dimensional problems
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The boundary condition capturing method [22] was proposed on basis of the Ghost
fluid method [10] Both methods are robust and simple to implement In [33], they
mmproved the boundary condition capturing method with a multi-grid method The
weak formulation provided in [23] was discretized to achieve this method Elliptic
problems with interface conditions [u] # 0 and [Su,] # 0 1n two dimensions and three
dimensions can be solved by this method However, the method in [22] can only get
first-order accuracy It 1s in recent work [24] that for smooth interfaces the result was
mmproved to second-order accuracy
In [14], a discontinuous Galerkin(DG) method 1s proposed to solve elliptic interface
problems The matrix generated by this method 1s symmetric, and can be efficiently
solved with standard algorithms Numerical experiments show that this method 1s
optimally convergent in the L? norm for C? interfaces
In [15], a non-traditional finite element formulation for solving elliptic equations
with smooth or sharp-edged interfaces was proposed with non-body-fitting grids for
[u] # 0 and [Bu,) # 0 It achieved second-order accuracy in the L* norm for smooth
mterfaces and about 0 8th order for sharp-edged interfaces In [40], the matched in-
terface and boundary (MIB) method was proposed to solve elliptic equations with
smooth nterfaces In [39], the MIB method was generalized to treat sharp-edged
mterfaces In [38], the three-dimensional generalization of the MIB method was de-
veloped for solving elliptic equations with discontinuous coefficients and non-smooth
mterfaces In [34], they developed MIB method based schemes for solving two-
dimensional elliptic PDEs with geometric singularities of multi-material interfaces

With an elegant treatment, second-order accuracy was achieved in the L*° norm



9
However, for oscillatory solutions, the errors degenerated Also, there has been a large
body of work from the finite volume perspective for developing high order methods for
elliptic equations 1n complex domains, such as [8, 28] for two-dimensional problems
and [29] for three-dimensional problems Another recent work in this area 1s a class
of kernel-free boundary integral (KFBI) methods for solving elliptic BVPs, presented
n [37]

There are some other approaches to solve the elliptic interface problems In par-
ticular, the recent work mn [2] can handle sharp-edged interfaces However, these
approaches have not been developed to solve elasticity interface problems Design-
g highly efficient methods for these problems 1s a difficult job, especially when the
interface i1s not smooth

An elasticity system can be solved by both the finite difference and the finite
element method Due to the cross derivative term, usually the linear system of equa-
tions using the finite element formulation 1s better conditioned compared with that
obtained using a finite difference discretization

To solve the interface problem, first a mesh must be generated One approach 1s
to use a body-fitted mesh coupled with a finite element discretization [1, 3, 4, 5] for
scalar elliptic partial differential equations (PDEs) Recently, Cartesian meshes have
become popular, especially for moving interface problems to overcome the cost in the
grid generation at every or every other time step

Finite difference methods are proposed 1n [35, 36] with non-homogeneous jump
conditions While second-order accuracy was achieved, the condition number of the

discrete system 1s quite large, especially in the nearly incompressible case (A 1s large)
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compared with that obtained from finite element formulations In [35, 36], a first-order
immersed nterface finite element method (IIFEM) was proposed using Cartesian
meshes for the elasticity problem with homogeneous jump conditions In general, the
discretization using a finite element discretization has a better conditioned system of
equations compared with that obtained from the fimte difference method The Soblev
space theory provides strong theoretical foundations for convergence analysis of finite
element methods

In [11], an immersed-interface finite element method was proposed for scalar ellip-
tic interface problems with non-homogeneous jump conditions In [12], a class of new
mmmersed-inter face fimte element methods (IIFEM) was proposed to solve elasticity
interface problems with homogeneous and non-homogeneous jump conditions mn two

dimensions



CHAPTER 3

2-D ELLIPTIC PROBLEM WITH TWO DOMAINS

In this chapter, a finite element formulation 1s used to solve elliptic equations with
sharp-edged interfaces with 8 being umformly elliptic (therefore positive definite) and
lower-order terms present The resulting linear system of equations 1s shown to be
positive defimite under certain assumptions Extensive numerical experiments are
also provided Compared with the previous work m [15], the order of accuracy for
sharp-edged interfaces 1s improved from 0 8th to close to second order Compared
with the results in [39], the more oscillatory the solution 1s, the more advantageous
the current method 1s The orders of accuracy for different regularities of solutions

and different regularities of interfaces are hsted in Table 3 11

3 1 Equations and Weak Formulations
Let Q@ C R® be an open bounded domam and let T be an mterface I' divides 2
mnto two disjoint open subdomains Q7 and QF, Q@ = Q" QT YT Let 90 be the
boundary of 2, 9% be the boundary of each subdomain We assume that 9§ and
00* are Lipschitz continuous and so 1s I' A unit normal vector of [ can be defined

almost everywhere on I’

11
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The variable coefficient elliptic interface problem 1s given by

-V (B(z) vVu(z)) +p(z) vul(z)+q(z)u(z) = fz), z€Q\T, 31)

where L = (21, ,z4) are the spatial variables [(z) 1s defined to be a d xd matrix that
1s unmiformly elliptic on 27 and %, and 1ts components are continuously differentiable
on 2~ and Q7F, but they might be discontinuous across I' f(z) 1s in L*(§)

The jump conditions are prescribed

[ulr(z) = u¥(z) — v (z) = a(x),

[(BVw) nlp(z)=n (87(z) vu'(z)) —n (67(z) vu(2) = bz),

(32)

a and b are given functions along the interface I, “ £+ ” denote Limits taken within
Q:&:

The boundary conditions are prescribed by a function g, given on 0f2
u(r) = g(r), r €00 (33)

The weak formulation 1n [15] 1s generahzed for the elliptic equation with matrix
coefficients and lower-order terms present The usual Sobolev space H!() 1s used

For H}(?), an mner product 1s chosen as

Blu,v] = Byu v+ Bvu v+
Qr o-

/ (p vu)v +/ (p u)v +/ quu +/ quv (3 4)
Q+ - Q+ -
Remark 1 For general second-order elliptic equations with lower-order p, g terms,

one of the hypotheses of the Lax-Milgram Theorem is not guaranteed For detailed

discussion about the energy estimates and a first existence theorem for weak solutions,
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see [9] Although a numerical example with p # 0, ¢ # 0 1 Section 3 3 1s provided,
for ease of theoretical discussion, 1t 18 assumed that p = 0, ¢ = 0 for the rest of this

section as well as 1n Section 3 2

Equation 3 4 without the p, ¢ terms imnduces a norm on H}(2), which 1s equivalent
to the usual one, thanks to the Poincare inequality an;i the uniformly ellipticity and
boundedness of 8(z) on

Let R be the restriction operator from H'(2) to L2(892~) R 1s closed Lipschitz
continuous (see Theorem 2 4 2 1n [27]) on C*(Q) and because C*(Q2) 1s dense 1n H'(2),

1t 15 well defined and bounded For functions @,b € H 1(Q1), the restrictions to 00~

are

a = Rag— (Zi), b= Rag— (b) (3 5)

Throughout, we assume a function ¢ € H!({2) exists so that the boundary condi-

tion on Jf2 1s

Rspa(¢ —a),on 000N,
9= (36)
Rdg(é),on 8Q\8Q_
For simplicity, the tildes are dropped 1n this dissertation

A unique solution of the problem 1s constructed in the space
H(a,c) ={u u—c+ax() € H}{(Q)} (37)

If w e H(a,c), then [ulr = a, ulsg = ¢ H(Q2) can be written as H(0,0) A similar

1dea 1s also used 1n [15, 16]
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Defimtion 311 u € H(a,c) 1s called a weak solution of Equations 3 1-3 3, 1if

v=u—c+ax(Q) € H}(Q) satisfies

Blv, y] = F(y), (38)

for all v € H}(Q), where
B[v,w]=/mﬁvv v¢+/ﬂ_ﬂvv v, (39)
F(w)=/9fw+/ﬂﬁvc Vit | Bva vw+/rbd) (3 10)

Or equivalently

Defimition 312 u € H(a,c) 1s called a weak solution of Equations 3 1-3 3, 1if 1t

satisfies, for all ¥ € Hg (),

Q+ﬁvu v¢+/_ﬂ\7u vw=/0fw+/rb¢ (311)

Theorem 313 If f € L*(Q0), and a, b, c € H(Q), then there exists a unique weak

solution of Equations 3 1-3 3 1n H(a,c)

Proof See Theorem 2 1 1n [15] a

3 2 Numerical Method
For simplicity, assume a, b and c are smooth on A and f are smooth on Q* and

2™, but might be discontinuous across I' 992, Q™ and 9Q* are Lipschitz continuous

¢ 15 a level-set function on , where I' = {¢ = 0}, @~ = {¢ < 0} and QF = {¢ > 0}

_ V¢

n =g 18 aunit normal vector of I' ponting from Q7 to QF

The setup 1s restricted to a rectangular domam Q = (Zmun, Zmaz) X Ynman, Ymaz) 10

the plane, and § 1s a 2 x 2 matrix that 1s uniformly elliptic in each subdomain Let [
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and J be positive integers, set AT = (Tmaz — Trman)/I and AY = (Ymar — Ymn)/J A
uniform Cartesian grid 1s defined as (z,, §;) = (Tmun + tAL, Ymun + JAy) fore =0, I
and 7 =0, ,J h=maz(Az,Ay) > 0 1s the grid size

Two grid function sets will be used
HY = {W'=(w,,) 0<:1<I1,0<y<J},
and
Hy" = {wh=(w,) €A™ w,,=01f1=0,Ior 7=0,J}

Every rectangular region [z,,,4+1] X [¥;,¥,+1] 1 cut nto two right triangular
regions When all those triangular regions are collected, a uniform triangulation

T" Ugern K 15 obtaned, see Figure 3 1

Figure 31 A uniform triangulation

If ¢(x,,y,) <0, the grid pomt (z,,y,) 1s counted as in Q~, otherwise 1t 1s counted

as i QF
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A cell A, with corners k;, ko, k3 belongs to one of two different sets
A = {&p CTQ ki, ko, ks are 1n the same domain among Qi},
Ay = {Dp CTQ ki, ks, ks are 1n two different domains among 0*)

If a cell belongs to Ay, 1t 18 a regular cell, otherwise, 1t 1s an interface cell The
interface segment I separates the interface cell into K+ and K~

In this dissertation, two extension operators are needed

Th HY“W — HYQ) For any ¥" € Hy", T"(4") 1s a standard continuous piecewise
linear function 1n every triangular cell matching 1" on gnid points The function set
15 a subspace of H}(Q), which can be written as Hy"

