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ABSTRACT 

This disseitation improves the accuracy of the Generalized Finite Difference 

Time Domain (FDTD) scheme by determining a differential operator that is capable 

of achieving reasonable accuracy when used to obtain even-order derivatives up to 

order fourteen The Generalized FDTD scheme is an explicit scheme used to solve 

the time-dependent Schrodinger equation, and being an explicit scheme, it must uti

lize a carefully devised ratio of the temporal step to the spatial step to maintain 

numerical stability This ratio is called the mesh ratio, and the Generalized FDTD 

scheme allows this ratio to be significantly relaxed As the mesh ratio increases the 

generalized scheme requires the evaluation of increasingly high-order spatial denva-

tives 

In Chapter 3, two classes of differential operators are consideied, the first 

being the repeated application of a central difference approximation of the Laplace 

opeiator using various ordeis of accuracy, and the second class being the differ

entiated Lagrange interpolating polynomials This approach, intentionally avoids 

attempting to appioximate such derivatives using mcieasmgly high-ordei finite dif

ferences, as the number of uncomputable points becomes veiy large as the order of 

the derivative mci eases 

Based on the conclusions fiom Chapter 3, a sixth-order accurate cential dif

ference operator rs chosen to approximate the Laplace operator and m Chaptei 4 

the order of accuracy is deteimined The numerical stability is analyzed using the 

Von Neumann analysis and a stability condition is shown 

The validity of the analysis peifoimed m Chapter 4 rs verified by sohmg a 

m 



IV 

Schrodinger equation with exact solution, and observing the numerical error and sta

bility. The order of accuracy of the scheme is also verified through experimentation, 

it is shown both theoretically and empirically that the chosen differential operator is 

both stable and accurate when used to solve the time-dependent Schrodinger equa

tion using the Generalized FDTD method. 
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CHAPTER 1 

INTRODUCTION 

In this chapter, a brief introduction to the time-dependent Schrodinger 

equation is provided, as well as an overview of the organization of this document, an 

introduction to the Taylor series and the Finite Difference method, and a summary 

of the motivation driving this work. Should the reader have a firm understanding of 

the topics listed, then they are encouraged to jump straight to Section 1.4 (page 10). 

1.1 T i m e - D e p e n d e n t Schrodinger Equat ion 

The Schrodinger equation is a fundamental equation in quantum mechanics 

that describes how the wavefunction of a physical system evolves over time, predicting 

the behavior of a dynamic system. In the field of quantum mechanics, the 

wavefunction represents the quantum state and is the most complete description that 

can be given to a physical system. The one-dimensional time-dependent Schrodinger 

equation is 

dibix.t) h d2ip(x.t) V(x,t) , . , , , n .., _ 
— K — ^ = i V ' ' - i V 'i/)(x,t), for a<x<b and t > 0, (1.1) 

at 2m, ox2 n 

ij>(a,t) = i>(b,t) = 0, t>0, 

il>(x,0) = <l)(x), for a<x<b, 

where m is the mass of the particle [kg], h — 1.054 x 10~34 [J-sec] is the reduced 

Planck's constant, V(x, t) is a given real-valued potential function [J], t/j(x,t) is a 

complex function, e/>(x) is a complex initial condition, and i is the imaginary unit 

f 



2 

i = y/—l Since V>(x, t) is complex, then a specific value of ijj takes the general form 

ip(x,t) = a + i/3, and the conjugate of ip(x t) rs i>(x,t) = a — i(3, the product of 

the complex conjugates of ip(x,t) rs then, ifj{x,t) xp(x,t) indicating the probability 

of a particle being at the spatial location x at time t Obtaining a solution to the 

wavefunction %j; is a typical goal when solving the Schrodinger equation, and to do 

so requires solving a partial differential equation, which m this work is achieved 

using the Finite Difference Trme Domarn method When m the context of Quantum 

Mechanrcs, the abbreviation FDTD-Q is often used, and m this disseitation, FDTD 

and FDTD-Q will be used synonymously The focus of this work is centered on 

improving the accuracy of the approximation given by the FDTD method 

1.2 Outl ine of the Dissertat ion 

In this dissertation the Generalized Finite Difference Time Domain scheme as 

proposed by Dai and Moxley [11] is used, and after thorough analysis, improvements 

that lead to significantly more accurate solutions of the wavefunction ip are proposed 

To begin, the FDTD-Q method and generalized FDTD-Q method are introduced 

m Chapter 2 In Chapter 3 two compelling methods for obtaining high-order 

derivatives are investigated, and after an introduction to the theory behind the 

methods, numerical investigations are performed and the results analyzed Following 

the conclusions from Chapter 3, improvements aie proposed m Chapter 4, and the 

stability and accuracy of both the original method and modified method are analyzed 

Combining the method selected m Chaptei 3 foi obtaining high-order denva-

tives and the considerations for stability and grid spacing presented m Chapter 2 

numerical experiments aie performed m Chapter 5 Here a model problem rs solved 

allowmg comparison with the exact analytical solution A practical simulation is 

also peiformed, wheie a particle moves through free-space and strikes an energy 

potential 
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1.3 Finite Differences and Taylor Series 

Before moving forward there are a few crucial concepts that are used 

seamlessly throughout this dissertation, one such concept is the Taylor series and 

another is the Finite Difference method. These mathematical tools are not disjoint 

ideas, rather the Taylor series forms the foundation upon which the Firrite Difference 

method is built, and it is for this reason they are both introduced here. 

In the field of numerical analysis one of the most important tools and the 

foundation for the majority of the work presented here is the Taylor series, or the 

Taylor polynomials and associated truncation error. From Atkinson [3] we have 

Taylor's Theorem: 

Theorem 1.1 (Taylor's Theorem). Let f(x) have n + 1 continuous derivatives on 

[a, b] for some n > 0, and let x, x0 G [a. b}. Then 

f(x) = Tn(x) + Rn+l{x) 

rp I \ /•/ \ . \ x ~ xo) ,,/ N [X — Xo) ll( . \ X ~ X 0 ) ,(n)( \ 
Tn{

x) = f{xo) + T-, i {XQ) + ~ f Uo) + ' ' " + : j ( > (x0) 
1! 2! n\ 

Rr, 
-1[ ' (n + 1)! ; l U 

for some £ between x0 and x. 

When this expansion is convergent, that is lim Rn = 0, then the expansion is 

called the Taylor series of f(x) expanded about XQ. Since n may not get arbitrarily 

large in practice, one typically truncates the Taylor series at some fixed n creating an 

approximation of the function f(x), and when doing so the polynomial Tn is called 

the nth Taylor polynomial with the remainder term Rn called the truncation error. 

It is clear from Theorem 1.1 that if |(x — x0) | is sufficiently small i e., \(x — x0) | < 1. 

then the truncation error will tend towards zero as n increases. Should |(r — r 0 ) | ^. 1 

then the truncation error vanishes faster, and so based on n and (x — x0) one may 
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characterize the convergence rate of the truncated Taylor series ?~+°2 fin+1) (£) This 

characterization is called the order of accuracy 

With the convergence rate characterrzed exclusrvely by n and (x — XQ), a 

common notatron rs used that conveys thrs information clearly and concisely First, 

recognrze that ( r — To) = Ax, and rrow usmg Ax and n the order of accuracy may 

be expressed as 0 ( A x " + 1 ) , which implies 0 ( A x n + 1 ) = f^f{n+1){0 

A caveat of using the Taylor series directly as presented is that one must have 

evaluations for the function / , as well as all derivatives up to the desired n When 

seeking solutions to partial differential equations OIK1 typically has function values 

f(x), and wants to know the diffeientrated values One method for obtaining these 

differentiated values is called the Finite Difference method, and it works as follows 

Suppose the solution to f'(x) is desired, and one has solutions to f(x) along 

a paiticular structured grid {(x0 / ( x 0 ) ) , j{xn,J(xn))} and xt rs defined as xt = 

iAx, for all i E {0 , n } Then one may construct a Taylor serres expansron for 

the functron f(x + Ax) about x as follows 

Tn(r + Ax) = f(i + AT) = f(r) + (T + A T - r)f\r) + ^ + ^ ~ X) f"(r) 

f(x + Ax) = f(x) + Axf'(x) + ^-f"(x) + + ^f{n\x) (1 2) 
2 iv 

From Equation (12) , the notation Tn(x + Ax) is typically avoided, and when working 

with finite diffeiences the name of the function being approximated is used It is 

undeistood that f(x + Ax) is a Tayloi seires approxrmation Anothei shoithand 

notatron (ornrnon to the field of finite differences, airses from the fact that when 

working with a finite domain, where you have sequentially numbered x grid locations 

e g x0 xi xM, then f(xk) mav be shoitened to f(k) = f{xk) = fk In thrs 

writing the notation f(h) is piefened 
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Returning to Equation (1 2) and solving foi the desrred derrvatrve, whrch rn 

thrs example rs f'(x), 

A T 2 A T " 

" A x / ' ( x ) = f(x) - f(x + Ax) + — f (x) + + —f{n\x) 
2 TV 

/ ( T + A T ) - f(x) A T A n - r 

From Equation (1 3) it is clear that if one only has function evaluations at / ( r ) , then 

/ " f^3\ ) /^n') a r e a i i unknown terms, and so the Taylor series must be truncated 

2 A^n 
in). 

Ax2 „„, , Ax 
-Axf'(x) = f(x) f(x + Ax) + — A x ) + + —f(n){x) 

2 n] 

flf N f(x + Ax) - f(x) Ax 
f (x) = ^ + -yf (£(x)) 

f{x) = — + 0 ( A x ) (14) 

Equation (14) is called a Foiwaid Diffaeiue and snmlaily there is a Backward 

Difference that may be constructed usmg a Taylor expansion of the function f(x—Ax) 

about x 

A ? 2 — A T ™ 

/ ( x - Ax) = f(x) - Axf'(x) + — f"(x) + + — ^ / ( « ) ( X ) 
2 n1 

#/ x f i x ) — fix —Ax) ^, A , . 
/ ' x = M ; 7 / ^ + O A t (1 5) 

Ax 

Both appioxnnatiorrs are first-order accurate O ( A T ) , and to increase accuracy one 

must find a way to remove the higher-order denvatnes leaving a higher-order 

remainder term One way to achieve this is intuitively which works well for 

differences with a small number of points but to derrve more advarrced schemes 

a more robust method is lequired One such method is the Method of Undetermined 

Coefficients Fus t consider improving the above approximations of the fiist 

derivatrve by experimentation Rathei than woik with a single Tayloi expansion, 

take two expansions one for fix + Ai.) and anothei foi / (x — Ax) both centeied 
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about x 

f " (x )Ax 2 / (3)(x)Ax3 /(4)(x)Ax4 

f(x + Ax) = f(x) + f'(x)Ax + 
2! 3! 4! 

/<5)(x)Ax5 fW(£)Azn 

f(x - Ax) = f(x) - f'(x)Ax + 

5! n! 

f '(x)Ax2 / ( 3 ' ( i )Ax 3 /(4»(.x)Ax4 

;i.6) 

2! 3! 4! 

/(5>(i)Ax5 /W(OAx n 

5! + - " ' + ~\ • ;i-7) 

Since the goal is to improve the truncation error which was previously ^, , 

one must remove the second derivative terms from the equations above. This may 

be achieved by subtracting Equation (1.7) from Equation (1.6) 

/(x + Ax) - f(x - Ax) = 2j'(x)Ax 

/ (2n+D(£) A x 2n+l f(2n+l) ^Aa;2n+1 

+ ' " + {2nTT)\ + (2^TT)1 ( L 8 ) 

Solving for the first derivative term, 

f(2n+l)(c\ I f(2n+l)( ) 

2 f (X)AT = f(r + Ax) - f(x - Ax) J- g ^ ^ A x 2 n + 1 

fu , _ / ( * + ^ ) - f(x AX) __ _ / ( 2 n + D ( 0 + / ( 2 n + l ) ( 7 ? ) ^ 
/ W ^ 2Ax ' " 2 ( 2 n + l ) ! l j 

/ (x + Ax) - / (x - Ax) fW(0 + fl3Kv)&c2 

f{x) = 2A^ 2 3T ( L 1 0 ) 

Recognizing that the third derivatives are unknowns leads to the Central Difference 

approximation of the first derivative with error term. In this case, the truncation 

error may be simplified based on the assumptions requiied by Taylor's Theorem, 

which state that f(x) must have n + 1 continuous derivatives on the interval [a. b]. 

and that both x and x0 are in [a, 6]. With these requirements, one may utilize the 
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Intermediate Value Theorem, taken from Atkinson [3], which states 

Theorem 1.2 (Intermediate Value Theorem). Let f(x) be continuous on the finite 

interval a < x < b, and define 

m = mf / ( x ) , M — sup f(x) 
a<x<b a<x<b 

Then for any number u in the interval [m, 71/], there is at least one point £ in [a, b] 

for which 

Or rn simpler terms, the Intermediate Value Theorem is rigorously expressing 

the idea that for continuous functions, one must be able to draw a line (or curve) 

between f(a) and f(b) with out picking up the pencil When cast m the context of 

the above central difference remainder term, there must exrst some fi such that 

and the second-order accurate central difference approximation of the first denvative 

is 

f(x + A x ) - / ( x - A x ) / ( 3>(»)A 2 
J ( ) ~ 2 A T

 + 31 

fix) = / ( ^ x W ( x - A x ) + 0(Ax2) (1 11) 

In the previous examples, the coefficients of the Finite Difference scheme were 

detei mined directly by lecognizing which terms should be added or subtracted from 

each other to make the unwanted terms vanish, but when attempting to constiuct 

a scheme that uses many points (functron values) the previous method becomes 

mcieasmgly difficult What follows is essentiallv the same method, but presented rn a 

more robust manner This method is called the Method of Undetermined Coefficients 



The general form of any central difference scheme is 

Af(x - Ax)+Bf(x) + Cf(x + Ax), 

Af(x - 2Ax) + Bf(x - Ax)+Cf(x) + Df(x + Ax) + Ef(x + 2Ax), 

C0f(x)+ Y, C~kf(x ~ kAx) + C+kf{x + kAx) (1.12) 
fc=i 

The goal is now to determine the coefficients A, B. and C for a three point scheme, 

A. B, C. D, and E for a five point scheme. If one looks at the Taylor expansions 

associated with the scheme, a linear system of equations may be formed. For 

example, consider increasing the accuracy of the previous second-order accurate 

central difference approximation of the first derivative Equation (1.11). First assume 

the form of the final central difference scheme will be Af(x + 2Ax) + Bf(x + Ax) + 

C'f(x) + Dfix — Ax) + Efix — 2Ax), and construct Taylor expansions as in the 

previous examples 

f(x + Ax) = f(x) +f'(x)Ax+ 

f{x + 2Ax) = f(x) +2f'(x)Ax+ 

f(x - Ax) = f(x) -f'(x)Ax+ 

f"(x)Ax2 f^n\i)Axr 

2! n! 

i 2 / " ( x ) A x 2 , , 0 „ / ( n ) ( 7 ) A x ^ 

2! n! 

f ' ( r ) A r 2 f^(n)(-Ax)n 

2! + ' " + n\ ' 

Now multiply each Taylor expansion by its associated unknown coefficient 

f"(x)Ai2 f^(C)Axn 

Bf(x + Ax) = Bf(x) +Bffx)Ax + B ^ ^ - + --- + BJ KU 
2! n! 

f"(r)Ai2 f^i^AAr11 

Af{x + 2Ax)=Af(x) +2Affx)Ax + 22A^2. + ... + 2
nAJ U) 

2! n\ 

Df(x-Ax) = Df(x) -Df'(x)Ax + D 1 " ^ ^ + • • • + D ^ ^ Ax' 
n 

n! 



Ef(x-2Ax) = Ef(x) -2Ef'(x)Ax + 2 2 E ^ ^ - + --- + 2nE^n)^^ ^ 
2! n' 

and form a Irnear system of equations such that the coefficrent for / ' must be 1, and 

the coefficrent for all other terms must be zero. The goal rs to rsolate the derivative m 

the Taylor expansion we wrsh to approximate, whrle providing sufficient information 

such that the linear system is solvable, m this case five equatrons and five unknowns 

The form of the desrred solution is 

Af{r + 2 A T ) + bf(r + A T ) + Cf(x) + Df(x- A T ) + Ef(r - 2Ar) = T(x), (1.13) 

and T(x) represents the truncated Taylor serres resultmg from the left hand side of 

Equation (1 13) Thus, 

T(x) = C0f(x) + C1f(x)Ax + C2^-^Ax2 + C 3 ^ - - ^ A x 3 

2! 3! 

+ C 4 ^ A r 4 + C ^ A x 5 (1.14) 
4! 5! 

Equation (1.13) and Equation (1.14) together imply that the following equations 

must be true 

Equation for C0f(x) (A + B + C + D + E) = 0 = C0, (1 15a) 

Equation for d / ( 1 ) ( x ) , (A + 273 - D - 2E) = —- = Cu (1.15b) 
Ax 

Equation for C2/ (2 )(x), (A + 22B + D + 22£) = 0 = C2. (1.15c) 

Equation for C3/ (3 )(x), (A + 23B - D - 23E) = 0 = C3. (1.15d) 

Equation for C4/ (4 )(x), (A + 2AB + D + 24E) = 0 = C4 (1.15e) 
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It is considerably easier to represent this technique m matrix form 

1 

- 2 

4 

- 8 

16 

1 

- 1 

1 

- 1 

1 

1 

0 

0 

0 

0 

1 

2 

4 

8 

16 

A 

B 

C 

D 

E 

= 

0 

l 
Ax 

0 

0 

0 

whrch when solved, yrelds 

1 
A B = C7 = 0, D 

3 A x ' 12Ax' 3 A x ' 

or m the more common form 

-f(x + 2Ax) + 8/(x + Ax) - 8/(x - Ax) + f(x - 2Ax 

E = 
1 

12Ax' 

f(x) 
12Ax 

+ 0{Ax4 

(116) 

Following the same procedure one may cieate Finite Difference schemes that 

approximate any derivative up to any ordei of accuracy Of particular interest to 

this woik are central difference approximations of the second derivative, which are 

then used to appioxmrate the Laplace operator V2 = J^- rn one drmensron 

1.4 Mot ivat ion 

Without delving too fai into the Generahzed FDTD-Q method, sufficient 

backgiound is presented here so that one may strll apprecrate rts rmprovements over 

the tradrtronal FDTD-Q method As the name rmphes the FDTD-Q method rs 

the Frmte Difference Time Domain method applied to quantum mechanics Finite 

Diffeience Time Domain schemes follow the same fundamental ideas presented m 

the pre-\ IOUS section Specifically the} ernplov various differencmg operators on both 

space and time which means FDTD schemes ma} have vaiious oideis of accuiacy 

fn geneial the ordei of accuiacy of an FDTD scheme is a function of both the 

spatial step and tempoial step such as 0(AJ2 + At) oi m two dimensions 0(Ai2 + 
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Ay2 + At 2 ) . The original FDTD-Q method for solving the Schrodinger equation has 

a proven accuracy of 0 ( A x 2 + Ax2At2 + At2) , and the generalized FDTD-Q method 

uses additional Taylor series expansions in time that allow one to achieve very high-

orders of accuracy in time, such as 0 ( A x 2 + Ax2At2 + • • • + At^2N+3^), where TV is 

a parameter related to the number of derivative terms in the Taylor expansion that 

are evaluated (TV = 0 yields the original FDTD-Q method). 

The Generalized FDTD-Q scheme as published [11] provides second-order 

spatial accuracy, while providing arbitrarily high time accuracy. The reason the 

Generalized FDTD-Q scheme has only been able to achieve second-order spatial 

accuracy, is the requirement that the scheme with parameter TV requires all even 

number spatial derivatives from 2.4, . . . ,47V + 2. Obtaining these high-order 

derivatives has proven challenging for two specific reasons that are directly addressed 

in this dissertation. First, the accuracy of the derivatives degrades rapidly as the 

order of the derivative increases. Second, attempting to use methods with higher 

accuracy than the second-order accurate central difference leads to stability issues 

that must be addressed. 



CHAPTER 2 

REVIEW OF THE FDTD-Q METHODS 

The one-dimensional (1-D) time-dependent linear Schrodinger equation, was 

introduced in Chapter 1, Equation (1.1). In this Chapter, a survey of previous work 

will be introduced, as well as a general overview of what makes the Generalized 

FDTD-Q method novel. 

Before proceeding further, it should be understood that there are two main 

types of Finite Difference Time Domain schemes. The first type are called Explicit 

schemes, as it is possible to compute the solution at time n + 1 directly using only 

information from previous time steps. That is to say, with explicit schemes it is 

possible to formulate the problem such that there is a single unknown on the left-

hand side of the equation and all known values on the right-hand side. The other 

type of scheme is an Implicit scheme, which means that the solution to the current 

time step is obtained by solving a system of equations based on previous and future 

time steps. 

There are strengths and weaknesses to each type of scheme. The implicit 

schemes are unconditionally stable, meaning one may choose the time step indepen

dent of the choice of the spatial step, but the cost of the implicit scheme is that a 

system of equations must be solved at each time step and the equations are typically 

more complex than those in an explicit scheme. Explicit schemes are typically easier 

to compute, but are not unconditionally stable. This means that there is a restriction 

imposed on the mesh ratio — \ < c, where devising a method that allows one to relax 

12 
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this restriction is optimal, as you obtain the ability to not only compute solutions 

directly but also move through time faster. 

2.1 F D T D - Q M e t h o d s 

Many numerical schemes have been developed for solving linear Schrodinger 

equations [1,2,4-7,9,10,12-21,23,28,30-33]. Of the works [1,2,4-7,9,10,12-21,23,28, 

30-33], it should be noted which type of method each used to solve the Schrodinger 

equation. Of those works, the ones that utilized a method that required the solution 

of a matrix are [1,4-7,12-18,20,21,23,30-33], which is clearly the majority of the 

previous work. Sullivan [29], in his book on electromagnetic simulations, extended 

the ideas used to solve Maxwell's equation using the FDTD method, to solve the 

linear Schrodinger equation using an explicit scheme. From his book, the formulation 

of the explicit FDTD scheme is as follows: 

To avoid the use of complex numbers, the wavefunction f> is split into its real 

and imaginary components, 

-0(x. t) = V+eal(x, t) + 2V;imag(x. t ) . (2.1) 

Inserting Equation (2.1) into Equation (1.1) and then separating the real and 

imaginary parts result in the following coupled set of equations: 

<9?/Wi(x.t) _ h d2i[i,mdg(x,t) V(x,t) 

dt 2rn dx2 h 
•^'imag(x,t) (2.2a) 

and 

dV'lmag(x,t) _ h <92V+ea](x,/) V{x, l) ; 
dt " 2 m c9x2 h V*^*)- V-z*>> 

Thus, the second-oieie^i accuiate finrte difference1 approximations in space and time 

result in the FDTD scheme as follows: 

*"-(V~'(t) = - £ ^ - « + ̂ «C4« (2.3a) 
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and x 1 

^l(k)-^lik) = _ A _ 5
2

C a l ( f c ) _ l-V{k)^{k) (2 3b) 

In the transition from Equation (2 2) to Equation (2 3), the notation has 

clearly changed This change is a direct result of discretrzmg the analytical form 

m Equation (2 2) into a discrete form m Equation (2 3) The spatial domain x 

and temporal domain t have been discretized into a finite set of equally spaced grrd 

locatrons, 

x = a + /rAx, for a < x < 6, fr = 0 , — - ^ (2 4) 
Ax 

and 

t = «Ai, for t > 0, n = 1, , TVsteps (2 5) 

The functrons iprea\ and i/'imag a r e then solved at the grrd locatrons from Equatron (2 4) 

at a specrfic trme step n The notatron should then be rnterpreted as 

^real(^) = ^real(Xfc, tn) = VVeal(a + kAx, nAt) 

and 

n + i 1 
i>mJg(

k) = ^mag(xfe, t n + i ) = ̂ i m a g (a + /cAx, (n + - ) A t ) 

Equatron (2 3) then becomes the starting point for attempting to improve 

the explicit FDTD scheme, as the form shown by Sullivan is second-order accuiate 

m space and time (9(At2 + Ax 2 At 2 ) , but no stability condition was known From 

this point two independent researcheis [10,28] reached nearly identical bounds for 

the stabrhty of the exphcrt FDTD scheme Dar et al [10] used the drscrete energy 

method to show that scheme is stable if 

- - ^ + ^ m a x | l / | < c < l (2 6) 
m Aiz 2n 

where c is a constant Soiiano et al [28] used the eigenvalue method to analyze the 
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stability of the FDTD scheme and obtained a very similar condition of 

- • X T + ^ r n i a x V < 1 . 2.7 
m Axz 2fi 

The above stability conditions are imperative to this work, as we will utilize 

the bound shown by Dai [10] to construct a specific stability condition for the scheme 

proposed. Dai [10] noted that even if the condition shown by Soriano is chosen, the 

numerical solution may still diverge, and that the stability condition in Equation (2.6) 

indicates that the corrdition for stability must be less than one but not close to one. 

