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ABSTRACT

This dissertation improves the accuracy of the Generahzed Fimite Difference
Time Domaimn (FDTD) scheme by determiming a differential operator that 1s capable
of achieving reasonable accuracy when used to obtain even-order derivatives up to
order fourteen The Generalized FDTD scheme 1s an exphcit scheme used to solve
the time-dependent Schrodinger equation, and being an explicit scheme, 1t must uti-
lize a carefully devised ratio of the temporal step to the spatial step to maintain
numerical stability This ratio 1s called the mesh ratio, and the Generalized FDTD
scheme allows this ratio to be sigmificantly relaxed As the mesh ratio increases the
generalized scheme requires the evaluation of increasingly high-order spatial detiva-
tives

In Chapter 3, two classes of differential operators are considered, the first
bemng the repeated application of a central difference approximation of the Laplace
operator using various orders of accuracy, and the second class being the differ-
entiated Lagrange mterpolating polynomials This approach, mtentionally avoids
attempting to approximate such derivatives using incieasingly high-order fimte dif-
ferences, as the number of uncomputable points becomes very large as the order of
the derivative incieases

Based on the conclusions from Chapter 3, a sixth-order accuiate cential dif-
ference operator 1s chosen to approxunate the Laplace operator and in Chapter 4
the o1de1r of accuiacy 15 detetmined The numerical stability 1s analyzed using the
Von Neumann analysis and a stability condition 1s shown

The vahdity of the analysis peiformed in Chapter 4 1s venified by solving a

111
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Schrédinger equation with exact solution, and observing the numerical error and sta-
bility. The order of accuracy of the scheme is also verified through experimentation,
it is shown both theoretically and empirically that the chosen differential operator is
both stable and accurate when used to solve the time-dependent Schrodinger equa-

tion using the Generalized FDTD method.
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CHAPTER 1
INTRODUCTION

In this chapter, a brief introduction to the time-dependent Schrodinger
equation is provided, as well as an overview of the organization of this document, an
introduction to the Taylor series and the Finite Difference method, and a summary
of the motivation driving this work. Should the reader have a firm understanding of

the topics listed, then they are encouraged to jump straight to Section 1.4 (page 10).

1.1 Time-Dependent Schrodinger Equation
The Schrodinger equation is a fundamental equation in quantum mechanics
that describes how the wavefunction of a physical system evolves over time, predicting
the behavior of a dynamic system. In the field of quantum mechanics, the
wavefunction represents the quantum state and is the most complete description that
can be given to a physical system. The one-dimensional time-dependent Schrodinger
equation is

o(z,t) h O*(z,t)  Vx,t)
2, Y <rz< .
a1 | i— P(x,t), for a<x<b and t>0, (1.1)

Pla,t) =(bt) =0, t>0,

P(2,0) = d(x), for a<uor<bh

b

where m is the mass of the particle [kg], & = 1.054 x 107** [J-sec] is the reduced
Planck’s constant, V(xz,t) is a given real-valued potential function [J], ¥(z,t) is a

complex function, ¢(z) is a complex initial condition, and 2 is the imaginary unit



2 = +/—1 Since 9(r,t) 15 complex, then a specific value of 9 takes the general form
Y(x,t) = o+ 18, and the conjugate of ¥(zx t) 1s ¥(z,t) = a — 28, the product of
the complex conjugates of (x,t) 1s then, 1(z,t) ¥(x,t) ndicating the probability
of a particle being at the spatial location z at time ¢ Obtaining a solution to the
wavefunction v 1s a typical goal when solving the Schrodinger equation, and to do
so requires solving a partial differential equation, which i this work 1s achieved
using the Finite Difference Time Domain method When 1n the context of Quantum
Mechanics, the abbreviation FDTD-(Q) 1s often used, and 1n this dissertation, FDTD
and FDTD-Q will be used synonymously The focus of this work 1s centered on

mmproving the accuracy of the approximation given by the FDTD method

1.2 Outline of the Dissertation

In this dissertation the Generahzed Finite Difference Time Domain scheme as
proposed by Da1 and Moxley [11] 1s used, and after thorough analysis, improvements
that lead to sigmificantly more accurate solutions of the wavefunction 1 are proposed
To begin, the FDTD-Q method and generahzed FDTD-Q method are mtroduced
m Chapter 2 In Chapter 3 two compelling methods for obtaining high-order
derivatives are investigated, and after an introduction to the theory behind the
methods, numerical investigations are performed and the results analyzed Following
the conclusions from Chapter 3, improvements aie proposed in Chapter 4, and the
stability and accuracy of both the original method and modified method are analyzed

Combining the method selected 1mn Chapter 3 for obtaining high-order deiiva-
tives and the considerations for stability and grid spacing presented in Chapter 2
numerical experiments ate peiformed in Chapter 5 Heie a model problem 1s solved
allowing comparison with the exact analytical solution A practical stmulation 1s
also peiformed, where a particle moves through fiee-space and stiikes an energy

potential



1.3 Finite Differences and Taylor Series

Before moving forward there are a few crucial concepts that are used
seamlessly throughout this dissertation, one such concept is the Taylor series and
another is the Finite Difference method. These mathematical tools are not disjoint
ideas, rather the Taylor series forms the foundation upon which the Finite Difference
method is built, and it is for this reason they are both introduced here.

In the field of numerical analysis one of the most important tools and the
foundation for the majority of the work presented here is the Taylor series, or the
Taylor polynomials and associated truncation error. From Atkinson [3] we have

Taylor’s Theorem:

Theorem 1.1 (Taylor’s Theorem). Let f(x) have n+ 1 continuous derwatives on

la,b] for somen >0, and let x,zq € [a.b]. Then

(x — z)?

2ol i) 4

(L _ $0>n+1

SRS

Rni1 (33) =

for some & between 1y and x.

When this expansion is convergent, that is nlggo R, = 0, then the expansion is
called the Taylor series of f(x) expanded about zy. Since n may not get arbitrarily
large in practice, one typically truncates the Taylor series at some fixed n creating an
approzamation of the function f(x), and when doing so the polynomial 7, is called
the nth Taylor polynomial with the remainder term R, called the truncation error.
It is clear from Theorem 1.1 that if [(x — )| is sufficiently small i e., |(2 — z¢)] < 1.

then the truncation error will tend towards zero as n increases. Should |(v — 7¢)| < 1

then the truncation error vanishes faster, and so hased on n and (7 — 2¢) one may



characterize the convergence rate of the truncated Taylor series (z J:‘;,) fr(€) Ths
characterization 1s called the order of accuracy

With the convergence rate characterized exclusively by n and (z — xo), a
common notation 1s used that conveys this information clearly and concisely First,
recognize that (v — vo) = Ar, and now using Az and n the order of accuracy may
be expressed as O(Az"™1), which imphes O(Az™") = n:jl,ﬂ"“)(g)

A caveat of using the Taylor series directly as presented 1s that one must have
evaluations for the function f, as well as all derivatives up to the desired n When
seeking solutions to partial differential equations one typically has function values
f(x), and wants to know the differentiated values One method for obtamming these
differentiated values 1s called the Fimite Difference method, and 1t works as follows

Suppose the solution to f'(x) 15 desired, and one has solutions to f(x) along
a particular stiuctuted grid {(wg f(zg)), ,{(an, f{Ln))} and z, 1s defined as ¢, =

1Ar, forall € {0 ,n} Then one may construct a Taylor series expansion for

the function f(z + Az) about z as follows

Tolr + A7) = 11+ ) = () + (r + Ar — 1) () + EFELZ 2 ey
P (L + A:, —a)" f(”)(t)
fle+ Ox) = f(0) + dafla) + S0+ + BT () 12)

From Equation (1 2), the notation T,,(t -+ Az) 15 typically avoided, and when working
with fimite differences the name of the function bemng approximated 1s used It 1s
undeistood that f(z + Az) 1s a Taylor series approximation Another shorthand
notation common to the ficld of imtc diffcrences, anises from the fact that when
working with a fimte domain, where you have sequentially numbered z giid locations
eg Ty 21 zar, then f(a;) mav be shoitened to f(k) = f(zy) = fi In this

wiiting the notation f(k) 1s picterned



Returning to Equation (1 2) and solving for the desired derivative, which n

this example 15 f'(x),

ploy= LB IO Btpnyy . AT sen) )

From Equation (1 3) 1t 1s clear that if one only has function evaluations at f(r), then

" f® £ are all unknown terms, and so the Taylor series must be truncated
Aefe) = J) - e A+ S e+ S e
Play = FEEED T | B8 prie)
Fla) = f(“AZQ @ oian (14)

Equation (14) 1s called a Forward Diffcience and similaily there s a Backward

Dhfference that may be constructed using a Taylor expansion of the function f(z—Ax)

about z
e Ba) = f(2) ~ Baf(a) + S ) b+ o e
pizy = TR oy (15)

Az

Both approxunations aie first-order accurate O(Ar), and to increase accuracy one
must find a way to remove the higher-order deivatives leaving a higher-order
remainder term  One way to achicve this 1s mtwitively which works well for
differences with a small number of pomnts but to derive more advanced schemes
a mote robust method 1s 1equired One such method 1s the Method of Undetermained
Cocffictents  Fust consider improving the above appioximations of the fiist
denivative by experimentation Rather than work with a single Taylor expansion,

take two expansions one for f(z + A1) and anothet for f(2 — Aa) both centered



about z

flz+ Az) = f(z) + f’(az)A:v n f//(g;)Aa;Z N f(3)(:c)Aa:3 N f(4)(x)Ax4

2! 3! 4]
B VAL® (RY(EYALP
S A €2 L A (Y (1.6)
5! n!
" Ag? (3) A3 (4) YAt
flo - 80) = (o) - fl)ar + OB TT@RT TR
(5) Axd (n) Ag™
S O S i 9L (1.7)
5! n!
Since the goal is to improve the truncation error which was previously W%A—m,

one must remove the second derivative terms from the equations above. This may

be achieved by subtracting Equation (1.7) from Equation (1.6)

flo+Ar)— flz—Ax)=2f(a)Ax

. f(2n+1)(§)A:C2n+1 N f(2n+1)(n)AI2n+l (1 8)
(2n +1)! (2n + 1)! .

Solving for the first derivative term,

(2n+1) 2n+1
2]“(:1)13‘142f(TnLAr)“f(cc—A?:)*---—fQ+1 )+ +)(n)A:c2”“

(2n + 1)!
o fla+ Az) —~ f(z — Az) FEIE) + ()
G 2Az ST 2(2n + 1) Az (19)
oy flatAx) — fla— Az) [ + [P (n) Aa?
G I N 2 3! (1.10)

Recognizing that the third derivatives are unknowns leads to the Central Difference
approximation of the first derivative with error term. In this case, the truncation
error may be simplified based on the assumptions required by Taylor’s Theorem,
which state that f(7) must have n + 1 continuous derivatives on the interval [a.b].

and that both z and zq are in [a,b]. With these requirements. one may utilize the



Intermediate Value Theorem, taken from Atkinson [3], which states

Theorem 1.2 (Intermediate Value Theorem). Let f(z) be contimuous on the finite

interval a < x < b, and define

m = wf f(z), M = sup f(x)

asrsh a<z<b
Then for any number u wn the wnterval [m, M|, there 1s at least one pownt £ wn [a, b]
for which
(&) =u

Or 1n simpler terms, the Intermediate Value Theorem 1s rigorously expressing
the 1dea that for contimuous functions, one must be able to draw a line (or curve)
between f(a) and f(b) with out picking up the pencil When cast in the context of

the above central difference remainder term, there must exist some p such that

1) + D)
2

= O (),

and the second-order accurate cential difference approximation of the first derivative

18

_ S A~ Jla=Aa) | f9

fi(z) = AT i Az?
o) = f(r+ Axé;zf(:c — Ax) L O(AZ?) (111)

In the previous examples, the coeflicients of the Finite Difference scheme were
determined directly by 1ecognizing which terms should be added or subtracted from
each other to make the unwanted terms vamish, but when attempting to constiuct
a scheme that uses many pomts (function values) the previous method becomes
maeasingly difficult  What follows 1s essentiallv the same method, but presented mn a

mote robust manner This method 1s called the Method of Undetermaned Coefficients



The general form of any central difference scheme is
Af(z — Az)+Bf(z) + Cf(x + Ax),

Af(x — 2Az) + Bf(x —~ Az)+Cf(z) + Df(xz + Az) + Ef(zx + 2Ax),

Cof(2)+Y  Copf(z — kAx) + Cypnf(z + kAz)  (1.12)

k=1

The goal is now to determine the coeflicients A, B. and C for a three point scheme,
A.B;C. D, and FE for a five point scheme. If one looks at the Taylor expansions
associated with the scheme, a linear system of equations may be formed. For
example, consider increasing the accuracy of the previous second-order accurate
central difference approximation of the first derivative Equation (1.11). First assume
the form of the final central difference scheme will be Af(x + 2Az) + Bf(z + Az) +
Cf(z)+ Df(x — Ax) + Ef(x — 2Az), and construct Taylor expansions as in the

previous examples

flx+Az) = f(z) +f(z)Az+ %)!MQ +- 4 f—(n)-(%ﬂ,
flz+242) = f(z) +2f(z)Az+ QQW +-~-+2”f—(nz(z!)ﬂ.

Sz —Az) = f(z)  —f(z)As+ LQA—TZ +o f(n)(”){il_m)n,
flo —2Az) = flx)  —2f(x)Az+ 22% bogord (n)“)i!_m)n.

Now multiply each Taylor expansion by its associated unknown coefficient

VAL 2 (n) 7
Bf(x+ Ax) = Bf(x) +Bf’($)Az+BL%,é~+-~+Bj—~(3$,
" T (n) (A n
Af(z +2Az) = Af(x) +2Af/(a:)AI+22A—f—<rz)TA—2+~--+2nz4—°—“f (H/?ACE ;
e n) . n
Df(”L-A’L):Df(1> ADf/(I)AT+DM+"'+Df( (77>( A’L’)

21 n!



f"(z)As? nmd () (= Az)”
—— e 2E - .

Ef(x—2A1) = Ef(z) —2Ef(1)Az+2°E
and form a hnear system of equations such that the coefficient for f’ must be 1, and
the coefficient for all other terms must be zero. The goal 1s to 1solate the derivative in
the Taylor expansion we wish to approximate, while providing sufficient mformation

such that the hinear system 1s solvable, in this case five equations and five unknowns

The form of the desired solution is
Af(r+2A7)+bf(r+ Ar) +Cf(z)+ Df(x — Av)+ Ef(r —2A71) =T(r), (1.13)

and T'(x) represents the truncated Taylor series resulting from the left hand side of

Equation (1 13) Thus,

AC)
31

T(x) = Cof () + Cuf (0)dx + P aw 1 0 s

1) s C¢f(5’(¢)

m 3 Ar® (1.14)

+ Cy

Equation (1.13) and Equation (1.14) together imply that the following equations

must be true

Equation for Cy f(z) (A+ B+C+ D+ E)=0=C,, (1 15a)
Equation for Cy f(z), (A+2B ~ D —2E) = 11}'; = Cy, (1.15b)
Equation for Cyf @ (1), (A4+2°B+ D+ 2°E) =0 = C,. (1.15¢)
Equation for Csf® (1), (A+2°B—-D—2°E)=0=Cs. (1.15d)

Equation for Cy f™(r), (A+2'B+D+2'E)=0=C,4 (1.15€)
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It 1s considerably easier to represent this technique in matrix form

1 1 1 1 1] A 0

-2 -1 0 1 21| B ﬁ
4 1 0 1 411C1 =101,

-8 -1 0 1 81| D 0

| 16 1 0 1 16| | E] | 0|
which when solved, yields
1 2 2 1
= Tar PTiap O70 0 Deogxm T 12Az

or 1 the more common form

_ —fla+2A1)+ 8f(a + Aa) — 8f(z — Au) + f(a — 2Ax)

4
N + O(Az®)

(116)

f(z)

Following the same procedure one may cieate Finite Difference schemes that

approximate any derivative up to any order of accuracy Of particular iterest to

this woirk are central difference approximations of the second derivative, which are
62

then used to approximate the Laplace operator V2 = 5.2 In one dimension

1.4 Motivation

Without delving too far into the Geneiralized FDTD-Q method, sufficient
backgiound 1s presented here so that one may still appreciate 1ts improvements ovel
the tiaditional FDTD-Q method As the name mmplies the FDTD-Q method 1s
the Finite Difference Time Domain method applied to quantum mechanics Finite
Difference Time Domain schemes follow the same fundamental 1deas presented in
the previous section Specificallv they emplov various differencing operatois on both
space and time which means FDTD schemes may have various oiders of accuracy
In gencral the order of accuracy of an FDTD scheme 1s a function of both the

spatial step and tempoial step such as O(A:? + At) o1 n two dimensions O(A 12 +
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Ay? + At?). The original FDTD-Q method for solving the Schrodinger equation has
a proven accuracy of O(Ax? + Az?At? + At?), and the generalized FDTD-Q method
uses additional Taylor series expansions in time that allow one to achieve very high-
orders of accuracy in time, such as O(Az? + Az2At? + .- + AtCV3)) where N is
a parameter related to the number of derivative terms in the Taylor expansion that
are evaluated (N = 0 yields the original FDTD-Q method).

The Generalized FDTD-Q scheme as published [11] provides second-order
spatial accuracy, while providing arbitrarily high time accuracy. The reason the
Generalized FDTD-Q scheme has only been able to achieve second-order spatial
accuracy, is the requirement that the scheme with parameter N requires all even
number spatial derivatives from 2.4,...,4N + 2. Obtaining these high-order
derivatives has proven challenging for two specific reasons that are directly addressed
in this dissertation. First, the accuracy of the derivatives degrades rapidly as the
order of the derivative increases. Second, attempting to use methods with higher
accuracy than the second-order accurate central difference leads to stability issues

that must be addressed.



