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ABSTRACT 

Researchers have been trying to fight cancer with synthesis of new bioactive 

compounds but many of these novel drugs have low solubility in water and it is difficult 

to deliver them into a patient's body One way of solving this particular problem is to 

use nanoscale drug delivery systems In this dissertation, we describe using an 

ultrasonic assisted layer-by-layer encapsulation process to prepare anti-cancer drugs 

with 50-200 ran particle size with designed coating to achieve sustained release and 

target delivery 

Two methods for systematic manufacture of low solubility anti-cancer drug 

nanoparticles were proposed 1) Top-down approach to breakdown larger drug crystals 

into nano-size particles 2) Bottom-up approach to fabricate nano size drug crystals 

from a drug solution 

in 
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CHAPTER 1 

INTRODUCTION 

1 1 Motivation 

Cancer is the second leading cause of death in the Umted States The National 

Cancer Institute estimated that 1,529,560 men and women (789,620 men and 739,940 

women) will be diagnosed with, and 569,490 men and women will die from various of 

cancer m 2010 [1] 

Researchers had been trying to fight cancer with new natural or synthetic 

bioactive compounds Although these novel compounds showed promising results in 

screening process, many of them exhibit low solubility in water because of the 

hydrophobic and/or polycychc nature Low solubility often brings challenges to drug 

administration, because the traditional formulation usually cannot provide enough of the 

bioavailability required for treatment Also many of these compounds are highly toxic 

to normal cells so targeted delivery of the drug to the tumor tissues is required One way 

of solving the problem is to establish a drug delivery system that uses nano size drug 

particles with appropriate coating Our project will use an ultrasonic assisted layer-by-

layer encapsulation process to prepare anti-cancer drug with 50-200 nm size with a 

designed coating to achieve sustained release and targeted delivery 

1 



2 

1.2 Outlines 

1.2.1 Objectives of the study 

We developed the following directions in our work 

1 We will systemically establish a process to fabricate nano size, low solubility 

drug particles (pachtaxel and curcumin) 

2 We will optimize the process established m 1 to reduce the drug particle size 

3 We will compare different layer-by-layer coatings for sustained release 

1.2.2 Outline of the dissertation 

This dissertation is arranged into eight chapters Chapter 1 provides an 

introduction to the dissertation by describing the motivation and purpose of the study as 

well as the outline of the dissertation Chapter 2 is the literature review, m which we 

will discuss nanoscale drug delivery systems m general and compare different types of 

existing nanoscale drug delivery systems This is followed by a short introduction to the 

layer-by-layer self-assembly coating drug delivery system In Chapter 3, we mtroduc 

the material, instruments, and general methods that were used in this research Chapter 

4 is focused on the top down approach which breaks down big drug particles into nano 

size particles Chapter 5 will show a different bottom up approach which forms nano 

crystals from solution using ultrasound Chapter 6 will optimize particle size by 

changing various parameters, like somcation time and concentration Chapter 7 will 

study the release profile of different nano drug particles The main accomplishments of 

the dissertation work are summarized in Chapter 8, with directions for further research 



CHAPTER 2 

NANOSCALE DRUG DELIVERY SYSTEM 

2.1 Nanoscale Drug Delivery System 

With the application of nanotechnologies to medicine, a new branch of 

nanotechnology, called nanomedicine, has been rapidly developed [2] Nanoscale drug 

delivery systems use nanosize drug carriers to deliver drugs to the desired sites And 

often use active or passive targeting strategies to increase local concentration at the 

tumor tissue [3] 

Goals of a nanoscale drug delivery system include 

1 Improved solubility To increase the drug bioavailability 

2 Targeting To increase the local concentration of the drug at desired sites 

3 Adjustable rate of drug release To maintain a constant dose at the action site 

4 Reduced drug clearances To increase the drug half-life 

5 Enhanced stability To reduce drug degradation dunng storage 

6 Drug delivery across biobarners like the blood-brain barrier (BBB) 

The goals of the drug delivery system were to deliver the conjugated or bound 

drug-carrier complex to the selected target and maximize act at desired cancer sites 

Controlled delivery of the drug molecules using carrier materials are based on two types 

of strategies active and passive targeting Although the former has very sophisticated 

strategies, its practical use still suffers from many technical difficulties The latter is 

3 
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more practical, and there are already many formulations based on "enhanced 

permeability and retention effect" [4, 5], which has been the most representative 

passive-targeting strategy to bring drug molecules to tumors 

The active targeting strategy of the drug nanocarrier was to use a hgand, 

attached on the nanocarrier, specific for the receptor of the target tissue Passive 

targeting strategy of the drug nanocarrier was to use the enhanced permeation and 

retention (EPR) effect of the cancer tissue Tumor and inflamed tissue tend to have 

excessively leaky microvasculature, compared to normal endothelium, which allows the 

drug nanocarrier to diffuse through and accumulate at site Especially for cancer tissue, 

overexpression of vascular endothelial growth factor will increase vascular 

permeabhhty and let to complicated tumor-vessel architecture Transvasation of durg 

carrier takes place either via transcytosis, where by macromolecules are internalized 

from the blood at points of invagination of the cell membrane, or paracellularly, via 

diffusion through the tight junctions of endothelial cells In combination, these effects 

cause enhanced permeation and retention (EPR), resulting m high local drug 

concentrations 

For nanoscale drug delivery systems, biocompatibihty and biodegradability have 

always been considered as one of the most important propenties The unloaded carrier 

should be able to biodegrade or metabolize into nontoxic components and cleared 

through the circulation system Some studies suggested nanoparticles are cleared 

according to size Small particles (<30 nm) are rapidly cleared by renal excretion 

Nanocarriers >30 nm are cleared by the mononuclear phagocytic system, consisting of 

macrophages located m the liver (Kupffer cells) and the spleen [6], which act as 

phagocytotic scavengers Clearance is also dependent on the endothelial fenestral pore 



size [6] Fenestral pore size values are highly variable for different patients Clearance 

rate of patient could be effect by sex, age and genetics factors It is difficult to 

determine the efficiency and toxicity of nanomedicines m different individuals Whether 

nanocarriers are taken up by macrophages depends on opsomzation by the innate 

immune system [7] Molecules that bind to foreign materials and enhance phagocytosis, 

include IgG and IgA antibodies, the complement cascade system and mannose-binding 

lectin [8] Therefore, the surface properties of nanocarriers can significantly affect the 

rate of clearance by the MPS A useful method for evading opsomzation of large narrow 

carriers was developed at Rutgers University [9] in a process call PEGylation, a 

polymer, poly(ethylene glycol) (PEG, [CH2CH20]n), is conjugated to the drug carrier 

preventing drug particles aggregation and precipitation 

Overall, the use of hgand binding nanodrugcarner will improve the drug 

therapeutic index according to Equation (1) 

_, , Maximum non - toxic dose 
Therapeutic index = 

Minimum effective dose ngq 1) 

The high specificity and selectivity of the hgand on nanodrugcarner increases 

the amount of drug delivered to the cancer tissue and decreases the amount of drug at 

unwanted sites Therefore, a less systemic drug dose needs to be admimstered to 

guarantee an effective concentration at the site of action, and the mimmum efficacious 

dose is also lower In addition, because less drug is present at unwanted sites, the 

maximum non-toxic dose is higher The overall effect is a sigmficant decrease in 

toxicity and adverse side effects 
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2.2 Current Nanoscale Drug Delivery System 

Nanoscale drug delivery systems can use different kind of nanoparticles as 

carriers In this section we will review some of the most common category of 

nanoparticles can be used as drug delivery systems Figure 2-1 shows the structure 

schematics of these nanoparticles 

Therapeutic agent Targeting agent 

Figure 2-1 Classification of nanoscale drug delivery System 
a) drug conjugate, b) dendnmer, c) micelle, 
d) microemulsion, e) vesicle, f) core-shell nanoparticle, 
g) nanotube 

2 2 1 Drug complex and conjugate 

Drug complexes and conjugates do not have a defined structure like micelle or 

vesicle Drug complexes depend on reversible interactions between carrier and drug 
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Drug conjugates use covalent bonds to join carrier and drug together [10] Drug 

conjugates can be prepared using chemical reactions of functional groups between the 

drug and the earner molecular There are two major categones of drug complexes and 

conjugates one is protein and peptide associated and the other is polymer associated 

Proteins and peptides can be used to form nano structures in vanous ways, including 

complexation An example of protein associated drug complex nanoparticle for clinical 

use is Abraxane™ Abraxane is an albumin-bound form of pachtaxel with a mean 

particle size of approximately 130 nanometers Pachtaxel exists in the albumin-bound 

particles in a non-crystalline form Abraxane™ is formed by dissolving pachtaxel in 

water immiscible methylene chloride, and adding this to a solution of human serum 

albumin in water with low-speed homogemzation This process creates an emulsion 

with albumin located at the aqueous-solvent interface Subsequent high-pressure 

homogemzation reduces the particle size and breaks and reforms the disulfide bonds, 

essentially crosshnking the albumin coating and stabilizing the particle An evaporation 

step volatilizes the methylene chlonde, leaving an aqueous suspension of 140-160 nm 

nanoparticles, consisting of an amorphous pachtaxel core sunounded by a 25 nm 

coating of albumin with bound pachtaxel Because of its size this matenal can be sterile 

filtered [11, 12] Abraxane7 does not contain the problematic solvent - Cremophor EL, 

which outperformed conventional pachtaxel at an equitoxic dose while decreasing 

toxicity, due to longer circulation time and lower off-target activity [13, 14] 

Supramolecular complexes between host and guest molecules are also considered as 

useful for the drug administration Cyclodextrms are natural products and can entrap 

entire or part of guest drugs in their inside cavity in a specific mode Chemical 

modification of natural cyclodextrms molecular could improve their efficacy by altenng 
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their solubility or capacity for the guest drugs Cyclodextrms are regarded as useful 

additive in drug delivery systems [15, 16] 

2.2.2 Dendnmer 

Polymenc dendnmer is a kind of hyperbranched nanostructures One of 

dendnmers' advantages is that its size can be controlled by adjusting the number of 

polymenzation generations Dunng the polymerization progcess, monomer molecules 

joined into a sphencal nanostructure Inside this dendnmer nanostructure are cavities 

which allowed therapeutic agents to be loaded with great loading efficiency [17] 

