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ABSTRACT

Micro heat transfer induced by Ultrashort-pulsed lasers is an important research
topic in mechanical engineering and material science. In order to apply ultrashort-pulsed
lasers successfully, studying the thermal deformation in double-layered thin films with
imperfect thermal interfacial contact induced by ultrashort-pulsed lasers is important for
preventing thermal damage. For the ultrashort-pulsed laser, the thermal damage is
differen? from that caused by the long-pulsed lasers, and ultrafast cracks occur after

heating.

This dissertation presents a new finite difference method for investigating the
thermal deformation in a 3D gold-chromium thin film with imperfect interfacial thermal
contact exposed to ultrashort-pulsed lasers. The method is obtained based on the
parabolic two-step model and implicit finite difference schemes on a staggered grid. The
method accounts for the coupling effect between lattice temperature and strain rate, as
well as for the hot electron-blast effect in momentum transfer. In the calculations, a
fourth-order compact scheme is employed for evaluating the stress derivatives in the
dynamic equations of motion. The method allows us to avoid non-physical oscillation in
the solution. In particular, the temperature change across an imperfect thermal interfacial
contact can be expressed by the fourth-power law for radiation, which gives nonlinear

temperature distribution around the interface, and we obtain successfully the stress

iti



iv
change across the interface based on the fourth-power law for radiation by an iterative
numerical method.

Numerical results show that when the center part of a top surface was irradiated
by ultrashort-pulsed lasers, there are no non-physical oscillations in the solution, and the
solution is grid independent; hence, the scheme is considered to be stable. The results
also show that the temperature distribution from the top surface discontinuously across
the imperfect thermal interface to the bottom, and the displacement and stress alterates
from a negative value to a positive value at the center along the z direction, and along x
and y directions, indicating that the central part of the upper layer of the thin film
expands during heating. The obtained model and numerical scheme in this dissertation
will provide a theoretical tool for studying thermal deformation in multi-layered metal

thin film exposed to ultrashort-pulsed lasers which have been used in laser process.
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CHAPTER ONE

INTRODUCTION

1.1 General Overview

Ultrashort-pulsed lasers have the pulse duration within the order of sub-
picoseconds to femtoseconds. Such a unique character will make the ultrashort-pulsed
lasers have a great advantage in limiting the undesirable spread of the thermal process
zone in the heated sample [1], [16], and being an ideal candidate for precise thermal
processing of functional nanophase materials [1], [16].

Since ultrashort-pulsed lasers have been widely used in structure monitoring of
thin metal films [2], [3]; laser micromachining [4]; patterning [5]; structural tailoring of
microfilms [6]; and laser synthesis and processing in thin-film deposition [7]; we need to
pay attention to three key factors in order to apply high-energy ultrashort-pulsed lasers
successfully. There are three key factors indicate (1) well characterized pulse width,
intensity, and experimental techniques are required; (2) we need to have reliable and
accurate microscale heat transfer models; and (3) it is very important to prevent thermal
damage.

To date, researchers have developed many models that focus on heat transfer in
the context of ultrashort-pulsed lasers. However, there are only a few mathematical

models for studying thermal deformation induced by ultrashort-pulsed lasers {1], {8], [9],



[10], [11], [12], [13], [14], [15], [16], [17], [18]. In particularly, Tzou et al. [1]
developed a 1D model in a double-layered metal thin film. The model was obtained
using a differential-difference approach. Chen et al. [11] considered a 2D axis-
symmetric cylindrical metal thin film and presented an explicit finite difference scheme
by adding an artificial viscosity term to eliminate numerical oscillations. Dai et al. [8],
[12], [13], [14], [15], [16] developed a kind of finite difference scheme for studying
thermal deformation in 2D and 3D metal thin films exposed to ultrashort-pulsed lasers.
In their schemes, they employed the parabolic or hyperbolic two-step heat transport
equations coupled with implicit finite difference schemes on a staggered grid. Also these
schemes considered the coupling effect between lattice temperature and strain rate, as
well as for the hot-electron blast effect in momentum transfer. In particular, Dai et al.
[11], [15], [16] used a fourth-order compact finite difference scheme for solving
derivatives of stresses in the dynamic equations of motion so that the non-physical
oscillations in 3D cases can be prevented. Recently, Qi and Suh [17], [18] have
presented a 2D model for studying thermal damage in a cylindrical semiconductor thin
film subject to ultrafast laser heating.

In this dissertation, we consider a 3D double-layered metal thin film with
imperfect thermal contact between layers and study thermal deformation in the 3D thin
film exposed to ultrashort-pulsed lasers. The perfect thermal contact means the interface
is smooth, and two metal films are fully attached to each other so that the temperature
and heat flux are continuous across the interface. Conversely, the imperfect thermal
contact will result in the discontinued temperature and heat flux conducting nonlinear

behavior across the interface. It should be pointed out that layered metal thin films are



considered because they are widely used in engineering applications due to the fact that
a single metal layer often cannot satisfy all mechanical, thermal and electronic
requirements. Because of multilayers, the imperfect thermal contact between layers may
occur sometimes and, hence, the stress and displacement caused by the hot-electron-blast
effect across the interface between layers may be changed sharply or discontinuely,
resulting in possible thermal damage. As we know, the temperature change across an
imperfect thermal contact interface can be expressed by the fourth-power law for
radiation [19], [20], [21], which gives a nonlinear temperature distribution around the
interface. However, finding a mathematical model governing stress and displacement
changes across such an interface can be challenging. Most existing models for stress
change [22], [23], [24], [25], [26], [27], [28] across the interface are complicated when
applied to the 3D metal thin film exposed to ultrashort-pulsed lasers. Dai and his
colleagues [14] considered a 2D double-layered metal thin film case and presented a
formula for stress change across the interface, which was obtained based on the theory of
elasticity [29], [30]. However, when applied to the present 3D case, the formula
becomes very complex.

The motivation of my dissertation is to extend previous research on 3D double-
layered thin film with perfect thermal interfacial contact case to the imperfect thermal
interfacial contact case. In this case, we avoid seeking a mathematical model for stress
change across the interface, and obtain the stress change across the interface based on

only the fourth-power law for radiation and using an iterative numerical method.



1.2 Research Objective

The objective of my dissertation was to develop a numerical method for

studying thermal deformation in 3D double-layered thin films with imperfect interfacial

thermal contact exposed to ultrashort-pulsed lasers. This method was based on the

dynamic equations of motion coupled with two-step parabolic heat transport equations.

Step 1.

Step 2.

Step 3.

To achieve this objective, the steps below were followed:

Considered a 3D double-layered thin film structure in Cartesian coordinates and
define its geometry. Propose the energy equations and dynamic equations of
motion and initial and boundary conditions as the governing equations for
describing thermal deformation in the double-layered thin film induced by
ultrashort-pulsed lasers, where the interface between layers have imperfect
thermal contact.

Introduced three velocity components in X, y, z directions into the model, and
rewrite the dynamic equations of motion to simplify the calculation and avoid
numerical oscillations.

Constructed a 3D staggered grid and design a finite difference scheme based on

the staggered grid.

Step 4. Employed a fourth-order compact finite difference scheme for evaluating stress

derivatives and substitute obtained values of these stress derivatives into the
dynamic equations of motion. Hence the third-order derivatives of stresses and
shear stresses raised by the numerical method are eliminated to prevent non-

physical oscillations in the solutions.



Step 5. Applied the fourth-power law for radiation and use an iterative numerical
method to obtain the stress change across the interface which has an imperfectly
thermal interfacial contact induced by the ultrashort-pulsed lasers.

Step 6. Employed the developed numerical method to obtain the values of electron and
lattice temperature, normal and shear stresses, normal strains and shear strains,
displacements and velocities in X, y and z directions, respectively.

Step 7. Tested the numerical method, check the grid independence of the finite

difference scheme by using different meshes and analyze the solutions.

1.3 Organization

Chapter One gives a general description of the research objectives in this
dissertation.

Chapter Two introduces the main literature regarding the heat transfer in thin
films, particular models that represent the thermal deformation, the process of
microscale heat transfer of phonon-electron interaction model and the parabolic two-step
model for micro thin films, as well as previous works on heat transfer in thin films.

Chapter Three sets up the heat transfer model for a 3D double-layered thin film
with imperfect interfacial thermal contact exposed to ultrashort-pulsed lasers. Dynamic
equations of motion and parabolic two-step heat conduction equations are considered to
be the governing equations for describing thermal deformation in the 3D thin films
induced by ultrashort-pulsed lasers heating on the center of the surface.

Chapter Four gives the numerical method used in this research for solving the

governing equations set up in Chapter Three.



Chapter Five tests the mathematical model and numerical method in a 3D
double-layered thin film with imperfect interfacial thermal contact exposed to ultrashort-
pulsed lasers. Based on the obtained temperature distributions, stresses, strains and
displacements will be calculated.

Finally, Chapter Six summarizes the dissertation research and suggests possible

future research works.



CHAPTER TWO

BACKGROUND AND PREVIOUS WORK

Chapter Two introduces the main literature regarding the heat transfer in thin
films, particular models that represent the thermal deformation, which is the process of
microscale heat transfer of phonon-electron interaction model and the parabolic two-step

model for micro thin films, as well as previous works on heat transfer in thin films.

2.1 Microscale Heat Transfer Model

2.1.1 Macroscopic Heat Transfer

This section cites results from some previous literatures [31], [32], [33]. In
thermodynamics, heat is defined as energy transfer due to temperature gradients or
differences. Heat transfer is the process of energy transition from carriers with high
temperature to carriers with low temperature. A microscopic view in metals, electrons
and phonons are the main energy carriers. There are three modes of heat transfer:
conduction, convection and radiation. In this dissertation, we will consider heat transfer
on 3D double-layered thin films with imperfect thermal interfacial contact between
layers exposed to ultrashort-pulsed lasers described as radiation mode; whereas, heat
transfer across the double-layered metal thin films is called conduction mode.

The difference between conduction, convection and radiation is important to

understand the heat transfer. Conduction is by molecules that travel a very short distance



before colliding with another molecule and exchanging energy and these energy carriers
have a shorter mean free path. However, radiation is by photons, which travel almost
unimpeded through the air from one surface to another, such that energy carriers have a
long, mean free path. Convection is defined as the transport of energy by bulk motion of
a medium. Our research will focus on heat transfer by phonon-electron interaction in
double-layered metallic films.

Macro heat conduction describes macroscopic behavior of conduction of thermal
energy. In the classical theory of heat transfer, the main phenomenological law that
governs heat conduction is Fourier’s law. It is a constitutive equation that depicts the
way in which cause varies with effect.

Fourier’s law of heat conduction,

g=-kVT, 2.1
where k is the thermal conductivity of the material, dictates that the heat flux vector (g)

and the temperature gradient (VT ) across a material volume must occur at the same

time .
The energy equation derived from the first law of thermodynamics is

oT

_V.51=CPE_

Q, 2.2)

where C,, is the volumetric heat capacity and Q is the heat source. Substituting Equation

(2.1) into Equation (2.2), we can obtain the traditional heat diffusion equation:

C, % =V.(kVT)+Q. (2.3)

Equation (2.3) is often referred to as a parabolic equation, and as a result, any

temperature disturbance will propagate at an infinite speed.



Fourier’s law breaks down at temperatures near absolute zero and breaks down
further when the pulsed duration becomes extremely small, even on the order of
picoseconds or femtoseconds. A typical case occurs in the ultrashort-pulsed laser heating
in the thermal processing of materials [34], [35]. For very short laser-pulsed heating, the
physical dimension in microscale heat transfer is of the same order of magnitude as the
electron free path, the response time is of this same magnitude. This fact indicates that
the temperature gradient is not descriptive for a thin film of the same thickness as the

mean free path [36]. Specific to microscale heat transfer, Fourier’s law does not
accurately predict the transient temperature during microscale (< 10725 ) laser heating of

thin metal films (< 107"°m ) [37], [38], [39].

2.1.2 Two-Step Heat Transfer Model

In microscale, the phonon-electron interaction model was proposed to describe a
two-step process for energy transport. For considering the phonon-electron interaction,
the conventional model should be revised to fit the heat transfer theories in microscale.
For those electrons with much smaller heat capacity than metal lattice, the heating
system involves excitation of the electrons and heating of the metal lattice through
phonon-electron interaction in short times [36]. The phonon-electron interaction model
was expected to exactly describe this two primary phases for energy transport. The first
phase describes the deposition of energy on electrons, and the second describes the
transfer of the energy from the electrons to the lattice.

Parabolic two-step model for heat transfer can be expressed as follows:

0

T
c.r)2:

=V-(VT)-G(T,~-T)+Q, 24
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oT,
q@¥;=6mrﬂy @2.5)

Here, C,(T,) is the electron heat capacity, k is the thermal conductivity, G is the
electron-lattice coupling factor, C, (T,) is the lattice heat capacity, and subscripts e and

! represent the electron and metal lattice, respectively.

Equation (2.4) represents the first step, which describes the deposition of energy
heating on electrons, and Equation (2.5) represents the second step, which involves the
transfer of the energy from electrons to the lattice. Here, the effect of heat conduction
through the metal lattice is not considered at this time. In this dissertation, Equation (2.4)

is used for calculating the unknown electron-gas temperature (7, ), and Equation (2.5) is
used for calculating the unknown metal-lattice temperature (7).

Tzou et al. pointed out for an electron gas temperature lower than the Fermi
temperature, of the order of 10* K, the electron heat capacity (C, ) is proportional to the
electron temperature [36]. This argument makes the equation give nonlinear solutions.
Therefore, the electron heat capacity C, can be obtained from Barron’s research [40]:

C.=7.T., 26)
where 7, is known as the electron specific heat coefficient and can be obtained it from

experiments.
The phonon-electron coupling factor describes the energy exchange between

phonons and electrons [41]:

2 2
G =" porT s> T, 2.7)
6 T ¢ !

ee
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where m, is the electron mass, n, is the number density of electrons per unit volume,

and v, is the speed of sound. It is obtained as

1
o i
v, =ﬁ(6ﬂ2na) 3T, (2.8)

where the quantity /4 is Planck’s constant, k£ is the Boltzmann constant, », is the atomic
number density per unit volume, and 7}, represents the Debye temperature. The electron
temperature (7)) is much higher than the lattice temperature (7;) in the early time
response. Then the lattice temperature ( 7,) increases, and as a result, the electron
temperature (7)) discreases due to the electron-lattice effect. The condition 7, >>7; in

Equation (2.6) for the applicability of G is thus valid in the fast-transient process of
electron-phonon dynamics. Within the limits of Wiedemann-Frenz’s law, which states
that for metals at moderate temperatures ( 7; >0487), ), the ratio of the thermal
conductivity to the electrical conductivity is proportional to the temperature, and the
constant of proportionality is independent of particular metal, the electron thermal

conductivity can be expressed as [41]

2 2
T
f=T R fee nkzl, : (2.9)
3m,
or just set simply m,,
2 2
, Tkl . (2.10)
3k

e

We substitute Equation (2.10) into Equation (2.7) for the electron mass, and then we can

calculate G as
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_ ' (nvk )
180

G (2.11)

This electron-lattice coupling factor is decided by the thermal conductivity (k) and the
number density (#,) of the electron gas. From Tzou’s research, the electron-lattice
coupling factor does not show a strong dependence upon temperature and is not affected
by relaxation time [36].

In order to calculate the value of G, the number density (#,) of the electron gas is

a key quantity. Qiu and Tien assumed one free electron per atom for noble metals and
employed the s-band approximation for the valence electrons in transition metals [42].
Therefore, the value for the number density of the electron gas is chosen as a fraction of
the valence electrons. The phonon-electron coupling factor is calculated, and these

experimentally obtained values are listed in Table 2.1 [44] for comparison.

Table 2.1 Phonon-electron coupling factor G for some noble and transition metals

Metal Calculated, x 101 W/m3K Measured, x 10'® W/m3K
Cu 14 48+ 0.7 [Brorsgn 1990]
10 [Elsayed-Ali 1987]
Ag 3.1 2.8 [Groeneveld 1990]
Au 2.6 2.8 % 0.5 [Brorson 1990]
Cr 45 (ne/n, = 0.5) 42 + 5 [Brorson 1990]
W 27 (ng/n, = 1.0) 26 + 3 [Brorson 1990]
\% 648 (ne/n, = 2.0) 523 4 37 [Brorson 1990]
Nb 138 (ng/n, = 2.0) - 387 £ 36 [Brorson 1990]
Pb 62 12.4% 1.4 [Brorson 1990]
Ti 202 (ne/n, = 1.0) 185 + 16 [Brorson 1990]




I3

Equation (2.4) is governed by diffusion in the electron gas and heat is transferred
to the lattice in a lumped capacity sense through the coupling factor, G. In other words,
the rate of energy increase in the metal lattice is proportional to the temperature
difference between the metal lattice and the electrons. By eliminating the electron gas

temperature, 7,, from Equation (2.4) and Equation (2.5) for constant thermal properties,

one can show that:

Aon, 197,

)
v + Ze O (vrr), 2.12
a, ot C% or? ! ( 1) ( )

C} ot
where «, is the thermal diffusivity of the electron gas and «, is the equivalent thermal

diffusivity represented by:

: (2.13)

(2.14)

However, the author tried to simplify the discussion and ease the numerical analysis, this
single equation form is seldom utilized. In this work, Equation (2.4) and Equation (2.5)
are used.

Researchers determined the parabolic two-step model to be a good estimate [42].
To compare experimental results with a numerical model, the normalized temperature
change in the electron gas is identical to the normalized reflectivity change on the film
surface:

AR AT,
(AR)max (ATE )max |

(2.15)
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where R denotes the reflectivity. The left side of Equation (2.15) can be measured by the
front-surface-pump and back-surface-probe technique [36]. The right hand side of
Equation (2.15) represents the solution to the numerical model for estimating heat
propagation.

Figure 2.1 shows the resulting applicability of the parabolic two step model. The
predicted temperature change at the surface of a thin gold film is compared with the

experimental data collected [36].

1.8 }a
oshl & % L=0.1um :
= I} - Darabolic two-step 5
'8 osbt expenment, Brorson (1987)
£ % a O experiment, Qui et al {1984) |
IR
§a§‘ 06F Ao
5 %,
323; 5111 Q%
T o Ry
Te &
g sl !
fr 03 & QQQ
i< | 02 * 2840
x;: i ‘QQ’“‘M{%@@QQQ
9 _Jen e
b Y I T Y 15 20 s
| time (ps}
B RT———1

Figure 2.1 Normalized temperature change (reflectivity change) in gold film predicted
by dual-phase-lag model.
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2.2 Previous Models on Thermal Deformation in Thin Film

2.2.1 Two-Dimensional Parabolic Single Layered Heat Transfer Model

Dai et al. in 2006 developed a mathematical model for studying thermal
deformation in a 2D single-layered thin film exposed to ultrashort-pulsed lasers based on
parabolic two-step heat transfer equations [13], [14]. The 2D single-layered metal thin

film structure is shown in Figure 2.2.

Laser
Metal Film
‘ . y4 | .
/ / A o
/// / oL
y
1.0um
X
v

Figure 2.2 Configuration of a metal thin film exposed to ultrashort-pulsed lasers.
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The governing equations for studying thermal deformation can be expressed as:

(1) Dynamic Equations of Motion [12], [43], [44], [45]

2 0
pot 00 % gnr 9L
ot ox oy ox

2y 0 oo
pdv_ 9% 00, +2ATe%y7:e—,

o’ Ox Oy
where

o, = Me, +&,)+2ue, - BA+2m)ar (T, ~Ty),
o,=Me, +e,)+2ue, —~(BA+2w)a (T, - T),

O-xy = /'lgxy >

(2) Energy Equations [42], [45], [46]

o, _ 2o a),o or,
1) 5= ax[ke(n,f;) e+ @[ke(Te,T,) ay]
-G(T,-T)+Q,

C, %Ztl =G(T,-T)-CA+2w), T, —gt—(ex +£,),

where the heat source is given by

2 2
_ t -2t
0=0947 "R exp —i—(l] —2.77[ ") :
£,x, X, \Y, [

2.16)

(2.17)

(2.18)
(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)

(2.25)
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where,C,(T,)=C,, (%J ,and k,(T,,T)) =k, (%] . Equation (2.23) and Equation (2.24)

0 )
are often referred to as parabolic two-step heat transport equations.

The boundary conditions are assumed to be stress free and thermally insulated:

c,=0,0,=0,at x=0,L,, (2.26)

o,=0,0,=0,at y=0,L,, (2.27
8]} =O,—a—{i=0. (2.28)
on on

The initial conditions are assumed to be
T,=T,=T),u=v=0,
and u, =v, =0,at r=0. (2.29)

Figures and discussions for the 2D single layer model are given in [14].