Uh For any u* € HY' u"* = g" at boundary pomts, U*(u") 1s a piecewise
hnear function in every triangular cell matching " on grid pomnts In a regular
cell, Ur(u") = T"(u") 1s a hnear function In an interface cell, U"(u") 1s one linear
function on K* and another hnear function on K~ A similar extension 1s also used

mn [15, 16, 20, 22] In order to use this extension, the following theorem 1s needed
Theorem 3 21 For all v* € H"“! U"(u") can be constructed uniquely, if 7", ¢, a
and b are given

Proof There are three typical cases for U"(u")

Case 0 As 1s shown 1n Figure 3 2, 1if K 1s a regular cell, U*(u") = Th(uh), 1e

UM) = ufpn) + ML) o g ML ZMR () (g
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(x,y, + &)= p;

(xr:y_]):pl (xz+Ax7yj):p2

Figure 3 2 The regular cell

Case 1 As s shown in Figure 3 3, if K 1s an interface cell with I' cuting through
two legs of K, then

u(pr) +uf(z —2,) +uf(y —v) (=, -
Ut = (p1) +uf( Jtuf(y—w) (z,y) € K (313)

u(ps) +ug (2 — 2 — D) +uy(y —4) (z,y) € K7,

- — wps)-u(p2) 4 Dz, —
here v, = ry T Agles

(xpy_; +Ay):p3

(xz:y]-i_d};):pz'
Ps
Bl K
(x,v)=p  dc (x,+dx,y,)=p, (x, +Ax,y,)=p,

Figure 33 The interface cell Case 1
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g dy d
In Figure 3 3, i = (— T - \/da,:+dy2)

u(pa)+a—u(p1)

uf = BTl
: g (3 14)
u; — u(ps)+(;;—u(p1)

In Figure 3 4, 1t 1s assumed that the extensions of psps and peps 1ntersect at a

ghost pomnt called p¢, therefore
(x,y, + &)= ps
(wa_; + dy) = pS

dy

(xz +Ax3y_1) =D

(:c,,}/]):pf dc  (x,+dx,y,)=p,

Figure 34 The ghost point

w(p§)—u(ps) __ u(ps)—u(p2)

d = T Az—dr
L z—dr (3 15)
u(pf)—u(ps) _ u(pf)—u(ps)
dy - Ny ’
and
u- = wp2)-ulpa)
Az—dx
: i (3 16)

y = ua)=u(ps)
Y Ay—-dy

From Equation 3 15 and Equation 3 16

u(p) = e (u(pa) — u(pa)) + u(pa), 3 17)
u(pe) = u(of) ~ T (ulof) - ul) 319)



19

Let

5 Pu bra (3 19)

1821 622

From Equations 3 14-3 19, note that u;, v, u} and v} can all be written as linear

functions of u(p1), u(pa), u(ps) and u(ps) Since b= By u 7, then

—

b = Bryut -8 vu 7
_ ptat + .+ +.+ o F
= Prnu,m + 512% ny + By ugz ng + ﬁ22“y 2

(Bjuzn1 + Braty, 11 + Baruz n2 + 52‘2u;n2) (3 20)

From Equations 3 14-3 20, the value of u(p,4) can be obtained It 1s a linear function

of u(p1), u(p2), u(ps) Hence ug,u,,u; and uf can be written in the following form

uf = CLU(M) + C;r,zu(Pz) + 0;3”“(1)3) -+ 0;4‘1(194) + c;5a(p5) + czeb(Pe),

| uf =l ulpr) + ] pulp) + ¢ sulps) + ¢ salpa) + ¢ salps) + ¢ 6b(ps), (3 21)

u; = ¢ yu(pr) + o u(pa) + ¢ 5u(ps) + ¢5 4a(pa) + 5 5a(ps) + 5 gb(ps),

\ u,; = ¢, 1u(p1) + ¢, u(p2) + ¢, 3u(ps) + ¢, 4a(ps) + ¢, 5a(ps) + ¢, 6b(ps)
To complete the proof for Case 1, the following lemma 1s needed
Lemma 3 2 2 All coefficients ¢ in Equation 3 21 are independent of u”, a and b

For simplicity, c;3 1s taken as an example The claim for the other coefficients

can be proved similarly
ci s = a|[—(Bhdy + Bhdzr)dy(Az — dz) + (Brdy + Bpdz)dy(Az — dz)], (3 22)

where + = (8f1dy + B7dz) A y(Az — dz)dy + (Bdy + Bhdz) A z(Ay — dy)dz

+ (Br1dy + Brdx) A ydzdy + (Brady + Bazdx) A zdrdy
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From Equation 3 22, 1t 1s easy to tell that c; ; 18 iIndependent of ", a and b
Case 2 Asis shown in Figure 3 5, 1f K 1s an interface cell with I' cutting through

the hypotenuse and one leg of K, then

(’Cxa}’} “'A}’):Ps

Ax
(xz+Ax_A_ydv:yJ+d)}):p5

(xpy_;):pl (l[-l—Ax—dx,yj)I:p_; Cix (x:+Ax3yj):p2

Figure 35 The interface cell Case 2

w(ps) +uf (v — 1, — A1) +uy (y —w) (1,y) € K,
Uh(uh) = ! (3 23)

u(py) + 15 (z — m,) + BB (y — y) (2,y) € K-

Similar derivation as in Case 1 gives

(

uf = d}u(pr) + diyu(pe) + df gu(ps) + dif 4a(ps) + df sa(ps) + dif 6b(ps),

) = )+ dygulpa) + dygulps) + dygalp) + disalps) + dygb(re), (324)

Uy = dgu(p1) + dgu(p2) + dg su(ps) + dg4a(pa) + dsa(ps) + d 6b(ps),

| Uy = dyau(pr) +dypulps) + dy sulps) + dy 4a(pe) + dy sa(ps) + dy b(ps)
To complete the proof for Case 2, the following lemma 1s needed
Lemma 3 2 3 All coefficients d in Equation 3 24 are independent of u”, a and b

Same 1dea as Lemma 3 2 2, details are skipped here

Therefore, Theorem 3 2 1 has been completely proved (]

Based on the above discussion, the following method 1s proposed
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Method 1 Find a discrete function u* € H* such that u* = g" on the boundary

points and so that for all " € Hé " there 1s

> ([ pvuran vrwn+ [ svuret) orien)

KeTh K-

= ( [ mn+ [ et [

KeTh

bT"(«p")) (3 25)

k
On the boundary u = g 1s equivalent to v — ¢+ ax(Q2-) =0

For the general case with p # 0,q # 0, the integral for these lower-order terms
could be added to the above weak formulation

To implement the above method, the Gaussian quadrature rule for integrals is
used The 1dea 1s 1llustrated in Figure 36 If T 1s separated mnto two pieces by the
interface wytrs, ug and ug are connected, then three triangles are the result 7; =
Aujugus, and Ty = Auguguy, T3 = Augusus For each triangle, the center pont p,,
1s labeled for each edge w,u; In numerical computation, the average of three f(p,)
1s applied 1n each triangle Numerical results show an improvement over [15], where

fewer sample points were used

P3s

Figure 36 Quadrature rule
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Since the solution bases and test function bases are different, the matrix A for the
linear system generated by Method 1 1s not symmetric in the presence of an mnterface
However, 1t can be proved that 1t 1s positive definite
Theorem 3 2 4 If 8 1s positive definite, and p = ¢ = 0, then the n x n matrix A
for the linear system generated by Method 1 1s positive definite

Proof For any vector ¢ € R",

n
cTAc = E aycc, =B

1,)=1

n n
Z cu', Z czwz} ,

=1 1=1
where u* and 1" are basis functions for the solution and the test function, respectively
Note that they have compact support and have nonzero values only inside the six
triangles around the ith grid pomnt For ease of discussion, each of u' and %' 1s
decomposed 1nto six parts, so that each part has nonzero values only inside one
triangle Now the summation over 2 1s equivalent to a summation over all the triangles,
and there are three terms, cyu; +coug+c3us, c191 +coths + 393 for each triangle, where
Uy, Ug, Uz, WY1, W, Y3 equals 1 on one vertex of a triangle and zero on two other vertices
The difference between u, and 1, 18, u, depends on the location of the interface and
1, does not cyu; + cous + czug 1S a plecewise linear function satisfying the jump
conditions, and ci¥; + s + c3¥3 1s a linear function At the three vertices, the
two functions comncide Now the jump conditions can be set at a = 0 and b can be
set to have the value 1n the triangle such that c;u; + cous + csus=c1¥1 + cathy + 313
everywhere In other words, compensation 1s made for the jump in 8 by using b to
make sure the gradients on both sides of the interface coincide Since Lemma 3 2 2

and Lemma 3 2 3 imply that the matrix A 1s independent of a, b, choosing the above
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a, b would not change the matrix A and would only change the constant term, 1 e,
the rnight hand side of the linear system Now the triangles are summed overall and
the result 1s

n T
g qu' = E et
1=1 1=1

It now follows from the positive definiteness of § that

i qu', i czu{l >0
1=1

=1

cfAc= B

Therefore A 1s positive definite O

Remark 2 A positive definite matrix A has positive determinant, and 1s therefore
mvertible It also has an LDMT factorization where D = diag(d,) and d, > 0, and
L, M are lower triangular The linear system Az = b can be solved efliciently

Remark 3 For ease of discussion, both the p, ¢ terms have been dropped However,
the Lax-Milgram Theorem, the current Theorem 3 1 3, and Theorem 3 2 4 work for
the case p = 0 and ¢ > 0 as well For the case with nonzero p or negative g, the
positive definiteness of A 1s no longer guaranteed, nor 1s one of the hypotheses of the

Lax-Milgram Theroem

3 3 Numerical Experiments

Consider the problem

-V (BVu)+p Vutqu = f, mQF, (3 26)
[u] = a, onT, (327)
[(BVu) n] = b, onT, (3 28)

u = g, ondf, (3 29)
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on the rectangular domain Q = (T, Tmar) X (Ymin, Ymar) The interface I' 1s pre-

scribed by a level-set function ¢(z,y) n = % 1s the unit normal vector of I" pointing

from Q™ to QF

In all examples of this section, given ¢(z,y), 8% (z,v), p*(z,v), ¢*(z,y) and

v = ut(z,y), mQ7, (3 30)
u = u (z,y), m Q" (3 31)
Hence
f = =V (BVu)+p Vu+qu, (3 32)
a = ut —u, (3 33)
b = (BVut) n—(8"Vu’) n, (3 34)

on ) g¢1s obtaned from the given solutions as a proper Dirichlet boundary condition