The polymenzation progresses of dendnmers can be precisely controlled to 

obtain the desired final product The molecular weight, chemical composition, and 

nanostructure of the final product can be precisely designed [18] With controlled 

polymer structure and narrow polydispersity, dendnmers may be ideal platforms for 

drug delivery system An example of dendnmers for clinical usage is VivaGel ™ It is 

currently on tnal for safety and efficacy as a microbicide 

2.2.3 Micelles 

Micelles are one of the simplest molecular assemblies and can carry 

hydrophobic drugs in their central core or m their palisade layer [19] Micelles 

nanoparticles are interesting structures for earners of drugs because they can form 

relatively uniform size structures Micelles can be formed using a variety of amphiphihc 

materials as outside coating and using hydrophobic drug as central core, and can 

incorporate multiple functionalities into a single structure Unfortunately, surfactants 

used to form micelles often have toxic effects on human bodies Only a few kinds of 

surfactant are approved by FDA for drug solubilization Additional use of organic 

solvents may increase drug solubility but disturbs micelle formation in some cases [20, 
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21 ] Lacking an aqueous core, the drug must be bound to the polymer before micelles 

formation Drug needs to be conjugated to an anchor polymer molecule, or entrapped 

and bonded inside the hydrophobic core of the micelle [22] Micellar structures, 

including polymenc micelles, have been extensively studied as drug earners [23] 

Polymeric micelles made of hydrophihc-hydrophobic block copolymers are used as 

drug earners [34] which can be concentrated in the tumor tissue based on the EPR effect 

[25], and may be used for gene therapy as well [26] Because hydrophihc-hydrophobic 

block copolymers' cntical micelle concentrations are much lower than those for low-

molecular-weight surfactants, they have higher stability and lower toxicity The 

hydrophobic portion of the copolymer forms the micellar core The hydrophihc block of 

the copolymer forms the micellar corona This corona (commonly consisting of PEG, 

HPMA, or other hydrophihc polymers) confers these micelles with biocompatibihty, 

stealth-like properties, and a platform for functionahzation [27-29] Genexol-PM is a 

formulation of pachtaxel encapsulated in a polymenc micelle formed by the solid 

dispersion technique from the biodegradable block copolymer, monomethoxy 

poly(ethylene glycol)-block-poly(D,L-lactide) [30] Several climcal trials have already 

been carried out evaluating the safety and efficacy of Genexol-PM™ m metastatic 

breast cancer, solid tumors, and non-small-cell lung cancer [31-33] 

2.2 4 Microemulsion 

Entrapment of drugs within emulsions [34] results in vanous improvements in 

the performance of the drugs including suppression of side effects, prolonged drug 

retention in blood circulation, and enhanced drug efficacy at the target site based on the 

EPR effect Lipid emulsions have a long history m the pharmaceutical practice as 

nutnents, commercialized emulsion formulation was achieved relatively easily by 
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incorporating hydrophobic drugs, such as steroids, into the traditional emulsions 

Microemulsion is an equilibrated solution, unlike emulsions, and it is utilized for oral 

formulations [35-37] Formulations containing surfactants, drugs, and oils, which were 

designed to spontaneously form microemulsions upon contact with water in the stomach 

and small intestine, induce reproducible drug release This formulation offers great 

contribution to organ transplantation [38], since it requires precise control of the 

immunosuppressant concentration in plasma Microspheres composed of appropnate 

polymers, such as biodegradable polymers, enable prolonged drug-release after 

intravenous injection Administration frequency has decreased from daily to monthly by 

using this earner [39] 

2.2.5 Vesicles 

Vesicular structures have been extensively studied as drug delivery system The 

two major categories of vesicles are liposomes and polymer vesicles Vesicles have the 

capacity for encapsulation of hydrophobic or hydrophihc drugs Vesicles can be design 

to use covalent or non-covalent bonds to load drugs Liposomes, (or lipid vesicles) [40] 

can be used to load hydrophihc drugs into an intenor aqueous phase Liposomes can 

also be used to load hydrophobic drug lipid phase in the shell Liposomes are 

considered to be ideal drug earners, because of their surface characteristics can be 

altered easily and their size is controllable Use of liposomes as a climcal drug delivery 

system still need to face some technical difficulties like mass production, storage 

stabilities, and lack of efficacy after accumulating a the target site Recently, liposomes 

have also been studied as non-virus vectors for gene therapy [41] Liposome 

formulations for drug delivery have been in development for almost half a century, and 

have produced climcally successful applications [42] Polymenc vesicle structures, or 
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polymersomes, have been described more recently, and have unique potential as drug 

earners An example of the climcal vesicle formulation is Doxil ™, also known as 

liposomal Dox Encapsulation of Doxorubicin in liposomes shielded by polyethylene 

glycol (PEG) prolongs systemic drug circulation, improves safety, and increase the 

therapeutic index relative to free Doxorubicin [44,45] 

2.2.6 Core-shell nanoparticles 

Core-shell structured nanoparticles consist of an inner nanoparticle core and a 

hydrophihc shell The inner nanoparticle core could be made with a wide vanety of 

matenals including Quantum-dots, metals, metal oxides, and polymers among other 

materials The core is sunounded by a hydrophihc shell usually using covalent or lomc 

bonds or electrostatic force 

One category of core-shell nanoparticles has been developed during the 

chemical modification of gold and other materials nanoparticles to increase their 

physiological stability and control drug association and release [46] These core-shell 

nanoparticles offer stability and modifiable surface properties, and can even produce 

contrast depending on their composition, size, and shape [47, 48] These core-shell 

structured nanoparticles make for a very robust drug delivery vehicle due to the vast 

variety of elements that can be used as the core and shell components Despite the 

advantages already mentioned, these core-shell nanoparticles suffer from some inherent 

shortcomings, such as biotoxicity, rapid clearance rate, and poor biodistnbution and 

biodegradation Various strategies are in development to circumvent these problems 

[49, 50] 

Another category of core-shell nanoparticles uses porous materials as an inner 

core to cany drug Porous matenals with large surface area and pore volume are 
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regarded as good candidates for drug storage and delivery As a example, mesoporous 

silica have been investigated as a drug earner materials because of its mesochannels, 

which have defined diameters in the ranges of nanometers to tens of nanometers provide 

reliable nanospaces for drug accommodations [51, 52] In addition, their huge pore 

volume per unit mass of matenals enables us to entrap large amounts of drugs In some 

pioneenng approaches, the inlets of channels are modified to add gate functions, 

resulting in controlled release by external stimuli [51-53] Not limited to mesoporous 

silica, mesoporous carbon and related matenals [54, 55], biocompatible porous calcium 

phosphate [56], and metal-organic frameworks (MOF) [57] have also been paid 

attention as future strong candidates for drug delivery applications 

2.2 7 Nanotubes 

Carbon nanotubes are used as drug earners because of their nanocavities and 

high surface area [58, 59] However, there is much concern regarding the long-term 

toxicity of the nanotubes in practical uses due to their geometrical similarity to asbestos 

[60] Carbon nanohorns may be a better candidate for drug earner [61] due to theirs 

lower aspect ratio, which is considered to play important role in the toxicity Carbon 

nanotubes (CNTs) are cyhndncal tubes composed solely of carbon and can be formed 

either as single-walled or multi-walled, for more stability [62] These CNTs are being 

investigated as therapeutic nanoparticles because of their tunable properties and ability 

to incorporate multiple functionalities Amine-functionahzed, single-walled CNTs were 

conjugated by amide-linking to a cisplatm-fohc acid derivative as targeted delivery 

system, has show better performence than a conventional cisplatin formulation [63] 

Another study conducted by Rushng et al used carboxylated single-walled 

CNTs conjugated with cisplatin and epidermal growth factor to target cancer cells 
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which have overexpress of the epidermal growth factor receptor The targeted CNT-

cisplatin conjugate improved the selective killing of the targeted tumor cells [64] Many 

studies have reported CNTs to be effective earners of therapeutics and imaging agents 

in vitro, however, in vivo studies have lead to concerns regarding the associated 

toxicities [65-67] 

An interesting development was recently reported on drug delivery with 

halloysite clay nanotubes [68-71] These clay nanotubes have a larger diameter than 

carbon nanotubes (ca 50 nm external diameter, 15 nm lumen diameter and length of ca 

800 nm), and they are biocompatible [72] Drugs may be loaded into these tubes within 

a minute at ca 10-20 wt % and then slowly released over 10-50 hours [69] It is not 

assumed that it would be possible to inject halloysite clay nanotubes into the blood 

stream, due to their inorganic composition, but their applications for dermatological 

(including rectal), cosmetic and dental delivery were considered as well as 

incorporation into bone and tooth implants 

2.3 Layer-by-layer Coated Nanoparticles for Drug Delivery 

2.3.1 Outline of LbL assembly 

Before we discuss the LbL capsules for drug delivery we will first briefly review 

the layer by layer self assembly technique in this section [73, 74] Self-assembly of the 

nano particles using electrostatic interactions through a layer-by-layer process, was first 

proposed by R K Her [75] The idea was developed and first realized by Decher, 

Mohwald, Lvov, et al [76, 77] Because the self assembling mechanism is so simple, the 

requirements for the apparatus necessary for the process are very low (requiring only 

beakers and tweezers) [78], and the procedures are easy to perform, this methodology 

was quickly adapted by many research groups with the utilization of layer by layer 
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assemblies of various materials including synthetic polymers [79-80], biomaterials [81-

84], inorganic materials [85-87], and supra-molecular assemblies [88-90] Relatively 

high concentrations of the charged substances in the solution results in excess 

adsorption of the substances The surface charge was first neutralized and then 

resaturated lead to charge reversal (Figure 2-2) Reversing of the surface charge makes 

a continuous assembly between positively and negatively charged matenals The 

driving forces for the LbL self-assemblies are not limited to electrostatic interactions 

Many kinds of interactions , such as metal coordination [91, 92], hydrogen bonding [93, 

94], covalent bonding [95, 96], supramolecular inclusion [97], bio-specific recognition 

[98, 99], charge transfer complex formation [100], and stereo-complex formation [101, 

102] were reported and could be used in the LbL process Many other deposition 

techniques including spin-coating [103, 104] and spraying [105], were used for the LbL 

assembly Also automatic machines were developed for the LbL assembly [106, 107] 

The matenals used for LbL assembly also have been widely tested In the 90's, most 

researchers used synthetic polyelectrolytes, such as PAH, PEI, PDDA, PSS and PAA, 

but cunent research, especially related to biomaterials and pharmacology, uses natural 

biodegradable polyelectrolytes, including positively charged chitosan, dextran amine, 

gelatin A, protomme sulfate, and negatively charged chondroitin sulfate, dextran 

sulfate, hyaluronic acid, hepann, gelatin B and sodium alginate 
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Figure 2-2 LbL assembly process outline 

