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ABSTRACT 

This dissertation presents a novel method for the inverse scattering problem for 

extended target The acoustic or electromagnetic wave is scattered by the target 

and received by all the transducers around the target The scattered field on all the 

transducers forms the response matrix which contains the information of the geometry 

of the target The objective of the inverse scattering problem is to reconstruct the 

shape of the scatter using the Response Matrix 

There are two types of numerical methods for solving the inverse problem the 

direct imaging method and the iterative method Two direct imaging methods, 

MUSIC method and Multi-tone method, are introduced in this dissertation The 

direct imaging method generates the image, which contains the shape of the target, 

by defining the image function using the response matrix Numerical examples show 

that the two direct imaging methods are efficient and robust, and the Multi-tone 

method can be used in synthetic aperture 

The iterative method described in this dissertation achieves better accuracy than 

the direct imaging method The result of the direct imaging method of the inverse 

problem is used as an initial estimation for this iterative method One forward 

problem and one adjoint problem is solved in each iteration step Numerical results 

show that the residual vanishes at a fixed wave number The final result after 

iterations is more accurate than the result from the direct imaging method 

in 



IV 

This dissertation also introduces the application of the inverse problem shape 

identification and classification The response matrix used in shape classification can 

be generated by the forward solver or Born approximation The distance function 

designed using a response matrix or its SVD information is effective and robust to 

noise The classification method using the response matrix is tested on a large data 

set and compared with other classification algorithms on the retrieval accuracy 
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CHAPTER 1 

INTRODUCTION 

1 1 The Direct Scattering Problem 

Scattering theory has played a central role in twentieth century mathematical 

physics The incoming acoustic or electromagnetic wave can be scattered by the 

target in the center of the domain and received by the transducers around the object 

Let u be the total field, ul be the incident field coming from one position or one 

direction, and us be the scattered field The total field u can be viewed as the 

summation of ul and us such that 

u = ul + us (1 1) 

The direct scattering problem is to determine us from a knowledge of ul, the shape 

information of the target, and the differential equation governing the wave motion, 

see [5, 11, 20, 29, 30, 33, 34, 39, 44] 

The two basic problems in classical scattering theory are the scattering of 

time-harmonic acoustic or electromagnetic waves by a penetrable mhomogeneous 

medium of compact support and by a bounded impenetrable obstacle 

Considering the case of time-harmonic acoustic waves, assume the incident field 

is given by the time-harmonic acoustic plane wave 

u%(x,t) = etikxd-ut\ (12) 

1 



where k — UI/CQ IS the wave number, u the frequency, c0 the speed of sound, and d 

the direction of propagation 

Then the scattering problem for the case of an mhomogeneous medium is to find 

the total field u such that 

Au + k2n(x)u = 0 in R3, (1 3) 

u(x) = elkxd + us(x), (14) 

fdus \ 
hm r — - ikus = 0, (1 5) 

r-»oo \ Of J 

where r = ||x||, n = cl/c2 is the refractive index given by the ratio of the square 

of the sound speed c, which satisfies that c = c0 in the homogeneous host medium 

and c = c(x) in the mhomogeneous medium It is assumed that 1 — n has compact 

support Equation (15) is called the Sommerfeld Radiation Condition which 

guarantees that the scattered wave is outgoing 

For the case of scattering by an impenetrable obstacle D, the simplest scattering 

problem is to find the total field u such that 

Au + k2n(x)u = 0 in R 3 \D, (1 6) 

u(x) = elkxd + us{x), (17) 

u = 0 on dD, (1 8) 

I' dus \ 
hm r — ikus 1 = 0 , (1 9) 

r->oo \ Or J 

where the Equation (1 6) is the Helmholtz equation and the boundary condition, 

Equation (18), corresponds to a sound-soft obstacle The boundary condition can 
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also be considered for the Neumann or sound-hard boundary condition 

^ = 0 on dD, (1 10) 
ov 

where u is the unit outward normal to 3D 

Problems from Equation (1 3)-(l 5) and Equation (1 6)-(l 9) are the simplest 

examples of physically realistic problems in acoustic scattering theory More details 

about the scattering theory can be found in [12] This dissertation is primarily 

concerned with the inverse scattering problems associated with the direct scattering 

problems formulated above However, before the inverse problems can be considered, 

more about the direct problems must be studied Chapter 2 focuses on the details 

of direct scattering problems and introduces the numerical method for solving direct 

scattering problems in R2, which will be used in the iterative method of inverse 

problems 

1 2 The Inverse Scattering Problem 

For the inverse scattering problem, the refractive index n(x) or the geometry of 

target D is unknown The information of incident waves is given and the scattered 

waves is recorded by the transducers The objective is to find the location and 

geometry of the targets, which is determined by n(x) or D, using the the relation 

between incident waves and scattered outgoing waves 

The inverse scattering problems is widely used in industry such as 

1 underground mine detection 

2 detection of defects in nondestructive testing, 

3 target detection using radar or a sonar system, 
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4 ultrasound imaging in medical applications, 

5 reflection seismology 

The inverse problem is in general an ill-posed (non-linear) problem Recovering the 

n(x) in the whole domain is a challenging work If the target medium is homogeneous 

the n(x) is a constant inside the target, then the inverse problem can be turned into 

a geometric problem, which is to reconstruct the shape of the target D 

There are essentially two types of numerical methods for the inverse problem 

the direct imaging method and the iterative method The direct method gives a 

characterization of the geometry of the target by designing an imaging function based 

on the response matrix that peaks near the target boundary Iterative methods 

update the boundary of the target to minimize the residual of the scattered field It 

is a nonlinear optimization process 

Based on the relation between the resolution and the size of the target, there 

are two different cases point target and extended target The MUltiple Signal 

Classification (MUSIC) method in [13, 15, 22, 37, 40] can be used to locate small 

target (point target) The authors in [38, 36, 42, 43, 21] use iterated time reversal 

to recover small target The MUSIC algorithm is generalized to applied on extended 

targets for near field data in [18], and for far field data in [19] 

The MUSIC method is efficient and robust It, however, cannot generate good 

result for limited or synthetic aperture since it uses single frequency to capture the 

shape and the projection process loses the phase information of the response matrix 

In [16], the author proposed a Multi-tone imaging algorithm that uses both phase 

and space information of the response matrix, and utilizes multiple frequency waves 
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The linear sampling method, [10], is another direct imaging algorithm for the 

inverse scattering problem The method is based on a characterization of the range 

of the scattering operator, which is presented in [24] Recent development of the linear 

sampling method is introduced in [4, 9] There are two mam differences between the 

MUSIC method and the linear sampling method 

1 The MUSIC method is based on a different factorization 

2 The MUSIC method uses the resolution based thresholding for regulanzation 

More details about the relation between the MUSIC method and the linear sampling 

method can be found in [7, 25] 

The iterative method for the inverse problem is the mam purpose of this dissertation 

The iterative method is a non-lmear optimization approach It has the advantage of 

accuracy compared to the direct imaging method Moreover, the iterative method can 

easily utilize multi-frequency date to capture multi-level details of the object Using 

the forward solver, each iteration step contains a forward scattering problem and 

an adjoint problem The forward solver can be parallelized to increase the iteration 

speed In Chapter 4, the iterative method will be demonstrated starting from the 

initial data, which is obtained by the direct imaging method The shape of the object 

converges to the real shape after a series of iterations of solving adjoint forward 

problems and adjusting the boundary 

Shape identification and classification using scattered field data is an application 

of the inverse problem Shape classification and similarity are important topics in 

computer vision In [45], the author presented a skeleton graph matching method 

based on critical points using path similarity This method uses information from 
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critical points of the skeleton graph of shapes, then does merge and cut operations 

Good results are achieved on two shape data-sets Another method to generate the 

response matrix is using the Poisson Equation [14] The authors use the information 

from the silhouette for shape recognition and classification by computing properties 

of a silhouette such as the part structure, the rough skeleton and the local orientation 

In [1], the author provided a distance function by using the shortest paths or distances 

between the known shapes and their query, and ignoring less relevant shape differences 

between the known shapes and their query 

The current method for shape classification uses the response matrix generated 

by the Nystrom method of forward solver or Born approximation Shape space 

is geometric and has infinite dimensions Moreover, a shape may have different 

representation or appearance due to translation, rotation, scaling and parametrization 

It is very desirable to find intrinsic characterization that are invariant under translation, 

rotation, scaling, and parametrization with certain robustness, especially with respect 

to noise In practice, it is necessary to characterize a shape using finite dimensional 

vectors that have the above desired properties In this dissertation, a novel method 

is proposed that uses the scattering relation and the response matrix This method 

has the advantage of robustness against noise and dealing with shape rotation and 

scaling The storage need for this method is small as well The details of our method 

on shape identification and classification will be discussed in Chapter 5 
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1 3 Research Objectives 

