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ABSTRACT

This dissertation presents a novel method for the inverse scattering problem for
extended target The acoustic or electromagnetic wave 1s scattered by the target
and received by all the transducers around the target The scattered field on all the
transducers forms the response matrix which contains the information of the geometry
of the target The objective of the inverse scattering problem 1s to reconstruct the
shape of the scatter using the Response Matrix

There are two types of numerical methods for solving the iverse problem the
direct 1maging method and the iterative method Two direct 1maging methods,
MUSIC method and Multi-tone method, are introduced in this dissertation The
direct 1imaging method generates the i1mage, which contains the shape of the target,
by defining the image function using the response matrix Numerical examples show
that the two direct 1maging methods are efficient and robust, and the Multi-tone
method can be used 1in synthetic aperture

The 1iterative method described 1n this dissertation achieves better accuracy than
the direct 1maging method The result of the direct imaging method of the inverse
problem 1s used as an 1nitial estimation for this iterative method One forward
problem and one adjoint problem 1s solved 1n each 1teration step Numerical results
show that the residual vanishes at a fixed wave number The final result after

1terations 1s more accurate than the result from the direct imaging method

11
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This dissertation also mtroduces the application of the inverse problem shape
identification and classification The response matrix used 1n shape classification can
be generated by the forward solver or Born approximation The distance function
designed using a response matrix or 1ts SVD information 1s effective and robust to
noise The classification method using the response matrix 1s tested on a large data

set and compared with other classification algorithms on the retrieval accuracy
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CHAPTER 1

INTRODUCTION

1 1 The Direct Scattering Problem
Scattering theory has played a central role in twentieth century mathematical
physics The incoming acoustic or electromagnetic wave can be scattered by the
target 1 the center of the domain and received by the transducers around the object
Let u be the total field, u* be the incident field coming from one position or one
direction, and u® be the scattered field The total field u can be viewed as the

summation of ©* and «® such that
u=u"+u’ (11)

The direct scattering problem 1s to determine u° from a knowledge of u*, the shape
mformation of the target, and the differential equation governing the wave motion,
see [5, 11, 20, 29, 30, 33, 34, 39, 44]

The two basic problems 1n classical scattering theory are the scattering of
time-harmonic acoustic or electromagnetic waves by a penetrable inhomogeneous
medium of compact support and by a bounded impenetrable obstacle

Considering the case of time-harmonic acoustic waves, assume the incident field

1s given by the time-harmonic acoustic plane wave

’U,Z(CE, t) — ez(k:l: d—wt)’ (1 2)
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where k = w/cy 1s the wave number, w the frequency, ¢ the speed of sound, and d
the direction of propagation

Then the scattering problem for the case of an inhomogeneous medium 1s to find

the total field u such that

Au+kn(z)u=0  m R3 (13)
u(z) = e ¢ + us(x), (14)
ou® s
Tlgg)r(ar —zku) =0, (15)
where r = ||z||, n = c2/c? 1s the refractive index given by the ratio of the square

of the sound speed ¢, which satisfies that ¢ = ¢y 1n the homogeneous host medium
and ¢ = ¢(z) in the nhomogeneous medium It 1s assumed that 1 — n has compact
support Equation (1 5) 1s called the Sommerfeld Radiation Condition which
guarantees that the scattered wave 1s outgoing

For the case of scattering by an impenetrable obstacle D, the simplest scattering

problem 1s to find the total field u such that

Au+ k*n(z)u=0 1 R3\D, (16)
u(z) = e 4 + u¥(z), (17
u=0  ondD, (18)
ou’ s
rll)rglor(ar —zku)=0, (19)

where the Equation (1 6) 1s the Helmholtz equation and the boundary condition,

Equation (1 8), corresponds to a sound-soft obstacle The boundary condition can



also be considered for the Neumann or sound-hard boundary condition

% =0 on 0D, (110)
where v 1s the unmit outward normal to 0D

Problems from Equation (1 3)-(15) and Equation (16)-(19) are the simplest
examples of physically realistic problems in acoustic scattering theory More details
about the scattering theory can be found in [12] This dissertation 1s primarily
concerned with the inverse scattering problems associated with the direct scattering
problems formulated above However, before the inverse problems can be considered,
more about the direct problems must be studied Chapter 2 focuses on the details
of direct scattering problems and introduces the numerical method for solving direct

scattering problems 1n R?, which will be used 1n the iterative method of inverse

problems

1 2 The Inverse Scattering Problem

For the inverse scattering problem, the refractive index n(z) or the geometry of
target D 1s unknown The information of incident waves 1s given and the scattered
waves 1s recorded by the transducers The objective 1s to find the location and
geometry of the targets, which 1s determined by n(z) or D, using the the relation
between 1ncident waves and scattered outgoing waves

The 1nverse scattering problems 1s widely used in industry such as

1 underground mine detection

2 detection of defects in nondestructive testing,

3 target detection using radar or a sonar system,



4 ultrasound mmaging 1n medical applications,

5 reflection seismology

The inverse problem 1s in general an 1ll-posed (non-linear) problem Recovering the
n(z) in the whole domauin 1s a challenging work If the target medium 1s homogeneous
the n(z) 1s a constant inside the target, then the inverse problem can be turned into
a geometric problem, which 1s to reconstruct the shape of the target D

There are essentially two types of numerical methods for the inverse problem
the direct 1maging method and the iterative method The direct method gives a
characterization of the geometry of the target by designing an imaging function based
on the response matrix that peaks near the target boundary Iterative methods
update the boundary of the target to minimize the residual of the scattered field It
1s a nonlinear optimization process

Based on the relation between the resolution and the size of the target, there
are two different cases pomnt target and extended target The MUItiple Slgnal
Classification (MUSIC) method 1n [13, 15, 22, 37, 40] can be used to locate small
target (pomnt target) The authors in [38, 36, 42, 43, 21] use iterated time reversal
to recover small target The MUSIC algorithm 1s generalized to applied on extended
targets for near field data in [18], and for far field data in [19]

The MUSIC method 1s efficient and robust It, however, cannot generate good
result for hmited or synthetic aperture since 1t uses single frequency to capture the
shape and the projection process loses the phase information of the response matrix
In [16}, the author proposed a Multi-tone mmaging algorithm that uses both phase

and space 1nformation of the response matrix, and utilizes multiple frequency waves



The linear sampling method, [10], 1s another direct 1maging algorithm for the
mverse scattering problem The method is based on a characterization of the range
of the scattering operator, which 1s presented 1n [24] Recent development of the linear
samphng method 1s introduced 1n [4, 9] There are two main differences between the
MUSIC method and the linear sampling method

1 The MUSIC method 1s based on a different factorization

2 The MUSIC method uses the resolution based thresholding for regularization
More details about the relation between the MUSIC method and the hnear sampling
method can be found n [7, 25]

The 1terative method for the inverse problem 1s the main purpose of this dissertation
The 1terative method 1s a non-linear optimization approach It has the advantage of
accuracy compared to the direct imaging method Moreover, the iterative method can
easily utilize multi-frequency date to capture multi-level details of the object Using
the forward solver, each 1iteration step contains a forward scattering problem and
an adjoint problem The forward solver can be parallelized to increase the iteration
speed In Chapter 4, the iterative method will be demonstrated starting from the
mitial data, which 1s obtained by the direct 1imaging method The shape of the object
converges to the real shape after a series of iterations of solving adjoint forward
problems and adjusting the boundary

Shape 1dentification and classification using scattered field data 1s an application
of the inverse problem Shape classification and similarity are important topics in
computer vision In [45], the author presented a skeleton graph matching method

based on critical points using path similarity This method uses information from



critical points of the skeleton graph of shapes, then does merge and cut operations
Good results are achieved on two shape data-sets Another method to generate the
response matrix 1s using the Poisson Equation [14] The authors use the imnformation
from the silhouette for shape recognition and classification by computing properties
of a silhouette such as the part structure, the rough skeleton and the local orientation
In [1], the author provided a distance function by using the shortest paths or distances
between the known shapes and their query, and 1gnoring less relevant shape differences
between the known shapes and their query