CHAPTER 2

REVIEW OF THE FDTD-Q METHODS

The one-dimensional (1-D) time-dependent linear Schrodinger equation, was
introduced in Chapter 1, Equation (1.1). In this Chapter, a survey of previous work
will be introduced, as well as a general overview of what makes the Generalized
FDTD-Q method novel.

Before proceeding further, it should be understood that there are two main
types of Finite Difference Time Domain schemes. The first type are called Explicit
schemes, as it is possible to compute the solution at time n + 1 directly using only
information from previous time steps. That is to say, with explicit schemes it is
possible to formulate the problem such that there is a single unknown on the left-
hand side of the equation and all known values on the right-hand side. The other
type of scheme is an Implicit scheme, which means that the solution to the current
time step is obtained by solving a system of equations based on previous and future
time steps.

There are strengths and weaknesses to each type of scheme. The implicit
schemes are unconditionally stable, meaning one may choose the time step indepen-
dent of the choice of the spatial step, but the cost of the implicit scheme is that a
system of equations must be solved at each time step and the equations are typically
more complex than those in an explicit scheme. Explicit schemes are typically easier
to compute, but are not unconditionally stable. This means that there is a restriction

A

imposed on the mesh ratio ZI—‘Q < ¢, where devising a method that allows one to relax

12
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this restriction is optimal, as you obtain the ability to not only compute solutions

directly but also move through time faster.

2.1 FDTD-Q Methods

Many numerical schemes have been developed for solving linear Schrodinger
equations [1,2,4-7,9,10,12-21,23,28,30-33]. Of the works [1,2,4-7,9,10,12-21,23,28,
30-33], it should be noted which type of method each used to solve the Schrodinger
equation. Of those works, the ones that utilized a method that required the solution
of a matrix are [1,4-7,12-18, 20,21, 23, 30-33|, which is clearly the majority of the
previous work. Sullivan [29], in his book on electromagnetic simulations, extended
the ideas used to solve Maxwell’s equation using the FDTD method, to solve the
linear Schrodinger equation using an explicit scheme. From his book, the formulation
of the explicit FDTD scheme is as follows:

To avoid the use of complex numbers, the wavefunction v is split into its real

and imaginary components,
V(2. 1) = Prea(T, ) + 14imag(x. 1). (2.1)

Inserting Equation (2.1) into Equation (1.1) and then separating the real and

imaginary parts result in the following coupled set of equations:

Mpreat(z-t) A *humag(z,t)  V(z.t)
ot om0z T n Vmesl®?) (2.22)
and
, 2
Momag(0,1) _ B T drealrs?) VA0, -0y (2.2b)

ot 2m Ox2 2

Thus. the sccond-order accurate fimte difference approximations in space and time
result in the FDTD scheme as follows:

n ](,ZL) - w”)"ll(k) h o 1 1 1
= S22 (L) 4 V()2 (h 2.
At 2mAx? E(/)lmdg( ) + h ( )(/)Imdg( ) ( 3«‘3)
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and o \
Vi () = Uy (K) A 9 om 1 n
At - ImAz 6z¢real(k> - ﬁv<k) real(k) (2 3b)

In the transition from Equation (2 2) to Equation (2 3), the notation has
clearly changed This change 1s a direct result of discretizing the analytical form
m Equation (2 2) into a discrete form m Equation (23) The spatial domamn z
and temporal domain t have been discretized into a finite set of equally spaced grid

locations,
b—a

r=a+kAr, for a<r<bk=0 ,
Az

(24)

and

t=nAt, for t>0,n=1 | Nseps (25)

The functions ¥rea and Yimag are then solved at the grid locations from Equation (2 4)

at a specific time step n The notation should then be interpreted as

:Leal(k) - ¢real($k; tn) = wreal(a -+ kACC, nAt)

and

1
n+3

1
?plmdg(k) = 'l/]nnag(xky tn-{-%) - 1'blm3«g(a + k’AIE, (77, + §)At>

Equation (2 3) then becomes the starting pomnt for attempting to improve
the exphicit FDTD scheme, as the form shown by Sullivan 1s second-order accuiate
m space and time O(At* + Az2At?), but no stability condition was known From
this point two independent researchers [10, 28] reached nearly 1dentical bounds for
the stability of the exphcit FDTD scheme Dai et al [10] used the disciete energy

method to show that scheme 1s stable if

h At At
—_ 4+ — Vi< 1 26
m A12+ 2h max V] < ¢ < (26)

where ¢ 18 a constant Souiano et al [28] used the eigenvalue method to analyze the
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stability of the FDTD scheme and obtained a very similar condition of

ho At At
L2 S max |V < 1. (2.7)

The above stability conditions are imperative to this work, as we will utilize
the bound shown by Dai [10] to construct a specific stability condition for the scheme
proposed. Dai [10] noted that even if the condition shown by Soriano is chosen, the
numerical solution may still diverge, and that the stability condition in Equation (2.6)
indicates that the condition for stability must be less than one but not close to one.

This leads to the motivation for creating the Generalized FDTD-Q method

as proposed by Dai and Moxley [11], which is to relax the restriction on the mesh

At

ratio, Al

2.2 Generalized FDTD-Q Method

The Generalized FDTD-Q scheme proposed by Dai and Moxley [11] is an
integral part of this dissertation. In this section a brief overview of how the method
was derived is shown, because it will be utilized frequently in Chapter 4. But
more important than the derivation is to realize that the method provides arbitrary
accuracy in time and theoretical unconditional stability. The cost for obtaining
higher accuracy in time, is that one must be able to evaluate high-order spatial
derivatives.

To develop the Generalized FDTD-Q scheme, one must assume that ¢, (x, t)
and Yymae(x,t) are sufficiently smooth functions which vanish for sufficiently large
|| and the potential V' is dependent only on x [11]. The scheme is then derived as

shown n [11], which is summarized here. Eqs. (2.2a) and (2.2b) are rewritten as

a’[//xeal(fr~ t) h 14
Tl o (m At = e (2 1), _
ot ( 9 + A )Ulmag(71 t) (2 8&)
8?/)mmg(1. t) — ( h A — K)‘/)xed](-lu t) (28]3)

Ot 2m R
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where A = %. The real component of the wavefunction is then expanded using

the Taylor series at e (2. t,) and e (x, t,—1) about ¢t = ¢ = (n — %)At, and

n—3
the imaginary component is expanded at ¥,mag(t,,, 1 ) and YPumag(t,_ 1 ) about t = ¢,.
Using the relations in Equation (2.8a) and Equation (2.8b) the resulting derivatives

may be evaluated leading to the Generalized FDTD-(Q scheme

. Ao D7 B Vo
wreal(k) I‘edl +2 Z 2p+1 2p + 1) (2mA - —7{)2P+17/)1mag(k>7 (293‘)
At (=1 A Ve
/lmag(k) = 7/)1mag + 2 Z 2P+1m(2_ - €)2p+11/jreal(k)7 (29b)

p=0
which depends greatly on the ability to accurately approximate the Laplace operator
A. And it is the approximation of this operator which is the motivation of this work.
Following in the steps of [6,21.26,34] we explore two compelling approximations of
the Laplace operator. one utilizing various differentiated Lagrange polynomials and

another using various central difference approximations.



CHAPTER 3

NUMERICAL DIFFERENTIATION

In this chapter an introduction to numerical differentiation 1s presented with
a specific focus on two methods, the first being the central difference method and
the second the differentiated Lagrange interpolating polynomals Each method 1s
compared and a conclusion 1s diawn based on erro1 propagation and computational

complexity

3.1 Central Difference Approximations
Having covered a number of fundamental preliminaries in Chapter 1 Sec-
tion 1 3, this section will begin with the generation of highly accutate appioximations
of the Laplace operator For the scope of this section we shall assume one has some
function f(x) that has seven continuous derivatives over the mterval [a, b], and one
has solutions to f(x) along a pairticular structured grid {(xq, f(20)), (@, f(2n))}
where 2, 15 defined as z, = 1Az for all2 € {0, ,n}

First consider a central difference scheme that takes the form
Af(r = ADTB () + Cf (2 + Au) = £(2) + O(As?) (31)

Figuie 3 1 illustrates the stencl this differencing scheme uses Note that the giid
pomts 1o and z,, are unsolvable points since z 1 and 2,1 do not exast This inherent
hmitation of the central differences can cause problems at the boundaries wheie the

accuracy tends to degrade

17
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Flai — Az) f(z:) i + Az)

Figure 3.1: The three point central difference stencil which gives second-order
accurate approximations of the second derivative.

Following the Method of Undetermined Coeflicients presented in Section 1.3,

one first obtains the Taylor expansions about x

G S

Cf(zx+ Az) =Cf(z)+ Cf'(zx)Ax+ C -

3

Af(x— Az) = Af(z) - Af () Dz + A DT ”<2> - Af‘"’(n)qg'—Aa:)“,

and since we seek a second-order accurate approximation we require
f”( ) fO(x)
T(z) = Cof(z) + CoLf (2)Az + Cot—=-LAx® + C3 3 A3

ARICOIN
4'( . (3.2)

+ Cy

This implies that the following equations must be satisfied

Equation for Cyf(x), (A+ B+ C)=0=Cy, (3.3)
Equation for Cy f®(z), (C—A)=0=C0Cy, (3.4)
Equation for Cyf® (x), (C+A) = A_2;1:5 — Gy, (35)
Equation for Csf® (z), (C—-A)=0=Cs. (3.6)

Note that Equation (3.4) and Equation (3.6) are identical, or more precisely.
Equation (3.6) is a linear combination of Equation (3.4) and zero, which means

Equation (3.6) may be removed from the linear system. The resulting matrix is then

- - - - - P

1 1 11 |A
-1 0 1{ |B| =

|w [aw] o

-
(e}
ot
Q

g
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which when solved, yields

1 -2 1
- B = — = —
4 Ax?’ Ax?’ ¢ Ar?

or in the more common form

o) = LEE A 215;) 122 82) | o). (3.7)

Next, suppose one wishes to improve the accuracy, and so assume
Af(x+2Az) + Bf(z + Azx) + Cf(x) + Df(x — Az) + Ef(x — 2Ax)
= f"(z) + O(Az?) = T(x), (3.8)

and construct the required Taylor expansions about z.

Af(z +20z) = Af(z) +2Af (z)Az + 2%1&“2)!3—7f +-- 4 2”Ai(f—)(%!)éi’f,

Bf(x+ Ar)=Bf(z) +Bf'(2)Axr+ Bﬁ%)!égi + -+ B%

Df(z ~ Az) = Df(z) —Df'(x)Az+ D%)!A“LQ ot Df(n)(">7§!_A7‘)n.
Ef(x —2Az) = Ef(2) —2Ef'(z)Ax + 22Ef—//%)79i2 4o 2"Ef(n)(g)?§;m>n
The Taylor polynomial must have the form

T(r) = Cof (1) + C1 f (7)AT + Cy f;(f")m? + cgf(?’;fm)aﬁ
+C, f(‘z!(r) Azt 4 Cy f(5;!(?") Az + C, f(bg!(gb) AzS, (3.9)
mmplying that the following system of equations must hold
Equation for Cyf (1), (A+B+C+ D+ E)=0=Cy, (3 10a)
Equation for Cy fV(z). (2A+ B - D —2E)=0=C,. (3 10b)

2
Equation for Cy (), (2°A+ B+ D+2°E) = N Cs. (3 10c)
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Equation for C5f® (), (22A+B—-D—2°E)=0=C;j, (3.10d)
Equation for Cyf“(z), (2'"A+ B+ D +2'FE) =0=Cy, (3.10e)
Equation for Csf® (z), (2°A+ B~ D —2%E) =0 = Cs. (3.10f)

The system of linear of equations, Equation (3.10a) to Equation (3.10f) clearly lead

to _ _ _ _

1 1 1 1 11 » - 0
A

2 1 0 -1 -2 0
B 2

4 1 0 1 4 2,
cl=1,

8 1 0 -1 —8
D

16 1 0 1 16 0
|

32 1 0 -1 =32 - 0

which may be reduced recognizing that row six, denoted as Rg, of the above matrix
is a linear combination of rows two and four, denoted as Ry and R, respectively,

—4Ry+5R, = Rg. Solving the simplified linear system yields the following coefficients

1 4 ) 4 1

——  B=—"_ 2 D= B
12Az2’ 3Az?’ ¢ 2Ax2’ 3Az?’ 12Az2°
or

" —flx +2Ax) + 16f(z + Azx) — 30f(z) + 16 f(z — Ax) — f(z — 2Ax)
fiz) = 12Az?

+0(Ax?). (3.11)

The stencil for this fourth-order accurate central difference approximation of the

second derivative takes the form shown in Figure 3.2.

pr—

f(@. - 207) (@, — Ad) @) £z + Az) (2, + 207)

Figure 3.2: The five point central difference stencil which gives fourth-order accurate
approximations of the second derivative.
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Note that when ¢ € {0,1,n — 1,n} this scheme is unsolvable, and the
values at these points must either be guessed or approximated using some other
technique. Following the same procedure one final sixth-order accurate central
difference approximation of the second derivative is generated. Again assume the

central difference will take the form

Af(z + 3Az) + Bf(z +2Az) + Cf(x + Az) + Df(z) + Ef(x — Az)
+ Ff(z — 2Az) + Gf(x — 3Az) = f"(z) + O(Az®) = T(x). (3.12)

After using the Method of Undetermined Coefficients, and for brevity, omitting the

1

+.7 factor, one will arrive at

1 3 3 49 3 3 1
_ — B:—— = - = —— = — = ——_— = —
A 90’ 20’ ¢ 2’ b 18’ E 2 E 20 90’

which may be written in the standard form
1" . 1
F'(@) = i [2 F@ +3Az) — 27f(x + 2Az) + 270f(z + Az) — 490f(x)
+270f (x — Az) — 27f(x — 20z) + 2f (z + 3Ax)] +O(Az%).  (3.13)

The graphical depiction of the stencil is shown in Figure 3.3. Again take note that
while the accuracy of the approximations has increased, the restrictions on computing
values near the boundary has grown, with ¢ € {0,1.2,n — 2,n — 1,n} becoming

uncomputable.

f{z. - 3Az) f(r, —247) f(r - Ax) Flz) f(@ + A7) f(@: +24a) flay +34x)

Figure 3.3: The seven point central difference stencil which gives sixth-order accurate
approximations of the second derivative.

In the next section, a method that is not based on finite differences of Taylor
series is derived. Here we will explore the use of Lagrange interpolating polynomials

to approximate various derivatives. The motivation for doing this is simple, to obtain
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accurate approximations of the derivatives at all points in the domain, whereas the
central difference methods provide high accuracy with the cost that as the accuracy

increases so do the number of uncomputable points on the grid.

3.2 Lagrange Interpolation

Rather than use Taylor series, this work will focus on using Lagrange
polynomials, which are distinctly different from Taylor series in that the polynomial
is constructed using information from all points in the domain rather than being
centered about a specific point. A challenge of this work is that the error term
associated with the Lagrange method increases both with the order of the derivative
as well as with the number of grid points used in the interpolation. This is contrary
to the Taylor methods which have the property that if Az is chosen correctly, the
truncation error tends toward zero as the n grows arbitrarily large.

To begin, consider the general form of the Lagrange interpolating polynomial

and associated error term

n (n+1) I n
@) = L w st + S S [T - a) (3.14)

Here w,(z) is a weighting function, and more specifically, w,(z) will form a Lagrange

basis polynomial

w,(r) = H Lﬂ:k) (3.15)

The function f(x) is then approximated as a linear combination of Lagrange basis
polynomials and associated function values f(x,). It is important to realize that the
function values f(z,) are known values.
3.2.1 Properties of the Lagrange Basis Polynomials

Assume that one seeks to create a Lagrange interpolating polynomial using

some given abscissas « € {zg,...,r,} and associated function values f(z,) for all 7 €
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{0,...,n}, and suppose one only seeks to evaluate this polynomial at the abscissas
x € {xg,...,%s}. Under these assumptions there are two intriguing properties to
note from the Lagrange basis polynomials that are directly relevant to this work.

First, consider the case of w,(xz,), where j # ¢

mie) = [l = (o o sy o i (19

—xe) (3 —xo) (3 —w) (2 2

I
O

=
w,(z,) =0 for 3 #u. (3.17)

The numerator contains a term when ¢ = k, which causes the entire expansion to
become zero. Applying a similar analysis to the error term in Equation (3.14), when
seeking the solution at x,, where z, is also one of the points used to construct the

polynomial, the error term will become zero.