The objective of this dissertation is to develop an iterative method for inverse 

scattering problem and to study the property of the response matrix, and the relation 

between the response matrix and the geometry of the target 

In detail, research objectives of this dissertation include 

1 To implement the forward solver for the forward scattering problem on Dinchlet 

and Neumann boundary condition using the Nystrom method, 

2 To introduce the direct imaging method for inverse scattering problem, 

3 To develop the iterative method for inverse scattering problem, 

(a) To convert the result of direct imaging method into the initial guess for 

the iterative method, 

(b) To solve forward problem and adjoint problem in each iteration, 

4 To represent shapes using the response matrix and to study the application of 

response matrix in shape classification 

1 4 Organization of the Dissertation 

In Chapter 1, we will provide the general overview, research objectives, and 

organization of the dissertation 

In Chapter 2, we will introduce the basic background of scattering theory and 

discuss the forward scattering problem, including the partial differential equation of 

the waves and numerical solution on R2 The forward solver will be implemented 

using Nystrom method and will be used in each iteration of the iterative method for 

inverse problem 
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In Chapter 3, we will introduce two direct imaging methods for inverse scattering 

problem the MUSIC method and the Multi-tone method Numerical results will be 

shown and will be used as the initial guess of the iterative method for inverse problem 

In Chapter 4, we will develop the iterative method for the inverse scattering 

problem We will use active contour method to convert the image, which is the result 

of the direct imaging method, into level set function and capture the boundary of the 

target We will show that the result of adjoint problem will be the velocity vector 

of the sample points on the boundary We will solve one forward problem and one 

adjoint problem in each iteration We will show that the boundary converges to the 

real shape after several iterations 

In Chapter 5, we will discuss the relation between response matrix and the 

geometry of the target We will define a distance function based on the response 

matrix to compare shapes We will study the property of the response matrix under 

different wave frequencies We will also apply our distance function on large data set 

to obtain the retrieval rate 

In Chapter 6, we will provide a conclusion for this dissertation 



CHAPTER 2 

FORWARD PROBLEM 

In this chapter, we will introduce the basic background of scattering theory and 

discuss the forward scattering problem, including the partial differential equation of 

the waves and numerical solution on R2 The forward solver will be implemented 

using Nystrom method for 2D scattering problem 

2 1 Basic Conception 

The target object is located in the center and is surrounded by an array of 

transducers, see Figure 2 1 

PML 

1 

• 

8 

© 

th® 

\ P'7 

0 
target 

transducers 

ilth 

Figure 2 1 Generating the response matrix 

Each transducer can emit acoustic/electromagnetic wave and receive scattered 

wave 
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Definition 2 1 1 The matrix P = (Pi3)NxN is called a Response Matrix if and 

only if Pl3 is the received signal at j - th transducer for an incident plane wave sent 

from the ^-th direction or an incident wave sent by the z-th transducer and N is the 

number of transducers 

In general P may not be a square matrix There are two ways to obtain the 

response matrix P 

1 Physical experiments and measurements 

2 Numerical generations for solving the Helmholtz equation 

In the iterative method for inverse scattering problem, we will solve the forward 

problem in each iteration step Therefore, the forward solver will be used on arbitrary 

shapes and the numerical solution is the only way to obtain the response matrix 

2 2 The Helmholtz Equation 

The Helmholtz Equation which governs the wave motion in forward solver is 

obtained from wave equation [12] Consider the propagation of sound waves of small 

amplitude in a homogeneous isotropic medium in R3 viewed as an mviscid fluid The 

wave motion is governed by Euler's equation 

dv 1 
— + {v V ) u + - V p = 0, (2 1) 
at p 

the equation of continuity 

% + V ( H = 0, (22) 

the state equation 

P = f(p,S), (2 3) 
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and the adiabatic hypothesis 

^+v V 5 = 0, (2 4) 
at 

where v = v(x,t) is the velocity field, p = p(x,t) is the pressure, p = p(x,t) is the 

density, S = S(x, t) is the entropy, and / is a function depending on the nature of 

the fluid 

For simplicity, the linearized Euler equation can be obtained by assuming that 

v, p, p and S are small perturbations of the static state v0 = 0, po = constant, 

Po = constant, -So = constant 

^ + -Vp = 0, (25) 
at po 

the linearized equation of continuity 

^ + p0V v = 0, (26) 

the linearized state equation 

m-d~p{po'So)~al ( 2 7 ) 

From the linearized Equation (2 5)-(2 7) the wave equation is obtained 

I d 2 / 
c2 dt2 

where the speed of sound c is defined by 

Ap, (2 8) 

2 df, 
c2 = -f(Po,S0) (2 9) 

From the linearized Euler equation, it is observed that there exists a velocity 

potential U = U(x, t) such that 

v = —Vu, (2 10) 
Po 



and 
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P = - W (2 11) 

Clearly, the velocity potential also satisfied the wave equation 

For time-harmonic acoustic waves of the form 

U(x, t) = Re{u(x)e-lu>t}, (2 13) 

with frequency ui > 0, the complex valued space dependent part u satisfies the 

Helmholtz equation 

Au + k2u = 0, (2 14) 

where the wave number k is given by the positive constant k = u/c 

In obstacle scattering there are two cases of impenetrable and penetrable objects 

the sound-soft object and the sound-hard object For a sound-soft object, the pressure 

of the total wave vanishes on the boundary, and the total wave u satisfies the wave 

equation in the exterior R 3 \D of D with a Dirichlet boundary condition u = 0 on 

3D 

Similarly, for a sound-hard object, the pressure satisfies the Neumann boundary 

condition du/du = 0 on 3D where v is the unit outward normal vector on the 

boundary dD The normal velocity of the total wave vanishes on the boundary 

The solution of the Helmholtz equation (2 14) with positive wave number k can 

be deduced from the fundamental solution 
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i pik\\x-y\\ 
<Z>(x,y) =—j JT, x^y (2 15) 

47r \\x — y\\ 

For a fixed y G R3, the fundamental solution (2 15) satisfies the Helmholtz 

equation (2 14) in R3\{y} 

The layer approach defines the single-layer and double-layer potentials 

Definition 2 2 1 Acoustic Single-layer Potential Given any integral function 

<p, define the integral u such that 

u(x) = / ip{y)$(x,y)ds{y), (2 16) 
JdD 

where $(x,y) is the fundamental solution in (2 15) u(x) is called the acoustic 

single-layer potential with density <p 

Definition 2 2 2 Acoustic Double-layer Potential Given any integral function 

(f, define the integral v such that 

v[x) = Lv(v)8-^iMyl (217) 

where $(x,y) is the fundamental solution in Equation (2 15) v(x) is called the 

acoustic double-layer potential with density (p 

u and v are solutions to the Helmholtz equation (2 14) in D and in R 3 \D Any 

solution to the Helmholtz equation can be represented as a combination of single-layer 

and double-layer potentials 

2 3 Scattering from an Obstacle 

The scattering of time-harmonic acoustic waves by sound-soft obstacles leads to 

the following problems 
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Definition 2 3 1 Direct Acoustic Obstacle Scattering Problem Given an 

entire solution ul to the Helmholtz equation representing an incident field, find a 

solution 

u = ul + us, (2 18) 

to the Helmholtz equation in R3\L> such that the scattered field us satisfies the 

Sommerfeld radiation condition and the total field u satisfies the boundary condition 

u = 0 on 3D (2 19) 

This direct scattering problem is a special case of the following Dirichlet problem 

Definition 2 3 2 Exterior Dirichlet Problem Given a continuous function / on 

3D, find a radiating solution u G C2(R3 \D) f| C(R3\£>) to the Helmholtz equation 

Au + k2u = 0 m R 3 \D, (2 20) 

which satisfies the boundary condition 

u = / on 3D (2 21) 

The objective is to obtain the solution in the form of a combined acoustic single-layer 

and double-layer potentials, see [12] 

The following theorem provides the solution of the Exterior Dirichlet Problem 

Theorem 2 3 3 Define the potential u(x) satisfying 

u{x) = J^ { ^ | ^ - iV${x, y ) } <p(y)da(y)1 (2 22) 

with a density <p G C(3D) and a real coupling parameter rj ̂  0 Then the potential 

u given by Equation (2 22) in R3\£> solves the Exterior Dirichlet Problem if and only 
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if the density is a solution of the integral equation 

<p + Kip - i-qSip = 2/, (2 23) 

where S C(3D) —>• C(3D) is the single-layer operator defined by 

(SV)(x) = 2 / $(x,y)^(y)d5(y), x G 3D, (2 24) 

and if C(3D) —>• C(3D) is the double-layer operator defined by 

(*¥>)(*) = 2 / ^ ^ ( y j d a f o ) , X 6 9 D (2 25) 

The acoustic scattering from a sound-hard obstacle should follow the Exterior 

Neumann Problem 

Definition 2 3 4 Exterior Neumann Problem Given a continuous function g 

on 3D, find a radiating solution u G C2(R3\D) f] C(R3\£>) to the Helmholtz equation 

Aw + k2u = 0 in R?\D, (2 26) 

which satisfies the boundary condition 

^=gon3D (2 27) 

Similarly, the following theorem provides the solution of the Exterior Neumann 

Problem 

Theorem 2 3 5 Define the potential u(x) satisfying 

U{X) = L {$(X'VMV) + lT1^Mri~(5oV)(y)} ds(?/)' (2 28) 

with continuous density <p and a real coupling parameter 77 ^ 0 S0 in Equation (2 28) 

denotes the single-layer operator 5 in Equation (2 24) in the potential theoretic limit 

case k = 0 



16 

Equation (2 28) solves the Exterior Neumann Problem if and only if the density 

is a solution of the integral equation 

<p-K'<p- irjTSly = -20 , (2 29) 

where K' and T are the normal derivative operators given by 

(#V)(s) = 2 / ^rv^(y)d*(y), x G 3D, (2 30) 

and 

(7V)(z) = 2 ^ / ?^±<p(y)ds(y), x e 3D (2 31) 
<ju{x) JdD du(y) 