The current method for shape classification uses the response matrix generated
by the Nystrom method of forward solver or Born approximation Shape space
1s geometric and has mnfinite dimensions Moreover, a shape may have different
representation or appearance due to translation, rotation, scaling and parametrization
It 1s very desirable to find intrinsic characterization that are invariant under translation,
rotation, scaling, and parametrization with certain robustness, especially with respect
to noise In practice, 1t 1s necessary to characterize a shape using finite dimensional
vectors that have the above desired properties In this dissertation, a novel method
1s proposed that uses the scattering relation and the response matrix This method
has the advantage of robustness against noise and dealing with shape rotation and
scaling The storage need for this method 1s small as well The details of our method

on shape 1dentification and classification will be discussed in Chapter 5



1 3 Research Objectives
The objective of this dissertation 1s to develop an iterative method for inverse
scattering problem and to study the property of the response matrix, and the relation
between the response matrix and the geometry of the target
In detail, research objectives of this dissertation include
1 To mplement the forward solver for the forward scattering problem on Dirichlet
and Neumann boundary condition using the Nystrom method,
2 To mtroduce the direct imaging method for inverse scattering problem,
3 To develop the 1terative method for inverse scattering problem,
(a) To convert the result of direct imaging method into the initial guess for
the 1terative method,
(b) To solve forward problem and adjomnt problem 1n each 1teration,
4 To represent shapes using the response matrix and to study the application of

response matrix 1 shape classification

1 4 Orgamization of the Dissertation
In Chapter 1, we will provide the general overview, research objectives, and
organization of the dissertation
In Chapter 2, we will introduce the basic background of scattering theory and
discuss the forward scattering problem, including the partial differential equation of
the waves and numerical solution on R? The forward solver will be implemented
using Nystrom method and will be used 1n each 1iteration of the iterative method for

inverse problem



In Chapter 3, we will introduce two direct imaging methods for inverse scattering
problem the MUSIC method and the Multi-tone method Numerical results will be
shown and will be used as the mmitial guess of the 1terative method for inverse problem

In Chapter 4, we will develop the iterative method for the inverse scattering
problem We will use active contour method to convert the image, which 1s the result
of the direct 1maging method, into level set function and capture the boundary of the
target We will show that the result of adjoint problem will be the velocity vector
of the sample points on the boundary We will solve one forward problem and one
adjoint problem 1n each iteration We will show that the boundary converges to the
real shape after several iterations

In Chapter 5, we will discuss the relation between response matrix and the
geometry of the target We will define a distance function based on the response
matrix to compare shapes We will study the property of the response matrix under
different wave frequencies We will also apply our distance function on large data set
to obtain the retrieval rate

In Chapter 6, we will provide a conclusion for this dissertation



CHAPTER 2

FORWARD PROBLEM

In this chapter, we will introduce the basic background of scattering theory and
discuss the forward scattering problem, including the partial differential equation of
the waves and numerical solution on R? The forward solver will be implemented

using Nystrom method for 2D scattering problem

2 1 Basic Conception
The target object 1s located in the center and 1s surrounded by an array of

transducers, see Figure 2 1

PML

target

transducers

® L z%

Figure 21 Generating the response matrix

Each transducer can emit acoustic/electromagnetic wave and receive scattered

wave
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Definition 211 The matrix P = (FP,),, y !s called a Response Matrix if and
only if P, 1s the received signal at j-th transducer for an incident plane wave sent
from the ¢-th direction or an mcident wave sent by the ¢-th transducer and N 1s the
number of transducers

In general P may not be a square matrix There are two ways to obtain the
response matrix P

1 Physical experiments and measurements

2 Numerical generations for solving the Helmholtz equation

In the 1terative method for inverse scattering problem, we will solve the forward
problem 1n each 1teration step Therefore, the forward solver will be used on arbitrary

shapes and the numerical solution 1s the only way to obtain the response matrix

2 2 The Helmholtz Equation
The Helmholtz Equation which governs the wave motion 1n forward solver 1s
obtained from wave equation [12] Consider the propagation of sound waves of small
amplitude 1n a homogeneous 1sotropic medium 1 R? viewed as an mwviscid fluud The

wave motion 1S governed by Euler’s equation

ov 1
E‘F(’U V)v+;Vp-O, (21)
the equation of continuity
dp
5 TV () =0, (22)

the state equation

p=f(p,S), (23)
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and the adiabatic hypothesis

oS
il = 24
e +v VS =0, (2 4)

where v = v(z,t) 1s the veloaty field, p = p(z,t) 1s the pressure, p = p(z,t) 1s the
density, S = S(z,t) 1s the entropy, and f 1s a function depending on the nature of
the flud

For simplicity, the linearized Euler equation can be obtained by assuming that
v, p, p and S are small perturbations of the static state vg = 0, pp = constant,

po = constant, Sy = constant

the linearized equation of continuity

op
Zr =0 26
at + ,Oov v Y ( )
the linearized state equation
op Oof dp
5 a—p(Po,So) T (27)
From the hinearized Equation (2 5)-(2 7) the wave equation 1s obtained
1 0%f
2or Ap, (2 8)
where the speed of sound c 1s defined by
o
& = 5 (.50 (29)

From the linearized Euler equation, 1t 1s observed that there exists a velocity

potential U = U(z,t) such that

v=—Vu, (2 10)
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and

oU

= 211
p=-=7 (211)
Clearly, the velocity potential also satisfied the wave equation
1 0%°U
——— =AU 212
c? ot? (212)
For time-harmonic acoustic waves of the form
U(z,t) = Re{u(z)e "}, (2 13)

with frequency w > 0, the complex valued space dependent part u satisfies the

Helmholtz equation
Au+ E*u =0, (2 14)

where the wave number k 1s given by the positive constant k = w/c

In obstacle scattering there are two cases of impenetrable and penetrable objects
the sound-soft object and the sound-hard object For a sound-soft object, the pressure
of the total wave vanishes on the boundary, and the total wave u satisfies the wave
equation 1n the exterior R®\D of D with a Dirichlet boundary condition u = 0 on
oD

Similarly, for a sound-hard object, the pressure satisfies the Neumann boundary
condition du/dv = 0 on D where v 1s the umt outward normal vector on the
boundary 8D The normal velocity of the total wave vanishes on the boundary

The solution of the Helmholtz equation (2 14) with positive wave number k can

be deduced from the fundamental solution
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1 ewllz—yll

d(z,y) = ——,
R N

#y (2 15)

For a fixed y € R3, the fundamental solution (2 15) satisfies the Helmholtz
equation (2 14) in R3\{y}

The layer approach defines the single-layer and double-layer potentials
Defimtion 2 21 Acoustic Single-layer Potential Given any integral function

¢, define the integral v such that

u@) = [ pl)®(e)ds) (216)
where ®(z,y) 1s the fundamental solution 1 (215) wu(z) 1s called the acoustic
single-layer potential with density ¢
Definition 2 2 2 Acoustic Double-layer Potential Given any itegral function

@, define the integral v such that

0% (z,y)

o(z) = / o) 5, ase), (217)

where ®(z,y) 1s the fundamental solution in Equation (2 15) v(z) 1s called the
acoustic double-layer potential with density ¢

u and v are solutions to the Helmholtz equation (2 14) in D and in R®\D Any
solution to the Helmholtz equation can be represented as a combination of single-layer

and double-layer potentials

2 3 Scattering from an Obstacle
The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to

the following problems



14
Defimition 2 31 Direct Acoustic Obstacle Scattering Problem Given an
entire solution u' to the Helmholtz equation representing an ncident field, find a

solution
u=u"~+ u’, (2 18)
to the Helmholtz equation i R3\D such that the scattered field u® satisfies the

Sommerfeld radiation condition and the total field u satisfies the boundary condition

u=0ondD (219)

This direct scattering problem is a special case of the following Dirichlet problem
Definition 2 3 2 Exterior Dirichlet Problem Given a continuous function f on

dD, find a radiating solution u € C*(R3\D) (N C(R3\D) to the Helmholtz equation
Au+ k*u =0 m R3\D, (2 20)

which satisfies the boundary condition
u=fon oD (2 21)