All errors in solutions are measured in the L* norm 1n the whole domain 2 All
errors 1n the gradients of solutions are measured 1n the L™ norm away from interfaces

For Examples 1, 2, 3 and 4, let p(z,y) = q(z,y) = 0 and let S* be scalars
Method 1 was implemented For Example 6, 3% are symmetric positive definite
matrices, and Method 1 was modified by adding the integrals for lower-order p, g
terms As discussed 1 Section 3 1, in this general case, one of the hypotheses of
the Lax-Milgram Theorem 1s not guaranteed However, since the true solution was
constructed first, the existence of a weak solution 1s automatically guaranteed The

numerical result 1s promising
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Example 1 This example 1s taken from [39] ¢, 8% are

o0.9) = Sn.o +§iH;(T€t—/ 22;(2 15y
0, +m(2e—2)/5 <0 <6, +m(21—1)/5, (3 35)

or.8) = a2 = gjr;wt—/ 22;(1 —1/5
6, + (20 —3)/5 <0 <8, +7m(2—2)/5, (3 36)

with 6, = /5, 6, =7n/7, R=6/7Tand 1= 1,2,3,4,5
B (zy) = 1, (337)
B (z,y) = 2+sm(z+y) (3 38)
When the solutions u* are given as

ut(z,y) = 5+5(z%+y?), (3 39)
u (z,y) = 2*+1y*+sm(z+y) (3 40)

The computed solution with the current method using a 40 x 40 grid 1s shown 1n
Figure 3 7

When the solutions u* are given as
ut(z,y) = 6+ sin(2rz)sin(2ry), (3 41)
u (z,y) = z*+y?+sin(z+y) (3 42)

The computed solution with the current method using a 40 x 40 grid 1s shown m

Figure 3 8

+

When the solutions u™ are given as

ut(z,y) = 6+ sm(6rz)sm(6my), (3 43)
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Figure 3 7 Star shape interface Case a

u (r,y) = 1*+vy*+sm(r+vy) (3 44)

The computed solution with the current method using a 40 x 40 grid 1s shown n
Figure 39 Table 3 1 shows the error of these three cases with the current method on
different grids Table 3 2 shows the error of these three cases using the method 1n [39]
on different grids These two tables show that as the solution gets more oscillatory,
the current method 1s superior as better results were obtained than those presented

in Table 3 2

Example 2 This example comes from [22] ¢(z,y), 8%(z,y) and u®(z,y) are

¢(z,y) = z*+y*—025, (3 45)
B (z,y) = 1, (3 46)
B (z.y) = 1, (3 47)
wtz,y) = 0, (3 48)

u(z,y) = exp(z)cos(y) (3 49)



27

Figure 3 8 Star shape interface Case b

2

$2o2e

et
Lo

Figure 39 Star shape interface Case ¢

Figure 3 10 shows the computed solution with the current method using a 40 x 40
grid Table 3 3 shows the error on different grids for the new developed method
and the method in [22] Comparing the results, 1t 1s easy to see that the method
in [22] 1s first-order accurate, while the new developed method 1n this dissertation 1s

second-order accurate



Table 31 Star Results of the new developed method
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Case(a) Case(b) Case(c)
n, x n, | Error n U | Order | Error in U | Order | Error in U | Order
20 x 20 7 70e-3 4 05e-2 3 40e-1
40 x 40 1 76e-3 213 1 06e-2 194 8 88e-2 194
80 x 80 5 49e-4 168 2 50e-3 208 2 33e-2 193
160 x 160 | 14le-4 196 6 3le-4 198 5 68e-3 204
Table 32 Star Results using the method described 1n [39]
Case(a) Case(b) Case(c)
n, xny, | Error m U | Order | Error in U | Order | Error in U | Order
20 x 20 6 11le-4 5 26e-2 9 72e-1
40 x 40 6 07e-5 333 8 5le-3 262 1 94e-2 232
80 x 80 1 34e-5 218 2 39e-3 183 5 49e-2 182
160 x 160 | 4 15e-6 169 6 64e-4 185 1 48e-2 189

Example 3 This example comes from [17] ¢(z,v), 8%(r,y) and u*(r,y) are

¢(z,y)
B (r,y)
B (z,y)

u™(z,y)

1 + log(2

z? + y?),

(3 50)
(3 51)
(3 52)

(3 53)



Figure 3 10 Example taken from [22]

Table 3 3 Example taken from [22]
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Method | The new developed Method Method 1n [22]
Ng X Ty Error in U Order Error n U Order
20 x 20 8 9972e-4 00153
40 x 40 2 4524e-4 1 8753 0 0081 092
80 x 80 6 0982e-5 20077 0 0044 0 88
160 x 160 1 2886e-5 22425 0 0023 094
u (z,y) = 1 (3 54)

Figure 3 11 shows the computed solution with the current method using a 40 x 40

grid Table 3 4 shows the error on different grids for the new developed method and

the method 1n [17] Because the interface 1s smooth, both of these two methods can

get to second-order accuracy
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Example 4 This example 1s from [15] ¢(z,v), 8%(z,y) and v*(z,y) are

¢(z,y) = (sm(brz) —y)(—sm(5my) — z), (3 55)
Br(r,y) = 1y+2, (3 56)
B (z,y) = 22—y +3, (357)
ut(z,y) = 4-2°—1% (3 58)
u (z,y) = 12 +9° (3 59)

Figure 3 11 Example taken from [17]

The computed solution with the current method using a 40 x 40 grid 1s shown 1n
Figure 3 12 Table 3 5 shows the error on different grids Compared with the results
of [15], shown 1n Table 3 6, the current solution 1s more accurate than the previous

work due to the quadrature rule discussed in Section 3 2

Example 5 1s taken from [15] This example 1s used to mnvestigate the order of the

error in # and Vu on solutions and mterfaces with different regularity
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Table 34 Example taken from [17]

Method | The new developed Method Method 1n [17]

Ty X Ty ' Error in U Order Error m U Order
20 x 20 3 2039¢e-3 2 3908e-3

40 x 40 8 8536e-4 1 8555 8 3461e-4 15183
80 x 80 2 3700e-4 19014 2 4451e-4 17712
160 x 160 5 8734e-5 20126 6 6856e-5 1 8708

Figure 3 12 Interface with the shape of a chess board

Example 5 ¢(z,y), 6*(z,y) and u*(z,y) are given as follows The interface 1s
Lipschitz continuous but has a sharp corner at (0, 0), u 1s piecewise H?
P(z,y) = y—2z, z+y>0, (3 60)
¢(r,y) = y+1/2, 1+y <0, (3 61)

B(z,y) = 1, (362)

°
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Table 35 Chess board Results of the new developed method

ng X Ny | Error n U | Order | Error in VU | Order

40 x 40 9 74e-4 4 650e-3

80 x 80 27le-4 1 8051 3 454e-3 0 4290

160 x 160 9 4e-5 15276 1 433e-3 12692

320 x 320 2 6e-5 18541 6 89e-4 1 0565

41 x 39 9 36e-4 5 356e-3

81 x 79 2 58e-4 18591 3 144e-3 0 7686

161 x 159 7 Te-5 17444 1 390e-3 11775

321 x 319 2 2e-5 18074 6 47e-4 11032

B (z,y) = 2+sm(z+y), (3 63)
ut(z,y) = 8, (3 64)
u(z,y) = (2 +¢*)Y° +sm(z+y) (3 65)

Figure 3 13 shows the computed solution with the current method using an 81 x41

grid Table 3 7 shows the error on different grids

Example 6 This example has a “happy face” mterface and matrnx form A+, with

lower-order terms p,q present ¢(z,y), 8%(z,vy) and u*(z,y) are

¢(CE, y) = maX(mln(¢17 ¢2: ¢3)) ¢47 ¢57 ¢67 mln(¢7> ¢8))7 (3 66)
¢1(z,y) = x*+y*—075%—015% (367)
do(z,y) = (x—075)% 4132 —0152 (3 68)

$3(z,y) = (x+075)%+y%—015% (3 69)
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Table 36 Chess board Results using the method described 1n [15]

n, xny, | Error in U | Order

40 x 40 2 38e-1

80 x 80 7 88e-2 159

160 x 160 | 5 43e-2 054

320 x 320 | 2 57e-2 108

41 x 39 1 24e-1

81 x 79 6 75e-2 088

161 x 159 | 4 56e-2 057

321 x 319 2 25e-2 102

Figure 3 13 A singular point at (0, 0)

012

_ YL a2 Yie 2

da(z,y) = 012(33 02) 01 (y—022)4012 01, (3 70)
01 , 012 )

os(z,y) = 012(x+02) 01 (y—022)°+012 01, (371)



34

Table 3 7 Singular point on the interface in two dimensions

ng X ny | Error n U | Order | Error n VU | Order

41 x 21 4 940e-3 4 698e-2

81 x 41 1745¢-3 | 15013 2978e-2 06577

161 x 81 6 06e-4 15258 1 886e-2 0 6590

321 x 161 2 09e-4 15358 1 194e-2 0 6595

#s(r,y) = —71>— (y+008)*+012% (372)
b7(z,y) = —z®— (y+0625)? 4 0425% (373)
¢s(z,y) = —a— (y+025)% 4022 (374)
T 2)/5 0
gy - | T , (375)
\ 0 (xy +2)/5
(z? —y* +3)/7 0
B (z,y) = : (3 76)
\ 0 (x®? —y*+3)/7
ut(r,y) = 5—5z% — 597 (377)
u(z,y) = T2+ Ty +1 (3 78)

The computed solution with the current method using a 40 x 40 grid 1s shown 1n
Figure 3 14 Table 3 8 shows the error on different grids using the current method
Table 3 9 shows the error on different grids in [15] These two tables show that the
accuracy 1s significantly improved The numerical result shows second-order accuracy

1 the L*° norm for the solution



Figure 3 14 Happy face without lower-order terms

Table 3 8 Happy face without lower-order terms

ng X ny | Error in U | Order

40 x 40 | 3 2575e-3

80 x 80 | 81030e-4 | 20072

160 x 160 | 2 1751e-4 | 1 8974

320 x 320 | 64081le-5 | 17631

When the coefficients 8% (z,y), p*(r,y) and ¢*(r,y) are

BT (z,y)

B87(z,y)

p(z,y)

zy+2 zy+1

zy+1 zy+3

[:E2—y2+3 2 —-9y? +1

1‘2—y2+1 1‘2—y2+4

Yy

2 -2 —1

35

(379)