2 4 Numerical Solution in R2 

This section studies the numerical solution of the Helmholtz equation in R2 

using the Nystrom method, which is based on appropriately weighted numerical 

quadratures on an equidistant mesh Therefore, the necessary parametrization of 

the integral equation in the two-dimensional case will be described It is assumed 

that the boundary curve 3D possesses a regular analytic and 27r-penodic parametric 

representation of the form 

x{t) = (xi(«), x2(t)), 0 < t < 2?r, (2 32) 

in counterclockwise orientation satisfying [x^i)]2 + [x^W]2 > 0 f° r a u ^ 

For the exterior Dirichlet problem, Equation (2 23) is transformed into the parametric 

form 

/•27T 

ij)(t) - / \L{t, r) + vqM(t, r)] ^ ( r )dr = g(t), 0<t<2n, (2 33) 
Jo 
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where ip(t) = ip(x(t)), git) = 2f(x(t)) and the kernels are given by 

L(t,r) = y { ^ ( ^ [ ^ ( T J - x x f f l l - x i M M T J - x a f t ) ] } ^ 1
 r

(
( y } ' T ) ) . (2 3 4) 

M(«,T) = ^ ^ ( ^ ( ^ ^ { [ x U r ^ + ^ ^ r ) ] 2 } 1 7 2 , (2 35) 

for t 7̂  r Here, let 

r ( t , r ) ={ [x 1 ( t ) -x 1 (T) ] a + [x2(*)-x2(T)]2}1 / 2 (2 36) 

Note that the kernels L and M have logarithmic singularities at t = r Hence, 

using the numerical method introduced in [26], the kernels are split into 

Lit,r) = L i ^ l n ^ s i ^ ^ ^ + M ^ T ) , (237) 

M(t,r) = M1{t,T)\n[4sm2t—^)+M2{t,T), (2 38) 

where 

L.iUr) = A {X2(T) [xi{t) - g l ( T)] - x ; ( r ) [x2(t) - ga(T)]} J l (
r ^ ( y ) } , (2 39) 

L2(t,T) = L(t,r) - Li (t, r) In ^ s i n 2 ^ ) , (2 40) 

Mx{t,r) = -l-J0(kr(t,r)){[x[(T)}2 + [x'2(r)}2}1/2, (2 41) 

M 2 (* ,T) = M ( i , T ) - M i ( i , r ) l n ( 4 s m 2 ^ ^ ) (2 42) 

The kernels L\, L2, Mi, and M2 turn out to be analytic 

In particular, for the t = r terms, there are 

Litt)-Litt)- l^(^m-^(t)x'i(t) ,24«, 
L2(t, t) - L(t, t) - - Wi{t)]2 + [aJM2 - (2 4 3) 

and 

M2(t,t) = | i - ^ - i - in (j{lx[(t))2 + [x2(i)]
2}) } {[xUi)]2 + [x'2(t)]

2}1/2 , (2 44) 

for 0 < t < 2n 
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Hence, it is necessary to numerically solve the integral equation of the form 

/•27T 

fit)- j K(t,T)(p{r)dT = g(t), 0<t<2n, (2 45) 
Jo 

where the kernel K can be written as 

K(t,r) = K^t,r) In ^sin2 t-^-\ + K2(t,r), (2 46) 

with analytic functions K\ and K2 and with an analytic right hand side g 

Here it is necessary to point out that it is essential to split off the logarithmic 

singularity in a fashion which preserves the 27r-penodicity for the kernels K\ and K2 

This treatment guarantees the exponential convergence of the numerical solution, 

which will be demonstrated in the numerical experiments 

The Nystrom method uses a straightforward approximation of the integrals by 

quadrature formulas In this case, since the boundary of the target 3D is a 27r-penodic 

form, an equidistant set of knots t3 = irj/n, j = 0, , 2n — 1 were chosen, and use 

the quadrature rule 

/

2TT / . _ \ 2 n - l 

In ( W __j / ( r ) d T « £ Rf\t)f{t3), 0 < t < 2TT, (2 47) 
with the quadrature weights given by 

n - l 

r27r „ 2 n - l 

R^\t) =—-^2—cosm(t-t3)-^cosn(t-tj), j = 0, ,2n-l,(2 48) 
r re= l 

and the trapezoidal rule 

/ /Wd^:E/W- (249) 
where the function / can represent any integration kernel The numerical integrations 

are obtained from integrating exactly 
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In the Nystrom method, the integral in Equation (2 45) is replaced by the finite 

summation, and yields 

2 n - l 

^n)(t)-J2{R<
J
n\t)Ki(t,tJ) + lK2(t,t])}^(tJ)=g(t), (2 50) 

3=0 

for 0 < t < 2TT 

Equation (2 50) is obtained from Equation (2 45) by applying the quadrature 

rule, Equation (2 47), to / = K\{t, )ip, and trapezoidal rule, Equation (2 49), to 

/ = K2(t, )ip The solution of Equation (2 50) reduces to solving a finite dimensional 

linear system 

In particular, for any solution of Equation (2 50) the values 

V\(n)=^(n)(<t)> i = 0, , 2 n - l , (2 51) 

satisfy the linear system 

2 n - l 

4n) - J2 {<!,i#i(*..h) + ~K^h)}^n) = g(u), (2 52) 
j=o n 

for i = 0, , 2n — 1, where 

ii<»)=i2<»)(0) = - H ! l g l c o S ^ - t ^ , ,=0, ,2„-l (253) 
j J n L^I rn n n2 

171=1 

Conversely, given a solution Vv ,2 = 0, , 2n — 1 of the linear system of Equation 

(2 52), the function ^ ( r i ) defined by 
2 n - l 

^n)(t) = J2 {R{;\t)Kl{t,tJ) + -K2{t,t3)X^n\t3)+g{t), (254) 
3=0 

for 0 < t < 2n satisfies the approximating Equation (2 50) 

Once the density function tp is obtained, the total field u can be determined using 

Theorem 2 3 3 since ip is the discrete form of ip 
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The Nystrom method for Neumann boundary condition is similar to but more 

complicated than the Dirichlet boundary condition [27] The Exterior Neumann 

Problem solver will be used in the adjoint problem in the iterative method of inverse 

problem 

2 5 Numerical Experiments 

The forward solvers for Exterior Dirichlet problem and Exterior Neumann problem 

are implemented First place four transducers around the target, which is a flower 

shape in Figure 2 2 

Figure 2 2 Flower shape 

The flower shape has following analytic presentation 

x(t) = (l + 0 5cos(3t))*cos(*), (2 55) 

and 

y(t) = (l + 0 5cos(3*))*sin(*) (2 56) 

The location of four transducers are l\ = (5,0), l2 = (0,5), l3 = (—5,0), and 

U = (0, —5) Let n be the number of sample points on the boundary of the target, 
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and k be the wave number The response matrix generated by Exterior Dirichlet 

forward solver at k = 1, n = 64 is 

1 - 0 093 + 0 198i - 0 084 + 0 1942 - 0 075 + 0 189z - 0 084 + 0 194i 

P = (2 57) 
- 0 084 + 0 194z - 0 093 + 0 198z - 0 084 + 0 194z - 0 075 + 0 190z 

- 0 075 + 0 190z - 0 084 + 0 194i - 0 093 + 0 I98i - 0 084 + 0 194z 

\ - 0 084 + 0 194z - 0 075 + 0 190z - 0 084 + 0 194z - 0 093 + 0 198i , 

If the scatter field incident from li and received by l2 is taken, and consider the 

change of n, the P2]i term of response matrix P will be 

n = 16, P21 = _o 084642954035770 + 0 1939944489383752, 

n = 32, P2,i = -0 084642528632574 + 0 1940037597208732, 

n = 64, P2>1 = -0 084642633363342 + 0 194003674480984z, 

n = 128, P2,i = -0 084642633328078 + 0 194003674511525z, 

n = 256, P2,i = -0 084642633328085 + 0 1940036745114902 

Numerical result shows that the forward solver converges with the number of 

sample points on the target boundary Figure 2 3 shows the convergence rate 

40 60 100 120 

Figure 2 3 Convergence of the Nystrom method 
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In Figure 2 3, p(320) is used to approximate the real response matrix at n = 320, 

and consider the error err^ such that 

err^ = max \P™ - P ( 3 2 0 ) | (2 58) 
1<»<4,1<J<4 hJ hJ 

The left picture in Figure 2 3 is err^n\ the right one is log(err^) , and here n 

goes from 20 to 120 From Figure 2 3 it can be seen that the result of the Nystrom 

method has the exponential convergence 

err{n) < Ce~an (2 59) 