(1) (£ ()} <"
Fz) = Pz,) + % 1) (3.18)
(1) (¢ (3
f(z,) = P(z,) + f—(n—_—i%()—'z)—)(rl —xg)- - (x, —w) - (1, — Tp), (3.19)
f(z,) = P(z,). (3.20)
Now consider the case where 12 = 3,
w,(x,) = H E?%Z% =1 for j=u (3.21)
=

The resulting linear combination will take the form

flz,) = z wj(v%)f(xj)a (3.22)

fan) = wo(2,) f (o) + -+ wilw) f(22) + - -+ wn (@) [ (2), (3.23)
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fle,)=0+04+ 40+ f(2,)+0+ 40, (3 24)
f(z,) = f(z,) forall =z, €{xy, .}, (3 25)

hence, the Lagrange interpolating polynomial exactly interpolates the function f
3.2.2 Differentiating Lagrange Interpolating Polynomials

Having mtroduced Lagrange polynomial interpolation, we will now focus on
how to obtain deinivative approximations To do this the Lagrange terpolating
polynormial will be analytically differentiated Starting from Equation (3 14), and

differentiating with respect to x yields

f(nJrl)

n+1 E[:pxk} (3 26)

Focusing on the error term first, and applying the product rule for derivatives yields

d f(n+1 n d fn+1) n
dr n+1 HI"I’“ - n+1 H:C“a:’“

k=0 k=0

f'(z) = P'(z) +

da:

N () d {ﬁ(x _ g;k)] , (3 27)

(n+ 1) dx Py

and letting

d f n+1) n
Q(x):;i;{ n+1 }H — 24), and
fr(E() d |y
O =050 @ lg<x m]

Returning to the o1iginal assumptions made at the beginning of Section 3 2 1,
which are that v will be chosen fiom the same locations being mterpolated that is
r € {1 t,} and 2 g k € {0 n} From this assumption, evaluating Q(t) at
any r = z, will force exactly one term to be z, = 24, yielding a zero in the product
expansion foircing Q(7,) to be zero and simplifying the analysis of the error term for

the first denvative Expanding (1) and 1epeatedly applying the product 1ule leads
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to

(D) (£ (3 n () (£ () T o
S ) d {H@’*%) :L_M I - =) (3.28)

(n+1)! do

Again, consider evaluating R(z) at x = z,. All but one product expansion
in the summation will be zero because 2 will equal k. The remaining product
expansion will exist, because ¢+ = 7 and z, was excluded in that specific product. The
resulting Equation (3.29) is the form of the first derivative of a Lagrange interpolating

polynomial and associated error

(D) (1)) <
f'(z) = P'(r,) + fﬁﬁ)—')) [ = =) (3.29)
=

Note that unlike the original Lagrange interpolating polynomial, the differentiated
Lagrange polynomial contains an error term that does not go to zero when evaluated
at an interpolation point.
3.2.3 Differentiated Lagrange Weight Function

Having differentiated the Lagrange error term in detail, the derivative of the
weight function w,(x) will be briefly discussed. Quan and Chang [24,25] published
a useful algorithm for computing the first derivative weights, and Shu [27] published
a scheme for computing the weights for any derivative. The general form of the first

derivative of the weight function is

w(z,) = 1.ﬁ I1 ($7_x’f)>. (3.30)

which may be obtained by repeated applications of the product rule. Recognizing
the special case when w,(z,) and j = 1, allows one to arrive at the form proposed by

Quan and Chang [25]
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1 = (2, — x
w;(:z:z) = R H (T—:)j. for 1 # 7. (3318.)
7 1 o_g V1T bk
k#1,3
o1
wy (,) = Z p—— for 1= (3.31b)
e

Obtaining second derivative weights requires analytically differentiating the
weight function w, (z) twice, which leads to the form published initially by Quan and

Chang [24,25] and again by Shu [27]

n

2 = (2, — Lg) 1
w;’(xl) = —— H (:C—_I_) Z P , for 2 7é 71, (332&)
7 v k—o 7 k —0 {
k1,7 11,9
, n—1 1 n 1
w)(z,) =2 Z p— Z " for =17 (3.32b)
=R

Building off Quan and Chang’s work, Shu [27] developed a recursive formula
for computing higher-order differentiated weight functions, requiring only that the
first derivative weights be computed using Equation (3.31). This method is superior
to analytically differentiating the weights multiple times. as each differentiation
requires an additional summation. Shu’s method is as follows, where wj(l)(acl) =

w)(z,) is defined in Equation (3.31),

(m~1)
w x,
w™(z) =m - |wP(z,)w™ Y . J () for «#£ , 3.33a
! ! ‘ T, — X,
wj(m)(?fz) = — ngm)(@) for 1=. (3.33b)
=0
>

for 2,7=0,1,....n, and m=223,...,n— 1L

Here w(m)

. (7,) is the mth derivative of the weight function.
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3.2.4 Grid Spacing

A well-known problem associated with polynomial mterpolation is that of
oscillations at the edges of the interval These oscillations increase as the degree
of the polynomial increases, and this 1ssue 1s called Runge’s phenomena There are
two prunary ways to cope with Runge’s phenomena the first technique 1s to lower
the degree of the polynomal by using several piecewise polynomials rather than
one high degiee polynomial, the second technique 1s to carefully select the abscissas
such that they mimimize these oscillations It has been shown that choosing equally
spaced abscissas 1s not optimal for mimimizing Runge’s phenomena [8] Instead one
should carefully choose grid locations that are typically not equally spaced, and
these locations originate from various orthogonal polynomials In this work three
different grid spacings are considered equally spaced abscissas, the roots of the
Chebyshev polynomial of the fiist kind (also called the Chebyshev nodes), and the
Gauss-Lobatto abscissas The remainder of this section 1s a brief explanation of how
the latter two abscissas are detexmined

The Chebyshev nodes are the roots of the Chebyshev polynomials of the first
kind (7), which are defined over the mteival [—1,1] The Chebyshev polynomial
1s never exphicitly foimed, instead one may directly compute the desited number of
roots using a convenient formula show below For completeness the polynomial 1s

presented here, and may be constiucted using the recurrence relation shown below [3]

To(z) =1 for n =0,

Toi1(r) = 2T (z) — Tho1(2) for n>1
It has been shown that the nth Chebyshev polynomial has roots at

J
2 = cos (—7T(——2—2> for k=12 n (3 34)

n



28

Figure 3.4 shows 713 plotted over the interval [—1, 1], and to emphasize that
these nodes are not equally spaced, equally spaced grid locations have been marked.

The roots (circled) are the desired abscissas to use in the polynomial interpolation.

Chebyshev Abscissas and associated polynomial
N=13, roots of the Chebyshev Polynomial of the First Kind

05

-~ Chebyshev Polyaomal Chebyshev Nodes Equally Spaced Nodes

Figure 3.4: A Chebyshev polynomial of the first kind plotted over the interval [-1,1].
with equally spaced grid locations marked.

The next grid spacing used called the Gauss-Lobatto nodes, are a variation
of the standard Gaussian quadrature nodes, which are the roots of the nth degrce
Legendre polynomial P,. Gauss-Lobatto nodes differ from the standard Gaussian
quadrature nodes because they use the once differentiated Legendre polynomial
P! _,, which yields n — 2 roots. The remaining two abscissas are defined to be the
endpoints of the interval —1 and 1. This distinguishes the Gauss-Lobatto nodes from
many other orthogonal polynomial roots. including the Chebyshev nodes. Careful
inspection of Figure 3.4 1eveals that should one choose the Chebyshev nodes as
the abscissas for interpolation, then one would not be able to obtain values at the
boundaries. Figure 3.5 illustrates the differentiated Legendre polynomial Pj, and

associated roots.
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Gauss-Lobatto Abscissas and associated polynomial
N=13, roots of the First derivative of the Legendre Polynomial of degree n-1

> " o o o¥ ° o o> o° & S
X
——-Gauss Lobatto Polynonual {0 tobattoNodes « Lquaily Spaced Nodes

Figure 3.5: Pj, plotted over the interval [-1,1], with equally spaced grid locations
marked.

3.2.5 High-order Derivatives via Lagrange Interpolating Polynomials

Having explained the fundamentals of differentiating the Lagrange interpo-
lating polynomials as well as presenting three competing nodal selections, one must
utilize these methods to compute high-order derivatives. Presented here are two
different schemes for achieving this. The first analytically differentiates the Lagrange
weights to the desired order, and the second treats the differentiated Lagrange
weights as a differential operator, requiring that the weights only be differentiated
once.

The first scheme follows Shu’s method [27] and uses Equation (3.33) to
analytically differentiate the weights. To obtain an mth-order derivative one would

follow the scheme described below

fila:) = Z wj(z:) f(x;), (3.35a)
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) =Y wl(@)f(z,), (3.35D)
F (@) =" wi™ () f (). (3.35¢)

The second scheme is proposed in this dissertation for the first time. We have
noted from Equation (3.31), that the weight function is computed independent of
the function values of f(r) and depends solely upon the location on the grid. In
this sense, w, (z) differentiates some function values f at these particular points, and
may be treated as a differentiation operator. Recognizing this, the following scheme

is proposed based on the first derivative weight function

flla) =Y wi(z)f(z,), (3.36a)
flw) = wi() f(x,), (3.36D)
P (@) = > W () f N (w), (3.36c)

The following is a comparison of results when using each of the schemes
listed above, but before presenting results, we will discuss the motivation for seeking
an alternative to differentiating the weights multiple times. The computational
algorithm associated with Equation (3.31) is shown in Algorithm 3.1. Similarly,
the algorithm associated with either Equation (3.36a) or Equation (3.35a) is shown
in Algorithm 3.2. Regardless of the scheme used, these algorithms must be used at
least once. Particularly, Algorithm 3.2 must be computed with either successively
differentiated weights «w[2][y] (Shu’s method), or with successively differentiated

function values (our proposed method).



31

Algorithm 3.1: Computational algorithm used to obtain the first derivative
weights, based on the analytical form in Equation (3.31).

Input: Set of N abscissas

Output: Differentiated weight function w,(x,) evaluated at each x,
for.=1to N do

for y =1to N do

if + # j then
num = 1.0
den = 1.0

for k=1to N do
if £k #1 and k # ) then
num = num - (+ — k)
den =den - (3 — k)
end
end
whlly] = mum/(den - (z5] — =)
end
end
end
for:=1to N do
wli)y] = 0.0
for k. =1to N do
if k£ #1 then
| whl] = wl]] + 1.0/2[5] — x[2))
end
end
end
return w

To obtain a solution using the weights requires evaluating the differentiated
Lagrange interpolating polynomial at the grid locations z,, for y = 1,..., N. A
portion of the polynomial evaluation is handled when computing the weights, but
one must still compute the linear combination of the weight with each function value
to determine the differentiated function value f’(x,). This computation is greatly

simplified since the weights aie already computed.
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Algorithm 3.2: Computational algorithm used to obtain the differentiated
function values using the differentiated Lagrange weights.

Input: Set of N abscissas
Input: 2D array of size N x N containing evaluated Lagrange weights
Output: The function f differentiated at each abscissa
for.=1to N do
f1[2} =0.0
for y=1to N do
| S = £+ wllls] - £
end
end
return f1

From the algorithms shown in Algorithm 3.1 and Algorithm 3.2 one may note
that the algorithm to obtain the first derivative weights (Algorithm 3.1) has O(N?)
computational complexity, and the computation required to evaluate the derivatives
(Algorithm 3.2) has computational complexity O(N?). It can be shown that Shu’s
method (Equation (3.33)) requires O(mN?) computational complexity, where m is
the order of the derivative desired and m > 1. The computational complexity to

evalute an mth derivative using Shu’s method is then

wgm)(%) calculation
—_———
o( N* 4+ waN? o+ mN? ) = O(N® + 2mN?), (3.37)
N—— ———
w;(xv) calculation F0m)(x,) calculation

and the computational complexity to evaluate an mth derivative using the proposed

method is

o( N 4+ mN? ) = O(N3 + mN?) (3.38)
—— S—
w) (%,) calculation 1) (z,) caleulation
The spatial complexity, which is a bound on the storage requirement, is
another metric that should be noted. For Shu’s method shown in Equation (3.33).

the first derivative weights must be stored. as well as the previous (m — 1)th

derivative weights to compute the mth derivative weights. In tcims of storage, a
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set of differentiated weights 1s a two-dimensional array requiring N x N storage,
and three of these must be retained at any give time This translates to a spatial

complexity of

O(3N?) (339)

The proposed scheme only requires that the first derivative weights be retained, and
so the spatial complexity 1s

O(N?) (3 40)

In summary, analytically differentiating the Lagrange weights up to the
mth dervative 1equires O(N?3 + 2mN?) computation and O(3N?) storage, wheieas
treating the differentiated Lagrange weights as an operator 1equires O(N® + mN?)
computation and O(N?) storage Between the two methods 1t 1 clear that one must
always have the first derivative weights and one must always use these weights to
obtamn the differentiated function values making the mimimum spatial complexity
O(N?) and the mimimum computational complexity O(N? + mN?) for m > 1
With the mimimal requirements in mind, Shu’s algonithm then requires an additional
O(mN?) amount of computation and O(2N?) amount of storage, while the proposed
scheme requires only the mimmal amount of computation and storage, O(N?+mN?)
and O(N?) respectively

A comparison of solutions using both Shu s method and the scheme proposed

above are presented below The function
) =¢ (341)

was chosen as a test function and the fist- through sixth-order deiivatives were
computed using each method
Fiom Table 3 1 one can see that both methods produce nearly 1dentical 1esults

with the erto1 on the same oider of magnitude In the above table the eiror 1s
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computed by analytically differentiating Equation (3 41), and then computing the
absolute error To summarize the error across all interpolated values, the L, norm

1s used as well as the infimty norm L., which n this case 1s the maximum error

Table 31 Comparison of derivatives obtained via Shu’s method and those from the
proposed method

Shu Pioposed
Eq N m L2 Loo L2 Loo
11 2 399x107% 398 x 1079 219 x 107% 214 x 1079
(341) 11 4 772x107% 6 89 x 1072 407 x 10 368 x 10792
11 6 814 x10%% 711 x 10190 205 x 10790 122 x 1019
11 8 143 x10%% 136 x 10793 779 x 10192 6 96 x 10702

3.2.6 Abscissa Impact on Differentiation Error

Having shown how to compute high-order derivatives, results will now be
presented using the grid spacings highlighted 1n Section 3 2 4 To evaluate the vaiious
spacings, a test function was chosen and analytically differentiated, and then the
solution was approximated using a differentiated Lagrange inteipolating polynomial
The followings figures will vary based on the grnid spacing used to constiuct the
Lagrange interpolating polynomial The first grid spacing shown in Figure 3 6 uses

equally spaced abscissas
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(c) Sixth derivative (d) Eighth derivative

Figure 3.6: Differentiated tenth degree Lagrange polynomial for the function f(z) =

.’EQ - - .
e(=%), over the interval [—1, 1] using equally spaced abscissas, as well as the exact
solution.

One can see that the accuracy of the differentiated Lagrange interpolating
polynomial slowly degrades as successive differentiation is performed. Specifically,
Figure 3.6(d), which contains the plot of the eighth derivative, shows considerable
error throughout most of the domain. One can visually see the error beginning
to appear at the endpoints of the fourth derivative plot in Figure 3.6(b) as well. In
Figure 3.7 the abscissas have been changed to the Chebyshev nodes, and in Figure 3.8

the Gauss-Lobatta nodes have been used.
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10th degree Lagrange poly
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(b) Fourth derivative

10th degree Lagrange poly
t
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(d) Eighth derivative

Figure 3.7: Differentiated tenth degree Lagrange polynomials for the function f(z) =

12 .
e{=%) over the interval [—1, 1], using the Chebyshev nodes as abscissas.
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Figure 3.8: Differentiated tenth degree Lagrange polynomials for the function f(z) =
z2
e{=%), over the interval [—1, 1], using the Gauss-Lobatto nodes as abscissas.

While these plots are presented primarily to aid in visualizing what happens
as Lagrange interpolating polynomials are successively differentiated, one can still
graphically see the impact of grid spacing. Observe Figures 3.6(d), 3.7(d), and
3.8(d), one can clearly see that in Figure 3.6(d) the endpoints of the approximation
are yielding a solution beyond —300, while the approximations using orthogonal
polynomials still have considerable error, but it is noticeably smaller than that of
the error in the equidistant grid spacing. Which leads to the next section, where
instead of plotting the differentiated functions, instead the log,, of the error is plotted,
allowing one to view the distribution of the error and directly compare the central

differences to the differentiated Lagrange interpolating polynomials.
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3.3 Method Comparison
In this section results will be presented using the techniques presented
throughout this chapter. Four functions have been selected for use as test functions,
and comparisons will take place on two different intervals. The following numerical

differentiation techniques will be employed:

e Second-order accurate central difference approximation of the Laplace opera-
tor,

e Fourth-order accurate central difference approximation of the Laplace operator,
e Sixth-order accurate central difference approximation of the Laplace operator,

e Twelfth degree piecewise differentiated Lagrange interpolating polynomial with
equally spaced abscissas,

e Twelfth degree piecewise differentiated Lagrange interpolating polynomial with
the Chebyshev nodes as abscissas,

e Twelfth degree piecewise differentiated Lagrange interpolating polynomial with
the Gauss-Lobatto nodes as abscissas.

3.3.1 Graph Interpretation

Before approaching the comparisons, one must understand the format the
data is presented in. For example, the function f(z) = e(*é) will be used to
demonstrate what to look for in the plots. Figure 3.9 shows the test function plotted
over the interval [0,1.035]. The test function is now analytically differentiated, as
well as differentiated using a once differentiated tenth degree Lagrange interpolating

polynomial using equally spaced abscissas.
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10th degree Lagrange poly

1 exact
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>
08
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07
065
06
0 02 04 06 o8 1

X

Figure 3.9: Test function f(z) = =) plotted over the interval [0, 1.035].

Figure 3.10(a) shows the analytical solution in black, and the Lagrange
approximation in red. From Figure 3.10(a) it is unclear how much the approximation
varies from the actual solution, and so the absolute error is computed, and the log,,
of this error is plotted in Figure 3.10(b). This error plot shows a significant crux
of the differentiated Lagrange interpolated polynomials, and that is the error near

the endpoints may be considerably larger than that of the error in the center of the

interval.
0 10th degree Lagrange poly 48
exact
01 1 -5
02 Té‘ 585
: /]
-03 .g -6
- 2
04 g 65
S
05 3 -7
06 » 75
07 . — . -8 . , ‘
0 02 g4 06 08 1 0 02 04 06 08 1
X X
(a) First derivative (b) Absolute error of the first derivative
2
. . . . . _zt .
Figure 3.10: First derivative of the test function f(z) = e(~%) and associated

absolute error over the interval [0, 1.035].
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Next, the test function is differentiated twice in Figure 3.11(a), and the error
is shown in Figure 3.11(b). One should note from the error plot, that the error has
shifted by nearly two orders of magnitude (—5 to —3.25). And as in the plots of the
first derivative error one can see the “U” shape of the absolute error curve. The test
function is now differentiated up to the sixth derivative. To view the complete set

of first-order through sixth-order derivatives, the reader is directed to Appendix A.