The objective 1 to obtain the solution in the form of a combined acoustic single-layer
and double-layer potentials, see [12]
The following theorem provides the solution of the Exterior Dirichlet Problem

Theorem 2 3 3 Define the potential u(z) satisfying

_ 8<I>(x,y)_z . s
we) = [ { et~ mpta) | pluhast) 22)

with a density ¢ € C(9D) and a real coupling parameter 7 # 0 Then the potential

u given by Equation (2 22) i R3\ D solves the Exterior Dirichlet Problem if and only
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if the density 1s a solution of the integral equation
¢+ Ko —wmSp = 2f, (223)
where S C(0D) — C(0D) 1s the single-layer operator defined by

(S)(z) =2 /a Bz )elu)ds(y), = € 0D, (224)

and K C(0D) — C(0D) 1s the double-layer operator defined by

(ko)) =2 [ ZEMo)asiy), < oD (229

The acoustic scattering from a sound-hard obstacle should follow the Exterior
Neumann Problem
Defimtion 2 3 4 Exterior Neumann Problem Given a continuous function g

on dD, find a radiating solution v € C2(R3\D) (N C(R3\D) to the Helmholtz equation
A+ k*u=01m R*\D, (2 26)

which satisfies the boundary condition

%zgon oD (2 27)

Simularly, the following theorem provides the solution of the Exterior Neumann
Problem

Theorem 2 3 5 Define the potential u(z) satisfying

_ aq)(];s y) 2
we) = [ { o) + B 5D sz b asw) 229

with continuous density ¢ and a real coupling parameter  # 0 Sp 1n Equation (2 28)
denotes the single-layer operator S in Equation (2 24) in the potential theoretic limit

case k=0
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Equation (2 28) solves the Exterior Neumann Problem if and only if the density

1s a solution of the integral equation
¢ — K'o — TS5 = —2g, (229)

where K’ and T are the normal derivative operators given by

(o)a) =2 [ ZEIo)asty). x € oD, (230)
oD
and
_ 0 0b(z,v) s .
Tow) =257 | GEow)s), = € oD (231)

2 4 Numerical Solution in R?

This section studies the numerical solution of the Helmholtz equation mn R?
using the Nystrom method, which 1s based on appropriately weighted numerical
quadratures on an equidistant mesh Therefore, the necessary parametrization of
the integral equation in the two-dimensional case will be described It 1s assumed
that the boundary curve 0D possesses a regular analytic and 27-periodic parametric

representation of the form
z(t) = (:1(t), z2(t)),  0< ¢ < 2m, (2 32)

n counterclockwise orientation satisfying [z} (t)]? + [z5(¢)]? > 0 for all ¢
For the exterior Dirichlet problem, Equation (2 23) 1s transformed nto the parametric

form

W(t) — /o " [L(t, 7) + M (t, )] ¥(r)dr = g(t), 0 <t < 2m, (2 33)
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where ¢¥(t) = @(z(t)), g(t) = 2f(x(t)) and the kernels are given by

(l) T T
L) = ) ar) — (0]~ 2h(r) foalr) — ot ]}5——"@, (234)

Mt7) = ZHP Kt ) {7 + P}, (2.35)
for t # 7 Here, let
r(t,7) = {[z:(t) — 21 (D) + [ea(t) — 2a(r)P}? (2 36)

Note that the kernels L and M have logarithmic singularities at ¢ = 7 Hence,

using the numerical method introduced 1n [26), the kernels are splhit into

L(t,7) = Li(t,7)In (4sm tT> + Ly(t, ), (2 37)
M(t,7) = M(t,7)In (4 sin? L T) + Ms(t, 7), (2 38)
where
Ltr) = g {50 () = () - () oalt) ~ ma(r)]) 2T, 39
Ly(t,7) = L(t,7) — Ly(t,7)In (4sm2 ! > T) : (2 40)
Mift,r) = =5 -Jolkr(t,m) {[aA (P + (P}, (241)
My(t,7) = M(t,7)— My(t,7)In (4 s ; T) (2 42)
The kernels L,, L, M7, and M, turn out to be analytic
In particular, for the ¢ = 7 terms, there are
_ _ 1 i (8)z5(t) — z5(t) 2 (2)
B = 60 = o T P T P (249)

1 2 1
Malt.t) = {5 - 5 - g n (S OF + 7)) HIS 0P + 01}, @)

for 0 <t <2nw
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Hence, 1t 1s necessary to numerically solve the integral equation of the form

o) = [ Ktr)pndr =g,  0<t<eom (2 45)

where the kernel K can be written as

t—T1

K(t,7) = Ki(t,7)In (4$1n2 ) + Ko(t, 1), (2 46)

with analytic functions K; and K, and with an analytic right hand side g

Here 1t 1s necessary to point out that 1t 1s essential to splhit off the logarithmic
singularity 1n a fashion which preserves the 27-periodicity for the kernels K; and K
This treatment guarantees the exponential convergence of the numerical solution,
which will be demonstrated in the numerical experiments

The Nystrom method uses a straightforward approximation of the integrals by
quadrature formulas In this case, since the boundary of the target 3D 1s a 27-periodic
form, an equidistant set of knots ¢, =my/n, 3 =0, ,2n — 1 were chosen, and use

the quadrature rule

27( t —
/ In (4 sin?
0

with the quadrature weights given by

2n—1
T) frydr = Y RM@)f(t,),  0<t<eom, (2 47)

J=1

n—1
n 2 1 T
R; '(t) =-— Ecosm(t—tj)—ﬁ—zcosn(t—tj), 9=0, ,2n-1,(248)
m=1

and the trapezoidal rule

2 2n-1

s
fr)dr =~ ~ > fty), (2 49)

1=0
where the function f can represent any integration kernel The numerical integrations

are obtained from integrating exactly
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In the Nystrom method, the integral in Equation (2 45) 1s replaced by the finite

summation, and yields

2n—-1

O = 3 {RPOK(4 ) + T Ka(tt) (1) = g(0), (250)

=0

for0<t<2n

Equation (2 50) 1s obtained from Equation (2 45) by applying the quadrature
rule, Equation (2 47), to f = K;(t, )¢, and trapezoidal rule, Equation (2 49), to
f = Ks(t, )¥ The solution of Equation (2 50) reduces to solving a finite dimenstonal
linear system

In particular, for any solution of Equation (2 50) the values
o™ =9™(t), =0, ,2n-1, (251)

satisfy the linear system

2n—1

n n m n
o = Y { ROt t) + SKat ) f ol = g(t), (252)
1=0
fore=0, ,2n — 1, where
(n) (n) o T2 1 mym (=1)Y~w
R =R)7(0) = —— — cos — — 7=0, .,2n—1 (253)
n &= m n n
Conversely, given a solution wf"), 1=0, ,2n—1 of the linear system of Equation

(2 52), the function (™ defined by

2n—1

v = Y {RP 0K 1) + TKaltt) () + 9(0) (2 54)

=0

for 0 <t < 27 satisfies the approximating Equation (2 50)
Once the density function 1 1s obtained, the total field u can be determined using

Theorem 2 3 3 since 9 1s the discrete form of ¢
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The Nystrom method for Neumann boundary condition 1s similar to but more
complicated than the Dirichlet boundary condition [27] The Exterior Neumann
Problem solver will be used 1n the adjoint problem in the iterative method of inverse

problem

2 5 Numerical Experiments
The forward solvers for Exterior Dirichlet problem and Exterior Neumann problem
are implemented First place four transducers around the target, which 1s a flower

shape i Figure 2 2

Figure 2 2 Flower shape

The flower shape has following analytic presentation
z(t) = (1 + 0 5cos(3t)) * cos(t), (2 55)
and
y(t) = (1 + 0 5cos(3t)) * sin(t) (2 56)