For this example, if C « 3 4 x 10 - 4 and a « 0 03, the Equation (2 59) holds for 

large enough n 

The Nystrom method can be also applied on multiple arbitrary targets In Figure 

2 4, two targets are placed in the domain 

Figure 2 4 Two arbitrary shapes 

The number sample points on the left target, ni, is twice as the right one, n2, 

since the left one is more complicated in the geometry than the right one The far 

field pattern is used this time, 4 transducers are place at infinity so the coming wave 

can be viewed as a plain wave, and Pj>2 term has the following result 
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nx = 20, n2 = 10, P4,2 = 0 861545181700902 + 0 7682788974536792, 

nx = 40, n2 = 20, P4>2 = 0 558175744822589 + 0 3262164802429532, 

m = 80, n2 = 40, P4,2 = 0 598846321309680 + 0 3447320999749212, 

nx = 160, n2 = 80, P4,2 = 0 603846677808666 + 0 3435701402471512, 

nx = 320, n2 = 160, P4,2 = 0 606402604809483 + 0 3429396233069112 

The response matrix also converges when n\ —>• oo and n2 —> oo 

2 6 Summary for Forward Solver 

The forward solver presented in this chapter will be used in the iterative method 

for inverse problem The Nystrom method is used to obtain the scattered field The 

Nystrom method requires the least computational effort comparing to the Galerkm 

method, since only two one-dimensional integral equations needed to be computed 

The error between numerical result and the real data converges exponentially with 

respect to the number of sample points on the boundary of the target Each column of 

the response matrix is the scattered field coming from one transducer Every column 

is independent of each other in the response matrix Therefore, when the number 

of transducers is large, the forward solver can be parallelized easily each processor 

deals with the wave coming from one transducer and computes one column of the 

response matrix 



CHAPTER 3 

DIRECT METHOD FOR INVERSE PROBLEM 

In this chapter, two direct imaging methods will be introduced The MUSIC 

method is a projection method that can be applied on full aperture, the Multi-tone 

method utilizes the phase information of the response matrix and multi-frequency 

wave that can be applied on limited or synthetic aperture 

3 1 Introduction of Inverse Problem 

Recall the definition of the Response Matrix P = {P13}NXN, where Pl3 is the 

received signal at j - t h transducer for an incident plane wave sent from the 2-th 

direction and N is the number of transducers In general P may not be a square 

matrix 

The medium properties will be probed from a scattered wave field The time 

harmonic wave field u(x) satisfies 

Au(x) + k2n{x)u = f(x), (3 1) 

where k is the wave number, n(x) is the index of refraction, and f(x) is the source 

The general inverse problem is to find n(x) inside the interested region If n(x) 

is piecewise constant, the objective is simplified to find the boundaries where n(x) 

jumps Therefore, the inverse scattering problem is reduced to determine the boundary 

24 
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of a target The inverse problem is widely used in industry, such as in medical imaging, 

underwater acoustics, and non-destructive detection 

3 2 Property of the Response Matrix 

Let L be the distance between the transducer and the target, a be the length of 

the array of transducers Figure 3 1 shows the full aperture and limited/synthetic 

aperture 

tJ m - Jil - — *a 
Figure 3 1 Full aperture and limited/synthetic aperture 

Define R to be the resolution of the array 

R = ^ , (32) 

where 

A = T (33) 

Let S be the size of the target There are three different cases 
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1 Point target (S < R) 

(a) The rank of the response matrix is equal to the number of targets 

(b) Only location information of the targets can be recovered 

(c) The singular values of the response matrix is shown in the left picture of 

Figure 3 2 

2 Small target (S < R) 

(a) The response matrix has a discrete spectrum 

(b) Both location and size (moment) information of the targets can be recovered 

(c) The response matrix has grouped singular values, see the middle picture 

of Figure 3 3 

3 Extended target (S > R) 

(a) The response matrix has a continuous spectrum 

(b) Both location and geometry information of the targets can be recovered 

(c) The number of significant singular values and singular vectors of the response 

matrix is oc S/R, see the right picture of Figure 3 4 

This chapter focuses on the third case since the objective is to reconstruct the 

shape of the target The wave number k should be large enough to capture the shape 

information of the target 
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Figure 3 2 Resolution v s target size Point target 
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Figure 3 3 Resolution v s target size Small target 
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Figure 3 4 Resolution v s target size Extended target 
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3 3 The MUSIC (Multiple Signal Classification) Algorithm 

The Multiple Signal Classification (MUSIC) method is one of the direct imaging 

methods There are several advantages to the MUSIC method 

1 No iteration or forward problem solver is needed 

2 This method works for both near field and far field data 

3 Material property can be embedded into the imaging function 

4 Resolution based thresholding is quite robust with noise 

The MUSIC method for point target and small target is discussed in [15] For 

the extended target of Dirichlet boundary condition, let £1 denote the target The 

scattered field us satisfies 

Aus(x) + k2us(x) = 0 x G ttc C Rd 

(3 4) 
us(x) = — ul(x) x G 3£l 

and the Sommerfeld Radiation Condition (15), where ul is the incident field 

Let Go{x,y) be the Green's function that satisfies 

AGD{x) + k2GD{x) = S(x -y) x,yeQ,ccRd 

(3 5) 
GD{x,y) = 0 xedfl 

and the Sommerfeld Radiation Condition (15) 

Hence, the scattered field us can be written as 

«•<*) = / n-(y)^p^dy (3 6) 
Jan av 

The scattered field us is factonzed into two parts 

1 Unknown part the Green's function Gr>ix,y) which depends on the shape of 

the unknown target 
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2 Known part u1 is the illumination wave field that can be controlled 

The key point to determine the boundary of the target is to define the illumination 

vector and signal space 

Definition 3 3 1 Illumination Vector Let GQ( , ) and GD( , ) be the homogeneous 

and mhomogeneous Green's function, respectively Define 

g0(x) =[GQ(x1,x),G0(x2,x), ,G0(XN,X)]T, (3 7) 

gD(x) =[GD(x1,x),GD(x2,x), ,GD{xN,x)}T, (3 8) 

where X\,x2, ,XM are the locations of N transducers Then go(x) and go(x) are 

called the illumination vectors 

If a point source wave is emitted at 2-th transducer and the scattered field is 

received by the j - th transducer, the Pl3 term of the response matrix is 

j dG^3,y)GoiXiy)dy ( 3 9 ) 

Jan dv 

In matrix form the response matrix can be factonzed as 
T 

dy (3 10) 

Definition 3 3 2 Signal Space Let uz be the singular vectors with singular values 

<7j of the response matrix P Define the signal space 

Vs = span{u,|2 < n), (3 11) 

where n is a threshold depending on the resolution of the array and the noise level 

The threshold parameter n in Equation (3 11) can be determined using the resolution 

analysis which is introduced in [18] 

= / 9o(y) 
Jan 

dgpjy) 
3v 
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Then the imaging function IM can be defined as 

IM(x) = \\(I-PVs)g0(x)\\-\ (3 12) 

where Pys is a projection operator projecting the homogeneous illumination vector 

go(x) into the signal space 

Then, when x get close to the boundary 3D, cfo(x) should be in signal space The 

/ — PVs is a projection operator which project the illumination vector into the noise 

space Therefore, (/ — PVs)g0(x) should be small when x goes to 3D, and IM(x) will 

peak at the boundary 

The MUSIC method is a direct approach for the inverse scattering problem It is 

efficient and robust since no inverse operation or iteration is needed 

3 4 Examples for MUSIC method 

The MUSIC method can be applied on single or multiple targets with Dirichlet 

Boundary Condition, see Figure 3 5 

Figure 3 5 Imaging extended target with Dirichlet BC 



31 

More results of MUSIC method on an extended target can be found in [18] The 

image of MUSIC method provides a rough picture of the geometry of the target 

Chapter 4 will show how to start with the image of MUSIC method and use the 

iterative method to obtain more accurate results 

3 5 Direct Imaging Method using Multi-frequency Data 

The MUSIC method uses a single frequency and cannot be applied on limited 

or synthetic aperture The MUSIC method is essentially a projection method which 

drops the phase information when projecting to the signal space Using the multi-frequency 

data and phase information, provides better results for limited or synthetic data 

For the limited or synthetic aperture, there are two cases 

1 The emitters and receivers coincide 

2 The emitters and receivers do not coincide 

In the first case, the response matrix P is complex symmetric Then P can be 

written as P = UYXJT This unique factorization (up to a sign) helps to eliminate the 

arbitrary phase generated by MATLAB when taking the singular value decomposition 

The imaging function is defined as 

IM(x) = 5>(c) JX(*,u;)<]2, (3 13) 

where g is the normalized illumination vector from the transducers to a search point 

x, um is the m-th row of the matrix U, a is the weight for multi-spectrum, Mu is a 

threshold 

In the second case, suppose that there are s transmitters located at £j, , £a and 

there are r receivers located at 771, ,rjr, the response matrix P has the dimension 
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s x r PZJ records the signal received by the j-th receiver at rj3 when the wave comes 

from the 2-th emitter at £z 

At this time the illumination vectors need to be redefined with respect to the 

receiver array and emitter array, respectively, as 

gr(x) = [G0(r]i,x),Go(r]2,x), ,G0(r]r,x)}T, (3 14) 

and 

gs(x) = [G0(£i, x), G0(6, *), , GQ^S, x)}T (3 15) 