This leads to the motivation for creating the Generalized FDTD-Q method 

as proposed by Dai and Moxley [11], which is to relax the restriction on the mesh 

ratio, A ^ . 

2.2 General ized F D T D - Q M e t h o d 

The Generalized FDTD-Q scheme proposed by Dai and Moxley [11] is an 

integral part of this dissertation. In this section a brief overview of how the method 

was derrved is shown, because it will be utilized frequently in Chapter 4. But 

more important than the derivation is to realize that the method provides arbitrary 

accuracy in time and theoretical unconditional stability. The cost for obtaining 

higher accuracy in time, is that one must be able to evaluate high-order spatial 

derivatives. 

To develop the Generalized FDTD-Q scheme, one must assume that Vwi(x, t) 

and tpima,g(x, t) are sufficiently smooth functions which vanish for sufficiently large 

|x| and the potential V is dependent only on x [11]. The scheme is then derived as 

shown m [11], which is summarized here. Eqs. (2.2a) and (2.2b) are rewritten as 

<3^iedi(x,t) , h , , V 
dt = (~2rn~ + ft-H™*^-*)' (2-8 a) 

di>-iXA)=(-A-^U^)- (2.8b) 
dt V2m h ^ ^ J v ) 
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where A = ^5-. The real component of the wavefunction is then expanded using 

the Taylor series at ij)TeA\{x.tn) and -0reai(x, t n_i) about t = tn_i = (n — | ) A i , and 

the imaginary component is expanded at V'lmag^n+i) and •e/Wig^n-O about t = tra. 

Using the relations in Equation (2.8a) and Equation (2.8b) the resulting derivatives 

may be evaluated leadrng to the Generalized FDTD-Q scheme 

C M = C;,'M + 2yj(f )WL2L^(JLA - ^VCJCO, (2.9a) 

</Ci«=c;i(*)+2jr(^±^-i{±A_^«,/c,m, (2.*) 

which depends greatly on the ability to accurately approximate the Laplace operator 

A. And it is the approximation of this operator which is the motivation of this work. 

Following in the steps of [6,21.26,34] we explore two compelling approximations of 

the Laplace operator, one utilizing varrous drfferentrated Lagrange polynomials and 

another usmg varrous central drfference approximations. 



CHAPTER 3 

NUMERICAL DIFFERENTIATION 

In this chapter an introduction to numerical differentiation is presented with 

a specific focus on two methods, the first being the central drfference method and 

the second the drfferentrated Lagrarrge mterpolatmg polynomials Each method rs 

compared and a conclusron rs drawn based on error propagatron and computatronal 

complexrty 

3.1 Central Difference Approximat ions 

Havrng covered a number of fundamental prehmmarres rn Chapter 1 Sec-

tron 1 3, thrs sectron wrll begm wrth the generatron of hrghly accurate approximations 

of the Laplace operator For the scope of thrs section we shall assume one has some 

function f(x) that has seven continuous derivatives over the interval [a, b], and one 

has solutions to f(x) along a paiticular structured grrd {(x0, / (^o)) , , (x„, / (x„ ) )} 

where xt rs defined as x% — IAX for all i E {0, ,n} 

Frrst consrder a central drfference scheme that takes the form 

Aj(x - Ax)+Bf(x) + C7/(x + Ax) = j'fx) + 0 ( A x 2 ) (3 1) 

Frgure 3 1 rllustrates the stencil this differencing scheme uses Note that the gud 

points To and xn are unsolvable points since x i and xn+\ do not exist This mheient 

limitation of the central drflcrences can cause problems at the boundarres where the 

accuiacy tends to degiade 

17 
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f(xt - Ax) / « f(xi + Ax) 

Figure 3.1: The three point central difference stencil which gives second-order 
accurate approximations of the second derivative. 

Following the Method of Undetermined Coefficients presented in Section 1.3, 

one first obtains the Taylor expansions about x 

Cf(x + Ax) = Cf(x) + Cf{x)Ax + C / / / ( ! ) A X ' 2 + • • • + c - / ( n ) ( e ) A x n 

2! n\ 

Af{x - Ax) = Af& - An*)** + Am^ + • • • + AWM-W 
2! n\ 

and since we seek a second-order accurate approximation we require 

T(x) = Co fix) + & f'{x) Ax + C2Q^ Ax2 + C3^~^- Ax3 

2! 3! 

+ CC (3.2) 

This implies that the following equations must be satisfied 

Equation for C0 /(x), 

Equation for C\f^x\x), 

Equation for C2f
(-2\x), 

Equation for C3/ (3 )(x), 

(A + B + C) = 0 = C0, 

(C-A)=0 = C1, 

{C-A)=0 = C3. 

(3.3) 

(3-4) 

(3.5) 

(3.6) 

Note that Equation (3.4) and Equation (3.6) are identical, or more precisely. 

Equation (3.6) is a linear combination of Equation (3.4) and zero, which means 

Equation (3.6) may be removed from the linear system. The resulting matrix is then 

1 1 1 

- 1 0 1 

1 0 1 

A 

B 

C 

= 

0 

0 

2 
Ax2 
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which when solved, yields 

A = - ^ r , B = -^r, C 
Ax2' Ax2' Ao 

or in the more common form 

f(x + Ax) - 2_f(x) + f(x - Ax) , ^ / A ^ 
Ax2 /"(r) = ̂  '- 2J " + ° ( A T )• <3"7) 

Next, suppose one wishes to improve the accuracy, and so assume 

Af(x + 2Ax) + Bf(x + Ax) + Cf(x) + Df(x - Ax) + Ef(x - 2Ax) 

= /"(x) + 0 ( A x 4 ) = T ( x ) , (3.8) 

and construct the required Taylor expansions about x. 

f"(r)Ar2 f^i^AAr71 

Af(x + 2Ax)=Af(x) +2Af'(x)Ax + 22A' y> + • • • + 2nA- {,} 
2! n! 

fix) Ax2 f(n)fflATr 

Bf{x + Ax) = Bf(z) +Bf'(x)Ax + BJ {
 o

J, + • • + B-7 ^ 
n! 

/"(xlA/2 f^(n)(-Ai)T 

Df(x-Ax) = Df{x) -Df(x)Ax + DJ {
 o

J, + - - • + DJ [n)[ ' 2! n! ' 

£ / ( x - 2Ax) = Ef(x) -2Ef\x)Ax + 22EJ [ [ + • • • + 2 "E J l U \ > 
2! n! 

The Taylor polynomral must have the form 

T(x) = C 0 / ( r ) + d f'(r)Ax + C 7 2 ^ - ^ Ax2 + C^J—^- Ax3 

+ C a T ^ A ^ + C6T^MAx5 + C,^ |*>Ai 6 , (3.9) 

implying that the following system of equations must hold 

Equation for (70/(r), (A + B + C + D + £) = 0 = C0, (3 10a) 

Equation for Ci/ ( 1 )(x). (2A + B - D - 2E) = 0 = d. (3 10b) 

Equation for C72f
(2)(x), (22A + B + D + 22E) = —— = C2. (3 fOc) 

Ax"1 
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Equation for C3/ (3)(x), (23A + B - D - 23E) = 0 = C3, (3.10d) 

Equation for C4/(4)(a:), (24A + B + D + 24£) = 0 = C4, (3.10e) 

Equation for C5 / ( 5 )(z), (25A + B-D- 25E) = 0 = C5. (3.10f) 

The system of linear of equations, Equation (3.10a) to Equation (3.10f) clearly lead 

to 

1 

2 

4 

8 

16 

32 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

1 

- 1 

1 

- 1 

1 

- 1 

1 

- 2 

4 

- 8 

16 

-32 

A 

B 

C 

D 

E 

= 

0 

0 

2 
A x 2 

0 

0 

0 

which may be reduced recognizing that row six, denoted as RQ, of the above matrix 

is a linear combination of rows two and four, denoted as R2 and R± respectively, 

—4i?2+5i?4 = JR6. Solving the simplified linear system yields the following coefficients 

1 4 5 „ 4 1 
A = 

12Ax2: B 3Az2 ' 
C = 

2 Arc2' 
D = 

3Ax2; E 
12Ax2' 

or 

/ " ( * ) = 
-/(a: + 2Az) + 16/(rr + Ax) - 30/(x) + 16/(x - Ax) - /(a; - 2Axr) 

12Aa;2 

+ 0(Aa;4). (3.11) 

The stencil for this fourth-order accurate central difference approximation of the 

second derivative takes the form shown in Figure 3.2. 

f(xt - 2Ax) f(xt - Ax) /(*.: f(x, + Ax) / (x, + 2Ax) 

Figure 3.2: The five point central difference stencil which gives fourth-order accurate 
approximations of the second derivative. 
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Note that when i G {0, l ,n — l ,n} this scheme is unsolvable, and the 

values at these points must either be guessed or approximated using some other 

technique. Following the same procedure one final sixth-order accurate central 

difference approximation of the second derivative is generated. Again assume the 

central difference will take the form 

Af(x + 3Ax) + Bf(x + 2Ax) + Cf{x + Ax) + Df(x) + Ef(x - Ax) 

+ Ff{x - 2Ax) + Gf(x - 3Ax) = f"(x) + 0(Ax6) = T(x). (3.12) 

After using the Method of Undetermined Coefficients, and for brevity, omitting the 

^ 2 factor, one will arrive at 

A - 1 R - 3 r - 3 D - 4 9 F - 3 F- 3 r- l 

which may be written in the standard form 

f'(x) = ̂ _ [2 / (x + 3Ax) - 27f{x + 2Ax) + 270/(x + Ax) - 490/(x) 

+ 270/(x - Ax) - 27 fix - 2Ax) + 2/(x + 3Ax)l + 0(Ax6). (3.13) 

The graphical depiction of the stencil is shown in Figure 3.3. Again take note that 

while the accuracy of the approximations has increased, the restrictions on computing 

values near the boundary has grown, with % G {0,1. 2, n — 2, n — l,n} becoming 

uncomputable. 

» » » » » • « 
/(z,-3Ax) /(x,-2Ax) / 0 , - A X ) f(xt) f{x, + Ax) f{x, + 2A%) f{x, + 3Ax) 

Figure 3.3: The seven point central difference stencil which gives sixth-order accurate 
approximations of the second derivative. 

In the next section, a method that is not based on finite differences of Taylor 

series is derived. Here we will explore the use of Lagrange interpolating polynomials 

to approximate various derivatives. The motivation for doing this is simple, to obtain 
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accurate approximations of the derivatives at all points in the domain, whereas the 

central difference methods provide high accuracy with the cost that as the accuracy 

increases so do the number of uncomputable points on the grid. 

3.2 Lagrange Interpolation 

Rather than use Taylor series, this work will focus on using Lagrange 

polynomials, which are distinctly different from Taylor series in that the polynomial 

is constructed using information from all points in the domain rather than being 

centered about a specific point. A challenge of this work is that the error term 

associated with the Lagrange method increases both with the order of the derivative 

as well as with the number of grid points used in the interpolation. This is contrary 

to the Taylor methods which have the property that if Ax is chosen correctly, the 

truncation error tends toward zero as the n grows arbitrarily large. 

To begin, consider the general form of the Lagrange interpolating polynomial 

and associated error term 

J} fin+A(f(T)) n 

fix) = "£ w,ix)fix3) + J
( i\j U(x - **)• (3-14) 

Here w3ix) is a weighting function, and more specifically, Wj(x) will form a Lagrange 

basis polynomial 

» - M = n 7 + + + v (3.15) 
fc=0 
fc#J 

[Xj - x f c) ' 

The function /(x) is then approximated as a linear combination of Lagrange basis 

polynomials and associated function values fix A. It is important to realize that the 

function values fixf) are known values. 

3.2.1 Properties of the Lagrange Basis Polynomials 

Assume that one seeks to create a Lagrange interpolating polynomial using 

some given abscissas x G {x 0 , . . . , xn] and associated function values fixf) for all i G 
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{0 , . . . , n}, and suppose one only seeks to evaluate this polynomial at the abscissas 

x G {xo,... , x n } . Under these assumptions there are two intriguing properties to 

note from the Lagrange basis polynomials that are directly relevant to this work. 

First, consider the case of wJixl), where j ^ i 

Wj(x0 = f [ r ^ = ̂ ^ - - - ^ ^ - - - ^ L ^ 4 for j?i, (3.16) 
\Xj Xfc) yXj XQ) \XJ Xt) \X'j Xn) 

w3ixt) = 0 for j 7̂  i. (3-17) 

The numerator contains a term when i = k, which causes the entire expansion to 

become zero. Applying a similar analysis to the error term in Equation (3.14), when 

seeking the solution at xn where x, is also one of the points used to construct the 

polynomial, the error term will become zero. 

fixt) = Pixt) + J ^ l)) Hixt xfc), (3.18) 

fixA = PixA + L—^L2ll^Xx - XQ) .. . (Xt - x%). .. (T( _ T„), (3.19) 
(n, + 1)! 

fix,) = PixA. (3.20) 

Now consider the case where i = j , 

^w=n 7^^4=1 for J=L (3-21^ 
^ o (*. ~ xk) 
fc/.7 

The resulting linear combination will take the form 

n 

/ (*,) = $ > , ( * , ) / ( * , ) , (3.22) 
7 = 0 

fix,) = woiz,)fix0) H h wtixl)fixl) H h wnixAfixn), (3.23) 
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/ ( x l ) = 0 + 0 + + 0 + / (x , ) + 0 + + 0 , 

fix,) = fixf) for all x% G {x0, x n } , 

(3 24) 

(3 25) 

hence, the Lagrange interpolating polynomial exactly interpolates the function / 

3.2.2 Differentiating Lagrange Interpolat ing Polynomials 

Having introduced Lagiange polynomial interpolation, we will now focus on 

how to obtain deiivative approximations To do this the Lagrange interpolating 

polynomial will be analytically differentiated Starting from Equation (3 14), and 

differentiating with respect to x yields 

d 
fix) = P'(x) + dx 

/(ra+1)(e(xQ) -
(n+1v IK*-**) 

fe=0 

(3 26) 

Focusing on the error term first, and applying the product rule for derivatives yields 

d_ 

dx 

f{n+l\m) 
(n + 1)' 

J~[(x - xk) 
k=0 

dx 
/(n+1)(C(^)) 

/ ( w + 1 ) ( 4 ^ ) ) d 
( n + 1 ) ' dx 

Y[(x - x^) 
fc=0 

]J(x-xfc) 

J fc=0 

n 

fc=0 

(3 27) 

and letting 

Q(x) = 

7?(x) = 

dx 
f{n+l\ttx)) 

( n + 1 ) ' 
FJ(x - xk), and 
fc=0 

i{n+l)iax)) d 
J\(X - Xk) 
.k=0 

(n + 1)' dx 

Returning to the onginal assumptions made at the beginning of Section 3 2 1, 

which aie that x will be chosen fiom the same locations being interpolated that is 

T G { Co T „ } and i j k G {0 n} Fiom this assumption, evaluating Q ( T ) at 

any x = x% will force exactly one teim to be T, = x/,, yielding a zero m the pioduct 

expansion foicmg Q(r , ) to be zeio and simplifying the analysis of the en or teim for 

the fiist deiivative Expanding 7?(?) and lepeatedly applymg the product rule leads 
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to 

/ ( n + 1 ) (£ (x) ) d 

(n + 1)! dx Y[(x ~ x0 
, i = 0 

™*»±f[{x-Xk). (3,8) 
(n+1)! 
v ' 7 = 0 fc=0 

Again, consider evaluating i?(x) at x = x%. All but one product expansion 

in the summation will be zero because i will equal k. The remaining product 

expansion will exist, because i — j and x7 was excluded in that specific product. The 

resulting Equation (3.29) is the form of the first derivative of a Lagrange interpolating 

polynomial and associated error 

f{n+1)i£ix )) -A-
/'(*,) = P'(xO + ! ^[X;)} Hixt - xk). (3.29) 

^ n >' fe=0 
kjtt 

Note that unlike the original Lagrange interpolating polynomial, the differentiated 

Lagrange polynomial contains an error term that does not go to zero when evaluated 

at an interpolation point. 

3.2.3 Differentiated Lagrange Weight Function 

Having differentiated the Lagrange error term in detail, the derivative of the 

weight function u'j(x) will be briefly discussed. Quan and Chang [24,25] published 

a useful algorithm for computing the first derivative weights, and Shu [27] published 

a scheme for computing the weights for any derivative. The general form of the first 

derivative of the weight function is 

which may be obtained by repeated applications of the product rule. Recognizing 

the special case when w3{x,) and j = i. allows one to arrive at the form proposed by 

Quan and Chang [25] 
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w'Axf) 1 A JX% - Xk) 
x 7 — Xj fe=0 {xi — Xk) 

for i =£ j . 

n 1 

w'Axf) = V " for i = j . 
•> t i ,.J nr nf. 

k=0 x% xk 

(3.31a) 

(3.31b) 

Obtaining second derivative weights requires analytically differentiating the 

weight function w3 (x) twice, which leads to the form published initially by Quan and 

Chang [24,25] and again by Shu [27] 

w"ix%) n (Xj — xk) 

T3 Xb k=0 
zZ 

1 

\Xj Xk) . X% X{ 

fc/ij l^i,3 

for i ^ j , (3.32a) 

n - l 

<(x0 = 2 j ] - ^ - ^ - ^ - - , for l = ;. (3.32b) 
fc=0 l k l=k l l 

k^t l^x 

Building off Quan and Chang's work, Shu [27] developed a recursive formula 

for computing higher-order differentiated weight functions, requiring only that the 

first derivative weights be computed using Equation (3.31). This method is superior 

to analytically differentiating the weights multiple times, as each differentiation 

requires an additional summation. Shu's method is as follows, where w (x2) = 

w'Axf) is defined in Equation (3.31), 

w) +xj = m (1)/ N ( m - 1 ) / N 

w) {xl)u]\ '{xA 
w 

(m-r), xf) 
Xo X n 

for / ^ j , (3.33a) 

w 
(m) (xt) = -J2w{™\xt) for i = j . (3.33b) 

7=0 

for z, j = 0 , 1 , . . . . n, and rn = 2, 3 , . . . , n — 1. 

.("») Here ur ( x j is the mth derivative of the weight function. 
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3.2.4 Grid Spacing 

A well-known problem associated with polynomial interpolation is that of 

oscillations at the edges of the interval These oscillations increase as the degree 

of the polynomial increases, and this issue is called Runge's phenomena There are 

two prunary ways to cope wrth Runge's phenomena the fiist techmque rs to lower 

the degree of the polynomral by usmg several piecewise polynomials rather than 

one high degiee polynomial, the second technique is to carefully select the abscissas 

such that they mmrmrze these oscrllatrons It has been shown that choosmg equally 

spaced abscissas is not optimal for minimizing Runge's phenomena [8] Instead one 

should carefully choose grid locations that are typically not equally spaced, and 

these locations originate from various orthogonal polynomials In this work three 

different grid spacings are considered equally spaced abscissas, the roots of the 

Chebyshev polynomial of the fiist kind (also called the Chebyshev nodes), and the 

Gauss-Lobatto abscissas The remainder of this section is a brief explanation of how 

the latter two abscissas are deteimmed 

The Chebyshev nodes are the roots of the Chebyshev polynomrals of the first 

kmd (7"), which are defined over the mteival [—1,1] The Chebyshev polynomral 

is never explicitly formed, rnstead one may drrectly compute the desrred number of 

roots usmg a convenient formula show below For completeness the polynomial is 

presented here, and may be constiucted usmg the recurrence relation shown below [3] 

T0i%) = l for n = 0, 

7i(x) = 7, for n = 1, 

7^+i (x) = 2%ix) - Tn_i(x) for n > l 

It has been shown that the nth Chebyshev polynomral has roots at 

for k = 1 2 n (3 34) cos 
n{k 

n 
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Figure 3.4 shows 7i3 plotted over the interval [—1,1], and to emphasize that 

these nodes are not equally spaced, equally spaced grid locations have been marked. 

The roots (circled) are the desired abscissas to use in the polynomial interpolation. 
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Chebyshev Abscissas and associated polynomial 
N=13, roots of the Chebyshev Polynomial of the First Kind 
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Figure 3.4: A Chebyshev polynomial of the first kind plotted over the interval [-1,1]. 
with equally spaced grid locations marked. 

The next grid spacing used called the Gauss-Lobatto nodes, are a variation 

of the standard Gaussian quadrature nodes, which are the roots of the nth degree 

Legendre polynomial Vn. Gauss-Lobatto nodes differ from the standard Gaussian 

quadrature nodes because they use the once differentiated Legendre polynomial 

7*4-1, which yields n — 2 roots. The remaining two abscissas are defined to be the 

endpoints of the interval —1 and 1. This distinguishes the Gauss-Lobatto nodes from 

many other orthogonal polynomial roots, including the Chebyshev nodes. Careful 

inspection of Figure 3.4 reveals that should one choose the Chebyshev nodes as 

the abscissas for interpolation, then one would not be able to obtain values at the 

boundaries. Figure 3.5 illustrates the differentiated Legendre polynomial V[2 and 

associated roots. 
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Gauss-Lobatto Abscissas and associated polynomial 
N=13, roots of the First derivative of the Legendre Polynomial of degree n-1 

-Gauss lobaito Polynomial O Lobatto Nodes equally Spaced Nodes 

Figure 3.5: V[2 plotted over the interval [-1,1], with equally spaced grid locations 
marked. 

3.2.5 High-order Derivatives via Lagrange Interpolating Polynomials 

Having explained the fundamentals of differentiating the Lagrange interpo

lating polynomials as well as presenting three competing nodal selections, one must 

utilize these methods to compute high-order derivatives. Presented here are two 

different schemes for achieving this. The first analytically differentiates the Lagrange 

weights to the desired order, and the second treats the differentiated Lagrange 

weights as a differential operator, requiring that the weights only be differentiated 

once. 

The first scheme follows Shu's method [27] and uses Equation (3.33) to 

analytically differentiate the weights. To obtain an mth-order derivative one would 

follow the scheme described below 

fixi) = J2w'jixi)fixj), (3.35a) 
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r(x l) = ^^ ' (x l ) / (x J ) , (3.35b) 

3=0 

n 

/<™>(xO = XXm )(z,) /fo)- (3-35c) 
j = o 

The second scheme is proposed in this dissertation for the first time. We have 

noted from Equation (3.31), that the weight function is computed independent of 

the function values of fix) and depends solely upon the location on the grid. In 

this sense, w3ix) differentiates some function values / at these particular points, and 

may be treated as a differentiation operator. Recognizing this, the following scheme 

is proposed based on the first derivative weight function 

n 

f'ixl) = YJw'3ixl)fix3), (3.36a) 
7=0 

n 

f"ixl) = Y/w'Jixl)f'ix3), (3.36b) 

7=0 

n 

/<m>(xt) = X>/(xO/ (m-T)(^)- (3.36c) 
7=0 

The following is a comparison of results when using each of the schemes 

listed above, but before presenting results, we will discuss the motivation for seeking 

arr alternative to differentiating the weights multiple times. The computational 

algorithm associated with Equation (3.31) is shown in Algorithm 3.1. Similarly, 

the algorithm associated with either Equation (3.36a) or Equation (3.35a) is shown 

in Algorithm 3.2. Regardless of the scheme used, these algorithms must be used at 

least once. Particularly, Algorithm 3.2 must be computed with either successively 

differentiated weights 7r[?][;] (Shu's method), or with successively differentiated 

function values (our proposed method). 
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Algor i thm 3.1: Computational algorithm used to obtain the first derivative 
weights, based on the analytical form in Equation (3.31). 

Input: Set of TV abscissas 
Output: Differentiated weight function w3ixf) evaluated at each xl 

for i = 1 t o N do 
for j = 1 t o N do 

if i A j then 
nvm = 1 . 0 
den = 1.0 
for k = 1 t o N do 

if k A i and k A ] t h e n 
I nura = num • (z — k) 
I den = den • (j — k) 

end 
end 
TX>[?,][J] = num/iden • (x[j] — x[z])) 

end 
end 

end 
for i = 1 t o N do 

7X>[7][j] = 0 . 0 
for fc = 1 t o N do 

if k A11 then 
| w[i][j)=w[i]{j} + l.0/x[j]-x[i}) 

end 
end 

end 
return w 

To obtain a solution using the weights requires evaluating the differentiated 

Lagrange interpolating polynomial at the grid locations x?, for j = 1,. .. , N. A 

portion of the polynomial evaluation is handled when computing the weights, but 

one must still compute the linear combination of the weight with each function value 

to determine the differentiated function value f'ixA. This computation is greatly 

simplified since the weights aie already computed. 
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Algor i thm 3.2: Computational algorithm used to obtain the differentiated 
function values using the differentiated Lagrange weights. 