The LbL assembly techniques are considered suitable for biomaterials, because 

the process is simple and is performed m mild environment The LbL assembly is 

usually performed at room temperature in a pH neutral aqueous solution Because the 

LbL technique does not require special conditions like high temperature or extreme pH, 

biomaterials can be assembled under favorable conditions Another advantage of the 

LbL assemblies for biomaterials is the porous nature Unlike Langmuir-Blodgett (LB) 

films, LbL films allow diffusion of matenals Activities of the enzyme glucose oxidase 

were reported to be blocked after covering with only a few layers of lipid LB films 

[108, 109] The LbL films with a single component enzyme (glucose oxidase) or 

multiple enzymes (glucose oxidase and glucoamylase) do not have a senous decrease in 

enzyme activity after an increase m the numbers of layers [110, 111] These facts show 

that LbL films allow the diffusion of materials This ability is a crucial factor in drug 

delivery functions Additionally, it was also reported that biomaterials embedded withm 

the LbL films show better stabilities [112] 
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An important development in the LbL technique was applying LbL technique to 

assembly on colloidal particles [113] This technique was first developed by G 

Sukhorukov, E Donath, F Caruso, and H Mohwald in the Max Planck Institute for 

Colloids and Interfaces [113-122], and then was quickly adapted by other groups 

Instead of using conventional flat surface supports, LbL films were assembled 

sequentially on a colloidal core Subsequent destruction of the central colloid particle 

core could lead to hollow shells A typical example of preparing functional hollow 

shells is shown in Figure 2-3 where DNA molecules, retaining the natural double-helix 

structure, were encapsulated inside a biocompatible polyelectrolyte microshell [123, 

124] In the first step, MnC03 particles were used as template, cores were suspended in 

a DNA solution, and the addition of spermidine solution into stmed MnC03/DNA 

solution caused precipitation of a water-insoluble DNA/spermidine complex onto the 

MnC03 particle Then in the second step, LbL assemblies of biocompatible 

polyargimne and chondroitin sulfate on the complex core were conducted In the third 

step, dissolution of the MnC03 template particles resulted in biocompatible shells 

contaimng a DNA/spermidine complex In addition, further decomposition of the 

DNA/spermidine complex led to a selective release of low molecular weight spermidine 

to complete the DNA entrapment In another example, De Smedt and coworkers 

reported a labeling system for LbL drug delivery using the barcode concept with 

encoded fluorescent polystyrene with captured antibodies [124] 
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Figure 2-3 Preparation of functional hollow shells 

2 3.2 Recent progress of LbL microshells in drug delivery functions 

The LbL microshells could be used in many applications including in life 

science [125-127] The LbL microsells used as drug earners have been attracting a lot 

of attention Most LbL shells used in these applications have diameter at micrometer 

range Raichur et al reported encapsulation and release profiles of rifampicin, an 

antituberculosis drug, using hydrogen-bond assembly LbL microshells of poly(vinyl 

pynohdone) and poly(methacryhc acid) [128] Release profiles showed a burst release 

Above pH 7, the maximum release rate was achieved because the microshells rapidly 

disintegrate The nfampicm released from the LbL microshells shows the same efficacy 

as the free drug This result indicates the drug properties have not changed because of 

possible disturbances during the encapsulation and release process Zhao, et al reported 

the loading of doxorubicin, an anti-tumor drug, into preformed LbL microshells The 

doxorubicin loaded LbL microsells' effect in tumor treatment was assayed by in vitro 
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cell culture tests and in vivo animal experiments [129] The LbL microshells contain 

negatively charged carboxylmethyl cellulose which entraps levels of the positively 

charged doxorubicin ten to a hundred times higher than the feeding concentration The 

encapsulated doxorubicin can effectively trigger the apoptosis of HepG2 tumor cells on 

in vitro tests The result shows that the LbL microshells have the ability for drug 

delivery and cancer treatment on an animal expenmental level Chen, et al encapsulated 

another anti-cancer drug artemisinin in the crystal form with LbL microshell containing 

chitosan, gelatin, and alginate using LbL technique [130] The release rate of 

artemisinin could be adjusted by various parameters, such as polyelectrolyte types, 

number of polyelectrolyte layers, sodium chloride concentration, and ethanol 

concentration in the polyelectrolyte solution 

Many researchers also try to control of drug release using external stimulaton 

Zhang, Gu, et al synthesized alginate-templated magnetically sensitive LbL microshells 

[131] When a high-frequency magnetic field was applied, doxorubicin's drug release 

rate from the microshells was significantly increased The doxorubicin-loaded 

microshells showed much lower cytotoxicity at the high drug concentration in 

comparison with doxorubicin Choi et al prepared LbL microshells containing 

photoacid generators, which made them UV sensitive [132] UV light will induce 

activation of photoacid generators and lead to the release of protons The decrease in the 

pH of the solution tnggered the swelling of the LbL microshells Thus, opemng and 

closure of the LbL microsell was achieved by exposure to UV light and washing with 

pH neutral water In addition, prolonged UV light exposure led to the breakage of the 

LbL microshells, which results in rapid release of the entrapped drugs 
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Protein delivery using LbL shells is also an active area in cunent research 

Zhang, Li, et al reported encapsulation and controlled release of protein using 

biodegradable LbL microshells The microshells consisted of dextran sulfate and 

chitosan Bovine serum albumin (BSA) was used as the model protein BSA was 

encapsulated in the LbL shells [133] The cell viability test indicated that the LbL 

microshells had good biocompatibihty De Geest, Parak, et al encapsulated with a 

model of a nonactive prodrug, a self-quenched fluorescence-labeled protein in 

biodegradable LbL microshells [134] After the microshells uptake by living cells, the 

walls of the microshells were degraded and digested by intracellular proteases Wall 

degradation allowed intracellular proteases to reach the protein loaded inside of the 

microshells Enzymatic fragmentation of the fluorescence-labeled protein leads to 

individual fluorescence-labeled peptides So, only prodrugs inside the microshells that 

reach into the cells are the only ones activated, and those in shells in the extracellular 

environment cannot be activated Akashi et al reported entrapped proteins inside 

biodegradable microshells via LbL assembly Chitosan and dextran sulfate were 

assembled onto a protein-entrapping mesoporous silica particles, and then the silica was 

subsequent dissolved [135] Sustained release of the encapsulated proteins was achieved 

by using the enzyme to degrade the hollow shells 

Variously specifically designed polymers have been used to compose the LbL 

microshells For example, Vancso et al developed organometalhc polyelectrolyte 

multilayer microshells, which are composed of polyanions and polycations of 

poly(ferrocenylsilane) (Figure 2-4) [136] Poly(fenocenylsilane) have redox-active 

fenocene units in the main chain, which makes the shell wall permeability sensitive to 

the redox state In fact, the permeability of these microshells can be tuned using 
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chemical oxidation, resulting in a fast shell expansion accompanied by a significant 

permeability increase in response to a very small trigger 

Figure 2-4 Organometalhc polyelectrolyte multilayer microshells, 
composed of polyanions and polycations of 
poly(fenocenylsilane) 

Caruso et al developed a new type of polymer hydrogel LbL microshells based 

on disulfide cross-linked poly(methacryhc acid) and poly(vmylpynohdone) The 

disulfide cross-linking is sensitive to redox state It can act as redox-active tngger for 

shell degradation [137] They also developed degradable LbL microshells as drug 

earners for the delivery of oligopeptide antigens to antigen presenting cells (Figure 2-5) 

[138] Oligopeptide sequences were first covalently linked to a negatively charged 

polymer via biodegradable linkages Then this conjugate was adsorbed onto amine-
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functionahzed silica particles The peptide-coated particle was coated with thiolated 

poly(methacryhc acid) (PMASH) and poly(vinylpynohdone) (PVPON) Dissolving of 

the silica core and disruption of the hydrogen bonding between polymers resulted in 

disulfide-stabihzed microshells Glutathione, a natural reducing agent, can be used to 

cut the disulfide bonds which causes release of the peptide from the microshells 

Figure 2-5 Degradable polymer microshells as earners for the 
delivery of oligopeptide antigens 

Many researchers combine of the LbL technique with other molecular assembly 

technique, such as liposomes or micelles, together to create various shell systems 

Addison et al develpoed LbL microshells constructed entirely from a cationic/ 

zwitteriomc pair of pH-responsive block copolymer micelles [139] Layers of aniomc 

poly[2-(dimefhylamino)efhyl methacrylate-hlock-poly(2-(diethylamino)ethyl metha-

crylate)] and cationic poly(2-(diethylamino)ethyl) methacrylate-block-poly(meth-
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acrylic acid) copolymer micelles were alternately assembled onto CaC03 colloidal 

templates Then add in dilute ethylenediaminetetraacetic acid solution to dissolve the 

CaC03 core and form hollow polymer microshells This type of LbL microshells is 

composed entirely by pH sensitive block-copolymer has potential application for the 

encapsulation and tnggered release of drugs Li, Hu, et al fabncated via a layer-by-

layer technique, templated on CaC03 particles with built-in polymeric micelles based 

on polystyrene-b-poly(acryhc acid) [140] This type of LbL microshell can selectively 

entrap positively charged substances such as rhodamine B and lysozymecan The 

positively charged substances can be entrapped in the shells where the concentration is 

much higher than that in the incubation solution The encapsulated compounds shown 

sustain released to a certain degree, as suggested by in vitro release experiments Caruso 

et al reported using micelles for LbL assembly They synthesis DNA-grafted poly(N-

lsopropylacrylamide) (PNIPAM) micelles, then assembly PNIPAM micelles into LbL 

films, and then use poly(ethylene glycol) (PEG) to functionahze the DNA-PNIPAM 

microcapsules [141] The combination of hydrophobic core and alkyne "click" groups, 

along with the biodegradabihty of DNA, offers a multifunctional and versatile 

DNA-polymer capsule system that can be used for the controlled delivery of 

therapeutics 

Fukui and Fujimoto combined the liposome preparation and the LbL deposition 

together to prepare hollow shell structures [142] Chitosan was deposited onto a 

negatively charged liposome surface and form a cationic polymeric layer Then dextran 

sulfate or deoxyribonucleic acid was used to form an aniomc polymers layer They 

reported that chemical substances with different charges, alendronate, pyranine, and 

glucose, were encapsulated into microshells where the release rate was suppressed by 
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the polymer shell wall inespective of charges [142] Also they use DNA denaturation as 

a temperature dependent switch to achieve the temperature-dependent release Tabnzian 

et al developed a delivery system for bone growth factors consisting of a liposome core 

incorporated into a shell of LbL-assembled natural polyelectrolytes [143] The prepared 

hydrophihc, monodisperse, spherical and stable cationic nanoparticles (< or =350 nm), 

as a delivery system, localized the effect of the released bone growth factors within the 

site of injection in muscle Ramaye et al developed a combination of magnetic 

liposomes and LbL assembling techniques [144] Superparamagnetic nanoparticles were 

encapsulated in liposomes prior to the stepwise adsorption of LbL assembly Magnetic 

field also allows a fast separation of coated liposomes from unbound polyelectrolytes 