Then the imaging function is 

/M(X) = Ha^ E ^ ( ^ ) < P f (^KJ (3 16) 
u> m=l 

When providing hmite/synthetic aperture, Figure 3 6 shows that good results can 

still be obtained using Multi-frequency method 

Figure 3 6 Multi-tone method on synthetic aperture 

In Figure 3 6, the left image is imaging using synthetic aperture data with 10% 

multiplicative noise, the right one is imaging using synthetic aperture data in a weakly 

mhomogeneous medium More results of Multi-tone method can be found m [16] 
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3 6 Summary for Direct Imaging 

The direct imaging method is computationally efficient compared to the iterative 

method The MUSIC and Multi-frequency methods both work for near field and 

far field data, and can incorporate material properties (corresponding to different 

boundary conditions) Since each of the two methods apply thresholding based on 

SVD and physical scales, the results are robust with respect to noisy data Furthermore, 

Multi-frequency data can be used to obtain an ideal result under limited or synthetic 

aperture 



CHAPTER 4 

ITERATIVE METHOD FOR INVERSE PROBLEM 

In this chapter, we will develop the iterative method for the inverse scattering 

problem The mam idea is to an optimization problem Similar approach is used in 

[17] and [2] We will use active contour method to convert the image, which is the 

result of the direct imaging method, into level set function and capture the boundary 

of the target We will show that the result of adjoint problem will be the velocity 

vector of the sample points on the boundary We will solve one forward problem and 

one adjomt problem in each iteration Finally, we will demonstrate that the boundary 

converges to the real shape after several iterations 

4 1 Image Processing and the Level Set Representation 

The result of the direct imaging method is used as the initial guess of the iterative 

method The output of direct imaging method is an image of the whole domain and 

the value peak at the boundary of the object The first thing needs to be done is to 

locate the boundary from the image and transform it into parameter representation 

which can be used as the input of the forward problem 

The gradient flow method and active contour method can both be used to capture 

convex envelope of the boundary of the object The mam idea is to transform the 

image into a level set function The gradient flow method is outlined as follows 

34 
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1 Input the MUSIC imaging function I(x) 

2 Apply a threshold to the MUSIC imaging function 

3 Consider the cost functional to be minimized 

C(dfi) = f f(x)ds, (4 1) 
Jan 

(4 2) 

where 

I{x) > M 
1 

I(x) < M 

and I(x) is the image function, M is the constant representing the threshold 

4 Rewrite the cost functional using the level set representation 

C(dft) = W(<j>) = / f{x)5{(f)) | V0 | dx (4 3) 
J& 

5 Take derivative with respect to the evolution time t and derive the gradient flow 

equation 

&=IW|v (/Wrl^) (44) 

6 Calculate the level set representation for the initial guess 

The method above is simple and easy to implement The drawback is that it can 

only capture the convex envelop 

The software motivated by the active contour method [6] and developed for [35] 

is used here to generate the level set function representing the object 

The forward solver using the Nystrom method for the obstacle problem with 

Dirichlet boundary condition needs not only the coordinates of the sample points 

(x(£i),y(£t)) but also the first and second derivatives (x'(tt), y'{t%)), (x"'(tt), y"'(£,)) 
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Trigonometric interpolation is used to convert a set of sample points to a pair of 

analytic functions (x(t),y(t)) 

N 

x(t) = 2_.(ancos(nt) + bnsm(nt)), (4 5) 
n = l 

N 

y(t) = ^ ( c „ cos(nt) + dn sm(ni)), (4 6) 
n = l 

where the coefficients {an}^= 1 , {bn}^=1, {cn}^= 1 , {dn}%=1 are determined by the 

sample points {(x(^), y(tz))}™=1 separately to achieve the least square distance 

Note that the order of the interpolation N should be less than m/2 The dummy 

parameter d is generated to be equally distributed between 0 and 2ir by d% = 2in/m, 

2 = 0,1, , m — 1, and define matrix A such that 

m—\ 

M3,2k = ^ c o s ( ; ( i , ) c o s ( ^ ) , (4 7) 
7=0 

m— 1 

^2J+i,2fc+i = ^sm(j(i l)sm(A;(i l), (4 8) 

m—1 

^2j,2fc+i = ^2cos(jdl)sm(kdl), (4 9) 
t=0 

m—\ 

Mj+\,2k = Yl s i n 0 ^ ) cos(kdi) (4 10) 
1=0 

m—1 

M,23 = A23A = J2cos(jdl), (4 11) 
i = 0 

7 7 1 — 1 

Aii2]+i = A2]+i,i = J^sinfjd,) , (4 12) 
i = 0 

for j , A; = 1,2, , m, and vector 6 ,̂ by such that 

771—1 

62j = ^ c o s O d , ) , (4 13) 
i = 0 

771—1 

&2J + 1 = XI S m0d«) (4 14) 



37 

The interpolation coefficients {an}^= 1 , {bn}^=1, {cn}%=1, {dn}^=l can be obtained 

from A and b 

Then, the boundary of the shape is re-sampled after each iteration and the first 

and second derivatives can be easily obtained 

4 2 Recursive Linearization 

The iterative method starts from the initial guess with initial wave number k0 

Suppose that after several iterations the boundary F^ has been recovered at some 

wave number k using the forward solver in Chapter 2, and that the next step wave 

number is k such that k > k The objective is to determine F^, 

Fk ={x + a{x) xeF~k} (4 15) 

Here the new boundary F^ can be viewed as an updating from the boundary F^ on 

previous step Since F^ is know, the objective is to determine the perturbation a, 

which is also called the velocity vector of the sample points on the boundary 

The reconstructed boundary Fj. is solved at the wave number k from the forward 

scattering problem 

Au + k2u = Oinf i | , (4 16) 

u = OonTfc, (4 17) 

with a scattered field satisfying the Sommerfeld Radiation Condition (1 5) 

For the boundary O^, there is 

Au + k2u = Oinfie
t, (4 18) 

u = 0 on Tfc (4 19) 
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Given a solution u in Equation (4 18), the corresponding scattered field us can be 

obtained and the measurement M. can be defined 

Mus(x) = [2/(Xl), ,2 / (x m ) ] r , (4 20) 

where the operator M. maps the scattered fields to a vector of complex numbers m 

Cm 

For the boundary Fk, the forward scattering operator is defined 

F(Fk) = Mus (4 21) 

Now the Frechet derivative of JF at F-k is T'{F-k) which satisfies 

.F(rfc) = T(Fk) + F'(Fk)a + o(||a||li00) as \\a\\hoo -> 0, (4 22) 

where ||a||i)00 = maxxer \a(x)\ + maxx6r J21=i \^a3{x)\ with surface gradient Va3(x) 

of the j - th component of a The Frechet derivative of the forward scattering operator 

is given by Theorem 2 1 m [23] 

In order to compute the velocity vector a, the following theorem is needed 

Theorem 4 2 1 Let Fk G C2, a G C2(Fk, E
2) and u be the solution of the scattering 

problem in Equation (4 16)-(4 17) Then the Frechet derivative of F{Fk) satisfies 

F'{Fk)a = M.v, where v solves the following boundary value problem 

Av + k2v = 0mf2 | , (4 23) 

oil 
v = -a n— on Ft, (4 24) 

dn K 

with radiation condition, where n is the unit outward normal vector on Fk 

Denote the residual operator as 

K(Fk) = Mus - F(Fk) (4 25) 



39 

The linearized version of Equation (4 21) it is obtained such that 

F(Fk)a = n(Fk) (4 26) 

Applying the Landweber iteration to the linearized equation (4 26) yields 

a = ^'(Fkyn(F-k), (4 27) 

where ^'(F^)* is the adjomt operator ofF'iF^.) and (3 is a positive relaxation parameter 

Since a depends on Jr'(r^)*7:2.(r^) by Equation (4 27), it is necessary to find the 

value of J"'(rfc)*^(rfc) However, it is difficult to compute J r ' ( r^)*^(r^) directly 

The adjomt problem is introduced to solve this problem 

Let 7^(1^) = [£i, , £m] T eC m Consider the adjoint problem 

777 

AlV + k2W = ~J2^35(X-X3)m% ( 4 2 8 ) 
3 = 1 

w = 0 on Fk, (4 29) 

with the Sommerfeld Radiation Condition (1 5) 

Multiplying w to the Equation (4 23) and integrating over J7| on both sides yields 

the following result 

/ {Av + k2v)wdx = 0, (4 30) 
Jm 

k 

where w is the complex conjugate of w 

Using the Green's formula, there is 

/ (Aw + k2w)vdx = / ( -^-w - -^-v ) ds (4 31) 
7n5 JVi \3n 3n J 

k fc 

It follows from the adjomt equation (4 28) and the boundary condition (4 24) that 

£>^ = -/fr^a nds <432> 
j = i JLk 
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Noting Equation (4 20), Equation (4 25), and Theorem 4 1, the left-hand side of 

Equation (4 32) can be reduced 

771 

X ^ ( * j ) £ = < Mv, K{Fk) >Cm 
3 = 1 

= <F\Fk)a,K{F-k)>€m 

= <a,F'(F-k)*K(Fk)>LHr) 

= [ a F(Fkyn(F-k)ds (4 33) 
Jr-k 

Combining Equation (4 32) and Equation (4 33) yields 

X,a rv&im*» = -Jti* g£»)<•«. <*34) 
which holds for any a Therefore, it follows that 

mWr,) =-£g» (4 35) 