Input: Set of N abscissas 
Input: 2D array of size N x N containing evaluated Lagrange weights 
Output: The function / differentiated at each abscissa 
for i = 1 t o TV do 

AM = o.o 
for j = 1 t o N do 
| / i W = yiW + ^ W b ] - / D ] 

end 
end 
return / l 

From the algorithms shown in Algorithm 3.1 and Algorithm 3.2 one may note 

that the algorithm to obtain the first derivative weights (Algorithm 3.1) has 0(./V3) 

computational complexity, and the computation required to evaluate the derivatives 

(Algorithm 3.2) has computational complexity 0(7V2). It can be shown that Shu's 

method (Equation (3.33)) requires OimN2) computational complexity, where m is 

the order of the derivative desired and m > 1. The computational complexity to 

evalute an mth derivative using Shu's method is then 

wf" \x,) calculation 

o( N3 + mN2 + mN2 ) = 0(7V3 + 2mN2), (3.37) 

w'jix,) calculation / ( m ' ( x i ) calculation 

and the computational complexity to evaluate an mth derivative using the proposed 

method is 

0( N3 + mN2 ) = 0 ( A 3 + rrJV2) (3.38) 

w'(x,) calculation /(m)(a;,) calculation 

The spatial complexity, which is a bound on the storage requirement, is 

another metric that should be noted. For Shu's method shown in Equation (3.33). 

the first derivative weights must be stored, as well as the previous Am — l ) th 

derivative weights to compute the 'mth derivative weights. In terms of storage, a 



33 

set of differentiated weights is a two-dimensional array requiring A ' x J V storage, 

and three of these must be retained at any give time This translates to a spatial 

complexity of 

0(37V2) (3 39) 

The proposed scheme only requires that the first derivative weights be retained, and 

so the spatial complexity is 

0(/V2) (3 40) 

In summary, analytically differentiating the Lagrange weights up to the 

mth derivative lequires (9(iV3 + 2mN2) computation and 0(37V2) storage, wheieas 

treating the differentiated Lagrange weights as an operator lequires 0(7V3 + mN2) 

computation and OiN2) stoiage Between the two methods it is cleai that one must 

always have the first derivative weights and one must always use these weights to 

obtain the differentiated function values making the minimum spatial complexity 

OiN2) and the minimum computational complexity 0(7V3 + mN2) for 777 > 1 

With the minimal requirements in mmd, Shu's algonthm then requires an additional 

OimN2) amount of computation and 0(2iV2) amount of storage, while the proposed 

scheme requires only the minimal amount of computation and storage, OiN3 + mN2) 

and OiN2) respectively 

A comparison of solutions using both Shu s method and the scheme proposed 

above are presented below The function 

Jix) = e* (3 41) 

was chosen as a test function and the fiist- through sixth-order denvatives were 

computed using each method 

Fiom Table 3 1 one can see that both methods pioduce nearly identical lesults 

with the en or on the same oidei of magnitude In the above table the eiroi is 
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computed by analytically differentiating Equation (3 41), and then computing the 

absolute error To summarize the error across all interpolated values, the L2 norm 

is used as well as the infinity norm L^ which m this case is the maximum error 

Table 3 1 Comparison of derivatives obtained vra Shu's method and those from the 
proposed method 

Eq 

(3 41) 

N 

11 
11 
11 
11 

m 

2 
4 
6 
8 

3 99 x 
7 72 x 
8 14 x 
143 x 

L2 

1 0 - 0 5 

1 Q - 0 2 

lO+oo 
10+03 

Shu i 

3 98 
6 89 
7 11 
136 

X 

X 

X 

X 

T^oo 

1 0 - 0 5 

1 Q - 0 2 

iO+oo 
1 0 + 0 3 

2 19 x 
4 0 7 x 
2 05 x 
7 7 9 x 

Proposed 

L2 

l f j - 0 5 

10 02 

10+oo 
1 0 + 0 2 

2 14 x 
3 68 x 
1 22 x 
6 96 x 

BQO 

1 Q - 0 5 

1 Q - 0 2 

10+oo 
1 0 + 0 2 

3.2.6 Abscissa Impact on Differentiation Error 

Havmg shown how to compute high-order derivatives, results will now be 

presented using the grid spacings highlighted m Section 3 2 4 To evaluate the vaiious 

spacings, a test function was chosen and analytically differentiated, and then the 

solution was approximated using a differentiated Lagrange mterpolatmg polynomral 

The followmgs figures will vary based on the grid spacing used to constiuct the 

Lagiange mterpolatmg polynomral The first grrd spacrng shown rn Frgure 3 6 uses 

equally spaced abscrssas 
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(c) Sixth derivative 

(b) Fourth derivative 

(d) Eighth derivative 

Figure 3.6: Differentiated tenth degree Lagrange polynomial for the function / (x) = 

e(-32~\ over the interval [—1,1] using equally spaced abscissas, as well as the exact 
solution. 

One can see that the accuracy of the differentiated Lagrange interpolating 

polynomial slowly degrades as successive differentiation is performed. Specifically, 

Figure 3.6(d), which contains the plot of the eighth derivative, shows considerable 

error throughout most of the domain. One can visually see the error beginning 

to appear at the endpoints of the fourth derivative plot in Figure 3.6(b) as well. In 

Figure 3.7 the abscissas have been changed to the Chebyshev nodes, and in Figure 3.8 

the Gauss-Lobatta nodes have been used. 
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(a) Second derivative (b) Fourth derivative 
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(c) Sixth derivative (d) Eighth derivative 

Figure 3.7: Differentiated tenth degree Lagrange polynomials for the function / (x) 

e(~~2~\ over the interval [—1,1], using the Chebyshev nodes as abscissas. 
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-300 

(b) Fourth derivative 

(d) Eighth derivative 

Figure 

eA 2 '. 

3.8: Differentiated tenth degree Lagrange polynomials for the function 

over the interval [—1,1], using the Gauss-Lobatto nodes as abscissas. 

m = 

While these plots are presented primarily to aid in visualizing what happens 

as Lagrange interpolating polynomials are successively differentiated, one can still 

graphically see the impact of grid spacing. Observe Figures 3.6(d), 3.7(d), and 

3.8(d), one can clearly see that in Figure 3.6(d) the endpoints of the approximation 

are yielding a solution beyond —300, while the approximations using orthogonal 

polynomials still have considerable error, but it is noticeably smaller than that of 

the error in the equidistant grid spacing. Which leads to the next section, where 

instead of plotting the differentiated functions, instead the log10 of the error is plotted, 

allowing one to view the distribution of the error and directly compare the central 

differences to the differentiated Lagrange interpolating polynomials. 
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3.3 M e t h o d Comparison 

In this section results will be presented using the techniques presented 

throughout this chapter. Four functions have been selected for use as test functions, 

and comparisons will take place on two different intervals. The following numerical 

differentiation techniques will be employed: 

• Second-order accurate central difference approximation of the Laplace opera
tor, 

• Fourth-order accurate central difference approximation of the Laplace operator, 

• Sixth-order accurate central difference approximation of the Laplace operator, 

• Twelfth degree piecewise differentiated Lagrange interpolating polynomial with 
equally spaced abscissas, 

• Twelfth degree piecewise differentiated Lagrange interpolating polynomial with 
the Chebyshev nodes as abscissas, 

• Twelfth degree piecewise differentiated Lagrange interpolating polynomial with 
the Gauss-Lobatto nodes as abscissas. 

3.3.1 Graph Interpretat ion 

Before approaching the comparisons, one must understand the format the 

data is presented in. For example, the function / ( x ) = e^A) will be used to 

demonstrate what to look for in the plots. Figure 3.9 shows the test function plotted 

over the interval [0,1.035]. The test function is now analytically differerrtiated, as 

well as differerrtiated using a once differentiated tenth degree Lagrange interpolating 

polynomial using equally spaced abscissas. 
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Figure 3.9: Test function / (x) = ê  2) plotted over the interval [0,1.035]. 

Figure 3.10(a) shows the analytical solution in black, and the Lagrange 

approximation in red. From Figure 3.10(a) it is unclear how much the approximation 

varies from the actual solution, and so the absolute error is computed, and the log10 

of this error is plotted in Figure 3.10(b). This error plot shows a significant crux 

of the differentiated Lagrange interpolated polynomials, and that is the error near 

the endpoints may be considerably larger than that of the error in the center of the 

interval. 
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(a) First derivative (b) Absolute error of the first derivative 

Figure 3.10: First derivative of the test function /(x) = ê  *2) and assocrated 
absolute error over the interval [0,1.035]. 
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Next, the test function is differentiated twice in Figure 3.11(a), and the error 

is shown in Figure 3.11(b). One should note from the error plot, that the error has 

shifted by nearly two orders of magnitude (—5 to —3.25). And as in the plots of the 

first derivative error one can see the "U" shape of the absolute error curve. The test 

function is now differentiated up to the sixth derivative. To view the complete set 

of first-order through sixth-order derivatives, the reader is directed to Appendix A. 

(a) Second derivative (b) Absolute error of the second derivative 

Figure 3.11: Second derivative of the test function / (x) = ê  *2) and associated 
absolute error over the interval [0,1.035]. 

From Figure 3.12(a) note the degree to which the approximation varies from 

analytical, with the absolute error in Figure 3.12(b) showing the order of magnitude 

of the error in the range —1 to nearly 2, which is to say, the approximation of the 

sixth derivative is off by nearly 1 x 102. To cope with this, piecewise Lagrange 

polynomials are used, which does lower the error slightly, and in the curves showing 

the actual tests, one should note the "hills" and "valleys", as these "U" shapes 

indicate a piecewise polynomial. 
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(a) Sixth derivative (b) Absolute error of the sixth derivative 

Figure 3.12: Sixth derivative of the test function / (x ) = e^~A~^> and associated 
absolute error over the interval [0,1.035]. 

As a final example, Figure 3.13 shows a typical error plot. The function 

tested in this plot is show in Figure 3.13(a), and is the same test function used 

in the previous examples. The plot shows the log10 of the absolute error obtained 

by approximating the first- through sixth-order derivatives using a differentiated 

twelfth degree piecewise Lagrange interpolating polynomial. One may identify the 

derivatives approximated using the legend highlighted by Figure 3.13(c). It should 

be noted that the Lagrange error plots will contain all derivatives from the first 

to the sixth, while central difference error plots will contain only the even-order 

derivatives, this is because the central differences approximated the Laplace operator. 

The procedure outlined in Equation (3.36), was used to compute each derivative 

using differentiated twelfth degree piecewise Lagrange interpolating polynomials. 

In this particular case, one may see from Figure 3.13(b) the abscissas used were 

equally spaced, and in other Lagrange error plots this may be either equally spaced, 

Chebyshev nodes, or Gauss-Lobatto nodes. 
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(a) Test Function (b) Abscissa Type 

Equation: e 2 
5! Error of Lagrange derivatives 

equally spaced points 
res] Interval: [0,1.0351 
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Figure 3.13: Differentiated piecewise thirteenth degree Lagrange polynomials for the 

function / ( x ) = e^ *>, over the interval [0,1.035], utilizing 208 total grid points. 

Additional attention must be paid to Figure 3.13(e), because piecewise 

polynomials are used, it must be understood how the large interval is partitioned 

into the smaller intervals and how A x is relevant to this partitioning. To partition 

the large interval the desired total number of grid points is fixed to be a multiple 

of thirteen, and the domain is partitioned into regions of size 12Ax. Supposing 

Chebyshev nodes were desired, thirteen Chebyshev nodes would be constructed 
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throughout this submterval This division guarantees that regardless of the abscissa 

selection withm the piecewise interval, tha t the entire domain [a,b] is interpolated 

avoiding having points clustered at the endpoints of the large interval In example, 

given 208 points, each submterval wrll contarn 13 abscrssas wrthm that specrfic region, 

be it Chebyshev roots, Gauss-Lobatto nodes, or simply using the equally spaced 

points This is distinctly different from taking the mterval [a, b] and creating 208 

abscissas of a particular type and then creating a interpolating polynomial only 

though 13 points at a time The diffeience being that creating 208 abscrssas across 

the entire interval, would not necessarily create optimal nodes to minimize Runge's 

phenomena should you only use 13 points to create the mteipolation Should you 

create 208 abscissas acioss the entire mteival, those abscissas would be designed to 

minimize Runge's phenomena for a 207th degree polynomial 
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3.3.2 Error P lo t s 

On the following pages error plots are shown for the test function / ( x ) = 

<-AL\ 
e^^> over two intervals [0,1.035] and [0,10.35] using both the Lagrange and 

central difference differentiation techniques described previously to compute the first-

through sixth-order derivatives in the case of Lagrange differentiation and second, 

fourth, and sixth-order derivatives in the case of central differences approximations. 

Figure 3.14 shows three plots that use differentiated piecewise twelfth degree 

Lagrange interpolating polynomials, with Figure 3.14(a) using equally spaced 

abscissas, Figure 3.14(b) using the Chebyshev nodes, and Figure 3.14(c) using the 

Gauss-Lobatto nodes. Figure 3.15 on the following page shows the error over the 

same interval but using the central difference approximation of the Laplace operator, 

with Figure 3.15(a) using a second-order accurate central difference, Figure 3.15(b) 

using a fourth-order accurate central difference, and Figure 3.15(c) using a sixth-

order accurate central difference. 

The follow pages also contain the same test function differentiated over a 

larger interval, while maintaining the same number of grid points, which implies 

that Ax has become larger. Additional test functions are plotted in a similar manner 

and may be viewed in Appendix B. In Section 3.4, the data from the test function 

shown here will be analyzed. The observation that should be made from the Figures 

presented both here and in the Appendix, is that the fourth and sixth-order accurate 

central difference approximations are roughly as accurate the piecewise twelfth 

degree Lagrange interpolating polynomial approximations The notable difference 

between the Finrte Difference approximations and Lagrange approximations are the 

oscillations in the error of the Lagrange approximations. 
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_*! Error of Lagrange derivatives 
Equation: e 2 » J • * 1 equally spaced points 
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev 
nodes to compute the first- through sixth-order derivatives. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure 3.14: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function / (x) = e^"A:\ over the interval [0,1.035], utilizing 208 total 
grid points. 
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Equation: e~W Error of Central Difference derivatives 
2nd Order accuracy 2nd derivative formula 
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure 3.15: Central difference approximations of the Laplace operator applied to 

the function / (x) = e(~^\ over the interval [0,1.035], utilizing 208 total grid points, 
and various orders of accuracy. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure 3.16: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
2 

mials for the function / (x) = ê  *~\ over the interval [0,10.35], utilizing 208 total 

grid points. 
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure 3.17: Central difference approximations of the Laplace operator applied to 

the function /(x) = e^~^\ over the interval [0,10.35], utilizing 208 total grid points, 
and various orders of accuracy. 



49 

3.4 Conclusions 

The preceding error plots, as well as those m Appendix B provide a high level 

view of the behavior of the Finite Difference and Lagrange differentiation techniques 

discussed m this chapter To objectively compare these methods two common metrics 

have been usr d, the root mean squaie and rnhnity norm The root mean square RMS 

defined as 

RMS 

\ 

l-Y.(Err,f, (3 42) 
n 

i=0 

where Errt rs the absolute error at grrd pornt i = 0, , n In this context the RMS 

provides an estimate of what the observed error rs The rnfimty norm L^ rs the 

maximum error observed 

LQO = max (| Err0 | |£Vrn | ) (3 43) 

Several tables are presented showing the above eiror metrics computed for 

the test function / ( r ) = e^~A) over the mterval [0,1 035], utilizing 208 total grid 

points, and Ax = 0 005 To interpret the tables the following list describes what the 

column heading Method indicates 

• Equidistant differentiated piecewise twelfth degree Lagrange interpolating 
polynomial using equally spaced abscissas, 

• Chebyshev diffeientiated precewrse twelfth degree Lagrange mterpolatmg 
polynomral usmg the Chebyshev nodes 

• Gauss Lobatto drfferentrated piecewise twelfth degiee Lagrange interpolating 
polynomial usmg the Gauss-Lobatto nodes, 

• 0{Ax2) second-oidei accuiate central difference approximation of the Laplace 
opeiatoi, 

• 0 ( A x 4 ) fourth order accurate central difference approxrmatron of the Laplace 
operator, 

• 0 ( A i 6 ) sixth order accuiate ceirtral difference appioximation of the Laplace 
oper ator 
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Table 3 2 shows the above error metrrcs for the first through fourth derivatives 

One should note that for the odd-order derivatives, the central difference appioxima-

trons are not shown, and the solrd lme indicates these methods were uncomputable 

Table 3 2 Root Mean Square and maximum absolute error for the first through 

fourth-order derrvatrves of the test functron fix) = e^~^ wrth Ax = 0 005 

Error for the Derrvatives of the Test Function / ( x ) = e( 2 > 

Denv Method RMS L^ 

Equidistant 7 0947 x 10 14 5 8616 x 10 ' 1 2 

Chebyshev 1 9348 x 10"13 1 0560 x 10 12 

Gauss-Lobatto 1 8662 x 10 13 1 0570 x 10~~12 

1st 
0 ( A x 2 ) 
0 ( A x 4 ) 
0 ( A x 6 ) 

2nd 

3rd 

4th 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0(Ax2) 
0(Ax4) 
<3(Ax6) 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0(Ax2) 
0(Ax4) 
0(Ax6) 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0(Ax2) 
0(Ax4) 
0(Ax6) 

7 1019 
2 0596 
2 5238 
3 7798 
6 3121 
7 5022 

5 4653 
1 8355 
2 3015 

3 1768 
1 2313 
1 4809 
5 7761 
7 2801 
7 9992 

x 
x 
X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

10-11 

1 0 - i o 

10 10 

10 06 

lO"11 

10 12 

10 08 

10 07 

10 07 

10 °5 

10 04 

10 04 

10+03 

1 0 + 0 3 

1 0 + 0 3 

6 6711 
1 0126 
1 6979 
6 2496 
1 1303 
2 1610 

5 9982 
9 2268 
14963 

3 6396 
5 8485 
8 9775 
8 0000 
9 9997 
1 0888 

x lO'09 

x lO 09 

xlO 09 

x lO'06 

xlO 10 

x 10 n 

x 10 06 

x lO'07 

x 10 06 

x 10 03 

xlO 04 

xlO 04 

x 10+04 

x 10+04 

x 10+05 

In the followmg Table 3 3 as well as rn Table 3 2 one will notice that the err01 

metrics for the (eritral diffeience approxrrrratrons tend to become high The reason for 

this rs clear from the plots as the uncomputable end points of the ccntial diffeience 
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approximations become extremely inaccurate as the order of the derivative increases, 

and these significantly inaccurate points dominate the error metrics. This is not 

desirable, as the error across the majority of the domain for the central difference 

approximations is accurate, with only 5-10 points skewing the metrics. 

Table 3.3: Root Mean Square and maximum absolute error for the fifth-order and 

sixth-order derivatives of the test function f\x) = eS~~2~^ with Ax = 0.005. 

Error for the Derivatives of the Test Function /(x) = ê  ^ ) 

Deriv. 

5th 

6th 

Method 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0(Ax2) 
(9(Ax4) 
(3(Ax6) 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0(Ax2) 
0(Ax4) 
0(Ax6) 

RMS 

1.4623 x 
6.4160 x 
7.2778 x 

5.4594 x 
2.6534 x 
2.8420 x 
5.1663 x 
8.7081 x 
1.0834 x 

10-02 

10-02 

1Q-02 

l0+oo 

lO+oi 
l 0 +oi 

10+os 
10+08 

10+09 

-^oo 

1.6825 x 10+00 

2.9421 x 10"01 

4.0557 x 10~01 

6.1670 x 10+02 

1.2029 x 10+02 

1.4385 x 10+02 

6.4001 x 10+09 

1.0355 x 10+10 

1.2528 x 10+10 

To combat the extremely large error observed near the end points of the 

central difference approximations, the following metrics were computed ignoring the 

first and last ten points of each approximation. Table 3.4 shows the error metrics for 

the even-order derivatives using these shortened intervals. To emphasize the impact 

this has on the error metrics, the smallest RMS for each derivative has been bolded. 

From this table it becomes clearer that the central difference approximations may 

yield a more accurate solution than the Lagrange differentiation method if one is 

able to either approximate the solution at the uncomputable end points, or utilize a 

sufficient number of points that the solution may be discarded near the boundaries. 



52 

Table 3 4 Root Mean Square and maximum absolute error for the even-order 

derivatives of the test function / ( x ) = e^~A) with Ax = 0 005, after removing 
the first and last 10 points of the Central Difference approximations 

Error for the Denvatives of the Test Function f(x) A %-) 

Denv Method RMS Lr 

2nd 

4th 

6th 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0 ( A x 2 ) 
0 ( A x 4 ) 
0 ( A x 6 ) 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0 ( A x 2 ) 
0 ( A x 4 ) 
0 ( A x 6 ) 

Equidistant 
Chebyshev 
Gauss-Lobatto 
0 ( A x 2 ) 
0 ( A x 4 ) 
0 ( A x 6 ) 

7 1019 
2 0596 
2 5238 
3 6571 
5 9858 

7 2745 

3 1768 
1 2313 
14809 
3 6006 

8 2059 
1 1897 

5 4594 
2 6534 
2 8420 

5 8604 
1 4401 
2 4755 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

10 n 

lO-io 
lO-io 
1Q-06 

10"11 

l O " 1 2 

10 05 

1Q-04 

1Q-04 

1Q-05 

1 Q - 0 7 

1 0 ~ 0 6 

lO+oo 

l0+oi 
lO+oi 
1 0 - 0 2 

10 01 

10 01 

6 6711 
10126 
1 6979 
6 2028 
1 1303 
2 1610 

3 6396 
5 8485 
8 9775 
6 2428 
1 9764 
4 2159 

6 1670 
1 2029 
14385 
1 4722 
3 2562 
8 9009 

x l O 09 

x 10"09 

x 10"09 

x 10"06 

x 10"10 

x 10~ n 

x 10 °3 

x 10~04 

x 10"04 

x 10~05 

x 10~06 

x 10 °6 

x 10+02 

x 10+02 

x 10+02 

x 10 01 

x 10~01 

x 10 01 

Based on the results presented here, rt appears using differentiated Lagrange 

interpolating polynomials may piovide accuracy near or m some cases better than 

that of the central drfference approxrmatrons But the large oscillations rn the 

error throughout the entne mterval pose some challenges, and rn the context of the 

FDTD-Q method the stabrhty of the Lagrange method is questionable Several 

numencal expenments were performed usmg the above Lagrang( differentiation 

scheme to compute denvatives for the Generalized FDTD-Q method m solvrng 

a model problem with exact solution but m all cases the Generalized FDTD-Q 

scheme became unstable and failed to converge to the solution It is also noted from 

Table 3 4 that the most accuiate approximation of the sixth deiivative was obtained 

via a second-oidei accuiate method, while the sixth-oider accurate scheme produced 
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results more accurate than the second-order accurate scheme for the second and 

fourth derrvatrves 

Based on these findings, we propose future work in developing a hybrid 

Lagrange/Fmite Difference method that uses a drfferentiated Lagrange interpolating 

polynomial to compute only the end points, which are then fed into a Finite 

Difference approxrmatron Based on the need to prove what the stabrhty condrtron of 

the resultmg scheme rs, the we have elected to utrlrze a srxth-order accurate central 

difference approxrmatron rather than use the drfferentiated Lagrange interpolating 

polynomials 



CHAPTER 4 

MODIFIED GENERALIZED FDTD-Q METHOD 

Building off the Generalized FDTD-Q method presented in Chapter 2, the 

technique used to approximate the Laplace operator A is now changed to that of a 

srxth-order accurate central diffeience approximatron based on the conclusrons from 

Chapter 3 To begin, a sixth-oider accurate ccntial difference operator -^D2 rs 

defined which leads to a seven point central difference approximation of the form 

1 

1 
[ 2 # L ( * + 3) - 27Cai (^ + 2) + 2 7 0 ^ ( f c + 1) 

and 

180Ax2 

- 4 9 0 , 0 * ) + 270Cai (^ - 1) - 2 7 C a l ( £ - 2) 

F2</.r
neai(*-3)]) wr thO(Ax 6 ) , (4 1a) 

~|2„/,n 
^CJk) « —Dty^ik) Ax2 

1 
;[2i^(k + 3) - 27<DM_(* + 2) + 270<nM_(A; + 1) 

180Ax2 L""rimdg ^imag\ 

- 49(ty* (*) + 27(M" (fc - 1) - 27^ (k - 2) 

+ 2 C n a g ( ^ - 3 ) ] , wr thO(Ax 6 ) (4 1b) 

A graphical representation of this stencil was shown pieviously rn Frgure 3 3 

54 
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The Generalized FDTD-Q method restated using the sixth-order central 

difference approximation of the Laplace operator A is 

<U*) = i&) ^±(ff'+A^y(~,Dl ~ £)*"*£<*), (4.2a) 

p=0 

p=0 

Using the sixth-order accurate central drfference operator D2, it must now be shown 

that this operator produces more accurate method, and either an unconditionally 

stable or conditionally stable method. If the resulting method is conditionally 

stable under what condition the scheme remains stable must be shown. The order 

of accuracy of the scheme when using the sixth-order accurate central difference 

approximation of the Laplace operator must also be shown, and in conclusion the 

computational algorithm associated with tins method will be presented and analyzed. 