The presence of magnetic nanoparticles and the polyelectrolyte shell opens allows to 

use external magnetic field to manipulate and target drug earners 

Integrated shell structures have also been proposed De Smedt et al designed 

self-exploding gel beads that can release micrometer-sized shells at the time of 

explosion (Figure 2-6) [145] The larger gel beads were loaded with small LbL 

microshells When the polyelectrolyte coated gel beads explode under alkaline 

conditions, through rapid hydrolysis of the carbonate esters connecting the polymerized 

methacrylate groups with the dextran backbone, the smaller LbL microshells become 

suddenly released Self-exploding gel beads releasing antigen containing LbL 

microshells at different times after injection could become promising materials for 

vaccination purposes The reverse-phase was used to coat polymer layers onto agarose 

microbeads contaimng tns-buffer for the formation of LbL shell-walls onto the 

microbeads The polymer-coated agarose microbeads were transfened from an organic 

to an aqueous solvent where the tns-molecules induced an osmotic pressure in the 
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microshells' interior The inflation of the LbL microshells caused the expansion of the 

LbL shell-walls The inflated microshells can control localized chemical or enzymatic 

reactions that are useful in biomedical applications Ke, et al developed a bi-mode 

ultrasound/fluorescent imaging agent through LbL assembly of poly(allylamme 

hydrochlonde) (PAH) and CdTe quantum dots onto microbubbles produced by 

somcation of a mixture of Span 60 and Tween 80 [147] The Quantum-dot-modified 

microbubbles not only maintained the ability of ultrasound imaging, but also could used 

as a targeted-drug controlled-release system to deliver the quantum dots by ultrasound 

targeted microbubble destruction 

Small LbL Shell I 

LbL Shell 

Figure 2-6 Self-exploding polyelectrolyte coated gel beads 
releasing micrometer-sized shells at the time of 
explosion 
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In conclusion for Chapter 2, layer-by-layer (LbL) nanoassembly is a simple 

method allowing the design of multilayer architectures with nanometer precisions It is 

based on the alternate re-saturated adsorption of oppositely charged components, such 

as synthetic and natural polyelectrolytes, proteins and nanoparticles The only rule of 

thumb is sequential adsorption of positively and negatively charged components 

resulting in any pre-determmed composition multilayer film One forms films 

consisting of bilayers of electrostatically bound cationic and anionic macromolecules, 

and the typical bilayer thickness is one to a few nanometers Following the first LbL 

papers published in the beginning of the mneties by G Decher, H Mohwald, Y Lvov, 

M Rubner and others, one can find around 8,000 publications dealing with the LbL 

technique It is interesting that until the last few years, the majority of these works were 

devoted to LbL assembly predominantly using sodium poly(styrene sulfonate) - PSS, 

poly(allylamine) hydrochlonde-PAH and poly(ethyleneimine)-PEI These PSS, PAH, 

and PEI multilayers are the most studied, but, in recent years, researchers began using 

natural polyelectrolytes and proteins Now, one can conclude that the LbL method 

works perfectly for the assembly of aniomc compounds, such as alginic acid, hyaluronic 

acid, chondroitin sulfate, heparin, dextran sulfate, carboxymethyl cellulose, 

polyanunoacids, DNA, and catiomc ones chitosan, dextran amine, polylysine, 

collagens, protamine sulfate, gelatin A, and others Therefore, we have a group of 

biocompatible and biodegradable materials (in many cases FDA approved) and the 

LbL-techmque to assemble them in a controllable manner in multilayers of 2-500 nm 

thickness 

How can these architectural multilayers be used for drug delivery*? An answer is 

by formation of microcapsules loaded with drugs Formation of LbL multilayers on tiny 
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templates and performing LbL encapsulation was first introduced in 1999 in Max 

Planck Institute, Germany by G Sukhorukov, E Donath, F Caruso, H Mohwald and Y 

Lvov Generally, LbL encapsulation is the same method as described above for a planar 

substrate but applied to small 2-5 micrometer diameter drug particles or sacrificed 

polymeric, MgC03, CaC03 or silica cores The possibility to design any thickness or 

composition of such LbL shells allowed control of drug diffusion from the capsules For 

different drugs, the vanation of the capsule wall thickness within 20-100 nm allowed 

release time from 10 mm to 5 hours This is the mam idea for LbL encapsulation for 

controlled drug delivery 

Cunently, one can indicate two methods in LbL encapsulation 1) The more 

common approach for formation of LbL microcapsules on sacnficed cores, dissolution 

of such cores and loading empty LbL microshells with drugs or proteins through a pH 

dependable capsule wall pore opemng In this case, drug loadmg is 5-10 % The 

following drugs were analyzed for LbL encapsulation lbuprofen, furosemide, 

nifedipine, naproxen, biotin, vitamin K3, insulin, dexamethasone, tamoxifen, pachtaxel 

2) The second direction is much less known (only four publications exist from LaTech's 

group) using the LbL nanoencapsulation of low soluble drug nanoparticles (which 

allowed ca 70-80 % drug loading) 

Therefore, in LbL capsules one can see two tendencies Making microcapsules 

with sophisticated multifunctional shells of contaimng 5-10 wt % of drugs and having 

the ability for switchable release with few to tens of hours In most of the recent 

published papers, such LbL capsules have a diameter of a few micrometers It appears 

to be too large for blood injection but these LbL microcapsules have a very thin flexible 

wall and they have a certain ability to squeeze through nanow capillaries similar to 
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blood cells Another tendency is making very thin LbL-shells (two-three 

polyelectrolyte layers of 5-10 nm) on 100-200 nm diameter cores of low soluble drugs 

(often anti-cancer drugs) In this encapsulation, LbL coating provides a strong surface 

charge producing stable nanocoUoids of initially poorly soluble matenals It is this 

second approach for low solubility cancer drug nanoformulations that will be further 

developed in this dissertation 



CHAPTER 3 

INSTRUMENTATION AND MATERIALS 

LbL assembly was earned out using polyallylamine hydrochloride (PAH), 

polyethylemeimine (PEI), protamine sulfate and chitosan, as positively charged 

polyelectrolytes and bovine serum albumin (BSA), algimc acid, and sodium polystyrene 

sulphonate (PSS), as negatively charged polyelectrolytes (used at concentration of 2 

mg/mL) All polyelectrolytes and albumin were purchased from Sigma-Aldnch except 

pachtaxel is purchased from LC Laboratones Inc (Woburn, MA), curcumin is provided 

by Sabmsa Corporation (East Windsor NJ) Deiomzed water and phosphate buffered 

saline (PBS) buffer were used at pH 7 2 Ultrasonicator UlPlOOOhd (Heilscher, 

Germany) with titanium sonotron was used at a power of 15 W/cm During the 

experiments, the temperature was controlled at 25-30 °C 

Surface potential (zeta potential) and particle size measurements (by light 

scattering) were performed using ZetaPlus microelectrophoresis (Brookhaven 

Instruments, Co ) Additionally, we used Precision detectors PDExpert light scattenng 

Workstation to check the radius of gyration of our drug nanoparticles A field emission 

scanning electron microscope (Hitachi S 4800) was used for particle imaging XRD 

experiments were performed with the help of a Bruker D8 Discover X-ray Diffracto-

meter to determine the crystalline structure of drug nanoparticles 

28 
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The drug release rates of nanocapsules with different shell composition were 

measured using standard 1 mL horizontal diffusion chambers with 0 2 um cellulose 

acetate membranes The drug dispersion was placed to the side of the diffusion chamber 

contaimng a magnetic stmer and the drug was released against the same volume of 

PBS, pH 7 2 to mimic the sink conditions expected in vivo The concentration of 

released drugs in PBS was dissolved in ethanol at 1 1 (v/v), centnfuged to remove 

insoluble polyelectrolytes and measured with a UV spectrophotometer (Agilent 8453 

Wavelength range 190-1100 nm) Curcumin was measured at 490 nm, and pachtaxel 

was measured at 245 nm Also the same measurements were done to calculate product 

yield at the end of somcation Further, we describe the instruments used in this work in 

more detail 

3 1 Ultrasonicator 

A Hielscher UlPlOOOhd ultrasonic processor, Figure 3-1, was used to prepare 

nanoparticles in this research 
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Figure 3-1 Hielscher UlPlOOOhd ultrasomc processor 

When ultrasomc energy is applied to liquids, and if amplitude and acceleration 

are high enough, the phenomenon of cavitation occurs The cross-section of sonotnn 

used conesponded to the surface area of the drug dispersion to maximize 

ultrasonication power The liquid bursts and vacuum bubbles are generated during the 

alternating high-pressure and low-pressure cycles When these small bubbles cannot 

absorb more energy, they implode during a high-pressure cycle, so pressures up to 

1,000 bar and shock waves as well as liquid jets of up to 400 km/h are reached locally 

These intense forces, caused by ultrasonic cavitation, take effect on the enclosing 
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droplets and particles The main objective of power ultrasonics consists of cavitational 

forces, with heating being mostly a welcome side-effect Cavitation and the effects 

descnbed above cause mterparticle collision 

3.2 Zeta Potential Analyzer 

A ZetaPlus zeta potential analyzer (Brookhaven Instruments, Co ), Figure 3-2, 

was used to measure the surface charge of nanoparticles dunng the LbL assembly 

process This instrument also can be used to measure the particles hydrodynamic 

diameter using light scattering 
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Figure 3-2 Zeta potential analyzer by Brookhaven Instruments, Co. 

Zeta potential meassurement was calibrated using a BI-ZR3 zeta potential 

reference material provided by Brookhaven Instruments, Co. 

100 mg of BI-ZR3 was added to 20 mL of the 1 mM KC1, result in 5mg/mL 

concentrate. Then the concentrate dilutes to 1.25X102 mg/mL. This standard sample is 

used to have a mean zeta potential value of 53 mv ± 4 mv, and 300 nm mean size. 