02 10th degree Lagrange poly -3
exact
35
5 4
=
w
2 45
2
> 2
2 5
=]
o
S ss
-6
. 65
0 02 04 06 08 1 0 02 04 06 08 1
X X
(a) Second derivative (b) Absolute error of the sccond derivative

22
Figure 3.11: Second derivative of the test function f(z) = ¢%) and associated
absolute error over the interval [0, 1.035].

From Figure 3.12(a) note the degree to which the approximation varies from
analytical, with the absolute error in Figure 3.12(b) showing the order of magnitude
of the error in the range —1 to nearly 2, which is to say, the approximation of the
sixth derivative is off by nearly 1 x 102. To cope with this, piecewise Lagrange
polynomials are used, which does lower the error slightly, and in the curves showing
the actual tests, one should note the “hills” and “valleys”, as these “U” shapes

indicate a piecewise polynomial.
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10th degree Lagrange poly
exact

Logyg(Absolute Error)

0 02 04 06 08 1
(a) Sixth derivative (b) Absolute error of the sixth derivative
Zt2 .
Figure 3.12: Sixth derivative of the test function f(z) = e=%) and associated

absolute error over the interval [0, 1.035].

As a final example, Figure 3.13 shows a typical error plot. The function
tested in this plot is show in Figure 3.13(a), and is the same test function used
in the previous examples. The plot shows the log;, of the absolute error obtained
by approximating the first- through sixth-order derivatives using a differentiated
twelfth degree piecewise Lagrange interpolating polynomial. One may identify the
derivatives approximated using the legend highlighted by Figure 3.13(c). It should
be noted that the Lagrange error plots will contain all derivatives from the first
to the sixth, while central difference error plots will contain only the even-order
derivatives, this is because the central differences approximated the Laplace operator.
The procedure outlined in Equation (3.36), was used to compute each derivative
using differentiated twelfth degree piecewise Lagrange interpolating polynomials.
In this particular case, one may see from Figure 3.13(b) the abscissas used were
equally spaced, and in other Lagrange error plots this may be either equally spaced,

Chebyshev nodes, or Gauss-Lobatto nodes.
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(a) Test Function (b) Abscissa Type
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Figure 3.13: Differentiated piecewise thirteenth degree Lagrange polynomials for the
22
function f(z) = e(~%2), over the interval [0, 1.035], utilizing 208 total grid points.

Additional attention must be paid to Figure 3.13(e), because piecewise
polynomials are used, it must be understood how the large interval is partitioned
into the smaller intervals and how Az is relevant to this partitioning. To partition
the large interval the desired total number of grid points is fixed to be a multiple
of thirteen, and the domain is partitioned into regions of size 12Ax. Supposing

Chebyshev nodes were desired, thirteen Chebyshev nodes would be constructed
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throughout this subinterval This division guarantees that regardless of the abscissa
selection within the piecewise interval, that the entire domain [a,b] 1s mterpolated
avoiding having points clustered at the endpoints of the large interval In example,
given 208 points, each subinterval will contain 13 abscissas within that specific region,
be 1t Chebyshev roots, Gauss-Lobatto nodes, or simply using the equally spaced
pomts This 1s distinctly different from taking the mterval [a,b] and creating 208
abscissas of a particular type and then creating a interpolating polynomial only
though 13 pomnts at a time The difference being that creating 208 abscissas actoss
the entire interval, would not necessarily create optimal nodes to minimize Runge’s
phenomena should you only use 13 poimnts to create the inteipolation Should you
create 208 abscissas acioss the entire interval, those abscissas would be designed to

minimize Runge’s phenomena for a 207th degree polynomal
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3.3.2 Error Plots

On the following pages error plots are shown for the test function f(z) =
=) over two intervals [0,1.035] and [0,10.35] using both the Lagrange and
central difference differentiation techniques described previously to compute the first-
through sixth-order derivatives in the case of Lagrange differentiation and second,
fourth, and sixth-order derivatives in the case of central differences approximations.
Figure 3.14 shows three plots that use differentiated piecewise twelfth degree
Lagrange interpolating polynomials, with Figure 3.14(a) using equally spaced
abscissas, Figure 3.14(b) using the Chebyshev nodes, and Figure 3.14(c) using the
Gauss-Lobatto nodes. Figure 3.15 on the following page shows the error over the
same interval but using the central difference approximation of the Laplace operator,
with Figure 3.15(a) using a second-order accurate central difference, Figure 3.15(b)
using a fourth-order accurate central difference, and Figure 3.15(c) using a sixth-
order accurate central difference.

The follow pages also contain the same test function differentiated over a
larger interval, while maintaining the same number of grid points, which implies
that Az has become larger. Additional test functions are plotted in a similar manner
and may be viewed in Appendix B. In Section 3.4, the data from the test function
shown here will be analyzed. The observation that should be made from the Figures
presented both here and in the Appendix, is that the fourth and sixth-order accurate
central difference approximations are roughly as accurate the piecewise twelfth
degree Lagrange interpolating polynomial approximations Tl notable difference
between the Fimite Difference approximations and Lagrange approximations are the

oscillations in the error of the Lagrange approximations.
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{¢) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure 3.14: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
12 . I K

mials for the function f(z) = (=), over the interval [0,1.035], utilizing 208 total

grid points.
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(b) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(c¢) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.

Figure 3.15:
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Central dlﬁ"erence approximations of the Laplace operator applied to

the function f(z) =e=% ) , over the interval [0, 1.035], utilizing 208 total grid points,
and various orders of accuracy.
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(a) Differentiated Lagrange interpolating polynomials using equally spaced
nodes to compute the first- through sixth-order derivatives.
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev
nodes to compute the first- through sixth-order derivatives.
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure 3.16: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
12 . ays e

mials for the function f(z) = e{=%), over the interval [0,10.35], utilizing 208 total

grid points.
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Interval. [0,10.35}
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(a) Second-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(b) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(c) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-; and sixth-order derivatives.
Figure 3.17: Central difference approximations of the Laplace operator applied to
12 . aye » . .
the function f(z) = (=), over the interval [0, 10.35], utilizing 208 total grid points,
and various orders of accuracy.
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3.4 Conclusions
The preceding error plots, as well as those in Appendix B provide a high level
view of the behavior of the Finite Difference and Lagrange differentiation techniques
discussed n this chapter To objectively compare these methods two common metrics
have been uscd, the 100t mean square and mhmty norm  The root mean square RM S

defined as

(3 42)

wheie Y77, 1s the absolute error at grid point + =0, ,n In this context the RM.S
provides an estimate of what the observed error 15 The infimty norm Lo, 1s the

maximum error observed
Lo, = max(|Erry | Err,)) (343)

Several tables are presented showing the above error metrics computed for

(V]

T

the test function f(r) = e(=%) over the mterval [0,1 035], utilizing 208 total grid
pomnts, and Az = 0 005 To interpret the tables the following list describes what the

column heading Method indicates

o Fquidistant differentiated piecewise twelfth degree Lagirange interpolating
polynomial using equally spaced abscissas,

o Chebyshev differentiated piecewise twelfth degree Lagrange mterpolating
polynomial using the Chebyshev nodes

o Gauss Lobatto differentiated piecewise twelfth degiee Lagrange interpolating
polynomial using the Gauss-Lobatto nodes,

e O(Az?) second-order accmate cential difference approximation of the Laplace
operator,

e O(Az?) fourth order accumiate cential difference approximation of the Laplace
operator,

e O(A1%) sixth order accmate cential difference approximation of the Laplace
operatol



50

Table 3 2 shows the above error metrics for the first through fourth derivatives

One should note that for the odd-order derivatives, the central difference appioxima-

tions are not shown, and the solid hine indicates these methods were uncomputable

Table 32 Root Mean Squarc and maximum absolute error for the first through

z2
fourth-order derivatives of the test function f(1) = e(=%) with Az = 0 005

2

Error for the Derivatives of the Test Function f(z) = el %)

Deriv

Method

RMS

Lo

1st

Equdistant
Chebyshev
Gauss-Lobatto
O(Az?)
O(Ax?)
O(Az%)

70947 x 10
19348 x 10713
18662 x 10 13

58616 x 10712
10560 x 10 12
10570 x 10712

2nd

Equdistant
Chebyshev
Gauss-Lobatto
O(Az?)
O(Aa*)
O(Az")

71019 x 10~
2 0596 x 10710
25238 x 10 10
37798 x 10 %
63121 x 1071
75022 x 10 12

66711 x 1079
10126 x 10 99
16979 x 10 *°
6 2496 x 107%
11303 x 10 10
21610 x 10

3rd

Equdistant
Chebyshev
Gauss-Lobatto
O(Ax?)
O(Az*)
O(Az")

54653 x 10 %8
18355 x 10 97
23015 x 10 %7

59982 x 10 96
92268 x 10797
14963 x 10 9

4th

Equidistant
Chebyshev
Gauss-Lobatto
O(Ar?)
O(Az?)
O(Aa5)

31768 x 10 %
12313 x10 ™
14809 x 10 ™
57761 x 10703
7 2801 x 1079
7 9992 x 10103

36396 x 10
58485 x 10 ™
89775 x 10 ™
8 0000 x 10T%
9 9997 x 10+
1 0888 x 10+9°

In the following Table 3 3 as well as 1n Table 3 2 one will notice that the error

metrics for the cential difference approximations tend to become high The1eason for

this 1s clear fiom the plots as the uncomputable end pomts of the cential difference
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approximations become extremely inaccurate as the order of the derivative increases,
and these significantly inaccurate points dominate the error metrics. This is not
desirable, as the error across the majority of the domain for the central difference

approximations is accurate, with only 5-10 points skewing the metrics.

Table 3.3: Root Mean Square and maximum absolute error for the fifth-order and
+2
sixth-order derivatives of the test function f(z) = e~ 7) with Az = 0.005.

v
Error for the Derivatives of the Test Function f(z) = e(=7)

Deriv. Method RMS L,
Equidistant 1.4623 x 10792 1.6825 x 10190
Chebyshev 6.4160 x 10792 2.9421 x 10~

5th Gauss-Lobatto  7.2778 x 10% 4.0557 x 1079
O(Az?)

O(Az*)
O(Az5)
Equidistant 5.4594 x 107 6.1670 x 10792
Chebyshev 2.6534 x 10M°0  1.2029 x 10+02

6th Gauss-Lobatto  2.8420 x 107% 1.4385 x 10102
O(Az?) 5.1663 x 107 6.4001 x 10+
O(Az?) 8.7081 x 10705 1.0355 x 10+10
O(Ax®) 1.0834 x 10+ 1.2528 x 10710

To combat the extremely large error observed near the end points of the
central difference approximations, the following metrics were computed ignoring the
first and last ten points of each approximation. Table 3.4 shows the error metrics for
the even-order derivatives using these shortened intervals. To emphasize the impact
this has on the error metrics, the smallest RM .S for each derivative has been bolded.
From this table it becomes clearer that the central difference approximations may
yield a more accurate solution than the Lagrange differentiation method if one is
able to either approximate the solution at the uncomputable end points, or utilize a

sufficient number of points that the solution may be discarded near the boundaries.
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Table 34 Root Mean Square and maximum absolute error for the even-order

,52
derivatives of the test function f(z) = e=%) with Az = 0005, after removing

the first and last 10 points of the Central Difference approximations

22
Error for the Derivatives of the Test Function f(z) = el %)

Deriv Method RMS L
Equidistant 71019 x 10 1 66711 x 10
Chebyshev 2 0596 x 10710 10126 x 107%

ond Gauss-Lobatto 25238 x 10710 16979 x 1079
O(Az?) 36571 x 10°% 62028 x 1079
O(Aa?4) 59858 x 10~ 11303 x 10719
O(Aa®) 72745 % 1072 21610 x 10!
Equidistant 31768 x 10 ® 36396 x 10
Chebyshev 12313 x 107% 5 8485 x 10~
Gauss-Lobatto 14809 x 107% 8 9775 x 107%

4th _ _
O(AIZ) 36006 x 107% 6 2428 x 1079
O(Az?) 82059 x 1077 19764 x 10°%
O(AzS) 11897 x 1079 42159 x 10 %
Equidistant 5 4594 x 10100 6 1670 x 10102
Chebyshev 2 6534 x 100 1 2029 x 10702

6th Gauss-Lobatto 2 8420 x 10T 14385 x 1002
O(Az?) 5 8604 x 10792 14722 x 10 91
O(AI4) 14401 x 10 9 32562 x 107"
O(A:L’6) 24755 x 10 89009 x 10 %

Based on the results presented here, 1t appcars using differentiated Lagrange

mterpolating polynomials may piovide accuracy near or in some cases better than
that of the central difference approximations But the large oscillations in the
error throughout the entne mterval pose some challenges, and 1 the context of the
FDTD-Q method the stability of the Lagiange method 1s questionable Several
numetical experiments weie peiformed using the above Lagirangc diffcrentiation
scheme to compute derivatives for the Generahized FDTD-Q method 1 solving
a model problem with exact solution but in all cases the Generalized FDTD-Q
scheme became unstable and failed to converge to the solution It 15 also noted from

Table 3 4 that the most accuiate approximation of the sixth deiivative was obtained

via a second-order accurate method, while the sixth-order accuiate scheme produced
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results more accurate than the second-order accurate scheme for the second and
fourth derivatives

Based on these findings, we propose future work i developing a hybnd
Lagrange/Fimte Difference method that uses a differentiated Lagrange interpolating
polynomial to compute only the end points, which are then fed into a Finite
Difference approximation Based on the need to prove what the stabihity condition of
the resulting scheme 1s, the we have elected to utilize a sixth-order accurate central
difference approxamation rather than use the differentiated Lagrange iterpolating

polynomials



CHAPTER 4
MODIFIED GENERALIZED FDTD-Q METHOD

Building off the Generalized FDTD-Q method presented in Chapter 2, the
technique used to approximate the Laplace operator A 1s now changed to that of a
sixth-order accurate central difference approximation based on the conclusions from

Chapter 3 To begm, a sixth-order accurate central difterence operator —A——QD2

defined which leads to a seven pomt central difference approximation of the form
() —~ 1 D2
A(/}Ieal(l“) ~ @ l/}redl(lb)

1

- 2 n
180A 2 [2 real(k + 3) 7¢real(k + 2) + 270¢real(k + 1)

- 490(/}real( ) -+ 2701/)real( ) 271/}rea]( 2)

+ 2y (k= 3)], with O(Az%), (4 1a)
and
n 1 2.4mn
Aq/)lmdg(k) ~ A—ngTQ/)lmdg<k)
1
= -2

180A 2.2 [lemdg(k + 3) 7¢1mag(k + 2) + 2701/)1mdg(k + 1)

- 4901/)1mdg( ) + 2701/)1111(@(]{ - ) - 271/)1mdg( 2)

+ 200, (k= 3)],  with O(Az°) (4 1b)

A graphical representation of this stencil was shown previously in Figuie 3 3

54
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The Generalized FDTD-Q method restated using the sixth-order central

difference approximation of the Laplace operator A is

(-1 R 1,V

- —_ 2+l n=3

NAt
e (k) = 9l (k) 42 Z(_2_)2p+1
p=0

N
ntl n—3 At (*1)19 h 1 V n
Vimag (k) = Yoz (k) + QZ(—Q—)Q})H ot 1)!(2—”‘1 AxQDg - ‘h—)QpH reat (k). (4.2b)

p=0
Using the sixth-order accurate central difference operator D?, it must now be shown
that this operator produces more accurate method, and either an unconditionally
stable or conditionally stable method. If the resulting method is conditionally
stable under what condition the scheme remains stable must be shown. The order
of accuracy of the scheme when using the sixth-order accurate central difference
approximation of the Laplace operator must also be shown, and in conclusion the

computational algorithm associated with this method will be presented and analyzed.

4.1 Order of Accuracy
To derive the order of accuracy of the Generalized FDTD-Q scheme when
using sixth-order accurate central differences, on must begin with the foundations of
the Generalized FDTD-Q method, which are Taylot series expansions about various
points in time. From Dai and Moxley [11], Equation (2.2) from the original FDTD-Q

method is rewritten as

31/)rea1(I~ t) h V
— = (-4 = 3 ,U)y R
ot ( 2m + i )djlrn(g(f, t) (4 3&)
Ohimag(z-t) A 1%
ot - (%A 7 )wredl(x; t)» (43b)

where A = 6%2-5, and Taylor series are used to expand yeu(,t,) and Yrea (s, ty-1)
about t = ¢, 1 = (n—1)At. To avoid clutter in the following derivation and enhance
clarity, a few simplifications to Equations (4.3a) and (4.3a) are made. Because the

Taylor expansions are in time, let f(t) = tea{a.t) and g(t) = Yimae(z,t). Also. let
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W = (£ A — ¥), allowing Equations (4.3a) and (4.3b) to be restated as

ag_gﬂ - (4.4a)
dg(t)
= =W ). (4.4b)

Expanding f(t,) using a Taylor series about t = b1

, F(t, ) :
f(tn):f(tnwl)+f(tn—1)(tn_tn—l)+ 2| (tn—tn 1)
FOD(t, 1)
ot (= )Y

and recognizing that ¢, — bpo1 = nAt—nAt+ % = —AQl. Then f(t,) may be simplified

to

Fltn) = Flt 1)+ 1t 1) <%> . % <%)2

A A N

AU MY (e B 4.