(3 80)

(3 81)
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Table 39 Happy face without lower-order terms in [15]

n, X n, | Errorin U | Order

40 x 40 6 06e-2

80 x 80 1 64e-2 189

160 x 160 | 4 34e-3 192

320 x 320 1 15e-3 192

2 — y2
p—(‘r)y) = ) (3 82)
2zy — 1
¢ (z,y) = *+y° -2, (3 83)
¢ (z,y) = zy+1 (3 84)

The computed solution with the current method using a 40 x 40 grid 1s shown
in Figure 315 Table 3 10 shows the error on different grids The numerical result
shows second-order accuracy for the solution and first-order accuracy for the gradient
in the L* norm

From Table 3 5 and Table 3 7, the orders of the errors in u and Vu are listed 1n
Table 3 11

Compared with [15], when I' 1s C!, the current order of accuracy 1s consistent
with [15], and when I" 1s Lipschitz continuous, the current order of accuracy 1s higher
than [15] Besides, for the same grid size, the current error 1s consistently smaller

than [15], thanks to the more elegant quadrature formula discussed 1n Section 3 2
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Figure 3 15 Happy face with lower-order terms

Table 3 10 Happy face with lower-order terms
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Table 3 11 Conclusion of numerical experiments

I' 1s Lipschitz continuous
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CHAPTER 4

2-D ELASTICITY PROBLEM WITH TWO DOMAINS

In this chapter, based on the method in Chapter 3, a numerical method 1s pro-
posed for solving the elasticity problem with sharp-edged interfaces It was proved
that the resulting linear system 1s non-symmetric but positive definite under certain
assumptions The method 1s simpler compared with that developed in [12] and can

be applied for more general problems since the 3, are allowed to be matrices

4 1 The Weak Formulations

The variable coefficient elasticity interface problem 1s given by

=V (B1(z)Vu () =V (B2(z)Vua(z)) = fi(),
z e Q\T, (41)

=V (B3(2)Vu(2)) =V (Ba(z)Vus(z)) = fo(2),
where x = (21, ,x4) 18 the spatial variables G,(z),2 = 1,2, 3,4 are assumed to be

d x d matrices that are uniformly elliptic on Q™ and Q% f,(x),7 = 1,215 n L?(Q)

38
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The jump conditions are prescribed

’

[ (2) = ui (z) — ui (z) = ar(2),

[uz]r (2) = u3 (2) — uz (z) = az(2),

| n (@l @)+ 5074 )~ )
n (87 () Vi (2) + 5 () Vs (2) = ba(a),

n (B3 (z)Vul (z) + B (z)Vu3 (z))-

|7 (B (@) Vuy (2) + 85 (2) Vi, (2) = bo(2),
a1 and by o are given functions along the interface I', “3” denote limits taken within
Q:t

Functions g1 o are given on 0f2, the boundary conditions are prescribed
z € 0f) (4 3)

The setup of the problem 1s illustrated in Figure 4 1
The weak formulation in [15, 16] 1s modified The usual Sobolev space H!(Q) 1s

used For H}(Q), an mner product 1s chosen as

Jo+(BriVur Vour + oVuy Vur) + [o-(B1Vur Vo + B2Vuy Vo),
Blu,v] = (4 4)
fQ+ (BsVuy Vg + B4Vuy Vug) + fQ_ (B3Vuy Vs + B3Vus V)

The weak formulation 1n [15, 16] 1s generalized for the elliptic equation with matrix

coefficient

Blv, ¢ = mﬁVv Vi + BVv Vi (4 5)

Q-
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Q I

AN

Figure 41 Setup of the problem with a uniform triangulation

Defimtion 411 u € H(a,c) 1s called a weak solution of Equations 4 1-4 3, if 1t

satisfies, for all ¥ € H (),

(

Ja+ (BrVur Vi + BVuy Vi) + [ (B1Vur Vo + BoVug Vi)

= fQ S + fl" by,
< (46)

Jor (BsVuy Voo + BsVuy Vb)) + [, (B3Vur Vihy + By Vuy Vi)

kzkﬁ%+ﬂ@%
Theorem 41 2 If f € L?>(Q), a, b and ¢ € H'(Q), then there exists a unique weak
solution of Equations 4 1-4 3 1n H(a, ¢)

Proof See Theorem 2 1 1n [15] O
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4 2 Numerical Method

3y

If

Then Equation 4 1 can be wnitten as

=V (8(z)Vu(z)) = f(z), z€Q\T,

the jump condition Equation 4 2 can be reformulated as

[u]r ()

n (6%(2)Vu'(z)) —n (67 (2)Vu(z))

and the boundary condition 1s

= b(z),

41

(49)

(4 10)

(411)

(412)
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For simplicity, the following properties are discussed under the form of Equations
410,411, and 4 12
A cell A, with corners ki, ko, k3 belongs to one of two different sets

Ay = {Lp CQ kg, ko, ks are 1n the same domain among 0%},

Ay = {Dp CTQ ki, ke, ks are 1n two different domains among Qi}
If a cell belongs to Ay, 1t 1s a regular cell, otherwise 1t 1s an interface cell An
interface cell 1s separated by a straight line segment, denoted by I'%
Theorem 4 21 If § 1s positive definite, then the matrix A for the linear system

generated by the current method 1s positive definite

Proof See proof of Theorem 3 2 4 in Chapter 3 (]

In some applications in [12], the matrix /8 1s only semi-positive definite with zero
determinant The above theorem does not apply Below 1s the proof that when the
matrix 3 1s of a certain form frequently appearing in applications and semi-positive

definite, then the matrix A generated by the current method 1s still positive definite

A+2p 0 0 A
Theorem 422 If A >0, £ >0and 8, = , Bg = , B3 =
0 7 uw 0
0 u “ 0
, Ba = , then the matrix A for the linear system generated
A0 0 A+2u

by the current method 1s positive definite

Proof Suppose for a contradiction that A is not positive defimite Then there 1s a

vector ¢ € R*™ and ¢ # 0 such that ¢ZAc <0 Let



43

then

Blw,w] <0,

- /Q (BVw(Z))" Vu(z)dE < 0,

dwy
oz
A+20 0 0 A
Jwy
Ay
0 wou 0
= / { dw; Jdwp Jduy Jup dr <0
Q GE Ay ox dy
0 B 0
dwy
oz
A 0 0 A+2u
dwsy
(413)
Since for all a = [ay, ay, as, ag)T € R4,
a®Ba = (ay + ag)® X+ 2(a® + a2)p + (ag + a3)*u >0 (4 14)

So a¥Ba = 01f and only if a; = a4 = 0 and ay = —a; Then 6“’1 (i:') a; =0, VreQ
However, w; = )", ¢,9] imphes & Qﬂ =>r.G 8;/; Since ¢ = [e1,¢2, ,con)T # 0,

without loss of generality, 1t 1s assumed that ¢; # 0 If a point £ € ) 1s chosen such

that 24@ 7& 0 and awélf) =0,7=2,3, ,n,then> " ¢, 2 Bx 7é 0, a contradiction
Therefore ¢¥ Ac > 0 Ve # 0, that 1s, A 1s positive definite O

From Remark 2 in Chapter 3, it 1s known that a positive definite matrix has
positive determinant, and 1s therefore mvertible The linear system Az = b can be

solved efficiently
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4 3 Numerical Experiments

Consider the problem

-V (/1Vuy) =V (BVuy) = f1, m QF,
(4 15)

-V (,33VU1) -V (,84V’LL2) = fz, m Qi

The jump conditions and boundary conditions are given as

(

[w] = aq, on T

[ua] = aq, on T,

[(B1Vuy + B2Vuy) n] =by, on T,

4 (4 16)
[(BsVuy + B4 Vuy) n] = by, on T,

u; = g1, on 92,

. Uz = g2, ON aQ’

on the rectangular domain Q = (Zpun, Tmaz) X (Ymin, Ymaz) The interface I' 1s pre-
scribed by a level-set function ¢(r,y) n = I%%I 1s the unit normal vector pointing
from Q™ to QF

In all examples of this section, given ¢(z,y), f1234(z,y) and

(

u = ui(z,y), m QF,

uy = ug (z,y), m QF,

! (4 17)

u; = uj(z,y), m O,

Up = uy (z,y), m O~
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Hence, on 2,

(

h=-V (ﬁlvul) -V (ﬁzvuz),

fo==V (BsVu1) =V (BsVuy),

_ .t -
ar = Uy — Uy,

{ (4 18)
ag = u2+ - Ugy,

by = (B Vui + BSVul) n— (87 Vu; + 85 Vu;) n,

by = (BF Vul + B8 Vud) n— (65 Vul + B8, Vuy) n,

\
g 1s obtained from the given solutions as a proper Dirichlet boundary condition
All errors of solutions are measured 1n the L* norm 1n the whole domain 2

Four numerical examples are presented in this chapter to demonstrate the effec-

tiveness of the method

Example 7 This example has a smooth nterface ¢(z,y), Bi(z,y), BF(z,v),
BE (3, ), BE (s, y) and uE(z,1), uE(z,y) are

d(z,y) = z°+19*—025, (4 19)
( 72 43 sin(r +y) + 1

B (z,y) = ; (4 20)
\O5s1n(x+y)+07 y2+5

B 2 +y?+3  sin(zy)+1
Bi(zy) = , (4 21)
sm(z+y)+1 y?+4

B3 (z,y) : (4 22)

f

\

( cos(z)2+01 (z+y)®+2
\ 2z? 06cos(z) +1
(

cos(y) +1 (z+y)?+1
By (z,y) = , (423)
\ 2r2+1 0 5cos(z)?
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(

cos(z +y)?  3z%y?
B;(xv y) = ) (4 24)
\ z24+1  cos(y) +1

(2005x+y 3z2y2 +01
Bs(z,y) = : (4 25)
\ 222 2cos(zy) + 2

2+5 (sin(z + 2y))?
Bf(z,y) = : (4 26)
\s1n(a:+2y)+1 y?+2%+3

( 05z%y?+4  sin(z)+1
Bi(z,y) = , (427)
\sm(x%—y)—kl v + 2 +4

W (@y) = 2° -+t —sm(+) (428)
ui (z,y) = (V(22+1?))? (4 29)
uf (z,y) = 2y(z®)+9°, (4 30)
uy (z,y) = (V{22 +1?))° (4 31)