The location of four transducers are {; = (5,0), l» = (0,5), I3 = (—5,0), and

[y = (0,-5) Let n be the number of sample points on the boundary of the target,
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and k be the wave number The response matrix generated by Exterior Dirichlet

forward solver at k =1, n =64 1s

( —0093+0198: —-0084+0194: —0075+0189: —00844 0194 \

—0084+0194c —0093+0198 —0084+ 01942 —0075+0190:
P= (2 57)

—-0075+0190: —0084+4+0194: -—-0093+0198: —0084+ 0194

—0084+0194: —-0075+0190: —0084+0194: —0 093+ 0198 /

If the scatter field incident from I; and received by [ 1s taken, and consider the

change of n, the P»; term of response matrix P will be
n = 16, Py = —0084642954035770 + 0 193994448938375,
n = 32, Py, = —0084642528632574 + 0 194003759720873z,
n = 64, P,; = —0084642633363342 + 0 194003674480984z,
n = 128, P, = —0084642633328078 + 0 1940036745115252,
n = 256, Py = —0084642633328085 + 0 194003674511490:

Numerical result shows that the forward solver converges with the number of

sample poimnts on the target boundary Figure 2 3 shows the convergence rate

20 40 60 80 100 120 20 40 60 80 100 120

Figure 2 3 Convergence of the Nystrom method
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In Figure 2 3, PG?9) 15 used to approximate the real response matrix at n = 320,

and consider the error err(™ such that

(n) (n) _ p(320)
err 151%2,31%(39 |P1,] AN (2 58)

The left picture in Figure 2 3 1s err(™, the right one 1s log(err™), and here n
goes from 20 to 120 From Figure 2 3 1t can be seen that the result of the Nystrom

method has the exponential convergence
err™ < Ce ™™ (2 59)
For this example, if C =~ 34 x 107 and ¢ = 0 03, the Equation (2 59) holds for
large enough n

The Nystrom method can be also applied on multiple arbitrary targets In Figure

2 4, two targets are placed in the domain

Figure 24 Two arbitrary shapes

The number sample points on the left target, ny, 1s twice as the right one, n,,
since the left one 1s more complicated 1in the geometry than the right one The far
field pattern 1s used this time, 4 transducers are place at infimity so the coming wave

can be viewed as a plain wave, and P, term has the following result
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ny = 20, ne =10, Py, = 0861545181700902 + 0 7682788974536791,
ny = 40, ny = 20, Pyo = 0 558175744822589 + 0 326216480242953,
ny = 80, ne =40, Pyo = 0598846321309680 + 0 3447320999749214,
ny = 160, ny = 80, P;2 = 0603846677808666 + 0 343570140247151¢,
ny = 320, ny = 160, P, = 0606402604809483 + 0 342939623306911+

The response matrix also converges when n; — oo and ny — 00

2 6 Summary for Forward Solver

The forward solver presented in this chapter will be used in the iterative method
for inverse problem The Nystrom method 1s used to obtain the scattered field The
Nystrom method requires the least computational effort comparing to the Galerkin
method, since only two one-dimensional integral equations needed to be computed
The error between numerical result and the real data converges exponentially with
respect to the number of sample points on the boundary of the target Each column of
the response matrix 1s the scattered field coming from one transducer Every column
1s independent of each other in the response matrix Therefore, when the number
of transducers 1s large, the forward solver can be parallelized easily each processor
deals with the wave coming from one transducer and computes one column of the

response matrix



CHAPTER 3

DIRECT METHOD FOR INVERSE PROBLEM

In this chapter, two direct imaging methods will be mntroduced The MUSIC
method 1s a projection method that can be applied on full aperture, the Multi-tone
method utilizes the phase information of the response matrix and multi-frequency

wave that can be applied on limited or synthetic aperture

3 1 Introduction of Inverse Problem
Recall the definition of the Response Matrix P = {F,;} nxn, Where P, 1s the
recertved signal at 7-th transducer for an incident plane wave sent from the -th
direction and N 1s the number of transducers In general P may not be a square
matrix
The medium properties will be probed from a scattered wave field The time

harmonic wave field u(z) satisfies
Au(z) + K*n(z)u = f(z), (31)

where k 1s the wave number, n(z) 1s the index of refraction, and f(z) 1s the source
The general inverse problem 1s to find n(z) nside the interested region If n(z)
1s plecewlse constant, the objective 1s simplified to find the boundaries where n(z)

jumps Therefore, the inverse scattering problem 1s reduced to determine the boundary

24
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of a target The inverse problem is widely used in industry, such as in medical 1maging,

underwater acoustics, and non-destructive detection

3 2 Property of the Response Matrix
Let L be the distance between the transducer and the target, a be the length of
the array of transducers Figure 3 1 shows the full aperture and limited/synthetic

aperture

Figure 31 Full aperture and himited/synthetic aperture

Define R to be the resolution of the array

AL

R = (32)
where
27
A= —
- (33)

Let S be the size of the target There are three different cases
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1 Pownt target (S < R)
(a) The rank of the response matrix 1s equal to the number of targets
(b) Only location information of the targets can be recovered
(c) The singular values of the response matrix 1s shown in the left picture of
Figure 3 2
2 Small target (S < R)
(a) The response matrix has a discrete spectrum
(b) Both location and size (moment) information of the targets can be recovered
(c) The response matrix has grouped singular values, see the middle picture
of Figure 3 3
3 Extended target (S > R)
(a) The response matrix has a contiuous spectrum
(b) Both location and geometry information of the targets can be recovered
(¢) The number of signmificant singular values and singular vectors of the response
matrix 18 « S/ R, see the right picture of Figure 3 4
This chapter focuses on the third case since the objective 1s to reconstruct the
shape of the target The wave number & should be large enough to capture the shape

information of the target
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o

Figure 3 2 Resolution v s target size Point target

Figure 3 3 Resolution v s target size Small target

25
[

Figure 3 4 Resolution v s target size Extended target

27
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3 3 The MUSIC (MUltiple SIgnal Classification) Algorithm
The MUltiple Slgnal Classification (MUSIC) method 1s one of the direct imaging
methods There are several advantages to the MUSIC method
1 No 1iteration or forward problem solver 1s needed
2 This method works for both near field and far field data
3 Matenial property can be embedded 1nto the imaging function
4 Resolution based thresholding 1s quite robust with noise
The MUSIC method for point target and small target 1s discussed mn [15] For
the extended target of Dirichlet boundary condition, let €2 denote the target The
scattered field u® satisfies
Aus(z) + k*us(z) =0 z € Q°C R
u(z) = —u(z) z € 0f)
and the Sommerfeld Radiation Condition (1 5), where u* 1s the incident field
Let Gp(z,y) be the Green’s function that satisfies
AGp(z) + k’Gp(z) = d(z —y) z,y € Q°C R?

Gp(z,y) =0 z € 9

and the Sommerfeld Radiation Condition (1 5)

Hence, the scattered field u® can be written as

w(z) = /6 ) w(y) 80y, (36)

The scattered field ° 1s factorized into two parts
1 Unknown part the Green’s function Gp(z,y) which depends on the shape of

the unknown target
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2 Known part u* 1s the illumination wave field that can be controlled
The key point to determine the boundary of the target 1s to define the 1llumination
vector and signal space
Definition 3 3 1 Illumination Vector Let Go(, ) and Gp(, ) be the homogeneous

and mmhomogeneous Green’s function, respectively Define

50(55) = [GO(xlvx)3G0(x2az)a ,Go(.'L'N,.’L')]T, (3 7)
gD(x) = [GD(Z'],Q?),GD(.TQ,Z’), aGD(a:Nv"L‘)]Ta (3 8)
where 1,79, ,xy are the locations of N transducers Then go(z) and gp(z) are

called the illumination vectors
If a point source wave 1s emitted at :-th transducer and the scattered field 1s

recerved by the j-th transducer, the F,, term of the response matrix 1s

oG )
Ry = [ LG, y)ay 39)
a0 v

In matrix form the response matrix can be factorized as

p=[ 5|22 4 (310

Definition 3 3 2 Signal Space Let 4, be the singular vectors with singular values

o, of the response matrix P Define the signal space
Vs = span{d,|+ < n}, (311)

where n 1s a threshold depending on the resolution of the array and the noise level
The threshold parameter n 1n Equation (3 11) can be determined using the resolution

analysis which 1s introduced 1n [18]
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Then the imaging function I™ can be defined as
I"M(z) = ||(I = Prg)go(2)]| ™", (312)

where Py, 1s a projection operator projecting the homogeneous illumination vector
go(z) mnto the signal space