4.1 Order of Accuracy 

To derive the order of accuracy of the Generalized FDTD-Q scheme when 

using sixth-order accurate central differences, on must begin with the foundations of 

the Generalized FDTD-Q method, which are Taylor series expansions about various 

points in time. From Dai and Moxley [11], Equation (2.2) from the original FDTD-Q 

method is rewritten as 

di/jr^ixj) h V 
dt = ^2n~i j)Aun,gix,t), (4.3a) 

^-)=(A.-^ ( I ,«) . (4.3b) 

where A = J ^ , and Taylor series are used to expand f\ea,\ix
7tn) and V-Wi^'i tn-i) 

about t = tn_\ = in— | ) A t . To avoid clutter in the following derivation and enhance 

clarity, a few simplifications to Equations (4.3a) and (4.3a) are made. Because the 

Tayloi expansions are in time, let fit) = •0ieai(a--1) and git) = iAmcig{x,t). Also, let 
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W = i^A — jr), allowing Equations (4.3a) and (4.3b) to be restated as 

dfit) 
dt 

dgit) 

-W-git). (4.4a) 

W-fit). (4.4b) 

- n - i 

dt 

Expanding fitn) using a Taylor series about t = t 

fit ) 

fAn) = /(*„_! ) + f'itn_h)itn ~ tn_,) + —^-(tn ~ tn_h)
2 

J An-\) , . M 

and recognizing that tn — tn_i = nAt — nAt + Ar = Af- Then f(tn) may be simplified 

to 

nt^fitnA + ntAi^J^^f^ 

(4.5) 

2 ) 2! V 2 / 

f { M ) A n A f A r M 

Ml V 2 

Expanding /(i„-i) about / = tn_i results in 

fAn-A 
f(tn-l) = fitn-l) + /'(*„_! )(*„-! - i„_i ) + 2 |

 2 (*„-! - tn_i) 

/ ( * n - i ) M 

+ ••• + ^ (*„-!" *n_l) , 

where in_a — t i = nAt — At — nAt A- Af = —^, simplifying to 

/(«.-•) = /(M)-AM) ( f ) + % ^ ( f ) 2 

/ < M , ( ( „ - i ) / A t \ " 

2 

M! V 2 y 
(4.6) 



57 

Subtracting Equation (4.6) from (4.5) 

fitn) ~ fitn-l) = / (*„>) ~ f i t . ) + f\tnA (^) + f'itA M t 

ntn_h) (At\2 ntn_h) ,At 

+ •• 

2! V 2 / 2! V 2 

fM(tn~0 fAt\M fMAn-l) ( At\M 

Ml V 2 / Ml \ 2 

2 / ' ( U ) k +2 
AA /(3)(*«-i) /At 3 

2 ) 3! V 2 

+ "-- + 2 (2M + 1)! ( T J (47) 

^ / A t \ 2 p + 1 1 ^ + 1 ) / ( t n _ i ) 
/(*») - /(*n-0 + ̂  E ( T ) (2P+1)! a t ^ ) 2 ^ 

p=0 v ' 

Using Equation (4.4) we may now evaluate the derivatives in the above equation for 

fitn) by repeatedly using both Equation (4.4a) and Equation (4.4b): 

— ^ - = -W-gitn_h), (4.9) 

92fitn i) a 5y(t„_i) 
at2 

<*7vVl) 
<%3 

d4f\tn_h) 

dt dt 

= -wm^-0 
= -w2fitn_l2), 

dd2fitn_>) 

dt dt2 

= ~W2^-fitn ! 
dtJ v n 2 

= M / 3 ^ n - i ) , 

a 53/(V|) 

(4.10) 

(4.11) 

dt4 dt dt3 
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= W 4 / ( < „ i ) , (4 12) 

d5fjtn^2) = ^ / ( i n i) 

at5 ~ at at4 

W59((„-.) (4 13) 

up to any order desrred Note rn the above derivations, the even derivatives are 

shown solely to enhance clarity Undoing the substitutions made m Equatron (4 4), 

and substrtutmg the above derrvatrves back into Equation (4 8) yields 

N / A + \2p+1 f — -}^1 

SK) = /(*„_,) + 2]T ( f ) i i j j H'»« 9 («„ . , ) + 0(A(2N«) 

«-<*>=<iw+z± (A}f+l ̂ 9 (±A - \f+i *£<*> 
rAt\2p+1 i-iy+1 ( n A v\2p+1 

p=0 

+ 0(Ai2W+3) (4 14) 

The above equation is the Generalized FDTD-Q method for the real component of 

the wavefunction shown m Equation (2 9a) The key to deteimmmg the order of 

accuracy is to return to the evaluation of the denvatives m Equations (4 9)-(4 13) 

and the ongmal Tayloi series expansion m Equation (4 7) 

With the Laplace opeiator appioximated by the srxth-order accurate central 

difference approximation D2, then the simplification Equations (4 4), may be wrrtten 

mcludmg truncatron error as 

^Zlll = -Wgit) + OiAx6) (4 15a) 
dt 

Wfit) + OiAx6) (4 15b) 
dt 

A caveat when usmg the Laplace opeiatoi lepeatedly eg to obtain a 

fourth-order derrvative the Laplace operatoi is lecursively applred twice is that 
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as the derivative order increases, the associated order of accuracy of the spatial 

derrvatrve does not increase There are several reasons one does not wish to employ 

increasingly high-order accurate central differences, the primary one being that the 

number of uncomputable points increases rapidly, and the second being the increased 

complexity of the requisite stability analysis and computational complexity The 

result is that when the Laplace operator D2 is raised to some power the order 

of accuracy remains the same, 1 e , 0(Ax6), which implies that the derivative 

evaluations, Equations (4 9) (4 13), may be rewritten as 

dfiK i) 
dt 

d3fjtn. 

at3 

A5fitn„ 
dt5 

Substituting these equations back into Equation (4 7) 

-Wgitn 4) + 0(Ax6), (4 16) 

W3gitn .) + 0(Ax6), (4 17) 

-WbqitA + OiAr6) (4 18) 

TV 

fitn) = fitn l) + 2 ^ 
p=0 

A02p+1 \ 2p+i ( _ - i \ P + r 

2 ) ( 2 ^ H / 2 P + 1 ^ « l) + OiAx6At2^) 

+ OiAt 2N+3^ 

«, , iw^c„^)+2|: ( f )2 p + 1^(A^L^-^2 '+ 1 t i ( * ) 
N 

+ ^OiAx6At2p+1) + 0{At2N+3) (4 19) 
p=0 

Similarly, employmg the Taylor serres method to expand -0,mag(^n+O and 

V;iniag(̂ n i) about t — tn, oi in terms of the simplified equatrons expand g(£n+i) and 

g(tn+i) usmg a Taylor series about t = tn Beginning with g{tn+i) 

9(tn+\) = 9An) + g'itn)(tn+l - tn) + 9-^itn+l ~ tnf 

fW)(i ) 
+ + M< (A+i~tn) 



At m A 4 — At where tn+1 - tn = nAt + Af - nAt 

u ^ i'At\ g"An) /AA 2 

9{tn+A)=9itn)+9'itn)[ — )+y KnJ I 
2 ) 2! V 2 

/W(tn) /AA M 

and 

Ml \ 2 

g(tn-h) = giQ + g'itn)itn_i - tn) +
 g-^itn_, - tn)

2 

Atn_i -tn) 
f{M)An)u 

Ml 

where tn_i - tn = nAt - Ar - nAt = - ^ , 

g(tn-i) = g(tn) - g'itn) ( 
AA , g"itn) /AA 2 

2 2! V 2 

2! V 2 ) 2! V 2 

f^\ln) (At\M fM\ln) ( At 

(4 

Ml V 2 ) ' l 

Subtracting Equation (4.21) from Equation (4.20), leads to 

g(tn+i) - gitn-i) = gitn) - gitn) + g\tn) (^~j + </(tn) [^ 

+ c/^Q /AA 2 ,t/'(tn) /AA 2 

M! V 2 / M! 

= 2y(tn)^+2^3)(tn)(f)3 

9(2M+1)(^) /At\ (2M+1) 

(2M + 1)! V 2 J 

, ^ , ^ v^ /At \ 2 P + 1 1 a^+1^(tn) 

S < W = ̂ - , ) + 2 E ( T J ( 2 p + 1 ) , ^ V - (4 
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Again repeatedly using Equation (4.4a) and Equation (4.4b) to evaluate the 

derivatives in the above equation: 

^ = WfiQ. (4.23) 

d2gjtn) = a dgjtn) 
dt2 dt dt 

= wpitn) 

= ~W2gitn), (4.24) 

d3gjtn) ^ a d2gjtn) 
dt3 dt dt2 

= -W3fitn). (4.25) 

d4gjtn) _ a d3gjtn) 
dt4 dt dt3 

= ~W3lf(tn) 

= W4gitn). (4.26) 

d5g(tn) = a d4gjtn) 
dA dt dt4 

= W"f{tn) (4.27) 

Substituting the above derivatives back into Equation (4.22) gives 

9itn+h) = 9iK-h) + 2 E ( f )2p+17^^W2P+lfiA) + 0(At2N+3). 

N 
^ 2 P + i M ) p , * A y~ 

vwgM„+|) = A^ix-A-i) + 2 E ( T ) 2 P + 1
( > T T ) T ( 2 ^ - 4 - ^)2p+1<^(^) 

0(AAv+3) (4.28) 
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Whrch agarn rs the form of the Generahzed FDTD Q method for the rmagmary 

component 

Rewriting the derivative expansions to include the truncation error term for 

the spatral derrvatrve, and recogmzmg that the order of accuracy wrll not mcrease 

wrth the order of the derrvatrve, wrll lead to 

d9iQ iXrtu ^ , „ , A 6 

dt 
Wfitn) + 0(Ax6), (4 29) 

d3gjtn) 
dt3 W3fitn) + 0(Axb), (4 30) 

^ & - = W5fitn) + OiAx6) (4 31) 

Substrtutmg Equatrons (4 29)-(4 31) back into Equation (4 22) yields the finite 

difference including truncation error 

'1)P -W2p+1fitn) + 0{Ax6At2p+1) 
N 

p-0 
2 ; 

+ 0(At27V+3), 

TV 

Allik) = Al}gik) + 2Y, (At2p+l 
1 9 ; 

(2p + r 

i)p h i v 
i^-4r,Dl~-r)2p+1AlM (2p + 1)' V2TT7 AX 2 X h' 

p o v ' 

TV 

+ E 0(Ax6At2 p + 1) + 0(At2 W + 3) (4 32) 
p=0 

In conclusion, one may algebrarcally manipulate Equatron (4 19) and Equa 

tron (4 32) into the following foim, and arrrve at the Generahzed FDTD Q method 

when used with asixth-ordei accuiate cential diffeience appioximation of the Laplace 

opeiatoi 

A^M - C a / W _ A (AtV ( - 2 ) P + 1 ( h l rfi V \ 

p 0 

2p+l 

f-£ V 2 ) i2p + 1)' V 2m Ax2 DT h) V;,md^/> ^ 

TV 

E O ( A ' 6 A t 2 p ) + 0(At2A,+2) (4 33a) 
p=0 
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and 

Cjw-iCjjk) = A / A A 2 P (-if (±j_D2_ y\2p+1 

At _̂rA 2 7 (2p+ l ) ! \2m Ax2 x h) AlAk) 
p=0 

TV 

+ E 0(Ax6At2p) + 0(At2 W + 2) (4.33b) 
p=0 

The order of accuracy may now be explicitly stated as 

0(Ax6 + Ax6At2 + Ax6 At4 + • • • + Ax6At2W + At2N+2). (4.34) 

4.2 Stability 

Having shown the order of accuracy of the Generalized FDTD-Q method when 

the Laplace operator is approximated by sixth-order accurate central differences, the 

focus now is on whether the sixth-order accurate central difference approximation 

of the Laplace operator produces a stable FDTD method. In this context stability 

means that as trme progresses the error in the numerical scheme does not grow 

unbounded. To begin, assume that V is a constant for simplicity, and the Von 

Neumann analysis [22] is used to analyze the stability of the Generalized FDTD 

scheme. Let 0"edl(A,) = X?eale
lkl3Ax and A^nAgik) = Kn^^^\ where Area, and 

A]mdg are amplification factors for Areaiik) a n d VVag(^) respectively. Using the Von 

Neumann analysis, if one can show that the amplification factors remain bounded, 

i.e., A < 1, then this implies that error in the system does not grow over time, and 

hence the method is stable. Substituting these relations into Equation (4.1) yields 

AA?eM) = T ^ o A ^ 1 2 ^ 6 ^ ^ ^ ^ - 27X^Al{k+2)f,Ax A- 270A"eale^+^A* 

+ 2A"ealp
,(A-i)/?AT - 27\^y[k-2)l3Ax + 270A^ealp

l(fc-1)/?Ax 

- 49O\^AL8AX} 



64 

1 [2e3l)3Ax - 27e2lfiAx + 270el/3Ax - 490 
180 Ax2 

2e-3l/3Ax __ 27e-2lfSAx + 270e-t6Ax]XAa]e
tkl3A X 

real11 

Recalling the relation from Euler's identity 

cos(tf) = l- (Ae + e~ie) , (4.35) 

and the trigonometric identities 

cos(2#) = cos2(#) - sin2((9), and (4.36) 

1 = cos 2 (#)+sin 2 (#) . (4.37) 

One is able to express the Laplace operator A as 

AAl-Ak) = T ^ ^ [ 4 c o s ( 3 / 5 A . r ) - 54cos(2/3Ax) 

+ 540cos(/3Ax) - 490]A™ale
lfc/3Ax 

1 
4 [cos2 (3,5 Ax/2) - sin2(3^Ax/2)] 

180Ax2 

-54[cos2(/3Ax) - sin2(,5Ax)] 

+540[cos2iAAx/2) - sin2(/3Ax/2)] - 490] A " a l e ^ A x 

^ - 3 [4[1 - 2sin2(3/5Ax/2)] - 54[1 - 2sm2(/3Ax)] 

+540[1 - 2sin2(/JAx/2)] - 490] X^Akf3Ax 

1 
0 . -8sin2(3/3Ax/2) + 108sin2(/3Ax) 

180Ax2 

-1080sin2(/3Ax/2)] X^x]e
lkfSAx. (4.38) 
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Reducing Equation (4.38) such that all waves are a combination of sin(/3Ax/2) is 

quite tedious. To begin, recognize that 

sin(/3Ax) = 2 sin(/3Ax/2) cos(/3Ax/2) (4.39) 

and 

sin2(^Ax) = 4 sin2 (/3Ax/2) cos2 (/3 Ax/2) 

= 4sin2(/3Ax/2)[1 - sin2(^Ar/2)] 

= 4sin2(/3Ax/2) - 4sin4(/3Ax/2). (4.40) 

Reducing sin2 (3/3Ax/2) is done in a similar, yet more complicated fashion 

sm2(3A3Ax/2) = [sin(/3Ax/2 +/3Ax)]2 

= [sin(/3Ax/2) cos(/3Ax) + sin(/3Ax) sin(^Ax/2)]2 

= sin2 (/3Ax/2) cos2 (/3 Ax) + sin2 (/3Ax) cos2 (/3Ax/2) 

+ 2 sin(/3Ax/2) cos(/3Ax) sin(/3Ax) cos(/3Ax/2) (4.41) 

From Equation (4.41) recognizing that 

cos(/3Ax) = cos2i/3Ax/2) - sin2(/3Ax/2) 

= l-2sin2( /3Ax/2) (4.42) 

and 

cos2(/3At) = [1 - 2sin2(/3Ax/2)]2 , (4.43) 

then Equation (4.41) may be rewritten as 

sin2(3/3A7/2) = &m2(/3Ar/2) [l - 2sin2(/3Ax/2)]2 

+ [4sin2iPAx/2) - 4sin4(/3Ax/2)] [l - sin2(/3Ax/2)] 
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+ 4 sin2(/3Ax/2) cos2(/3Ax/2) [l - 2 sin2(/3Ax/2)] 

= sin2(/3Ax/2) [l - 4sin2(/3Ax/2) + 4sin4(/3Ax/2)] 

+ 4sin2(^Ax/2) - 8 sin4(/3Ax/2) + 4 sin6 (,3Ax/2) 

+ 4 sin2(/3Ax/2) cos2(/3Ax/2) [l - 2 sin2(/3Ax/2)] 

= sin2(/3Ax/2) - 4sin4(/3Ax/2) + 4sin6(/3Ax/2) 

+ 4 sin2 (/3Ax/2) - 8 sin4(,5Ax/2) + 4 sin6 (/3Ax/2) 

+ cos2(^Ax/2) [4sm2(/3Ax/2) - 8sin4(/3Ax/2)] 

= 5sin2(/3Ax/2) - 12sin4(/JAx/2) + 8sin6(/?Ax/2) 

+ [l - sin2(/3A7/2)j [4sin2(/3Ar/2) - 8sin4(/3Ax/2)] 

= 5 sin2 (/3Ax/2) - 12sm4(/3Ax/2) + 8sin6(/3Ax/2) 

+ 4sin2iPAx/2) - 12sin4(/3Ax/2) + 8sin6(/3Ax/2) 

= 9sin2(/3Ar/2) - 24sin4(/3Ax/2) + 16sin6(/3Ax/2). (4.44) 

Collecting the terms from Equation (4.40) and Equation (4.44), and substituting 

back into Equation (4.38), one obtains 

A^eJk) = - T ^ T ^ [180sin2(A3Ax/2) + 60sin4(/3Ax/2) 
180 Ax2 

+32sin6(/3Ax/2)] A"ea]e
?^Ax 

4 

45 A r2 [45 sin2 i/3 Ax/2) + 15 sin4 (/3 Ax/2) 

+8sin6(A3Ax/2)]ALie?^A:c (4.45) 

A similar analysis of Af" (A) leads to the following equations expressed in 
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terms of the sixth-order accurate central difference operator D 

AA 
£>xCi(*0 = A^ 

— 45 sin' 
45 

+ 8 sin 

/3Ax 

2 

s /3Ax 

15 sin4 /3Ax 

\n ikfSAx (4.46a) 

Ax 
— DxAmAgi

k) - - r -2 
Ax2 

4 

45 

/3Ax 4 /3Ax 
45 sin h l 5 s m 

-8 sin 6
/3Ax 

To simplify notation in the following equations, let 

\n ik[3Ax (4.46b) 

Q = — [45 sin2 iP Ax/2) + 15sin4(/3Ax/2) + 8 sin6 (/3 Ax/2)] 

and Equation (4.46) may then be more compactly stated as 

Ax 2 

1 

DiAlAk) 

D2^::kk) 

i 

Ax 2 

1 n ikftAx 
i"W^imag e 

(4.47) 

(4.48a) 

(4.48b) 
Ax2 ^ i m d s v ' Ax2 

Returning to the Generalized FDTD-Q method presented at the beginning of 

the chapter, Equation (4.2) rs restated rn terms of the error amphfications 

TV 

Areal — A£.+2£( 
p=0 

TV 

KA2 + 2J2 
p=0 

TV 

m u g -Cag + 2 E 
p=0 

TV 

L t l - 1 

imag 
p=0 

2E 

At ( — l)p+1 

2 ' (2p + l)! . 

(-1)P 

(2p+ l ) ! 

" h At 
Am Ax2 

fAt 2p+] (-l)p 

1 2 j (2p + l)! 

( " l ) p 

(2p+ l ) ! 

' /? At 

Am Ax 2 

2?77 A x 2 h 

2p+l 

A n - l 

0 - ^ 
v 2/i 

ft 1 

2m Ax2 

' 2/t 

2p+l 
, 7 7 - 1 .49a) 

Q 

2p^ 

~h 

2p+\ 

real 

real (4.49b) 
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These equations may be more compactly expressed as 

ArU, = KAl + <*X£t, (4.50a) 

Airnag = Arinag _ aAreal> ( 4 . 5 0 b ) 

TV 

where a = 2 J2 j0[y [^Q - WY^ a n d r i s t h e m e s h r a t i o AAA-
P=O 

Since Equation (4.50a) is true for any time level n, it may be rewritten as 

Areal = Areal + aKma,g (4-51) 

Subtracting Equation (4.51) by Equation (4.50a), with the motivation being that 

as time progresses the difference between the error at different time steps remains 

constant. The resulting equation 

Areal - Areal = Areal _ Areal + aKma,g ~ ^ i r n a g i ( 4 - 5 2 ) 

may be simplified using Equation (4.50b) leading to a quadratic equation 

\ « + l 0 \ « \n-l_ (\n \ n - l \ 
Areal ~~ ^Areal _ Areal ~ a l A m a g ~~ A]magJ> 

\ n+1 o\n \n—1 _ / \n—1 „ \ « \ n - l \ 
Areal ~ ZAreal ~ Areal ~ a l A i m a g ~~ a A r e a l ~ A imagi ' 

\ n + l O \ n \n—1 ^ 2 \ n 
Areal Z/Areal 'Veal ~~ a 'Veal' 

A2
eal - (2 - Q

2)Areai - 1 = 0 (4.53) 

Recall that A is an amplification factor, and to have a stable method, these 

amplification factors must be bounded Using the fact that for a quadratic equation 

x2 + Br + C = 0. the solution T satisfies |x| < 1 if and only rf \B\ < 1 + \C\ and 

\C\ < 1. From Equation (4.53) it is clear that \C\ < 1, and to have |B\ < 1 + \C\ 

then the following relation must be true |Areai| < 1 if and only if \a\ < 2 

file:///n-l_
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By the Von Neumann analysis it is concluded that the Generalized FDTD-Q 

scheme is stable if \a\ < 2, 

(-AW r h T / A f l 2 p + 1 

<2, 

V (-!)P 

U(2p+iv 

h „ VAt^ 
Am ^ 2h _ 

' h VAt' 
Am Q+ 2h 

2p+l 

2p+l 

< 1 (4 54) 

From Equation (4 54) one can conclude that the Generalized FDTD-Q method 

is stable, but with the parameters contained in the equatron e g , N, m, V, 

h, Ax, and At, rt rs unclear rf the scheme is unconditionally stable or if the 

aforementioned parameters have an impact on the stability First recall the Taylor 

series representatron of a sine wave 

Lemma 4 .1 . Taylor series representation of a sine wave 

i-iy 
sm(x) = E 

Now, suppose N —> oo, 

n = 0 
(2ra- 1)! x 

2 n + l (4 55) 

TV 

hm > 
/V—lrv-, ^- ' 

•iy 
w - ~ ^ ( 2 p + l ) ' 

h „ VAt 
Am ^ 2h 

2p+l 

p=0 

(~l) p 

( 2 p + l ) 

h 

Am 

VAt\ 

VAt 
~2h~ 

2p+l 

sm | -—r V + —— 
Am 2h I 

(4 56) 

It is immediately clear that regardless of the paiameters m V, h, Ax and At, 

Equation (4 54) is automaticallv t>atisfied as TV —> oo implying the scheme rs 

unconditionally stable 

Howevei, in practice one may not allow N to be arbrtrarrly large, and so 

Equatron (4 54) is imposed using the maximum value of ~i Q VAt 
2h The maximum 
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value of Q is 

max \Q\ — max 
45 

[45 sin2 (/3 Ax/2) + 15sin4(/3Ax/2) + 8sm6(/3Ax/2)] 

= — [45 + 15 + 8] 
45 

_ 272 

~"45~ ' 

and the requrred stabrhty condrtron is 

TV 

(4.57) 

E ( - 1 ) " 
- ( 2 p + l)! 

h
 I ^ I

 A t 

—r-max \Q + — 
4?77 In 

TV 

p=0 

( ~ l ) p 

( 2 p + l ) ! 

h 272 At 

AT 

£ 
p=0 

-IV 

4m 45 2h 

Q8H At 

(2p + l)> 45m 2h 

max 

max 

max 

1̂1 

\V\ 

\v\ 

2p+l 

2p+l 

2p+l 

< c < 1 

< c < 1 

< c < 1, (4.58) 

where c is a constant Using a similar argument, one may obtain the same inequality 

as that in Equation (4.58) for Aimag. Hence, one arrives at the following theorem. 