The computed solutions with the current method using a 48 x 48 grid are shown
in Figures 4 2 and 43 Table 4 1 shows the error on different grids The numerical

result shows second-order accuracy 1n the L* norm for the solution

Example 8 This example 1s a “happy face” interface with corners ¢(z,v), 8E(z,y),

ﬁzi(T,y), ﬁgt(T,y), ﬁf(T,y) and uli(T,y) uQ( ,Y) are

¢(.’L’, y) = max(mln(¢l7 d)?) ¢3), ¢47 ¢5a ¢6) mln(¢7a ¢8)), (4 32)
$1(z,y) = z°+y* —075%—015% (4 33)
$o(z,y) = (2075 +y*—015, (4 34)

#3(z,y) = (x+075)2+y>—015% (4 35)



Figure 4 2

Figure 4 3

¢4(x,y) =

¢5(11,y)

de(z,y) =

¢7(.’E, y) =

ul

The solution u; with a smooth circular interface

u2

The solution us with a smooth circular interface

012

I _ 22__ _ 2
T73@ 027 - 55 (y—0227 4012 01,
01 , 012 ,

—z% — (y +008)% +0 122,

—z% — (y + 0 625)% + 0 4252,

47

(4 36)
(4 37)
(4 38)

(4 39)
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Table 4 1 Circle shape interface

ng X ny | Brror n U | Order

24 x 24 0 00558

48 x 48 0 00147 192

96 x 96 | 3 76e-004 | 197

192 x 192 | 948e-005 | 199

384 x 384 | 239-005 | 199

ds(z,y) = —z*— (y+025)% 4022 (4 40)

2 + 3 sin(z +y) + 1
ﬂf(ﬂf,y) - ) (4 41)
\O5sm(x+y)+07 ¥ +5

2 +9y*+3 sinfzy) +1
Briz,y) = : (4 42)
\Sm(x+y)+1 y? +4

cos(z)?+01 (z+y)?+2
B (r,y) = ; (4 43)
\ 212 0 6cos(z) + 1

+1 (z+y)P+1
By (z,y) = oy @y : (4 44)
\ 22 +1  05cos(z)?

cos(z +y)®  3z%y?

/8;_ (I’ y) = > (4 45)

(
K cos(y) + 1
(

B 2cos(r +y)? 3z +01
By (z,y) = : (4 46)
\ 222 2cos(zy) + 2
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( 245 (sin(z + 2y))?
Bi(z,y) = : (447)
\smx+2y +1 y*+22+43

( 0522y +4  sm(z)+1
Bi(z,y) = , (4 48)
\s1nx+y )+1 ¢y +22+4

uf (z,y) = «®+¢* —sm(z+y), (4 49)
u (z,y) = (V(22+92))% (4 50)
uf (z,y) = 2y(2®) +¢°, (451)
uy (z,y) = (Vg2 +92)) (4 52)

The computed solutions with the current method using a 48 x 48 grid are shown
1n Figures 44 and 45 Table 4 2 shows the error on different grids The numerical
result shows second-order accuracy in the L> norm for the solution and first-order

accuracy in the L*™ norm for the gradient

ul

Figure 4 4 The solution u; with a “Happy face” interface



50

u2

Figure 4 5 The solution uy with a “Happy face” interface

Table 4 2 Face shape interface

n, X ny | Error in U | Order

24 x 24 0 00663

48 x 48 0 00178 189

96 x 96 | 471e-004 | 1092

192 x 192 | 121e-004 | 196

384 x 384 | 316e-005 | 194

Example 9 This example 1s a “star” interface ¢(r,v), 8F(1,v), B3 (r,v), By (T, y),

Bff(m,y) and uli(:r:,y), uf(m,y) are

_ Rsmn(6,/2)
#(r,6) = sn(6,/2+ 6 — 6, —2n(2 — 1)/5) r
0, + (2 —2)/5 < 6 < 6, + (20— 1)/5, (4 53)
o(r 0) Rsin(0,/2) -

T smn(6,/2—0+6, — 2r(e—1)/5)
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0 +m(22—3)/5 <0 <0, +7(2t — 2)/5, (4 54)

with 6, = /5, 6, =7n/7, R=6/7and 1=1,2,3,4,5,

( 2243 sin(z + y) + 1
Bl (z,y) = , (4 55)
\OSsm(LE-i—y)—%—O? y2+5

2 +9y*+3 sin(zy) +1

priz,y) = : (4 56)
\sm T+y)+ y? + 4
cos(z)?+01 (z+vy)2+2
By (z,y) = : (457)
T2 06cos(r) + 1
(cos (r+y)?+1
By (z,y) = : (4 58)

K 222 +1  05cos(z)?

cos(z +y)?  3x?y?

Bi(z,y) = , (4 59)
\ 2 +1  cos(y) +1

/2(:osm+y 322+ 01

Bs (z,y) = : (4 60)
\ 212 2cos(zy) + 2

/ z?y® +5 (sin(z + 2y))?
Bi(z,y) = , (4 61)
\s1n(r+2y)+1 v+ 12 +3

( 0572y +4  sm(r)+1
Pi(z,y) = : (4 62)
Ks1n(x+y)+1 v+ 2% +4

uf (z,y) = 2°+49° —sin(z +y), (4 63)
ur (z,y) = (V(22+92))% (4 64)

uy(z,y) = 2y(a®) + % (4 65)
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u; (z,y) = (V(@®+y2))° (4 66)

The computed solutions with the current method using a 48 x 48 grid are shown

in Figures 4 6 and 47 Table 4 3 shows the error on different grids The numerical
result shows second-order accuracy in the L* norm for the solution and first-order

accuracy 1n the L* norm for the gradient

ui

Figure 4 6 The solution u; with a “Star” interface

Example 10 The solutions 1n this example have a singularity on the interface corner

¢(1,9), By (1,9), B3 (1,), B3 (r,y), By (1,y) and ui(r,y), u5 (z,y) are

¢(z,y) = (2-04)*+y*~016, (4 67)

2 +3 sin(r +y) + 1
51+(5E,.’9> = ) (4 68)

\O5sm(1+y)+07 y 45

224+ y*+3  smn(ay) +1
Br(ry) = » (4 69)
\sm(ac—}—y)—%—l y:+4
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u2

Figure 4 7 The solution u; with a “Star” interface

Table 4 3 Star shape interface

ng X ny | Error m U | Order

24 x 24 0 00533

48 x 48 0 00159 175

96 x96 | 422e-004 | 191

192 x 192 | 110e-004 | 194

384 x 384 | 290e-005 | 193

cos(z)>+01 (z+y)2+2
By (z,y) = , (470)
212 06cos(z) +1

cos(y)+1 (z+y)?+1
By (z,y) = , (471)
22 +1  05cos(z)?
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cos(z +y)® 3%y

B (z,y) = ) (472)
z2+1  cos(y) +1

: (4 73)

(2cosx+y 3r2y?2 +01
By (x,y) =
\ 212 2 cos(zy) + 2

?y? + 5 (sin(z + 2y))?
54_1'_(33) y) = ) (4 74)
\s1n(x+2y)+1 y?+z%2+3

05z%y*+4  smn(z)+1
Bi(z,y) = : (475)
sm(z+y)+1 2 +22+4

uf (z,y) = (2 +49)"°, (4 76)
u (z,y) = 1, (477)
us(z,y) = z, (478)
uy (r,y) = 0 (4 79)

The computed solutions with the current method using a 48 x 48 grid are shown

in Figures 4 8 and 49 Table 4 4 shows the error on different grids

Example 11 This example has the special type of coefficients that satisfies the hy-

pothesis of Theorem 32 (z,y), 8 (z,y), fE(z,9), b5 (z,9), BE(x,y) and u(z,y),

us(z,y) are

¢(r,y) = 7°+y*-016, (4 80)

i

By (z,y) : (4 81)
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Figure 4 8 The solution u; with a singular pomnt on the interface

Figure 49 The solution u,

Br (z,v)

B3 (z,v)

with a singular point on the interface

(70)

\02
[0 2)

\ 40

: (4 82)

: (4 83)
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Table 4 4 Singular point on the interface

ng X ny | Error m U | Order

24 x 24 0 00347

48 x 48 000118 155

96 x 96 | 405e-004 | 155

192 x 192 | 139e-004 | 154

384 x 384 | 478e-005 | 154

(o 3)

By (x,y) = , (4 84)
\2 0
(o 4 )

B{(x,y) = ) (485)
\2 0/
(0 2 )

Bs(zy) = , (4 86)
\3 0
(4 0\

Bi(r,y) = , (4 87)
\0 8
(2 0)

Bi(zy) = , (4 88)
\07)

uf (z,y) = sin(z)cos(y), (4 89)

up (z,y) = zsm(y), (4 90)

ui(z,y) = cos(x)+ 42 (491)
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uy (r,y) = wy (4 92)

The computed solutions with the current method using a 48 x 48 grid are shown

in Figures 4 10 and 4 11 Table 4 5 shows the error on different grids

ut

Figure 4 10 The solution u; with coefficients of special form

u2

Figure 4 11 The solution us with coefficients of special form



Table 4 5 Special form of coeflicients

ngy X ny | Error n U | Order

24 x 24 0 00151

483 x 48 | 444e-004 | 177

96 x 96 | 120e-004 | 189
192 x 192 | 3 30e-005 | 186
384 x 384 | 866e-006 | 193

58



CHAPTER 5

2-D ELLIPTIC PROBLEM WITH THREE DOMAINS

Based on the method in Chapter 3, this chapter proposes a numerical method
for solving the elliptic problem with three domains An accurate treatment for the
triple junction point shown in Figure 5 2 1s proposed It has been proved that the
resulting linear system 1s non-symmetric but positive definite 1if 3,, + = 1,2,3 are
positive definite for the three domains Numerical results demonstrate near second-

order accuracy for the method for piecewise smooth solutions

5 1 Equations and Weak Formulations
Let © C R be an open bounded domain, and let I' be an mterface T' divides §
mto 2y, Qy and 3, hence @ = Q; QY Q3 JT, see Figure 51 Assuming that o0
and 0%} 53 are Lipschitz continuous as submanifolds, so 1s I' A unit normal vector
of I' can be defined almost everywhere on I' (see Section 1 5 m [13])
The variable coefficient elliptic interface problem 1s given by
-V (B(z) v u(z)) = f(z), 2€Q\T, (51)
where z = (z;, ,xz4) 1s the spatial variable f(z) 18 a d X d matrix that 1s
uniformly elliptic on each disjoint subdomain, Q;, Q5 and Q3 f(z) 18 1n L?(Q)
Consider the problem on the rectangular domain Q = (Zmun, Tmaz) X Ymin, Ymaz) =

QlUQQUQS F], ] = 1,2,3

29
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Figure 51 A uniform triangulation