AT,
Figure 2.3 shows the change in electron temperature |i(—-——e——:| at x =0 pum and

AT,).

y =0 pm. The maximum temperature rise of 7, (i.e. (ATe )max ) is about 3791 K.
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Figure 2.3 Change in electron temperature at x =0 and y =0 versus time for various

meshes (80x 40, 160 x 80, and 300x150).

Figure 2.4 shows the displacement (u) at x = %Ax, and y = Ay versus time. It can

be seen from both figures that the solutions are convergent as the mesh is getting finer.
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Figure 2.4 Displacement (u) at x = EAx and y = Ay versus time for various meshes

(80x 40, 160x80, and 300x150).

Figure 2.5 shows comparison of the present method with Chen et al.’s method in

[11] with regard to the normal stress (o,) at y = Ay at ¢t = 10 ps. There is no non-

physical oscillation in present method, but it still exists in Chen et al.’s method.
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— - — - - Present method
Chen' s method [Chen 20024}

0 Y S0 T IS TG N Y T Y O
0 0.025 0.05 0.075 (O]

X (pun)

Figure 2.5 Comparison of the present method with Chen et al.’s method in [3] with
regard to the normal stress (o, ) at y = Ay att=10 ps.

2.2.2 Two-Dimensional Parabolic Double Layered Heat Transfer Model

In 2008, Dai et al. extended their previous research and developed a
mathematical model for studying thermal deformation in a 2D double-layered thin film
exposed to ultrashort-pulsed lasers [13]. The 2D double-layered metal thin film

structure is shown in Figure 2.6.
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Laser
Metal Film

»

)
17,71

Metal Film

A

Figure 2.6 Configuration of a double-layered thin metal film exposed to ultrashort-
pulsed lasers.
The governing equations for studying thermal deformation in a thin film are
expressed as follows:

(1) Dynamic equations of motion [1], [9], [13], [43], [47]:

2. (m) m  pgt™ )

o QU 007 00 g I " (2.30)
ot ox oy Ox
2,m g™ gotm™ o

(m) 0 V2 - L Yy 2A(m)T(’") aT s (231)
ot Ox %y

where

o™ = A (e 4 £ )+ 24 Me™ — (3™ 4 247 ™I - T,),  (232)
ol = A (e 160 )+ 2 el - (A7 24" (1 -, @39)

ol =pu"yP, (2.34)
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)
o _ ou” m _ o™
g =——, &, =
Ox %y

2

— au('n) av(M)
7xy - +
oy ox

(2.35)

Here, m = 1, 2, denotes layer 1 and layer 2, respectively; #™ is the displacement in the

(m)

thickness direction (x - direction) and v*™ is the displacement in the length direction (y-

(m)

X

(m)

direction); £," and 8)(,'”) are the normal strains in x and y directions, respectively; y.;

(m)

X

is the shear strain; o and o{" are the normal stresses in x and y directions,

respectively; o is the shear stress; 7" and 7, are electron and lattice temperatures,

respectively; 7, is initial temperature; A = gm) _2Z e [48] where A™ is Lame
p 0 3/1

constant, K () is bulk modulus, and ,u('”) is shear modulus; a,f,’") is thermal expansion

coefficient.

(2) Energy equations [1], [9], [13], [43], [47]:

{m) (m)
c.aym_ O\ .1 )m L
ox ox

ot
(m) (2.36)
0 or."
+— (ke Te’T )(m) _E__ji_G(m) Te(m) _T(m) +Q,
6)1[ ( l) ay ( / )
arm . . ) s
Cl(m) ai__t = G(m)(Te( )_TI( ))_ (3/1( )'*'2#( )})é )_a_t(gx +8y)> 2.37)

where the heat source is given by

2 2
_ -2t
0 =094 "% exp ——x——(l) - 2.77( 4 ) : (2.38)

pxs K
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(m)
Here, (C,(T, ))('") =C 5;") %—— is the electron heat capacity; (k, (Te,T,))(m) is the

0
electron thermal conductivity; G is the electron-lattice coupling factor; C,('") is the
lattice heat capacities; Q is the energy absorption rate; J is the laser fluence; R is the
surface reflectivity; ¢, is the laser pulse duration; x, is the optical penetration depth, and
v, is the spatial profile parameter.

(3) Initial and Boundary Conditions:

The boundary conditions are assumed to be

0')(‘1) =0, O'S,) =0, atx=0, and

c@=0, o¥=0, atx=L,, (2.39)

Xy

ag):O, O'g,)=0, at y =0, and

c”=0, oP=0, aty=°L, (2.40)
or™ or™
‘=0, —=0, 2.41
o i 241

where 7 is the unit outward normal vector on the boundary. Here, insulated boundaries
are imposed due to the assumption that there are no heat losses from the film surfaces in
the short time response.

The initial conditions are assumed to be

T — 70 T, (2.42)
u™ =y =, (2.43)
u™ =y =, (2.44)

at t=0,wherem=1, 2.
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(4) Interfacial conditions:

There are two cases at the interface of the double-layered thin film. One is
perfect thermal contact at interface, which is a simple one. The other is imperfect
thermal contact at interface. Nonlinear interfacial condition for temperature is considered.
The interfacial conditions for stress, strain, and displacement are derived.

Case 1: Perfectly thermal contact at interface

The perfect contact interfacial conditions are assumed to be, at x = L, /2,
4V = u(2)’ yO — V(Z)’ (2.45)

c.'' =0", o, =0_", (2.46)

W ()
0 7@, 0L 0L 2.47)
Ox Ox
Case 2: Imperfectly thermal contact at interface

The nonlinear interfacial condition for 7, can be written as follows [49], [50],

[51]:

® 2)
T T ooy o)) 1010, s

e

where ¢ =5.669 x10™® W/m’K* is Stefan-Boltzmann constant. Once T, is obtained, 7,
at interface can be obtained based on Equation (2.37).

To obtain the interfacial conditions for stress and displacement, Wang first

assumed that shear stresses are equal at interface,

ol) =0l (2.49)
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From Equations (2.34) and (2.35), we obtain that 1"y{) = ,®)®) and hence

M 5,0 @) 5,0 ) @)
ﬂ(”[a” +§v_}=#(2)[5u_+6v ) It is noted that if x®2 = ;@ onq
d x o  ox oy oy

0 oM ) ov®

PO av(l)J (2)((3“(2) v

- = , then £ Z—+ + is satisfied. For the
H Ox a X . oy Ox oy Ox
) @
purpose of simple computation later on, we assume that ,u()?—u—z ,u(z) agy and
0] (2)
,u(‘)% = ﬂ(z)_@l’__. These equations lead to assume the interfacial condition for
X

displacements to be, for simplicity,
Iu(l)u(l) =,u(2)u(2) and y(])v(l) - /u(Z)v(2). (2.50)

ou 0 (2) ou )

Based on this assumption, Wang et al. obtained that u(‘) e =u 5 and
X X

hence #Vel) = 4@ from Eq. (2.39).

: m 1 m m m m
Since & )22;7"7[(1_ Pl 1+ 7)™+ (T - 1,) 23], [50], where
E is Young’s modulus and y is Poisson ratio, Wang et al. substituted it into

ool _ e ou®
Ox ox

and obtained

W e sa-7)
()

Eall=r" (1 + 7)o |+ iPad(12 -1,)

@.51)
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Again, for simplicity, it was assumed that y(l)((——ém)o-—"—) = y(z)[(l——%—z))g—"—
I M), 0,070 1 @)y @@ (7@
and —m( y(1+7)o)+ 1B - 1, )= Biy( Y(1+7)0®)+ D1 - 1)
— 32 )50 )
Since the interest was only in ,u(l) [(lﬁ}/l))&_] (2)(( )0' ) hence Wang et al.

E®

have interfacial condition to be

M"(B(%) = y‘”(%%} : (2.52)
From above, we can see Wang et al. considered a 2D double-layered metal thin
film case and presented a formula for stress change across the interface, which was
obtained based on the theory of elasticity [30], [48]. However, when applied to the
present 3D case, the formula becomes very complex. We do not have enough equations
to find out the stress across the interface. In this study, we avoid seeking a mathematical
model for stress change across the interface and obtain successfully the stress change
across the interface based on only the fourth-power law for radiation and iterative
numerical method.
Figures and discussions for the 2D double layer model are given in [14]:

Case 1: Perfectly thermal contact at interface

Figure 2.7 shows the change in electron temperature [(—ATL-—] at x =0pum and

Te )max

y=0pum with laser fluence J=500J/m*. The maximum temperature rise of T, (i.e.

(AT,).. ) is about 3790 K.
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Figure 2.7 Change in electron temperature at x =0 pm and y =0 pm versus time for
various meshes (80x 40, 160x 80, 300x150) with laser fluence J=500J/m’.

Figure 2.8 shows the displacement (u) at x = %Ax, and y = Ay versus time. It can

be seen from both figures that the solution is grid independence and hence the scheme is

considered to be stable.
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Figure 2.8 Displacement (u) at x = —;—Ax and y = Ay with laser fluuence of J=500J /m?
versus time for various meshes (80x 40,160x80,300x150).

Case 2: Imperfectly thermal contact at interface

Figure 2.9 shows the temperature change in electron temperature [(—ATL{‘ at

€ /m

x=0pmand y =0 pm with laser J=500J/m?. The maximum temperature rise of 7, (i.c.,

(AT,). ) is about 5823 K.
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Figure 2.9 Change in electron temperature at x =0 um and y =0 pm versus time for

various meshes (80x40,160x80,300x150).

Figure 2.10 shows the displacement (u) at x = —;—Ax, and y = Ay versus time. It

can be seen from both figures that the solution is grid independence and, hence, the

scheme is considered to be stable.
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Figure 2.10 Displacement () at x = %Ax and y = Ay with laser J=500J/m? versus time
for various meshes (80x40,160x80,300x150).

Figures 2.11 and 2.12 show comparisons of electron temperature and lattice

temperature, respectively, along x at y = 0 um between the perfect thermal contact and

the imperfect thermal contact at interface with three different laser fluences (J=500J/m?,
1000J/m? and 2000J/m?) at different times (a) 7 = 0.25 ps, (b) t= 0.5 ps, (c) t =1 ps, (d) ¢
= 10 ps and (e) £ = 20 ps. It can be seen that the electron temperature rises to its
maximum at the beginning and then decreases while the lattice temperature rises
gradually with time. Figure 2.11 shows clearly that there is a sharp discontinuity of
electron temperature at the interface when imperfectly thermal contact exists between

two bonded thin layers. Similar temperature discontinuity is observed at the interface for

lattice temperature in Figure 2.12. These results indicate that imperfect thermal contact
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at the interface provides a barrier to thermal energy diffusion across the interface. These
two figures also show that electron temperature and lattice temperature are uniform
throughout the chromium layer and uniform throughout the gold layer after a long period.
The uniform electron and lattice temperatures are probably due to increased rate of

collision between electrons and phonons in the gold layer as electron energy diffusion is

inhibited at the interface.
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Figure 2.11 Comparison of electron temperature at y = 0 um at different times between
perfect and imperfect contact at interface with three different laser fluences.
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Figure 2.12 Comparison of lattice temperature at y = 0 um at different times between
perfect and imperfect contact at interface with three different laser fluences.
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2.2.3 Three-Dimensional Parabolic Single Layvered Heat Transfer Model

In 2008, Dai et al. developed a mathematical model for studying thermal
deformation in a 3D single-layered thin film exposed to ultrashort-pulsed lasers based on
parabolic two-step heat transfer equations [8], [16]. The 3D single-layered methal thin

film structure is shown in Figure 2.13.

Ultrashort-pulsed lasers

Figure 2.13 A 3D thin film with the dimension of 100pm x 100pmx 0.1pm,
irradiated by ultrashort-pulsed lasers.

(1) Dynamic Equations of Motion [9], [12], [45], [46]

2 o
pa ” = 00, , 9% , 90, +2AT, o, , (2.53)
o x oy oz ox
2 oo, 0
p 2 00y 00y 0% onr, O, 2.54)
o ox oy oz oy
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2 0
pa L 00, , 99 , 99, +2AT, o, (2.55)
ot ox Oy Oz Oz
where
o, =Ale, +e,+¢& )+ 2us, -3 +2u)a, (T, - T,), (2.56)
o, =Ale, +e, +e )+ 2ue, - 3A+2u)a, (T, - T,), (2.57)
o, =Ale, +e, +e, )+ 2us, -BA+2u)e, (T, - T,), (2.58)
and
O-xy = y}/xy>o-xz = :u}/xz ’O-yz = lu},yz’ (259)
.s'x:?—%,sy:@,ez:?z, (2.60)
Ox Oy 0z
ou ov ou ow ov ow
yxy:-5y—+5x—,yxz:£+5x—,yyz=5+—a_y—’ (261)
(2) Energy Equations [9], [12], [46], [52]
ety e = 2k 1) G o 2 ) B |+ 2 1) |
o ox Ox | Oy oy | oz 0z (2.62)
~G(T,-T,)+0,
o7, 0
Cl—at_zG(Te_TI)+(3/1+21u)aTT05(gx+gy+8z)’ (263)

where the heat source is considered to be a Gaussian distribution and is given by [36]:

- —-x.) —v.)? t-2t
Q(x,y,z,t)=0.94J1t ;exp[—-;——(x %) ;(y Yo) —2.77(t—")2], (2.64)

P $ p

here, C,(T,)= Ceo[—;i) is the electron heat capacity, k,(7.,7,)= ko(%] is the thermal

0 !

conductivity.
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The boundary conditions are assumed to be stress free and thermally insulated

[91, [53], [54]:

c,=0, 0,=0, 6,=0,atx=0,L, (2.65)

5,=0, ©,=0, 0, =0aty=0,L, (2.66)

0,=0, 6,=0, 6, =0atz=0,L, (2.67)
o _o, iy, (2.68)
on on

The initial conditions are assumed to be:
T,=7,=T,, u=v=w=0, y,=v,=w,=0, at t=0. (2.69)
Figures and discussions for the 3D single layer model:
Figure 2.14a shows the change in electron temperature ( AT, /(AT,),,, ) at the

center (X, =30 ym, y_... =50 uym and z =0 pum) with laser fluences J = 500 J/m?.

The maximum temperature rise of T, (i.e., (AT,),,, ) is about 3755.7 K, which is close
to around 3800 K obtained in [55]. Figure 2.14b shows the displacement (w)at the

center (x 0) versus time. It can be seen from both figures that the solution is

center? y center ?

grid independence and hence the scheme is considered to be stable.
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Figure 2.14 Change in electron temperature and displacements (w) at the center of top
surface versus time for various grids (20x 20x 40, 20x 20x 80, 20x 20x 100) and laser
fluence J of 500J/m>.
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2.2.4 Three-Dimensional Parabolic Double L.avered Heat Transfer Model

In 2008, Dai et al. future developed a mathematical model for studying thermal
deformation in a 3D double-layered thin film exposed to ultrashort-pulsed lasers based

on parabolic two-step heat transfer equations [8], [16], as shown in Figure 2.15.

Ultrashort-pulsed lasers

Figure 2.15 A 3D double-layered thin film irradiated by ultrashort-pulsed lasers.

The governing equations for studying thermal deformation in the thin film
induced by ultrashort-pulsed lasers can be expressed as follows:

(1) Dynamic Equations of Motion [9], [12], [45], [46]

2 d
p 0 s 09, 9% , 9% +2AT, o, , (2.70)
ot Ox Oy 0z Ox
2, @ do, 0
poy 0y 09 9% onr e, @.71)
o & oy oz oy
o’w oo, 00, 0 o7,

p—— =+ L+ Gz+2ATe
ot Ox oy 0z 0z

: (2.72)
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where
o, =Me, +e, v, )+ 2us, - (324 +2u)e, (T, - T,), (2.73)
o, =Ae, +&,+¢&,)+2pe, ~(BA+2pu)a, (T, - T,), (2.74)
o, =Ale, +&, +¢& )+ 2us, —(3A+2u)a, (T, - T,), (2.75)
and
Oy THY x5O T HY 330, = 1Y s (2.76)

gx=95‘-,gy=@,gz=%, Q2.77)
Ox oy 0z

Ou Ov ou ow ov ow
}/x =_+—_>}/xz=—+—’}/z=—+-—_' (2.78)
Yooy ox oz ox '” oz oy

(2) Energy Equations [9], [12], [46], [52]

oT 0 oT 0 oT. 0 oT
C.(T ¢ =—I| kAL, T,)) == |+—| kAT, T,)— |+ —| £ (T,,T,)—=
~-G(T,-T)+0,
C —aT’ =G(T, -1, A+2 T 0 2.80
o (T, -T)+(BA+2u)a, 05(8x+€y+gz)’ (2.80)

where the heat source is considered to be a Gaussian distribution and is given by [36]:

2
- ~-x,)’ - ¥,)* t—2t
Q(x,y,z,t)=0.94J1t(fexp[—%—(x *) +(r= ) —2.77( t "}], 2.81)

2
p s p

here, C, (Te)=C80(%) is the electron heat capacity, ke(Te,T,)z k(,(%;

J is the thermal
0 !
conductivity,

The boundary conditions are assumed to be stress free and thermally insulated

[91, [53], [54]:
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c,=0, 0,=0,0,=0,atx=0,L, (2.82)
0,=0, o0,=0, 0,=0,at y=0,L, (2.83)
c,=0, o0,=0,0,=0,atz=0,L, (2.84)
oT, o7,
£=0, —L=0. 2.85
on on (285

The interfacial conditions are assumed to be perfect thermal contact at z = _in

(the continuity of temperature and heat flux across the interface),

uV = u(Z),v(l) = v(2),w(1) - W(2), (2.862)
(O ) R ¢ R ¢.) S () S )
o, =0,",0,=0,,0,=0,, (2.86b)
ar” or>
1 _ 2 1 - 2
T =T kO e = f® e, (2.86¢)
Oz Oz

The initial conditions are assumed to be:
T,=T,=T,, u=v=w=0, y,=v,=w, =0, atr=0. (2.87)
Figures and discussions for the 3D single layer model:

Figure 2.16a shows the changes in electron temperature ( AT, /(AT,) at

max )

the center (x,,,,, =50 pm , y_,., =50 pum, and z = 0 um) of the thin film with a laser

fluence of J =500 J/m®. The maximum temperature rise of T, (i.e., (AT,)_. ) is about

3765 K, which is close to the 3727 K obtained in [55]. From Figure 2.16b, the negative
value of displacement (w)indicates that the thin film at the center (x,,.., Vomers 0) 1S

expanding along the negative z direction. It can be seen from both figures that the

solutions are convergent as the mesh is getting finer.
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Figures 2.17 shows electron temperature of the double-layered thin film along z

direction at (x ) with three different laser fluences (J =500 J/m%, 1000 J/m? and

center> Y center
2000 J/m?) at different times (a) = 0.25 ps, (b) t = 0.5 ps, (c) t =10 ps, and (d) ¢ = 20 ps,
respectively. It can be seen that the electron temperature is in maximum at ¢ = 0.25 ps,
then it is decays with time and it is almost uniform at # = 20 ps along z direction.

Figures 2.18 shows lattice temperature of the double-layered thin film along z

direction at (x ) with three different laser fluences (J =500 J/m?, 1000 J/m? and

center> Y center
2000 J/m?) at different times (a) £ = 0.25 ps, (b) = 0.5 ps, (c) £ =10 ps, and (d) £ = 20 ps,
respectively. The lattice temperature increases gradually with time in both gold and
chromium layers. Since the conductivity of chromium is bigger than that of gold, the
lattice temperature increases drastically across the interface.

Figure 2.19 shows the displacement (w) of the thin film along z at
(X comers Veemser ) @t different times (a) £ =5 ps, (b) =10 ps, (¢) t = 15 ps, and (d) £ = 20 ps
with a mesh of 20x20x80and three different laser fluences (J =500 J/m?, 1000 J/m?
and 2000 J/m?). From this figure, one may see the film is expanding. At # =10 ps and ¢ =
20 ps, the displacement shows a clear alteration across the interface, implying that both
layers push each other.