Theorem 4.1 . The Generalized FDTD scheme for sixth-order accurate central 

differences 

N 

€ealik) = ArActik) + 2j2 
p=0 

N 

C a ^ = C4W + 2 E 

i-iy+1 

i-iy 

h ~ VAt 
rD 

Am x 2h 

2p+l 

C « W - (4 59a) 

p-iip+^y 

h 

Am -rDl 
VAt 

~2h 

1 2p+l 

An
realik) (4.59b) 

is stable if Itie following the (ond/fion is satisfied 

N 

£ 
p=0 

( - 1 ) ' 

(2P + I; 

h 272 At 
rH max 1/ 

4m 45 2h 

2p+l 

< 1 (4.60) 
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4.3 Computat ional Algor i thm 

Having shown a theoretical basis for utilizing a sixth-order accurate central 

difference approximation of the Laplace operator, it is essential to bridge the 

gap between theory and computation. In this section, pseudocode is presented 

that translates the mathematical methods presented in the previous sections and 

chapters into a format more suitable for computation, while avoiding the technical 

implementation details that arise when writing an actual program that solves a 

real problem The goal behind pseudocode is to present the fundamental concepts 

behind an algorithm, while not burdening the reader with intricate implementation 

details that may be specific to solving a unique problem. To this end, the algorithm 

for the Generalized FDTD-Q method is presented in Algorithm 4.1. Note the 

algorithm has been summarized in its entirety on a single page, should one wish 

to view the actual source code as implemented in the FORTRAN77 language, 

the reader is directed to Appendix C, but it should be noted that the source 

code presented is specific to solving a model problem presented in Chapter 5. 
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Algor i thm 4.1: Pseudocode for the Generalized Finite-Difference Time-
Domain for method. 

Input: Grid spacing Ax 
Input: Number of grid points Apoint5 

Input: Number of time steps Afsteps 
Input: Parameter TV 
Input: Mesh ratio r 
Input: 1 x Â pomts Array of initial values for the real component of the 

wavefunction 0reai 
Input: 1 x Apoints Array of initial values for the imaginary component of the 

wavefunction 0 i m a g 

Input: 1 x Agents Array of initial values for the potential function V0 

I / / Apply initial conditions 
2 for k = 0 to TVpomts do 

3 '0real(/) = 0ieal(&) 

4 V W g ( & ) = </>imag(&) 

5 Vik) = V0ik) 
6 end 
7 At = r • Ax2 

8 / / Begin time stepping loop 
9 for n = 1 t o TV5tep5 do 

10 

n 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 end 

/ / Compute even-order derivatives of V;,mag UP to 4A" + 2 

HighOiderLaplaceDrff(V;imag, Npomts. 4A + 2) 

n-± 
If Conrpute V êai using the derivatives of V;

imag 

foreach Computable grid point k do 
j / /Compute ^reai('c) using the Generalized FDTD-Q scheme Eq. (2.9) 

end 

/ / Compute even-order derivatives of i/j™dl up to 4A + 2 

High0rderLaplaceDiff(7/;r
n

eai- N
pomts. AN + 2) 

/ / Compute V-Vag using the derivatives of f/''"eal 

foreach Computable grid point k do 

II Compute AmiAgik) using the Generalized FDTD-Q scheme Eq. (2.9) 

end 
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From Algorithm 4.1, one can see that the majority of the algorithm is inside 

of the time loop on Lines 9-22, and it is for this reason algorithms of this type are 

typically referred to as timestepping or timemarchmg algorithms. A hidden detail 

not shown in Algorithm 4.1 is that both time and space have been discretized into 

a finite set of grid points. This discretization was introduced in Equations (2.5) and 

(2.5) in Chapter 2. 

The work from Chapter 3 related to numerical differentiation is present 

on Line 11 and Line 17, where the procedure HighOrderLaplaceDiff is used to 

obtain the high-order derivatives required by the Generalized FDTD-Q scheme. 

The pseudocode for this procedure is shown in Algorithm 4.2 and related Algo

rithm 4.3, and one should be aware that the specific approximation of the Laplace 

operator is left intentionally ambiguous. This ambiguity is essential given one 

only needs to prove the theoretical basis for using a specific approximation of the 

Laplace operator, and the Generalized FDTD-Q algorithm will remain valid. 

Algor i thm 4.2: Pseudocode for obtaining high-order derivatives by recursively 
applying the Laplace operator. 

Function: HighOrderLaplaceDiff(</?, Apoin ts, M) 
Input: Number of grid points Afpoints 

Input: Highest order derivative desired M 
Input: 1 x Appoints Array of function values (p 
Output: Y 1-D arrays of size 1 x Apoint5 containing the function </? 

differentiated up to ^M^ 
begin 

Apply the Laplace operator repeatedly to obtain high-order derivatives 

for m = 1 t o 4p do 
| <^2m) = LaplaceDilr((^(2(m-1),Apomts) 

end 

Return <^2>V4>,. V M ) 

end 
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Algor i thm 4.3: Pseudocode for applying the Laplace operator. 

Function: LaplaceDiff((/?, Npomts) 
Input: Number of grid points Npomts 

Input: 1 x Apoints Array of function values <p 
Output: 1 x TVpoints Array of the function ip twice differentiated (p^ 
begin 

Apply the Laplace operator to the values in ip 
foreach Computable grid point k do 

| Compute ip^ik) using Eq. (3.13). 
end 
Return (p^ 

end 

From the pseudocode presented, enough detail is shown such that one may 

note the computational complexity of the entire method. From Lines 2-5, one 

may note that applying the initial conditions will require at least cNpomtb + C 

computations, where c and C are constants, and clearly the algorithm will never 

perform more than cNpomts + C computations. Therefore both the upper and lower 

bounds are asymptotically the same, and it may be stated that the algorithm has 

computational complexity 0(A'po]nts,). Similar reasoning is implied throughout this 

analysis, and asymptotic bounds are directly written in O notation. The time loop 

is more complicated, from Line 9 it is clear the loop will be executed ©(Asteps) times, 

but the analysis of the interior of the loop is more complicated and rather than 

approach the loop as a whole, analysis will be performed first on the differentiation 

procedure from Algorrthm 4.2. 

The HighOideiLaplatcDiff procedure from Algorithm 4.2 requires 4f evalu

ations of the LaplaceDiff procedure. In the context of the Generahzed FDTD-Q 

method. M is actually 2(2A + 1) as taken from Line 11 of the Generalized FDTD-

Q algorithm in Algorithm 4.1. Using this information one may then realize that 

the HighOrderLaplaceDiff procedure requires 2
+ ' = 2N + 1 evaluations of the 

LaplaceDiff procedure. To determine the complexity of the HighOrderLaplaceDiff 
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procedure only needs to know the complexity of the LaplaceDiff procedure, which 

may be observed from Algorithm 4.3 noting that the LaplaceDiff procedure requires 

©(Apomts) computation. (4.61) 

With this information one may then deduce that the HighOrderLaplaceDiff 

procedure requires 

6 ( ( 2 A + l)JVp0ints) computation. (4.62) 

Returning to the complexity of the time loop, one may now model the 

computational complexity of the time loop as follows, where the interior of the loop 

has computational complexity 

Line 11 and Line 17 Line 13 and Line 19 

2 e ( ( 2 A + l )A p o m t b j + 2 ^ ( A p ^ 3 , 

0 ( 4 ( A + l )A p o m t s ) . (4.63) 

Leading to the computational complexity of the Generalized FDTD-Q algorithm, 

initial conditions time loop 

e ( i C l ) +e(4(7v + i)/vpoinls.TVhtepJ, 

6(Apo int, • A s t e p s) . (4.64) 

Where Equation (4.64) is the result of removing the constants, and retaining only the 

dominant terms in the equation. This is done because O is a model of the asymptotic 

behavior, i.e., C, A^pointh + C2Ap o i n t sA s t e p s simplifies to C2A^pointsAbteps. 

4.4 S u m m a r y 

In this chapter the theoretical basis for using a sixth-order accurate approxi

mation of the Laplace operator was established: the order of accuracy of the resulting 

Generalized FDTD-Q scheme was derived; the stability condition imposed by using 

this sixth-order accurate operator was shown; and the computational algorithm 
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used to evaluated the scheme was presented and analyzed. The significance of this 

work may be summarized by stating that the sixth-order accurate Laplace operator 

has improved the theoretical order of accuracy by four orders of magnitude, while 

imposing a more stringent stability requirement as shown in Theorem 4.1. The 

following chapter will evaluate whether these theoretical aspects hold true when 

used to solve real problems. 



CHAPTER 5 

RESULTS 

Having presented the FDTD-Q and Generalized FDTD-Q methods in Chap

ter 2; meticulously analyzed various compelling differentiation techniques and 

selected the most appropriate in Chapter 3, proved in Chapter 4 that the selected 

differentiation technique is stable when applied to the Generalized FDTD-Q scheme; 

Now, numerical experiments are performed to demonstrate the superiority of the 

choice made in Chapter 3 when compared against the FDTD-Q and published 

Generalized FDTD-Q methods. 

To compare against the FDTD-Q and published Generalized FDTD-Q 

methods two problems have been selected. The first problem has an exact solution, 

and will be referred to as the model problem, because the model problem has 

an exact solution the absolute error may be computed when using each of the 

numerical schemes listed above. The model problem also allows one to observe when 

a scheme becomes divergent, which allows ones to observe the stability through 

experimentation. Using this model problem, it will be shown that the stability 

condition presented in Chapter 4 is correct, and that the scheme has absolute error 

several orders of magnitude smaller than the FDTD-Q and published Generalized 

FDTD-Q schemes. The second problem chosen has been taken from Sullivan [29] 

and Dai et al [10], and simulates a particle moving in 1-D free space and then hitting 

an energy potential. 

77 
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5.1 T h e Mode l Prob lem 

The model problem chosen is a one dimensional time-dependent Schrodinger 

equation posed as follows 

dtp(x,t) d2ip(x,t) . , . r 7l n ._ „ . 
K

m
 J = i dx2 -iVix,t)xfjix,f), xE[a,b], t > 0 (5 1) 

tpia,t) = ipib t) = 0, t > 0, 

1 / ( X , 0 ) = TT2, 

where initial conditions for f>ix,t) are provrded by the complex function </>(r) The 

analytical solution of Equation (5 1) is AixA) = e~l27r tsm(7rx), and equatron rs 

solved over the mterval 0 < c < 1 and 0 < t < 1 The rmtial conditions are derived 

from the analytical solution using Euler's identity cw = cos(9) + 2sm(#) 

Aix) = e-12^ sm(7rx) 

= cos(—27r2t) sm(7rx) + ? sm(—2rr2t) sm(7rr) 

= cos(27r2t) sm(7rx) - i sm(27r2t) sm(7rx) (5 2) 

Note that attempting to compute the initial conditions dnectly from ipix,t = 0) = 

e-s27T t s m ( 7 r 2 ; ) W1n effectrvely remove the rmagmary component and we seek the 

nontrrvral solutron, r e , </>,mag A 0 Contmumg from Equation (5 2) leads to 

^real^) = COs(27T2t) Sin(7Tx), and (p,ma,gix) = Sm(27T2t) Sm(7Tx) 

Allowmg t = 0 m Arediix) causes no pioblems, but again one must take care to ensure 

that the nnagmary component does not become zeio To handle this lecall fiom 

the FDTD-Q scheme that Vimag 1S computed at time t + \ using this information 

lecogmze that the initial t rs t = At leadmg to the initial conditions 
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^(x,O) = 0(x) < (5.3) 
P r e a l W = Sm(7TX), 

0 imag(x) = — sin(7r2At) sin(7rx). 

To compare against the original FDTD-Q scheme Equation (2.3), recall that 

the original FDTD-Q scheme is the Generalized FDTD-Q scheme with TV = 0. 

For this analysis there are several cases that the improved Generalized FDTD-Q 

scheme must be compared against, the parameter TV is chosen to be N = 3, and 

the Generalized FDTD-Q scheme with sixth-order accurate spatial derivatives is 

compared against the following: 

• The original second-order accurate FDTD-Q scheme i.e., the published Gener
alized FDTD-Q scheme with vV = 0. 

• The published Generalized FDTD-Q scheme using second-order accurate 
spatial derivatives and N = 3. 

• The original sixth-order accurate FDTD-Q scheme i.e., the Generalized FDTD-
Q scheme with sixth-order accurate spatial derivatives and N = 0. 

5.1.1 Stabil ity Condit ions for the M ode l Prob lem 

The stability condition imposed upon the modified (sixth-order accurate) 

Generalized FDTD-Q scheme is taken from Theorem 4.1. For the model problem 

Equation (4.60) takes the form 

N 

£ 
p=0 

AY 

(2p + l)! 

( - 1 ) 
TV 

1 272 

2 ' "45"' 

136 

+ 7T2At 
2p+l 

- i2p+l 

45 
r +?r 2 At 

< c < l , 

< c < 1 (5.4) 

-Afff, or At = r • Ax2, replacing At by this relation in Recall r is the mesh ratio r 

the above condition allows one to formulate the stability condition entirely in terms 

of r. N. and Ax 

TV / , N „ r , „ „ -1 2p+l 

£ 
p=0 

( ~ l ) p 

( 2 p + l ) ! 

136 

~A5 
-r + 7T ? 

2 -Ax 2 < c < 1. (5.5) 
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Now choosing a specific A" and Ax one may determine the largest possible 

mesh ratio that will remain stable The grid spacings chosen are Ax = 0 01 and 

Ax = | 0 01 — 0 005, TV IS chosen to be N = 0 and TV = 3 First consider the case 

of Ax = 0 01, Equation (5 5) reduces to a polynomial m r 

|0 4579?7 - 2 1045r5 + 4 6052r3 - 3 0232r| < 1 (5 6) 

Which has a positive leal root at 

/ = 1 254513102904631 (5 7) 

which leads to the following theorem 

T h e o r e m 5 .1 . The mesh ratio for the sixth-order accurate Generalized FDTD-Q 

method with Ax = 0 01 and N = 3 will produce a stable method if 

\r\ < 1 254513102904631 (5 8) 

A similai analysis may be perfoimed for N = 3 and A T = 0 005, as well as 

N = 0 and Ax = 0 01 and Ax = 0 005 We call these values the critical mesh ratios, 

as the scheme is only stable if \r\ < c Notice these critical mesh latios are strict, and 

equally implies the stability condition is no longer satisfied The stability condition 

for the second-order accuiate Generalized FDTD-Q scheme from [11] is 

tA^A2'*^^]^1 <c<l (5 9) 

Following the piocedme used to airrve at Theorem 5 1, the critical mesh 

latios have been computed foi both the second-order accuiate Geneiahzed FDTD-Q 

method and the sixth-oider accurate Generalized FDTD-Q method, and aie shown 

m Table 5 1 
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Table 5 1 Critical mesh ratios c for the Generalized FDTD-Q schemes when solving 
the model problem using Ax = 0 01 or Ax = 0 005, and TV G {0,1, 2, 3} 

Critical Mesh Ratios c 
\r\ < c = > Stability 

0 ( A x 2 ) Scheme 0 ( A x 6 ) Scheme 

N 

0 
1 
2 
3 

0 01 

0 49975 
1 42295 
1 83958 
1 89539 

0 005 

0 49999 
1 42348 
1 84026 
1 89609 

0 01 

0 33077 
0 94182 

1 21757 
1 25451 

0 005 

0 33085 
0 94205 
1 21787 
1 25482 

5.1.2 Numerical Resul t s for the Mode l Problem 

Using the computational algorithm shown m Chapter 4, numerrcal solutions 

have been obtained for each scheme at both Ax = 0 01 and Ax = 0 005, while usmg 

various mesh latios, and choosing TV = 0 and A = 3 The following graphs show the 

maximum absolute error for each time step plotted against time that is 

Errn
m^ = max { | C a c t ( ^ ) - C P P rox(^) |} foi all * = 0 ,1 , , M (5 10) 

where M rs total number of grrd pornts M = -~ 

Frgure 5 1 shows the absolute error of the model problem when choosmg 

Ax = 0 01 arrd Ax = 0 005 and using four different rnosh ratros Recognrze that 

Figure 5 1(d) is slightly smaller than the cntical mesh ratio for the sixth-order 

accuiate Generalized FDTD-Q scheme from Table 5 1 which is 1 25451 for Ax = 0 01 

and 1 25482 for Ax = 0 005 Choosing ? = 1 26 pioduced a divergent result, 

and clearly 1 26 is laigei than the critical mesh ratio indicating that the stability 

condition is not satisfied Specifically, r = 1 26 with Ax = 0 01 is equivalent to 

1 02844 which is greatei than one 
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Figure 5.1: Maximum absolute error for the model problem solved with the sixth-
order accurate Generalized FDTD-Q method, with Ax = 0.01 and Ax = 0.005, and 
AT = 3. 

Figure 5.2 contains the maximum absolute error when using the original 

Generalized FDTD-Q method, which used second-order accurate spatial derivatives. 

Note that as was published by Dai and Moxley [11], the method is convergent with 

r = 1.85, and divergent when choosing r = 1.90. Again from Table 5.1 it is clear 

that 1.90 is larger than the critical mesh ratio for the second-order accurate scheme. 



83 

Time (s) Time (s) 

(a) r = 0.25 (b) r = 0.50 

Time (s) Time (s) 

(c) r = 1.00 (d) r = 1.25 

Figure 5.2: Maximum absolute error for the model problem solved with the second-
order accurate Generalized FDTD-Q method, with Ax = 0.01 and Ax = 0.005, and 
N = 3. 

Of note is the order of magnitude of the error in each plot, for the published 

Generalized FDTD-Q method the error lies in the range 0 to 8 x 10~4, while the 

sixth-order accurate scheme has error in the range 0 to 1.8 x 10~n . To summarize 

how the sixth-order accurate Generalized FDTD-Q scheme improves the accuracy of 

the solution, the log10 of the error is plotted against time, and is shown in Figure 5.3 

when Ax = 0.01 and Figure 5.4 when Ax = 0.005. 
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Figure 5.4: The log10 of the maximum absolute error for the sixth-order accurate and 
second-order accurate Generalized FDTD-Q methods, with Ax = 0.005 and N = 3. 

5.1.3 Order of Accuracy of the Spatial Derivatives 

From the figures in the previous section, it is clear that the sixth-order 

accurate scheme shows a stark improvement in the accuracy of the solution when 

compared to the second-order accurate Generalized FDTD-Q method. The stability 

condition from Theorem 4.1 also held in all numerical tests. Next, one may wish 

to verify the order of accuracy of the spatial derivatives in the scheme. To do this, 

one must minimize the impact of the time step (Ai), because the order of accuracy 

of a FDTD scheme depends on both space and time. For the sixth-order accurate 
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Generalized FDTD-Q method, the order of accuracy was shown m Section 4 1 to be 

0 ( A x 6 + Ax6 At2 + Ax6 At4 + • + Ax6At2N + At2N+2) (5 11) 

If At —> 0, then one will be left with only 0 ( A x 6 ) , but clearly At may not 

be zero m practrce and so At rs chosen to be very small e g , At = 1 x 1 0 - 7 Note 

that the mesh ratro r plays no part rn thrs analysrs One rs effectrvely choosing the 

smallest At such that a solution may be computable m the trme grven, and Ax as 

large as possible such that the solution is still computable ovei the domain 0 < x < 1 

For example, if Ax = 0 1, then there are only 1/Ax grid points, and when using 

the sixth-order accurate cential difference the three points nearest each boundary 

are uncomputable, meaning the method is only computing a solution on five points 

It was found empirically that Ax = 0 05 is sufficient It should also be noted that 

when At = 1 x 10~7, the solution over the interval 0 < t < 1 requnes to 10 000, 000 

trme steps 

The order of accuracy rs approxrmated as follows, one computes the solution 

and associated absolute error using At = 1 x 10~7 and Ax = 0 05, and also the 

solution and absolute error using At = 1 x 10~7 and 4p = 0 025 The erioi for each 

may then be defined as 

ErrAx = 0(Axn), (5 12) 

Err^=0(i^T)=0{Axn) 1 (5 13) 

Substituting Equation (5 12) into Equation (5 13) allows one to lemove the unknown 

terms m the tiuncation erioi e g C f^\C), yielding 

En A, = En Ax — 

T
 E7 7 Ax 

Err AT 
2 
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f ErrAx 
n = log — 

\ Err^x 

1 
log(2) 

(5.14) 

Using the above method to compute the approximate order of accuracy of the 

spatial derivative, Figure 5.5 shows the graph of the order of accuracy of the spatial 

derivative over time. One can see that the method has approximately sixth-order 

accuracy at the beginning of the time interval, and slowly over time it degrades. 

Using this method to approximate the order of accuracy of the spatial derivatives, 

the minimum, maximum, and mean approximate orders of accuracy are shown in 

Table 5.2, for problems solved using both the sixth-order and second-order accurate 

Generalized FDTD-Q methods, and choosing N to be zero and three. 

0 2 0 3 
Time (s) 

Figure 5.5: The observed order of accuracy of the spatial derivative when using the 
sixth-order accurate Generalized FDTD-Q method computed using Equation (5.14), 
with Ax = 0.05 and Ax = 0.025, At = 1 x 10~7, and N = 3. 

Table 5.2: Approximate order of accuracy of the Generalized FDTD-Q method using 
second-order and sixth-order accurate spatial derivatives, and Ax = 0.05 and Ax = 
0.025, and At = 1 x 10~7. 

Approximate Order of Accuracy for the Spatial Derivative 

0(Ax2) Scheme 0(Ax6) Scheme 

N mm max mean mm max mean 

0 1.9943 2.0039 1.991 5.1722 6.3473 5.9099 
3 1.9943 2.0039 1.991 5.1722 6.3473 5.9099 
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5.1.4 Conclusions 

Having shown theoretical guidelines for using the sixth-order accurate central 

differences in the Generalized FDTD-Q method in Section 4.2 and arrived at 

Theorem 4.1; the numerical results presented for the model problem behaved 

precisely in line with the theoretical basis. The critical mesh ratios shown in Table 5.1 

were constructed from theory, yet clearly observed in Figure 5.2 and Figure 5.1. 

Furthermore, the magnitude of the error decreased drastically when compared 

against the second-order accurate scheme as shown in Figure 5.3 and Figure 5.4, 

and the observed order of accuracy of the spatial derivatives was maintained for over 

5,000,000 time steps as shown in Table 5.2. Based on these observations as well 

as the theoretical foundation presented in Chapter 4, it has been shown that the 

sixth-order accurate central differences have shown a measurable improvement over 

the second-order accurate Generalized FDTD-Q scheme when applied to the model 

problem. 

5.2 Particle Simulat ion 

Having used the model problem to bridge the gap between theory and 

computation, and in doing so verified that the theoretical underpinnings presented 

in this writing. Another problem is solved in this section with the motivation being 

to show the practical value of the Generalized FDTD-Q method. Following in the 

footsteps of Sullivan [29] and Dai [10, 11], the Generalized FDTD-Q scheme will 

be used to simulate a particle moving in 1-D free space and then hitting an energy 

potential. The following problem is taken directly from Sullivan's book [29], a particle 

is initiated at a wavelength of A in a Gaussian envelop of width a with the following 

two equations: 

^ieai(^) = « a ' cos I ^ J (5.15a) 

and 
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* * ( * ) = e " ' ^ ' sin ( 5 ^ i ) , (5.15b) 

where fcrj is the center of the pulse. 

The specific grid size chosen will be chosen from Dai [10], and a mesh of 1600 

spatial grid points is constructed with k0= 400 and a = A = 1.0 x 10~10 [m]. The 

parameters required by the Schrodinger equation Equation (1.1) are defined by the 

simulation itself, for this simulation we seek to model an electron moving through 

1-D free-space, and therefore m, is taken to be the mass of an electron, Ax is chosen 

to be one-tenth of an Angstrom, and h is the reduced Planck's constant 

m = 9.1 x 10~31 [kg] (5.16) 

Ax = 1.0 x 10"11 [m] (5.17) 

h= 1.054 x 10"34 [J-sec]. (5.18) 

To replicate Dai's results, V was chosen to be 0 in the first 800 grid points and 

100 [eV] in the next 800 grid points. To have the units match, V must be expressed 

in Joules, and so the conversion 

1 [eV] = 1.602 x 10~19 [J] (5.19) 

will be used when necessary. 