-V (/Blvul) = fla m Qla

< -V (,BQVUZ) = fg, n QQ, (5 2)

=V (B5Vuz) = fs, mn Q3

\

The jump conditions are prescribed as

r

[ulp, =up—uz=ay, onTy,
[ulp, =us—u1 = az, on Ty,
[ulp, = —uy = a3, on T},
[ﬁVu]r1 = (82Vuz — f3Vu3) ny =by, on Ty,

[BVu]F2 = (ﬁsvus - ,Blvul) ng = by, on I'y,

[ﬁvu}m = (51VU1 - 52VU2) ng = bz, on I's

\

a and b are given functions along the interfaces I' = T'y |2 {J '3, the “1,2,3” sub-

scripts denote limits taken within €25 5 3
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The boundary conditions are prescribed as

4

uy = g1, on 998y,
1 U2 = g2, on 9NNy, (54)

ug = g3, on 90 ()

\

The nterfaces are prescribed by level-set functions ¢,(z, y)
4

<0, (z,y) € Qs,
¢1(r,y) § =0, (z,y) €Iy, (55)
>0, (r,y) € Q
<0, (z,y) € Y,

$2(z,y) 4 =0, (z,y) € Iy, (56)

> Oa (l’,y) S Q3

<0, (z,y) € Qq,
¢s(1,9) ¢ =0, (z,y) € T3, (57)

> Oa (T7y) € Ql

\

v -
The umt normal vector of ', 18 n, = % pomting from Q = {(z,y) €

Q| ¢,(r,y) <0} to Qj ={(r,y) € Q| ¢,(r,y) >0} for y =1,2,3
The weak formulation 1s generalized 1n [15, 16] for the elliptic equation with matrix

coefficients The usual Sobolev space H'(€2) 1s used For H}(2), an mner product 1s

chosen as

Bu,v] = A BTu v+ A By u v+ i B7u v (58)
1 2 3
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Defimtion 511 u € H(a,c) 1s called a weak solution of equations 5 1-5 4, 1if 1t

satisfies, for all ¢ € H} (),

svu vu+ [ sy vw+/93/3vu v¢=/gfw+/rbz/z (59)

Q
Theorem 512 If f € L?(Q), and a, b € H'(Q), then there exists a unique weak
solution of Equations 5 2-5 4

Proof See Theorem 2 1 1n [15] O

5 2 Numerical Method
A cell K with corners ki, ko, k3 belongs to one of three different sets
A = {Lp CTQ ki, ko, ks are in the same domain among §,, 3 = 1,2, 3},
Ay = {Op CQ ki, ko, ks are 1n two different domains among ,, 5 = 1,2, 3},
As = {Dx CQ ki, ko, ks are 1n three different domains among Q,, y =1,2,3}
If K € Ay or K € A, 1t has the same defimition as in Section 3 2, Chapter 3 If
K € A3, Figure 5 2 shows the interfaces inside K
Theorem 5 2 1 For all u* € H%“! U"(u") can be constructed uniquely, provided
Th, ¢,a and b are given
Proof See Theorem 3 2 1 1n Chapter 3 O
Lemma 5 2 2 The coeffictent matrix A generated by the method above 1s indepen-
dent of a,(z,y) and b,(z,y),7=1,2,3
Proof See Lemma 3 2 3 in Chapter 3 O

Theorem 5 2 3 The coefficient matrix A = (a,))nxn generated by the method above

1s positive definite if 8, 7 = 1,2, 3 are positive definite
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P1

Figure 52 One triangle cell

Proof For any vector ¢ € R", ¢T Ac > 0 since

Z cou Z ) } (5 10)

where u' are basis functions for the solution and ¢* are the test functions For the

FAc = E a,c.c, = B

2,7=1

+-th grid point, v* and ¢* both have non-zero support only on the six triangles which

6

have a vertex on the :-th grid point ' can be decomposed into «* = > =1

u;, where
each ) has non-zero support only on the j-th triangle around the :-th grid pomnt

Let m be the number of tnangles on the whole domam @ = {Ji*, Ay The

summation of u* over all the triangles can be rewritten

6 m

un = ZZQU ; Uk, (511)

1=1 j3=1

where Uy 1s defined on Ay = Ay, kpks, and Uy = ¢k Uk, + Cy Uik, + CiaUkg, K1, k2, k3 are
the three vertices of A,

Similarly, the summation of ¥* over all the triangles can be rewritten

Z iyt = Z Z oyl = ; 0y, (5 12)

1=1 1=1 3=1
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with

Wy = Ciy Py + ChyWhy + Chs Vs (513)
Consider the sets

Ay = {Lp CTQ Ky, ko, ks are 1n the same domain among §2,, 7 = 1,2, 3},
Ay = {Dp CQ ki, ko, ks are in two different domains among Q,, 3 = 1,2,3},

A = {Dp CTQ Ky, ko, ks are mn three different domains among Q,, 7 =1,2,3}

Then

NE

U, = ZUk+ZUk+ZUk’ (514)

k=1 Ar€EAL D €Ag ApeAs

m

DU = D Wt > Tt DTy (5 15)
k=1 JANN =¥ Ap€EA2 Dp€EA3

The difference between U, and W, 1s, Uy satisfies the jump conditions on the
mnterface and ¥, 1s a simple hinear function on Ay So when A, € A, there 1s no

jump 1n A, Thus

Uk(l‘,y) = \I,k(xay)a (xay) S Aka Ak € Al

When A, € A, the proof of Theorem 3 2 4 in Chapter 3 shows that by adjusting

the jump conditions a,(z,y) and b,(z,y), 1t can be obtamed that

Uk(l)y) = \I/k(l,y), (179) < Aka Zlk S A2

Now let Ay € As It has already been shown that Uy(k;) = Uk(k,), 7 =1,2,3

and 1t needs to be shown that

Uk(may) = \Ilk(x)y)v \V/(ﬁ,y) € Ak
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By the method used for computation, 1t 1s assumed that three interfaces I'y, ['s,
and I's intersect at the point pg inside Ay, and each I'; intersects with one side of Ay

at the pomnt p, for y = 1,2, 3, (see Figure 5 3)

Figure 53 Interface triangle A belongs to A

Without loss of generality, 1t 1s assumed that k; € (21, ky € €2, and k3 € Q3

First let

ai(p1) =0, ax(p2) =0, as(ps) =0,

and

a1(po) = aa(po) = as(po) =0

Then Ug(z, y) 1s plecewise linear on each sub-triangles Og popss Dkypspos Lkapopss
ADpopipos Lkapoprr Lkapape, a0d 1t can be determined by values at pg, pi1, p2, ps since
Ui(k1), Uk(kz), Ur(ks) are given and fixed

First fix Ug(po) and consider Apyppe and Dggpep, It can be easily confirmed
that when ranging Uy (ps) from —oo to 0o, b;(pe1) also ranges from —oo to oo, and
vise versa Monotonicity implies Ug(p;) 1s uniquely determined by by(pg;) Simi-

larly, Uk(p2) and Ug(ps) are uniquely determined by bs(po2) and bs(pe3), respectively
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Therefore, after applying jump conditions a, and b, for 3 = 1, 2,3, the U(z,y) 18
uniquely determined 1nside Ay corresponding to the value of Ur(po)

Then 1t 1s shown that Uy(pg) 1s unique after applying the conditions that U (po),

Ur(p1), Uk(p2) and Ug(ks) are in the same plane Suppose Uy(z,y) and Vi(z,y) are

two piecewise linear functions which satisfy the same jump conditions a, and b, and

value at pg, p1, p2, and k3 are in the same plane

If

Uk(po) = Vi(po),

then

Uk(z,y) = Vi(z,y), Y(z,y) € &

If
Uk(po) # Vi(po),
and 1t 1s assumed

Uk(po) < Vi(po),

and since Uy and Vj, both satisfy jump condition b; at pg;, 1t can be obtained that

Un(pr) > Vi(p)

Simularly, the result 1s

Uk(p2) > Vi(p2),

by applying jump condition by at pgo

Uk(po) and Vi(po) can be also gotten by

{Uk(pl)v Uk(pl)’ Uk(ki’»)}v



and

{‘/k(pl)a Vk(pQ)’ Vk(k3)}’

respectively, since U, and Vj are both linear functions on ponts pg, p1, p2, and k3
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Since Uy (k3) = Vi(ks), Ux(p1) > Vi(p1), and Ux(pz) > Vi(p2), 1t can be concluded

that Ug(po) > Vi(po) which contradicts the assumption that Ug(po) < Vi(po)

Therefore Uy 1s unique under these nine jump condition values a;(po), a1(p1),

az(po), az2(p2), as(po), as(ps), b1(po), b2(po2), and bs(pes) If those jump condition

values are chosen under the function Vg, then U, = ¥, 1n A\

Therefore

oUs= ) ¥y,

Ng€As3 ApEA3

and the results are combined mn A;, 7 =1,2,3 to get

n n
E qu' = E "
=1 =1

It now follows from the positive definiteness of 8 that

n n
S
1 =1

1=

c'Ac = B

Therefore, A 1s positive definite

d

From Remark 2 i Chapter 3, 1t 1s known that a positive defimte matrix has

positive determinant, and 1s therefore invertible The linear system Az = b can be

solved efficiently

5 3 Numerical Experiments

In all examples of this section, the ¢,, 8, and u, are given for 7 = 1,2,3 Hence f,,

a,, b, can be calculated on {1 g, 1s obtained from the solutions as a proper Dirichlet
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boundary condition All errors in solutions are measured in the L* norm in the whole
domain €2

Four numerical examples are presented in this chapter to demonstrate the effec-

tiveness of this method

Example 12 This example has smooth mterfaces which are two circles with the

same center ¢,(z,y), 8,(z,vy) and u,(z,y) for y = 1,2,3, are given as

#1(z,y) = x?+y* - 0252 (5 16)
¢a(z,y) = —(z®+3y* - 05%, (517)
#3(r,y) = 12+ y*—082 (518)

P?+y?+1 2+’ +2
i (zy) = : (519)
?+y*+2 2?4+ +5

22 —y*+3 x2——y2+1\
By (z,y) = , (5 20)
KTZ_,I/2+1 TZ_,U2+4/

(T?j+2 Ty +1

Bi(z.y) = : (521)
zy+1 zy+3

u(z,y) = 22+9y° -1, (5 22)

uz(z,y) = cos(ma)+ cos(my) + 2, (5 23)

uz(z,y) = 102° +sin(zx +y) +5 (5 24)