Then, when z get close to the boundary 8D, go(z) should be 1n signal space The
I — Py, 1s a projection operator which project the illumination vector into the noise
space Therefore, (I — Py,)go(z) should be small when z goes to 9D, and I (z) will
peak at the boundary

The MUSIC method 1s a direct approach for the inverse scattering problem It 1s

efficient and robust since no inverse operation or iteration is needed

3 4 Examples for MUSIC method
The MUSIC method can be applied on single or multiple targets with Dirichlet

Boundary Condition, see Figure 3 5

Figure 3 5 Imaging extended target with Dirichlet BC
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More results of MUSIC method on an extended target can be found in [18] The
mmage of MUSIC method provides a rough picture of the geometry of the target
Chapter 4 will show how to start with the image of MUSIC method and use the

iterative method to obtain more accurate results

3 5 Direct Imaging Method using Multi-frequency Data

The MUSIC method uses a single frequency and cannot be applhed on hmited
or synthetic aperture The MUSIC method 1s essentially a projection method which
drops the phase information when projecting to the signal space Using the multi-frequency
data and phase information, provides better results for limited or synthetic data

For the imited or synthetic aperture, there are two cases

1 The emitters and receivers comncide

2 The emitters and receivers do not comcide

In the first case, the response matrix P 1s complex symmetric Then P can be
written as P = ULSUT This unique factorization (up to a sign) helps to eliminate the
arbitrary phase generated by MATLAB when taking the singular value decomposition

The mmaging function 1s defined as

Mw
M(z) =Y o)) [§"(z,wpsl, (313)
w m=1
where § 1s the normalized 1llumination vector from the transducers to a search point
Z, U, 18 the m-th row of the matrix U, a 1s the weight for multi-spectrum, M“ 1s a
threshold
In the second case, suppose that there are s transmitters located at &;, &, and

there are r receivers located at 7;, ,7,, the response matrix P has the dimension
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s xr B, records the signal received by the j-th receiver at 7, when the wave comes
from the 2-th emitter at &,

At this time the i1llumination vectors need to be redefined with respect to the

recerver array and emitter array, respectively, as
gT(I) = [GO(nl,f)’GO(ﬁM), ,GO(%CC)]T, (3 14)

and

QS(I) = [Go(él,ﬂi),Go(fg,CIJ), ?GO(gsaz)]T (3 15)

Then the imaging function is

Mu)

™M(z) =" a(w) Y [3 (z, w)us) (57 (z, w)v2)] (3 16)

w m=1

When providing hmite/synthetic aperture, Figure 3 6 shows that good results can

still be obtained using Multi-frequency method

Figure 3 6 Multi-tone method on synthetic aperture

In Figure 3 6, the left image 1s imaging using synthetic aperture data with 10%
multiplicative noise, the right one 1s imaging using synthetic aperture data in a weakly

ihomogeneous medium More results of Multi-tone method can be found 1n [16]
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3 6 Summary for Direct Imaging
The direct imaging method 1s computationally efficient compared to the 1terative
method The MUSIC and Multi-frequency methods both work for near field and
far field data, and can mcorporate material properties (corresponding to different
boundary conditions) Since each of the two methods apply thresholding based on
SVD and physical scales, the results are robust with respect to noisy data Furthermore,
Multi-frequency data can be used to obtain an ideal result under limited or synthetic

aperture



CHAPTER 4

ITERATIVE METHOD FOR INVERSE PROBLEM

In this chapter, we will develop the iterative method for the inverse scattering
problem The main 1dea 1s to an optimization problem Similar approach 1s used 1n
[17] and [2] We will use active contour method to convert the image, which 1s the
result of the direct imaging method, into level set function and capture the boundary
of the target We will show that the result of adjoint problem will be the velocity
vector of the sample pomts on the boundary We will solve one forward problem and
one adjomt problem 1n each iteration Finally, we will demonstrate that the boundary

converges to the real shape after several iterations

4 1 Image Processing and the Level Set Representation

The result of the direct imaging method 1s used as the nitial guess of the 1terative
method The output of direct imaging method 1s an image of the whole domain and
the value peak at the boundary of the object The first thing needs to be done 1s to
locate the boundary from the image and transform 1t into parameter representation
which can be used as the mput of the forward problem

The gradient flow method and active contour method can both be used to capture
convex envelope of the boundary of the object The main 1dea 1s to transform the

1mage mto a level set function The gradient flow method 1s outlined as follows

34
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1 Input the MUSIC imaging function I{x)
2 Apply a threshold to the MUSIC imaging function

3 Consider the cost functional to be minimized

CoY) = [ f(z)ds, (41)
a0
where
1, I(z) > M
f(z) = , (42)
100, Iz) <M

and I(x) 1s the image function, M 1s the constant representing the threshold

4 Rewnite the cost functional using the level set representation

CON = W) = [ )8(6)| Vo |da 43)

5 Take derivative with respect to the evolution time ¢ and derive the gradient flow

equation

6=1981v (10)g5 ) (44)

6 Calculate the level set representation for the initial guess

The method above 1s simple and easy to implement The drawback 1s that it can
only capture the convex envelop

The software motivated by the active contour method [6] and developed for [35]
1s used here to generate the level set function representing the object

The forward solver using the Nystrom method for the obstacle problem with

Dirichlet boundary condition needs not only the coordinates of the sample points

(z(t,),y(t,)) but also the first and second dervatives (z'(t,), v'(t.)), (z”(t.), ¥"(t.))
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Trigonometric mterpolation 1s used to convert a set of sample points to a pair of

analytic functions (z(t), y(t))

(an cos(nt) + by, sin(nt)), (4 5)

< 8
= =
I N
M= 1=

(cn cos(nt) + d, sin(nt)), (46)
n=1
where the coeffictents {a,}\_,, {b}_,, {ca}l,, {d.})_, are determined by the

sample points {(z(t,), y(t.))}™, separately to achieve the least square distance
Note that the order of the interpolation N should be less than m/2 The dummy
parameter d 1s generated to be equally distributed between 0 and 27 by d, = 2m1/m,

1=0,1, ,m —1, and define matrix A such that

m—1
Agyae = Y cos(yd,) cos(kd,), (47)
1=0
m—1
Aojirok41 = sin(yd,) sin(kd,), (4 8)
1=0
m—1
Agyoky1 = Zcos(]dl)sm(kdz), (49)
=0
m—1
Agypr0k = sin(yd,) cos(kd,) (4 10)
1=0
m—1
Al,Z] = A2J,1 = Z COS(]dz)a (4 11)
1=0
m—1
A1 = Agpn = Zsm(jdz), (412)
1=0

for 3,k =1,2, ,m, and vector b;, b, such that
m—1
by, = Z cos(yd,), (4 13)
1=0

m—1
byyy1 = Zsm(]d,) (4 14)
=0
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The mterpolation coefficients {a,}2_;, {bn}2,, {en}X_;, {dn}Y_, can be obtaned
from A and b

Then, the boundary of the shape 1s re-sampled after each iteration and the first

and second derivatives can be easily obtained

4 2 Recursive Linearization
The 1terative method starts from the mmtial guess with mitial wave number kg
Suppose that after several iterations the boundary I'; has been recovered at some
wave number k using the forward solver in Chapter 2, and that the next step wave

number 1s & such that £ > k& The objective 1s to determine I',
I'y ={z+a(z) zel}} (4 15)

Here the new boundary 'y can be viewed as an updating from the boundary I'; on
previous step Since I'; 1s know, the objective 1s to determine the perturbation a,
which 1s also called the velocity vector of the sample points on the boundary
The reconstructed boundary I'; 1s solved at the wave number % from the forward
scattering problem
A+ k*a = 0m Q, (4 16)