Zeta potential is used as a surrogate for surface change and is often measured by 

observing the oscillations in signals that result from light scattered by particles located 
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in an electnc field, though there are other approaches There are a number of 

instrumental configurations by which this is achieved, mostly using a doppler shift, and 

the users should familiarize themselves with the particular approach implemented in 

their equipment Instrumentation concerns aside, the need for dilution begs the question 

of what is an appropnate diluents, because its choice can profoundly influence the 

surface chemistry and thus the results This analyzer was calibrated using a BI-ZR3 

reference matenal from Brookhaven Instruments, Co 

3.3 Dynamic Light Scattering 

The Precision detectors PDExpert light scattering workstation Figure 3-3 is a 

multi-detector light scattering platform that can be employed for light scattenng 

measurements on a static sample (eg a test tube) or for flow through measurements 

(e g high performance liquid chromatography, gel permeation chromatography and size 

exclusion chromatography) The workstation is designed to provide the ultimate in 

detection for characterization of polymers, nanoparticles, lipids, colloids and proteins 
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Figure 3-3 Precision detectors PDExpert light acattering 
workstation 

DLS, also known as photon correlation spectroscopy (PCS) or quasi-elastic light 

scattering (QELS) records the variation in the intensity of scattered light on the 

microsecond time scale. This variation results from interference of light scattered by 

individual particles under the influence of Brownian motion, and is quantified by 

compilation of an autoconelation function. This function is fit to an exponential, or 

some combination or modification thereof, with the conesponding decay constants 

being related to the diffusion coefficients. Using standard assumptions of spherical size, 

low concentration, and known viscosity of the suspending medium, particle size is 

calculated from this coefficient. The advantages of the method are the speed of analysis, 

lack of required calibration, and sensitivity to submicrometer particles. Drawbacks 

include the necessity of significant dilution to avoid artifacts, the need for cleanliness in 

sample preparation, the mathematical instability of the procedure used to extract decay 

constants, and the possible influence of interparticle interactions. DLS is a stand-by 
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method for those working in the area of nanoparticles because of the simple measure 

3.4 X-Rav Diffractometer 

A Bruker D8 X-Ray diffractometer was used to determine the crystal structure 

of the nanoparticles (Figure 3-4) 

Figure 3-4 Bruker D8 Discover X-ray diffractometer 

3.5 SEM 

Figure 3-5 shows the Hitachi SEM which was used for nanoparticles 

visualization Diluted drug nanoparticles dispersion was dropped on a suitable substrate 

and coated with a ca 0 5 nm gold layer to provide conductivity 
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Figure 3-5 Hitachi S-4800 scanning electro microscope 

This SEM also has an energy-dispersive X-ray spectroscopy (EDX) detector 

(EDAX Sapphire). EDX Analysis can be used to determine the element composition of 

the sample. 

3.6 Ultra Violet Spectrophotometer 

An UV-vis spectrophotometer (Agilent 8453), Figure 3-6, was used to measure 

the concentration of drug in the release test. The drug release test measures the 

pharmacodynamic diffusion of the nano drug particle in a side-by-side diffusion 

chamber. 
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Figure 3-6 Agilent 8453 UV-Vis spectrophotometer 



CHAPTER 4 

DRUG NANOPARTICULATION VIA TOP-DOWN APPROACH 

Nanoparticle drug earners were developed using a combination of 

ultrasonication and encapsulation with synthetic and biodegradable polyelectrolytes 

Two different approaches to attain the desired featured properties are the "top-down" 

and "bottom-up" synthetic methods These two methods are desenbed in Chapters 4 and 

5 A common feature of these two related methods is ultrasonication-driven formation 

of drug nanocores accompanied by a simultaneous polycation coating providing 

aqueous colloidal stability The "top-down" method was more efficient in the 

preparation of large amounts of 200-250 nm diameter pachtaxel capsules, and the 

"bottom-up" approach allowed for the formation of smaller capsules of ca 100 nm 

diameter but with less product yield Some sections of these two chapters were 

published in papers written by the author of this dissertation and will be 

conespondingly refened [148] and [149] 

4.1 Methodology 

Powerful ultrasound generates micro-bubbles in a liquid These micro-bubbles 

collapse in microseconds If any solid particle is near the bubble dunng the collapsing, 

jets of fluid and shock waves will hit the particle and break it up While adding 

polyelectrolyte into the solution, the typically negative surface of the newly formed 

38 
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drug surface will help to keep particles from aggregation Thus, a smaller particle size 

can be achieved with a better size distribution Because the ultrasonication process 

breaks down the particles, it is a mechanical process The formed particles will have a 

wide range of sizes Both power and somcation time effect the nanoparticles' size 

distnbution In general, the higher the power and the longer the time, the smaller the 

particles will be But if one stops somcation, particles will aggregate To prevent the 

aggregation during the somcation and increase the efficiency of the somcation, we 

added polycations that adsorbs onto the drug nanoparticles and prevents re-aggregation 

The mimmum amount of polycation needed for complete coverage was calculated in 

Appendix A The surface zeta potential of the particles changed to positive during the 

polycation adsorption and reached of ca + 40mV 

For drug encapsulation, anionic sodium polystyrene sulfonate (PSS) of MW 70 

KDa and catiomc poly(dimethyldiallyl ammonium chlonde) (PDDA) of MW 100 KDa 

were sequentially adsorbed onto the particles of different drugs at pH 6, and then the 

desired number of layers in the capsule shell was fabncated Biodegradable 

polyelectrolytes that were used for the LbL assembly are protamine sulfate and 

chondroitin sulfate The multilayer shells that are fabncated on the drug help in 

prolonging the release of the drug Figure 4-1 shows the scheme for top-down approach 

The verification of the alternation of surface charges and particle size were done with a 

ZetaPLus Brookheaven microelectrophoretic zeta-potentiometer A visualization of the 

fabncated microcapsules was completed using SEM 
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Drug crystal 
suspand in D) water 

The strong Jet flow crash drug 
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PAH/PSS or BS/PS 
LbL assembly on to particle 

Figure 4-1 Scheme for top-down approach 

4.2 Curcumin Nanoformulation 

Curcumin is a well known natural compound traditionally used as a food 

additive or a health nutrient supplement in many oriental countries Recently, its anti­

cancer activity was recognized [150] It is a low soluble compound (the aqueous 

solubility is ca 0 01 mg/mL) The curcumin structural formula is shown in Figure 4-2 

OH 

O O 

Figure 4-2 Structural formula for curcumin 
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4.2.1 Preparation of curcumin nanoparticles 

The following expenmental step-by-step sequence was used to prepare 

nanoparticles of curcumin 

1) 10 mg curcumin powder was mixed with 10 ml of DI water 

2) The mixture was pre-somcated for 5 mm to form curcumin suspension 

3) 2 mL of 1 5 mg/mL catiomc PAH were added to the suspension 

4) 45 mm somcation was applied 

5) The curcumin nanoparticles were washed twice with DI water using 

centnfugation at 7000 rpm (5204 g rcf) for 10 min to separated 

nanoparticles from supernatant and re-dispersed in 20 mL of DI water 

6) 2 mL of 3 mg/mL anionic PSS were added to the mixture, 10 mm of 

reaction time was allowed for the polyelectrolyte adsorption 

7) The supernatant was removed by centnfugation at 7000 rpm 

Nanoparticles were washed with DI water and re-dispersed 

8) Steps 6-7 were repeated for next layer of catiomc PAH 

9) Steps 6-8 were repeated several times to achieve the desired number of 

polyelectrolyte layers in the coating 

Instead of catiomc PAH and anionic PSS, biodegradable polyelectrolytes such 

as protamine sulfate (PS), bovine serum albumin (BSA) and chondroitin sulfate (ChS), 

may be used for the coating 

The alternation of electrophoretic (£) potential demonstrates a step-wise 

formation of the LbL-shell consisting of catiomc PAH and aniomc PSS on curcumin 

nanoparticles Figure 4-3 shows a typical zeta potential change dunng the ultrsonic 

assisted LbL assembly process Each sample was measured 10 times The standard 
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deviation was given by the zeta potential analyzer After the initial -50 ± 2 mV for bare 

curcumin particles, PAH adsorption during the first step of nanoparticles synthesis 

converts the potential to +30 ± 2 mV Next, anionic PSS adsorption changes the 

potential to -53 ± 2 mV, followed by +20 ± 2 mV with PAH, and again -50 ± 2 mV with 

PSS Therefore, a multilayer coating of polycations and polyamons with composition of 

(PAH/PSS)2 was coated onto the curcumin nanoparticles and the enhanced surface 

potential of -50 mV was reached This value is well above commonly accepted colloidal 

stability threshold of (±) 30 mV [149] 

60 

a 30 

o 

* -30 

-60 

-90 
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Figure 4-3 ^-potential alternation during LbL-shell formation of 
catiomc PAH and anionic PSS on curcumin 
nanoparticles Standard deviation shows the same 
sample run 10 times on zeta potential analyzer 

Separate QCM analysis of the LbL assembly process for these polyelectrolytes 

on silver plated 9-MHz Quartz Crystal Microbalance resonators (USI-System Instr, 

Japan) demonstrated a thickness increment of 2 0 ± 0 3 nm for a PAH/PSS bilayer, and 
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the total thickness of the two-bilayer shell on the curcumin nanoparticles may be 

estimated as ca. 4 nm. Any shell composition may be achieved with further alternate 

adsorption of polycations and polyanions [149]. 

In another experiment, curcumin nanocapsules with two bilayer shells of 

biocompatible protein materials were produced. A positive layer in the shell was 

generated using protamine sulfate (PS), while bovine serum albumin (BSA) formed a 

negative layer. Total composition produced was (PS/BSA)2. For these LbL 

nanocapsules, zeta potential also regularly alternates between +30 mV and -50 mV 

providing high colloidal stability of the samples [149]. The dispersion of the 

nanoparticles with the concentration of 0.2 g/mL was stored in DI water for two weeks 

without precipitation. 

The yield of the nanoparticles was about 30-40 % which means that, if curcumin 

concentration at the beginning of the process was typically 1 mg/mL, then, in the 

product, it was of about 0.3-0.4 mg/mL. 

Figure 4-4 shows SEM image of the formed curcumin nanoparticles. One can 

see that, in diluted dispersions, the nanoparticles' size is from 50-120 nm (left) and, 

upon the drying of the concentrated sample, some aggregation occurs (right image). 