The next equations are again taken from Sullivan [29], and are used to 

determine the expected energy, both Kinetic and Potential that should exist in the 

system. They are computed from A^fk) an<^ AjmAgik) m ^ n e simulation as follows : 

h2 N 

Kinetic Energy (KE) = - — £ [ c , ( ^ ) - «CaJ(^) 
2m 

k=l 

02AAAk) | ffCm 
dx2 dx2 

(5.20) 
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and 

TV 

Potential Energy (PE) = £ V(fc) [Cai ( ^ P + [C!a~g W P (5 21) 
k=l 

The approximation of the Laplace operator was chosen to be a sixth-oider accurate 

(7-pornt) central difference approximation 

A2A?eJk) _ 1 

dx2 180Ax2 2Cai(^ + 3) - 27^ , ( fc + 2) + 270C,(fc + 1) 

- 49O0r"eai(̂ ) + 270V^al(/o - 1) - 27(/0(fc - 2) 

+ 2 ^ * - 3 ) 1 (5 22a) 

and 

d2Azm imag \ 

dx2 180Ax2 2<nMg(* + 3) - 27Cmag(^ + 2) + 270Cmag(fc + 1) 

- 490Crag(^) + 270VCag(^ " 1) " 27<nag(/c - 2) 

+ 2,/Cag(fc - 3)] (5 22b) 

From Dai [10] the simulation should model an electron moving through free 

space and then hitting an energy potential with a total of about 150 (eV) The eneigy 

is puiely kinetic due to the fact that there is no potential energy available before the 

energy barrier is reached With an increase m time, the electron will piopagate m 

the positive spatial direction The waveform begins to spread, but the total kinetic 

eneigy remains constant After the electron strrkes the potential barrrer, part of the 

energy wrll be converted to potentral energy The waveform mdrcates that there rs 

some piobabihty that the electron ib reflected and some probabrhty that it penetiates 

the potential barnei However the total energy should remarn constant 

The impoitant aspect that this simulation will evaluate rs the last statement 

taken fiom Dai, that is the total eneigy should lemam constant Compared agarnst 

Dai and Moxley [11], the plots will evaluate the impact of impiovmg the accuiacy 
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of the approximation of the Laplace operator m the Generalized FDTD-Q scheme 

Table 5 3 shows the findings published with the Generalized FDTD-Q method, which 

utilized second-oider accurate spatial derivatives, and a second-order accurate central 

difference approxrmation of the Laplace operator used to compute the Kmetrc energy 

Table 5 3 Energy conservation of Generalized FDTD-Q method with second-order 
and sixth-order accurate spatial derivatives 

Eneigy Conservation of the Generalized FDTD-Q Schemes 

0(Ax2) 

N 0 

0 70 151 
0 75 151 
0 95 
1 00 

Scheme [11] 

350 1300 

154 149 
154 0 

0 (A 

0 

151 
151 
151 
151 

x6) Scheme 

350 1300 

154 152 
154 152 
151 154 
162 196 

One can see from Table 5 3 that as the stability condition is relaxed, the 

energy conservation becomes increasingly poor Figures 5 6, 5 7, 5 8, and 5 9 show 

the particle simulations with the stability condition /./ at // = 0 70, /j = 0 75, // = 0 95, 

and /i = 1 00 While the plots for fi = 0 95 and /i = 1 00 are not too different one 

can clearly see fiom Table 5 3 that the energy conservation for \i = 1 00 rs becommg 

hrghly rnaccurate 
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Figure 5.6: Particle simulation using stability condition c = 0.70. 
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5.3 Conclusions and Future Work 

The work conducted in this dissertation has shown a measurable benefit for 

the Generalized FDTD-Q method, as is evident from the solutions to the model 

problem. In the simulations of the particle moving in free space, it is also clear that 

numerical feedback (reflections of the wave off the boundaries) is present. These small 

oscillations likely pollute the solution and should be damped using an Absorbing 

Boundary Condition. From Table 5.3 it is not clear if increasing the accuracy of 

the spatial derivatives provides any benefit in regard to conserving energy, though 

it is hypothesized that with a suitable absorbing boundary condition, the impact of 

higher accuracy spatial derivatives will become more apparent. 

We would also like to revisit the use of piecewise low degree Lagrange 

interpolating polynomials, possibly as tools to aid in providing information at 

the uncomputable points when using central differences. We would also like to 

experiment with the use of Richardson extrapolation to improve the accuracy of 

the higher-order derivatives, e.g., sixth, eighth, and higher-order derivatives. Ideally, 

we would like to improve the accuracy of the accuracy of the Generalized FDTD-Q 

scheme such that the order of accuracy has the form 0 ( A x 2 + Ax2 At2 + Ax4 At4 + 

• • - + Ax2N At2N + At2N+2), doing so the Author hypothesizes that an A of two or 

three may be sufficient. 
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Contained in this appendix are additional error plots for the test function 

fix) = e^ - 3^, which was introduced in Subsection 3.3.1. These error plots illustrate 

how the differentiated Lagrange interpolating polynomials lose accuracy as they are 

repeatedly differentiated. The intent of these plots is to provide a visual progression 

of the error propagation as successively high-order derivatives are computed. By 

observing the first-, second-, third-, fourth-, fifth-, and sixth-order derivatives, one 

can clearly see the error grow at the endpoints. The error is then plotted next to 

these differentiated functions, so one may see the distribution of error throughout 

the interval. 

Figure A.l: Test function /(x) = ê  ^ ) plotted over the interval [0,1.035]. 
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(a) First derivative (b) Absolute error of the first derivative 

(c) Second derivative (d) Absolute error of the second derivative 

(e) Third derivative (f) Absolute error of the third derivative 

Figure A.2: First-, second-, and third-order derivatives of the test function / (x) 
2 

e(-%-) a n ( j associated absolute error over the interval [0,1.035]. 
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This appendix contains additional numerical results used in comparing the 

differentiated Lagrange interpolating polynomials against the central difference 

approximations of the Laplace operator. Each section contains results using the 

differentiated Lagrange interpolating polynomials with three different abscissas, as 

well as results using the central difference approximation of the Laplace operator 

with three different orders of accuracy: second-order accurate, fourth-order accurate, 

and sixth-order accurate. For each function tested, solutions are constructed over-

two intervals [0,1.035] and [0, 10.35]. 
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Figure B.l: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function / (x) = e ^ , over the interval [0,10.35], utilizing 208 total grid 
points. 
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Figure B.2: Central difference approximations of the Laplace operator applied to the 

function / (x) = e^x\ over the interval [0,10.35], utilizing 208 total grid points, and 

various orders of accuracy. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.3: Differentiated piecewise twelfth degree Lagrange interpolating polyno

mials for the function /(x) = e^x\ over the interval [0,1.035], utilizing 208 total grid 

points. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.5: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function /(x) = cos(x), over the interval [0,10.35], utilizing 208 total 
grid points, and three different grid spacings. 
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure B.6: Central difference approximations of the Laplace operator applied to 
the function / (x) = cos(x), over the interval [0,10.35], utilizing 208 total grid points, 
and various orders of accuracy. 
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev 
nodes to compute the first- through sixth-order derivatives. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.7: Differentiated piecewise twelfth degree Lagrange interpolating polyno

mials for the function / (x) = cos(x), over the interval [0,1.035], utilizing 208 total 

grid points, and three different grid spacings. 
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(a) Second-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure B.8: Central difference approximations of the Laplace operator applied to 

the function / (x) = cos(x), over the interval [0,1.035], utilizing 208 total grid points, 

and various orders of accuracy. 
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B.3 Polynomial Function 
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(a) Differentiated Lagrange interpolating polynomials using equally spaced 
nodes to compute the first- through sixth-order derivatives. 
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev 
nodes to compute the first- through sixth-order derivatives. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.9: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function /(x) = x7, over the interval [0,10.35], utilizing 208 total grid 
points, and three different grid spacings. 
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(a) Second-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 
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(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure B.IO: Central difference approximations of the Laplace operator applied to 

the function / (x) = x7, over the interval [0,10.35], utilizing 208 total grid points, 

and various orders of accuracy. 
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(a) Second-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Equation: x7
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(b) Fourth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Equation: x7
 E r r o r o f L a g r a n g e derivatives 

6th Order accuracy 2nd derivative formula 

Inteival: 10.1.035) 

(c) Sixth-order accurate central difference approximation of the Laplace 
operator used to compute the second-, fourth-, and sixth-order derivatives. 

Figure B.l l : Central difference approximations of the Laplace operator applied to 
the function / (x) = x7, over the interval [0,1.035], utilizing 208 total grid points, 
and various orders of accuracy. 
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(a) Differentiated Lagrange interpolating polynomials using equally spaced 
nodes to compute the first- through sixth-order derivatives. 
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev 
nodes to compute the first- through sixth-order derivatives. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.12: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function /(x) = x7, over the interval [0,1.035], utilizing 208 total grid 
points, and three different grid spacings. 
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B.4 Gaussian Function over a Symmetric Interval 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.13: Differentiated piecewise twelfth degree Lagrange interpolating polyno

mials for the function /(x) = e ' - 3 ^ , over the interval [—1.035,1.035], utilizing 415 

total grid points. 
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(a) Differentiated Lagrange interpolating polynomials using equally spaced 
nodes to compute the first- through sixth-order derivatives. 
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev 
nodes to compute the first- through sixth-order derivatives. 
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives. 

Figure B.14: Differentiated piecewise twelfth degree Lagrange interpolating polyno
mials for the function /(x) = e^~^\ over the interval [—10.35,10.35], utilizing 415 
total grid points. 
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C.l Model Problem Using Second-Order Accurate Scheme 
1 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

2 c Model problem source code 

3 c 
4 c This code utilizes a second-order accurate central difference 
5 c approximation of the Laplace operator. By default the program 

6 c utilizes the parameter N=3 for the Generalized FDTD Scheme. 
7 c One must comment out the appropriate sections of code should 

8 c a lower N value be desired. 

9 c 
10 c This code was adapated from code written by 

11 c Weizhong Dai and Fred Moxley (c) 2011 
12 c This code was modified by James Elliott (c) 2011 

13 c 
14 c This is the beginning of the m a m program 
15 c all variables must be declared before any assignments are made 

16 c parameter values may only be assigned here, and may never be 
changed (they are constants) 

17 c 
18 c *********** >« * * ****** * IMPORTANT ********************* 

19 c ALWAYS write real values using ### ###D## 
20 c "D" ensures the values will be double precision 

21 c alternatively, when compiling the program, utilize the flags 
22 c gfortran -0 -fdefault-real-8 -fdefault-double-8 -frange - check -

Wall 
23 c this will ensure all real values are double precision, 
24 c as wel] as enable useful warnings such as unused variables or 

25 c loops running past an array's limits 
26 c ********************* IMPORTANT ********************* 

inplic^t none 
Do not specify KE, instead change ddx , 
KE will be computed to be over the interval [0,1] 
Input ddx - the spatial step for the x direction 
Input- ra - the mesh ratio, see Table 5.1 for suitable mesh 
ratios 

inteper KE 
G O U L I O prr< : n o n ddx, ra 

P~ -and t r (ddx = l.OD-2, KE = 1.ODO/ddx, ra = 0.25D0) 
Declare the size of the arrays 

u_r is an array for the real component of the wavefunction 
u_i is an array for the imaginary component of the wavefunction 
u_r#p corresponds to an #th derivative of the real component 
u_i#p corresponds to an #th derivative of the lmagmaiy 
component 

d m e n d on u_r(0:KE) ,u_i (0: KE) ,vp(0-KE) , 
& u_r2p(0:KE),u_r4p(0:KE),u_r6p(0:KE), 
& u_r8p(0:KE),u_rl0p(0:KE),u_rl2p(0.KE), 
& u_rl4p(0:KE) ,u_i2p(0:KE) ,u_i4p(0-KE) , 
& u_i6p(0-KE) ,u_i8p (0:KE) ,u_il0p(0:KE) , 
& u_il2p(0:KE) ,u_il4p(0:KE) ,x(0. KE) , 

Ensure this array is large enough to to hold 1/dt values 
(or reprograrr the rrethod to only store the largest values) 

27 
28 
29 
30 
31 
32 

33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 

c 

c 

c 
c 

c 

c 

c 
c 

c 

c 

c 



49 & error_max (0 : 1000000) 
50 c Declare the type for each variable 
51 double precision e_r, e_i, err_r error max 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 

62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

93 
94 
95 
96 
97 
98 

u_r8p , u_rlOp , 
u_i8p , u_ilOp , 

u_rl2p , u_rl4p , 
u_il2p, u_il4p , 

& u_r, u_r2p , u_r4p , u_r6p 
& u_i , u_i2p , u_i4p , u_i6p 
& vp , pi , pi2 , dt , cc , 
& cvhl , cvh2 , cvh3 , cvh4 , cvh5 , cvh6 , cvh7 , 
& rl ,r2,r3,r4,r5,r6,r7 , 
& ddx2,x , 
& tnh,tnl ,tnhl , 
& emax_r, emax_i 

c These values are the coefficients of the taylor series 
double precision cl_24 ,c3,c5,clO,c21,c35,c7,c1_322560 , 

cl_1920 

c k_start , and k_end represent the lower and upper limits of 
c the computable grid points e.g., 1 to KE-1 
c skipN is used to restrict the number of lines outputed 

mtegei k_start , k_end , skipN 
c spatial counter k, and temporal counter n 
c n_max is the timestep with the largest error 
c nsteps is the total number of timesteps 

integer k,n_max,nsteps , n 

c Variable initializations, no more variables may be declared 
pi=3.14159265358979323846D0 
pi2=pi*pi 

c Compute dt based on ddx and the mesh ratio 
dt = ddx *ddx*ra 
ddx2=ddx*ddx 
rl=dt/(ddx*ddx) 
r2=rl*rl 
r3=r2*rl 
r4=r3*rl 
r5=r4*r1 
r6=r5*rl 
r7 = r6 *r1 
cc=l.0D0 

c this enforces that 0 < t <= 1 
nsteps = mt(1.0D0/dt) 

c configure how many lines are outputed total 
c if n mod skipN == 0, then output 

skipN = ceiling(nsteps/32000 0) 

c Coefficients m the taylor expansion , to ensure double 
precision 

cl_24=l.0D0/24.0D0 
c3=3.0D0 
c5=5.0D0 
cl0=10.0D0 
c21=21.0D0 
c35=35.0D0 
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99 c 7 = 7 . 0 D 0 
100 c l _ 3 2 2 5 6 0 = l . O D O / 3 2 2 5 6 0 . O D O 
101 c l _ 1 9 2 0 = l . 0 D 0 / 1 9 2 0 . 0 D 0 
102 
103 p r i n t * , " K E : " , KE, " , d x - " , d d x , " , ORDFR " , 2 , 
104 & " , n s t e p s ' , n s t e p s 
105 c c o n f i g u r e t h e c o m p u t a b l e p o i n t s 
106 k _ s t a r t = l 
107 k _ e n d = K E - l 
108 
109 c A p p l y t h e i n i t i a l c o n d i t i o n s 
110 do k = 0 , K E 
111 u _ r ( k ) = 0 . 0 D 0 
112 u _ i ( k ) = 0 . 0 D 0 
113 v p ( k ) = 0 . 0 D 0 
114 e n d d o 
115 
116 ao k = 0 , K E 
117 v p ( k ) = p i 2 
118 e n d d o 
119 c discretize the spatial domain m KE+1 intervals of size dx 

120 do k = 0 , K E 
121 x ( k ) = k * d d x 
122 e n d d o 
123 c Apply the initial conditions for the wavefunction 
124 do k = 0 , K E 
125 u _ r ( k ) = s m ( p i * x ( k ) ) 
126 u _ i ( k ) = - s m ( d t * p i 2 ) * s m ( p i * x ( k ) ) 
127 e n d d o 
128 
129 c This output matches the output m the error calculation 
130 c this effectively makes the program output a csv file should one 

131 c run the program from the commandlme and 

132 c capture the output m a file 
133 print *, "Timestep, time (s). MaxError" 

134 c start time level 
135 do n=l,nsteps 

136 tnh=2.0D0*(n-0.5D0)*dt*pi2 
137 

138 c c a l 
139 
140 
141 
142 
143 
144 
145 
146 

147 c b e g i n c a l c u l a t i n g t h e r e a l p a r t 
148 ao k = k _ s t a r t , k _ e n d 
149 c v h l = v p ( k ) * d t 
150 c v h 2 = c v h l * c v h l 
151 c v h 3 = c v h 2 * c v h l 

culate the derivatives of imaginary values 
call calsed(u_i,u_i2p,KE) 
call calsed(u_i2p,u_i4p,KE) 
call calsed(u_i4p,u_i6p,KE) 
call calsed(u_i6p,u_i8p,KE) 
call calsed(u_i8p,u_ilOp,KE) 
call calsed(u_ilOp,u_il2p,KE) 
<all calsed(u_il2p,u_il4p,KE) 
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154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 

cal 

p = l 

cvh4 = cvh3* cvhl 
cvh5 = cvh4* cvhl 
cvh6 = cvh5 * cvhl 
cvh7 = cvh6* cvhl 

culate the realvalue 
u_r(k)=u_r(k)-rl*u_i2p(k)+cvhl*u_i(k) 

$ +cl_24*( r3*u_i6p(k) 
& -c3*cvhl*r2*u_i4p(k) 
& +c3*cvh2*rl*u_i2p(k) 
k -cvh3*u_i(k)) 

p = 2 

p = 3 

-cl_1920*( r5*u_il0p(k) 
-c5*cvhl*r4*u_i8p(k) 

+cl0*cvh2*r3*u_i6p(k) 
-cl0*cvh3*r2*u_i4p(k) 
+ c5*cvh4*rl*u_i2p(k) 

-cvh5*u_i(k)) 

& +cc*cl_322560*( r7*u_il4p(k) 
& -c7*cvhl*r6*u_il2p(k) 
& +c21*cvh2*r5*u_il0p(k) 
& -c35*cvh3*r4*u_i8p(k) 
& +c35*cvh4*r3*u_i6p(k) 
& -c21*cvh5*r2*u_i4p(k) 
& +c7*cvh6*rl*u_i2p(k) 
& -cvh7*u_i(k)) 
enddo 

c calculate the derivatives of realvalue 

call calsed(u_r,u_r2p,KE) 
call calsed(u_r2p,u_r4p,KE) 
call calsed(u_r4p,u_r6p,KE) 
call calsed(u_r6p,u_r8p,KE) 
call calsed(u_r8p,u_rl0p,KE) 
call calsed(u_rlOp,u_rl2p,KE) 
call calsed(u_rl2p,u_r14p,KE) 

c begin calculating the imaginary part 
ao k=k_start,k_end 
cvhl=vp(k)*dt 
cvh2 = cvhl* cvhl 
cvh3=cvh2*cvhl 
cvh4 = cvh3* cvhl 
cvh5=cvh4*cvhl 
cvh6=cvh5*cvhl 
cvh7 = cvh6 * cvhl 

c calculate the imaginary values 
u_i(k)=u_i(k)+u_r2p(k)*rl-cvhl*u_r(k) 

c p = l 
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205 
206 

207 
208 

209 c 

210 
211 
212 

213 
214 

215 

216 c 
217 

218 
219 
220 
221 
222 

223 
224 

225 

226 
227 c 

228 
229 
230 

231 c 
232 c 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 

250 c 

251 c 
252 
253 
254 
255 
256 

p = 2 

p = 3 

- c l _ 2 4 * ( r 3 * u _ r 6 p ( k ) 
- c 3 * c v h l * r 2 * u _ r 4 p ( k ) 
+ c 3 * c v h 2 * r l * u _ r 2 p ( k ) 

- c v h 3 * u _ r ( k ) ) 

+ c l _ 1 9 2 0 * ( r 5 * u _ r l 0 p ( k ) 
- c 5 * c v h l * r 4 * u _ r 8 p ( k ) 

+ c l 0 * c v h 2 * r 3 * u _ r 6 p ( k ) 
- c l 0 * c v h 3 * r 2 * u _ r 4 p ( k ) 

+ c 5 * c v h 4 * r l * u _ r 2 p ( k ) 
- c v h 5 * u _ r ( k ) ) 

- c c * c l _ 3 2 2 5 6 0 * ( r 7 * u _ r l 4 p ( k ) 
- c 7 * c v h l * r 6 * u _ r l 2 p ( k ) 

+ c 2 1 * c v h 2 * r 5 * u _ r l 0 p ( k ) 
- c 3 5 * c v h 3 * r 4 * u _ r 8 p ( k ) 
+ c 3 5 * c v h 4 * r 3 * u _ r 6 p ( k ) 
- c 2 1 * c v h 5 * r 2 * u _ r 4 p ( k ) 

+ c 7 * c v h 6 * r l * u _ r 2 p ( k ) 
- c v h 7 * u _ r ( k ) ) 

s n d d o 

E x a c t s o l u t i o n c o m p o n e n t s 
t n l = 2 . 0 D 0 * n * d t * p i 2 
t n h l = 2 . 0 D 0 * ( n + 0 . 5 D 0 ) * d t * p i 2 

c a l c u l a t e t h e e x a c t s o l u t i o n , a n d d e t e r m i n e 
t h e max e r r o r f o r t h i s i t e r a t i o n 

e m a x _ r = 0 . O D O 
e m a x _ i = 0 . O D O 
do k = k _ s t a r t , k _ e n d 

e _ r = d c o s ( t n l ) * d s i n ( p i *x ( k ) ) 
e _ i = - d s i n ( t n h l ) * d s i n ( p i * x ( k ) ) 

e r r _ r = d a b s ( u _ r ( k ) - e _ r ) 
e r r _ i = d a b s ( u _ i ( k ) - e _ i ) 

i f ( e m a x _ r . l e . e r r _ r ) t h e n 
e m a x _ r = e r r _ r 

e n d i f 

i f ( e m a x _ i . l e . e r r _ i ) t h e n 
emax_i = err_i 

e E d I f 
enddo 

determine the max error, this could be rewritten using the max 

() 
intrinsic function 

if(emax_r .le. emax_i) then 
error_max(n) = emax_i 

else 
error_max(n) = emax_r 

endif 
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257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 

287 
288 
289 
290 
291 
292 
293 c 
294 
295 
296 
297 c 
298 c 
299 c 
300 c 
301 
302 
303 
304 
305 
306 
307 c 
308 

p r i n t t h e l a r g e s t e r r o r o b t a i n e d w i t h i n t h i s t i m e s t e p 
t h e c o n d i t i o n a l s may be r e m o v e d , t h e l o g i c e n s u r e s 
t h a t no m o r e t h a n 3 2 0 0 0 l i n e s a r e o u p u t e d , w h i c h m a k e s p l o t t i n g 
a n d f i l e s i z e much s m a l l e r when w o r k i n g w i t h v e r y s m a l l m e s h 
r a t i o s s k i p N may b e c h a n g e d a t t h e s t a r t of t h e p r o g r a m i f 
o n e w i s h e s m o r e o r f e w e r l i n e s of o u t p u t 

i f ( n s t e p s I t 3 2 0 0 0 ) t h e n 

n, n*dt 

eq 

, n*dt 

' , , error_max(n) 

0) ther 

error_max(n) 

pr int 

else 

if(mod(n,skipN ) 

print *, n , ' 

ei dif 

eraif 

end of the time loop 

erdde 

determine the largest error observed m the entire simulation 

err_max=0 ODO 

d^ n=l,nsteps 

if(err_max LE error_max(n)) then 

err_max=error_max(n) 

n_max=n 

erdif 

ei ddo 

pi-int *, Lqrge t F'i-or ' , n_max , err_max 

write all errors, and assocaited time intervals to a file 

this may be commented out, if one is running the program from 

the command line and piping the output m a file 

oper (unit=22,file='e-ror_nax_rDlb_N_3_0_2_x_200_-a_l 00 

dat ) 

ao 11=1,nsteps 
T rite(22,10)n*dt , error_max(n) 

era lo 

close (22) 

omat(fl0 8,lx,F20 16) 10 

This is the end of the main program 

step 

enc 

This routine computes the 2nd derivaitve 

input f - the function to differentiate 

input KE - the number of grid points, indexed from zero 

output f" m the array fap 

sibi-oitne calsed(f,fdp,KE) 

n p l K * none 

differ-ien f(0 KE),fdp(0 KE) 

f"iMe {if " i r f.fdp 

J.I lege r k , ke 

Compute a secona-order accurate central difference 

G k=l,KE-l 
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309 fdp(k)=f(k-1)-2.0D0*f(k)+f(k+1) 
310 enddo 
311 c This is the end of the subroutine calsed 
312 r e t u r n 
313 end 

Listing C.l: Model problem using the second-order accurate scheme 



C.2 Model Problem Using Sixth-Order Accurate Scheme 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
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Model problem source code 

This code utilizes a sixth-order accurate central difference 
approximation of the Laplace operator. By default the program 
utilizes the parameter N=3 for the Generalized FDTD Scheme. 
One must comment out the appropriate sections of code should 
a lower N value be desired. 