+ - A ( 5 ) (4.5)
Expanding f(t, 1) about t = {n 1 results in
, 1t ) 2
Flta) = Fltn )+ ) (tas =t y) gt~ toy)
FO0(, 1)
+ -4 —7\4—!—2(%*1 _ tnA%)M,

where t,, 1 — ty 1 = nAt — At — nAt + —%f = —%—‘, simplifying to

(4.6)
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Subtracting Equation (4.6) from (4.5)

Ss) (a0 S oy
2!

) (A Mty) 1AM
*“'*‘—MT‘<7> —T<‘7)

At 2f(g)(tn_%) A\
(5)+~—§f—(30

FOMAN(E Y A ML
NI LA Lo (i 4.7
RN YV y ( > ) (47)

=2f"(t,-1)

2

/AT 9RPTUf(t, )
f(ta) = f(tn1) +2 pz:; <'2‘"> 2p+ 1) ot (4.8)

Using Equation (4.4) we may now evaluate the derivatives in the above equation for

f(t,) by repeatedly using both Equation (4.4a) and Equation (4.4b):

Of(tn_1)
— = W gty (4.9)
Pfltny) 90/t y)
otz at ot
0
=-Woalt,3)
- _WQf(tnfé), (4.10)
P It 1) 9P (1)
o ot o
%,
_ _w2? )
=W, 1), (4.11)

M flt—y) 0 Fflta1)
ot ot Ot

s,
= W3 —g(t, .
579 (tn-1)
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=W*f(t, 1), (412)
f(t, 1) 0 9'f(t, 1)
o5  Ht ot

0

up to any order desired Note 1n the above derivations, the even derivatives are
shown solely to enhance clarity Undomng the substitutions made in Equation (4 4),

and substituting the above derivatives back imto Equation (4 8) yields

N 2p+1 p+1
Ftn) = fltn1) + 22 <%) i_WQPJrlg(tn_é) + O<At2N+3)
p=0

(2p+ 1)
N 2p+1 2p+1
ANPT (=1)P*H [ R VNPT
n — o1 2 A—- — 2
77/)rea,l(]€) wreal (k) + pard < 2 > (2]7 + 1)! <2m FL) 7vbunag(k)
+ O(AEN ) (4 14)

The above equation 15 the Generalized FDTD-Q method for the real component of
the wavefunction shown in Equation (2 9a) The key to detetmining the order of
accuracy 1s to return to the evaluation of the denvatives mn Equations (4 9)-(4 13)
and the onginal Taylo1r series expansion i Equation (4 7)

With the Laplace operator approximated by the sixth-order accurate central
difference approximation D?) then the ssmphfication Equations (4 4), may be written

including tiuncation error as

d_f;}l = ~Wg(t) + O(Ax°) (4 15a)
é%y_) =1V /(1) + O(Az®) (4 15b)

A caveat when using the Laplace operator 1epeatedly eg to obtamn a

fourth-o1de1 derivative the Laplace operator 1s 1ecursively applied twice 1s that
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as the derivative order increases, the associated order of accuracy of the spatial
derivative does not increase There are several reasons one does not wish to employ
increasingly high-order accurate central differences, the primary one being that the
number of uncomputable points increases rapidly, and the second being the increased
complexity of the requisite stabihity analysis and computational complexity The
result 15 that when the Laplace operator D? 1s raised to some power the order
of accuracy remains the same, 1e, O(Az%), which imples that the derivative

evaluations, Equations (4 9) (4 13), may be rewritten as

0 1
% = —Wglt, 1) +O(Az%), (4 16)
o? 1
_f(%j_) = W3g(t, ;) + O(Az%), (417)
0° 1
_%%tzl = —W?q(t,_1) + O(A7%) (418)

Substituting these equations back mnto Equation (4 7)

2p+1 / 4y\p+1
(At) ( 1) V[/Qp+lg(tn ;) 4 O(A’L’6At2p+1):|

Flta) = f(ta 1 +2Z G+ 1)

+ O(At2N+3),

. At 2p+1 ( )P+1 h 1 ) vV 2p+1 . %
w8 = Yo “‘2< ) G (et k) v

N
+ ) O(AZP AP + O(APNF) (4 19)

p=0
Similarly, employmng the Taylor series method to expand ., (Z, +;) and
Uimag (T, ;) about t = t,, o1 1 terms of the simplfied equations expand g(tn+%) and

g(tn+%) using a Taylor series about ¢ = t, Begimning with g(thF%)

g<fn+§) g( )+g( )( n+1 _tn)+g§;n)(tn+% *t”)Q
(A (t,,
+ f—]\}rl(t77+; — )"
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where fn+% —t, =nAt + % Al = _AZ_t7

FOD) (AN
E ura (e 4.2
Tty o\ ) o (4.20)
and
" tn
ot 1) = glt) + o )ty — 1)+ L0y )2
S (1) y
.- t._1—1
+ + M' ( T‘L—E 77.) 3
where by ) —tn = nAt — —Ag—t —nAt = m%,
/ AN g (L) (A
1) = qglt,) — tn - i
o(t 1) = glt) — o )(2)+ ( (2)
FMy £ AN
R v Rl Sl B 4.21
LAV 2 (4.21)
Subtracting Equation (4.21) from Equation (4.20), leads to
, At At
0tns3) ~ st ) = olt) — stt) + 90 (5) + o) (5)

i (]I/(ﬁn) g 2 B g"(tn) E 2
2! 2 21 2

o L0 (Y (ary

M! 2 M! 9
At A
=2¢'(t,) | =) +2¢%(t,) | =
2 2
n N 2.9(2M+1)(tn) At (2M+1)
(2M + 1)1\ 2

SN A A W C O
st ot 23 (F) G w422
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Again repeatedly using Equation (4.4a) and Equation (4.4b) to evaluate the

derivatives in the above equation:

og(tn)
5 = W f(t,). (4.23)
629(171) _ 250(%)
ot? at ot
0
- W&f(tn)
= —-W?g(t,), (4.24)
Og(tn) _ 0 Pylts)
ot3 ot ot?
0
= W2
= —W3f(t,). (4.25)
Dg(tn) _ 0 Pylta)
ott ot ot3
0
- _W3__
= Whg(t,). (4.26)
Pgltn) _ 0 Og(ta)
otd ot ot4
0
_ 4
= W°f(t,) (4.27)

Substituting the above derivatives back into Equation (4.22) gives

N
gty 1) =g(t,_1) + QZ(E)%HﬂW%H]v(Y‘n) 1 O(ARNY3Y,
2 n-—3 — 2 <2p+1)!
Yimag(T- L 1) = Yinag (T 1, 1) +2i(é})2p+l_.(ﬂ~(i4 K)?]H—ll/j (2,1,)
R T p=0 2 (2p+ 1)1 2m h reali ™ tn

+ O(AN ) (4.28)
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Which again 1s the form of the Generalized FDTD Q method for the imagimary
component

Rewriting the derivative expansions to include the truncation error term for
the spatial derivative, and recognizing that the order of accuracy will not mcrease

with the order of the derivative, will lead to

89(;;5”) =W f(t,) + O(Az®), (4 29)
a?ggn) = —W3f(t,) + O(AZ"), (4 30)
80;)55”) = W°f(t,) + O(Az") (4 31)

Substituting Equations (4 29)—(4 31) back mto Equation (4 22) yields the finite

difference mcluding truncation error

9lpy1) = glt,_1) +2 Z {(%})zml %U/%—Hf( W)+ O(AZO ALY

+ O(Af2N+3)’

N
nt g n o 2: At g (17 h 1y Vet

2 — De — P
7/) a (k> w1mdg(’]{) +2 ( 9 ) (2p+ 1)'<2TI7 Agp2® FL) rexl(k)

p 0O

N
+ ) O(AZ°ALPP) + O(AN ) (4 32)

p=0
In conclusion, one may algebraically manipulate Equation (4 19) and Equa
tion (4 32) nto the following foim, and ariive at the Generalized FDTD @Q mcthod

when used with a sixth-order accurate cential difference approximation of the Laplace

operator
() Vi ENZ( IS (2 DQ_Y_Y’“/ )
g 2p+1) \2mAz2"" h tmag 1
N
+) CO(AIAPP) + O(ArN+2) (4 33a)

p=0
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and
n+1 ol
I,Z}m;z(k) —Q/jlmag(k) _ XN: g 2p (_1);0 i 1 D2 ) K opt1 ) (k)
Al p=0 2 Cp+ )\ 2mAz2 ° h real
N
p=0

The order of accuracy may now be explicitly stated as

O(ALS + A2SAL? + AaPAE + - 4 ALSALY + AN, (4.34)

4.2 Stability

Having shown the order of accuracy of the Generalized FDTD-Q method when
the Laplace operator is approximated by sixth-order accurate central differences, the
focus now is on whether the sixth-order accurate central difference approximation
of the Laplace operator produces a stable FDTD method. In this context stability
means that as time progresses the error in the numerical scheme does not grow
unbounded. To begin, assume that V is a constant for simplicity, and the Von
Neumann analysis [22] is used to analyze the stability of the Generalized FDTD
scheme. Let ¢ (k) = A7 e*P2% and zﬁlmd;(k) A ag@¥P27, where Area and
Amag are amplification factors for ¢7. (k) and 1/)lmdg( k) respectively. Using the Von
Neumann analysis, if one can show that the amplification factors remain bounded,

ie., A < 1, then this implies that error in the system does not grow over time, and

hence the method is stable. Substituting these relations into Equation (4.1) yields

1

(k+3)BAz n i(k+2)8Azx n  _i(k+1)3Az
TR0AL? 27 AL € + 270A%, e

wanea](l‘) = [2)‘

real C

+2\7 e (B DAAT g7 yn

rea

1() 1(k— 25AT+270)\ wk—1)8Ax

1e41(3

— 490\ LkBACI)]

req 1€



B 1
~ 180Azx2

267087 — 27ePP8% 1 270672 — 490

+ 26-32,8Aac . 276A215Ax + 2706-15Ax]/\n lezk,BAa:.

Recalling the relation from Euler’s identity

cos(f) = = (e + e ),

N =

and the trigonometric identities
cos(20) = cos?(#) — sin*(#), and
1 = cos*() + sin®(8).
One is able to express the Laplace operator A as

1
Al (k) = WH cos(3BAT) — bd cos(26Ax)

+ 540 cos(BAz) — 490] A" e*FAT

real€

1 9 _ 2
= AT [4]cos®(38Ax/2) — sin®(38Az/2)]

—54[cos®(BAx) — sin®(BAz)]

+540[cos”(BAz/2) — sin®(8Az/2)] — 490] AL, P27

= Fol&«_? [4[1 — 2sin*(38A2/2)] — 54[1 — 2sin’*(BAz)]

+540[1 — 2sin*(BAz/2)] — 490] A%, e P27

1

=~ T50AL? [—8sin*(38Ax/2) 4+ 108sin*(8Az)

—1080sin*(BAz/2)] AL, e*757,

64

(4.35)

(4.36)

(4.37)

(4.38)
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Reducing Equation (4.38) such that all waves are a combination of sin(8Ar/2) is
quite tedious. To begin, recognize that
sin{BAx) = 2sin(SAxz/2) cos(BAx/2) (4.39)
and
sin?(BAz) = 4sin?(BAz/2) cos*(BAz/2)
= 4sin*(BA1/2)[1 — sin®(BAT/2)]
— 4sin*(Az/2) — 4sin*(BAz/2). (4.40)
Reducing sin®*(33Ax/2) is done in a similar, yet more complicated fashion
sin?(38Ax/2) = [sin(BAz/2 + BAz))
= [sin(BAz/2) cos(BAzZ) + sin(fAz) sin(BAz/2)]?
= sin?(BAz/2) cos®(BAz) + sin®(BAx) cos?(BAz/2)
+ 2sin(BAx/2) cos(BAx) sin(SAx) cos(BAx/2) (4.41)
From Equation (4.41) recognizing that
cos(BAL) = cos*(BAz/2) — sin®(BAzT/2)
=1 2sin*(BA1/2) (4.42)

and

cos’(BAL) = [1 - 2sin2(ﬁAL/2)]2, (4.43)
then Equation (4.41) may be rewritten as
sin®(38A1/2) = sm*(BA7T/2) [1 - 2sin*(fA1/2)]”

+ [4sin®*(BAz/2) — 4sin*(BA2/2)] [1 = sin®(BAz/2)]
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+ 4sin®(BAL/2) cos*(BAz/2) [1 — 2sin*(BAz/2)]
= sin®(BAz/2) [1 — 4sin®(BAz/2) + 4sin*(BAz/2))
+ 4sin*(BAz/2) — 8sin*(BAz/2) + 4sin®(BAz/2)
+ 4sin®(BAz/2) cos®(BAL/2) [1 — 2sin®(BAL/2)]
= sin®(BAz/2) — 4sin*(BAz/2) + 4sin°(BAz/2)
+ 4sin*(8Ax/2) — 8sin(BAz/2) + 4sin®(BAz/2)
+ cos®(BAxz/2) [4sin*(BAz/2) — 8sin*(BAz/2)]
= 5sin®(BAx/2) — 12sin*(BAz/2) + 8sin®(BAT/2)
+ [1 - sin®*(BA7/2)] [4sin®*(BAr/2) — 8sin*(BA7/2)]
= 5sin?(BAz/2) — 12sm*(BAz/2) + 8sin®(BAz/2)
+ 4sin*(BAr/2) — 12sin*(BAz/2) + 8sin®(BAz/2)
= 9sin*(BAT/2) — 24sin*(BAT/2) + 16sin®(BAT/2). (4.44)

Collecting the terms from Equation (4.40) and Equation (4.44), and substituting

back into Equation (4.38), one obtains

4

APl (k) = “1R0AL2

[180 sin®(BAz/2) + 60sin*(BAz/2)

+32sin®(BAx/2)] AL, A

4
= A [45 sin?(BAz/2) + 15sin* (BAz/2)

+8sm°(BAT/2)] N, A (4.45)

real

A simular analysis of A¢™ (L) leads to the following equations expressed in

mag
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terms of the sixth-order accurate central difference operator D2

1 4 A
D2y (k) = — {—— (45 sin? %—”ﬁ 4 15gint O2%

1
Aq2 z el Ar2 | 45

real

A
+8sin® 5#):! AnekpaT, (4.46a)

1 ntl 1 4 .o PAz .4 BAT
—D? k)= —|—— (4 2~ 4 15sin? =
A2 xwlmag( ) A2 I: 45 ( 5sin 9 + losin 5
A
+gsin® 22T . I)} A et (4.46b)
To simplify notation in the following equations, let
4
Q= yE [45 sing(ﬂAz/Q) + 15 sin4(6A.r/2) + 851n6(ﬁAg¢/2)} ) (4.47)
and Equation (4.46) may then be more compactly stated as
1 2.n 1 n 1kBAx
AI,Q Dm (/)real(l“) = - A2 6\2/\real6 ) (448&)
1 TH'% 1 n 1 T
Axg Dzwlmdg(k;) - _A—QTQQ/\Imdge kAL . (448b)

Returning to the Generalized FDTD-(Q) method presented at the beginning of

the chapter, Equation (4.2) 1s restated 1n terms of the error amphfications

Areal = )\?ejnl 12 ;N()(%)le ((2;13:3;! {"%Kij—i B %} . ’\:;:alg
) e e A =
p=0
N = Ny + 2 j%(%)zp“ 3 Rt
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These equations may be more compactly expressed as

:Leal - ?ez.]l + a)‘?n:dlg (4508,)
Ainag = Momag — QA real; (4.50b)
. =" [.h vAaL]2e+l . N
where o =2 G [=7Q — 22 ] and 7 is the mesh ratio 5.
p:

Since Equation (4.50a) is true for any time level n, it may be rewritten as

A= A"+ aan

real real mag

(4.51)

Subtracting Equation (4.51) by Equation (4.50a), with the motivation being that
as time progresses the difference between the error at different time steps remains

constant. The resulting equation

D VATIEED (N (S L SR SR Lo (4.52)

real real — “‘real = “‘real imag 1mag’

may be simplified using Equation (4.50b) leading to a quadratic equation

)\n+1 — o\ /\nfl — a()\n . /\nfl )7

real real ~ “‘real mag 1mag

/\n—i—l S YL )\n—l — a()\nfl — o\ — )\nfl

real real real mag real mag/?

)\n+1 . 2/\71 . )\nfl — _&2>\n

real real real

A2 (2 ) hes —1=0 (4.53)

real —

Recall that A 1s an amplification factor, and to have a stable method, these
amplification factors must be bounded Using the fact that for a quadratic equation
72 + Bt + C = 0. the solution 7 satisfies |r| < 1 if and only if |[B] < 1+ |C'| and
|C] < 1. From Equation (4.53) it is clear that |C| < 1, and to have |B] < 1 + |C|

then the following relation must be true |A\u| < 1 if and only if |af < 2
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By the Von Neumann analysis it 1s concluded that the Generalized FDTD-Q

scheme 1s stable 1f |a] < 2,

N BERY 2p+1
23" (-1 [h, Q+vm} <y

ot 2p+ 1) [4m 2h -
N 2p+1
(=17 [ & VAL
—_— | — —_— <1 4 54
;(2])—4—1)' im YT o = (454)

From Equation (4 54) one can conclude that the Generalized FDTD-Q method
18 stable, but with the parameters contained i the equation eg, N, m, V,
h, Az, and At, 1t 1s unclear if the scheme 1s unconditionally stable or if the
aforementioned parameters have an impact on the stability First recall the Taylor

series representation of a simne wave

Lemma 4.1. Taylor series representation of a sine wave

Sln(ﬂ‘) = Z ml’z +1 (4 55)
n=0
Now, suppose N — o0,
N 2p+1
(—1)P 7 VAL
1 SN B it
NS 2 (2p + 1)1 | Bm” LRSS
(=1 [k VAPt
S o i LA
(2p+1)! {4m 2h
p=0
h VAt
= sin (RT Q)+ —27> (4 56)

It 1s immediately clear that regardless of the paiameters m V, h, Az and At,
Equation (4 54) 1s automatically satisfied as N — oo 1mmplying the scheme 1s
unconditionally stable

However, in practice one may not allow N to be aibitranly large, and so

VAt

T The maximum

Equation (4 54) 1s imposed usig the maximum value of 4—%7 Q+



value of @) is

max |Q] = max

1 45 + 15+ 8]
T 45

272
45"

and the required stability condition is

N

(=1 [ & At
pz: op 1) 17 max Q] + 57, Max
XN: -l [ho2m2 o A
Y A O O W
— (2p+ 1)! [4m 45 2h
XN: -1 [6sh AL
[ e
= (p+1) [45m’ " 2h
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% [45sin®*(BAz/2) + 15sin*(8Az/2) + 8sm®(8Az/2)]

(4.57)
1 2p+1
V] <c<1
1 2p+1
V| <c<1
1 2p+1
4 <c<l, (4.58)

where ¢ 1s a constant Using a similar argument, one may obtain the same inequality

as that in Equation (4.58) for A\,... Hence, one arrives at the following theorem.