Figure 2.20 shows the normal stress o, along z at (x ) at different

center > y center
times (a) t = 5 ps, (b) £ = 10 ps, (¢c) t = 15 ps, and (d) ¢ = 20 ps with a mesh of
20x20x 80 and three different laser fluences (J =500 J/m?, 1000 J/m? and 2000 J/m?). It

can be seen that o, is smooth and does not appear to have local oscillations.
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Figure 2.16 (a) Change in electron temperature and (b) displacements at the center of top

surface of thin film versus time with laser fluence (J) of 500J/m>. The w is the
displacement at (Xcenter, Ycenter, 0) of thin film.
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Figure 2.17 Electron temperature profiles along z at (Xcenter» Yeenter) at different times (a)
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Figure 2.18 Lattice temperature profiles along z at (Xcenter> Ycenter) at different times (a) ¢
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It should be pointed out that in [8], Energy Equations (2.79) and (2.80) were
solved using Crank-Nicolson method because the Crank-Nicolson is unconditionally
stable. This similar proof for unconditional stability can be seen in [57]; the generalized
Crank-Nicolson schemes were developed for solving parabolic two-step micro heat
transfer in a 3D double-layered thin film. In [57], the energy equations for the double-

layered thin film were written as follows:

(m)
C(m) aTe - k(m)AT(m) _ G (T(’") - T(m))+S ’ (2.88)
<ot © e e : !
(m)
Ci T = G (T =T, (2.89)

and generalized the Crank-Nicolson finite difference schemes were written as follows:

]L(m))Z;}k (T('n))
2T,

1,).k

C(m) (

m 1 1 1 m)\n+ m m
=k ’[;@—5% Sy + 53][@; Vi + AT+ (T ]

4Ny T AN (2.90)

= Ze faeyt 2y, + @y

1,).k

ey oy vy s,

(T, — (T(m)),jjc G, {[(T('"’)"“

c
! 2At 1,1,k

+2(T(M))ljk+(T(M))xj,k (2 91)

- [(T,“"’)"” 2T+ (@Y.

1,1k
The above scheme has been proved to be unconditionally stable using the

discrete energy method.

2.2.5 Some Other Methods To Obtain Interface Stress
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In 1994, Dr. Nguyen from UC-Berkeley published a paper [58]. In this paper, It
demonstrated that:
For the usual case a substrate that is elastically isotropic in the plane of the film,

the biaxial stress in the film is given by the Stoney equation:

Eft
o=—"—
6(1-)t,

(2.92)
For the case, the total thickness of the films is much less than that of the substrate, where
E and yare the substrate biaxial modulus and poison ratio, £, and ¢ are the substrate
and film thickness, and X is the substrate curvature.

In a multilayer stack, the thin film approximation assumes that the interaction between

the layers is negligible. The average stress in a multilayer stack is:

2 2 —
oo L g _EL _60-ph, Iy (2.93)
6(1-y)t 4 6(1-y) <" Eg; 17

where ¢ is the total thickness of the multilayer structure. The equation above assumes
that the interactions between the layers are negligible. Each layer is assumed to cause a

fixed bending amount K, to occur, independent from the bending caused by adjacent
layers. For a periodic multilayer stack of N bilayers of thickness (¢, +¢;), then
t=N(t,+1tp), so:

1 t,o,+t,0
N(to,+t,0,)=2A4—L"8

c = — (2.94)
N, +t,) t,+1,

The average stress, thus, is independent of the bilayer period, and the number of

bilayers ¥, and depends on the layer stress and the relative thickness of the layers. The
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evolution of stress in Mo and Si films is shown in Figure 2.21 for thickness ranging from
5Snm to approximately one micron. Stress variation with period in Mo/Si multilayers is

shown in Figure 2.22. the total thickness of the multilayers is kept constant at 280nm.
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Figure 2.21 Stress evolution in single Mo (filled squares), layered Mo (open squares),
and Si films (Diamonds).
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Figure 2.22 Stress variation with period in Mo/Si multilayers. Total thickness=280nm.
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In 2000, Dr. Schweitz from University of Aarhus, Denmark, published a paper
[58]. It demonstrated that specular high-angle x-ray diffraction in Bragg-Brentano
geometry and transmission electron microscopy on cross-sectional specimens were
performed in order to get information about the microstructure of multilayers. Using the

Stoney formula,

2
o=Xde (11, (2.95)
6d, R, R,

whereY,,d ,d,, R, and R, are the biaxial modulus of the substrate, the thickness of the

substrate and thin film, and the radius of curvature of the composite and bare substrate,
respectively. The total stress of the thin films was found from the radius of curvature.

The total stress of a multilayered thin film o is composed of the intralayer stress

o and interface stress f. For multilayers with a modulation period of A the difference

between the total stress and the intralayer stress thus becomes
c-oc==F, (2.96)
where the factor of 2 arises due to the presence of two interfaces per modulation period.

Hence, the interface stress can be obtained from the slope in o — o versus A plot as

seen in Figure 2.23.
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A'1 Imn'l

Figure 2.23 The total stress (a) the average intralayer stress (b) the difference in stress as
found using profilometry and in-plane x-ray diffraction (c) versus the actual reciprocal
modulation period.

The intralayer stress is determined using the sin’ y method. The strain in the
direction described by the angles i (the angle between the lattice-plane normal and the
sample-surface normal) and ¢ (the angle between the projected lattice plane normal and

an in-plane axis) can be expressed as:

d, —d
(833)¢W =t do :
= g,,cos’ (#)sin’ () + &,, cos(2¢) sin’ () + £,, sin’(#) sin’ () (2.97)

+ &5, c08” (W) + £, cos(@) sin(2y) + £,, sin(¢) sin(2y),

where d,, is the lattice spacing and d,is the unstressed lattice spacing and &, refers to

the sample coordinate system.
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In Figure 2.24 the lattice parameters for Au and Ni are plotted versus sin’ i for
sample having a modulation period of 8.6nm. The lattice parameters are indeed observed

to depend linearly onsin’ y .
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Figure 2.24 The lattice spacing and the crystallographic strains of the planes versus
sin’ i for Au (a) and (c) and Ni (b) and (d).

In 2006, Dr. Lavitas from Texas Tech University published a paper [59]. In this
paper, the author and his colleagues predicted virtual melting as an alternative
mechanism of stress relaxation and loss of coherence at a moving solid-solid interface.
For the internal stresses and their elastic energy, the authors considered a transforming

volume V# as a penny-shaped ellipsoid with axes a, b and an aspect ratio » =a/b<<l (see
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Figure 2.25). The components o of the stress tensor due to the components of the

transformation strain tensor 8,; , I, j =1, 2, and 3, in the volume Vn in isotropic

approximation are:

O i 4 T
—-2—;- = —1_—‘/(81’1 +8;2)—8ltl +n§—2(1—_v')—(1381’1 +(16V"'1)8§2 —4(21/—1)6;3),
(o -V T
E‘Zi— = :;(8111 +8;2)"€£2 +n§—2—(—1—_"l—/3((16v—1)8;1 +138;2 —4(21/—1)8;3),
(o2 VA
7o - Qv e+ ) 25,

&__nfr(v—2) .

Eyss
2u 41-v) Z

g'}l__nﬂ(v—Z) p

€315
2 A=)

) 2.98
2 ptn 16(1-v) & ( )
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Figure 2.25 Scheme of the solid-solid-phase transformation1 — 2 in the volume V' via
the virtual melting mechanism.

From these three papers, we can see that the interface conditions are complex and
not reasonable for the work considered here. From Equation (2.93), it is calculated the
average value of the stress which cannot show the stress distribution across the interface.
From Equation (2.97), it is calculated the internal stress in some certain situation. Thus,
we avoid seeking a mathematical model for stress change across the interface and obtain
successfully the stress change across the interface based on only the fourth-power law

for radiation and using an iterative numerical method.
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2.3 Conclusion

Although Dai et al. have developed a very promising mathematical model for
single layered thin film induced by radiation heating; the single metal layer often cannot
satisfy all mechanical, thermal and electronic requirements. Because of multilayers, the
imperfect thermal contact between layers may occur sometimes and, hence, the stress
and displacement caused by the hot-electron blast effect across the interface between
layers may change sharply or be discontinuous across the interface, resulting in possible
thermal damage. Thus, the purpose of this dissertation is to extend the research to the
case that considers 3D double-layered thin films with imperfect interfacial thermal
contact exposed by ultrashort-pulsed lasers and to develop a model, and its numerical
method that may be more accurate in predicting the thermal damage of the double-

layered thin metal films induced by radiation heating.



CHAPTER THREE

3D DOUBLE-LAYERED MATHEMATICAL MODEL

This chapter considers 3D double-layered thin films with imperfect interfacial
thermal contact exposed to ultrashort-pulsed lasers. The governing dynamic equations of
motion and energy equations for obtaining the temperature distributions, stresses, strains
and displacements in the double-layered thin films are then set up. The solutions of these

equations will predict the metal thermal damage induced by radiation heating.

3.1 Double-Lavered Structure and Governing Equations

We considered a sub-micron metal film consisting of two material layers to
illustrate the general effects of the hot-electron blast across the interface, justifying the
use of 3D models in describing ultrafast heating and deformation. The coordinate system

is provided in Figure 3.1.

56
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Ultrashort-pulsed lasers

Figure 3.1 A 3D double-layered thin film irradiated by ultrashort-pulsed lasers.

The general governing equations for studying thermal deformation in metal thin
film can be expressed as follows:

(1) Dynamic Equations of Motion [42], [55], [60]

m U™ _3c™ 05y po™
p 2 - + + s
ot ox dy oz (3.1

N . ocl” ool
o o @y o (3.2)

S FW 000 30 ool
or’ ox dy oz (3.3)

where

ol = A" (EM + el + &My + 24 Ml —BA™ +2u)a (T - T), (3.4a)

0'}(,'") _ /‘L(m)(&‘,(rm) +g;m) +g§”’)) +2/1(m)8)(/m) —(3/1("') +2ﬂ('n))a;m) (TI(M) -Ty), (3.4b)
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o™ =AM +el” + )+ 24~ BA™ + 24 )™ (T - T,),

(3.4c)
my _ , (m), (m) (m) _  (m) (m) _(m)_  (m),(m)
O—xy =H yxy s O = H 7Y sz ’ayz =H yyz b4 (34d)
g 0"y VoW
X b y 5 z b

Ox oy 0z (3.4e)

) _ au(m) N ovim y("’) _ au("I) N aw(m) ,}/(’”) _ iv_(m_).:,. aw('") .
R oy ox ' F 0z ox ' 0z oy (3.41)

Here, m = 1, 2, denotes layer 1 and layer 2, respectively; »™ ,v"™, and w'™ are

the displacements in the x, y, z directions, respectively; £ , &', and £ are the

(m)

normal strains in the x, y, and z directions, respectively; y.” is the shear strain in the xy

m

- plane, ¥ is the shear strain in the xz - plane, y;” is the shear strain in the yz - plane;

(
o, ot

b s and o™ are the normal stresses in the X, y, and z directions, respectively;

z

ai;") is the shear stress in the xy - plane, o is the shear stress in the xz - plane, and

xz

o™

) is the shear stress in the yz - plane; 7™ and 7™ are electron and lattice

temperatures, respectively; 7, is the initial temperature; p™ is the density; A™

= Km _§ u™ [25] and p™are Lame’s coefficients; and " is the thermal expansion

coefficient.
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(2) Energy Equations [9], [42], [55], [60]

oT!™
CINT,)——
(1) ot
(m (m) (m)
= 2 T T T+ T T) Ty + 27 (1,1 T
2 ox oy oy 0Oz 0z (3.5)
_G(m)(Te(m) _T[(M))+Q9
m OT ™ my pimy _my
C"——=G"(I," -T;"),
ot (3.6)

where the heat source introduced by [1], [9] is extended for a Gaussian laser beam

focusing at (x,,y,)on the top surface as

_B1=R_ |z (x-x%)+(r-y,)* [ 1=2, :

P

Here, C"™(T,)=C§ )(T

0

(m)
) is the electron heat capacity, x" (T,,T,) =k, (%"TJ is
!

the thermal conductivity, G is the electron-lattice coupling factor, C™ is the lattice
heat capacity,Q is the energy absorption rate, J is the laser fluence, R is the surface
reflectivity, ¢, is the laser pulse duration, z,is the optical penetration depth, and #, is

the spatial profile parameter. In addition, # is the constant which equals 4 x In(2).

Therefore, we can estimate \/E as 0.94J and B as 2.77. These two values will be
T

applied to the specific case in this dissertation research.
This dissertation research considered a specific 3D double-layered thin film
which is made up of gold and chromium with imperfect interfacial thermal contact

between layers in Cartesian coordinates, exposed to an ultrashort-pulsed laser, The


file:///P/-R
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governing equations for studying thermal deformation in metal thin film can be modified
and expressed as follows:

(1) Dynamic Equations of Motion [1], [8], [111, [12], [16], [30], [48]

2, (m) m  pgtm (m) (m)
o™ 0 ”2 _Oo," 09, A Oog | 2AMT T, ,
ot Ox oy Oz Ox 3.9)
m (m) (m) (m m
m V™ 00y 8oy Pl AT ori™
o’ ox dy oz M, (3.9)
2 (m) m  yom (m) (m)
p(m) 0 W2 — ao—xz + 24 aO-z +2A(M)Tg(m) a]:z ,
ot Ox oy Oz 0z (3.10)

where

o = AP(E™ + 60 +£) + 2" — BA™ + 24 )l (T ~T,),

(3.11a)
ol = A(EM +&l” +£M)+2u el - BA™ +24")al™ (T - T), (3.11b)
o = A (e 48" 48"+ 2u e ~GAT 424" (T =T, (31
(my _  (m), (m) (my . m), (m) (m) _  (m), (m)
O.xy _'um},xy’o.xz =K >O-yz =H }/yz’ (311d)
S _ ou™ S _ ov'™ S _ ow'™
x * y > z s
ox oy oz (3.11e)

au(m) av(rn) 6u('n) aw('n) av(M) aw(rn)
(m) _ + }/(m)= + (m) _ +

X] > Xz 9}/ z .
Y ay Ox 0z Ox r oz 5‘y (3111)

Here, as shown in Figure 3.2, m =1, 2, denotes layer 1 and layer 2, respectively;

(m) ( )

4™ v™ and w'™ are the displacements in the x, y, and z directions, respectively; £,
Ys &

gﬁ,’") , and £{™ are the normal strains in the x, y, and z directions, respectively; yg”) is the

shear strain in the xy - plane, y{” is the shear strain in the xz - plane, ¥ is the shear

yz

(m)

strain in the yz - plane; ¢ ,0'™, and ¢! are the normal stresses in the x, y, and z

y
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directions, respectively; O'fo',") is the shear stress in the Xy - plane, o*fc;”) is the shear stress

in the xz - plane, and cr;;") is the shear stress in the yz - plane; 7" and T are electron

(m) s

and lattice temperatures, respectively; 7, is the initial temperature; p'"’is the density;

A" is the electron-blast coefficient; A™ =K‘””—%,u‘”’) [25] and u'™ are Lame’s

coefficients; and a{™ is the thermal expansion coefficient.

Ultrashort-pulsed lasers

'

Figure 3.2 A 3D double-layered thin film with the dimension of 100 pmx 100 pm x
0.1um, irradiated by ultrashort-pulsed lasers.
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(2) Energy Equations [1], [8], [11], [12], [47]

(m)

(m) aT"") 0, w aT‘”” J . aT(""
=—+(k — -
ax( . (1,,T) ) 5 (k, (T,.,T) > ——)+ aZ(ke (T,.T) ) (3.12)

_ G(m)(Te(m) _ Tl(m)) + Q’

(m)
wm 9T _

C, G(m)(Te(m) _Tl(m)) __(3/1('") + 2’u(m))a;m)T (g(m) + g(m) + g(m))

ot (3.13)
where the heat source introduced by [9] is extended for a Gaussian laser beam focusing

at (x,,,)on the top surface as

sz Zs r tp

2
1-R z (x=x) +(y-y,)’ t-2t
Q(x,y,z,t) =0.94] ——exp| — — — 2 0277 21
) t p[ ’ (3.14)

m m Te(m)
Here, C;"(T,)=C (—},—

0

(m)
] is the electron heat capacity, ¥ (7.,7,)=k," (;(,,,, ]

is the thermal conductivity, G is the electron-lattice coupling factor, C{™ is the lattice
heat capacity,(Q is the energy absorption rate, J is the laser fluence, R is the surface
reflectivity, ¢, is the laser pulse duration, zis the optical penetration depth, and r, is

the spatial profile parameter. Equations (3.12) and (3.13) are often referred to as

parabolic two-step heat transport equations [55], [60]. It should be pointed out that the
term (34" +2u")ai™T, 66 (e + & + £{”)is added in Equation (3.13) to consider

the coupling effect between lattice temperature and strain rate.
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3.2 Initial, Boundary and Interfacial Conditions

The boundary conditions are assumed to be stress free [1], [9] and no heat is lost
from the surface in the short time response because insulated boundary conditions are

imposed. From [36], we have

o™ =0, ai;") =0, 00 =0,at x=0,L,, (3.15a)
ol =0,05" =0, 0" =0,at y=0,L,, (3.15b)
o =0, 0’ =0, 03’ =0, at z=0, L, (3.150)
(m) (m)
oM™ _o OL" _,, (3.15d)
on on

where # is the unit outward normal vector on the boundary.

The interfacial conditions are assumed to be imperfect thermal contact at 7 = £‘2L

(the discontinuity of temperature and heat flux across the interface), thus the nonlinear

interfacial condition for 7, can be expressed by the fourth-power for radiation as follows

{191, [20], [21]:

1) @)
—k® age_ =—k® 5%_ = G[(Te“))“ _ (Te(z))“] ) (3.16)
4 /74

where o =5.669x 10 W/m’K* is Stefan-Boltzman’s constant. Once T, is obtained, 7,

at interface can be obtained based on Equation (3.13). Conversely, the interfacial

conditions for stress and displacement are expressed as:
u® =y v =y O 5 4@ (3.17a)

(0] 2 (

o’ #0060 =0,60) =0 (3.17b)

xz * yz



64

The initial conditions are assumed to be:

Tm — Tl(m) = To,u(’”) =™ = pim = 0,
(3.18)

u™ =y =™ =0,
It should be pointed out that the laser beam is applied on the top surface (z =0)

at =0, and the peak intensity occurs when ¢ =21 .

It can be seen that finding an analytical solution of Equation (3.8)-(3.14) was
very difficult because of the complicated system and the nonlinear equation (see
Equation (3.16)). Thus, a numerical method for solving the above governing equations
was necessary, in order to obtain the temperature distributions, stresses, strains and

displacements in the double-layered metal structure.



CHAPTER FOUR

NUMERICAL METHODS

This chapter will develop a numerical method, which includes a Crank-Nicolson
type of finite difference scheme for solving the 3D double-layered thin films with
imperfect interfacial thermal contact model for obtaining the temperature distributions,
stresses, strains and displacements in the thin films. The finite difference scheme will be

stable and the solution is grid independent. The iteration will be convergent.

4.1 Finite Difference Scheme

Following the approach in [8], [13], [14], [16], we first introduce three velocity
componentsv,, v,, and v, into the model, and then re-write the dynamic equations of

motion, Equations (3.1)- (3.4), as follows:

ou'™ v aw™
pm = RV () 4.1
! o’ o * 7 ot @D
(m) m o™ (m) (m)
m OV - do, " Oy + 9o, + 2A('")Te('") _._aTe , 4.2)
ot ox oy 0z Ox

(m) o (m) P (m) o (m) (m)
(m) 6v2 = ny + Gy + O-yz + 2A(M)7;(M) aTe , (4'3)
o ox EY oz oy

(m) (m) (m) (m) (m)
m " _ 90y 00, 00" | 2AMTm o7,

: (4.4)
ot x oy oz oz
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o™ _av(m 0e,” _ov oe™ _ov”

b

(4.5a)

ot ox O dy ot oz’
ory) _ov™ v oy v ov
ot ox ot d ox
¥ ‘ (4.5b)

e o v
ot oz Oy

To develop a finite difference scheme, we then design a staggered grid as shown

in Figure 4.1, where v("™ is placed at(x |,¥,,z,), v{" is placed at (x,,y ;,z,), v{" is
- JH—
2 2

placed at (x,,yj,z“l) , 75" and ol are placed at (le,yﬁl,zk) , 7" and ¢! are
2

xz Xz
2 2

placed at (x,+l V2 ), 7;;") and o-;;”) are placed at (x, y,+l 2 ), while &, &,
2 2 2 2

e, o o\, o™ T\ and T are at (x,,y,,2,). Here,i, j, and k are indices with
1<i<N,+1, 1<j<N, +1,and ISE<SN, +1, such thatN Ax=L,, N Ay=L, and

N.Az=1I_, where Ax,Ay and Az are spatial step sizes. We denote (v")", E
+—,/,
Y " and (v{")" .1 to be numerical approximations of wW((G +%)Ax, A, ki, niY),
1,4+ VR & ol

v (it (j +%)Ay,k&,nAt) and v (itx, jAy,(k+%)&,nAt), respectively, where At is the time

increment. Similar notations are used for other variables.
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The staggered grid is important to understand the variables locations as shown in

Figure 4.1.
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Figure 4.1 A 3D staggered grid for a thin film and locations of variables.
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Furthermore, we introduce the finite difference operators, A_, andé_, as follows:

n-1

no_.n
A—tul,j,k - u:,/,k ul,j,k’

n . _h
5xu”j’k - ul+i k ul—-l— k.
2,j, 2,J,

Finally, §, and &, are defined similarly to &, .