@ = OonlYy, (417)

with a scattered field satisfying the Sommerfeld Radiation Condition (1 5)
For the boundary €, there 1s
Au+k*u = 0m Qf, (4 18)

u = 0onTy (4 19)
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Given a solution u in Equation (4 18), the corresponding scattered field »® can be

obtamned and the measurement M can be defined
Mu(z) = [u'(x1), , u(xm)]", (4 20)
where the operator M maps the scattered fields to a vector of complex numbers 1n
o™
For the boundary I'x, the forward scattering operator 1s defined
F(Ty) = Mu? (421)
Now the Fréchet dervative of F at I'; 1s F'(I';) which satisfies
F(T) = F(05) + F/(T)a + o(all o) a5 llals 0 = O (4 22)

where [lal]1 0 = maxger |a(z)| + maxger ijl |Va,(z)| with surface gradient Va,(z)
of the 7-th component of @ The Fréchet derivative of the forward scattering operator
1s given by Theorem 2 1 m [23]

In order to compute the velocity vector a, the following theorem 1s needed
Theorem 4 21 Let I'; € C? a € C*(T';, R?) and @ be the solution of the scattering
problem n Equation (4 16)-(4 17) Then the Fréchet derivative of F(I';) satisfies

F'(T'z)a = Mv, where v solves the following boundary value problem

Av+kv = 0m €, (4 23)
ot
v = —a n-on Iy, (4 24)

with radiation condition, where n 1s the unit outward normal vector on I'y,

Denote the residual operator as

R(T;) = Mu® — F(T}) (4 25)
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The linearized version of Equation (4 21) 1t 1s obtained such that
F'(Ty)a = R(T}) (4 26)
Applying the Landweber 1teration to the linearized equation (4 26) yields
a = BF'(Ty)"R(Te), (427)

where F'(I';)* 1s the adjoint operator of 7'(I';) and § 1s a positive relaxation parameter

Since a depends on F'(I';)*R(I';) by Equation (4 27), 1t 1s necessary to find the
value of F'(I'y)*R(I';) However, 1t 1s difficult to compute F'(I';)*R(I';) directly
The adjoint problem 1s introduced to solve this problem

Let R([;) = [&, ,&n]T € C™ Consider the adjont problem

Aw+kw = -—Z@é(z—@) n (4 28)
1=1
w = 0only, (4 29)

with the Sommerfeld Radiation Condition (1 5)
Multiplying @ to the Equation (4 23) and integrating over Q% on both sides yields

the following result

/ (Av + k*v)wdz = 0, (4 30)
-

where w 1s the complex conjugate of w

Using the Green’s formula, there 1s

/Q (ng - ?Ev> ds (4 31)

It follows from the adjoint equation (4 28) and the boundary condition (4 24) that

(AD + k*0)vdz = /

[ -
F i

Z:v(:rj)f—J = — 8_1128_ua nds (4 32)
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Noting Equation (4 20), Equation (4 25), and Theorem 4 1, the left-hand side of

Equation (4 32) can be reduced

ZU(%)EJ = < Mv,R(I}) >cm

71=1
= < ]:/(ch)a, R(F,‘c) >gm

= <a, F(T)*R(T) >r2m

_ / o FT)R(T;)ds (4 33)

Iy

Combining Equation (4 32) and Equation (4 33) yields

/F ‘o FRTds = - /F K (%a?”) ds, (4 34)
k k
which holds for any a Therefore, 1t follows that
v _ Owdu
FTR)RIE) = —5-5-n (4 35)

Using the result of Equation (4 35), the Equation (4 27) can be written as

o= —p2wot, (4 36)

Thus, for each 1teration, one forward problem from Equation (4 16)-(4 17) and
one adjomnt problem from Equation (4 28)-(4 29) are solved Once a 1s determined,

['; 1s updated by z + a using Equation (4 18)

4 3 Iterative Algorithm
The algorithm of iterative method 1s as follows
1 Input the real shape and wnitial guess
2 Set numerical shape to be wnitral guess

3 Solve forward problem at wave number k£ to obtain the
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(a) real shape response matrix Py
(b) numerical shape response matrix Q
Find the residual between P, and Q)
Use the residual to solve the adjoint problem
Obtain the velocity vector
Use the velocity vector to update the numerical shape
Repeat Steps 2-7 until residual 1s sufficiently small

Depending on the detail level of the object, increase k to a corresponding level

Figure 4 1 shows the flow diagram of the iterative method

Active Contour

¥ Solve Adjomt Problem

Increase frequency k

is large encugh

End

Figure 41 Flow diagram of the iterative method
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4 4 Numerical Experiments
In the numerical experiments, the solid hne 1s the real shape and the line with
crosses 1s the numerical shape Each cross 1s a sample point on the boundary and the
numerical boundary 1s obtained by trigonometric interpolation
For the first example, the real shape 1s a flower with three leaves Figure 4 2 1s
the nitial state, the residual 1s 0 0088 at £k = 1 Figure 4 3 1s the middle state after
64 1terations, the residual 1s 0 0031 at k = 1 Figure 4 4 1s the final state after 128

iterations, the residual 15 0 0005 at £ =1

=1 residual=0 0088865
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Figure 4 2 Iterative method experiment Flower, mnitial
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Figure 4 4 Iterative method experiment Flower, final
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In the second example, two flowers are placed in the same domain to test the
1iterative algorithm on multiple targets

Figure 4 5 1s the mnitial state, the residual 1s 0 0147 at £k = 1 Figure 4 6 1s the

state at Step 30, the residual 1s 00147 at £k =1 Figure 4 7 1s the state at Step 60,

the residual 1s 00143 at £k = 1 Figure 4 8 1s the state at Step 75, the residual 1s

00324 at £k =2 Figure 4 9 1s the state at Step 78, the residual 1s 0 0216 at & = 2

Figure 4 10 1s the state at Step 81, the residual 1s 0 0127 at £ = 2
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Figure 4 5 Iterative method experiment for two flowers (a)
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Figure 4 7 Iterative method experiment for two flowers (c)
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Figure 4 8 Iterative method experiment for two flowers (d)

06

04

02

o

k=2 residual=0 021642
T T T T T T T T I T
step=78 # of points =100
——— k=2 residual=0 021642
X x —
b \\\X\ e * \\K J
! X /¥ *\
k % ‘.’E‘ X
by A\ i
X G % % \, Xwa«—x‘ .
\\ N\ ‘)\
. S
PERY 3
I y 3
4
/x X y /
e S ¥e A Y
/ A ,As ; :
b b
X X \ /
s X A
)\& L X N — P B
% X R
1 1 1 | 1 1 1 J. 1 1
-08 -06 -04 -02 0 02 04 06 08 1

Figure 4 9 Iterative method experiment for two flowers (e)
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Figure 4 10 Iterative method experiment for two flowers (f)
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It can be seen that in the second example the residual converges slow at wave

number k£ = 1 and sufficiently fast at £ = 2, which means that £ = 1 can not capture

the details of the boundary Wave frequency needs to be increased to guarantee

convergence
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4 5 Summary for Iterative Imaging

The iterative method 1s based on MUSIC algorithm for the 1nitial guess to guarantee
convergence Image processing 1s used for converting the MUSIC imaging function
mto a level set representation for the imtial guess and feeding 1t to the forward
solver The recursive linearization solves one forward and one adjoint problems 1n
each 1teration step and 1t 1s always started from the low-frequency number & and
increased & 1n iteration to capture more details of the boundary of the object The
final result 1s more accurate than just using the direct imaging method The iterative
method needs more computation but the forward solver can be parallelized to increase

speed



CHAPTER 5

SHAPE CLASSIFICATION

Shape 1dentification and classification has wide applications The crucial thing 1s
to characterize a shape using fimtely many numbers In this chapter, we will discuss
the relation between response matrix and the geometry of the target A novel method
will be proposed that uses the scattering relation and the response matrix We will
define a distance function based on the response matrix to compare shapes, study
the property of the response matrix under different wave frequency, and apply our

distance function on large data set to obtain the retrieval rate

5 1 Basic Concepts

By sending a plane wave from different angles and recording the far field data
in different angles, the response matrix 1s formed The Nystrom method can be
used to generate the response matrix by solving the Helmholtz equation In [14],
an algorithm for shape classification 1s proposed using the Poisson equation The
method 1s capable of classifying shapes with some rare mistakes However, unlike the
Helmholtz equation, the Poisson equation does not have scaling information