Theorem 4.1. The Generalized FDTD scheme for suxth-order accurate central

differences
(=0t [k VAPt
nalk E: — D2~ —— e (k). 459
77[1real< ) real 2p + 1 {4[7/” T 2% :| 77Lzmaq( ) ( a’)
N 2p+1
n—i—l h 2 VAt
> E i (k 4.59b
wzmag(’l”) zmag - 2p+1 [ T 2h :l 1/real< ) ( )
15 stablc 1f the following the condition 15 satisfied
N 2p+1
—1)P h 272 At P
E (—)— — ——7 + ——max |V] <1 (4.60)
p—r 2p+1)! [4m 45 2h
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4.3 Computational Algorithm

Having shown a theoretical basis for utilizing a sixth-order accurate central
difference approximation of the Laplace operator, it is essential to bridge the
gap between theory and computation. In this section, pseudocode is presented
that translates the mathematical methods presented in the previous sections and
chapters into a format more suitable for computation, while avoiding the technical
implementation details that arise when writing an actual program that solves a
real problem The goal behind pseudocode is to present the fundamental concepts
behind an algorithm, while not burdening the reader with intricate implementation
details that may be specific to solving a umque problem. To this end, the algorithm
for the Generalized FDTD-Q method is presented in Algorithm 4.1. Note the
algorithm has been summarized in its entirety on a single page, should one wish
to view the actual source code as implemented in the FORTRANTY7 language,
the reader is directed to Appendix C, but 1t should be noted that the source

code presented is specific to solving a modecl problem presented in Chapter 5.
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Algorithm 4.1: Pseudocode for the Generalized Finite-Difference Time-
Domain for method.

Input: Gnd spacing Az
Input: Number of grid points Nyonts
Input: Number of time steps Ngieps
Input: Parameter NV
Input: Mesh ratio r
Input: 1 X Npones Array of initial values for the real component of the
wavefunction ¢rea
Input: 1 X Nyons Array of initial values for the imaginary component of the
wavefunction @mag
Input: 1 X Npons Array of initial values for the potential function V4
// Apply initial conditions
for k =0 to Nyonis do
/(/)redl(l’“) - (bledl(k’)
wlmag(k> - qj)lmag(k)
V(k) = V(k)
end
At =7 - Ax?

NS U R W =

®

// Begin time stepping loop
9 for n =1 to Ngeps do

10 // Compute even-order derlvatlves of z/)lmdg up to 4N + 2

11 H1ghOlderLaplaceDlﬂ(z/zlm1g, ponts- 4N + 2)

12 // Compute ¢, using the derivatives of z/)lmdg

13 foreach Computable grid point k do

14 | //Compute ¢, (k) using the Generalized FDTD-Q scheme Eq. (2.9)
15 end

16 // Compute even-order derivatives of ¥, | up to 4N + 2

17 HighOrderLaplaceDiff (47 . Npomts- 4N + 2)

real®

18 // Compute 1/)]mdg using the derivatives of 1"

19 foreach Computable grid pownt k do

20 ' // Compute 1meg( k) using the Generalized FDTD-Q scheme Eq. (2.9)
21 end

“real

22 end
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From Algorithm 4.1, one can see that the majority of the algorithm is inside
of the time loop on Lines 9-22, and it is for this reason algorithms of this type are
typically referred to as timestepping or timemarching algorithms. A hidden detail
not shown in Algorithm 4.1 is that both time and space have been discretized into
a finite set of grid points. This discictization was introduced in Equations (2.5) and
(2.5) in Chapter 2.

The work from Chapter 3 related to numerical differentiation is present
on Line 11 and Line 17, where the procedure HighOrderLaplaceDiff is used to
obtain the high-order derivatives required by the Generalized FDTD-Q scheme.
The pseudocode for this procedure is shown in Algorithm 4.2 and related Algo-
rithm 4.3, and one should be aware that the specific approximation of the Laplace
operator is left intentionally ambiguous. This ambiguity is essential given one
only needs to prove the theoretical basis for using a specific approximation of the

Laplace operator, and the Generalized FDTD-Q) algorithm will remain valid.

Algorithm 4.2: Pseudocode for obtaining high-order derivatives by recursively
applying the Laplace operator.

Function: HighOrderLaplaceDiff(¢, Nyonts, M)
Input: Number of grid points Nyonts
Input: Highest order derivative desired M
Input: 1 X Npgnes Array of function values ¢
Output: % 1-D arrays of size 1 X Nponts containing the function ¢
differentiated up to ™)
begin
Apply the Laplace operator repeatedly to obtain high-order derivatives
form =1to 4 do
’ ©?™ = LaplaceDiff (o™= N o)
end
Return 0@ @ o
end

(M)
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Algorithm 4.3: Pseudocode for applying the Laplace operator.

Function: LaplaceDiff (¢, Nponts)
Input: Number of grid points Nyonts
Input: 1 X Nyons Array of function values ¢
Output: 1 x Nyones Array of the function ¢ twice differentiated o2
begin
Apply the Laplace operator to the values in ¢
foreach Computable grid pownt k do
| Compute @ (k) using Eq. (3.13).
end
Return ¢
end

From the pseudocode presented, enough detail is shown such that one may
note the computational complexity of the entire method. From Lines 2-5, one
may note that applying the initial conditions will require at least cNjomg, + C
computations. where ¢ and C are constants, and clearly the algonthm will never
perform more than c/Npons + C' computations. Therefore both the upper and lower
bounds are asymptotically the same, and it may be stated that the algorithm has
computational complexity ©(Npoms). Similar reasoning is implied throughout this
analysis, and asymptotic bounds are directly written in © notation. The time loop
is more complicated, from Line 9 it is clear the loop will be exccuted ©(Nyeps) times,
but the analysis of the interior of the loop i1s more complicated and rather than
approach the loop as a whole, analysis will be performed first on the differentiation
procedure from Algorithm 4.2.

The HighOrderLaplaceDaff procedure from Algorithm 4.2 requires % evalu-
ations of the LaplaceDiff procedure. In the context of the Generalized FDTD-Q
method. M is actually 2(2N + 1) as taken from Line 11 of the Genetalized FDTD-
Q algonthm in Algornthm 4.1. Using this information one may then realize that
the HighOrderLaplaceDuff procedure requires -2(2—1\2711) = 2N + 1 evaluations of the

LaplaceDiff procedure. To determine the complexity of the HighOrder LaplaceDiff
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procedure only needs to know the complexity of the LaplaceDiff procedure, which

may be observed from Algorithm 4.3 noting that the LaplaceDiff procedure requires
O(Npomts) computation. (4.61)

With this information one may then deduce that the HighOrderLaplaceDiff

procedure requires

O((2N + 1) Npomts) computation. (4.62)

Returning to the complexity of the time loop, one may now model the
computational complexity of the time loop as follows, where the interior of the loop

has computational complexity

Line 11 and Line 17 Line 13 and Line 19

20((2N + D) Npomts) +  20(Npomis)

O(4(N + 1) Nyonts)- (4.63)

Leading to the computational complexity of the Generalized FDTD-Q algorithm,

mitial conditions time loop
o

G(Npomts) + 6(4(N + 1)Npomts . Nateps)a

@(]Vpomts - Nsteps)~ (464)

Where Equation (4.64) is the result of removing the constants, and retaining only the
dominant terms in the equation. This is done because © is a mode] of the asymptotic

behavior, i.e., Cy Nponts + C2NpomteNeteps simplifies to Co Npoines Voteps -

4.4 Summary
In this chapter the theoretical basis for using a sixth-order accurate approxi-
mation of the Laplace operator was established: the order of accuracy of the resulting
Generalized FDTD-Q scheme was derived; the stability condition imposed by using

this sixth-order accurate operator was shown; and the computational algorithm
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used to evaluated the scheme was presented and analyzed. The significance of this
work may be summarized by stating that the sixth-order accurate Laplace operator
has improved the theoretical order of accuracy by four orders of magnitude, while
imposing a more stringent stability requirement as shown in Theorem 4.1. The
following chapter will evaluate whether these theoretical aspects hold true when

used to solve real problems.



CHAPTER 5

RESULTS

Having presented the FDTD-Q and Generalized FDTD-Q methods in Chap-
ter 2; meticulously analyzed various compelling differentiation techniques and
selected the most appropriate in Chapter 3, proved in Chapter 4 that the selected
differentiation technique is stable when applied to the Generalized FDTD-Q scheme;
Now, numerical experiments are performed to demonstrate the superiority of the
choice made in Chapter 3 when compared against the FDTD-Q and published
Generalized FDTD-Q methods.

To compare against the FDTD-Q and published Generalized FDTD-Q
methods two problems have been selected. The first problem has an exact solution,
and will be 1eferred to as the model problem, because the model problem has
an exact solution the absolute crror may be computed when using each of the
numerical schemes listed above. The model problem also allows one to observe when
a scheme becomes divergent, which allows ones to observe the stability through
experimentation. Using this model problem, it will be shown that the stability
condition presented in Chapter 4 is correct, and that the scheme has absolute error
several orders of magmtude smaller than the FDTD-Q and published Generalized
FDTD-Q schemes. The second problem chosen has been taken from Sullivan [29]
and Dai et al [10], and simulates a particle moving in 1-D free space and then hitting

an energy potential.

7
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5.1 The Model Problem
The model problem chosen 1s a one dimensional time-dependent Schrodinger

equation posed as follows

o(z,t)  PY(a,t)
ot ox?

—aV(z,t)p(r,t), x€lab], t>0 (51)

Wla,t) =wb t) =0, t>0,
V(z,0) =7,

where 1mitial conditions for v)(r,t) are provided by the complex function ¢(r) The
analytical solution of Equation (51) 1s 9(z,t) = e 2" tsin(rz), and equation 1s
solved over the mterval 0 < ¢ < 1 and 0 <t <1 The mmtial conditions are derived

from the analytical solution using Euler’s identity ¢* = cos(0) + 2 sin(6)
P(x) = e sin(w)
= cos(—27°t) sin(7r) + 25 (—27%) s (77)
= cos(2n%t) sim(nz) — 2sm(27t) sin(ma) (52)

Note that attempting to compute the mitial conditions duectly from ¢(x,t = 0) =
gm2mt sin(wz) will effectively remove the 1magmary component and we seek the

nontrivial solution, 1 e, Pymae 7 0 Continuing from Equation (5 2) leads to
breat(z) = cos(2m%t)sin(ma), and  @umae(r) = sin(27°t) sin(7x)

Allowing t = 010 ¢yeq () causes no problems, but again one must take care to ensure
that the nnaginaiy component does not become zeio  To handle this 1ecall fiom

the FDTD-Q scheme that ., 15 computed at time ¢ + % using this information

recognize that the mitial # 15 ¢ = % leading to the mmitial conditions
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Prear(z) = sin(mz),
¥(2,0) = o(z) = S (5:3)
Dimag(2) = — sin(m2At) sin(m.).

To compare against the original FDTD-Q scheme Equation (2.3), recall that
the original FDTD-Q scheme is the Generalized FDTD-Q scheme with N = 0.
For this analysis there are several cases that the improved Generalized FDTD-Q
scheme must be compared against, the parameter N is chosen to be N = 3, and
the Generalized FDTD-Q scheme with sixth-order accurate spatial derivatives is

compared against the following:

e The original second-order accurate FDTD-Q scheme i.e., the published Gener-
alized FDTD-Q scheme with N = 0.

e The published Generalized FDTD-Q scheme using second-order accurate
spatial derivatives and N = 3.

e The original sixth-order accurate FDTD-(Q scheme i.e., the Generalized FDTD-
Q scheme with sixth-order accurate spatial derivatives and N = 0.

5.1.1 Stability Conditions for the Model Problem
The stability condition imposed upon the modified (sixth-order accurate)
Generalized FDTD-Q scheme is taken from Theorem 4.1. For the model problem

Equation (4.60) takes the form

N 72p+1
~1)7 [1 272
> o {5 P I L
— 2+ ]
- ) 136 S
Z 4+ w2AL <c<1 (5.4)
o 2p+1 ]

Recall r is the mesh ratio r = or At = r - Az? replacing At by this relation in

AQ’

the above condition allows one to formulate the stability condition entirely in terms

of r. N.and Az

N 2p+1
1 P 1136
E {—7 + 7 IA”L} << 1. (5.5)

45
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Now choosing a specific N and Az one may determine the largest possible
mesh ratio that will remamn stable The grid spacings chosen are Az = 001 and
Azr = % 001 = 0005, N 1s chosen to be N =0 and N =3 Furst consider the case

of Az =001, Equation (5 5) reduces to a polynomial in r
|0 45797 — 2 1045r° + 4 6052r° — 3 0232r| < 1 (56)
Which has a positive 1eal root at
1 =1 254513102904631 (57)

which leads to the following theorem

Theorem 5.1. The mesh ratio for the sixth-order accurate Generalized FDTD-(Q)

method with Ax = 001 and N = 3 will produce a stable method 1f

Ir| < 1254513102904631 (5 8)

A similar analysis may be perfoimed for N = 3 and Ar = 0 005, as well as
N =0 and Az = 001 and Az = 0005 We call these values the critical mesh ratios,
as the scheme 1s only stableif |r| < ¢ Notice these critical mesh 1atios are strict, and
equally imphies the stability condition 1s no longer satisfied The stability condition
for the second-order accmate Generalized FDTD-Q scheme from [11] 1s
ﬁ: (% (2 + 7% Az?]P <<t (59)
p=0
Followmg the proceduie used to aiiive at Theorem 51, the ciitical mesh
1at10s have been computed fo1 both the second-order accumate Generalized FDTD-Q

method and the sixth-order accurate Generalized FDTD-Q method, and are shown

m Table 51
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Table 51 Critical mesh ratios ¢ for the Generalized FDTD-Q schemes when solving
the model problem using Az = 0 01 or Az =0 005, and N € {0, 1,2, 3}

Critical Mesh Ratios ¢
|r] < ¢ = Stability

O(Az?) Scheme O(Axz®) Scheme
N 001 0 005 001 0 005
0 049975 0 49999 0 33077 0 33085
1 142295 142348 094182 0 94205
2 183958 1 84026 121757 121787
3 189539 1 89609 125451 125482

5.1.2 Numerical Results for the Model Problem

Using the computational algorithm shown i Chapter 4, numerical solutions
have been obtained for cach scheme at both Az =0 01 and Az = 0 005, while using
various mesh 1atios, and choosing N = 0 and N =3 The following graphs show the

maximum absolute error for each time step plotted against time that 1s

Err" max { [¢ace (24) — Vlprox (Tk)| } forall k=0,1, ,M  (510)

max Approx

where A/ 1s total number of grnd ponts M = <=

Figumie 51 shows the absolute error of the model problem when choosing
Azx = 001 and Az = 0005 and using fowr different mesh ratios  Recogmize that
Figure 5 1(d) 1s shghtly smaller than the critical mesh ratio for the sixth-order
accurate Generahzed FDTD-Q scheme from Table 5 1 which1s 1 25451 for Az = 0 01
and 125482 for Aa = 0005 Choosing 1 = 126 produced a divergent result,
and clearly 126 1s laiger than the critical mesh ratio indicating that the stability
condition 1s not satisfied Speaficallv, » = 126 with Az = 001 1s equvalent to

1 02844 which 1s greater than one
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Figure 5.1: Maximum absolute error for the model problem solved with the sixth-
order accurate Generalized FDTD-Q method, with Az = 0.01 and Az = 0.005, and
N =3.

Figure 5.2 contains the maximum absolute error when using the original
Generalized FDTD-Q method, which used second-order accurate spatial derivatives.
Note that as was published by Dai and Moxley [11], the method is convergent with
r = 1.85, and divergent when choosing r = 1.90. Again from Table 5.1 it is clear

that 1.90 is larger than the critical mesh ratio for the second-order accurate scheme.
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Figure 5.2: Maximum absolute error for the model problem solved with the second-
order accurate Generalized FDTD-Q method, with Az = 0.01 and Az = 0.005, and
N =3

Of note is the order of magnitude of the error in each plot, for the published
Generalized FDTD-Q method the error lies in the range 0 to 8 x 1074, while the
sixth-order accurate scheme has error in the range 0 to 1.8 x 107!, To summarize
how the sixth-order accurate Generalized FDTD-Q scheme improves the accuracy of
the solution, the log,, of the error is plotted against time, and is shown in Figure 5.3

when Az = 0.01 and Figure 5.4 when Az = 0.005.
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Figure 5.3: The log;, of the maximum absolute error for the sixth-order accurate and
second-order accurate Generalized FDTD-Q methods, with Az = 0.01 and N = 3.
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Figure 5.4: The log;, of the maximum absolute error for the sixth-order accurate and
second-order accurate Generalized FDTD-Q methods, with Az = 0.005 and N = 3.