It should be pointed out that the staggered-grid method is often employed in

computational fluid dynamics to prevent the solution from oscillations [12]. For example,

if v, and g_ in Equation (4.5a) are placed at the same location, employing a central

finite difference scheme may produce a velocity component v, , a wave solution implying

oscillation.

To avoid non-physical oscillations in the solution, we further employ a fourth-

oo
order compact finite difference scheme for obtaining stress derivatives, % s a—x" i
Y
oo . .
—5—’1 and etc. in Equations (4.2)- (4.4).
z
oo
For example, we calculate ax" as follows:
aao'x(z -1) +h oo (i) ta oo (i+1) _ o (i+1/2)-0c (i —1/2)’
ox ox Ox 1 Ax 1 (4.6)
2+—<i<N,—-—,
2 2

where a and b are unknown constants. Here, we omit indices j, k, and » for simplicity.

Using the Taylor series expansion, we obtain
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2 52 3 a3
o (i +1/2)=0,()+ 200D A §70.()  Ax 00, (i)
2 ox 212% ox 123 o
Ax' 8'o, (i)
+
ant ot

(4.7a)

+0(Ax®),

Ax 8o, (i) , Ax? 8o () A o, (d)
2 o 22 a3 ax
Ax* 8o (i)
+
Mt

o (i-1/2)y=0,()——

(4.7b)

+O(Ax®),

oo, (i+1) _00,(i) A o’o, @, Ax* 0o, @, Ax® 8o (i)
Ox Ox ox? 2 o 3 ot

+O(AxY),  (4.7¢)

oo (i-1) _00,() _ Ax oo, @, Ax* 8’o,(i) A’ 8'o,(i)
ox*

+O(Ax* 4.7d
Ox ox ox? 2 &x 3! (Ax). (4.7d)

Substituting the above equations into Equation (4.6) and comparing the corresponding

terms, we obtain

2a+b=1,a=2, =1L (4.8)
24 12

with a truncation error of O(Ax*). It should be pointed out that the dissipative term

&0, (i)
do.(i)

can be obtained
Ox

has been eliminated from the truncation error. Hence,

90,(i)
ox
by solving the following tridiagonal system

NS N
__l_aO'x(i—l) +£ ao'x(l) +—1_ aO'x(l+1) _ O'X(l 5)'_0'x(l 5)
24 12 & 24 & Ax ’ (4.9)

2+lSisNx——1-,
2 2

where

1
0o (N, +—
o, (N, 2)

3
99.) _o,2)-0,0) _o,(N,+1) -0 (N,)

, = (4.10)
Ox Ax Ox Ax
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Using a similar argument, we can evaluate other stress derivatives in Equations

(4.1)-(4.5). Hence, the implicit finite difference schemes for solving Equations (4.1)-

(4.5) can be written as follows:

1 nt
P A (v)'y 1
n+l n+l n+l
oo ),+1,,,k a(% )., el e |
= Zia R 2 AT )”+
ox oy 0z
LA ( )n+1
'OAt ) :,/%,k
n+l n+l n+l
o™, 0, OOE 4, D L
= + 2+ 4+ A—05,(T))"
oy Ox 0z Ay L
1 n+l
pX—A_I(v3)r/k+l
a(o_nﬂ) . a(o_n+1) . a(o_n+l) ]
z 1,].k+= k+~2~ — 1
= + +

0z Ox oy
n+l 1 n+l
_A——t(gx)l,/,k = —Ex_é‘x (vl):,_/,k’
1 n+l 1 n+l
XtA_t (gy),,j,k = A_y5y(v2)l,1,k9
1 w1 ne
Z—A—t (gz )I,jfk = ZZ_52 (v3 )',J,lk °
1 n+1 n+l 1 n+l
At —t (}/xy +5 —k 5 ( ) +%,k Ax 5 (V2 . %J*‘%,k’
-LA ( n+l 5 ( )n+1 _1__5 (V )n+1
At Vi :+%,/,k Ax * l,J,k*";‘,
-I—A (}/ )n+1 __1_5 (V )n+l 1 5 (V )n+l
At My :,/+%,k+% Az ° 2 I,j+%,k+2 Ay 3 1,J %k+%

2 o 2\n+l
+AA252(Te )I,_/k 1

2

1
+—k
"

(4.11)

4.12)

b2

(4.13)

(4.14a)

(4.14b)

(4.14c)

(4.15a)

(4.15b)

(4.15¢)



where Equstions (3.4a)-(3.4d) are discretized as:

(o_J )n+l

1,0k
= (e, + (&) + () +2u(e)), — BA+2ma, (T, -
(O-y):ij}k
=) + (&) + () + 2], — BA+2w)a (T, -
(O-z )Z;}k
= Al(e, )7:11( + (8y )znjlk + (g, ),njlk] +2u(e, ),n,jlk - (B + 2, [(T, ),njlk
o n+l _ n+1 ,
(00" il =K1y, Dl
(o_xz )n+l ,U(}’xz n+l s
2 i) J””E
n+l n+l
(cr,ry)w+ ool ﬂ(}'xy) 1
2 3

The displacements ™, v(™ and w'™ are then obtained as follows:

n+l

n+l
—A_ u" =y

At I+—2—~,_[ . l+5 45k ?

1

n+l ( n+l

— B =(vV
At ek 2) Sk

1

n+l n+l

— Q_ =(v
At ket ) o

]3

L],

T,
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(4.163)

(4.16b)

(4.16¢)

(4.17a)

(4.17b)

(4.17¢)

(4.18a)

(4.18b)

(4.18¢)

The energy equations, Equations (3.5)-(3.6), are solved using the Crank-

Nicholson finite difference method [62]. As such, Equation (3.5)-(3.6) are discretized as

follows:
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C — A T(m) n+l
e0 2T0 At —t( e )l,j,k
— k(m) n+l 6 T(m) n+l k(m) n+l 5 T(m) n+l
2sz(( AT ORI CR AL A
+ k(m) n S T(m) n _ k(M) n S T(m)
2Ax2 (( e )l+~;—,J,k x( e )H'%,j,k ( e )‘__] ( )—~jk)
+ k(m) n+l 5 T(m) n+l _ k(m) n+l 5 T(m) n+l1 .
2Ay2 (( e )I,j+%,k y( e )l,j+%,k ( e )l,j—%,k y( e )l,j“%,k) (4 19)
o ((K)" 6T | R S(TY )
2Ay 1,1+5,k 1,]+5k l,_/—E,k 1,]——2—,k
(m)\n+l1 T(m) n+l . (m) \n+1 (m)\n+l1
+ 2A22 ((ke )l,j,k+%52( ¢ )l,j,k+% (ke )x,j,k—%az(j; )I,J,k—%)
+ k(m) n 5 T(m) n _ k(m) n 5 T(m) n
e AL DN GO k_%)
_Gm ((Te('"’)f'jlk ()l TNk + (T('")), ik
2 2 ) Ql .k
(m) 1 (m)\n+l
Ci AL
(m)\n+l (m) (m)n+l (m)
= G(m)((]—'e )l,jk ;(T )ljk (7—} )1,j,k ;(T )l_/k) (4.20)

(m) m)
—(3A™ + 24 )A

T(A (™)

1 1
e AL EN L+ AL

2,1,k k7

It should be pointed out that the Crank-Nicolson method is employed because it

is unconditionally stable for solving heat conduction equations [58]. The unconditionally

stability indicates that there is no restriction on mesh ratio. The unconditionally stability

is particularly important because the dimension in the considered domain is in sub-micro

It should be pointed out that the Crank-Nicolson method is employed because it

scale and the grid size will be very small. Unconditional stability will allow us to choose

grid sizes and time step without any restrictions.
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We can obtain the lattice temperature from Equation (4.21):

d
(T, ), = Y, + ———« Y= (T, )+ ——(T, Y
(1+d) (1+d) 1+ d) @
(1 d) [(e)ms + e ) + @) = () + &+ D)
where
G-Ar
d= T (4.22)
o= CA+200: Ty (4.23)

G
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Then we can easily calculate the electron temperature from Equation (4.24):

1
(Te )1"jlk=
(a+b1+b2+b3+b4+b5+b6+——GAt~—GAt d
2 2 (1+d)

)

X (b](Te )ml Pt bz (Te )Ml * + b3 (Te )nﬂ k + b4(Te ):Ijl—l,k

+1,7, -1, 1,)+1

+ b5 (T, )7 s+ b6(T ). o

1,7,k+1

+ cl ((Te ):,H,/,k - (T; ):j,k) _((Te )1n,j,k _(Te )ln-l,j,k)
+¢;((7, )ln,j+|,k ~(T, ):',,,k) -¢, (T, ):',,Jc —(T, )7,,-1,1:)

+¢,((7, )7,],k+1 —(T, ):’,_/,k) —c((7, )7,],]( - (T, );n,/,k—l)

GAr  ee

GAt d GAt
2 (1+d)

n _- n 1 n -
iy e = @0+ 5 s (T

2 (1+d)

1 1 1
X [((gx ):l,j,k + (gy )In,-;,k + (82 )7;,]() - ((gx ):',j,k + (8y ):',j,k + (gz )ln,j,k )]

GAt n n n
- —2_'((]13 )I,J,k - (T; ):,/,k) + Ql,_/,kAt + a(]:z )l,j,k )’

where the electron heat capacity C, (T) can be obtained below [8], [16]:

n+l n

T e k+Te k
C(T,) = C,o(52) = C,o ——ttb __c 1k
e( e) eO(TO) el 2TO

the thermal conductivity k,(T.,7;) is calculated based on
T,
k(T 1)) = ko (Z5),
T

and constants a, b, (i=1,...,6) and ¢, (i=1,...,6) are given as follows:

(4.24)

(4.25)

(4.26)



n+l n
a= CeO (Te )"j’k + (Te )',/Jc

2T, ’

(T )n+1 (Te )n+1

(k )n+1 ( +1,7.k + ,,j,k)
b= pr— i, e (T A
2Ax 2 AL’

T T

(k)™ (2 + =)
b2 = '_E’j’k . At - k (T} )l,_],lk (]11 ):1—+11,j,k . At
2Ax2 0 2 2Ax2 H
(k )n+1 ((T ):’ji—],k + (Te ):j}k )
e 1,_1+l,k (T )n+1 (T )n+1 A
b3 — 22 AL = k 1,)+1,k L 7egk !
2Ay 2 2097
(ke )n+1 . ((T )lnjlk + (Te ):jll,k )
=W 57 M RN
2Ay 2 2Ay%°
(k )n+1 1 ((T )ln-;lk-{-l + (T; )/n,j,lk)
b5 = I’J’k+5 AL = k ( )Injllﬁ-l (T} ):',-;,lk . At
2Az° 2 2Az%°
n+l n+l
(k )n+1 1 ((T )I j]k + (T:a )t,j,k—l)
e , I n+ n+l1
b6 — Sk 2 . At k (T )1 ok (T} )1,])](-.] . At
2077 2 2Az%°
(k )n 1 ((Te )7+l,j,k + (Te );',j,k)
c] — H-E’j'k 'At = k (7} )ln+l,j,k (7} ):‘,Lk . At
2Ax* ° 2 2Ax%’

(Yo | T

(k)" ( )
C, = I—E’J’k AL = (T )ljk (TI )7—1,],k At
2 2 - 0 .
2Ax 2 AL’

(Te ):',j+l,k + (Te ):',j,k)
I,]+5,k ) - k (T} )Z}*‘l.k (T} )Zj,k . At
2Ay2 0 2 2Ay2 >
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4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



(T )11,1( (T )1 j—l,k)

(k) (
_ ——k A (T ), Ik (T ):_/—lk At
Gy = "——2—"' (= E 2’
2Ay 2 2Ay
k )n ((T ),n, i+ (Te )In,]»k)
B ¢ ’,J,k"'% A (T ) jent (TI Disi At
Cs=—Fr Al= ) 2°
Az 2 2Az
) T e T
“r @)
B 1,7, k—— At ( ), Sk ( ! )l,j,k-—l At
Cg=——F5> At = oA
207 2 242

4.2 Discrete Initial, Boundary and Interfacial Conditions
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4.37)

(4.38)

(4.39)

To complete the formulation of our numerical method, we now turn our attention

to the approximation of initial, boundary and interfacial conditions:

(@) =)o, =0, 1SjSN, +1L, 1SESN, +1,

(6 ,)'1 1 =) | , =0, 1<j<N,,1<k<N,
1+~ y+=k N+ 4k
272 272
n n ,
(c.,)'y =0@.)" , =0, ls]sNy,lsksNz,
4=, 1 k+— N.+= -l
2 2
n n
(O-yz) 1,1 =(O-yz) 1 _0 1<J<N 1< kSNz’
1,_/+5,k+5 N, j+2k 5

(@)1 = (0, ap =0, 1SISN, +1, 1SKSN, +1,

n .
(0,)"  =(o xy) . .. =0, 1<i<N_,1<k<N,,
1+5,1+E,k ~2—Ny —2-k

(c.)],, =(0'z)7,,,1v,+1 =0, I<i<N, +L1<j<N +],

(4.40a)

(4.40b)

(4.40c¢)

(4.40d)

(4.41a)

(4.41b)

(4.41c)

(4.41d)

(4.42a)



TN =TV g0 T oy =T Vo0
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(4.42b)

(4.42¢)

(4.42d)

(4.432)
(4.43b)
(4.43¢)
(4.442)
(4.44b)

(4.44c¢)

where 1<i<N +1L, 1<j<N +1, 1<k <N, +1, for any time level n. The initial

conditions are approximated as

u’ =v* , =w’ | =0,

1 1
+—, 1.k 1,04~k 1,)k+—
2’ 3 b

0 0 0
M)y =) =) =0
1+5,j,k l,j+5,k 1,},k+§

(Te )?,j,k = (T; ):),_],k = 710’

0 0 0
(8)() 1 = (gy) 1 = (gz) 1 = 0’
I+5,j & r,_/+§,k 1] ,k+5

0 0 0
(O-x) 1 = (o-y) 1 = (o-z) 1 = O’
I+E,j,k I,j+5,k IN] +§

0
o =
( xy)1+l,j+~l~,k
272

(4.452)

(4.45b)

(4.45b)

(4.45d)

(4.45¢)

(4.45f)
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(O-xz)o 1 X 1 =(}/xz)0 1 k 1 =0’ (445g)
1+5,j, +5 1+5,j, +5
0 _ 0 _

(ayz)l,ﬁ%,h% = (J'yz)w%’k% =0. (4.45h)

where 1<i<N +1, 1<j<N +1, 1<k <N, +1, for any time level n.

The discrete interfacial condition for electron temperature is obtained based on Equation

(3.9):
(l) n+l (M) \n+l (2)\n+l (2)\n+1
(k(l))n+1 ( e )1,_/,N+1 —(Te )1,J,N - (k§2))n+]3 (Te )1,/,2 _(Te )l,j,l , (446a)
8 N+— Az l’j’i Az
OV = (@OY n e
U)o = ([Tl LT (4.46b)
2

1) \n+1 2)\n+l
(Te( ))IJ,NH * (Te( ))l,_;,l . (4460)
While the interfacial conditions for velocity components v(™, v{™ and v{™ are obtained

based on Equation (3.10a) and (3.10b)

v 1’)”*_‘ = (v,”)’“'1 o (4.46d)
ORI U0 (4.46¢)
,_/+ ,/+§,1
(vgl) )n+l # (v(2) )rl+13 (4.46f)
1,7,N +2 LS
(e = (@), (4.46g)
( (]))n+1 ( (2))n+11 2 (446h)
XY
@) 0= =(o))™ ;. (4.461)
J+— N+ IR
272 22
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It should be pointed out that Equations (4.11)-(4.13) are nonlinear since the terms

S .((THy™ k)z, Q((T;"”)"“,I{)2 and 52((7"8(’”))"”" .)? are nonlinear. It can also be
14,0, LI 1,0 k4
2 2

2

seen that Equation (4.19) is nonlinear. Furthermore, (v{")"™' | # (v{?)™*, in Equation
LN+ L
2

(4.46f) and ("), #(c”)"| in Equation (4.46g) are essentially useless in

computation. Therefore, we must solve scheme iteratively. In particular, the interfacial

condition in Equations (4.46a) and (4.46b) is iteratively calculated as follows:

)y \n+l(new) _ cmp(l 1(old) oAz
Ty = @Oy -

1,7,N+1

{[(Ive(]))n-&-l(old)]4 _ [(7;(2) )n+1(o!d)]4} , (4473)

1,7,N+1 1,1
a] J J

1,/,1 1,7,2 1,7,N+1

(Te(Z) )n+1(new) - (Te(Z) )n+1(old) _ g]_ [(Te(l) )n+1(old) _ (Te(l) ):1’-;}1(\]01(1)] , (4.47b)
2

where
(1) \n+1(old) (2) \n+1(old)
1 (Te )1,],N+1 a. = 2) (Te )1,},1 (4 47C)
1~ "0 M\n+l(old) > “2 — ™0 (2) \n+l(old) * '
(TI )I,j,N+1 (TI )I,j,]o
4.3 General Algorithm

From the knowledge of numerical solutions for partial differential equations, if a
finite difference scheme is consistent (implying that the truncation error goes to zero
when the grid size tends to zero) and stable (a small change in the initial data causes only
a small change the numerical result), then the numerical solution obtained based on the
finite difference scheme is convergent to the exact solution of the partial different
equation. Based on the obtained numerical scheme in the previous section, an iterative
method for obtaining electron and lattice temperatures, stresses, strains, velocities, and

displacements at time level n + 1 from time level n can be described as follows:
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1. Set the initial values for (¢{™)"", (ei"‘))"“, (gmy, (7’)(;" L ey

and (}/ﬁg”))"” by using the obtained values at time level » and solve iteratively
Equations (4.19) and (4.20) coupled with the interfacial conditions, Equations
(4.46a)-(4.46¢c), for (T'”)™' and (T,"”)™ including the temperature at the
interface.

2. Solve for (¢{™)™', (0'5"’))"“, (a™y™, (O'f,;"))"“, (™)™ | and (O';;"))"H

using Equations (4.16)-(4.17). It should be pointed out that both ("), ., and

1,7,N+1 >

(o) at the interface are calculated based on Equation (4.16c); therefore,

they are certainly different from each other because (7)), and (Z¥)/"} at

the interface are different.

3. Solve for the derivatives of (™)™, (6i)™, (i)™, (6", (6")™,

and (o”)™" using Equations (4.9)-(4.10) or similar equations.
4. Solve for (v™)™', (v{™)™', and (v{™)"' using Equations (4.11)~(4.13).

5. Update (gf:m))nﬂ , (g)(/m))nﬂ , (ggm))nﬂ , (}/g’n))nﬂ , (ygn))nﬂ and (}/gn))nﬂ USiIlg
Equations (4.14)-(4.15).
Given the required accuracy &, (for temperature) and &, (for strain), repeat the

above steps until a convergent solution is obtained based on the following criteria:

I(Te(m))nﬂ(new) _ (Te(m))nﬂ("[d)l < 51, (4483)

61k 1,1k

syt — (i e <&,  (448b)

1 1(old
< fz’l(g;m))zj,lfnew) _ (gim))ln;’éo )

1 1(old
() = (e :

m) \n+l(new) m)\n+l(old)
y ) )

(
kP )i

<6

(y <&, (4.48¢)
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1,].k 1,0k

1 1(old 1 1(old
[N — Y| < £ [ a e — (PN < £, (448d)

It should be pointed out that the conditions (v{")"! | # (v{¥)™, in the Equation
41N +=

LY e
7

(4.46f) and (o)., = (6)"] in the Equation (4.46g) automatically satisfied the

above iterative method.



CHAPTER FIVE

NUMERICAL EXAMPLE

This chapter will test the applicability of the model and its numerical scheme by
considering 3D double-layered thin films with imperfect interfacial thermal contact
exposed to ultrashort-pulsed lasers. Results will be discussed and compared with the

previous work in [8], [16].