This code was adapated from code written by 
Weizhong Dai and Fred Moxley (c) 2011 

This code was modified by James Elliott (c) 2011 

This is the beginning of the main program 
all variables must be declared before any assignments are made 
parameter values may only be assigned here, and may never be 
changed (they are constants) 

********************* IMPORTANT ********************* 

ALWAYS write real values using ###.###D## 

"D" ensures the values will be double precision 
alternatively, when compiling the program, utilize the flags 
gfortran -0 -fdefault-real-8 -fdefault-double-8 -frange - check -

Wall 
this will ensure all real values are double precision, 
as well as enable useful warnings such as unused variables or 
loops running past an array's limits 
********************* IMPORTANT ********************* 

implicit none 
Do not specify KE 
KE will be comput 
Input: ddx - the 
Input . ra - the 
ratios 

ir t o p c r KE 
double proi i? 
paraneter(ddx 

Declare the size 
u_r is an array f 
u_i is an array f 
u_r#p corresponds 
u„i#p corresponds 
component 

dirncr.s 3 on vp ( 
& u_r(0:KE) , 
& u_r8p(0:KE) , 
& u_i (0:KE) , 
& u_i8p (0: KE) , 

Ensure this array 
(or reprogram the 

, instead change ddx, 

ed to be over the interval [0,1] 
spatial step for the x direction 
mesh ratio, see Table 5 1 for suitable mesh 

ion ddx , ra 

=1.0D-2, KE=1.0D0/ddx, ra=0.25D0) 
of the arrays 

or the real component of the wavefunction 
or the imaginary component of the wavefunction 
to an #th derivative of the real component 
to an #th derivative of the imaginary 

0:KE), x(0:KE), 

u_r2p(0:KE), u_r4p(0:KE), u_r6p(0:KE), 

u_rl0p(0-KE) ,u_rl2p (0:KE) , u_r14p(0:KE) , 

u_i2p(0:KE), u_i4p(0:KE), u_i6p(0-KE), 

u_il0p(0:KE) ,u_il2p (0:KE) ,u_i14p(0:KE) , 

is large enough to to hold 1/at values 

method to only store the largest values) 
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50 & e r r o r . i a x ( 0 : 1 0 0 0 0 0 0 ) 
51 c D e c l a r e t h e t y p e fo r each v a r i a b l e 
52 d o u b l e p r e c i s i o n e _ r , e _ i , e r r _ r e r r o r _ m a x e r r max 

53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 

87 c 
88 
89 c 
90 c 
91 
92 
93 c 

94 
95 
96 
97 
98 
99 

u _ r l 2 p , u _ r l 4 p , 
u _ i l 2 p , u _ i l 4 p , 

& u _ r , u _ r 2 p , u _ r 4 p , u _ r 6 p , u _ r 8 p , u _ r l 0 p , 
& u _ i , u _ i 2 p , u _ i 4 p , u _ i 6 p , u _ i 8 p , u _ i l 0 p , 
& vp , p i , p i 2 , d t , cc , 
& c v h l , c v h 2 , c v h 3 , c v h 4 , c v h 5 , c v h 6 , c v h 7 , 
& r l , r 2 , r 3 , r 4 , r 5 , r 6 , r 7 , 
& d d x 2 , x , 
& t n h , t n l , t n h l , 
& e m a x _ r , e m a x _ i 

T h e s e v a l u e s a r e t h e c o e f f i c i e n t s of t h e t a y l o r s e r i e s 

d o u b l e p r e c i s i o n c l _ 2 4 , c 3 , c 5 , c l O , c 2 1 , c 3 5 , c 7 , c l _ 3 2 2 5 6 0 , 
c l _ 1 9 2 0 

k _ s t a r t , and k _ e n d r e p r e s e n t t h e l o w e r and u p p e r l i m i t s of 
t h e c o m p u t a b l e g r i d p o i n t s e g . , 3 t o K E - 3 
s k i p N i s u s e d t o r e s t r i c t t h e n u m b e r of l i n e s o u t p u t e d 

i n t e g e r k _ s t a r t , k _ e n d , s k i p N 
s p a t i a l c o u n t e r k , and t e m p o r a l c o u n t e r n 
n_max i s t h e t i m e s t e p w i t h t h e l a r g e s t e r r o r 
n s t e p s i s t h e t o t a l n u m b e r of t i m e s t e p s 

i n t e g e r k , n _ m a x , n s t e p s , n 

V a r i a b l e i n i t i a l i z a t i o n s , no m o r e v a r i a b l e s may be d e c l a r e d 
p i = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 DO 
p i 2 = p i * p i 

C o m p u t e d t b a s e d on ddx a n d t h e m e s h r a t i o 
d t = d d x * d d x * r a 
d d x 2 = d d x * d d x 
r l = d t / ( d d x * d d x ) 
r 2 = r l * r l 
r 3 = r 2 * r l 
r 4 = r 3 * r l 
r 5 = r 4 * r 1 
r 6 = r 5 * r 1 
r 7 = r 6 * r 1 
cc=l.0D0 

this enforces that 0 < t <= 1 

nsteps = mt(1.0D0/dt) 
configure how many lines are outputed total 
if n mod skipN == 0, then output 

skipN = ceilmg(nsteps/32000 .0) 

Coefficients in the taylor expansion, to ensure double 
precision 

cl_24=l.0D0/24.0D0 
c3=3.0D0 

c5=5 ODO 
cl0=10.0D0 

c21=21 ODO 
c35=35.0D0 
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100 c 7 = 7 . 0 D 0 
101 c l _ 3 2 2 5 6 0 = l . 0 D O / 3 2 2 5 6 0 . 0 D O 
102 c l _ 1 9 2 0 = 1 . 0 D 0 / 1 9 2 0 . 0 D 0 
103 
104 p r i n t * , " K E - " , K E , " , d x : " , d d x , " , ORDER " , 6 , 
105 & " , n s t e p s " , n s t e p s 
106 c c o n f i g u r e t h e c o m p u t a b l e p o i n t s 
107 k _ s t a r t = 3 
108 k _ e n d = K E - 3 
109 
110 c A p p l y t h e i n i t i a l c o n d i t i o n s 
111 do k = 0 , K E 
112 u _ r ( k ) = 0 . 0 D 0 
113 u _ i ( k ) = 0 . 0 D 0 
114 v p ( k ) = 0 . 0 D 0 
115 e n d d o 
116 
117 do k = 0 , K E 
118 v p ( k ) = p i 2 
119 e n d d o 
120 c discretize the spatial domain m 
121 do k = 0,KE 
122 x(k)=k*ddx 
123 enado 
124 c Apply the initial conditions for 
125 
126 
127 ao k=0,KE 
128 u_r (k)=sm(pi*x(k)) 
129 u_i(k)=-sm(dt*pi2)*sm(pi*x(k)) 
130 enado 
131 
132 c T h i s o u t p u t m a t c h e s t h e o u t p u t i n t h e e r r o r c a l c u l a t i o n 
133 c t h i s e f f e c t i v e l y m a k e s t h e p r o g r a m o u t p u t a c s v f i l e s h o u l d o n e 
134 c r u n t h e p r o g r a m f r o m t h e c o m m a n d l m e a n d 
135 c c a p t u r e t h e o u t p u t m a f i l e 
136 p r i n t * , " T i m e s t e p , t i n e ( s ) . M a x E r r o r " 
137 c s t a r t t i m e l e v e l 
138 
139 ao n = l , n s t e p s 
140 t n h = 2 . 0 D O * ( n - 0 . 5 D 0 ) * d t * p i 2 
141 
142 c c a l c u l a t e t h e d e r i v a t i v e s of i m a g i n a r y v a l u e s 
143 c and c o m p u t e e x a c t v a l u e s f o r t h e u n c o m p u t a b l e p o i n t s 
144 c a l l c a l s e d ( u _ i , u _ i 2 p , K E ) 
145 u _ i 2 p ( 1 ) = d d x 2 * p i 2 * s m ( t n h ) * s i n ( p i * x ( D ) 
146 u _ i 2 p ( 2 ) = d d x 2 * p i 2 * s m ( t n h ) * s m ( p i * x ( 2 ) ) 
147 u _ i 2 p ( K E - l ) = d d x 2 * p i 2 * s m ( t n h ) * s m ( p i * x ( K E - l ) ) 
148 u _ i 2 p ( K E - 2 ) = d d x 2 * p i 2 * s m ( t n h ) * s m ( p i * x ( K E - 2 ) ) 
149 
150 c a l l c a l s e d ( u _ i 2 p , u _ i 4 p , K E ) 
151 u _ i 4 p ( D = - d d x 2 * p i 2 * u _ i 2 p ( 1 ) 
152 u _ i 4 p ( 2 ) = - d d x 2 * p i 2 * u _ i 2 p ( 2 ) 

KE+1 intervals of size dx 

the wavefunction 
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153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 

u_i4p(KE-l)=-ddx2*pi2*u_i2p(KE-l) 
u_i4p(KE-2)=-ddx2*pi2*u_i2p(KE-2) 

call calsed(u_i4p,u_i6p,KE) 
u_i6p(1)=-ddx2*pi2*u_i4p(1) 
u_i6p(2)=-ddx2*pi2*u_i4p(2) 
u_i6p(KE-l)=-ddx2*pi2*u_i4p(KE-l) 
u_i6p(KE-2)=-ddx2*pi2*u_i4p(KE-2) 

call calsed(u_i6p,u_i8p,KE) 
u_i8p(1)=-ddx2*pi2*u_i6p(1) 
u_i8p(2)=-ddx2*pi2*u_i6p(2) 
u_i8p(KE-l)=-ddx2*pi2*u_i6p(KE-l) 
u_i8p(KE-2)=-ddx2*pi2*u_i6p(KE-2) 

call calsed(u_i8p,u_ilOp,KE) 
u_il0p(1)=-ddx2*pi2*u_i8p(1) 
u_il0p(2)=-ddx2*pi2*u_i8p(2) 
u_il0p(KE-l)=-ddx2*pi2*u_i8p(KE-l) 
u_il0p(KE-2)=-ddx2*pi2*u_i8p(KE-2) 

call calsed(u_il0p,u_i12p,KE) 
u_il2p(1)=-ddx2*pi2*u_il0p(1) 
u_il2p(2)=-ddx2*pi2*u_il0p(2) 
u_il2p(KE-l)=-ddx2*pi2*u_il0p(KE-l) 
u_il2p(KE-2)=-ddx2*pi2*u_il0p(KE-2) 

call calsed(u_il2p,u_i14p , KE) 
u_il4p(1)=-ddx2*pi2*u_il2p(1) 
u_il4p(2)=-ddx2*pi2*u_il2p(2) 
u_il4p(KE-l)=-ddx2*pi2*u_il2p(KE-l) 
u_il4p(KE-2)=-ddx2*pi2*u_il2p(KE-2) 

begin calculating the realpart 
ao k=k_start,k_end 
cvhl=vp(k)*dt 
cvh2=cvhl*cvhl 
cvh3=cvh2*cvhl 
cvh4=cvh3*cvhl 
cvh5=cvh4*cvhl 
cvh6=cvh5*cvhl 
cvh7=cvh6*cvhl 

calculate the realvalue 
u_r(k)=u_r(k)-rl*u_i2p(k)+cvhl*u_i(k) 

p = l 
$ +cl_24*( r3*u_i6p(k) 
& -c3*cvhl*r2*u_i4p(k) 

& +c3*cvh2*rl*u_i2p(k) 
& -cvh3*u_i(k)) 

p = 2 
& -cl_1920*( r5*u_il0p(k) 

& -c5*cvhl*r4*u_i8p(k) 
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209 
210 
211 
212 
213 
214 
215 
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217 
218 
219 
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221 
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223 
224 
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227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
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241 
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251 
252 
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254 
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+cl0*cvh2*r3*u_i6p(k) 
-cl0*cvh3*r2*u_i4p(k) 
+ c5*cvh4*rl*u_i2p(k) 

-cvh5*u_i(k)) 

& +cc*cl_322560*( r7*u_il4p(k) 
& -c7*cvhl*r6*u_il2p(k) 
& +c21*cvh2*r5*u_il0p(k) 
& -c35*cvh3*r4*u_i8p(k) 
& +c35*cvh4*r3*u_i6p(k) 
& -c21*cvh5*r2*u_i4p(k) 
& +c7*cvh6*rl*u_i2p(k) 
& -cvh7*u_i(k)) 
enddo 

provide exact values for th uncomputable po 
tnl=2.0D0*n*dt*pi2 

u_r(l)=cos(tnl)*sin(pi*x(D) 
u_r(2)=cos(tnl)*sin(pi*x(2)) 
u_r(KE-l)=cos(tnl)*sin(pi*x(KE-D) 
u_r(KE-2)=cos(tnl)*sin(pi*x(KE-2)) 

calculate the derivatives of real values 

and provide exact values for the uncomputab 
call calsed(u_r,u_r2p,KE) 
u_r2p (D=-ddx2*pi2*u_r (1) 
u_r2p(2)=-ddx2*pi2*u_r(2) 
u_r2p(KE-1)=-ddx2*pi2*u_r(KE-1) 
u_r2p(KE-2)=-ddx2*pi2*u_r(KE-2) 

call calsed(u_r2p,u_r4p,KE) 
u_r4p(1)=-ddx2*pi2*u_r2p(1) 
u_r4p(2)=-ddx2*pi2*u_r2p(2) 
u_r4p(KE-l)=-ddx2*pi2*u_r2p(KE-l) 
u_r4p(KE-2)=-ddx2*pi2*u_r2p(KE-2) 

call calsed(u_r4p,u_r6p,KE) 
u_r6p(1)=-ddx2*pi2*u_r4p(1) 
u_r6p(2)=-ddx2*pi2*u_r4p(2) 
u_r6p(KE-l)=-ddx2*pi2*u_r4p(KE-1) 
u_r6p(KE-2)=-ddx2*pi2*u_r4p(KE-2) 

call calsed(u_r6p,u_r8p,KE) 
u_r8p (D=-ddx2*pi2*u_r6p (1) 
u_r8p(2)=-ddx2*pi2*u_r6p(2) 
u_r8p(KE-l)=-ddx2*pi2*u_r6p(KE-l) 
u_r8p(KE-2)=-ddx2*pi2*u_r6p(KE-2) 

call calsed(u_r8p,u_rlOp , KE) 
U_rl0p(l)=-ddx2*pi2*u_r8p(l) 
u_rlOp(2)=-ddx2*pi2*u_r8p(2) 
u_rlOp(KE-1)=-ddx2*pi2*u_r8p(KE-1) 
u_rl0p(KE-2)=-ddx2*pi2*u_r8p(KE-2) 
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259 
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266 
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280 
281 
282 
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284 
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286 
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289 
290 
291 
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305 
306 
307 
308 
309 
310 
311 

c a l l c a l s e d ( u _ r l O p , u _ r l 2 p , KE) 
u _ r l 2 p ( 1 ) = - d d x 2 * p i 2 * u _ r l 0 p ( 1 ) 
u _ r l 2 p ( 2 ) = - d d x 2 * p i 2 * u _ r l 0 p ( 2 ) 
u _ r l 2 p ( K E - l ) = - d d x 2 * p i 2 * u _ r l 0 p ( K E - 1 ) 
u _ r l 2 p ( K E - 2 ) = - d d x 2 * p i 2 * u _ r l 0 p ( K E - 2 ) 

c a l l c a l s e d ( u _ r l 2 p , u _ r 1 4 p , K E ) 
u _ r l 4 p ( D = - d d x 2 * p i 2 * u _ r l 2 p (1) 
u _ r l 4 p ( 2 ) = - d d x 2 * p i 2 * u _ r l 2 p ( 2 ) 
u _ r l 4 p ( K E - l ) = - d d x 2 * p i 2 * u _ r l 2 p ( K E - 1 ) 
u _ r l 4 p ( K E - 2 ) = - d d x 2 * p i 2 * u _ r l 2 p ( K E - 2 ) 

b e g i n c a l c u l a t i n g t h e i m a g i n a r y p a r t 
do k = k _ s t a r t , k _ e n d 
c v h l = v p ( k ) * d t 
c v h 2 = c v h l * c v h l 
c v h 3 = c v h 2 * c v h l 
c v h 4 = c v h 3 * c v h l 
c v h 5 = c v h 4 * c v h l 
c v h 6 = c v h 5 * c v h l 
cvh7=cvh6* c v h l 

calc 

p = l 

p = 2 

ulate the imaginary values 

u_i(k)=u_i(k)+u_r2p(k)*rl-cvhl*u_r(k) 

-cl_24*( r3*u_r6p(k) 

-c3* cvhl*r2*u_r4p(k) 
+c3*cvh2*rl*u_r2p(k) 

-cvh3 *u_r(k)) 

+cl_1920*( r5*u_rl0p(k) 
-c5*cvhl*r4*u_r8p(k) 

+cl0*cvh2*r3*u_r6p(k) 

-cl0*cvh3*r2*u_r4p(k) 
+c5*cvh4*rl*u_r2p(k) 
-cvh5*u_r(k)) 

c p = 3 
-cc*cl_322560*( r7*u_rl4p(k) 

-c7*cvhl*r6*u_rl2p(k) 
+c21*cvh2*r5*u_rl0p(k) 
-c35*cvh3*r4*u_r8p(k) 
+c35*cvh4*r3*u_r6p(k) 
-c21*cvh5*r2*u_r4p(k) 
+c7*cvh6*rl*u_r2p(k) 

-cvh7*u_r(k)) 

enado 

Fill m values for the uncmputable points 

tnhl=2.0D0*(n+0 5D0)*dt*pi2 

u_i (l)=-sm(tnhl)*sm(pi*x(l) ) 
u_i(2)=-sin(tnhl)*sm(pi*x(2)) 
u_i(KE-l)=-sin(tnhl)*sm(pi*x(KE-l)) 
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u_i(KE-2)=-sin(tnhl)*sin(pi*x(KE-2)) 

calculate the exact solution, and determine 
the max error for this iteration 

emax_r=0.0D0 
emax_i=0.0D0 
do k=k_start,k_end 

e_r = dcos(tnl)*dsin(pi*x(k)) 

e_i = -dsin(tnhl)*dsin(pi*x(k)) 

err_r = dabs(u_r(k)-e_r) 
err_i = dabs(u_i(k)-e_i) 

if(emax_r .le. err_r) then 
emax_r = err_r 

endif 

le. err_i) then 

err_i 

en 

determ 
() 

intr in 
if 

el 

en 
print 
the co 
no mor 
and f i 
ratIOS 

one wi 

if 

el 

if(emax_i 
emax_i = 

endif 
ddo 
m e the max error, this could be rewritten using the max 

emax_i) then 

= emax_i 

= emax_r 

sic function 
(emax_r .le . 
error_max(n) 

se 
error_max(n) 

dif 
the largest error obtained within this timestep 
nditionals may be removed, the logic ensures that 

e than 32000 lines are ouputed, which makes plotting 

le size much smaller when working with very small mesh 
. skipN may be changed at the start of the program if 

shes more or fewer lines of output 

(nsteps .It. 32000) then 
print *, n,',', n*dt , ' , 

se 
if (mod (n , skipN) . eq . 0) 

print * , n , ! , ' , n*dt , "' , ' , error_max(n) 

endif 

endif 

end of the time loop 

enado 

determine the largest error observed m the entire simulation 

err_max=0.ODO 

do n=l,nsteps 

if(err_max.LE.error_max(n)) „hen 

err_max=error_max(n) 

n_max=n 

e n a l f 

, error_max(n) 

: h e n 



132 

364 e n d d o 
365 p r i n t * , ' L a r g e s t E r r o r : ' , n_max , e r r _ m a x 
366 c w r i t e a l l e r r o r s , and a s s o c a i t e d t i m e i n t e r v a l s t o a f i l e 
367 c t h i s may b e c o m m e n t e d o u t , i f o n e i s r u n n i n g t h e p r o g r a m f r o m 
368 c t h e command l i n e a n d p i p i n g t h e o u t p u t i n a f i l e 
369 o p e n ( u n i t =22 , f i l e = ' e r r o r _ m a x _ F D T D . _ N _ 3 _ D _ 6 _ x _ 2 0 0 . _ r a _ 1 . 0 0 . 

d a t ') 
370 do n = l , n s t e p s 
371 w r i t e ( 2 2 , 1 0 ) n * d t , e r r o r _ m a x ( n ) 
372 e n d d o 
373 c l o s e ( 2 2 ) 
374 10 f o r m a t ( f 1 0 . 8 , l x , F 2 0 . 1 6 ) 
375 
376 c T h i s i s t h e e n d of t h e m a m p r o g r a m 
377 s t e p 
378 end 
379 
380 c T h i s r o u t i n e c o m p u t e s t h e 2 n d d e r i v a i t v e 
381 c i n p u t : f - t h e f u n c t i o n t o d i f f e r e n t i a t e 
382 c i n p u t - KE - t h e n u m b e r of g r i d p o i n t s , i n d e x e d f r o m z e r o 
383 c o u t p u t - f" m t h e a r r a y f d p 
384 s u b r o u t i n e c a l s e d ( f , f d p , K E ) 
385 i m p l i c i t n o n e 
386 d i m e n s i o n f ( 0 : K E ) , f d p ( 0 : K E ) 
387 d o u b l e p r e c i s i o n f , f d p 
388 d o u b l e p r e c i s i o n a 0 , a l , a 2 , a 3 
389 i n t e g e r k , K E 
390 
391 c C o m p u t e t h e 2nd d e r i v a t i v e u s i n g a s i x t h - o r d e r a c c u r a t e 
392 c C e n t r a l D i f f e r e n c e 
393 a0= 4 9 D 0 / 1 8 D 0 
394 a l = - 1 . 5 D 0 
395 a2= 0 . 1 5 D 0 
396 a3= - 1 . 0 D 0 / 9 0 . 0 D 0 
397 ao k = 3 , K E - 3 
398 
399 f d p ( k ) = - ( a 3 * f ( k - 3 ) + a 2 * f ( k - 2 ) + a l * f ( k - 1 ) 
400 & + a 0 * f ( k ) + a l * f ( k + l ) + a 2 * f ( k + 2 ) + a 3 * f ( k + 3) ) 
401 e n a d o 
402 c T h i s i s t h e end of t h e s u b r o u t i n e c a l s e d 
403 r e t u r n 
404 e n a 

Listing C.2: Model problem using the sixth-order accurate scheme 
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C.3 Particle Simulation Using Sixth-Order Accurate Scheme 
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c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c 

Electron m ID Free Space Simulation 

This code utilizes a sixth-order accurate central difference 

approximation of the Laplace operator. By default the program 

utilizes the parameter N=3 for the Generalized FDTD Scheme. 

One must comment out the appropriate sections of code should 

a lower N value be desired 

This code was adapated from code written by 

Weizhong Dai and Fred Moxley (c) 2011 

This code was modified by James Elliott (c) 2011 

This is the beginning of the m a m program 
all variables must be declared before any assignments are made 
parameter values may only be assigned here, and may never be 
changed (they are constants) 

********************* IMPORTANT ********************* 

ALWAYS write real values using ###.###D## 

"D" ensures the values will be double precision 
alternatively, when compiling the program, utilize the flags 

gfortran -0 -fdefault-real-8 -fdefault-double-8 -frange - check -

Wall 
this will ensure all real values are double precision, 
as well as enable useful warnings such as unused variables or 
loops running past an array's limits 

******************** >K IMPORTANT ********************* 

iirplicit none 

integer KE 

double precision ddx 
These parameters are defined by Dai, and should not be changed 
Input. KE - the number of spatial grid points (indexed from 

zer o ) 
Input, ddx - the spatial step for the x direction 

parameter(ddx=l.0D-11, KE=1600) 
Declare the size of the arrays 

u_r is an array for the real component of the wavefunction 
u_i is an array for the imaginary component of the wavefunction 
u_r#p corresponds to an #th derivative of the real component 
u__i#p corresponds to an #th derivative of the imaginary 
component 

dimension vp(O-KE), 
k u_r(0:KE), u_r2p(0:KE), u_r4p(0:KE), u_r6p(0:KE), 
k u_r8p(0-KE) ,u_rl0p(0:KE) ,u_rl2p(0:KE) ,u_rl4p(0:KE) , 
k u_i(0:KE), u_i2p(0:KE), u_i4p(0-KE), u_i6p(0:KE), 
& u_i8p(0.KE),u_il0p(0:KE),u_il2p(0:KE),u_il4p(0:KE) 

Declare the type for each variable 

double piecxbici. 