5.1.3 Order of Accuracy of the Spatial Derivatives

From the figures in the previous section, it is clear that the sixth-order
accurate scheme shows a stark improvement in the accuracy of the solution when
compared to the second-order accurate Generalized FDTD-Q method. The stability
condition from Theorem 4.1 also held in all numerical tests. Next, one may wish
to verify the order of accuracy of the spatial derivatives in the scheme. To do this,
one must minimize the impact of the time step (At), because the order of accuracy

of a FDTD scheme depends on both space and time. For the sixth-order accurate
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Generalized FDTD-Q method, the order of accuracy was shown 1n Section 4 1 to be
O(Az® + AzSAL? + AP At + - + AzBAY + APV T2) (511)

If At — 0, then one will be left with only O(Az®), but clearly At may not
be zero 1n practice and so At 1s chosen to be very small eg, At =1 x 1077 Note
that the mesh ratio r plays no part in this analysis One 1s effectively choosing the
smallest At such that a solution may be computable in the time given, and Az as
large as possible such that the solution 1s still computable over the domain 0 < x <1
For example, 1if Az = 01, then there are only 1/Az grid pomts, and when using
the sixth-order accurate cential difference the three pomts nearest each boundary
are uncomputable, meaning the method 1s only computing a solution on five points
It was found empirically that Az = 0 05 1s sufficient It should also be noted that
when At =1 x 1077, the solution over the mterval 0 < ¢ < 1 requues to 10 000, 000
time steps

The order of accuracy 1s approximated as follows, one computes the solution
and associated absolute error using At = 1 x 1077 and Az = 005, and also the
solution and absolute error usmg At = 1 x 107 and %55 = 0025 The eno for each

may then be defined as

Erra, = O(Az"), (512)
En%:og%@ﬁzomﬁ)% (513)

Substituting Equation (5 12) into Equation (5 13) allows one to 1emove the unknown

tcims m the tiuncation enor eg C f®(€), yrelding
Er as = Er1 Ay o

on E77Aar

Errax
2
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Erra, 1
=1 . ) 1
n=s (Err%> log(2) (5:14)

Using the above method to compute the approximate order of accuracy of the
spatial derivative, Figure 5.5 shows the graph of the order of accuracy of the spatial
derivative over time. One can sce that the method has approximately sixth-order
accuracy at the beginning of the time interval, and slowly over time it degrades.
Using this method to approximate the order of accuracy of the spatial derivatives,
the minimum, maximum, and mean approximate orders of accuracy are shown in
Table 5.2, for problems solved using both the sixth-order and second-order accurate

Generalized FDTD-Q methods, and choosing N to be zero and three.
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Figure 5.5: The observed order of accuracy of the spatial derivative when using the
sixth-order accurate Generalized FDTD-Q method computed using Equation (5.14),
with Az = 0.05 and Az = 0.025, At =1x 107, and N = 3.

Table 5.2: Approximate order of accuracy of the Generalized FDTD-Q method using
second-order and sixth-order accurate spatial derivatives, and Az = 0.05 and Az =
0.025, and At =1 x 107",

Approximate Order of Accuracy for the Spatial Derivative

O(Az?) Scheme O(Az%) Scheme
N min max mean min max mean
0 1.9943 2.0039 1.991 5.1722 6.3473 5.9099

3  1.9943 2.0039 1.991 5.1722 6.3473 5.9099




38

5.1.4 Conclusions

Having shown theoretical guidelines for using the sixth-order accurate central
differences in the Generalized FDTD-Q method in Section 4.2 and arrived at
Theorem 4.1; the numerical results presented for the model problem behaved
precisely in line with the theoretical basis. The critical mesh ratios shown in Table 5.1
were constructed from theory, yet clearly observed in Figure 5.2 and Figure 5.1.
Furthermore, the magnitude of the error decreased drastically when compared
against the second-order accurate scheme as shown in Figure 5.3 and Figure 5.4,
and the observed order of accuracy of the spatial derivatives was maintained for over
5,000,000 time steps as shown in Table 5.2. Based on these observations as well
as the theoretical foundation presented in Chapter 4, it has been shown that the
sixth-order accurate central differences have shown a measurable improvement over
the second-order accurate Generalized FDTD-Q scheme when applied to the model

problem.

5.2 Particle Simulation

Having used the model problem to bridge the gap between theory and
computation, and in doing so verified that the theoretical underpinnings presented
in this writing. Another problem is solved in this section with the motivation being
to show the practical value of the Generalized FDTD-Q method. Following in the
footsteps of Sullivan [29] and Dai [10,11], the Generalized FDTD-Q scheme will
be used to simulate a particle moving in 1-D free space and then hitting an energy
potential. The following problem is taken directly from Sullivan’s book [29], a particle
is initiated at a wavelength of A in a Gaussian envelop of width ¢ with the following

two equations:

k=R 2 k - l{;
2 (k) = 705 =% cos <LX——02> (5.15a)

and
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) (k) = L <——27T(k - ko)) : (5.15b)

imag A

where kg is the center of the pulse.

The specific grid size chosen will be chosen from Dai [10], and a mesh of 1600
spatial grid points is constructed with ky= 400 and 0 = A = 1.0 x 107! [m]. The
parameters required by the Schrédinger equation Equation (1.1) are defined by the
simulation itself, for this simulation we seek to model an electron moving through
1-D free-space, and therefore m is taken to be the mass of an electron, Az is chosen

to be one-tenth of an Angstrom, and & is the reduced Planck’s constant

m=9.1x10"% [kg] (5.16)
Az =1.0x 107" [m] (5.17)
h=1.054 x 1073 [J - sec]. (5.18)

To replicate Dai’s results, V was chosen to be 0 in the first 800 grid points and
100 [eV] in the next 800 grid points. To have the units match, V must be expressed

in Joules, and so the conversion
1 [eV] =1.602 x 107" [J] (5.19)

will be used when necessary.
The next equations are again taken from Sullivan [29], and are used to

determine the expected energy, both Kinetic and Potential that should exist in the

1
system. They are computed from % (k) and w;::é(k) in the simulation as follows :
- ntl
Kinetic Energy (KE) = 3 > [4it(k) — i ()]
k=1

1
n+s3

. [02”«‘?&11 (k) 027/)1nwg(k)}

5.20
ox? e or? ( )
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and
Potential Energy (PE) = ZV(k) [[d)?edl(k)]Q + [1/)&@(74:)]{} (521)

The approximation of the Laplace operator was chosen to be a sixth-oirder accurate

(7-pont) central difference approximation

d2 real(k) —~ 1
Az2 180Ax2?

2¢real(k + 3) 271/)real<k + 2) + 2701!}:231(’]{ + 1)
- 490¢rcal( ) + 2701/)1“@@1( ) 2717/)& Ll( 2)
200,k — 3) (5 222)

and

Pynih)

mag

dr2 180A72

| 2005+ 8) = 27480 =+ 2) + 27000, (k4 1)
- 490w1mag( ) + 270w1mag( - ) - 27w1mag( 2)
+ 2¢ag (K — 3) (5 22b)

From Dai [10] the simulation should model an electron moving through free
space and then hitting an energy potential with a total of about 150 (eV) The eneigy
1s purely kinetic due to the fact that there 1s no potential energy available before the
energy barrier 1s reached With an mcrease in time, the electron will piropagate in
the positive spatial direction The waveform begins to spread, but the total kinetic
energy 1temains constant After the electron strikes the potential bariier, part of the
energy will be converted to potential energy The waveform indicates that theie 1s
some probability that the electron 1s reflected and some probability that 1t penetiates
the potential bariier However the total eneigy should remain constant

The mmportant aspect that this ssmulation will evaluate 15 the last statement
taken from Dau, that 1s the total energy should 1emain constant Compared against

Dar and Moxley [11], the plots will evaluate the impact of improving the accuracy
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of the approximation of the Laplace operator in the Generalized FDTD-Q scheme
Table 5 3 shows the findings published with the Generalized FDTD-Q method, which
utilized second-order accurate spatial derivatives, and a second-order accurate central

difference approximation of the Laplace operator used to compute the Kinetic energy

Table 53 Energy conservation of Generalized FDTD-Q method with second-order
and sixth-order accurate spatial derivatives

Eneirgy Conservation of the Generalized FDTD-(Q Schemes

O(Az?) Scheme [11] O(Az%) Scheme
N 0 350 1300 0 350 1300
070 151 154 149 151 154 152
075 151 154 0 151 154 152
095 151 151 154
100 151 162 196

One can see from Table 5 3 that as the stability condition 1s relaxed, the
energy conservation becomes increasingly poor Figures 56, 57, 58, and 5 9 show
the particle ssmulations with the stability condition prat 1 =070, p =075, p =0 95,
and g =100 While the plots for 4 = 095 and i = 1 00 are not too different one
can clearly see fiom Table 5 3 that the energy conservation for ; = 1 00 1s becoming

highly mmaccurate
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Figure 5.6: Particle simulation using stability condition ¢ = 0.70.
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Figure 5.7: Particle simulation using stability condition ¢ = 0.75.
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Figure 5.8: Particle simulation using stability condition ¢ = 0.95.
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5.3 Conclusions and Future Work

The work conducted in this dissertation has shown a measurable benefit for
the Generalized FDTD-Q method, as is evident from the solutions to the model
problem. In the simulations of the particle moving in free space, it is also clear that
numerical feedback (reflections of the wave off the boundaries) is present. These small
oscillations likely pollute the solution and should be damped using an Absorbing
Boundary Condition. From Table 5.3 it is not clear if increasing the accuracy of
the spatial derivatives provides any benefit in regard to conserving energy, though
it is hypothesized that with a suitable absorbing boundary condition, the impact of
higher accuracy spatial derivatives will become more apparent.

We would also like to revisit the use of piecewise low degree Lagrange
interpolating polynomials, possibly as tools to aid in providing information at
the uncomputable points when using central differences. We would also like to
experiment with the use of Richardson extrapolation to improve the accuracy of
the higher-order derivatives, e.g., sixth, eighth, and higher-order derivatives. Ideally,
we would like to improve the accuracy of the accuracy of the Generalized FDTD-Q
scheme such that the order of accuracy has the form O(Az? + Ax?At? + Azt At* +
o ATV AN+ At2VH2) ) doing so the Author hypothesizes that an N of two or

three may be sufficient.
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Contained in this appendix are additional error plots for the test function
flx) = 6(__123)’ which was introduced in Subsection 3.3.1. These error plots illustrate
how the differentiated Lagrange interpolating polynomials lose accuracy as they are
repeatedly differentiated. The intent of these plots is to provide a visual progression
of the error propagation as successively high-order decrivatives are computed. By
observing the first-, second-, third-, fourth-, fifth-, and sixth-order derivatives, one
can clearly see the error grow at the endpoints. The error is then plotted next to
these differentiated functions, so one may see the distribution of crror throughout

the interval.

10th degree Lagrange poly
exact

0 02 04 06 08 1
X

Figure A.1: Test function f(z) = %) plotted over the interval [0, 1.035].
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This appendix contains additional numerical results used in comparing the
differentiated lLagrange interpolating polynomials against the central difference
approximations of the Laplace operator. Each section contains results using the
differentiated Lagrange interpolating polynomials with three different abscissas; as
well as results using the central difference approximation of the Laplace operator
with three different orders of accuracy: second-order accurate, fourth-order accurate,
and sixth-order accurate. For each function tested, solutions are constructed over

two intervals [0, 1.035] and [0, 10.35].
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B.1 Exponential Function
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(a) Differentiated Lagrange interpolating polynomials using equally spaced
nodes to compute the first- through sixth-order derivatives.
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nodes to compute the first- through sixth-order derivatives.
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.1: Differentiated piecewise twelfth degree Lagrange interpolating polyno-

mials for the function f(x) = e®, over the interval [0, 10.35], utilizing 208 total grid
points.



Equation: e* . .. interval: (0,10.35]
Error of Central Difference derivatives
2nd Order accuracy 2nd derivative formula
5 s
I
oy
- -5
o
é-lo v 21364
o
a5
g’ oo 1Y
-20
-25 s LY
-30
~N .\\ .\) ,,’\; b’» ‘;s ‘o\ /\‘\ %\ o,\' ’&‘\ N\\ Q\ 0\ ’\??’ 's"‘» .&s ’;\’\ \%\ \9'\' A’Q'\ h=0 05
Gnd Points = 207
Grid Point

{a) Second-order accurate central difference approximation of the Laplace

operator used to compute the second-, fourth-, and sixth-order derivatives.

Equa

Log10{Error)
G At Sy s e
S VS B v Q@

ton: e* . . . intervaf: {0.10.35]
Error of Central Difference derivatives
4th Order accuracy 2nd derivative formula
"{

N ~ el

,‘3 v g “77 —

o ’ s 20¢
e 11}
wasee Gty

5 .\} ’\‘\ .5\ g ‘1& ‘o\' ,\'s Q,\ o,\ \9‘\ »,;s O’\ 0\ ,és {,\ \@N \:\'\ -\?’\ .@"» "9\ h=0.05
. Gnd Points = 207
Grid Point

(b) Fourth-order accurate central difference approximation of the Laplace

operator used to compute the second-, fourth-, and sixth-order derivatives.
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(c) Sixth-order accurate central difference approximation of the Laplace
opcrator used to compute the second-, fourth-, and sixth-order derivatives.
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Figure B.2: Central difference approximations of the Laplace operator applied to the
function f(z) = e, over the interval [0, 10.35], utilizing 208 total grid points, and
various orders of accuracy.
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(b) Differentiated Lagrange interpolating polynomials using the Chebyshev
nodes to compute the first- through sixth-order derivatives.
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{(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.3: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
mials for the function f(z) = e®, over the interval [0, 1.035], utilizing 208 total grid
points.
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(h) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(¢) Sixth-order accurate central difference approximation of the Laplace
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Figure B.4: Central difference approximations of the Laplace operator applied to the

function f(z) = e, over the interval [0,1.035], utilizing 208 total grid points, and
various orders of accuracy.
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B.2 Trigonometric Function
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(¢) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.5: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
mials for the function f(z) = cos(z), over the interval [0, 10.35], utilizing 208 total
grid points, and three different grid spacings.
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(¢) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the seccond-, fourth-, and sixth-order derivatives.

Figure B.6: Central difference approximations of the Laplace operator applied to
the function f(x) = cos(z), over the interval [0, 10.35], utilizing 208 total grid points,
and various orders of accuracy.
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Figure B.7: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
mials for the function f(z) = cos(z), over the interval [0,1.035], utilizing 208 total

grid points, and three different grid spacings.
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(a) Second-order accurate central difference approximation of the Laplace
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{b) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(c) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.

Figure B.8: Central difference approximations of the Laplace operator applied to
the function f(z) = cos(z), over the interval [0, 1.035], utilizing 208 total grid points,
and various orders of accuracy.
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(a) Differentiated Lagrange interpolating polynomials using cqually spaced
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(¢) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.9: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
mials for the function f(x) = a7, over the interval [0, 10.35], utilizing 208 total grid
points, and three different grid spacings.



112

ation: x7 . . interval: [0,10.35
Equation: X gpror of Central Difference derivatives ™™ '
2nd Order accuracy 2nd derivative formula
® y
e

g g N TS
o A e N

ot I

H

L - e 2106

s

o

2.

S QR 131

6th

SR AR S A SRS A A S AR MG L S A h=0 05

Gnd Points = 207

Grid Point

(a) Second-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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{(b) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(¢) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.

Figure B.10: Central difference approximations of the Laplace operator applied to
the function f(z) = 7, over the interval [0,10.35], utilizing 208 total grid points,

and various orders of accuracy.
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(a) Second-order accurate central difference approximation of the Laplace
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(b) Fourth-order accurate central difference approximation of the Laplace
operator used to compute the second-, fourth-, and sixth-order derivatives.
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(¢) Sixth-order accurate central difference approximation of the Laplace
operator used to compute the seccond-, fourth-, and sixth-order derivatives.

Figure B.11: Central difference approximations of the Laplace operator applied to
the function f(z) = z”, over the interval [0,1.035], utilizing 208 total grid points,

and various orders of accuracy.
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.12: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
mials for the function f(z) = z7, over the interval [0, 1.035], utilizing 208 total grid

points, and three different grid spacings.
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.13: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
12

mials for the function f(z) = e(=%), over the interval [—1.035,1.035], utilizing 415

total grid points.
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(c) Differentiated Lagrange interpolating polynomials using the Gauss-
Lobatto nodes to compute the first- through sixth-order derivatives.

Figure B.14: Differentiated piecewise twelfth degree Lagrange interpolating polyno-
2

mials for the function f(z) = e(=%), over the interval [—10.35, 10.35], utilizing 415
total grid points.
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C.1 Model Problem Using Second-Order Accurate Scheme

cccececeececececeeececcececeecceceecececeecececcecececececeecececececececcececcececcececcececceccececceccececcececccecceccceccec

C
C
C
C
C
C
Cc
C
C
C
C
C
C
C
C

O O 00 O 0 o0 0 00

OO0 00

Model problem source code

This code utilizes a second-order accurate central difference
approximation of the Laplace operator. By default the program
utilizes the parameter N=3 for the Generalized FDTD Scheme.
One must comment out the appropriate sections of code should
a lower N value be desired.