Using the result of Equation (4 35), the Equation (4 27) can be written as 

a = -P——n (4 36) 
3n on 

Thus, for each iteration, one forward problem from Equation (4 16)-(4 17) and 

one adjomt problem from Equation (4 28)-(4 29) are solved Once a is determined, 

T^ is updated by x + a using Equation (4 18) 

4 3 Iterative Algorithm 

The algorithm of iterative method is as follows 

1 Input the real shape and initial guess 

2 Set numerical shape to be initial guess 

3 Solve forward problem at wave number k to obtain the 
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(a) real shape response matrix Pk 

(b) numerical shape response matrix Qk 

4 Find the residual between Pk and Qk 

5 Use the residual to solve the adjomt problem 

6 Obtain the velocity vector 

7 Use the velocity vector to update the numerical shape 

8 Repeat Steps 2-7 until residual is sufficiently small 

9 Depending on the detail level of the object, increase A: to a corresponding level 

Figure 4 1 shows the flow diagram of the iterative method 

Figure 4 1 Flow diagram of the iterative method 
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4 4 Numerical Experiments 

In the numerical experiments, the solid line is the real shape and the line with 

crosses is the numerical shape Each cross is a sample point on the boundary and the 

numerical boundary is obtained by trigonometric interpolation 

For the first example, the real shape is a flower with three leaves Figure 4 2 is 

the initial state, the residual is 0 0088 at k = 1 Figure 4 3 is the middle state after 

64 iterations, the residual is 0 0031 at A; = 1 Figure 4 4 is the final state after 128 

iterations, the residual is 0 0005 at k = 1 

k=1 reslduaNO 0088865 
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-0 05 
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Figure 4 2 Iterative method experiment Flower, initial 
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Figure 4 3 Iterative method experiment Flower, middle 
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Figure 4 4 Iterative method experiment Flower, final 
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In the second example, two flowers are placed in the same domain to test the 

iterative algorithm on multiple targets 

Figure 4 5 is the initial state, the residual is 0 0147 at k = 1 Figure 4 6 is the 

state at Step 30, the residual is 0 0147 at k = 1 Figure 4 7 is the state at Step 60, 

the residual is 0 0143 at k = 1 Figure 4 8 is the state at Step 75, the residual is 

0 0324 at k = 2 Figure 4 9 is the state at Step 78, the residual is 0 0216 at k = 2 

Figure 4 10 is the state at Step 81, the residual is 0 0127 at k = 2 
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k=1 residual=0 014767 
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Figure 4 6 Iterative method experiment for two flowers (b) 

k=1 residual=0 01433 
08 

06 

04 

0 2 

-0 2 

-0 4 

-0 6 -

-0 8 

' 

X X 

:/ 
l 

\ 

/ 
J 
V 
l 

[\ \ 

w x —' *X- X 

1 1 1 1 

;*. 

w 
) * 
1 1 

/ i 

* 

/ 

A 

i i i i 

1 1 1 1 

step=60 # of points =100 
k=1 residual=0 01433 

\ X _ -
X s * ' * - * * - x > ^ 

/ J 
is * 

Vs. J 
\ x x-_,̂  

1 1 1 1 1 

-0 8 -0 6 -0 4 -0 2 0 2 04 06 08 
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Figure 4 10 Iterative method experiment for two flowers (f) 

It can be seen that in the second example the residual converges slow at wave 

number A; = 1 and sufficiently fast at k = 2, which means that A; — 1 can not capture 

the details of the boundary Wave frequency needs to be increased to guarantee 

convergence 



48 

4 5 Summary for Iterative Imaging 

The iterative method is based on MUSIC algorithm for the initial guess to guarantee 

convergence Image processing is used for converting the MUSIC imaging function 

into a level set representation for the initial guess and feeding it to the forward 

solver The recursive linearization solves one forward and one adjomt problems in 

each iteration step and it is always started from the low-frequency number k and 

increased k in iteration to capture more details of the boundary of the object The 

final result is more accurate than just using the direct imaging method The iterative 

method needs more computation but the forward solver can be parallelized to increase 

speed 



CHAPTER 5 

SHAPE CLASSIFICATION 

Shape identification and classification has wide applications The crucial thing is 

to characterize a shape using finitely many numbers In this chapter, we will discuss 

the relation between response matrix and the geometry of the target A novel method 

will be proposed that uses the scattering relation and the response matrix We will 

define a distance function based on the response matrix to compare shapes, study 

the property of the response matrix under different wave frequency, and apply our 

distance function on large data set to obtain the retrieval rate 

5 1 Basic Concepts 

By sending a plane wave from different angles and recording the far field data 

in different angles, the response matrix is formed The Nystrom method can be 

used to generate the response matrix by solving the Helmholtz equation In [14], 

an algorithm for shape classification is proposed using the Poisson equation The 

method is capable of classifying shapes with some rare mistakes However, unlike the 

Helmholtz equation, the Poisson equation does not have scaling information 

In this chapter, two kinds of objects are used the opaque object and the transparent 

object For an opaque object, only the boundary of the object is considered The 

Dirichlet boundary condition is used on the boundary of the object For a transparent 

49 



50 

object, the whole region of the object is considered The born-approximation method 

is used to generate the response matrix 

The outline of this chapter is as follows Section 5 2 explains how the response 

matrix is generated and describes the properties of the singular value decomposition of 

the response matrix Section 5 3, proposes different algorithms for shape classification 

Numerical experiments are presented in Section 5 4-5 8 

5 2 Response Matrix and Singular Value Decomposition 

As input, some type of characterization of a shape is needed One way is to give 

the coordinates of a set of sample points on the boundary of a shape Another way 

is to give a picture (e g , a "* bmp" file), and image processing can also be used to 

generate the coordinates of a set of sample points on the boundary 

The active contour method developed by Tony Chan et al [6] solves an optimization 

problem and evolves a curve using the level set method to generate a level set function 

that has the boundary of the shape as the zero level set Based on this function, a 

MATLAB command, "coutourc", can be used to generate a set of sample points on 

the boundary of the shape The trigonometric interpolation, which is introduced in 

Chapter 4, will be also used here to generate the first and second derivatives 

A source at the i-th transducer generates a scattered field that is recorded at the 

j - th transducer to form one element of the response matrix Changing i, j generates 

the response matrix The forward solver in Chapter 2 can be used here to generate 

the response matrix for any shapes 

In the numerical experiments, far field data is used instead of near field, that is, 
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to send plane wave from the ^-th direction and record far field pattern at the j - th 

direction to obtain an element of the response matrix The advantage of using far field 

data is that the location of the array of transducers does not need to be considered 

and it is easier to compute the far field data 

Another method to get the response matrix is born approximation This method 

can be used on transparent objects, 1 e , photo images First, the image which contains 

the object should be represented as a matrix Each pixel in the image is mapped to 

a corresponding value in the matrix to represent the brightness of that pixel Then, 

the integration of the product of two Green's functions generates one element of the 

response matrix 

For the near field pattern, the response matrix P is obtained by 

Pl3 = a(y)G(xuy)G(x3,y)dy, (5 1) 
JD 

where xz is the location of the source of coming wave, and x3 is the location of the 

receiver of the scattering wave G(x, y) is Green's function In two-dimensional case 

G(x,y) = l-Hl{k\\x-y\\), (5 2) 

and in three-dimensional model 

pik\\x-y\\ 

G(x,y) =— j , , (5 3) 
47rj|x — y\\ 

The a(y) is an arbitrary function a D —> R, e g a D —> [0, 255] can be defined 

to indicate the contrast of a image 

For far field pattern, the response matrix P is obtained by 

Pl3 = [ a{y)elkyd^elky^dy, (5 4) 
JD 
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where dl is the direction (unit vector) of incident wave, and d3 is the direction of 

scattering wave 

Born approximation is faster than the Nystrom method since the Hankel function 

does not need to be computed in the formula of born approximation 

The shape information is embedded in the response matrix The dominant information 

is embedded in the first few singular vectors of the response matrix To reduce storage 

from Oin2) to 0(n), only the first few singular values or vectors are stored Now each 

shape is encoded by 0(n) numbers, where n is the number of angles 

5 3 Algorithms for Shape Classification 

The basic algorithm for shape classification using response matrix information is 

as follows 

1 Input image file 

2 Take the imaging processing to obtain a level set function 

3 Generate sample points on the boundary 

4 Interpolate using trigonometric functions to generate locations and first and 

second order derivatives 

5 Compute the perimeter and rescale it 

6 Find the center of mass of the shape and relocate 

7 Find the minimal sample points on the boundary that guarantee the accuracy 

of the forward problem 

8 Compute the response matrix (might add noise) 

9 Use SVD for shape classification 
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To take care of a shift, the centroid of the shape is computed using the sample 

points on the boundary This can be done by viewing the shape as a combination 

of signed triangles formed by neighboring sample points and a fixed reference point 

since the centroid of a triangle can be easily computed 

To take care of a scaling, the perimeter of the shape is computed and normalized 

For the Born Approximation problem, the area of the shape is computed and normalized 