In this chapter, two kinds of objects are used the opaque object and the transparent
object For an opaque object, only the boundary of the object 1s considered The

Dirichlet boundary condition 1s used on the boundary of the object For a transparent
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object, the whole region of the object 1s considered The born-approximation method
1s used to generate the response matrix

The outline of this chapter 1s as follows Section 5 2 explains how the response
matrix 1s generated and describes the properties of the singular value decomposition of
the response matrix Section 5 3, proposes different algorithms for shape classification

Numerical experiments are presented in Section 5 4-5 8

5 2 Response Matrix and Singular Value Decomposition

As mput, some type of characterization of a shape 1s needed One way 1s to give
the coordinates of a set of sample points on the boundary of a shape Another way
1s to give a picture (e g, a “* bmp” file), and 1mage processing can also be used to
generate the coordinates of a set of sample points on the boundary

The active contour method developed by Tony Chan et al [6] solves an optimization
problem and evolves a curve using the level set method to generate a level set function
that has the boundary of the shape as the zero level set Based on this function, a
MATLAB command, “coutourc”, can be used to generate a set of sample points on
the boundary of the shape The trigonometric interpolation, which 1s introduced in
Chapter 4, will be also used here to generate the first and second derivatives

A source at the +-th transducer generates a scattered field that 1s recorded at the
7-th transducer to form one element of the response matrix Changing 2, 7 generates
the response matrix The forward solver in Chapter 2 can be used here to generate
the response matrix for any shapes

In the numerical experiments, far field data 1s used instead of near field, that 1s,
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to send plane wave from the :-th direction and record far field pattern at the 3-th
direction to obtain an element of the response matrix The advantage of using far field
data 1s that the location of the array of transducers does not need to be considered
and 1t 1s easler to compute the far field data

Another method to get the response matrix 1s born approximation This method
can be used on transparent objects, 1 e , photo images First, the image which contains
the object should be represented as a matrix FEach pixel in the image 1s mapped to
a corresponding value 1n the matrix to represent the brightness of that pixel Then,
the mtegration of the product of two Green’s functions generates one element of the
response matrix

For the near field pattern, the response matrix P 1s obtained by

F, = /D o(y)G(z,, y)G(z;,y)dy, (51)

where z, 15 the location of the source of coming wave, and z, 1s the location of the

recerver of the scattering wave G(z,y) 1s Green’s function In two-dimensional case
?
G(z,y) = TH(klz — ), (52)

and 1n three-dimensional model

etkllz—yl

G(z,y) =

= Inle =9l (53

The o(y) 1s an arbitrary function o D — R,eg o D — [0,255] can be defined
to indicate the contrast of a 1mage

For far field pattern, the response matrix P 1s obtained by

Py = [ atetraetsa, (54)
D
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where d, 1s the direction (umt vector) of incident wave, and d; 1s the direction of
scattering wave

Born approximation 1s faster than the Nystrom method since the Hankel function
does not need to be computed 1n the formula of born approximation

The shape information 1s embedded 1n the response matrix The dominant information
1s embedded 1n the first few singular vectors of the response matrix To reduce storage
from O(n?) to O(n), only the first few singular values or vectors are stored Now each

shape 1s encoded by O(n) numbers, where n 1s the number of angles

5 3 Algorithms for Shape Classification
The basic algorithm for shape classification using response matrix information is
as follows

1 Input image file

2 Take the 1maging processing to obtain a level set function

3 Generate sample points on the boundary

4 Interpolate using trigonometric functions to generate locations and first and
second order derivatives

5 Compute the perimeter and rescale 1t

6 Find the center of mass of the shape and relocate

7 Find the minimal sample points on the boundary that guarantee the accuracy
of the forward problem

8 Compute the response matrix (might add noise)

9 Use SVD for shape classification
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To take care of a shift, the centroid of the shape 1s computed using the sample
points on the boundary This can be done by viewing the shape as a combination
of signed triangles formed by neighboring sample points and a fixed reference point
since the centroid of a triangle can be easily computed

To take care of a scaling, the perimeter of the shape i1s computed and normalized
For the Born Approximation problem, the area of the shape 1s computed and normalized

To take care of a rotation, essentially a shift of the index 1s done for the response
matrix The simplest 1dea 18 to search among all possible shifts and compute a norm
of the difference between the matrix of the reference shape and the matrix after the
mmdex shift of the shape to be tested However, this method has two disadvantages
first, 1t 15 not robust, second, 1t needs a storage of O(n?) If only the singular value
1s used to compare, the shifting 1s not needed since the singular value of a matrix 1s
identical while shifting the row and column

To take care of contrast variance, the o(z) 1s normalized using Frobenius-norm

5 4 Response Matrix by Forward Solver using Nystrom Method
First, examples where the shapes are generated from a picture are considered, for
example, a bmp file for a solid simply connected region The procedure described
1n Section 5 2 1s used to generate sample points on the boundary and the first and
second derivatives The Nystrom method 1s used to obtain the response matrices for
these shapes
The reference shape 1s set as a Chinese character “Wang” with bold font Shape 1

to be tested 1s the same shape with scaling and rotation Shape 2 1s the same Chinese
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character “Wang” with another font (Songt1) Shape 3 1s a Chinese character “Zheng”
with bold font The results in Figures 5 1 - 5 4 show that Shape 1 1s the only correct

shape
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Figure 54 Chinese character comparison, different characters

Next, the reference shape 1s set to be a spiral curve, see Figure 55 Shape 1 1s the
same shape with a rotation of 0 3937(radian measure) and a scaling of 0 5 Shape 2
1s a shorter spiral that matches with the reference shape except at the tip Again, the

result in Figure 5 6 and Figure 5 7 show that the correct shape could be 1dentified
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Next, a hibrary was build to contain the shape information of a group of reference

shapes For each reference shape, only the first five eigenvalues of the corresponding

response matrix was stored Given a reference shape, users can go through the hibrary
to find the same shape

Figure 58 and Figure 59 show a search for the bold font Chinese character

“Wang” 1n the library The sixth comparison 1n Figure 5 8 1s a correct match with a

peak value 157, which 1s much larger than other peak values
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The advantage of using the SVD method to compare 1s robust Figure 510 and
Figure 5 11 show the result of adding 50% noise The sixth comparison 1n Figure 5 10

1s a correct match with a peak value 90, which 1s much larger than other peak values
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Then, the noise 1s set to be biased noise Figure 512 and 5 13 show the result

The sixth comparison in Figure 5 12 1s a correct match with a peak value 237, which

1s much larger than other peak values
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5 5 Response Matrix by Born Approximation

This section shows the results of shape classification using response matrices based
on Born approximation

First the response matrices were generated using Born approximation for the data
set at wave frequency £ = 20 For example five different classes of shapes are used
“apple”, “bat”, “bird”, ‘cup”, “Heart”, each class contains five shapes “apple-1”
was used as a reference shape and compared the distance between every shape and
“apple-1”

The distance function 1s
di(s1,82) = ||svd(r(s1)) — svd(r(s2))ll2, (55)

where 7( ) 1s the response matrix generated by born approximation, and svd( ) gets
the singular values of a matrix

The results are shown n Figure 514 All the figures are histed in an increasing
distance order Five apples are i the top five The other four classes are grouped

together



@

cup-5=0 77388

Heart-4=1 4261
r
h _4

bird-5=2 7462

bat-5=4 5454

N

apple-1=1 8791e-14 apple-2=0 19609

&

cup-3=0 77431
Heart-3=1 5829
r VN
bird-1=3 1557

bat-4=4 5456

apple-4=0 43767

cup-1=0 86466

Heart-1=1 8182
r v\
bird-3=3 1995

\

-

bat-1=4 8261

apple-3=0 46832

[

cup—4=0 92284

Heart-2=1 9074

r ey

bird-4=3 2028

-

bat-2=5 8526

o

Figure 5 14 Reference shape “apple-1”

apple—-5=0 49994

"

cup-2=1 3491

9

~NF
rj‘—*?