5.1 Example Description

To test the applicability of the developed numerical scheme, we investigated the
temperature rises and thermal deformations in a 3D double-layered thin film consisting
of a gold layer on a chromium padding layer with the dimensions 100 pm x100 pm
x0.1um. The thermo physical properties for gold and chromium are listed in Table 1 [1],
[8], [62]. We assumed that the laser was focused on the center of the top surface of the
thin film. Three different values of laser fluences (J = 500 J/m?, 1000 J/ m* and 2000
J/m?*) were chosen to study the hot-electron blast force. Three meshes of 20 x 20 x 60,
20 x 20 x 80, 20 x 20x 100 for each layer in (X, y, z) for the thin film were used in order

to test the convergence of the scheme. The time increment was chosen to be 0.005 ps

and T; was set to be 300 K. The convergence criteria were chosen to be £, = 1078 for

temperature and &, = 107'® for deformation.
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Table 5.1 Thermophysical properties of gold and chromium
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Properties Unit Gold Chromium | Others

P kg/m’ 19300 7190

A J/m’K’) 70 1933

A Pa 199.0x10° | 83.3x10°

H Pa 27.0x10° | 115.0x10°

a, I/K 14.2x107° | 4.9x10°

C., H(m’K) 2.1x10* | 5.8x10°

C, J/(m’K) 2.5%10° | 3.3x10°

G W/(m’K) 26x10"° | 42x10'

k, W/(mK) 315 94

R 0.93

t, s 0.1x107"

z,, m 15.3x107°

r, m 1.0x107

Jim’ 500, 1000,

2000

5.2 Results and Discussion

Figure 5.1a shows the changes in electron temperature ( A7, /(AT,),. ) at

the center (x_,,, =50 pm , y ... =50 pm) of the gold surface with a laser fluence of

center

J =500 J/m’between the perfect thermal contact [17] and the imperfect thermal contact
at the interface. The maximum temperature rise of 7, (i.e., (AT,),, ) for the imperfect
thermal contact case is about 4,062 K, which is higher than 3,765 K obtained in [8] and

3,727 K obtained by Tzou et al. [1] for the perfect thermal contact case. This result is as
expected because the amount of heat transferred to the chromium layer at the imperfect

thermal contact interface should be much smaller than that in the perfect thermal contact

case. As a result, the maximum temperature rise of 7, should be higher. The result also

explains that the change in electron temperature at the center of the top surface of the
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gold layer decreases very slowly after a peak with increasing time, which is significantly
different from that in the perfect thermal contact case. Figure 5.1b shows the

displacement w at the center (x ) of the gold surface. The negative value of

center * ycenter

displacement w indicates that the gold layer at the center (X, > Veoner » 0) 1S €Xpanding

along the negative z direction. Due to the higher temperature in the gold layer for the

imperfect thermal contact case, the gold layer at the center (x_,,., » ¥V oner » 0) is €xpanding
much more than that in the perfect thermal contact case. Furthermore, it can be seen
from both figures that the mesh size had no significant effect on the solution and, hence,
the solution is considered to be convergent.

Figures 5.2 and 5.3 show comparisons of electron temperature and lattice

temperature along z direction at (x ) between the perfect thermal contact {8]

center> Y center
and the imperfect thermal contact at the interface at different times (a) £ = 0.25 ps, (b) ¢
=1 ps, (¢) t =10 ps, and (d) ¢ = 20 ps, which were obtained based on a mesh of 20 x 20
x 80 and three different laser fluences (J = 500 J/m% 1000 J/m? and 2000 J/m?). It can
be seen that the electron temperature in both cases rises to its maximum at the beginning
and then decreases while the lattice temperature rises with time. Figure 5.2 shows clearly
that there is a sharp discontinuity of electron temperature at the interface when the
imperfect thermal contact exists between two bonded thin layers. Similar temperature
discontinuity is observed at the interface for lattice temperature in Figure 5.3. In
particular, we see from Figure 5.3 that the lattice temperature profiles between these two
cases are completely different. For the perfect thermal contact case, the lattice
temperature increases drastically across the interface because the conductivity of

chromium is smaller than that of gold. However, for the imperfect thermal contact case,
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the lattice temperature in the gold layer is higher than that in the chromium layer. These
results indicate that imperfect thermal contact at the interface provides a barrier to
thermal energy diffusion across the interface. These two figures also show that electron
temperature and lattice temperature are uniform throughout the chromium layer and
uniform throughout the gold layer after a long period. The uniform electron and lattice
temperatures are probably due to increased rate of collision between electrons and
phonons in the gold thin layer as electron energy diffusion is inhibited at the interface.

Figure 5.4 shows the displacement w of the thin film along z at (x

centers Y center )
between the perfect thermal contact [8] and the imperfect thermal contact at the interface
at different times (a) 1 = 5 ps, (b) t =10 ps, (c) t = 15 ps, and (d) # = 20 ps with a mesh of
20 x 20 x 80and three different laser fluences (J = 500 J/m?, 1000 J/m? and 2000 J/m?).
The negative value indicates that the displacement moves in the negative z direction,
while the positive value implies that it moves in the positive z direction. It can be seen
from this figure that for the imperfect thermal contact case the film is expanding, and
sharp discontinuity of displacement exists at the interface. The gold layer undergoes
severe displacement from negative to positive while the displacement in the chromium
layer is almost absent. However, sharp discontinuity of displacement exists at the
interface, which may result in shear failure. Severe displacement exists in the gold layer
may produce internal damages within the layer. Displacement in the gold layer is more
pronounced for bonded films with the imperfect thermal contact.

Figure 5.5 shows the normal stress o, along z at (x ) between the

center ycemer
perfect thermal contact [8] and the imperfect thermal contact at the interface at different

times (@) £ = 5 ps, (b) £ = 10 ps, (¢) t = 15 ps, and (d) ¢ = 20 ps with a mesh of
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20 x 20 x 80 and three different laser fluencies (J = 500 J/m?, 1000 J/m? and 2000 J/m?).
The ultrashort-pulsed laser heating produced severe stress distributions in the gold layer
for the imperfect thermal contact case. However, in the chromium Ilayer, stress
distribution is less severe which implies that the gold layer may undergo severe
structural deformation. Furthermore, it can be seen from Figure 5.5 that the curve of the
normal stress o, , is smooth and does not appear sustain non-physical oscillations.
Figures 5.6-5.10 were plotted based on the results obtained with a mesh of
20 x 20 x 80 and with a laser fluence of J = 1000 J/m’ Figures 5.6 and 5.7 show contours
of the electron temperature distribution and the lattice temperature distribution in the

cross section of y=y,,.. atdifferent times (a) = 0.25 ps, (b) =1 ps,, (c) t = 10 ps and

(d) £ = 20 ps, respectively. It can be seen from both figures that the heat is mainly
transferred along the z direction and with time the electron temperature and lattice
temperature drop gradually. The electron temperature in gold film at the surface drops
from 6170 K at 0.25 ps to 980 K at 20 ps. The chromium film at the bottom maintains
the electron temperature of 300 K. The lattice temperature, which is the atom
temperature inside the metal film, increases in gold film at the surface from 305 K at
0.25 ps to 796 K at 20 ps. The chromium film at the bottom maintains a lattice
temperature of 300 K. The temperature change across the interface illustrates that the
electron temperature and lattice temperature are obviously discontinues at the interface.
Figure 5.8 shows contours of displacements w in the cross sectionof y=y,,,,, at
different times (a) = 5 ps, (b) t = 10 ps, (c) ¢ = 15 ps, and (d) ¢ = 20 ps, respectively. It
can be seen from Figure 5.8 that at the beginning of 5 ps, the temperature is transferred

through the gold metal but discontinuous as it passes through the interface. Therefore,
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the surface and bottom of gold film have energy accumulated, causing the displacement
in the z direction to expand along the negative z direction. From 10 ps to 20 ps, the
severe displacement along the z direction exists in the gold layer. The displacement
along the z direction at the surface of gold film increases from 0.274 nm at 10 ps to
0.954 nm at 20 ps. The displacement along z direction in the chromium film remains
zero because the temperature is discontinuous at the interface.

Figure 5.9 shows contours of displacements v in the cross section of x =x____ at

center
different times (a) = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) ¢t = 20 ps, respectively.
According to Figure 5.9, the central part of gold film is expanding along the center line
in the x direction. At the time of 5 ps, the displacement v is changing from positive to
negative because the hot-blast force placed in the positive z direction on the center of the
surface which results in shrinkage of the gold metal across the center line in the x
direction. From the time of 10 ps to 20 ps, the heat expands the gold film because the
displacement v is changing from negative value to positive value. It should be pointed
out that there is no expansion in the chromium film and displacement v equal to zero due

to the discontinuity of temperature across the interface.

Figure 5.10 sﬁows contours of displacements  in the cross section of y =y,
at different times (a) = 5 ps, (b) £ = 10 ps, (c) ¢ = 15 ps, and (d) ¢ = 20 ps, respectively.
Figure 5.10 has almost the same properties as Figure 5.9. Thus, according to Figure 5.10,
the central part of gold film is expanding along the center line in the y direction. At the
time of 5 ps, the displacement u is changing from positive to negative because the hot-
blast force placed in the positive z direction on the center of the surface, which results in

shrinkage of the gold metal across the center line in the x direction. From the time of 10
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ps to 20 ps the heat expands the gold film because the displacement u is changing from
negative to positive. It should be pointed out that there is no expansion in the chromium

film and displacement u equal to zero due to the discontinuity of temperature across the

interface.
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Figure 5.1b Chang in displacements at the center of top surface of thin versus time with
a laser fluence (J) of 500J/m>. The w is the displacement at (Xcenter, Ycenter, 0) of thin film.
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0.25 ps with a mesh of 20 x 20 x 80 and three different laser fluences (J) of
500J/m?, 1000J/m? and 2000J/m?.
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Figure 5.2b Electron temperature profiles along z at (Xcenter, Ycenter,) at the time of £ =1

ps with a mesh of 20 x20x 80 and three different laser fluences (J) of 500J/m?,

1000J/m? and 2000J/m>.
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Figure 5.2¢ Electron temperature profiles along z at (Xcenter, Ycenter,) at the time of # = 10
ps with a mesh of 20 x 20 x80 and three different laser fluences (J) of 500J/m?,
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Figure 5.3a Lattice temperature profiles along z at (Xcenters Ycenter>) at the time of # = 0.25

ps with a mesh of 20 x 20 x 80 and three different laser fluences (J) of 500J/m?,

1000J/m? and 2000J/m>.
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Figure 5.3b Lattice temperature profiles along z at (Xeenters Ycenter,) at the time of # =1 ps
with a mesh of 20 x 20 x 80 and three different laser fluences (J) of 500J/m?, 1000J/m*
and 2000J/m>.
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Figure 5.3¢ Lattice temperature profiles along z at (Xcenter, Ycenter,) at the time of ¢ = 10
ps with a mesh of 20 x 20 x 80 and three different laser fluences (J) of 500J/m?, 1000J/m>

and 2000)/m?>.
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Figure 5.4b Displacement w profiles along z at (Xcenters Ycenter,) at the time of ¢ = 10 ps
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and 2000J/m’.
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Figure 5.4c Displacement w profiles along z at (Xcenter, Ycenter,) at the time of # = 15 ps
with a mesh of 20 x20 x 80 and three different laser fluences (J) of 500J/m?, 1000J/m?

and 2000J/m?.
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Figure 5.4d Displacement w profiles along z at (Xcenter, Yeenter,) at the time of # =20 ps
with a mesh of 20 x 20 x80 and three different laser fluences (J) of 500J/m?, 1000J/m’
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Figure 5.5a Normal stress (o, ) profiles along z at (Xcenter, Ycenter,) at the time of # =5 ps
with a mesh of 20 x 20 x 80 and three different laser fluences (J) of 500J/m?, 1000J/m?

and 2000J/m>.
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Figure 5.5b Normal stress (o, ) profiles along z at (Xcenter, Yecenter,) at the time of ¢t = 10

ps with a mesh of 20 x20x 80 and three different laser fluences (J) of 500J/m?,
1000J/m” and 2000J/m’.
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Figure 5.5d Normal stress (o, ) profiles along z at (Xcenter, Ycenter,) at the time of £ =20
ps with a mesh of 20 x 20 x 80 and three different laser fluences (J) of 500J/m>,

1000J/m? and 2000J/m?.
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Figure 5.6 Contours of electron temperature distributions in the cross section of y =50
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Figure 5.7 Contours of lattice temperature distributions in the cross section of y =50
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Figure 5.8 Contours of displacement (w) distributions in the cross section of y = 50 pm

at different times (a) ¢t = 5 ps, (b) t =10 ps, (c) t = 15 ps, and (d) ¢ =20 ps with a mesh
of 20 x 20 x 80 and three different laser fluences (J) of 1000J/m’.
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Figure 5.9 Contours of displacement (v) distributions in the cross section of x =50 pm
at different times (a) £ =5 ps, (b) £ =10 ps, (c) ¢t =15 ps, and (d) ¢ =20 ps with a mesh
of 20 x 20 x 80 and three different laser fluences (J) of 1000J/m>.
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Figure 5.10 Contours of displacement () distributions in the cross section of y =50 pm
at different times (a) ¢ = 5 ps, (b) ¢ =10 ps, (c) £ =15 ps, and (d) ¢ = 20 ps with a mesh
of 20x 20 x 80 and three different laser fluences (J) of 1000J/m?.



CHAPTER SIX

CONCLUSION AND FUTURE WORK

In this dissertation, we have presented a numerical method for studying thermal
deformation in 3D double-layered metal thin films exposed to ultrashort pulsed lasers,
where the interface between layers is an imperfect thermal contact, which gives a
nonlinear interfacial condition for temperature. The method, based on the parabolic two-
step heat transport equations, accounts for the coupling effect between lattice
temperature and strain rate, the fourth-power law for radiation for the interfacial
condition, as well as for the hot-electron blast effect in momentum transfer. Some
methods allows us to avoid non-physical oscillations in the solution: first, introducing
the velocity components into the dynamic equations of motion; second, using a
staggered grid where the unknown variables are placed at different locations so that the
checker-board solution could be eliminated; third, employing a fourth-order compact
scheme to calculate stresses derivatives in the dynamic equations of motion so that the
third-order derivatives of stresses did not appear in the truncation error.

Numerical results show that there is a sharp discontinuity of electron
temperature at the interface when an imperfect thermal contact exists between two
bonded thin layers, and similar temperature discontinuity is observed at the interface for

lattice temperature. These results indicate that imperfect thermal contact at the interface
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provides a barrier to thermal energy diffusion across the interface. The observed uniform
electron and lattice temperatures are probably due to increased rate of collision between
electrons and phonons in the gold thin layer as electron energy diffusion is inhibited at
the interface. Sharp discontinuity of displacement existing at the interface may result in
shear failure. Displacement alteration in the gold layer is more pronounced for bonded
films with imperfect thermal contact at the interface. Numerical results also show there
are no non-physical oscillations in the solutions.

The further research may apply the obtained mathematical model and its
numerical scheme to any multilayered case where the films could be different materials

and exposed to ultrafast heating.



APPENDIX A

NOMENCLATURE
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electron heat capcity, J/(m*K)
lattice heat capcity, J/(m’K)
phonon/electron energy, J

electron-lattice coupling factor, W /(m*K)

laser fluence, J/m?
bulk modulus, Pa

thermal conductivity, W/(mK)

length of micro thin film in the x- direction, m
length of micro thin film in the y - direction, zm
length of micro thin film in the z- direction, um

index for layer

number of grid points in the x- direction

number of grid points in the y - direction

number of grid points in the z - direction
energy absorption, W / m?

surface reflectivity

spatial profile parameter of laser,
volumetric heat source, W /m’

absolute temperature, K

electron temperature, K

lattice temperature, K
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t, laser pulse duration, s

U numerical solution of u(x,,y,,z,,?,)

u displacement in the x- direction, m

v displacement in the y - direction, m

w displacement in the z - direction, m

v, velocity component in the x- direction, mj/s
Vv, velocity component in the y - direction, m/s
v, velocity component in the z - direction, m/s
x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate

zZ optical penetration depth, m

n unit outward normal vector on the boundary
Greek Symbols

At time increment, S

Ax rectangular grid size in the x- direction, m
Ay rectangular grid size in the y - direction, m
Az rectangular grid size in the z - direction, m
¢ optical penetration depth, m

o thermal expansion coefficient

finite difference operator in the - direction

o central difference operator



}/xy

}’XZ

}/yz

central difference operator
central difference operator
forward difference operator
backward difference operator
forward difference operator
backward difference operator
forward difference operator
backward difference operator
electron relaxation time, ps
lattice relaxation time, ps
normal strain in the x- direction
normal strain in the y - direction
normal strain in the z - direction
shear strain in the xy - plane
shear strain in the xz - plane
shear strain in the yz - plane

electron-blast coefficient, J/(m’K?)

Lame’s constant, Pa

Lame’s constant, Pa
density, kg/m’

penetration depth nm
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xy

Xz

Oy
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Stefan-Boltzmann’s constant
normal stress in the x- direction
normal stress in the y - direction
normal stress in the z - direction
shear stress in the xy - plane
shear stress in the xz - plane

shear stress in the yz - plane

Subscripts and Superscripts

0

initial value at ¢t =0

electron

grid index in the x - direction
grid index in the y - direction
grid index in the z - direction
lattice

time level
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C Main program

implicit double precision (a-h,1,0-z)
dimension t(4001),t1(4001),x(51),y(51),z(221)
dimension TEo(41,41,101),TEold(41,41,101),
$ TLo(41,41,101),TLold(41,41,101),
$ TEm(4001),TLm(4001),
$ uim(4001),u2m(4001),u3m(4001),
$ vIm(4001),v2m(4001),v3m(4001),

C Ex, Ey, Ez normal strain and shear strain

$ epxo(41,41,101),epyo(41,41,101),epzo(41,41,101),

$ epxyo(41,41,101),epxzo(41,41,101),epyzo(41,41,101),
$ xsa00(41,41,101),ysa00(41,41,101),zsa00(41,41,101),
$ ssaooxy(41,41,101),ssa00xz(41,41,101),

$ ssaooyz(41,41,101),

$ epxn(41,41,101),epyn(41,41,101),epzn(41,41,101),

$ epxyn(41,41,101),epxzn(41,41,101),epyzn(41,41,101),

C Normal stress and shear stress

$ saxo(41,41,101),sayo(41,41,101),sazo(41,41,101),

$ saxyo(41,41,101),saxzo(41,41,101),sayzo(41,41,101),
$ saxn(41,41,101),sayn(41,41,101),sazn(41,41,101),

$ saxyn(41,41,101),saxzn(41,41,101),sayzn(41,41,101),

C Velocity and displacement

$ vxo(41,41,101),vyo(41,41,101),vzo(41,41,101),
$ vxn(41,41,101),vyn(41,41,101),v2n(41,41,101),
$ uxo(41,41,101),uyo(41,41,101),uz0(41,41,101),
$ uxn(41,41,101),uyn(41,41,101),uzn(41,41,101),

C Stress derivative

$ d(41,41,101),b(221),c(221),a(221),beta(221),

$ gama(41,41,101),

$ difx(41,41,101),dify(41,41,101),difz(41,41,101),
$ difxyx(41,41,101),difxyy(41,41,101),

$ difxzx(41,41,101),

$ difxzz(41,41,101),difyzy(41,41,101),

$ difyzz(41,41,101),

C Additional set

$ ul(41,41,101),u2(41,41,101),u3(41,41,101),
$ ud(41,41,101),

$ u5(41,41,101),u6(41,41,101),

$ u7(41,41,101),u8(41,41,101),

$ u9(41,41,101)

C Data

C Lame constant
clemtal=199.0d+9
clemta2=83.3d+9

C Shear modulus
cmiul=27.0d+9
cmiu2=115.0d+9

C Thermal expansion coefficient
alphal=14.2d-6
alpha2=4.9d-6
open(unit=8, file='etm.txt")
open(unit=7, file="um.txt")

C dimension
Ix=1.0D-4
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ly=1.0D-4
1z=1.0D-7