To take care of a rotation, essentially a shift of the index is done for the response 

matrix The simplest idea is to search among all possible shifts and compute a norm 

of the difference between the matrix of the reference shape and the matrix after the 

index shift of the shape to be tested However, this method has two disadvantages 

first, it is not robust, second, it needs a storage of 0(n2) If only the singular value 

is used to compare, the shifting is not needed since the singular value of a matrix is 

identical while shifting the row and column 

To take care of contrast variance, the a{x) is normalized using Frobemus-norm 

5 4 Response Matrix by Forward Solver using Nystrom Method 

First, examples where the shapes are generated from a picture are considered, for 

example, a bmp file for a solid simply connected region The procedure described 

in Section 5 2 is used to generate sample points on the boundary and the first and 

second derivatives The Nystrom method is used to obtain the response matrices for 

these shapes 

The reference shape is set as a Chinese character "Wang" with bold font Shape 1 

to be tested is the same shape with scaling and rotation Shape 2 is the same Chinese 
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character "Wang" with another font (Songti) Shape 3 is a Chinese character "Zheng" 

with bold font The results in Figures 5 1 - 5 4 show that Shape 1 is the only correct 

shape 
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Figure 5 4 Chinese character comparison, different characters 

Next, the reference shape is set to be a spiral curve, see Figure 5 5 Shape 1 is the 

same shape with a rotation of 0 3937(radian measure) and a scaling of 0 5 Shape 2 

is a shorter spiral that matches with the reference shape except at the tip Again, the 

result in Figure 5 6 and Figure 5 7 show that the correct shape could be identified 
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Next, a library was build to contain the shape information of a group of reference 

shapes For each reference shape, only the first five eigenvalues of the corresponding 

response matrix was stored Given a reference shape, users can go through the library 

to find the same shape 

Figure 5 8 and Figure 5 9 show a search for the bold font Chinese character 

"Wang" in the library The sixth comparison in Figure 5 8 is a correct match with a 

peak value 157, which is much larger than other peak values 

daheiti flower kite circle 
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Figure 5 8 Search "Wang" in library, no noise 
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The advantage of using the SVD method to compare is robust Figure 5 10 and 

Figure 5 11 show the result of adding 50% noise The sixth comparison in Figure 5 10 

is a correct match with a peak value 90, which is much larger than other peak values 
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Figure 5 10 Search "Wang" in library with 50% noise, part 1 
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Then, the noise is set to be biased noise Figure 5 12 and 5 13 show the result 

The sixth comparison in Figure 5 12 is a correct match with a peak value 237, which 

is much larger than other peak values 

daheiti flower circle 

- 01 0 0 1 
svd max=33 4019 

40 

20 

0 

ft 

sj® ^ 

40 

20 

0 

-0 1 0 0 1 0 2 -0 2 0 02 
svd max=26 9654 svd max=22 566 

40 

-0 2 0 0 2 
svd max=2 0234 

0 50 100 0 50 100 0 50 100 0 50 100 
dasongti wangheiti wangsongti zhengsongti 

0 05 

0 

-0 05 
"IP 

r 
-0 1 0 0 1 -0 1 0 0 1 

svd max=51 4597 svd max=237 4265 
400 

200 % 

-0 1 0 0 1 -0 1 0 0 1 
svd max=39 9165 svd max=70 5701 

100 

100 100 

Figure 5 12 Search "Wang" in library with 50% biased noise, part 1 



63 

cfat 

0 05 

0 

- 0 05 

cthin 

ftSP 
i X X -v 

\A^A) 
X--^ J 

curvelong curveshort 

-0 1 0 0 1 
svd max=17 253 

-0 1 0 0 1 -0 1 0 0 1 
svd max=27 0725 svd max=32 8965 

40 

-0 1 0 0 1 
svd max=13 3041 

100 

-0 1 0 0 1 
svd max=9 9312 

-0 1 0 0 1 
svd max=92 4409 

-0 1 0 0 1 
svd max=18 3102 

-0 1 0 0 1 
svd max=49 0371 

10 

5 

0 

& > > 

50 100 100 

Figure 5 13 Search "Wang" in library with 50% biased noise, part 2 



64 

5 5 Response Matrix by Born Approximation 

This section shows the results of shape classification using response matrices based 

on Born approximation 

First the response matrices were generated using Born approximation for the data 

set at wave frequency k = 20 For example five different classes of shapes are used 

"apple", "bat", "bird", 'cup", "Heart", each class contains five shapes "apple-1" 

was used as a reference shape and compared the distance between every shape and 

"apple-1" 

The distance function is 

di(si,s2) = \\svd(r(si)) - svd(r(s2))\\2, (5 5) 

where r( ) is the response matrix generated by born approximation, and svd( ) gets 

the singular values of a matrix 

The results are shown in Figure 5 14 All the figures are listed in an increasing 

distance order Five apples are in the top five The other four classes are grouped 

together 
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apple-1=1 8791e-14 apple-2=0 19609 apple-4=0 43767 apple-3=0 46832 apple-5=0 49994 • •ana 
cup-5=0 77388 cup-3=0 77431 cup-1 =0 86466 cup-4=0 92284 cup-2=1 3491 • nnnca 
Heart-4=1 4261 Heart-3=1 5829 Heart-1=1 8182 Heart-2=1 9074 Heart-5=2 3435 

kU bZJ L U LU LZJ 

bird-5=2 7462 bird-1=3 1557 bird-3=31995 bird-4=3 2028 bird-2=3 3955 

bat-5=4 5454 bat-4=4 5456 bat-1=4 8261 bat-2=5 8526 bat-3=5 8528 

H ^cassia 
Figure 5 14 Reference shape "apple-1" 
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If "bat-1" is taken as reference shape, the results are shown in Figure 5 15 

Although "cup-2" is mixed with "Heart-4", the five bats are still in the top five 

bat-1=2 4534e-14 bat-4=0 59071 bat-5=0 5908 bat-2=1 6828 bat-3=1 6835 

ESSQQQ 
bird-2=1 7368 bird-1=1 8572 bird-4=1 9011 bird-3=1 9042 bird-5=2 3693 

Heart-5=3 1229 Heart-2=3 4304 Heart-1=3 5108 Heart-3=3 6613 cup-2=3 6956 

r^r î r^r^ r^r^ r^r î • M 

L U L^J ^ L ^ L3 
Heart-4=3 7848 cup-4=4 0881 cup-3=4 2359 cup-5=4 2941 cup-1=4 3089 ^ n n • n 
apple-5=4 5277 apple-3=4 5309 apple-4=4 5485 apple-1 =4 8261 apple-2=4 9118 

Figure 5 15 Reference shape "bat-1" 
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Figure 5 16 uses "hzard-1" as a reference shape All five lizards are in the top five 

Although the "snake" shape is similar to the "lizard" shape, the current method can 

still distinguish them 

Hzi3d-1=.S 23S3e-Q1£z2afd-2=a 00231©? Ii22ard-3=12089 Rz2aid-3=1 2098 le2areJ-4=1 2D9B 

100 
200 
300 

200 
too 

200 

400 

SOW'" " • SOI 

200 400 100 200 300 " 100 200 300 100200 300 200 400 
cain»98-Q1=13245 cmtmgm-03=1 3405 earrtag»-02=1.356S canuag®-05= 13732 carriag«-04=1 5707 

> T * % ' * " * # * 
100 200300 

key-1=1 9983 
100200300 

ksy-3=2 0424 
100200300 10 )200300 100200300 

car-O3=2O081 ^ ^ n a f c e - 4 ^ 0695 ^ ^ 0 2 = 2 0S5S 

200 400 
e©anate-3=»2 184 

200 400 
car-C5=s2 2216 

1002500 300 
car-04=2 2328 

•5O10J5BQ85Q 
l<*y^4<=2 2586 

100 200300 
cat-01=2 294 

100 200300 
k»y-2=2 3585 

100200300 
kersr-5=2 429 

100200300 200 400 100200300 
ssa nak&-1=2 632 eea rake-2=2 6457 sea nst<a-S=2 700Q 

50 SO 50 
100 
150 
200 

X.. 
200 400 200 400 soioasooaso 5010015CEQ0 501Q01OTDQ 

Figure 5 16 Reference shape "hzard-1" 
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Figure 5 17 shows the result of comparing different Chinese characters in different 

fonts The same characters to the reference character are in the top five 

zhou1=8 0298e-015 zhou3=0 49145 zhou2=0 50736 zhou5=0 59002 zhou4=0 64303 

i o o n 3 j p ^ p H 100 
2 0 o H | ^ ^ ^ H 200 

200 400 
zhao2=0 67665 

100^^^^^H 100 
20o|^^^^H 200 
300 H ^ ^ ^ ^ H 300 

200 400 
zhao3=0 88748 

1 0 0 ^ ^ ^ ^ ^ H 100 
200 • • ^ ^ ^ H 200 
3 0 0 ^ ^ ^ ^ ^ ™ 300 

200 400 
qui 1=1 0288 

I O O K ^ ^ ^ H 100 
2 0 o M ^ ^ ^ H 200 
300 • • • • • • • 300 

200 400 
wang1=1 5359 

1 0 0 ^ ^ ^ ^ ^ H 100 
200 • f l ^ ^ ^ H 200 

300 • • • • • • • 300 
200 400 

l O O K a p ^ H M l O O E f d B ^ p H 1001 
2 0 0 H ^ ^ ^ H 2 0 0 H | ^ ^ ^ H 200 