50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 

63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 

c m e l e c , c c l 
cvh6 , c v h 7 , 

PE, 

& u_r , u_r2p , u_r4p , u_r6p , u_r8p , u_rlOp , u_rl2p , u_rl4p , 
& u_i , u_i2p , u_i4p , u_i6p , u_i8p , u_il0p, u_il2p, u_il4p, 
& vp , vpot , pi, clambda , sigma , hbar , ptot , ra , 
$ clap_r , clap_i , cke_r , cke_i 
& cvhl , cvh2 , cvh3 , cvh4 , cvh5 
&ch2ml , ch2m2 , ch2m3 , ch2m4 , ch2m5 , ch2m6 , ch2m7 , 
& rl ,r2,r3,r4,r5,r6,r7 , 
k cc , ptotSQRT , mu , hbar2 , dt 

integer k,kstart,n,nsteps,kcenter, stopl, stop2 

These values are the coefficients of the taylor series 

double precision c1_24,c3,c5,clO , c21 ,c35,c7,c1_322560 , 
cl_1920 

These values are the coefficients of the central difference for 

energy calculations. 

double preciPion aO,al,a2,a3,dtb 

pi=3.14159265358979323846 DO 
the mass of an electron 

cmelec=9.2D-31 
Reduced Planck's constant 

hbar=l.055D-34 
h b a r 2 = h b a r * h b a r 
m u = 0 . 9 8 D 0 

I u s e GNU Maxima t o s o l v e my s t a b i l i t y c o n d i t i o n i n t e r m s of r a 

75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 

87 c 

88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 c 

provided I supply dx, hbar, max IV I , and m. 
For comparison this mesh ration should mat Moxely and Dai's mu 

So the times are roughly the same 
ra=20600.0D0 

dtb is the original dt with stability condition as written 
by Dai and Moxley, I use their dt and (mu) to compute roughly 
the same timestep so I may compare against them 

dtb=2.0D0*(1000.0D0*9.2D0/l.0 55 DO)*ddx*ddx*mu 
Because I solve for a specific mesh ratio, I may calculate my 
timestep in the same manner as the exact problem. 

dt = ddx*ddx*ra 
These timesteps are roughly the same as Moxley and Dai, it may 

be 
required to add or subtract some small amount to make them 
closer 

stop2 = m t ((dtb*1300D0)/dt) -150 

stopl = m t ((dtb*350D0)/dt) - 100 

nsteps =stop2 
rl=dt/(ddx*ddx) 

r2=rl*rl 

r3=r2*rl 

r4 = r3* r1 
r5 = r4* r1 

r6=r5*rl 

r7=r6*rl 
these values are scaled from (h/2m) 



99 c h 2 m l = l . 0 5 5 D 0 / ( 2 0 0 0 . 0 D 0 * 9 . 2 D 0 ) 
100 c h 2 m 2 = c h 2 m l * c h 2 m l 
101 c h 2 m 3 = c h 2 m 2 * c h 2 m l 
102 c h 2 m 4 = c h 2 m 3 * c h 2 m l 
103 c h 2 m 5 = c h 2 m 4 * c h 2 m l 
104 C h 2 m 6 = c h 2 m 5 * c h 2 m l 
105 c h 2 m 7 = c h 2 m 6 * c h 2 m l 
106 c These values define the Gaussian packet 
107 c l a m b d a = 1 0 . 0 D 0 
108 s i g m a = 1 0 . 0 D 0 
109 c V_0 i s 100 eV 
110 v p o t = 1 0 0 . 0 D 0 
111 c These values defined the mital location of the packet, and 
112 c where the potential begins 
113 k s t a r t = 8 0 0 
114 k c e n t e r = 4 0 0 
115 cc = 1.0D0 
116 
117 c Coefficients m the taylor expansion, to ensure double 

precis ion 
118 c l _ 2 4 = l . 0 D 0 / 2 4 . 0 D 0 
119 c 3 = 3 . 0 D 0 
120 c 5 = 5 . 0 D 0 
121 c l 0 = 1 0 . 0 D 0 
122 c 2 1 = 2 1 . 0 D 0 
123 c 3 5 = 3 5 . 0 D 0 
124 c 7 = 7 . 0 D 0 
125 c l _ 3 2 2 5 6 0 = l . O D O / 3 2 2 5 6 0 . O D O 
126 c l _ 1 9 2 0 = l . 0 D 0 / 1 9 2 0 . 0 D 0 
127 c s i x t h - o r d e r a c c u r a t e c e n t r a l d i f f e r e n c e c o e f f i c i e n t s 
128 a0= 4 9 D 0 / 1 8 D 0 
129 a l = - 1 . 5 D 0 
130 a2= 0 . 1 5 D 0 
131 a3= -1.ODO/90.0DO 
132 c This out helps to realize the relation between a timestep l 

this 
133 c simulation, and a timestep m Dai and Moxley's simulation 
134 print *, dt, dtb , nsteps, dtb*1300D0/dt 
135 print *, '350 = ', stopl, ", 1300 = ', stop2 
136 c This code is parallelized using OMP, though it will only be 

used 
137 c if you enable the compile flag -fopenmp 
138 c This applies the initial conditions 
139 c$0MP PARALLEL DO 
140 c$0MP& SCHEDULE (static) 
141 a- k = 0,KE 
142 u_r(k)=0.0 
143 u_i(k)=0.0 
144 vp(k)=0.0 
145 er.ado 
146 c$0MP END PARALLEL DO 
147 c In this case eV is converted to Joules 
148 c$0MP PARALLEL DO 



149 c$OMP& SCHEDULE ( s t a t i c ) 
150 ao k = k s t a r t , K E - 1 0 
151 v p ( k ) = v p o t * 1 . 6 0 2 D - 1 9 
152 e n d d o 
153 c$0MP END PARALLEL DO 
154 
155 p t o t = 0 . 0 
156 c Initiate the Gaussian packet 
157 c$0MP PARALLEL DO REDUCTION(+:ptot) 
158 c$0MP& SCHEDULE (static) 
159 do k=10,kstart-10 
160 u _ r ( k ) = d c o s ( 2 . 0 D 0 * p i * ( k - k c e n t e r ) / c l a m b d a ) 
161 $ * d e x p ( - 0 . 5 D 0 * ( ( k - k c e n t e r ) / s i g m a ) * * 2 ) 
162 u _ i ( k ) = d s m ( 2 . 0 D 0 * p i * ( k - k c e n t e r ) / c l a m b d a ) 
163 $ * d e x p ( - 0 . 5 D 0 * ( ( k - k c e n t e r ) / s i g m a ) * * 2 ) 
164 p t o t = p t o t + ( u _ r ( k ) * * 2 ) + ( u _ i ( k ) * * 2 ) 
165 er .ddo 
166 c$0MP END PARALLEL DO 
167 
168 p t o t S Q R T = s q r t ( p t o t ) 
169 c C o m p u t e t h e i n i t i a l v a l u e s of t h e w a v e f u n c t i o n 
170 c ( t h i s i s t a k e n f rom S u l l i v a n ) 
171 c$0MP PARALLEL DO 
172 c$0MP& SCHEDULE ( s t a t i c ) 
173 do k = 10 , k s t a r t - 1 0 
174 u _ r ( k ) = u _ r ( k ) / p t o t S Q R T 
175 u _ i ( k ) = u _ i ( k ) / p t o t S Q R T 
176 e n d d o 
177 c$0MP END PARALLEL DO 
178 
179 c Compute the energy m the system, second, and fourth-order 

ac curate 
180 c d e r i v a t i v e s a r e p r o v i d e d , b u t s i x t h - o r d e r i s t h e d e f a u l t 
181 c c l = 0 . 5 D O * 1 . 0 5 5 D O * 1 . 0 5 5 D O * 6 . 2 3 D O * 1 0 0 0 D O / 9 . 2 D O 
182 c k e _ r = 0 . 0 
183 c k e _ i = 0 . 0 
184 P E = 0 . 0 
185 
186 c$0MP PARALLEL DO P R I V A T E ( c l a p _ r , c l a p _ i ) 
187 c$0MP& REDUCTION(+:PE) R E D U C T I O N ( + • c k e _ r ) R E D U C T I O N ( + : c k e _ i ) 
188 do k = 1 0 , K E - 1 0 
189 c c l a p _ r = u _ r ( k + i ) - 2 . 0 * u _ r ( k ) + u _ r ( k - 1 ) 
190 c c l a p _ i = u _ i ( k + l ) - 2 . 0 * u _ i ( k ) + u _ i ( k - 1 ) 
191 
192 c l a p _ r = - ( a 3 * u _ r ( k - 3 ) + a 2 * u _ r ( k - 2 ) + a l * u _ r ( k - l ) 
193 & + a 0 * u _ r ( k ) + a l * u _ r ( k + 1 ) + a 2 * u _ r ( k + 2 ) + a 3 * u _ r ( k + 3 ) ) 
194 
195 c l a p _ i = - ( a 3 * u _ i ( k - 3 ) + a 2 * u _ i ( k - 2 ) + a l * u _ i ( k - l ) 
196 & + a 0 * u _ i ( k ) + a l * u _ i ( k + l ) + a 2 * u _ i ( k + 2 ) + a 3 * u _ i ( k + 3) ) 
197 
198 c c l a p _ r = ( - u _ r ( k + 2 ) + 1 6 . 0 D 0 * u _ r ( k + l ) - 3 0 . 0 D G * u _ r ( k ) + 1 6 . 0 D 0 - u _ 

( k - 1 ) 
199 c k - u _ r ( k - 2 ) ) / 1 2 ODO 



200 c c l a p _ i = ( - u _ i ( k + 2 ) + 1 6 O D O * u _ i ( k + 1) - 3 0 O D O * u _ i ( k ) + 1 6 ODO*u_i 
( k - 1 ) 

201 c & - u _ i ( k - 2 ) ) / 1 2 ODO 
202 c k e _ r = c k e _ r + u _ r ( k ) * c l a p _ r + u _ i ( k ) * c l a p _ i 
203 c k e _ i = c k e _ i + u _ r ( k ) * c l a p _ i - u _ i ( k ) * c l a p _ r 
204 P E = P E + v p ( k ) * ( ( u _ r ( k ) * * 2 ) + ( u _ i ( k ) * * 2 ) ) 
205 e n d d o 
206 c$OMP END PARALLEL DO 
207 c o u t p u t t h e p o t e n t i a l a n d k i n e t i c e n e r g y 
208 p r i n t * , 0 , c c l * s q r t ( c k e _ r * * 2 + c k e _ i * * 2 ) , P E * 1 O D + 1 9 / 1 602D0 

209 k c c l * s q r t ( c k e _ r * * 2 + c k e _ i * * 2 ) + PE*1 O D + 1 9 / 1 602D0 
210 c s a v e t h e m t i a l e n e r g y t o a c s v f i l e 
211 o p e n ( u n i t =22 , f i l e = ' p s i _ i m - n - 0 c s v ) 
212 do k = l , K E - l 
213 w r i t e ( 2 2 , 1 0 ) k , u _ i ( k ) 
214 e r a d o 
215 c l o s e ( 2 2 ) 
216 o p e r ( u n i t = 1 , f i l e = ' p s i _ ^ l - n - 0 c s v ' ) 
217 do k = l , K E - 1 
218 w r i t e ( 1 , 1 0 ) k , u _ r ( k ) 
219 e r a d o 
220 c l o s e ( l ) 
221 
222 a o n = l , n s t e p s 
223 
224 c c a l c u l a t e t h e d e r i v a t i v e s of i m a g i n a r y v a l u e s 
225 c a l l c a l s e d ( u _ i , u _ i 2 p , K E ) 
226 c a l l c a l s e d ( u _ i 2 p , u _ i 4 p , K E ) 
227 c a l l c a l s e d ( u _ i 4 p , u _ i 6 p , K E ) 
228 c a l l c a l s e d ( u _ i 6 p , u _ i 8 p , K E ) 
229 c a l l c a l s e d ( u _ i 8 p , u _ i l 0 p , K E ) 
230 c a l l c a l s e d ( u _ i l 0 p , u _ i l 2 p , K E ) 
231 c a l l c a l s e d ( u _ i l 2 p , u _ i l 4 p , K E ) 
232 
233 c$0MP PARALLEL DO P R I V A T E ( c v h l , c v h 2 , c v h 3 , c v h 4 , c v h 5 , c v h 6 , c v h 7 ) 
234 c$0MP& SCHEDULE ( s t a t i c ) 
235 ao k = 1 0 , K E - 1 0 
236 c v h l = ( v p ( k ) * d t ) / h b a r 
237 c v h 2 = c v h l * c v h l 
238 c v h 3 = c v h 2 * c v h l 
239 c v h 4 = c v h 3 * c v h l 
240 c v h 5 = c v h 4 * c v h l 
241 c v h 6 = c v h 5 * c v h l 
242 c v h 7 = c v h 6 * c v h l 
243 
244 c c a l c u l a t e t h e r e a l v a l u e s 
245 u _ r ( k ) = u _ r ( k ) - r l * c h 2 m l * u _ i 2 p ( k ) + c v h l * u _ i ( k ) 
246 c p = l 
247 $ + c l _ 2 4 * ( c h 2 m 3 * r 3 * u _ i 6 p ( k ) 
248 & - c 3 * c v h l * c h 2 m 2 * r 2 * u _ i 4 p ( k ) 
249 & + c 3 * c v h 2 * c h 2 m l * r l * u _ i 2 p ( k ) 
250 & - c v h 3 * u _ i ( k ) ) 



251 c p = 2 
252 & - c l _ 1 9 2 0 * ( C h 2 m 5 * r 5 * u _ i l 0 p ( k ) 
253 ft - c 5 * c v h l * c h 2 m 4 * r 4 * u _ i 8 p ( k ) 
254 ft + C l 0 * c v h 2 * c h 2 m 3 * r 3 * u _ i 6 p ( k ) 
255 & - C l 0 * c v h 3 * c h 2 m 2 * r 2 * u _ i 4 p ( k ) 

256 & + c 5 * c v h 4 * c h 2 m l * r l * u _ i 2 p ( k ) 
257 & - c v h 5 * u _ i ( k ) ) 
258 c p = 3 
259 & + c c * c l _ 3 2 2 5 6 0 * ( c h 2 m 7 * r 7 * u _ i 1 4 p ( k ) 
260 ft - c 7 * c v h l * c h 2 m 6 * r 6 * u _ i l 2 p ( k ) 
261 ft + c 2 1 * c v h 2 * c h 2 m 5 * r 5 * u _ i l 0 p ( k ) 
262 & - C 3 5 * c v h 3 * c h 2 m 4 * r 4 * u _ i 8 p ( k ) 
263 & + c 3 5 * c v h 4 * c h 2 m 3 * r 3 * u _ i 6 p ( k ) 
264 & - C 2 1 * c v h 5 * c h 2 m 2 * r 2 * u _ i 4 p ( k ) 
265 & + c 7 * c v h 6 * c h 2 m l * r l * u _ i 2 p ( k ) 
266 ft - c v h 7 * u _ i ( k ) ) 
267 
268 e n d d o 
269 c$0MP END PARALLEL DO 
270 
271 c c a l c u l a t e t h e d e r i v a t i v e s of r e a l v a l u e s 
272 c a l l c a l s e d ( u _ r , u _ r 2 p , KE) 
273 c a l l c a l s e d ( u _ r 2 p , u _ r 4 p , K E ) 
274 c a l l c a l s e d ( u _ r 4 p , u _ r 6 p , K E ) 
275 c a l l c a l s e d ( u _ r 6 p , u _ r 8 p , KE) 
276 c a l l c a l s e d ( u _ r 8 p , u _ r l 0 p , K E ) 
277 c a l l c a l s e d ( u _ r l O p , u _ r l 2 p , K E ) 
278 c a l l c a l s e d ( u _ r l 2 p , u _ r l 4 p , K E ) 
279 
280 c$0MP PARALLEL DO P R I V A T E ( c v h l , c v h 2 , c v h 3 , c v h 4 , c v h 5 , 
281 c$0MP& SCHEDULE ( s t a t i c ) 
282 do k = 1 0 , K E - 1 0 
283 c v h l = ( v p ( k ) * d t ) / h b a r 
284 c v h 2 = c v h l * c v h l 
285 c v h 3 = c v h 2 * c v h l 
286 c v h 4 = c v h 3 * c v h l 
287 c v h 5 = c v h 4 * c v h l 
288 c v h 6 = c v h 5 * c v h l 
289 c v h 7 = c v h 6 * c v h l 
290 
291 c c a l c u l a t e t h e i m a g i n a r y v a l u e s 
292 u _ i ( k ) = u _ i ( k ) + c h 2 m l * r 1 * u _ r 2 p ( k ) - c v h l * u _ r ( k ) 
293 c p = l 
294 $ - c l _ 2 4 * ( c h 2 m 3 * r 3 * u _ r 6 p ( k ) 
295 & - c 3 * c v h l * c h 2 m 2 * r 2 * u _ r 4 p ( k ) 
296 & + c 3 * c v h 2 * c h 2 m l * r l * u _ r 2 p ( k ) 
297 & - c v h 3 * u _ r ( k ) ) 
298 c p = 2 
299 ft + c l _ 1 9 2 0 * ( C h 2 m 5 * r 5 * u _ r l 0 p ( k ) 
300 ft - c 5 * c v h l * c h 2 m 4 * r 4 * u _ r 8 p ( k ) 
301 ft + C l 0 * c v h 2 * c h 2 m 3 * r 3 * u _ r 6 p ( k ) 
302 ft - C l 0 * c v h 3 * c h 2 m 2 * r 2 * u _ r 4 p ( k ) 
303 ft + c 5 * c v h 4 * c h 2 m l * r l * u _ r 2 p ( k ) 



304 ft - c v h 5 * u _ r ( k ) ) 
305 c p = 3 
306 & - c c * c l _ 3 2 2 5 6 0 * ( c h 2 m 7 * r 7 * u _ r 1 4 p ( k ) 
307 & - c 7 * c v h l * c h 2 m 6 * r 6 * u _ r l 2 p ( k ) 
308 & + c 2 1 * c v h 2 * c h 2 m 5 * r 5 * u _ r l 0 p ( k ) 
309 ft - c 3 5 * c v h 3 * c h 2 m 4 * r 4 * u _ r 8 p ( k ) 
310 & + c 3 5 * c v h 4 * c h 2 m 3 * r 3 * u _ r 6 p ( k ) 
311 ft - c 2 1 * c v h 5 * c h 2 m 2 * r 2 * u _ r 4 p ( k ) 
312 ft + c 7 * c v h 6 * c h 2 m l * r l * u _ r 2 p ( k ) 
313 ft - c v h 7 * u _ r ( k ) ) 
314 e n d d o 
315 c$0MP END PARALLEL DO 
316 
317 
318 c Compute the energy in the system, second, and fourth-order 

accurate 
319 c d e r i v a t i v e s a r e p r o v i d e d , b u t s i x t h - o r d e r i s t h e d e f a u l t 
320 c k e _ r = 0 . 0 
321 c k e _ i = 0 . 0 
322 PE = 0 . 0 
323 
324 c$0MP PARALLEL DO P R I V A T E ( c l a p _ r , c l a p _ i ) 
325 c$0MP& REDUCTION(+:PE) R E D U C T I O N ( + : c k e _ r ) R E D U C T I O N ( + : c k e . i ) 
326 do k = 1 0 , K E - 1 0 
327 c c l a p _ r = u _ r ( k + 1 ) - 2 . 0 * u _ r ( k ) + u _ r ( k - 1 ) 
328 c c l a p _ i = u _ i ( k + l ) - 2 . 0 * u _ i ( k ) + u _ i ( k - l ) 
329 c l a p _ r = - ( a 3 * u _ r ( k - 3 ) + a 2 * u _ r ( k - 2 ) + a l * u _ r ( k - l ) 
330 & + a 0 * u _ r ( k ) + a l * u _ r ( k + 1 ) + a 2 * u _ r ( k + 2 ) + a 3 * u _ r ( k + 3 ) ) 
331 
332 c l a p _ i = - ( a 3 * u _ i ( k - 3 ) + a 2 * u _ i ( k - 2 ) + a l * u _ i ( k - l ) 
333 & + a O * u _ i ( k ) + a l * u _ i ( k + l ) + a 2 * u _ i ( k + 2 ) + a 3 * u _ i ( k + 3 ) ) 
334 
335 c c l a p _ r = ( - u _ r ( k + 2 ) + 1 6 . 0 D 0 * u _ r ( k + 1 ) - 3 0 . 0 D 0 * u _ r ( k ) + 1 6 . 0 D 0 * u _ 

( k - 1 ) 
336 c & - u _ r ( k - 2 ) ) / 1 2 . 0 D 0 
3 3 7 c c l a p _ i = ( - u _ i ( k + 2 ) + 1 6 . 0 D 0 * u _ i ( k + 1 ) - 3 0 0 D 0 * u _ i ( k ) + 1 6 . 0 D 0 * u _ 

( k - 1 ) 
3 3 8 c ft - u _ i ( k - 2 ) ) / 1 2 . 0 D 0 
339 c k e _ r = c k e _ r + u _ r ( k ) * c l a p _ r + u _ i ( k ) * c l a p _ i 
340 c k e _ i = c k e _ i + u _ r ( k ) * c l a p _ i - u _ i ( k ) * c l a p _ r 
341 P E = P E + v p ( k ) * ( ( u _ r ( k ) * * 2 ) + ( u _ i ( k ) * * 2 ) ) 
342 e n a d o 
343 c$0MP END PARALLEL DO 
344 c output the energy m the system at this time 
345 if(mod(n , 10) .eq. 0) then 
346 p r i n t * , n , e c l * s q r t ( ( c k e _ r * * 2 ) + ( c k e _ i * * 2 ) ) , P E * 1 0D 

+ 1 9 / 1 6 0 2 D 0 , 
347 ft c c l * s q r t ( c k e _ r * * 2 + c k e _ i * * 2 ) + PE*1 OD + 1 9 / 1 . 602D0 
348 c r a i f 
349 
350 c save the wavefunctions if the timestep for comparison 
351 if(n . eq stop2) „lei 
352 o p e n ( u n i t = 2 2 , f i l e = ' p s i _ I T - n - 1 iQO c s " ' ) 



354 
355 
356 
357 
358 
359 
360 
361 
362 
363 c 
364 c 
365 

366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 

380 c 
381 c 
382 

383 
384 
385 c 
386 
387 
388 
389 c 
390 
391 
392 
393 
394 c 
395 c 
396 c 
397 c 
398 
399 
400 
401 
402 
403 

do k = l , K E - l 
w r i t e ( 2 2 , 1 0 ) k , u _ i ( k ) 
e n d d o 
c l o s e ( 2 2 ) 

o p e n ( u n i t = l , f i l e = ' p s i _ r l - n - 1 3 0 0 . c s v ' ) 
GC k = l , K E - l 
w r i t e ( 1 , 1 0 ) k , u _ r ( k ) 
e n d d o 
c l o s e ( 1 ) 

e n s u r e t h e e n e r g y i s p r i n t e d ( i t may n o t b e c a u s e of t h e 
m o d u l u s f u n c t i o n a b o v e ) 

p r i n t * , n , c c l * s q r t ( ( c k e . r * * 2 ) + ( c k e _ i * * 2 ) ) , P E * 1 . 0 D 
+ 1 9 / 1 . 6 O 2 D 0 , 

& c c l * s q r t ( c k e . r * * 2 + c k e _ i * * 2 ) + P E * 1 . 0 D + 1 9 / 1 . 6 0 2 D 0 

e l s e i f ( n . e q . s t o p l ) t h e n 
o p e n ( u n i t = 2 2 , f i I e = ' p s i _ i m - n - 3 5 0 . c s v ' ) 
ao k = l , K E - l 
w r i t e ( 2 2 , 1 0 ) k , u _ i ( k ) 
e n d d o 
c l o s e ( 2 2 ) 

o p e n ( u n i t = 1 , f i l e = ' p s i _ r l - n - 3 5 0 c s v ' ) 
a c k = l , K E - l 
w r i t e ( 1 , 1 0 ) k , u _ r ( k ) 
e n d d o 
c l o s e ( 1 ) 

e n s u r e t h e e n e r g y i s p r i n t e d ( i t may n o t b e c a u s e of t h e 
m o d u l u s f u n c t i o n a b o v e ) 

p r i n t * , n , c c l * s q r t ( ( c k e . r * * 2 ) + ( c k e _ i * * 2 ) ) , P E * 1 . 0 D 
+ 1 9 / 1 . 6 0 2 D 0 , 

& c c l * s q r t ( c k e . r * * 2 + c k e _ i * * 2 ) + P E * 1 . 0 D + 1 9 / 1 . 6 0 2 D 0 
e n d i f 

T h i s e n d s t h e t i m e l o o p 
e r d d c 

10 f c r a a t ( 1 5 , ' , ' , F 2 5 . 15) 
T h i s e n d s t h e p r o g r a m 

s t o p 
e n a 

This routine computes the 2nd derivaitve 

input, f - the function to differentiate 
input: KE - the number of grid points, indexed from zero 

output: f" in the array fdp 

subroutine calsed(f,fdp,KE) 

i irpl Lei- none 

d i m e n s i o n f ( 0 : K E ) , f d p ( 0 : K E ) 
u o u o l e p r e c i s i o n f , f d p , a O , a l , a 2 , a 3 
_i t ep-fer k , ke 



404 c S i x - o r d e r S c h e m e 
405 a 0 = 4 9 . 0 D 0 / 1 8 . 0 D 0 
406 a l = - 1 . 5 D 0 
407 a2= 0 . 1 5 D 0 
408 a3= - 1 . 0 D 0 / 9 0 . 0 D 0 
409 
410 c$0MP PARALLEL DO 
411 c$0MP& SCHEDULE ( s t a t i c ) 
412 do k = 1 0 , K E - 1 0 
413 f d p ( k ) = - ( a 3 * f ( k - 3 ) + a 2 * f ( k - 2 ) + a l * f ( k - 1 ) 
414 ft + a O * f ( k ) + a l * f ( k + l ) + a 2 * f ( k + 2 ) + a 3 * f ( k + 3 ) ) 
415 e n d d o 
416 c$0MP END PARALLEL DO 
417 
418 c c l a m p t h e e n d s t o z e r o 
419 c an a b s o r b i n g b o u n d a r y c o n d i t i o n s h o u l d be h e r e 1 

420 
421 
422 
423 
424 
425 
426 
427 
428 
429 

do k = 0 , 9 
f d p ( k ) = 0 . 0 

e n d d o 

do k = K E - 9 , K E 
f d p ( K E - k ) = 0 . 0 

e r o d e 

r e t u r n 
e n a 

Listing C.3: Particle simulation using the sixth-order accurate scheme 
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