Figure 4-4 SEM image of the formed curcumin nanoparticles (left) 
diluted sample, and (right) concentrated sample 
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4.3 Nanoformulation of Pachtaxel 

Pachtaxel (Figure 4-5) is an efficient anti-cancer drug, but due to very low 

solubility, there is not effective way for its delivery However, with pachtaxel 

nanoformulation it is feasible to increase the drug concentration a hundred times (up to 

a few mg/mL) 

Figure 4-5 Structural formula for pachtaxel 

Figure 4-6 shows a typical zeta potential change during the assembly Each 

sample was measured 10 times The standard deviation was given by the zeta potential 

analyzer One can see the zeta potential changes for the LbL assembly of 

polyelectrolyte multilayer shell on pachtaxel nanoparticles Imtially, the surface 

potential of the pachtaxel nanoparticles was -21 mV After deposition of the first 

catiomc PAH layer (with simultaneous ultrasomcation) we obtained the particle surface 

potential of 24 ± 3 mV After deposition of the second layer, anionic polyelectrolyte 

layer (PSS), we increased the magnitude of zeta potential to 41 ± 3 mV, and finally, at 

the last deposition step a coating with biodegradable chitosan/algmic acid (blue line) or 
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albumin (red line) gave us a strong negative surface charge of the encapsulated 

pachtaxel of - 46 ± 4 mV and -32 ± 3 mV This high surface potential provided for the 

stability of the developed pachtaxel nanocoUoids for at least two weeks at 

concentrations of 0 5 mg/mL 
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Figure 4-6 ^-potential of pachtaxel coated with two different 
bilayers of PAH-PSS-PAH-BSA and PAH-PSS-
chitosan-algmic acid (using top-down approach) 
Standard deviation shows the same sample run 10 times 
on zeta potential analyzer 

In Figure 4-7, one can see the SEM image of the initial micromzed sample of 

pachtaxel It consists of needle-like rods with diameter of ca 100 nm and length of 2-3 

um Dunng sonication-assisted LbL encapsulation, we obtained rather homogeneous 

particles with overage sizes of 100 x 100 x 200 nm This particle suspension is 

collapsed dunng the drying of the sample but the aqueous dispersion itself is stable It is 

interesting, that due to very low solubility, it is possible to keep the pachtaxel sample 

without dissolution for weeks because in such a restncted volume the supernatant 
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saturation is reached preventing further particles dissolution. Only in a big solvent 

volume (under sink release conditions), can pachtaxel nanoparticles be partially or 

completely dissolved. These particles are less than 300 nm and are in accordance with 

the minimum particle size allowed by FDA for medical injections. 
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Figure 4-7 SEM image of orginal pachtaxel (left) and after 
ultrasound assisted LbL encapsulation with 
PAH/PSS/chitosan/alginic acid (right) 
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CHAPTER 5 

DRUG NANOPARTICULATION VIA BOTTOM-UP APPROACH 

This technology is our new invention It was disclosed to LaTech 1) Z Zheng, 

Y Lvov "Somcation synthesis of polyelectrolyte coated nanoparticles through mixing 

molecular solutions with bad solvents," September 30, 2008-27, and 2) Y Lvov, Z 

Zheng, V Torchihn "Pachtaxel and atavoquone nanoparticle production through 

ultrasonication with gradual desolvation assisted with polycation coating Synthesis of 

the mixed drugs nanoparticles," December 1, 2008-30 US patent application by V 

Torchihn, Y Lvov, Z Zheng "Stable Aqueous NanocoUoids of Pachtaxel and 

Atavoquone," was filed by Louisiana Tech University and Northeastern University on 

April 25, 2009 Some sections of this chapter were published in a paper written by the 

author of this dissertation and will be conespondmgly refened [149] Z Zheng, X 

Zhang, D Carbo, C Clark, C-A Nathan, Y Lvov, Langmmr, v 26, 7679-7681, 2010 

"Somcation assisted synthesis of polyelectrolyte coated curcumin nanoparticles " 

5.1 Methodology 

The drug powder was dissolved in ethanol/water solution After drug has been 

completely dissolved, we added aqueous polycations, poly(allylamme hydrochlonde) 

(PAH) or biodegradable protomme sulfate (PS), and started ultrasonication with a 

UIPIOOO, Hielscher instrument, at energy density of 100 Wt per mL of solution During 
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the somcation, water was slowly added into the solution Because of the added water, 

the solvent becomes more polar, causing a decrease of drug solubility, and eventually, 

its concentration exceeds the solubility threshold resulting in the drug supersaturated 

conditions Then, crystal nucleation starts Under high power ultrasonication, the drug 

particle growth ceases at the initial stages [149] An adsorption of polyelectrolytes onto 

the drug nanocrystals establishes a barner for their further growth and aggregation The 

minimum amount of polyelectrolytes needed for complete coverage was calculated in 

Appendix A Obtained drug crystal particles were stable and did not aggregated after 

somcation was stopped We assume that it was because of the increase of surface charge 

provided by the adsorbed polyelectrolyte layer After 45 min of somcation, drug 

nanocrystals were separated from the solution by centnfugation and re-suspended in DI 

water Additional polyelectrolyte multilayers were built on the curcumm nanoparticles 

by alternate adsorption of polyamons and polycations (LbL shell assembly) For 

biocompatible capsules, an alternate adsorption of catiomc protamine sulfate (PS) and 

anionic bovine serum albumin (BSA) were used (Figure 5-1) 
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Figure 5-1 Scheme of the bottom-up curcumin LbL 
nanoformulation 

The drug was dissolved in 60 % ethanol at a concentration of 2 mg/mL We 

present here the results for low solubility anti-cancer drugs curcumin and pachtaxel 

Ultrasonication was applied for 45 min while slowly adding water at the rate of 0 2 

mL/min [149] 

5.2 Curcumin Nanoformulation 

5.2.1 Nanocurcumm preparation 

The drug/shell multilayer structure is curcumin/PS/BSA/PS/BSA 

The following expenmental step-by-step sequence was used to prepare 

nanoparticles of curcumin 
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1) 10 mg curcumin were dissolved in 10 ml of 60 % ethanol/water 

(optionally, we also used acetone) 

2) The solution was presomcated for 5 mm to completely dissolve the 

curcumin 

3) 6 mL of 0 2 mg/mL aqueous catiomc PS, pH 6 5 were slowly added at a 

speed of 0 5 mL/min during 30 mm somcation This is the key step of the 

procedure initiating the particle nucleation 

4) The nanoparticles were washed twice with DI water using 7000 rpm 

centnfugation to separate the nanoparticles from supernatant 

5) 3 mg of aniomc BSA were added to the mixture and allowed to adsorb for 

10 min 

6) The nanoparticles were washed twice with DI water using 7000 rpm 

centnfugation before coating with aqueous cationic PS 

7) 3 mg of PS were added to the mixture and allowed to adsorb for 10 min 

8) Steps 4-7 were repeated to achieve a given number of layers 

Figure 5-2 shows a typical zeta potential change during the ultrsonic assisted 

LbL assembly process Each sample was measured 10 times The standard deviation 

was given by the zeta potential analyzer Due to the adsorption of cationic PAH, the 

surface potential of these nanoparticles was positive ca +30 mV Further coating with 

PSS increased the zeta potential magmtude to -52 ± 4 mV High surface charge 

increases colloidal stability for this formulation For example, in an aqueous curcumin 

nanocolloid of 0 5 mg/mL concentration a stable dispersion of the drug was preserved 

for one month In Appendix B, we calculated the average distance between particles 
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under different conditions Low concentration means longer distance between particles, 

which usually means better stability 
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Figure 5-2 Particle ^-potential alternation dunng LbL coating of 
curcumin (pH 6 5) Standard deviation shows the same 
sample run 10 times on zeta potential analyzer 

Curcumin nanoparticles of rectangular shape were obtained Edges from 60 nm 

to 90 nm (Figure 5-3) and average edge size of 80 ± 20 nm were estimated with SEM 

imaging processing software Quartz PCI (Hitachi) and light scattenng experiments 

(Brookhaven Instruments, Co , ZetaPlus) The rectangular shape of the nanoparticles is 

associated with the crystalline nature of the obtained curcumin particles [149] 
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Figure 5-3 SEM images of initial curcumin powder (left) and 
resulting curcumin nanocolloid (right) 

To examine the crystal structure of the curcumin nanoparticles, X-ray powder 

diffraction analysis was carried out with a Bruker-D8 XRD instrument. Bragg peak 

positions in the X-ray pattern obtained from the dried nanoparticles powder coincided 

with the peak positions for bulk curcumin powder, but the peaks were wider due to 

smaller crystallite size (Figure 5-4). These X-ray data indicate that the crystal structure 

of curcumin was preserved, and polycations added during drug crystal formation did not 

form a complex with curcumin molecules but only covered the crystals surface. We 

assume that polycations were layered predominantly on the crystal surface, as it follows 

from electrophoretic (^-potential) data given below [149]. 
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Figure 5-4 X-ray diffraction spectra for micromzed curcumm 
powder (upper spectrum) and for nanoformulated 
curcumin (lower spectrum) 

5 3 Pachtaxel Nanoformulation 

5.3.1 Preparation of nanopachtaxel 

The following experimental step-by-step sequence was used to prepare 

nanoparticles of pachtaxel 

1) 10 mg of pachtaxel were dissolved in 10 mL of 60 % ethanol/water 

solvent 

2) The mixture was presomcated for 5 mm to completely dissolve pachtaxel 

3) 6 mL of aqueous 0 2 mg/mL cationic PS (pH 6 5) was added at a speed of 

0 5 mL/min dunng 45 mm somcation This is the most important stage of 

the formulation 
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4) The nanoparticles were separated from supernatant using 7000 rpm 

centnfugation for 10 min and washed twice with DI water Then the 

nanoparticles were redispersed in 10 ml of DI water 

5) For next BSA layer, 3 mg BSA were admixed to the dispersion for 10 min 

6) Step 4 was repeated 

7) A layer of catiomc protamine sulfate was deposited in the same way as in 

step 5 

8) Step 4 was repeated 

9) Steps 5-8 were repeated to obtain the desired coating structure 

Pachtaxel was dissolved in a "good" solvent (60 % ethanol/water or 60 % 

acetone/water) After dissolution of the drug at high concentration, ultrasonication was 

started with aqueous polycation slowly added to the solution With an increase of water 

concentration, solubility of pachtaxel decreased, reached saturation and the nucleation 

began resulting in the formation of nano-size particles 

Powerful somcation prevents formation of larger drug particles and polycation 

adsorption provides for a surface charge sufficient for colloidal stability After a 45 min 

treatment, the drug particles were centnfuged at 7,000 rpm for 10 mm and re-suspended 

in distilled water The second layer of anionic polyelectrolytes was deposited to 

maximize the capsule surface potential Nonreacted polyanions were removed by 

centnfugation and pachtaxel nanoparticles with the average particle size of 100 nm 

were obtained Additional polyelectrolyte layers may be further built up on the drug 

nanoparticles using the traditional LbL process without somcation Obtained pachtaxel 

nanocolloid was kept in a small volume of saturated solution to prevent drug release 

[149] 
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Figure 5-5 shows a typical zeta potential change dunng the Ultrsonic assisted 

layer-by-layer assembly process Each sample was measured 10 times The standard 

deviation was given by the ZetaPlus zeta potential analyzer (Brookhaven Instruments, 

Co) The alternated zeta potential dunng formation of LbL nanoshells on pachtaxel 

nanocores has a minimal potential of-35 mV 
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Figure 5-5 ^.-potential change dunng the LbL encapsulation of 
pachtaxel Standard deviation shows the same sample 
run 10 times on zeta potential analyzer 

Figure 5-6 shows SEM image of the resulting nanocapsules with average 

diameter of 90 ± 20 nm 
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Figure 5-6 SEM image of pachtaxel nanoparticles with shells of 
(PS/PSA)2 (left); same sample showing aggregation of 
particles at another site (right) 

Figures 5-7 shows the SEM images of pachtaxel particles prepared with the 

bottom-up approach, then using centrifuge to separate large particles and small 

particles. 