C grid
nx=20
ny=20
nz=81
nz2=41
dx=Ix/nx
dy=ly/ny
dz=lz/nz

C Time increment
nt=4000
dt=0.005d-12

icounter=0
x(1)=0
y(1)=0
z(1)=0

do i=2,nx+1
x(i)=x(i-1)+dx
enddo

do j=2.ny+1

y()=y(-1)+dy
enddo

do k=2,nz+1
z(k)=z(k-1)+dz
enddo

theta=0.5
C Initial conditions

do i=1,nx+1

do j=1,ny+1

do k=1,nz+1
TEo(i,j,k)=300.0
TLo(i,j,k)=300.0
TEold(i,j,k)=300.0
TLold(i,j,k)=300.0

epxo(i,j,k)=0.0
epyo(i,j,k)}=0.0
epzo(i,j,k)=0.0
saxo(i,j,k)=0.0
sayo(i,j,k)=0.0
sazo(i,j,k)=0.0
xsaoo(i,j,k)=0.0
ysaoo(i,j,k)=0.0
75200(1,j,k)=0.0

ssaooxy(i,j,k)=0.0
ssaooxz(i,j,k)=0.0
ssaooyz(i,j,k)=0.0
difx(i,j,k)=0.0
dify(i,j,k)=0.0
difz(i,j,k)=0.0
difxyx(i,j,k)=0.0
difxyy(i,j,k)=0.0
difxzx(i,j,k)=0.0



difxzz(i,j,k)=0.0
difyzy(i,j,k)=0.0
difyzz(i,j,k)=0.0
enddo
enddo
enddo

do i=1,nx

do j=1,ny+1

do k=1,nz+1

uxo(i,j,k)=0.0
vxo(i,j,k)=0.0
enddo

enddo

enddo

do i=1,nx+1
do j=1,ny

do k=1,nz+1
uyo(i,j,k)=0.0
vyo(i,j,k)=0.0
enddo

enddo

enddo

do i=1,nx+1
do j=1,ny+1
do k=1,nz
uzo(i,j,k)=0.0
vzo(i,j,k)=0.0
enddo

enddo

enddo

do i=1,nx

do j=1,ny

do k=2,nz
epxyo(i,j,k)=0.0
saxyo(i,j,k)=0.0
enddo

enddo

enddo

do i=1,nx

do j=2,ny

do k=1,nz
epxzo(i,j,k)=0.0
saxzo(i,j,k)=0.0
enddo

enddo

enddo

do i=2,nx

do j=1,ny

do k=1,nz
epyzo(i,j,k)=0.0
sayzo(i,j,k)=0.0
enddo

enddo

enddo

n=1

TEm(n)=0.0
TLm(n)=0.0

big=0.0
write(*,*) 'start’

do 1 n=1,nt
t(n)=n*dt

tl(n)=(n-1)*dt+dt/2.0

C Guess normal and shear strain Ex, Ey, Ez, Exy,

Eyz, Exz Values

do i=1,nx+1
do j=1,ny+1
do k=1,nz+1

epxn(i,j,k)=epxo(i,j,k)
epyn(i,j,ky=epyo(i,.k)
epzn(i,j,k)=epzo(i,j,k)
epxyn(i,j,k)y=epxyo(i,j,k)
epyzn(i,j.ky=epyzo(i,j,k)
epxzn(i,j,k)=epxzo(i,j,k)

enddo
enddo
enddo

C lteration

tol=1d-17
detuvmax=tol+1d-5

do while (detuvmax.gt.tol)

detuvmax=0.0
detlmax=0.0
det2max=0.0
det3max=0.0
det4max=0.0
det5max=0.0
detémax=0.0

C Call subroutine calculate temperature

Call temp(nx,ny,nz,nz2.dx,dy,dz,x,y,z,t1(n),dt,TLo,
$ TLold,TEo,TEold,epxn,epyn,epzn,epxo,epyo,epzo)

C Compute normal stress

do j=1,ny+1

do k=1,nz+1
saxn(1,j,k)=0.0
saxn(nx+1,},k)=0.0
end do

end do

do i=1,nx+1

do k=1,nz+1
sayn(i,1,k)=0.0
sayn(i,ny+1,k)=0.0
end do

end do
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do j=1,ny+1

do i=1,nx+1
sazn(i,j,1)=0.0
sazn(i,j,nz+1)=0.0
end do

end do

do i=2,nx
do j=2,ny

C gold

o oa e LR

9 B B

clemta=clemtal

cmiu=cmiul

alpha=alphal

do k=2,n72
saxn(i,j,k)=(clemta+2.0*cmiu)*epxn(i,j,k)
+clemta*epyn(i,j,k)

+clemta*epzn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)

sayn(i,j,k)=clemta*epxn(i,j,k)
+(clemta+2.0*cmiu)*epyn(i,j,k)
+clemta*epzn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)

sazn(i,j,k)=clemta*epxn(i,j,k)
+(clemta+2.0*cmiu)*epzn(i,j,k)
+clemta*epyn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)
end do

C Chromium

S B h @ e P

L ]

clemta=clemta2

cmiu=cmiju2

alpha=alpha?2

do k=nz2+2,nz
saxn(i,j,k)=(ctemta+2.0*cmiu)*epxn(i,j,k)
+clemta*epyn(i,j,k)

+clemta*epzn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)

sayn(i,j,k)=clemta*epxn(i,j,k)
+(clemta+2.0*cmiu)*epyn(i,j,k)
+clemta*epzn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)

sazn(i,j,k)=clemta*epxn(i,j,k)
+(clemta+2.0*cmiu)*epzn(i,j,k)
+clemta*epyn(i,j,k)
-(3.0*clemta+2.0*cmiu)*alpha*(TLold(i,j,k)-300.0)
end do

k=nz2+1
saxn(i,j,k)=(saxn(i,j,k+1)+saxn(i,j,k-1))/2
sayn(i,j,k)=(sayn(i,j,k+1)+sayn(i,j,k-1))/2
end do

end do

C Calculate shear stress

do j=1,ny

do k=2,nz
saxyn(1,j,k)=0.0
saxyn(nx,j,k)=0.0
end do

end do

do i=1,nx

do k=2,nz
saxyn(i,1,k)=0.0
saxyn(i,ny,k)=0.0
end do

end do

do j=2,ny-1

do i=2,nx-1

clemta=clemtal

cmiu=cmiul

alpha=alphal

do k=2,nz2
saxyn(i,j,ky=cmiu*epxyn(i,j,k)
end do

clemta=clemta2

cmiu=cmiu2

alpha=alpha2

do k=nz2+2,nz
saxyn(i,j,k)=cmiu*epxyn(i,j,k)
end do

k=nz2+1
saxyn(i,j,k)=saxyn(i,j,k-1)

end do

end do

do j=2,ny

do k=1,nz
saxzn(1,j,k)=0.0
saxzn(nx,j,k)=0.0
end do

end do

do i=1,nx

do j=2,ny
saxzn(i,j,1)=0.0
saxzn(i,j,nz)=0.0
end do

end do

do j=2,ny

do i=2,nx-1

clemta=clemtal

cmiu=cmiul

alpha=alphal

do k=2,nz2
saxzn(i,j,k)=cmiu*epxzn(i,j,k)
end do

clemta=clemta2

cmiu=cmiu2

alpha=alpha2

do k=nz2+1,nz-1
saxzn(i,j,k)=cmiu*epxzn(i,j,k)
end do

end do
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end do

do i=2,nx

do k=1,nz
sayzn(i,1,k)=0.0
sayzn(i,ny,k)=0.0
end do

end do

do i=2,nx

do j=1,ny
sayzn(i,j,1)=0.0
sayzn(i,j,nz)=0.0
end do

end do

do j=2,ny-1

do i=2,nx

clemta=clemtal

cmiu=cmiul

alpha=alphal

do k=2,nz2
sayzn(i,j,k)=cmiu*sayzn(i,j,k)
end do

clemta=clemta2

cmiu=cmiu2

alpha=alpha2

do k=nz2+1,nz-1
sayzn(i,j,k)=cmiu*sayzn(i,j,k)
end do

end do

end do

C Calculate derivative of stress difx

do k=2,nz

do j=2,ny
difx(1,j,k)=(saxn(2,j,k)-saxn(1,j,k))/dx
difx(nx,j,k)=(saxn(nx+1,j,k)-saxn(nx,j,k))/dx
end do

end do

b(2)=0.0
a(2)=11.0/12.0
¢(2)=-1.0/24.0

do k=2,nz

do j=2,ny
d(2,j,k)=(saxn(3,j,k)-saxn(2,j,k))/dx
-1.0/24.0*difx(1.j,k)

end do

end do

do i=3,nx-2

b(i)=-1.0/24.0

a(i)=11.0/12.0

c(i)=-1.0/24.0

do j=2,ny

do k=2,nz
d(i,j,k)=(saxn(i+1,j,k)-saxn(i,j,k))/dx
end do

end do

$

end do

b(nx-1)=-1.0/24.0
a(nx-1)=11.0/12.0
c(nx-1)=0.0

do k=2,nz

do j=2,ny
d(nx-1,j,k)=(saxn(nx,j,k)-saxn(nx-1,j,k))/dx
-1.0/24.0*difx(nx,j,k)

end do

end do

beta(nx)=0.0

do k=2,nz

do j=2,ny
gama(nx,j,k)=0.0
end do

end do

do m=2,nx-1

i=nx-m+1

beta(i)=b(i)/(a(i)-c(i)*beta(i+1))

do j=2,ny

do k=2,nz
gama(i,j,k)=(d(i,j,k)+c(i)*gama(i+1,j,k))/(a(i)
-c(i)*beta(i+1))

end do

end do

end do

do j=2,ny

do k=2,nz
ul(1,3,k)=0.0
end do

end do

do i=2,nx-1

do j=2,ny

do k=2,nz
ul(i,j,k)=beta(i)*ul(i-1,j,k)+gama(i,j,k)
difx(i,j,k)=ul(i,j,k)

end do

end do

end do

do i=1,nx
a(i)=0
b(i)=0
c(i)=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i.j,k)=0.0
end do

end do

end do

C Calculate derivative of stress dify

do k=2,nz
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do i=2,nx
dify(i, 1,k)=(sayn(i,2,k)-sayn(i,1,k))/dy

dif}’(i,ny,k)z(sayn(iany+1 ,k)'sayn(i,n)’:k))/dy

end do
end do

b(2)=0.0
a(2)=11.0/12.0
¢(2)=-1.0/24.0

do k=2,nz

do i=2,nx
d(i,2,k)=(sayn(i,3,k)-sayn(i,2,k))/dy
-1.0/24.0*dify(i,1,k)

end do

end do

do j=3,ny-2

b(j)=-1.0/24.0

a(j)=11.0/12.0

c(j)=-1.0/24.0

do i=2,nx

do k=2,nz
d(i,j,k)=(sayn(i,j+1,k)-sayn(i,j,k))/dy
end do

end do

end do

b(ny-1)=-1.0/24.0
a(ny-1)=11.0/12.0
c(ny-1)=0.0

do i=2,nx

do k=2,nz
d(i,ny-1,k)=(sayn(i,ny,k)-sayn(i,ny-1,k))/dy
-1.0/24.0*dify(i,ny.k)

end do

end do

beta(ny)=0.0

do i=2,nx

do k=2,nz
gama(i,ny,k)=0.0
end do

end do

do m=2,ny-1

j=ny-m+1
beta(j)=b(j)/(a(j)-c(G)*beta(j+1))
do i=2,nx

do k=2,nz

gama(i,j,k)=(d(i.j,k)+c(j)*gama(ij+1,k))/(a()

-c(j)*beta(j+1))
end do
end do
end do

do i=2,nx

do k=2,nz
u2(i,1,k)=0.0
end do

end do

do j=2,ny-1

do i=2,nx

do k=2,nz
u2(i,j,k)=beta(j)*u2(i,j-1,k)+gama(i,j,k)
dify(i,j,k)=u2(i,j.k)

end do

end do

end do

do i=1,nx
a(iy=0
b(i)=0
c(iy=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(ij,k)=0.0
end do

end do
end do

C Calculate derivative of stress difz

do i=2,nx

do j=2,ny

difz(i,j,1)=(sazn(i,j,2)-sazn(i,j, 1))/dz
difz(i,j,nz)=(sazn(i,j,nz+1)-sazn(i,j,nz))/dz
end do

end do

b(2)=0.0
a(2)=11.0/12.0
¢(2)=-1.0/24.0

do i=2,nx
do j=2,ny
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d(ij,2)=(sazn(i,j,3)-sazn(ij,2))/dz-1.0/24.0*difz(ij,1)

end do
end do

do k=3,nz-2

b(k)=-1.0/24.0

a(k)=11.0/12.0

c(k)=-1.0/24.0

do j=2,ny

do i=2,nx
d(i,j,k)=(sazn(i,j,k+1)-sazn(i,j,k))/dz
end do

end do

end do

b(nz-1)=-1.0/24.0
a(nz-1)=11.0/12.0
¢(nz-1)=0.0

do i=2,nx

do j=2,ny
d(i,j,nz-1)=(sazn(i,j,nz)-sazn(i,j,nz-1))/dz
-1.0/24.0*difz(i,j,nz)

end do



end do

beta(nz)=0.0

do i=2,nx

do j=2,ny
gama(i,j,nz)=0.0
end do

end do

do m=2,nz-1

k=nz-m+1

beta(k)=b(k)/(a(k)-c(k)*beta(k+1))

do j=2,ny

do i=2,nx
gama(i,j,k)=(d(i,j,k)+c(k)*gama(i,j.k+1))/(a(k)
-c(k)*beta(k+1))

end do

end do

end do

do i=2,nx
do j=2,ny
u3(i,j,1)=0.0
end do

end do

do i=2,nx

do j=2,ny

do k=2,nz-1
u3(i,j,k)=beta(k)*u3(i,j,k-1)+gama(i,j,k)
difz(i,j,k)=u3(i,j,k)

end do

end do

end do

do i=1,nx
a(i)=0
b(i)=0
c(i)=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i3,k)=0.0
end do

end do

end do

C Calculate derivative of stress difxyx

do k=2,nz

do j=1,ny
difxyx(2,j,k)=(saxyn(2,j,k)-saxyn(1,j,k))/dx
difxyx(nx,j,k)y=(saxyn(nx,j,k)-saxyn(nx- 1,j,k))/dx
end do

end do

b(3)=0.0
a(3)=11.0/12.0
c(3)=-1.0/24.0

do k=2,nz

do j=l,ny
d(3.j,k)=(saxyn(3,j,k)-saxyn(2,j,k)/dx
-1.0/24.0*difxyx(2,j,k)

end do

end do

do i=4,nx-2

b(i)=-1.0/24.0

a(i)=11.0/12.0

c(i)=-1.0/24.0

do j=1,ny

do k=2,nz
d(i,j,k)=(saxyn(i,j,k)-saxyn(i-1,j,k))/dx
end do

end do

end do

b(nx-1)=-1.0/24.0
a(nx-1)=11.0/12.0
c(nx-1)=0.0

do k=2,nz

do j=1,ny
d(nx-1,j,k)=(saxyn(nx-1,j,k)-saxyn(nx-2,j,k))/dx
-1.0/24.0*difxyx(nx,j,k)

end do
end do

beta(nx)=0.0

do k=2,nz

do j=l,ny
gama(nx,j,k)=0.0
end do

end do

do m=3,nx-1

i=nx-m+2

beta(i)=b(i)/(a(i)-c(i)*beta(i+1))

do j=L,ny

do k=2,nz
gama(i,j,k)=(d(ij,k)*+c(i)*gama(i+1,j,k))/(a(i)
-c(i)*beta(i+1))

end do

end do

end do

do j=1,ny

do k=2,nz
u4(2,j,k)=0.0

end do

end do

do i=3,nx-1

do j=1,ny

do k=2,nz
ud(i,j,k)=beta(i)*u4(i-1,j,k)}+gama(i,j,k)
difxyx(i,j,k)=ud(i,j,k)
end do

end do

end do

do i=1,nx



a(iy=0
b(i)=0
c(i)=0
beta(i)=0
do j=l,ny
do k=1,nz
gama(i,j,k)=0.0
d(i,j,k)=0.0
end do

end do

end do

C Calculate derivative of stress difxyy

do k=2,nz

do i=1,nx
difxyy(i,2,k)=(saxyn(i,2,k)-saxyn(i, 1,k))/dy
difxyy(i,ny.k)=(saxyn(i,ny,k)-saxyn(i,ny-1,k))/dy
end do

end do

b(3)=0.0
a(3)=11.0/12.0
¢(3)=-1.0/24.0

do k=2,nz
do i=1,nx
d(i,3,k)=(saxyn(i,3,k)-saxyn(i,2,k))/dy

$ -1.0/24.0*difxyy(i,2,k)

end do
end do

do j=4,ny-2

b(j)=-1.0/24.0

a(j=11.0/12.0

c(j=-1.0/24.0

do i=1,nx

do k=2,nz
d(i,j,k)=(saxyn(i,j,k)-saxyn(i,j-1,k))/dy
end do

end do

end do

b(ny-1)=-1.0/24.0
a(ny-1)=11.0/12.0
c(ny-1)=0.0

do k=2,nz

do i=1,nx
d(i,ny-1,k)=(saxyn(i,ny-1,k)-saxyn(i,ny-2,k))/dy
-1.0/24.0*difxyy(i,ny.k)

end do

end do

beta(ny)=0.0

do k=2,nz

do i=1,nx
gama(i,ny,k)=0.0
end do

end do

do m=3,ny-1
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j=ny-m+2

beta(j)=b(j)/(a(j)-c(j)*beta(j+1))

do i=1,nx

do k=2,nz
gama(i,j,k)=(d(i,j.k)+c()*gama(i,j+1,k))/(a)
-c(j)*beta(j+1))

end do

end do

end do

do i=1,nx

do k=2,nz
u5(i,2,k)=0.0

end do

end do

do i=1,nx

do j=3,ny-1

do k=2,nz
u5(i,j,k)=beta(j)*u5(i,j- 1.k)+gama(i,j,k)
difxyy(i.j,k)=u5(,},k)
end do

end do

end do

do i=1,nx
a(iy=0
b(i)=0
c(i=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i,j,k)=0.0
end do

end do

end do

C Calculate derivative of stress difxzx

do k=1,nz

do j=2,ny
difxzx(2,j,k)=(saxzn(2,j,k)-saxzn(1,j,k))/dx
difxzx(nx,j,k)=(saxzn(nx,j,k)-saxzn(nx-1,j,k))/dx
end do

end do

b(3)=0.0
a(3)=11.0/12.0
c(3)=-1.0/24.0

do k=1,nz

do j=2,ny
d(3,j,k)=(saxzn(3.j,k)-saxzn(2,j,k))/dx
-1.0/24.0*difxzx(2,j,k)

end do

end do

do i=4,nx-2
b(i)=-1.0/24.0
a(i)=11.0/12.0
c(i)=-1.0/24.0
do j=2,ny



do k=1,nz
d(i,j,k)=(saxzn(i,j,k)-saxzn(i- 1,j,k))/dx
end do

end do

end do

b(nx-1)=-1.0/24.0
a(nx-1)=11.0/12.0
¢(nx-1)=0.0

do k=1,nz

do j=2,ny
d(nx-1,j,k)=(saxzn(nx-1,j,k)-saxzn(nx-2,j,k))/dx
-1.0/24.0 *difxzx(nx,j,k)

end do

end do

beta(nx)=0.0

do k=1,nz

do j=2,ny
gama(nx,j,k)=0.0
end do

end do

do m=3,nx-1

i=nx-m+2

beta(i)=b(i)/(a(i)-c(i)*beta(i+1))

do j=2,ny

do k=1,nz
gama(i,j,k)y=(d(i,j,k)+c(i)*gama(i+1,j,k))/(a(i)
-c(i)*beta(i+1))

end do

end do

end do

do j=1,ny

do k=2,nz
u6(2,j,k)=0.0

end do

end do

do i=3,nx-1

do j=2,ny

do k=1,nz
u6(i,j,k)=beta(iy*u6(i-1,j,k)+gama(i,j,k)
difxzx(i,j,k)=u6(i,j,k)
end do

end do

end do

do i=1,nx
a(i)=0
b(i)=0
c(i)=0
beta(i)=0
do j=1,ny
dok=1,nz
gama(i,j,k)=0.0
d(i.j,k)=0.0
end do

end do

end do
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C Calculate derivative of stress difxzz

do i=1,nx

do j=2,ny
difxzz(i,j,2)=(saxzn(i,j,2)-saxzn(i,j,1))/dz
difxzz(i,j,nz)=(saxzn(i,j,nz)-saxzn(i,j,nz-1))/dz
end do

end do

b(3)=0.0
a(3)=11.0/12.0
¢(3)=-1.0/24.0

do i=1,nx

do j=2,ny
d(i,j,3)=(saxzn(i,j,3)-saxzn(i,j,2))/dz
-1.0/24.0*difxzz(i,j,2)

end do

end do

do k=4,nz-2

b(k)=-1.0/24.0

a(k)=11.0/12.0

c(k)=-1.0/24.0

do j=2,ny

do i=l,nx
d(i,j,k)=(saxzn(i,j,k)-saxzn(i,j,k-1))/dz
end do

end do

end do

b(nz-1)=-1.0/24.0
a(nz-1)=11.0/12.0
c(nz-1y=0.0

do i=1,nx

do j=2,ny
d(i,j,nz-1)=(saxzn(i,j,nz-1)-saxzn(i,j,nz-2))/dz
-1.0/24.0*difxzz(i,j,nz)

end do

end do

beta(nz)=0.0

do i=1,nx

do j=2,ny
gama(i,j,nz)=0.0
end do

end do

do m=3,nz-1

k=nz-m+2

beta(k)y=b(k)/(a(k)-c(k)*beta(k+1))

do j=2,ny

do i=1,nx

gama(i,j,k)=(d(i,j,k)+c(k)* gama(i,j,k+1))/(a(k)
-c(k)*beta(k+1))

end do

end do

end do

do i=1,nx
do j=2,ny



u7(i,j,2)=0.0

end do

end do

do i=1,nx

do j=2,ny

do k=3,nz-1
u7(i,j,k)=beta(k)*u7(i,j,k-1 y+gama(i,j,k)
difxzz(i,j,k)=u7(i,j,k)
end do

end do

end do

do i=1,nx
a(i)=0
b(i)=0
c(i)=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i,j,k)=0.0
end do

end do

end do

C Calculate derivative of stress difyzy

do k=1,nz

do i=2,nx
difyzy(i,2,k)=(sayzn(i,2,k)-sayzn(i, 1,k))/dy
difyzy(i,ny,k)=(sayzn(i,ny,k)-sayzn(i,ny-1,k))/dy
end do

end do

b(3)=0.0
a(3)=11.0/12.0
¢(3)=-1.0/24.0

do k=1,nz

do i=2,nx

d(i,3,k)=(sayzn(i,3,k)-sayzn(i,2,k))/dy
$ -1.0/24.0%difyzy(i,2,k)

end do

end do

do j=4,ny-2

b(j)=-1.0/24.0

a(j=11.0/12.0

c(j)=-1.0/24.0

do i=2,nx

do k=1,nz
d(i,j,k)=(sayzn(i,j,k)-sayzn(i,j- 1,k))/dy
end do

end do

end do

b(ny-1)=-1.0/24.0

a(ny-1)=11.0/12.0
¢(ny-1)=0.0

do k=1,nz
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do i=2,nx
d(i,ny-1,k)=(sayzn(i,ny-1,k)-sayzn(i,ny-2,k))/dy