200 400 200 400 200 400 200 400 
hou5=0 74682 zhao4=Q8229 zhao5=0 85173 hou3=0 8621 

100 ^ ^ ^ ^ ^ | 1 0 0 ^ ^ ^ ^ ^ B 1001 
200 M M ^ H ^ I H 2 0 0 l | ^ ^ ^ ^ H 200 
300 • • • • • • • 3 0 0 ^ ^ ^ ^ ^ ^ 300 • 

200 400 200 400 200 400 200 400 
qiu2=0 89756 qiu5=09174 zhao1=0 98822 qtu3=0 98964 

I O O Q ^ ^ ^ H 100 ^ ^ ^ ^ ^ H 100 
2 o o H ^ ^ ^ H 2 o o H H ^ ^ ^ H 2001 
300 • • • • • • • 3 Q o ^ ^ i ^ ^ ^ B B 300' 

200 400 200 400 200 400 200 400 
qiu4=1034 hou2=1 0974 hou1=1 1559 hou4=1 1743 

1 0 0 ^ ^ ^ ^ ^ H l O O ^ ^ ^ ^ ^ H 1001 
200 ̂ ^ ^ ^ ^ H 200 • • ^ ^ ^ H 200 
300 • • • • • • • 300 • • • • • • • 300' 

200 400 200 400 200 400 200 400 
wang5=17974 wang2=1 9793 wang4=2 0026 wang3=2 212 

200 400 200 400 200 400 200 400 

Figure 5 17 Reference shape Chinese characters 
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5 6 Frequency Filtering 

The born approximation is similar to fourier transformation The geometric 

domain is mapped to the frequency domain Figure 5 18 shows the frequency distribution 

Figure 5 18 Frequency distribution 

The dots with cross in Figure 5 18 form one column of the original matrix The 

low frequency part is in the center and vice versa The low frequency part or high 

frequency part can be truncated based on the demands Then, the response matrix 

can be reformed by the increased or decreased frequency order to get a better result 

A data set of different kinds of flower shapes is considered, as shown in Figure 

5 19 There are five classes in the data set, and each class contains five shapes Shapes 

in this data set are classified by the number of leaves 
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class deviceO 

E3 E3 E3 E3 £2 
class devicel 

E3 • • • K3 
class device2 

• • • E3 E3 
class device5 

• • b 3 E 3 Q 
class device7 

Figure 5 19 Five classes Original 
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Figure 5 20 shows the results using distance function d\ The distance function 

d\ failed on this data set 

device0-1 

• • • H H B D B 
devicel-1 * . . . . 

device2-1 

• D D D D D Q D 
device5-1 

• B D H E 3 E 3 Q Q 
device7-1 

O H E 3 B E 3 Q Q D 
Figure 5 20 Five classes using distance function d\ 

In Figure 5 20, "deviceO-1", "devicel-1", "device2-l", "device5-l", "device7-l" 

is taken as the reference shape separately, compared with other shapes in the set 

The top eight matches are shown The shape which is in a different class as the 

reference shape will be marked with a '*' on the top The result is not as good as in 

the previous examples Therefore, another metric needs to be found to measure the 

distance between two shapes, which is introduced by distance function d2 

Let S\, s2 be two shapes in the data set rt is the response matrix of st, i = 1,2 

Take the singular value decomposition rt = UT,VH, where {w, }™=1 and {v[ }A are 
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the singular vectors obtained from U and V Then, the distance between s\ and s2 

is defined as below 

d2(Sl,s2) =EK^ (2 ))^ (1 )^ (2 ))I (56) 
i = i 

Here n = 5 is set to ignore noise Figure 5 21 shows the result using metric d2, 

which is much better than using metric d\ 

devlceO-4 • • • • • • 
devicel-1 

device2-2 • • 
device5-1 

devioe7-1 

B • 
• u n 

a • 
Q'Q • • 

Figure 5 21 Five classes using distance function d2 
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5 7 Face Recognition 

This section introduces contrast information to a two-dimensional object to represent 

a gray image, and classification method is applied to identify faces Figure 5 22 shows 

the result of face recognition using the current distance function based on the response 

matrix generated by Born approximation The picture of one person is used as a 

reference shape and compared to all the other pictures The results are placed in a 

decreasing order The five pictures of the same person are in the top five 

4 1678 

2 4933 

4 1492 

2 4771 

4 0987 

2 3817 

4 0935 

2 2744 

3 2436 

2 2432 

2 224 2 2041 2 1835 2 1404 2 0786 

2 0562 

1 5739 

1 8436 1 8249 

1 5471 1 5363 

1 8067 

14889 

1 7373 

_AAM 

1 3953 

Figure 5 22 Face recognition 

5 8 Retrieval Rate on the MPEG-7 Shape Data Set 

The MPEG-7 Shape is a standard testing data set of non-rigid shapes with a 

single closed contour It consists of 70 different classes of shapes and each class 

contains 20 different shapes The introduction of MPEG-7 Shape data set can be 

found in [28] The MPEG-7 Shape data set is tested on many classification algorithms 
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to obtain the shape retrieval rate Most of those shape classification method are 

based on the property of the shapes However, the classification method presented 

in this chapter is based on the response matrix generated by the shape using the 

Helmholtz equation Therefore, before computing the shape retrieval rate, the Born 

approximation is applied on all the shapes in order to obtain the response matrix 

In the numerical experiment, we set the wave number k to be k = 20 and the 

number of transducers N to be N = 64 Hence, the response matrix P is of 64 x 64 

dimension 

The retrieval rate is computed by the so called Bull's eye score 

1 Every shape m the database is compared to all other shapes There are totally 

1960000 comparisons 

2 The number of shapes from the same class among the 40 most similar shapes 

is reported For this experiment, the reported number is 18569 

3 Ratio of the total number of shapes from the same class to the highest possible 

number is computed as the retrieval rate For this experiment, the highest 

possible number is 1400 x 20 = 28000 Hence 

ratio = 18569/28000 « 66 32% 

Figure 5 23 is the example of the 40 most similar shapes for the "apple-1" 
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Figure 5 23 MPEG-7 comparison for "apple-1" 

The Skeleton DAG method [31] has the retrieval rate of 60% The Wavelet method 

[8] has the retrieval rate of 67 76% The Curvature scale space method [32] has the 

retrieval rate of 75 44% The Shape contexts method [3] has the retrieval rate of 

76 51% The Curve edit distance method [41] has the retrieval rate of 78 17% 

Most of the algorithms are based on the shape information Our method, instead, 

is based on the response matrix information There are several advantages using 

response matrix to classify shapes 

1 No special treatment needed for shape scaling and rotation 

2 The storage is efficient since the forward solver or the Born approximation 

maps the shape from the shape space, which is a infinite dimension space, into 

a complex matrix space, which is a finite dimension space 
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3 When the shapes cannot be visualized, the physical measurements lead to the 

scattered field information of the shape Our response matrix generated by 

solving the Helmholtz equation is accurate comparing to the response matrix 

obtained from physical measurement Therefore, the scattered field data can be 

directly fed to our algorithm to compute for the retrieval rate The shape-based 

algorithms need the shape information which can be only obtained by solving 

the inverse problem Our method is much faster in this case 

5 9 Summary for Shape Classification 

Using the response matrix or its singular values and vectors to represent shape is 

storage efficient This study shows that only the first few singular values and vectors 

need to be stored and used to characterize the shape The storage is reduced from 

0(n2) to 0(n) Therefore, a shape can be characterized and a shape library can be 

built using the least amount of data Shape rotation and scaling can be easily dealt 

with m the response matrix The wave frequency can be filtered to focus on different 

detail levels m classification Moreover, the SVD method used is robust to noise The 

retrieval rate is obtained on MPEG-7 Shape data set 



CHAPTER 6 

CONCLUSIONS 

This dissertation proposed an effective iterative method for inverse problem based 

on the forward solver for iteration and direct imaging result for the initial guess The 

Nystrom method is used in the forward solver and adjomt problem The response 

matrix generated by the Nystrom method converges exponentially with respect to 

the number of sample points on the boundary of the target Image processing was 

used for converting the MUSIC imaging function into a level set representation for 

the initial guess, and was then fed to the forward solver The recursive linearization 

solves one forward problem and one adjomt problem in each iteration step The 

process always starts from low-frequency number k and increase k in iteration to 

capture more details of the boundary of the object Numerical examples show that 

this method can be applied on single or multiple targets, and the residual of the final 

state is less than the residual of the initial guess, which means that the result of this 

iterative algorithm is more accurate than the result of the direct imaging method 

The inverse problem was applied to shape identification and classification since 

there is a relation between the shape itself and the response matrix obtained from 

the shape The distance function was designed based on the response matrix or its 

SVD information Index shifting of the response matrix was used to represent the 

77 
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shape rotation Numerical examples shows that the SVD method used is robust to 

noise Filtering is used to control the detail level of the shapes and is tested on the 

classification example The classification algorithm is fast, using Born Approximation, 

and storage efficient, using the distance function on SVD of the response matrix 

The classification method based on the response matrix is tested on a large data-set 

(MPEG 7 Shape) and the retrieval rate is computed The method will be also 

combined with machine learning techniques to improve the retrieval rate in the 

future 
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