bird-2=3 3955

f

bat-3=5 8528

i

65



66
If “bat-1” 1s taken as reference shape, the results are shown i Figure 5 15

Although “cup-2” 1s mixed with “Heart-4”, the five bats are still in the top five
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Figure 5 15 Reference shape “bat-1"
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Figure 5 16 uses “lizard-1" as a reference shape All five izards are 1n the top five
Although the “snake” shape 1s similar to the “lizard” shape, the current method can

still distinguish them
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Figure 5 16 Reference shape “lizard-1”
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Figure 5 17 shows the result of comparing different Chinese characters in different

fonts The same characters to the reference character are 1n the top five
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Figure 5 17 Reference shape Chinese characters
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5 6 Frequency Filtering
The born approximation is similar to fourier transformation The geometric

domain 1s mapped to the frequency domain Figure 5 18 shows the frequency distribution
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Figure 5 18 Frequency distribution

The dots with cross in Figure 5 18 form one column of the original matrix The
low frequency part 1s 1n the center and vice versa The low frequency part or high
frequency part can be truncated based on the demands Then, the response matrix
can be reformed by the increased or decreased frequency order to get a better result

A data set of different kinds of flower shapes 1s considered, as shown in Figure
519 There are five classes in the data set, and each class contains five shapes Shapes

i this data set are classified by the number of leaves



Figure 519 Five classes

Original
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Figure 5 20 shows the results using distance function d; The distance function

dy failed on this data set
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Figure 5 20 Five classes using distance function d,
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In Figure 5 20, “device0-1"7, “devicel-1”, “device2-1”, “device5-1”, “device7-1"
1s taken as the reference shape separately, compared with other shapes in the set
The top eight matches are shown The shape which 1s 1n a different class as the
reference shape will be marked with a ™*’ on the top The result 1s not as good as n
the previous examples Therefore, another metric needs to be found to measure the
distance between two shapes, which 1s introduced by distance function d,

Let s, sy be two shapes in the data set r, 1s the response matrix of s,, 2 = 1,2

Take the smgular value decomposition r, = ULV # | where {uy) *_, and {vj(z) }y=, are
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the singular vectors obtained from U and V' Then, the distance between s; and s,

15 defined as below

n

da(s1,82) = Y [ u®) (w0 (56)

1=1

Here n = 5 1s set to 1gnore noise Figure 5 21 shows the result using metric ds,

which 1s much better than using metric d;
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Figure 5 21 Five classes using distance function ds
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5 7 Face Recognition
This section introduces contrast information to a two-dimensional object to represent
a gray image, and classification method 1s applied to 1dentify faces Figure 5 22 shows
the result of face recognition using the current distance function based on the response
matrix generated by Born approximation The picture of one person 1s used as a
reference shape and compared to all the other pictures The results are placed 1n a

decreasing order The five pictures of the same person are 1n the top five

41678 4 1492 40987 4 0935 32436

23817 22744 22432

21835

18249

15363

Figure 5 22 Face recognition

5 8 Retrieval Rate on the MPEG-7 Shape Data Set
The MPEG-7 Shape 1s a standard testing data set of non-rigid shapes with a
single closed contour It consists of 70 different classes of shapes and each class
contains 20 different shapes The introduction of MPEG-7 Shape data set can be

found 1n [28] The MPEG-7 Shape data set 1s tested on many classification algorithms
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to obtain the shape retrieval rate Most of those shape classification method are
based on the property of the shapes However, the classification method presented
in this chapter 1s based on the response matrix generated by the shape using the
Helmholtz equation Therefore, before computing the shape retrieval rate, the Born
approximation 1s applied on all the shapes in order to obtain the response matrix

In the numerical experiment, we set the wave number k£ to be k£ = 20 and the
number of transducers N to be N = 64 Hence, the response matrix P 1s of 64 x 64
dimension

The retrieval rate 1s computed by the so called Bull’s eye score

1 Every shape 1n the database 1s compared to all other shapes There are totally

1960000 comparisons
2 The number of shapes from the same class among the 40 most similar shapes
1s reported For this experiment, the reported number 1s 18569

3 Ratio of the total number of shapes from the same class to the highest possible

number 1s computed as the retrieval rate For this experiment, the highest

possible number 1s 1400 x 20 = 28000 Hence
ratio = 18569/28000 =~ 66 32%

Figure 5 23 1s the example of the 40 most similar shapes for the “apple-1”
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Figure 5 23 MPEG-7 comparison for “apple-1”

The Skeleton DAG method [31] has the retrieval rate of 60% The Wavelet method
[8] has the retrieval rate of 67 76% The Curvature scale space method [32] has the
retrieval rate of 7544% The Shape contexts method [3] has the retrieval rate of
76 51% The Curve edit distance method [41] has the retrieval rate of 78 17%

Most of the algorithms are based on the shape information Our method, mnstead,
1s based on the response matrix information There are several advantages using
response matrx to classify shapes

1 No special treatment needed for shape scaling and rotation

2 The storage 1s efficient since the forward solver or the Born approximation

maps the shape from the shape space, which 1s a infinite dimension space, into

a complex matrix space, which 1s a fimite dimension space
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3 When the shapes cannot be visualized, the physical measurements lead to the
scattered field mformation of the shape Our response matrix generated by
solving the Helmholtz equation 1s accurate comparing to the response matrix
obtained from physical measurement Therefore, the scattered field data can be
directly fed to our algorithm to compute for the retrieval rate The shape-based
algorithms need the shape information which can be only obtained by solving

the mnverse problem Our method 1s much faster in this case

5 9 Summary for Shape Classification

Using the response matrix or 1ts singular values and vectors to represent shape 1s
storage efficient This study shows that only the first few singular values and vectors
need to be stored and used to characterize the shape The storage 1s reduced from
O(n?) to O(n) Therefore, a shape can be characterized and a shape library can be
buwlt using the least amount of data Shape rotation and scaling can be easily dealt
with i the response matrix The wave frequency can be filtered to focus on different
detail levels 1n classification Moreover, the SVD method used 1s robust to noise The

retrieval rate 1s obtained on MPEG-7 Shape data set



CHAPTER 6

CONCLUSIONS

This dissertation proposed an effective iterative method for inverse problem based
on the forward solver for 1teration and direct imaging result for the imtial guess The
Nystrom method 1s used 1n the forward solver and adjoint problem The response
matrix generated by the Nystrom method converges exponentially with respect to
the number of sample points on the boundary of the target Image processing was
used for converting the MUSIC imaging function into a level set representation for
the mitial guess, and was then fed to the forward solver The recursive linearization
solves one forward problem and one adjoint problem in each iteration step The
process always starts from low-frequency number k& and increase k 1n 1teration to
capture more details of the boundary of the object Numerical examples show that
this method can be applied on single or multiple targets, and the residual of the final
state 1s less than the residual of the imitial guess, which means that the result of this
iterative algorithm 1s more accurate than the result of the direct imaging method

The 1nverse problem was applied to shape 1dentification and classification since
there 1s a relation between the shape itself and the response matrix obtained from
the shape The distance function was designed based on the response matrix or 1ts

SVD mnformation Index shifting of the response matrix was used to represent the

77
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shape rotation Numerical examples shows that the SVD method used 1s robust to
nowise Filtering 1s used to control the detail level of the shapes and 1s tested on the
classification example The classification algorithm 1s fast, using Born Approximation,
and storage efficient, using the distance function on SVD of the response matrix
The classification method based on the response matrix 1s tested on a large data-set
(MPEG 7 Shape) and the retrieval rate 1s computed The method will be also
combined with machine learning techniques to improve the retrieval rate in the

future
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