$ -1.0/24.0%difyzy(i,ny.k)

end do
end do

beta(ny)=0

do k=1,nz

do i=2,nx
gama(i,ny,k)=0
end do

end do

do m=3,ny-1

j=ny-m+2

beta(j)=b(j)/(a(j)-c(j)*beta(j+1))

do i=2,nx

do k=1,nz
gama(i,j,k)=(d(ij,k)+c(j)*gama(i,j+1,k))/(a()
-c(j)*beta(j+1))

end do

end do

end do

do i=2,nx

do k=1,nz
u8(i,2,k)=0.0

end do

end do

do i=2,nx

do j=3,ny-1

do k=1,nz
u8(i,j,k)=beta(j)*u8(i,j-1,k)+gama(i,j,k)
difyzy(i,j,k)=u8(i,j,k)
end do

end do

end do

do i=1,nx
a(i)=0
b(i)=0
c(iy=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i,j,k)=0.0
end do

end do

end do

C Calculate derivative of stress difyzz

do i=2,nx

do j=1,ny
difyzz(i,j,2)=(sayzn(i,j,2)-sayzn(i,j,1))/dz
difyzz(i,j,nz)=(sayzn(i,j,nz)-sayzn(i,j,nz-1))/dz
end do

end do

b(3)=0.0
a(3)=11.0/12.0



¢(3)=-1.0/24.0

do i=2,nx

do j=1,ny
d(i,j,3)=(sayzn(i,j,3)-sayzn(i,j,2))/dz
-1.0/24. 0*difyzz(i,j,2)

end do

end do

do k=4,nz-2

b(k)=-1.0/24.0

a(k)=11.0/12.0

c(k)=-1.0/24.0

do j=1,ny

do i=2,nx
d(iJ.k)=(sayzn(i,j,k)-sayzn(i,j,k-1))/dz
end do

end do

end do

b(nz-1)=-1.0/24.0
a(nz-1)=11.0/12.0
c(nz-1)=0.0

do i=2,nx

do j=1,ny

d(i,j,nz- 1)=(sayzn(i,j,nz-1)-sayzn(i,j,nz-2))/dz
-1.0/24.0 *difyzz(i,j,nz)

end do

end do

beta(nz)=0.0

do i=2,nx

do j=1,ny
gama(i,j,nz)=0.0
end do

end do

do m=3,nz-1

k=nz-m+2
beta(k)=b(k)/(a(k)-c(k)*beta(k+1))
do j=1,ny
do i=2,nx

gama(i,j,k)=(d(i,j,k)+c(k)*gama(i,j,k+1))/(a(k)

-c(k)*beta(k+1))
end do
end do
end do

do i=2,nx

do j=1,ny
u9(i,j,2)=0.0

end do

end do

do i=2,nx

do j=1,ny

do k=3,nz-1
u9(i,j,k)=beta(k)*u9(i,j,k-1)+gama(i,j,k)
difyzz(i,j,k)=u9(i,j,k)
end do

end do

end do
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do i=1,nx
a(iy=0
b(i)=0
c(iy=0
beta(i)=0
do j=1,ny
do k=1,nz
gama(i,j,k)=0.0
d(i.j,k)=0.0
end do

end do

end do

C Calculate velocity

call velocity(nx,ny,nz,nz2,dx,dy,dz,dt, TEo,TEold,
$ saxo,sayo,sazo,saxyo,saxzo,sayzo,
$ saxn,sayn,sazn,saxyn,saxzn,sayzn,vxo,
$ vyo,vzo,vxn,vyn,vzn,
$ uxo,uyo,uzo,uxn,uyn,uzn,difx,dify,
$ difz,difxyy,difxzz,difxyx,difyzz,difxzx,difyzy)

C Calculate strain

do k=2,nz

do j=2,ny

do i=2,nx

epxn(i,j,k)=(theta*(vxn(i,j,k)-vxn(i-1,j,k))
$ +(1.0-theta)*(vxo(i,j,k)-vxo(i-1,j,k))) *dt/dx
$ +epxo(i,j,k)

epyn(i,j,K)=(theta*(vyn(i,j,k)-vyn(i,j-1,k))
$ +(1.0-theta)*(vyo(i,j,k)-vyo(i,j-1,k)))*dt/dy
$ +epyo(ij,k)

epzn(i,j,k)=(theta*(vzn(i,j,k)-vzn(i,j,k-1))
$ +(1.0-theta)*(vzo(i,j,k)-vzo(i,j,k-1)))*dt/dz
$ +epzo(ij.k)

end do

end do

end do

C Calculate Shear strain

do k=2,nz

do j=2,ny-1

do i=2,nx-1

epxyn(i,j,k)=(theta*(vxn(i,j+1,k)-vxn(i,j,k))
$ +(1.0-theta)*(vxo(i,j+1,k)-vxo(i,j,k)))*dv/dy
$ +(theta*(vyn(i+1,j,k)-vyn(i,j,k))
$ +(1.0-theta)*(vyo(i+1,j,k)-vyo(i,j,k))) *dt/dx
$ +epxyo(i,j,k)

end do

end do

end do

do k=2,nz-1

do j=2,ny

do i=2,nx-1

epxzn(i,j,k)=(theta*(vxn(i,j,k+1)-vxn(i,j,k))
$ +(1.0-theta)*(vxo(i,j,k+1)-vxo(i,j,k)))*dt/dz



$ +(theta*(vzn(i+1,j,k)-vzn(i,j,k))
$ +(1.0-theta)*(vzo(i+1,j,k)-vzo(i,j,k)))*dt/dx
$ +epxzo(i,j,k)

end do

end do

end do

do k=2,nz-1

do j=2,ny-1

do i=2,nx

epyzn(i,j,k)=(theta*(vyn(i,j,k+1)-vyn(i,j,k))
$ +(1.0-theta)*(vyo(i,j,k+1)-vyo(i,j,k)))*dt/dz
$ +(theta*(vzn(i,j+1,k)-vzn(i,j.k))
$ +(1.0-theta)*(vzo(i,j+1,k)-vzo(i,j,k)))*dt/dy
$ +epyzo(i,j,k)

end do

end do

end do

C Check convergence

do k=1,nz+1
do j=1,ny+1
do i=1,nx+1
det1=epxn(i,j,k)-xsaoo(i,j,k)
det2=epyn(i,j,k)-ysaoo(i,j,k)
det3=epzn(i,j,k)-zsaoo(i,j,k)
detd=epxyn(i,j,k)-ssaooxy(i,j,k)
det5=epxzn(i,j,k)-ssaooxz(i,j,k)
deté=epyzn(i,j,k)-ssaooyz(i,j,k)
det=max(abs(det1),abs(det2),abs(det3),abs(det4),
$ abs(det5),abs(det6))

if( abs(det).gt.detuvmax) detuvmax=abs(det)
if( abs(detl).gt.detl max) detlmax=abs(det1)
if( abs(det2).gt.det2max) det2max=abs(det2)
if( abs(det3).gt.det3max) det3max=abs(det3)
if( abs(det4).gt.detdmax) detdmax=abs(det4)
if( abs(det5).gt.detSmax) detSmax=abs(det5)
if( abs(det6).gt.detbémax) detémax=abs(det6)
end do

end do

end do

do k=1,nz+1

do j=l,ny+1

do i=1,nx+1
xsa00(i,j,k)y=epxn(i,j,k)
ysaoo(i,j,k)=epyn(i,j,k)
zsa00(i,j,k)=epzn(i,j,k)
ssaooxy(i,j,k)=epxyn(i,j,k)
ssaooxz(i,j,k)=epxzn(i,j,k)
ssaooyz(i,j,k)=epyzn(i,j,k)
end do

end do

end do

write(*,*) 'detuvmax=', detuvmax
C End do with detmax

enddo
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C End the current time step

C

do k=1,nz+1

do j=1ny+1

do i=1,nx+1
TEo(i,j,.k)=TEold(i,j,k)
TLo(i,j,k)=TLold(i,j,k)
epxo(ij,ky=epxn(i,j,k)
epyo(ij.k)=epyn(i,j,k)
epzo(i,j,k)=epzn(i,j,k)
epxyo(i,j,k)=epxyn(i,j,k)
epxzo(i,j,k)=epxzn(i,j,k)
epyzo(i,j,k)=epyzn(i,j,k)
saxo(i,j,k)=saxn(i,j,k)
sayo(i,j,k)=sayn(i,},k)
sazo(i,j,k)=sazn(i,j,k)
saxyo(i,j,k)=saxyn(i,j,k)
saxzo(i,j,k)=saxzn(i,j,k)
sayzo(i,j,k)=sayzn(i,j,k)
vxo(ij,k)=vxn(i,j,k)
vyo(i,j,k)=vyn(i,j,k)
vzo(i,j,k)=vzn(i,j,k)
uxo(i,j,k)=uxn(i,j,k)
uyo(i,jK)=uyn(i,j,k)
uzo(i,j,k)=uzn(i,j,k)

end do

end do

end do

if (big.1t.(TEold(11,11,1)-300.0)) then
big=TEold(11,11,1)-300.0
end if

TEm(n)=TEold(11,11,1)
TLm(n)=TLold(11,11,1)
ulm(n)=uxn(11,11,2)
u2m(n)=uyn(11,11,2)
u3m(n)=uzn(11,11,1)
vim(n)=vxn(11,11,2)
v2m(n)=vyn(11,11,2)
v3m(n)=vzn(11,11,1)

icounter=icounter+1
write(*,*) icounter

C Output

write(8,1020) t(n), TEm(n), TLm(n)
write(7,1020) t(n),ulm(n),u2m(n),u3m(n)

C Output intermediate result

if (n.eq.50) then

C The result at time t=0.25ps
C Electron temp

open(unit=10,file="ctexz025ps.txt')

do k=1,nz+1

write(10,1010) (TEold(i,11,k),i=1,nx+1)
enddo



open(unit=11,file="te025ps.txt")
do k=1,nz+1
write(11,1020) TEold(11,11,k)
enddo

C Lattice temp
open(unit=12 file="ctlxz025ps.txt")
do k=1,nz+1
write(12,1010) (TLold(i,11,k),i=1,nx+1)
enddo
open(unit=13,file="t1025ps.txt")
do k=1,nz+1
write(13,1020) TLold(11,11.k)
enddo
end if

if (n.eq.100) then

C The result at time t=0.5ps

C Electron temp
open(unit=14,file="ctexz05ps.txt')
do k=1,nz+1
write(14,1010) (TEold(i,11,k),i=1,nx+1)
enddo
open(unit=15,file="te05ps.txt")
do k=1,nz+1
write(15,1020) TEold(11,11,k)
enddo

C Lattice temp
open(unit=16file="ctlxz05ps.txt")
do k=1,nz+1
write(16,1010) (TLold(i,1 1,k),i=1,nx+1)
enddo
open(unit=17,file="t105ps.txt")
do k=1,nz+1
write(17,1020) TLold(11,11,k)
enddo
end if

if (n.eq.200) then

C The result at time t=1ps

C Electron temp
open(unit=18,file='ctexz1ps.txt')
do k=1,nz+1
write(18,1010) (TEold(i, 1 1,k),i=1,nx+1)
enddo
open(unit=19,file="te1ps.txt')
do k=1,nz+1
write(19,1020) TEold(11,11,k)
enddo

C Lattice temp
open(unit=20,file="ctlxz1ps.txt")
do k=1,nz+1
write(20,1010) (TLold(i,11,k),i=1,nx+1)
enddo
open(unit=21,file="tl1 ps.txt')
do k=1,nz+1
write(21,1020) TLold(11,11,k)
enddo

C Stress
open(unit=22 file='saz1ps.txt’)
do k=1,nz+1
write(22,1020) sazn(11,11,k)
enddo

open(unit=76,file="sax 1 ps.txt')
do k=2,nz

write(76,1020) saxn(11,11,k)
enddo

open(unit=77 file='say1ps.txt')
do k=2,nz

write(77,1020) sayn(11,11,k)
enddo

end if

if (n.eq.1000) then

C The result at time t=5ps

C Displacement un

open(unit=23,file='uxnxz5ps.txt')
do k=2,nz

write(23,1010) (uxn(i,11,k),i=1,nx)
enddo
open(unit=24,file='uznxz5ps.txt')
do k=1,nz

write(24,1010) (uzn(i,11,k),i=1,nx)
enddo
open(unit=25,file="uynyz5ps.txt")
do k=2,nz

write(25,1010) (uyn(11,j,k),j=1,ny)
enddo
open(unit=64,file="uxn5ps.txt')

do k=2,nz

write(64,1020) uxn(11,11,k)

enddo
open(unit=65,file="uyn5ps.txt')

do k=2,nz

write(65,1020) uyn(11,11,k)

enddo
open(unit=66,file='uzn5ps.txt")

do k=1,nz

write(66,1020) uzn(11,11,k)

enddo

C Stress

open(unit=26,file='saxxz35ps.txt")

do k=2,nz

write(26,1010) (saxn(i,11,k),i=1,nx+1)
enddo
open(unit=27,file='sazxz5ps.txt’)

do k=1,nz+1

write(27,1010) (sazn(i,1 1,k),i=1,nx+1)
enddo
open(unit=28.file="sayyz5ps.txt')

do k=2,nz

write(28,1010) (sayn(1 1,j,k),j=1,ny+1)
enddo

open(unit=29,file="saz5ps.txt')

do k=1,nz+1

write(29,1020) sazn(11,11,k)

enddo

open(unit=78,file="sax5ps.txt')

do k=2,nz

write(78,1020) saxn(11,11,k)

enddo

open(unit=79,file="say5ps.txt")

do k=2,nz

write(79,1020) sayn(11,11,k)
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enddo
end if

if (n.eq.2000) then
C The result at time t=10ps

open(unit=30,file='ctexz10ps.txt')
do k=1,nz+1
write(30,1010) (TEold(i,11,k),i=1,nx+1)
enddo
open(unit=31,file="te10ps.txt")
do k=1,nz+1
write(31,1020) TEold(11,11,k)
enddo

C Lattice temp
open(unit=32,file="ctlxz10ps.txt')
do k=1,nz+1
write(32,1010) (TLold(i,11,k),i=1,nx+1)
enddo
open(unit=63,file="t110ps.txt")
do k=1,nz+1
write(63,1020) TLold(11,11,k)
enddo

C Displacement un
open(unit=33,file="uxnxz10ps.txt')
do k=2,nz
write(33,1010) (uxn(i,11,k),i=1,nx)
enddo
open(unit=34,file='uznxz10ps.txt')
do k=1,nz
write(34,1010) (uzn(i,11,k),i=1,nx)
enddo
open(unit=35,file="uynyz10ps.txt")
do k=2,nz
write(35,1010) (uyn(11,j,k).j=1,ny)
enddo
open(unit=67,file="uxn10ps.txt")
do k=2,nz
write(67,1020) uxn(11,11,k)
enddo
open(unit=68,file="uyn10ps.txt')
do k=2,nz
write(68,1020) uyn(11,11,k)
enddo
open(unit=69,file="uzn10ps.txt')
dok=1,nz
write(69,1020) uzn(11,11,k)
enddo

C Stress
open(unit=36,file="saxxz10ps.txt')
do k=2,nz
write(36,1010) (saxn(i,11,k),i=1,nx+1)
enddo
open(unit=37,file="sazxz10ps.txt')
do k=1,nz+1
write(37,1010) (sazn(i,11,k),i=1,nx+1)
enddo
open(unit=38,file="sayyz10ps.txt')
do k=2,nz
write(38,1010) (sayn(11,3,k),j=1,ny+1)
enddo
open(unit=39,file='saz10ps.txt")
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do k=1,nz+1

write(39,1020) sazn(11,11,k)
enddo
open(unit=80,file="sax10ps.txt")
do k=2,nz

write(80,1020) saxn(11,11,k)
enddo
open(unit=81,file="say10ps.txt")
do k=2,nz

write(81,1020) sayn(11,11,k)
enddo

end if

if (n.eq.3000) then

C The result at time t=15ps
C Displacement un

open(unit=40,file="uxnxz15ps.txt')

C Stress

do k=2,nz

write(40,1010) (uxn(i,11,k),i=1,nx)
enddo
open(unit=41,file="'uznxz15ps.txt")
do k=1,nz

write(41,1010) (uzn(i,11,k),i=1,nx)
enddo

open(unit=42,file="uynyz1 5ps.txt")
do k=2,nz

write(42,1010) (uyn(11,j,k),j=1,ny)
enddo
open(unit=70,file='uxn15ps.txt')
do k=2,nz

write(70,1020) uxn(11,11,k)

enddo
open(unit=71,file="uyn15ps.txt")

do k=2,nz

write(71,1020) uyn(11,11,k)

enddo
open(unit=72,file="uzn15ps.txt")

do k=1,nz

write(72,1020) uzn(11,11,k)

enddo

open(unit=43, file="saxxz15ps.txt")
do k=2,nz

write(43,1010) (saxn(i,11,k),i=1,nx+1)
enddo

open(unit=44, file='sazxz15ps.txt')
do k=1,nz+1

write(44,1010) (sazn(i,11,k),i=1,nx+1)
enddo
open(unit=45,file="sayyz15ps.txt')
do k=2,nz

write(45,1010) (sayn(11,j,k),j=1,ny+1)
enddo
open(unit=46,file="saz15ps.txt")

do k=1,nz+1

write(46,1020) sazn(11,11,k)
enddo
open(unit=82,file='sax15ps.txt")

do k=2,nz

write(82,1020) saxn(11,11,k)
enddo
open(unit=83,file="say15ps.txt’)

do k=2,nz



write(83,1020) sayn(11,11,k)
enddo
end if
if (n.eq.3400) then

C The result at time t=17ps
open(unit=58,file="saz1 7ps.txt’)
do k=1,nz+1
write(58,1020) sazn(11,11,k)
enddo

end if
if (n.eq.4000) then
C The result at time t=20ps

open(unit=47,file='ctexz20ps.txt')
do k=1,nz+1

write(47,1010) (TEold(i,11,k),i=1,nx+1)

enddo
open(unit=48,file="te20ps.txt')
do k=1,nz+1
write(48,1020) TEold(11,11,k)
enddo

C Lattice temp
open(unit=49,file="ctlxz20ps.txt")
do k=1,nz+1

write(49,1010) (TLold(i,11,k),i=1,nx+1)

enddo
open(unit=50,file="t120ps.txt")
do k=1,nz+1
write(50,1020) TLold(11,11,k)
enddo

C Displacement un
open(unit=51,file='uxnxz20ps.txt')
do k=2,nz
write(51,1010) (uxn(i, 11,k),i=1,nx)
enddo
open(unit=52,file="uznxz20ps.txt")
dok=1,nz
write(52,1010) (uzn(i,11,k),i=1,nx)
enddo
open(unit=53,file="uynyz20ps.txt')
do k=2,nz
write(53,1010) (uyn(1 1,j,k),j=1,ny)
enddo
open(unit=73,file='uxn20ps.txt')
do k=2,nz
write(73,1020) uxn(11,11,k)
enddo
open(unit=74,file="uyn20ps.txt')
do k=2,nz
write(74,1020) uyn(11,11,k)
enddo
open(unit=75,file='uzn20ps.txt")
do k=1,nz
write(75,1020) uzn(11,11,k)
enddo