The computed solution with the current method using a 40 x 40 grid 1s shown in
Figure 54 Table 5 1 shows the error on different grids The numerical result shows

close to second-order accuracy in the L* norm for the solution



Example 13 This example has two triple junction points

u,(z,y) for y = 1,2, 3, are given as
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¢7(.’E, y), ,57(113, y) and

Figure 5 4 Interface with the shape of two circles

Table 51 Interface with the shape of two circles

Ng X Ny Error in v | Order
20 x 20 | 9 7176e-003
40 x 40 | 27138e-003 | 184
80 x 80 | 92766e-004 | 155
160 x 160 | 2 3779e-004 | 196
o (zy) = —((z+017)> +4* - 0317%),

¢o(z,y) = (z—0153)° +y° — 0412,

b3(z,y) = (z+017)% +y*—03172

(5 25)
(5 26)

(5 27)
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24y +1 22494242
Bl (z,y) = : (528)
?+y*4+2 22 +y2+5
iyt 41 4yt 42
By (z,y) = : (529)
r+yt+2 4+t +5

$2+y4+1 l.2+y4+2\

Bi(zy) = , (5 30)
?+yt+2 4yt +5

w(z,y) = z+e"+1, (5 31)

ug(r,y) = swn(2nz)sin(2ny) + 6, (5 32)

us(z,y) = z°+¢° +sm(z+y) (533)

The computed solution with the current method using a 40 x 40 grid 1s shown n
Figure 55 Table 5 2 shows the error on different grids The numerical result shows

close to second-order accuracy in the L norm for the solution

Figure 55 Interface with the shape of an eclipse
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Example 14 This example 1s two circles touching each other ¢,(z,y), 8,(z,y) and

u,(z,y) for y = 1,2,3, are given as

Table 5 2 Interface with the shape of an eclipse

ng X ny | Errorin U | Order
20 x 20 | 1 5022e-001
40 x 40 | 54492e-002 | 146
80 x 80 |16279e-002| 174
160 x 160 | 4 3505e-003 | 190
$r(zy) = —((z+035)°+y* —035%),
do(z,y) = (z—035)2+19%—035%
¢3(T7y) = T,
$2+y2+1 $2+y2+2\
Bi(e,y) =
Pyt +2 24yt 45
(m4+y4+1 zt 4+ yt + 2 \
ﬁ;(m’y) =
\:c4+y4—|—2 z4+y4+5/
2 +yt+1 x2+y4+2\
B;-(x’y) =
\x2+y4+2 x2+y4+5)
ui(z,y) = Sz+6y+1,
ug(z,y) = —br+6y+1,
us(z,y) = 2y* +sn(2rz) — 2

(5 34)
(5 35)

(5 36)

(537)

(5 38)

(5 39)

(5 40)
(5 41)

(5 42)
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The computed solution with the current method using a 40 x 40 grid 1s shown 1n

Figure 56 Table 5 3 shows the error on different grids The numerical result shows

close to second-order accuracy 1n the L norm for the solution

\Vav,
VAYs ¢ﬁ74¢x
L AVAVAYL
SR
VAYAVAV, wa

3¢ &
N
v

AVaY
AVAY/
2537

Figure 56 Two circles touching

Table 53 Two circles touching

Mg X Ty Error in U | Order

20 x 20 | 3 0337e-002

40 x 40 | 95274e-003 | 167

80 x 80 | 26414e-003 | 185
160 x 160 | 7 7858e-004 | 176

Example 15 This example 1s a circle circumscribed on a star  ¢,(z,y), 5,(z,y) and

u,(z,y) for ) =1,2,3, are given as

Rsin(6,/2)

¢1(T’ 6) = _(

sin(6,/2+6 — 8, — 2w(s — 1)/5)
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O, + (20— 2)/5 <8 <0, +7(2—1)/5), (5 43)
_ Rsin(6,/2)

i(r.0) = —(81n(9,/2 — 040, —2n(1—1)/5) r
0, +m(20—3)/5 <0 <0, +7(2—2)/5), (5 44)

with 8, =n/5, 8, =n/7, R=6/7 and 1 =1,2,3,4,5,

ba(z,y) = 22 +y* - (6/7)3 (5 45)

¢3(z,y) = —(z®+y> —(6/7)%), (5 46)
2?2 +y*+1 2+ +2 )

Bl (r,y) = : (547)

\az2+y2—+—2 r2+y2+5)

2 —y?>+3 xz—yz-l—l\
B (z,y) = : (5 48)
2 —y? +1 22—y2+4)

zy+2 zy+1
By (z,y) = , (5 49)
zy+1 zy+3
ui(z,y) = 2y+1+0 Lsm(2nr(z® +v)), (5 50)
us(z,y) = 0, (5 51)
us(z,y) = y*+e"+1 (5 52)

The computed solution with the current method using a 40 x 40 grid 1s shown 1n
Figure 5 7 Table 5 4 shows the error on different grids The numerical result shows

close to second-order accuracy in the L* norm for the solution



Figure 57 Interface with the shape of a star in a circle

Table 54 Interface with the shape of a star in a circle

ng X ny, | Errormm U | Order

20 x 20 | 4 5391e-002

40 x 40 | 17135e-002 | 141

80 x 80 | 52382e-003 | 171

160 x 160 | 1 3993e-003 | 190




CHAPTER 6

3-D ELLIPTIC PROBLEM WITH TWO DOMAINS

In this chapter, a three-dimensional model 1s developed to solve the elliptic in-
terface problem with two domains The resulting linear system in three dimensions
1s also proved to be positive definite but not symmetric Four examples are given,
numerical results show that the three-dimensional model 1s second-order accurate In
all the examples, the interfaces contain sharp corners, which means that this method

also works for the sharp interface problem

6 1 Equations and Weak Formulations

The variable coefficient elliptic interface problem 1s given by

~V (B(z) v u(z)) = f(z), z€Q\T, (61)

where 2 = (21, ,z4) 15 the spatial varniables [(z) 1s a d X d matrix that 1s uniformly
elliptic on each disjoint subdomain, 2~ and QF  f(z) 15 1n L?(Q)

The jump conditions are prescribed as

[wlr(2) = v¥(z) — v (z) = a(z),

[(BVw) np(z)=n (6%(z) vut(z)) —n (67(2) Vu(z)) = b(z),

(62)

a and b are given functions along I', “+ " denote limits taken within QF

75



76

Function g 1s given on 052, the boundary condition 1s prescribed as

u(z) = g(z), = €00 (63)

The setup of the problem 1s illustrated in Figure 6 1

Figure 6 1 Setup of the problem

The weak formulation 1s generalized 1n [15, 16] for the elliptic equation with matrix
coefficients The usual Sobolev space H'(2) 1s used For H}(Q), an inner product 1s

chosen as

Bu,v] = Q+ﬁvu YU + BV u Vv (6 4)

o-
Definmition 6 11 u € H(a,c) 1s called a weak solution of Equations 6 1-6 3, 1f u

satisfies, for all ¥ € H(Q),

Bvu v+ [ Bvu w:/fw+/bw (65)
ot Q- Q T
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Theorem 6 12 If f € L?(Q), a, b and c € H'(§2), then there exists a unique weak

solution of Equations 6 1-6 3 1n H(a, ¢)

Proof See Theorem 2 1 m [15) O

6 2 Numerical Method

For simplicity, the setup 1s restricted to a cube cell domain Q = (Zyun, Tmaez) X
(Ymans Ymaz) X (Zmin, Zmaz) 1 three-dimensional space, and § 1s a 3 x 3 matrix that
1s uniformly elliptic in each subdomain Given positive integers I, J and K, set
AT = (Tmor = Tmn ) /I, DAY = Ymar — Ymn)/J and Az = (Zmaz — Zmn)/K A umform
Cartesian grid 1s defined as (2., ¥y, 2k) = (Tpun + AL, Ypun + JAY, Zpun + kAZ) for
1 =0, ,I,7=0, ,Jand k =0, ,K Each (z,,v,,42) 15 called a grid pomnt
h = maz(Az, Ay, Az) > 0 1s the grid size

Two grid functions sets will be used
H'"™ = {uh=(w,u) 0<1<1,0<7<J0<k< K},
and
Hy" = {wh=(w,x) € H™ w,,y=01f2=0Torj)=0,J or k=0,K}

Every cube cell region [z, £,41] X [y, Y;41) X [2k, zk+1] 1S cut into six tetrahedron
regions The tetrahedron regions are collected, and a uniform tetrahedralization
T" Upern L 1s obtained, (See Figure 6 2 and Figure 6 3)

If ¢(z,,y,,2x) < 0, the gnd pomt (z,,y,, 2) 1s counted as i Q-, otherwise 1t 1s

counted as 1n Ot
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N N NN

Figure 6 2 Cube cells of three-dimensional problems

s
~
~

Figure 6 3 Tetrahedrahzation of three-dimensional problems

A cell Ay with corners Ly, Lo, L3, Ly belongs to one of two different sets
A = {a, CQ Ly, Ly, Ls, Ly are 1n the same domain among Qi},

Ay = {Ap CQ Ly, Ly, L3, Ly are 1n two different domains among Qi}
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If a cell belongs to A;, 1t 1s a regular cell, otherwise 1t 1s an interface cell, written
as L= LT|{JL~ L% and L~ are separated by a plane segment, denoted by ['* There

are two kinds of plane segments, see Figure 6 4 and Figure 6 5

Figure 64 Case 1 The interface segment 1s a triangle

Figure 6 5 Case 2 The interface segment 1s a polygon
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Since the solution bases and test function bases are different, the matrix A for the
linear system generated by the current method 1s not symmetric in the presence of
an interface However, 1t can be proved that 1t 1s positive definite
Theorem 6 2 1 If 8 1s positive definite, then the n x n matrix A for the linear
system generated by the current method 1s positive definite
Proof For any vector ¢ € R™,

n
cTAc = E a,cc, =B

1,7=1

n n

1 4
E czu,E ay'l,
=1

=1
where u* and 9" are basis functions for the solution and the test function, respectively
Note that they have compact support and have nonzero values inside the 24 tetrahedra
around the 1th grid point For ease of discussion, each of u* and ¥" 1s decomposed nto
24 parts, so that each part has nonzero values only inside one tetrahedra Now the
summation over ¢ 1s equivalent to a summation over all the tetrahedra, and there are
four terms, ciu; + cots + csuz + cquyg, 191 + Caths + 313 + cu1h4 for each tetrahedron,
where uy, Us, Uz, Uq, Y1, Ya, U3, Y4 equals 1 on one vertex of a tetrahedron and zero on
three other vertices The difference between u, and 1, 1s, u, depends on the location
of the interface and 1, does not cyu; + coug + csuz + cqug 18 a pilecewise linear
function satisfying the jump conditions and ¢1¢; + cos + 33 + c42P4 18 a linear
function At the four vertices, the two functions coincide Now the jump conditions
can be set as a = 0 and b can be set to have the value 1 the tetrahedron such that
C1Uy + CoUg + c3Usg + Cay=C1¥1 + Cog + c33 + 4?4 everywhere In other words, the
jump 1n S 1s compensated by using b to make sure the gradients on both sides of

the interface comncide Since Lemma 3 2 2 and Lemma 3 2 3 1n Chapter 3 imply the
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matrix A 1s independent of a, b, choosing the above a, b would not change the matrix
A and would only change the constant term, 1 e, the right hand side of the linear

system When the tetrahedra are summed all over, the result 1s

n n
E cu' = E (R /E
1=1 1=1

It now follows from the positive defimteness of 8 that

n n
E czuz,g qu'| >0
1=1 1=1

Therefore A 1s positive definite O

cfAc= B

From Remark 2 in Chapter 3, 1t 1s known that a positive definite matrix has a
positive determinant, and 1s therefore invertible The linear system Az = b can be

solved efficiently

6 3 Numerical Experiments

Consider the problem

-V (BVu)+p Vu+gqu = f, Q% (6 6)
[u] = a, onT, 67)