Figure 5-7 SEM image of pachtaxel in 60 % ethanol sonicate for 
45 min before (left) and after (right) centrifuge 



CHAPTER 6 

PROCESS OPTIMIZATION 

6.1 Ultrasonication Time 

The first parameter we optimized was somcation time It is logical to assume 

that the longer the somcation, the smaller particles one can get However, in the "top-

down" approach, even many hours of somcation did not result in particles less than 200 

nm Probably, there is a limitation preventing further splitting of the drug particles In 

ref [151], it was suggested that this minimal size may be related to the nucleation size 

of vapor bubbles during somcation The only imporvement which we suggest m future 

work could be a modification of the cavitation process in somcation by changing 

solution properties and vapor bubble formation conditions (for example, with increased 

pressure) Finally, the optimized somcation time for the nanoformulation of curcumin 

and pachtaxel was chosen to be 30-45 min Another factor, requinng the limitation of 

somcation time is sample pollution with depleted submicron particles of titanium oxide 

This pollution is developing with somcation times above one hour and then additional 

sample punfication to eliminate titanium alloy particles is needed Fortunately, it is 

relatively easy due to different particle densities As shown in Figure 6-1, the particle 

size decreases when the somcation time increase The result was achieved after seven 

measurements at each data point The standard deviation was given by the 90Plus 

particle sizer 
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Figure 6-1 Decrease of curcumin nanoparticles size as a function of 
somcation time in the presence of polycation Standard 
deviation shows the same sample run seven times on 
90Plus particle sizer 

6.2 Water Add-m Speed and Drug Concentration 

To minimize the curcumin particle size, we prepared a series of samples 

processed under vanous conditions (different ethanol/water ratios, drug concentrations, 

ultrasonication power, time, and speed of the solvent worsening for crystallization 

initiation) Two major factors that affect the crystal size were the rate of water addition 

(speed of the solvent worsemng) and an initial curcumin concentration These factors 

were optimized Figure 6-2 gives the dependence of particle size on the rate of water 

addition The result was achieved after seven measurements at each data point The 

standard deviation shows the same sample run seven times on 90Plus particle sizer 

(Brookhaven Instruments, Co) 



59 

400 

350 

300 

? 250 
o. 
S 200 
c/3 
2. 150 o 

| 100 

50 

o 
\J 

-

-

0 

< • 

3S*l 

1 1 1 1 

1 2 3 4 
Water add-m speed (ml/mm) 

i 

5 

Figure 6-2 Dependence of curcumin particle size on water addition 
rate Standard deviation shows the same sample run 
seven times on 90Plus particle sizer 

The water addition rate was varied from 0 05 mL/min up to 0 4 mL/mm for the 

sample volume of 50 mL, and the higher rate resulted in the formation of larger 

particles We observed particles of ca 320 nm average size at 0 4 mL/mm rate versus 

ca 120 nm particles for the 0 05 mL/min rate 

An increase of curcumm concentration in the initial solution also resulted in 

larger nanoparticles as shown in Figure 6-3 The result was achieved after seven 

measurements at each data point The standard deviation shows the same sample run 

seven times on 90Plus particle sizer (Brookhaven Instruments, Co) Slightly larger 

sizes of curcumin nanoparticles, as obtained with the light scattering technique (ca 100 

nm) as compared with mean 80 nm size average over thirty particles in the SEM image 
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may be explained by the fact that light scattenng is more sensitive to the admixture of 

larger particles in the sample, which were excluded in the SEM estimations [149] 
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Figure 6-3 Dependence of curcumin particle size on curcumin 
concentration Standard deviation shows the same 
sample run seven times on 90Plus particle sizer 



CHAPTER 7 

DRUG RELEASE 

We use a set of side-by-side diffusion cells (PermeGear, Inc) to measure the 

drug release profile 

The setup is shown in Figure 7-1 We use a 0 1 urn membrane to separate the 

two chambers The joint between the sections was sealed with silicone gel We fill the 

receptor chamber with DI water and fill the donor chamber with the drug sample and 

start timing After a certain time penod we take out all the solution in the receptor 

chamber and refill it with DI water again Each solution that is taken out from the 

receptor chamber is labeled (si, s2, s(n-l)) then measured for drug concentration 

with UV spectrophotometer (Agilent 8453) A standard curve is measured earlier to 

establish the relationship between concentration and absorption, and a linear 

relationship was found At the end of the release test, both solutions from the receptor 

chamber (sn) and the donor chamber (sd) were taken out and measured for 

concentration The release rate was established by accumulating the amount of the drug 

taken out from the receptor at time x 

Total amount of drug =S 1+S2+ +Sn+Sd 

Release rate at time x= (S1+S2 +Sx) / Total amount of drug 

61 



62 

Figure 7-1 Release test side-by-side diffusion cell set up (Scheme 
of side-by-side cells kindly provided by PermeGear, Inc ) 

7 1 Curcumin Release from Nanocapsules 

The drug release profile of the curcumin LbL-nanocolloids with the (PS/BSA)2 

coating was analyzed in a diffusion chamber (sink conditions) (Figure 7-2) 50 % drug 

release from LbL coated nanoparticles was reached in seven hours and 60 % release 

was reached withm ca 20 hours This release is slower than for nano-curcumin powder 

without the LbL shell or the original micromzed curcumin We have to emphasize that 

the main goal of our work is not slowing down of the drug release rate but the 

formulation of stable drug nanocoUoids with injectable particle size (below 300 nm) 

However, a slower release time is useful and is an indirect proof of the shell formation 

providing a diffusion bamer for the particles and slowing down their dissolution 
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Figure 7-2 Release profiles of curcumin in ongmal micropowder 
form, after nanoparticulation and prepared with LbL 
nano-encapsulation (the shell composition (PS/BSA)2) 

The release profile fits the Peppas model M,/Mx = Kt" , where M, is the 

amount of drug released at time t, Mm is the amount of drug released at infinite time, n 

is the exponent charactenstic of the release mechamsm, and K is a constant Detail of 

the fitting can be seen in Appendix C The obtained value for n less than 0 5 indicates 

that the release mechamsm is Fickian diffusion 

7.2 Pachtaxel Release from Nanocapsules 

The release profiles of the onginal pachtaxel powder, pachtaxel nanocoUoids 

with one polycation layer and three polycation/polyamon bilayer coating were analyzed 
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in standard sink conditions The fitting of the release curves were accomplished with 

exponential Peppas' model Withm eight hours, 70 % of onginal pachtaxel powder was 

released (Figure 7-3) 
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Figure 7-3 Release curves for the original micronized powder of 
pachtaxel, uncoated pachtaxel nanoparticles (only one 
PAH layer adsorbed for colloidal stabilization) and 
nano-encapsulated pachtaxel with (PAH/BSA)2 shell 
composition 

Nanoparticulated pachtaxel coated with one polyelectrolyte layer leads to 

slightly faster release due to a smaller particle size in nanoformulation, as compared 

with the micrometer size of the original pachtaxel Pachtaxel nanocoUoids, coated with 

two bilayers of PAH/BSA, showed a lower drug release rate due to the increasing 

thickness of the capsule wall For example, in eight hours, only 40 % of the two layers 
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coated sample was released as compared with 80 % for the one layer coated sample 

The LbL encapsulation technique allows for control of the drug release rate from 

polyelectrolytes-stabihzed nanoparticles by changes in the number of coating layers or 

the shell composition [148] 



CHAPTER 8 

CONCLUSIONS 

Two methods (top-down and bottom-up) of nanoparticle formulation for low 

water-solubility materials were developed and applied for nanoformulation of anti­

cancer drugs curcumin and pachtaxel The resulting drug nanoparticles have a diameter 

of 100-220 nm and are stable in water 

In the first, top-down method, the drug powder was broken up by ultrasound 

through the collapse of microbubbles (with jet fluid and shock waves) By adding 

polycations into the solution, the slightly oxidized negative surface of the newly formed 

particles was recharged positively to a higher surface potential which prevented 

particles from aggregating This approach was proposed earlier, and we applied it to the 

new drugs pachtaxel and curcumin, the resulting nanoformulated drug had diameters of 

ca 200-250 nm 

In this work we pioneered the second bottom-up nanoformulation method The 

drag was dissolved m an organic solvent that is miscible with water (ethanol or acetone) 

and its nucleation was initiated by the gradual decrease in the solubility of the solution 

with addition of aqueous polyelectrolyte The process was assisted by ultrasonication 