C Stress
open{unit=54,file="saxxz20ps.txt')
do k=2,nz

write(54,1010) (saxn(i, ! 1,k),i=1,nx+1)

enddo
open(unit=55,file='sazxz20ps.txt'")
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do k=1,nz+1

write(55,1010) (sazn(i,11,k),i=1,nx+1)
enddo
open(unit=56,file="sayyz20ps.txt')

do k=2,nz

write(56,1010) (sayn(11,j,k),j=1,ny+1)
enddo
open(unit=57,file="saz20ps.txt")

do k=1,nz+1

write(57,1020) sazn(11,11,k)

enddo

open(unit=84,file='sax20ps.txt")

do k=2,nz

write(84,1020) saxn(11,11,k)

enddo
open(unit=85,file="say20ps.txt’)

do k=2,nz

write(85,1020) sayn(11,11,k)

enddo

end if

C Complete the whole period

1 enddo
print *, big

open(unit=59.file="Te10(x,y=0).dat")

do k=1,nz+1

write(59,1010) (z(k)*1.0D+6), TEold(11,11,k)
enddo

open(unit=60,file="T110(x,y=0).dat")

do k=1,nz+1

write(60,1010) (z(k)*1.0D+6), TLold(11,11,k)
enddo

open(unit=61,file="Tem224.dat")

do n=1,nt

write(61,1020) (t(n)*1.0D+12),((TEm(n)-300.0)/big)
enddo

open(unit=62,file="um?224.dat’)

do n=1,nt

write(62,1020) (t(n)*1.0D+12),(u3m(n)*1.0D+9)
enddo

open(unit=6,file="sigmaz10(x,y=0).dat")

print *, "zonezsel"

do k=1,nz+1

print *, (z(k)*1.0D+6), (sazn(11,11,k)*1.0D-9)
enddo

1010 format(401¢15.6)
1020 format(e15.6,3¢15.6)
end

C End main program
C Subroutines

C Calculate temperature



subroutine temp(nx,ny,nz,nz2,
$ dx,dy,dzx,y,z,t,dt,TLo,TLold,TEo,TEold,
$ epxn,epyn,epzn,epxo,epyo,epzo)

implicit double precision (a-h,1,0-z)

dimension x(51),y(51),2(221)

dimension TEo(41,41,101),TEold(41,41,101),
TLo(41,41,101),TLold(41,41,101),
TEnew(41,41,101), TLnew(41,41,101),
epxn(41,41,101),epyn(41,41,101),epzn(41,41,101),
epxo(41,41,101),epyo(41,41,101),epzo(41,41,101),
dTE(41,41,101),dTL(41,41,101)

L H B e

integer iteration,flagE, flagl,
C data

C Lame constant
clemtal=199.0d+9
clemta2=83.3d+9

C Shear modulus
cmiul=27.0d+9
cmiu2=115.0d+9

C Thermal expansion coefficient
alphal=14.2d-6
alpha2=4.9d-6

C Electron heat capacity
ce01=2.1d+4
ce02=5.8d+4

C Lattic heat capacity
cl1=2.5d+6
cl2=3.3d+6

C Electron - lattic coupling factor
gl=2.6d+16
22=42.0d+16

C Electron thermal conducitivity
cke01=315.0
cke02=94.0

C Laser fluence
flu=1000.0

C Laser pulse duration
tp=0.1d-12

C Optical penetration depth
delta=15.3d-9

C Surface reflectivity
sur=0.93

C Spatial profile parameters
z5=1.0d-6

iteration=0

rx=dt/(4.0*dx*dx)
ry=dt/(4.0*dy*dy)
rz=dt/(4.0*dz*dz)
deterror=1.0d-3

C Iteration starts:

C flagE and flagl indicate whether TE and TL are
precise enough

C keep on iterating as long as flagE or flagl. equals to 1
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2 doj=2ny
do i=2,nx
clemta=clemtal
cmiu=cmiul
alpha=alphal
ce0=ce01
cl=cll
g=gl
ckeO=cke01
dO=g*dt/(2.0*cl)
ee=(3.0*clemta+2.0*cmiu)*alpha*300.0/cl
do k=2,nz2-1

C Heat source
aa=-z(k)/delta-((x(i)-10.0*dx)*(x(i)-10.0*dx)

$  +(¥()-10.0*dy)*(y(j)-10.0*dy))/(zs*zs)

$  -2.77%(t-2.0%tp)*(1-2.0*tp)/(tp*tp)

q=0.94*flu*(1.0-sur)*exp(aa)/(tp*delta)

a0=ce0*(TEo(i,j,k)+TEold(i,j,k))/(2.0*¥300.0)
bl=cke0*(TEold(i+1,j,k)/TLold(i+1,j,k)
+TEold(i,j,k)/TLold(i,j,k))*rx
b2=cke0*(TEold(i,j,k)/TLold(i,j,k)
+TEold(i-1§,k)/TLold(i-1,j,k))*rx
b3=ckeO*(TEold(i,j+1,k)/TLold(i,j+1,k)
+TEold(i,j,k)/TLold(.j,k))*ry
bd=cke0*(TEold(i,j,k)/TLold(i,j,k)
+TEold(i,j-1,k)/TLold(i,j-1,k))*ry
bS=ckeO*(TEold(i,j,k+1)/TLold(i,j,k+1)
+TEold(i,j,k)/TLold(i,j,k))*rz
b6=cke0*(TEold(i,j,k)/TLold(i,j,k)
+TEold(i,j,k-1)/TLold(i,j,k-1))*rz

®

L=~ B A ]

cl=cke0*(TEo(i+1,j,k)/TLo(i+1,j,k)
+TEo(i,j,k)/TLo(i.j.k))*rx
c2=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i-1,j,k)/TLo(i-1,j,k))*rx
c3=cke0*(TEo(i,j+1,k)/TLo(i,j+1,k)
+TEo(i,j,k)/TLo(i,j,k))*ry
cd=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i,j-1,k)/TLo(i,j-1,k))*ry
¢5=cke0*(TEo(i,j,k+1)/TLo(i,j,k+1)
+TEo(i,j,k)/TLo(i,j,k))*rz
c6=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i,j,k-1)/TLo(i,j,k-1))*rz
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dd=a0+b1+b2+b3+bd+b5+b6+g*dt/(2.0%(1.0+d0))
TEnew(i,j,k)=(b1*TEold(i+1,j,k)+b2*TEold(i-1,j,k)
+b3*TEold(i,j+1,k)+b4*TEold(i,j-1,k)
+b5*TEold(i,j,k+1)+b6*TEold(i,j,k-1)
-g*dt*(TEo(i,j,k)-TLo(i,j,k))/(2.0*(1.0+d0))
+g*dt*TLo(i,j,k)/(2.0*(1.0+d0))+a0*TEo(i,j,k)
-g*dt*ee*((epxn(i,j,k)+epyn(i,j,k)+epzn(i,j,k))
~(epxo(i,jk)+epyo(i,j,k)+epzo(ij;k)))
/(2.0*(1.0+d0))
+c1*(TEo(i+1,j,k)-TEo(i,j,k))
-c2*(TEo(i,j,k)-TEo(i-1,j,k))
+c3*(TEo(i,j+1,k)-TEo(i,j,k))
-c4*(TEo(i,j,k)-TEo(i,j-1,k))
+cS*(TEo(i,j,k+1)-TEo(i,j,k))
-c6*(TEo(i,j,k)-TEo(i,j,k-1))
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+q*dt)/dd

TLnew(i,j,k)=d0*TEnew(i,j,k)/(1.0+d0)

+d0*(TEo(i,j,k)-TLo(i,j,k))/(1.0+d0)
+TLo(i,j,k)/(1.0+d0)
-ee/(1.0+d0)
*((epxn(i,j,k)+epyn(ij.k)+epzn(i,j.k))
-(epxo(i,j.k)
+epyo(i.j,k)+epzo(ij.k)))

end do

clemta=clemta2

cmiu=cmiu2

alpha=alpha2

cel=ce02

cl=cl2

g=g2

ckeO=cke02

dO=g*dt/(2.0*cl)

ee=(3.0*clemta+2.0*cmiu)*alpha*300.0/cl

do k=nz2+1,nz

aa=-z(k)/delta-((x(i)-10.0*dx)*(x(i)-10.0*dx)

+(y(j)-10.0*dy)*(y(j)-10.0*dy))/(zs*zs)
-2.77*(t-2.0*tp)*(t-2.0*tp)/(tp*tp)

q=0.94*flu*(1.0-sur)*exp(aa)/(tp*delta)

a0=ce0*(TEo(i.j,k)+ TEold(i,j,k))/(2.0*300.0)
bl=cke0*(TEold(i+1.j,k)/TLold(i+1,j,k)
+TEold(i,j,k)/TLold(i,j,k))*rx
b2=cke0*(TEold(i,j,k)/TLold(i,j,k)
+TEold(i-1,j,k)/TLold(i-1,j,k))*rx
b3=cke0*(TEold(i,j+1,k)/TLold(i,j+1,k)
+TEold(i,j,k)/TLold(i,j.k))*ry
bd=cke0*(TEold(i,j,k)/TLold(i,j.k)
+TEold(i,j-1,k)/TLold(i,j-1,k))*ry
bS=cke0*(TEold(i,j,k+1)/TLold(i,j,k+1)
+TEold(i,j,k)/TLold(ij,k))*rz
b6=cke0*(TEold(i,j,k)/TLold(i,j,k)
+TEold(i,j,k-1)/TLold(ij,k-1))*rz

cl=cke0*(TEo(i+1,j,k)/TLo(i+1,j,k)
+TEo(i,j,k)/TLo(i,j,k))*rx
¢2=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i-1.j,k)/TLo(i-1,j,k))*rx
c3=cke0*(TEo(i,j+1,k)/TLo(i,j+1,k)
+TEo(i,j,k)/TLo(i,j,k))*ry
cd=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i,j-1,k)/TLoi,j-1,k))*ry
c5=cke0*(TEo(i,j,k+1)/TLo(i,j,k+1)
+TEo(i,j,k)/TLo(i,j,k))*rz
c6=cke0*(TEo(i,j,k)/TLo(i,j,k)
+TEo(i,j,k-1)/TLo(i,j,k-1))*rz

dd=a0+b1+b2+b3+b4+b5+b6+g*dt/(2.0*(1.0+d0))
TEnew(i,j,k)=(b1*TEold(i+1,j,k)+b2*TEold(i-1,j,k)
+b3*TEold(i,j+1,k)}+b4*TEold(i,j-1,k)
+b5*TEold(i,j,k+1)+b6*TEold(i,j,k-1)
-g*dt*(TEo(i,j,k)-TLo(i,j,k))/(2.0*(1.0+d0))
+g*dt*TLo(i,j,k)/(2.0*(1.0+d0))+a0*TEo(i,j,k)
-g*dt*ee*((epxn(i,j,k)+epyn(i,j,k)+epzn(i,j,k))
~(epxo(ij.k)y+epyo(i.k)+epzo(ij,k)))
/(2.0*%(1.0+d0))
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+c1#(TEo(i+1,j,k)-TEo(i,j,k))
-c2*(TEo(i,j,k)-TEo(i-1,j,k))
+c3*(TEo(i,j+1,k)-TEo(i,j,k))
-c4*(TEo(i,j,k)-TEo(ij-1,k))
+05*(TEo(i,j;k+1)-TEo(ij,k))
-c6*(TEo(i,j,k)-TEo(i,j,k-1))
+q*dt)/dd

TLnew(i,j,k)=dO*TEnew(i,j,k)/(1.0+d0)
+d0*(TEo(i,j,k)-TLo(i,j,k))/(1.0+d0)
+TLo(i,j,k)/(1.0+d0)

-ee/(1.0+d0)
*((epxn(i,j,k)+epyn(i,j,k)+epzn(i,j.k))
-(epxo(i,j,k)
+epyo(i,j,k)+epzo(i,j.k)))

end do

k=nz2

C Stenfan-Boltzmann constant

sigma=5.669d-8
bl=cke01*(TEold(i,j,k)/(TLold(i.j,k)))
b2=cke02*(TEold(i,j,k+1)/(TLold(i,j,k+1)))
TEnew(i,j,k)=TEold(i,j,k-1)-sigma*dz/b1*

$ (TEold(i,j,k)**4-TEold(i,j,k+1)**4)

TEnew(i,j,k+1)=TEold(i,j,k+2)-
b1/b2*(TEold(i,j,k)-TEold(ij,k-1))

TLnew(ij,k)=TLold(i,j,k-1)-sigma*dz/cke01*

$ (TLold(i,j,k)**4-TLold(i,j,k+1)**4)
TLnew(i,j,k+1)=TLold(i,j,k+2)-cke01/cke02*

$ (TLold(i,j,k)-TLold(i,j,k-1))
end do
end do

C Boundary Conditions

do k=2,nz

do j=2,ny
TEnew(1,j,k)=TEnew(2,j,k)
TEnew(nx+1,j,k)=TEnew(nx,j,k)
TLnew(1,j,k)=TLnew(2,j,k)
TLnew(nx+1,j,k)=TLnew(nx,j,k)
end do

end do

do k=2,nz

do i=2,nx
TEnew(i,1.k)=TEnew(i,2.k)
TEnew(i,ny+1,k)=TEnew(i,ny,k)
TLnew(i,1,k)=TLnew(i,2,k)
TLnew(i,ny+1,k)=TLnew(i,ny,k)
end do

end do

do j=2,ny

do i=2,nx
TEnew(i,j,1)=TEnew(i,j,2)
TEnew(i,j,;nz+1)=TEnew(i,j,nz)
TLnew(i,j,1)=TLnew(i,j,2)
TLnew(i,j,nz+1)=TLnew(i,j,nz)
end do

end do

C Test for convergence

detmax=0.0
do i=2,nx



do j=2,ny

do k=2,nz
detl=abs(TEnew(i,j,k)-TEold(i,j,k))
if (detl.gt.detmax) detmax=det1
det2=abs(TLnew(i,j,k)-TLold(i,j,k))
if (det2.gt.detmax) detmax=det2
enddo

enddo

enddo

if (detmax.le.deterror) goto 3
do i=1,nx+1

do j=1,ny+1

do k=1,nz+1
TEold(i,j,k)=TEnew(i,j,k)
TLold(i.j,k)=TLnew(i,j,k)
enddo

enddo

enddo
iteration=iteration+1

goto 2

C Update all the TEold, TLold with TEnew and TLnew

3 doj=l,ny+1
do i=1,nx+1
do k=1,nz+1
TEold(i,j,k)=TEnew(i,j,k)
TLold(i,j,k)=TLnew(i,j,k)

enddo
enddo
enddo
write (*,*) "iteration=", iteration
C Iterations Dong-===-====-=nenu--
END

C End of subroutine temp()
C Calculate velocity

Subroutine
velocity(nx,ny,nz,nz2,dx,dy,dz,dt, TEo, TEold,

$ saxo,sayo,sazo,saxyo,5axzo,sayzo,

$ saxn,sayn,sazn,saxyn,saxzn,sayzn,

$ vxo,vyo,vzo,vxn,vyn,vzn,uxo,uyo,uzo,

$ uxn,uyn,uzn,difx,dify,

$ difz difxyy,difxzz,difxyx,difyzz,difxzx,difyzy)

implicit double precision (a-h,l,0-z)

dimension TEo(41,41,101),TEold(41,41,101),
$ saxo(41,41,101),sayo(41,41,101),sazo(41,41,101),
$ saxyo(41,41,101),saxzo(41,41,101),sayzo(41,41,101),
$ saxn(41,41,101),sayn(41,41,101),sazn(41,41,101),
$ saxyn(41,41,101),saxzn(41,41,101),sayzn(41,41,101),
$ vxo(41,41,101),vyo(41,41,101),vz0o(41,41,101),
$ vxn(41,41,101),vyn(41,41,101),vzn(41,41,101),
$ uxo(41,41,101),uyo(41,41,101),uz0(41,41,101),
$ uxn(41,41,101),uyn(41,41,101),uzn(41,41,101),
$ difx(41,41,101),dify(41,41,101),difz(41,41,101),
$ difxyy(41,41,101),
$ difxzz(41,41,101),difxyx(41,41,101),

$
$

C

C
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difyzz(41,41,101),
difkzx(41,41,101),difyzy(41,41,101)

Density

loul=1.93d+4
1ou2=7190.0

Electron - blast coefficient
tri1=70.0

tri2=193.3

theta=0.5

do j=2,ny
do i=1,nx
lou=loul
tri=tril

do k=2,nz2

vxn(i g, k)=(difx(ij,k)
+difxyy(ij,k)+difxzz(ij,k)
+tri*theta*(TEold(i+1,j,k)
*TEold(i+1,j,k)-TEold(i.j,k)*TEold(i,j,k))/dx
+tri*(1.0-theta)*(TEo(i+1,j,k)
*TEo(i+1.j,k)-TEo(i,j,k)* TE0(i,j,k))
/dx)*dt/lou+vxo(i,j,k)

uxn(i,j,k)=(theta*vxn(i,j,k)
+(1.0-theta)*vxo(i,j,k)) *dt+uxo(i,j,k)
end do

lou=lou2

tri=tri2

do k=nz2+2,nz

vxn(i,j,K)y=(difx(i,j,k)
+difxyy(i,j,k)+difxzz(i,j,k)
+tri*theta*(TEold(i+1,j,k)
*TEold(i+1,j,k)-TEold(i,j,k)*TEold(i,j,k))/dx
+tri*(1.0-theta)*(TEo(i+1,j,k)
*TEo(i+1,j,k)-TEo(i,j,k)*TEo(i,j,k))
fdx)*dt/lou+vxo(i,j,k)

uxn(i,j,k)=(theta*vxn(i,j,k)
+(1.0-theta)*vxo(i,j,k)) *dt+uxo(i,j,k)
end do

k=nz2+1

vxn(i,j,k)= vxn(i,j,k-1)
uxn(i,j,k)y=uxn(i,j,k-1)

end do

end do

do i=2,nx
do j=l,ny

lou=loul

tri=tril

do k=2,nz2-1

vyn(i,j,k)=(difxyx(i,j,k)
+dify(i,j,k)+difyzz(i,j,k)
+tri*theta*(TEold(i,j+1,k)
*TEold(i.,j+1,k)-TEold(i,j,k)*TEold(i,j,k))/(dy)
+tri*(1.0-theta)*(TEo(i,j+1,k)

*TEo(i,j+1,k)-TEo(i,j,k)
*TEo(i,j,k)) /(dy))*dt/iout+vyo(i,j,k)



BN H LS

ALY A LS

Lo R R

uyn(i,j,k)=(theta*vyn(i,j,k)
+(1.0-theta)*vyo(i,j,k))*dt+uyo(i,j,k)
end do

lou=lou2

tri=tri2

do k=nz2+1,nz
vyn(i,j,k)=(difxyx(ij,k)

+dify(i,j,k)+difyzz(i,j,k)

+tri*theta*(TEold(i,j+1,k)

*TEold(i,j+1,k)-TEold(i,j,k)*TEold(i,j,k))/(dy)
+tri*(1.0-theta)*(TEo(i,j+1,k)
*TEo(i,j+1,k)-TEo(i,j,k)*TEo(i,j,k))
/(dy))*dt/lou+vyo(i,j,k)

uyn(i,j,k)=(theta*vyn(i,j,k)
+(1.0-theta)*vyo(i,j,k))*dt+uyo(i,j,k)
end do

k=nz2+1

vyn(i,j,k)= vyn(i,j,k-1)

uyn(i,j,k)= uyn(i,j,k-1)

end do

end do

do i=2,nx
do j=2,ny
lou=loul
tri=tril

do k=1,nz2

vzn(ij.k)=(difxzx(i,j,k)

+difyzy(i,j, k)+difz(i,j,k)
+tri*theta*(TEold(i,j,k+1)
*TEold(i,j,k+1)-TEold(i,j k)
*TEold(i,j,k))/(dz)
+tri*(1.0-theta)*(TEo(i,j,k+1)
*TEo(i,j,k+1)-TEo(i,j,k)*TEo(i,j,k))
/(dz))*dt/lou+vzo(i,j,k)

uzn(i,j,k)=(theta*vzn(i,j,k)
+(1.0-theta)*vzo(i,j,k))y*dt+uzo(i,j,k)

end do

lou=lou2

tri=tri2

do k=nz2+1,nz
vzn(i,j,k)=(difxzx(i,j,k)
+difyzy(i,j,k)+difz(i,j,k)
+tri*theta*(TEold(i,j,k+1)
*TEold(i,j,k+1)-TEold(i,j,k)*TEold(i,j,k))/(dz)
+tri*(1.0-theta)*(TEo(i,j,k+1)
*TEo(i,j,k+1)-TEo(i,j,k)
*TEo(i,j,k))/(dz))*dt/lou+vzo(i,j,k)

uzn(i,j,k)=(theta*vzn(i,j,k)
+(1.0-theta)*vzo(i,j,k)) *dt+uzo(i,j,k)

end do
end do
end do

return
end
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