[(BVu) n] = b, onT, (6 8)

u = g, on 0%, (6 9)

on the domain Q = (Zpun, Tmaz) X (Ymin, Ymaz) X (Zmin, 2maz) [ 18 an interface pre-

V¢

o4 1S the unit normal vector of T

scribed by the level-set function ¢(z,y,2) n =

pomting from Q- to QF
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In all examples of this section, given ¢(x,y, 2), 8%(z,y, z) and

u = ut(z,y,2), mQF (6 10)
w = u(z,y,2), nQ, (6 11)
such that, on 02
f o= -V (BVu), (6 12)
o = ut—u, (6 13)
b = (BTVu) n—(B-Vu) n (6 14)

g 1s obtained from the solutions as a proper Dirichlet boundary condition
All errors 1n solutions are measured 1n the L® norm in the whole domain )

Example 16 The mterface of this example 1s an intersection of a few balls A% and

+

u* are
4sm(z)? + 6 sin(y + z)z YT
BH(z,y,2) = sin(y + z)z  22% + cos(z?)? + 3 0 5sin(zy) (6 15)
YT 0 5simn(zy) cos(zy +2)2+5
zz+cos(z+y)+3 =  02sin(y—1x)
B (z,y,2) = T 2245 yz ) (6 16)
0 2sm(y — x) yz sin(z)? + 2
ut(z,y,2) = 10— 2%+ 2% -~ 22 + sin(x + y + 2) + sin(z) + 2, (6 17)
u(z,y,2) = 22492 (6 18)

When the level-set function ¢ 1s given as

d(z,y,2) =min((z —02)2 + 32422 - 025, (z+02)> +32 + 22— 025), (619)
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Figure 6 6 shows the computed error on the interface with the current method

using 24 grid pomts n z, y and z directions, different colors denote different values

of the error Table 6 1 shows the error on different grids

Figure 6 6 Intersection of two balls

Table 6 1 Intersection of two balls

ny, x ny xn, | Error n U | Order
6x6x6 0 02400

12 x12x 12| 000742 | 16944

24 x 24 x24| 000220 | 17557

48 x 48 x 48 | 000060 | 18746

96 x 96 x 96 | 000015 | 19909
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When the level-set function ¢ 1s given as
#(z,y,2) = mm(mm((zx—04)%+ 9%+ 22— 025,
(x+03)?+9*+2%) —0252°+ (y+05)% + 22 — 025), (620)
Figure 6 7 shows the computed error on the interface with the current method
using 24 grid points in z, y and z directions, different colors denote different values

of the error Table 6 2 shows the error on different grids

>

Figure 6 7 Intersection of three balls

When the level-set function ¢ 1s given as
¢(1,y,2) = mn(r?®+y*+ (2 +05)* — 025 mm(min((r - 0 4)% +y* + 22 — 0 25,
(x+03)2 +4*+22—-025),2> + (y +05)% + 22 — 0 25)), (6 21)
Figure 6 8 shows the computed error on the interface with the current method

using 24 grid points in z, y and z directions, different colors denote different values

of the error Table 6 3 shows the error on different grids
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Table 6 2 Intersection of three balls

Ny X Ny X n, | Error m U | Order

6x6x%x6 004143

12 x12x 12| 001427 | 15374

24 x24x24 | 000370 | 19479

48 x 48 x 48 | 000100 | 18938

96 x 96 x 96 | 000025 | 20011

Figure 6 8 Intersection of four balls

Example 17 The interface of this example 1s an mntersection of two balls ¢, ut g%

are

¢(z,y,2) = mmn((z-02)2+¢°+2>—025,(x+02)%+y*+ 22— 025),
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Table 6 3 Intersection of four balls

Ng X Ny X n, | Error in U | Order

6 x6x6 004193

12 x12x12 | 001426 | 15556

24 x 24 x24 | 000370 | 19467

48 x 48 x 48 | 000100 | 18939

96 x 96 x 96 | 000025 | 20010

( 4r2 4+ 6 sin(y + ) Yz
B7(x,y,2) = sin(y+z) 22243 0 5sin(x) ) (6 22)
yz 05smn(z) cos(zry+2)*+5

( cos(t+y)?+3 2z 02smn(z—z)

B (z,y,2) = z 2?2 +5 Yy , (6 23)

02sm(z — z) Yy sin(z)? + 2

ut(z,y,2) = 10—22°+ 3y® +sin(z —y), (6 24)
uw (r,y,2) = —6sn(r)+ 3y 4523 (6 25)
Figure 6 9 shows the computed error on the interface with the current method

using 24 grid pomnts in r, y and z directions, different colors denote different values

of the error Table 6 4 shows the error on different grids
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Figure 6 9 Example of three-dimensional problems Two balls 1

Table 6 4 Example of three-dimensional problems Two balls 1

n, Xny xn, | Error in U | Order

6x6x6 0 05242

12x12x12 | 001400 | 19043

24 x24 x24 | 000370 | 19204

48 x 48 x 48 | 000099 | 19036

96 x 96 x 96 | 000024 | 20141

Example 18 The interface of this example 1s also an ntersection of two balls ¢,

u* and B* are

é(r,y,2) = mm((r—02)>+v*+ 22 —025,(z+02)*+v* + 2% — 025),
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42 +6 sin(y + 1) yz

B (z,y,2) = sin(y+x) 22°+3 0 5sin(z) ) (6 26)
yx 05sin(z) cos(zy+2)2+5

cos(z+y)?+3 2z 02sin(z—1x)

/B_(T,U,Z) = y4 Z2+5 Y ’ (6 27)

02smn(z — 1) Y sin(z)? + 2

u(z,y,2z) = 10cos(z)cos(y) cos(z) + 20, (6 28)
uw(r,y,2) = exp(—(7%+1y®+ 2?2)/20) (6 29)
Figure 6 10 shows the computed error on the interface with the current method

using 24 grid pomts i 7, y and 2z directions, different colors denote different values

of the error Table 6 5 shows the error on different grids

Figure 6 10 Example of three-dimensional problems Two balls 2



Table 6 5 Example of three-dimensional problems Two balls 2

Ny X Ny X N, | Error in U | Order
6x6x6 0 10308

12x12x 12| 002780 | 18909

24x24x24| 000764 | 18628

48 x 48 x 48 | 000201 | 19254

96 x 96 x 96 | 000052 | 19441
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Example 19 This example has a singular point on the mterface ¢, u* and % are

(r,y,2) = (r—04)*+vy*>+ 2% -016,

B (z,y,2) = sm(y + )

-

5—(1',’]./,2) = z

( 472 +6 sin(y + 1)

222 +3

0 5sin(x)
cos(z+y)2+3 =z
22+5

\ 0 2smn(z — z) y

ut(z,y,2) = (2% +9"+27)°°

u(z,y,2) = sm(z+y)

0 5sin(z)
cos(zy +2)2+5

0 2sm(z — )

(6 30)

(6 31)

(6 32)

(6 33)

(6 34)

Figure 6 11 shows the computed error on the interface with the current method

using 24 grid pownts 1n x, y and z directions, different colors denote different values

of the error Table 6 6 shows the error on different grids



Figure 6 11 Singular point on the interface in three dimensions

Table 6 6 Singular point on the interface in three dimensions

n, X ny X n, | Error m U | Order

6x6x6 0 02227

12x12x 12| 000722 | 16262

24 x24 x24| 000225 | 16816

48 x 48 x 48 | 000069 | 16951

96 x 96 x 96 | 000021 | 17208




CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation extends the 1dea presented 1n [15] for solving matrix coefficient
second-order elliptic equations for interface problems with two domains in two dimen-
sions Parts of Chapter 3 have been published and can be found in [16]

This method 1s extended to solve second-order elasticity equations for interface
problems with two domains in two dimensions, second-order elliptic equations for
interface problems with three domains in two dimensions and second-order elliptic
equations for interface problems with two domains in three dimensions This dis-
sertation generalized the theorems in [15] and proofs are provided It 1s also proved
that the matrix for the linear system generated by the current method 1s positive
definite (but not symmetric) Through numerical experiments, this method achieved
second-order accuracy in the L* norm, and can handle the difficulties of sharp-edged
interfaces and oscillatory solutions Compared with the previous work in [15], the
order of accuracy for sharp-edged interfaces 1s improved from 0 8th to close to second
order Compared with the result in [39], the more oscillatory the solution 1s, the more
advantageous the current method 1s

The focus of the future work will be on the following topics

(1) Since the numerical results for two-dimensional/three-dimensional elliptic/elasticity

91



92
interface problems with two/three domains have been obtained, proofs of the conver-
gence of this method for all the four topics will be the next step of research
(2) Elasticity interface problem with three domains 1n two dimensions
(3) Elliptic interface problem with three domains in three dimensions
(4) Elasticity interface problem with two domains in three dimensions
(5) Elasticity interface problem with three domains in three dimensions 1s a further
extension of the above topics, 1t will be under consideration for future research
(6) Moving nterface problems are more practical but yet more complicated Elliptic
and elasticity problems with moving interface 1s another challenging research topic
(7) Some applications on solving the elliptic and elasticity interface problems, such

as 1 biomathematics, fluid dynamics, etc
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