Similarly to the first method, the polyelectrolytes coating induced higher surface charge 

on the formed nanoparticles and provides nanocolloid stability This coating was 

extended to achieve multilayer encapsulation through alternate adsorption of oppositely 
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charged synthetic and biodegradable polyelectrolytes (polyallyl amine, sodium 

polystyrenesulfonate, chitosan, bovine serum albumin, protamine sulfate, and alginic 

acid) Unlike the commonly used emulsion methods, our ultrasonication assisted layer-

by-layer nano-encapsulation method allowed for achieving nanoparticles of a much 

smaller size We obtained crystalline nanoparticles with an average size of 80 nm, and 

zeta potential of+30 mV or -50 mV (depending on the number of polyelectrolyte layers 

in the shell), which ensured the stability of the nanocoUoids in water for weeks at a 

concentration of ca 0 2 mg/mL Formation of shells with two bilayers of biocompatible 

polyelectrolytes allowed for slow drug release during ca 20 hours 

The product efficiency of the top-down approach was ca 50 %, which was 

higher than the efficiency of the bottom-up approach (ca 20 %) The bottom-up 

approach leads to increased losses due to the formation of larger particles at a fast 

nucleation rate Larger were removed by centnfugation thus decreasing the yield of the 

nanoparticles final product 

Ultrasound assisted layer-by-layer nano-encapsulation is a promising technique 

to produce stable 1-2 mg/mL concentration nanocoUoids of poor water soluble drugs, 

like pachtaxel, curcumin, and others The particle size in such drag formulation is 

reduced from the initial tens of micrometers m the drag powders to 100-200 nm which 

allow climcal injection Nanoparticle coating with natural polyelectrolytes 

(polysaccharides) has the potential to increase drag circulation time and availability at a 

rumor site Layer-by-layer encapsulation was earned out with biodegradable 

polyelectrolytes protamine sulfate, alginic acid, chitosan and bovine serum albumin 

The drag particle size can be optimized using either top-down or bottom-up sonicated 

LbL-treatment 
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Future work 

The stability of nanocoUoids at a concentration of 2 mg/mL in buffers with 0 1 

M salt concentration needs to be improved Our formulation allowed stable 

nanocoUoids only in solutions with low salt concentrations The free reactive groups of 

biocompatible polyelectrolytes (amine or acidic) at the outermost layer may help to bind 

PEG for longer particle circulation in blood or receptors for targeted drag delivery 

Further process improvement of both top-down and bottom-up techniques can 

be achieved by increasing the somcation power Ultrasonication efficiency depends on 

the shock wave power released on the drag particle surface due to the collapsing of gas 

microbubbles One can choose additives which will increase the number of bubbles and 

decompose without damaging the original drug product Another approach to increase 

somcation power is working under elevated pressure, which may be reached using a 

compressed gas atmosphere New graduate students will work on constructing a high 

gas pressure chamber for ultrasonication 

For drag nanoparticles targeting, we are planning to use a chemically active 

layer (with acidic, amine groups) as the outside LbL coating layer to link antibody to 

target drugs to specific cancer cells 
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To estimate the minimum amount of polyelectrolyte needed for complete 

coverage of nanoparticles we perform the calculation m Table A-1 In this case we 

calculate the PAH needed to complete coat 2 g of pachtaxel which have a rectangular 

sharp and average edge of 300 nm length 

Table A-1 Minimum amount of polyelectrolyte needed for coating 

Assume PTX density= 

PTX weight 

average single PTX size 
average single PTX size nm 
volume of PTX=w/p 
single PTX volume 
number of PTX particle 
single PTX surface 
total surface 
thickness of PAH 
thickness of PAH nm 
volume of PAH 
PAH density 
PAH weight 
PAH weight in mg 

1 5 

2 00E-02 

3 00E-05 
3 00E+02 
1 3333E-02 
2 70E-14 
4 9383E+11 
5 40E-09 
2 6667E+03 
2 00E-07 
2 00E+00 
5 3333E-04 
1 6 
8 5333E-04 
8 5333E-01 

g/cm 

g 

cm 
nm 
cm3 

cm3 

cm 
2 

cm cm 
nm 
cm3 

g/cm 
g 
mg 
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We found that the stability of drag nano colloid was effect by the concentration 

of the colloid In general, we found the lower the concentration the better the stability 

To estimate the average distance between particles at a certain concentration, we prefer 

the calculation in Table B-1 (for sphere sharp) and Table B-2 (for cube sharp) 

Table B-1 Average distance between sphere particles 

Calculate particle as sphere 
Weight of drug in 1ml solution(mg) 
Density of drug (mg/ml) 
Weight of water (mg) 
Concentration (mg/ml) 
Size of particles (nm) 
Size of particles (cm) 
Weight of each particle (mg) 
Number of particles 
Volume of each particle (round) (ml) 
Volume of solution outside a 
Volume of each cell (ml) 
Distantce cm 
Distantce um 

particle(ml) 

Sample 1 
05 

1500 
1000 

05 
200 

0 00002 
6 28E-12 
7 96E+10 
4 19E-15 
1 26E-11 
126E-11 
0 000232 
2 324897 

Sample 2 
2 

1500 
1000 

2 
200 

0 00002 
6 28E-12 
3 18E+11 
4 19E-15 
3 14E-12 
3 15E-12 
0 000146 
1 464593 

Sample 3 
5 

1500 
1000 

5 
200 

0 O0002 
6 28E-12 
7 96E+11 
4 19E-15 
1 26E-12 
1 26E-12 
0 000108 
1 079121 

Table B-2 Average distance between cube particles 

Calculate particle as cube 
Weight of drug in 1ml solution(mg) 
Density of drag (mg/ml) 
Weight of water (mg) 
Concentration (mg/ml) 
Size of particles (nm) 
Size of particles (cm) 
Weight of each particle (mg) 
Number of particles 
Volume of each particle (cube) (ml) 
Volume of solution outside a particle (ml) 
Volum of each cell (ml) 
Distantce cm 
Distantce um 

Sample 1 
05 

1500 
1000 

05 
200 

0 00002 
1 2E-11 

4 17E+10 
8E-15 

2 4E-11 
2 4E-11 

0 000288 
2 884499 

Sample 2 
2 

1500 
1000 

2 
200 

0 00002 
12E-11 

167E+11 
8E-15 
6E-12 

6 01E-12 
0 000182 
1 817121 

Sample 3 
5 

1500 
1000 

5 
200 

0 00002 
1 2E-11 

4 17E+11 
8E-15 

2 4E-12 
2 41E-12 
0 000134 
1 338866 
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To show the result in 3D image we use Matlab 2007 to plot the image The 

program code is shown below 

%nanoparticles size and distance calculation 

%wntten by zhiguo zheng 

%PhD student of Biomedical Engmeenng of Louisiana Tech University% 

clc 

clear all 

%draw 3d sphere radius r nm in s nm cube cell 

[xsp,ysp,zsp] = sphere(20), 

r=200, 

d=1079, 

s=2000, 

xsp=xsp *r, 

ysp=ysp *r, 

zsp=zsp *r, 

for 1 = -s d s, 

forj=-s d s, 

for k=-s d s, 

surface(xsp+i,ysp+j ,zsp+k), 

end 

end, 

end, 

axis equal, 

view([50,20]), 
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The simulation results for 200 nm sphere pachtaxel nanoparticles at concentration of 

0 5 and 5 mg/mL are shown in Figure B-1 

Figure B-1 Simulation for 200 nm sephere sharp pachtaxel 
concentration at 0 5 mg/mL (left) and 5 mg/mL (right) 

%nanoparticles size and distance calculation 

%wntten by zhiguo zheng 

%PhD student of Biomedical Engineering of Louisiana Tech Umversity 

clc, clear all, 

%draw 3d cubes edge length r nm in distance d nm in a s nm cube cell 

x=[0 1 1 0 0 0,1 1 0 0 1 1,1 1 0 0 1 1,0 1 1 0 0 0], 

y=[0 0 1 1 0 0,0 1 1 0 0 0,0 1 1 0 1 1,0 0 1 1 1 1], 

z=[0 0 0 0 0 1,0 0 0 0 0 1,1 1 1 1 0 1,1 1 1 1 0 1], 

r=200, 

d=1339, 

s=3000, 
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x=x *r, 

y=y *r, 

z=z *r, 

for 1 = -s d s, 

forj=-s d s, 

for k--s d s, 

surface(x+i,y+j,z+k), 

end, 

end, 

end, 

axis equal, 

view([35,30]), 

The simulation results for 200 nm cube sharp pachtaxel nanoparticles at concentration 

of 0 5 and 5 mg/mL are shown in Figure B-2 

Figure B-2 Simulation for 200 nm cube sharp pachtaxel 
concentration at 0 5 mg/mL (left) and 5 mg/mL (right) 
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For release curve in Figure 7-2 we use OriginPro 8 1 software to fit the 

expenment data with modmg equation 

In this study, we use Ritger-Peppas' empirical Equation 

Figure C-l shows the fittmg of expenment result using Ritger-Peppas' empirical 

equation The fitting results are shown in Table C-l 

Table C-l Fitting results for the curcumin release profile 

Model 
Equation 
Reduced Chi-Sqr 
Adj R-Square 

Nano curcumin 
Nano curcumin 
Orginal curcumin 
Orginal curcumin 
Curcumin/(PS/BSA)2 

Curcumm/(PS/BSA)2 

Ritger-Peppas 
y = a*x 
3 48E-04 
0 99468 

a 
b 
a 
b 
a 
b 

1 80E-04 
0 99455 
Value 
0 34387 
0 21044 
11 00387 
0 01274 
0 18261 
0 24341 

4 49E-04 
0 99019 
Standard enor 
0 10581 
0 03356 
37 90579 
0 04171 
0 05416 
0 0346 
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Figure C-l Fitting result for curcumin release 

Figure C-2 shows the fitting of experiment result using Ritger-Peppas' empirical 

equation The fittmg results are shown in Table C-2 

Table C-2 Fitting results for the pachtaxel release profile 

Model 
Equation 
Reduced Chi-Sqr 
Adj R-Square 

Nano pachtaxel 
Nano pachtaxel 
Orginal pachtaxel 
Orginal pachtaxel 
Pachtaxel/(PAH/BSA)2 

Pachtaxel/(PAH/BSA)2 

Ritger-Peppas 
Y = a V 
5 35939 
0 93758 

a 
b 
a 
b 
a 
b 

4 71E+00 
0 93513 
Value 
10 72209 
0 33469 
9 46E+00 
0 33125 
11 31214 
0 23387 

2 45E+00 
0 9103 
Standard Error 
1 38742 
0 02507 
1 27E+00 
0 02535 
1 30579 
0 02159 



82 

Nano pachtaxel 
Orginal pachtaxel 
pachtaxel /(PS/BSA)2 

-Fitting curve of nano pachtaxel 
-Fitting curve of orginal pachtaxel 
-Fitting curve of pachtaxel/(PS/BSA)2 
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time (mm) 

400 500 600 

Figure C-2 Fitting result for pachtaxel release 
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