This code was adapated from code written by
Jeizhong Dai and Fred Moxley (c) 2011
This code was modified by James Ellaott (c¢) 2011

This 1s the beginning of the main progran

all variables must be declared before any assignments are made

parameter values may only be assigned here, and may never be
changed (they are constants)

ook ok ok ok ok kok ke ko okok kokkokok TMPORTANT % sk ok sk ok ok skok sk ok okook ok ok ok ok ok ok ok

ALWAYS write real values using ### ###D##%

"D" ensures the values wi1ll be double precision

alternatively, when compiling the program, utilize the flags

gfortran -0 -fdefault-real-8 -fdefault-double-8 -frange-check -
Wall

this will ensure all real values are double precision,

as well as enable useful warnings such as unused variables or

loops running past an array’s limits

ok Kok kok kok kol okoxskok kokr ok TMPORTANT ok ok ok sk ok sk ok sk ok ok sk o ok ok ok ok okok ok ok %

nplic.t none
Do not specify KE, 1instead change ddx,
KE wi1ll be computed to be over the interval [0,1]

Input ddx - the spatial step for the x direction
Input - ra - the mesk ratio, see Table 5.1 for suitable mesh
ratios

rnteger KE

aouble preczrion ddx, ra

perancter (ddx=1.0D-2, KE=1.0D0/ddx, ra=0.25D0)
Declare the size of the arrays
u_r 1s an array for the real component of the wavefunction
u_1 1s an array for the 1imaginary component of the wavefunction
u_r#p corresponds to an #th deravative of the real component
u_1#p corresponds to an #th deraivataive of the 1maginazry

component
dinencion u_r{(0:KE),u_1(0:KE),vp(0-KE),

& u_r2p(0:KE) ,u_r4p(0:KE) ,u_r6p (0:KE),

& u_r8p(0:KE) ,u_r10p (0:KE) ,u_r12p (0.KE),
& u_r14p(0:KE) ,u_12p(0:KE) ,u_14p (0-KE),
& u_16p(0-KE),u_18p(0:KE) ,u_110p (0:KE),
& u_112p(0:KE),u_114p (0:KE) ,x(0.KE),

47 ¢ Emnsure this array 1s large enough to to hold 1/ét values

48 ¢ {(or reprograr the method to only store the largest values)



49
50
51

52
53
54
)
56
57
o8
99
60
61

62

63 ¢
64 ¢
65 c

66

67 c
68 ¢
69 c

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88 ¢
89 ¢

90
91
92

93
94
95
96
97
98
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& error_max (0:1000000)

¢ Declare the type for each variable

double precision e_r, e_1, err_r, err_1, error_max, err_max
u.r, u_r2p, u_r4p, u_r6p, u_r8p, u_ri0p, u_ri2p, u_ridp,
u.i, u_.12p, u_14p, u_16p, u_18p, u_1i0p, u_112p, u_114p,
vp,p1,p12,dt,cc,

cvhl ,cvh2,cvh3,cvh4,cvh5, cvh6,cvh7,
rl,r2,r3,r4,r5,r6,r7,

ddx2 ,x,

tnh,tnl, tnhl,

& emax_r, emax_1
These values are the coefficients of the taylor seraies
double precision c1_24,¢3,c5,c10,c21,c35,c7,c1_322560,
c1_1920

FrErrree

k_start, and k_end represent the lower and upper limits of

the computable grad points e.g., 1 to KE-1

skipN 18 used to restrict the number of lines outputed
rnteger k_start ,k_end,skipN

spatial counter k, and temporal counter n

n_max 18 the timestep with the largest error

nsteps 1s the total number of timesteps
integer k,n_max,nsteps,n

Variable 1inatializations, no more variables may be declared.
p1=3.14159265358979323846D0
pP12=p1i*p1
Compute dt based on ddx and the mesh rataio
dt=ddx*ddx*ra
ddx2=ddx*ddx
ri=dt/(ddx*ddx)
r2=ril*xril
r3=r2*ri
r4=r3*ril
r5=r4x*xril
r6=rb*ril
r7=r6*ril
cc=1.0D0
this enforces that 0 < t <= 1
nsteps=1nt (1.0D0/d4t)
configure how many lines are outputed total
1f n mod skaipN == 0, then output
skipN = cei1ling(nsteps/32000 0)

Coefficients 1n the taylor expamnsion, to emsure double
precision

c1_24=1.0D0/24.0D0

c3=3.0D0

c5=5.0D0

c10=10.0DO

c21=21.0D0

c35=35.0D0



99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

a o o0

c7=7.0D0
¢1_322560=1.0D0/322560.0D0
c1.1920=1.0D0/1920.0D0

praint *,"KE: ",KE, ", dx-+ ", ddx,
& ", nsteps ', nsteps
configure the computable points
k_start=1
k_end=KE-1

Apply the 1initial conditions
do k=0,KE
u_r(k)=0.0DO
u_1(k)=0.0DO
vp(k)=0.0DO
enddo

do k=0,KE
vp(k)=p12
enddo

discretize the spataal domain in KE+1 1intervals of size dx

do k=0,KE
x (k) =k*xddx
ernddo

]

3

JRDER

1t
,2’

Apply the 1nitial conditions for the wavefunction

do k=0,KE
u_r(k)=sin(pi*x(k))
u_1(k)=-sin(dt*pi12)*sin(p1*x(k))
enddo

This output matches the output i1n the error calculation
this effectively makes the program output a csv
run the program from the commandline and

capture the output in a file

praint *, “Timestep, time (s). WaxError

start time level
de n=1,nsteps
tnh=2.0D0*(n-0.5D0) *dt*p12

i

calculate the derivatives of 1maginary values

call calsed(u_1,u_12p,KE)
call calsed(u_12p,u_14p,KE)
call calsed(u_14p,u_16p,KE)
call calsed(u_16p,u_18p,KE)
call calsed(u_18p,u_110p ,KE)
rall calsed(u_110p,u_112p,KE)
¢all calsed(u_112p,u_114p,KE)

begin calculataing the realpart
ao k=k_start ,k_end
cvhl=vp (k) *dt
cvh2=cvhl*cvhil
cvh3=cvh2*cvhl

file
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174
175
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177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

cvh4=cvh3*cvhi
cvhb=cvh4d*cvhi
cvh6=cvhb*cvhi
cvh7=cvh6*cvhi

¢ calculate the realvalue
u_r(k)=u_r(k)-ri*u_i2p(k)+cvhl*u_a(k)
c p=1
$ +cl1_24x%( r3*u_i6p (k)
& -c3*cvhl*xr2+u_idp (k)
& +c3*%cvh2*ri*u_i2p (k)
& —cvh3*xu_1(k))

& -c1_1920%*( r5%u_110p (k)
& -cb*cvhli*rd*u_18p (k)
& +c10*cvh2*r3*u_16p (k)
& -cl0*cvh3*r2*xu_i4dp (k)
& + c¢bxcvhd*rixu_a12p (k)
y —cvh5*u_i(k))

& +cc*cl_322560%*( r7*u_114p (k)
& -c7*cvhl*xr6*u_1i12p (k)
& +c2l*cvh2*xr5*xu_i10p (k)
& -c35*xcvh3*r4*u_i8p (k)
& +c35*cvhd*xr3*xu_1i6p (k)
& -c21*cvhb*r2*u_idp (k)
& +c7xcvhB*rixu_i2p (k)
& -cvh7#*u_i(k))
enddo

¢ calculate the deravataves of realvalue

call calsed(u_r,u_r2p,KE)
call calsed(u_r2p,u_r4p,KE)
call calsed(u_rdp,u_r6p,KE)
call calsed(u_r6p,u_r8p,KE)
call calsed(u_r8p,u_ri0p,KE)
call calsed(u_ri0p,u_r12p,KE)
call calsed(u_ri2p,u_rldp ,KE)

¢ begin calculating the 1imaginary part
¢o k=k_start,k_end
cvhi=vp(k)*dt
cvh2=cvhil*cvhi
cvh3=cvh2*cvhi
cvhd4=cvh3x*cvhl
cvhb=cvh4*cvhi
cvh6=cvh5x*cvhi
cvh7=cvh6*cvhl

¢ calculate the imaginary values
u_1(k)=u_1(k)+u_r2p(k)*ri-cvhi*u_r (k)
c p=1
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205 $
206 &
207 &
208 &
209 ¢ p=2
210 &
211 &
212 &
213 &
214 &
215 &
216 ¢ p=3
217

218

219

220

221

222

223

224

225

226

X R

-cl1_24+%(

+c1_.1920

122

r3*u_rép(k)

-¢c3*cvhl*r2+u_rdp(k)
+c3*cvh2*ri*u_r2p(k)
-cvh3*u_r(k))

* (
-chx*
+c10x*
-cl0x*
+chx
-cvh

r5*u_ri10p (k)
cvhlxrdxu_r8p (k)
cvh2*r3*u_r6p (k)
cvh3*r2*u_rdp (k)
cvhd*ri*u_r2p (k)
5xu_r (k))

-cc*cl1_322560%( r7*xu_rldp (k)

ernado

~c7*cvhl*r6*u_ri12p (k)
+c21*xcvh2*r5%xu_ri10p (k)
-c35*xcvh3*rd*xu_r8p (k)
+¢c35*cvh4x*xr3*u_r6p (k)
-c21l*cvhb*r2*u_rdp (k)

+cT7*cvhB*ri*u_r2p (k)

-cvh7*u_r(k))

227 ¢ Exact solution components
tnl1=2.0D0*n*dt*pi2
tnh1=2.0D0*(n+0.5D0) *xdt*pi2

228
229
230

231 ¢ calculate the exact solution, and determine

232 ¢ the
233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250 ¢ dete

O

max error for this iteration

emax_r=0.0
emax_i=0.0

DO
DO

do k=k_start ,k_end

e_r = dcos(tnl)*dsin(pi*x(k))

e_i1 = -dsin(tnhil)*dsin(pi*x(k))

err_r = dabs(u_r(k)-e_r)

err_i = dabs(u_i(k)-e_1)

if (emax_r .le. err_r) then
emax_r = err_r

endaf

1f(emax_i .le. err_i) thex
emaXx_1 = err_i

endaf

enddo

rmine the max error, this could be rewratten using the max

251 ¢ intrainsic fumction

252
253
2564
255
256

if (emax_zr

.le. e

error_max{n) =

glge
error_ma
endaf

x(n) =

max_1i) then
emax_1

emax_r



257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
300
307
308

O 0O 0 0 00

C

C

Cc
C
C

O 0 0 n
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print the largest error obtained within this timestep
the conditionals may be removed, the logic ensures
that no more than 32000 lines are ouputed, which makes plotting
and file size much smaller when working with very small mesh
ratios skipN may be changed at the start of the program if
one wishes more or fewer lines of output

1f (nsteps 1t 32000) then

print %, n, ,’, nxdt,’, , error_max(n)
else
1f (mod(n,skipN) eq 0) ther
privt *, n,’ , nxdt,’,’, error_max(n)
erdaf
eraaf

end of the time loop
erdde

determine the largest error observed in the entire simulation
err_max=0 0DO
dv n=1,nsteps
1f(err_max LE error_max(n)) then
err_max=error_max (n)

n_max=n
erdaf

e1 ddo

print *, Large t [rvor ’, n_max, err_max

write all errors, and assocailted time 1intervals to a file
this may be commented out, 1f one 1s running the program from
the command line and piping the output in a file

oper (unit=22,fi1le=’evror_nax_FDIL_N_3_0_2_x_200_ra_1 00

Jat )
«o n=1,nsteps
vrite(22,10)n*dt, error_max(n)

eralo

close (22)
10 format(f10 8,1x,F20 16)

This 1s the end of the main progran
cLeyp
enc

This routine computes the 2nd derivaitve
input £ - the function to differentiate
input KE - the number of grid points, indexed from zero
output f£" in the array fap
sibrouitine calsed(f,fdp,KE)
nplic * nomne
direr<icn f(0 KE),fdp(0 KE)
¢~1ble pre ~v r f,fdp
sfteger k,ke

Compute a seconc-order accurate central difference
« k=1,KE-1
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309 fdp(k)=f(k-1)-2.0D0*f (k) +f (k+1)
310 enddo

311 ¢ This 1s the end of the subroutine calsed
312 return

313 end

Listing C.1: Model problem using the second-order accurate scheme
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O o0 o0 06 0 0 00 0 0000000600000 0
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26
27
28
29
30
31
32
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34

35
36
37
38
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41
42

43
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45
46
a7
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C.2 Model Problem Using Sixth-Order Accurate Scheme

ccgeeeecececececcecececeecececececcecececceccececceccecceceececececcececcceccecececececceccoccececccecececccececccececccececcec

a0 00

O o 00

a0 a6 o0 0

48 ¢
49 ¢

Model problem source code

This code utilizes a sixth-order accurate central difference
approximation of the Laplace operator. By default the program
utilizes the parameter N=3 for the Generalized FDTD Scheme.
One must comment out the appropriate sections of code should
a lower N value be desired.

This code was adapated from code written by
Weizhong Dai and Fred Moxley (c) 2011

This code was modified by James Elliott (c¢) 2011

This 1s the beginning of the main program

all variables must be declared before any assignments are made
parameter values may only be assigned here, and may never be
changed (they are constants)

ok ok ok ok ok ok ok okokokkok ok ok kok kokok ok TMPORTANT ok ok sk ok ok sk sk ok ok sk ok sk ok ok ok ok ko ok &

ALWAYS write real values using ###. ###D##

"D" ensures the values will be double precision

alternatively, when compilaing the program, utilize the flags

gfortran -0 -fdefault-real-8 -fdefault-double~8 -frange-check -
Wall

this wi1ll ensure all real values are double precision,

as well as enable useful warnings such as unused variables or

loops running past an array’s limits

dokok kok ook okok kokkokokokckok ko kk TMPORTANT ok ok s ok skook ok ok sk ok sk skook ok ok ok ok K & okok

implicit none
Do not specify KE, 1nstead change ddx,
KE w1ll be computed to be over the interval {[0,1]

Input: ddx - the spatial step for the x directaion
Input. ra - the mesh ratio, see Table 5 1 for suitable mesh
ratios

rrteecer KE
dotble precision ddx, ra
paraneter (ddx=1.0D-2, KE=1.0D0/ddx, ra=0.25D0)
Declare the size of the arrays
u_r 1s an array for the real component of the wavefunction
u.1 1s an array for the 1maginary component of the wavefunction
u_r#p corresponds toc an #th derivative of the real component
u_1#p corresponds to an #th derivative of the 1iraginary
component
dimenrion vp(0:KE), x(0:KE),
& u_r(0:KE), u_r2p(0:KE), u_r4p(0:KE), u_r6p(0:KE),
& u_r8p(0:KE),u_r10p(0-KE) ,u_r12p(0:KE) ,u_r14p (0:KE),
& u_1(0:KE), u_12p(0:KE), u_14p(0:KE), u_16p(0-KE),
& u_18p(0:KE),u_110p(0:KE),u_1212p(0:KE) ,u_114p (0:KE) ,
Ensure this array 1s large enough to to hold 1/at values
(or reprogram the methoa to only store the largest values)



50
51
52

54
95
56
57
58
59
60
61
62

63

64 ¢
65 ¢
66 ¢

67

68 ¢
69 ¢

70
71
72
73
74
75
76
7
78
79
80
31
32
83
84
85
86
87
88

89 ¢
90 ¢

91
92
93

94
95
96
97
98
99
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& error_max (0:1000000)

¢ Declare the type for each variable

double precision e_r, e_1, err_r, err_1, error_max, err_max
u_r, u_r2p, u_r4p, u_r6p, u_r8p, u_rl0p, u_rl2p, u_rlédp,
u_1, u_12p, u_14p, u_16p, u_18p, u_110p, u_112p, u_1l4p,
vp,p1,p12,dt,cc,

cvhl,cvh2,cvh3,cvh4,cvhb,cvh6,cvh7,
rli,r2,r3,r4,r5,r6,xr7,

ddx2,x,

tnh,tnt,tnhl,

emax_r, emax_1
These values are the coefficients of the taylor series

double precision c1_.24,¢3,c5,¢10,¢21,¢35,¢7,c1_322560,
cl1_1920

FRrRrRERERER

&

k_start, and k_end represent the lower and upper limits of

the computable graid points e g., 3 to KE-3

skipN 1s used to restrict the number of lines outputed
rnteger k_start ,k_end, skipN

spatial counter k, and temporal counter n

n_rax 1s the timestep with the largest error

nsteps 1s the total number of timesteps
integer k,n_max,nsteps,n

Varaiable 1nitializations, no more variables may be declared.
p1=3.14159265358979323846D0
pP12=pil*p1
Compute dt based on ddx and the mesh ratio
dt=ddx*ddx*ra
ddx2=ddx*ddx
ri=dt/(ddx*ddx)
r2=rlx*ri
r3=r2x*ril
r4=r3*rl
r5=r4x*rl
r6=rbx*xrl
r7=r6x*ril
cc=1.0D0
this enforces that 0 < t <= 1
nsteps=1nt (1.0D0/dt)
configure how many lines are outputed total
1f n mod skipN == 0, then output
skipN = ceiling(nsteps/32000.0)

Coefficients in the taylor expansaion, to ensure double
precision

c1_24=1.0D0/24.0DO

c3=3.0D0

c5=5 0DO

c10=10.0D0O

c21=21 0DO

c35=35.0D0



100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

C

C

C

c7=7.0D0
c1.322560=1.0D0/322560.0D0
c1.1920=1.0D0/1920.0D0

prant *x,"KE- " ,KE, ", dx: ", ddx,
& ", nsteps ", nsteps
configure the computable points
k_start=3
k_end=KE-3

Apply the 1initial conditions
do k=0,KE
u_r(k)=0.0D0
u_1(k)=0.0D0
vp(k)=0.0DO
enddo

do k=0,KE
vp(k)=p12
enddo

discretize the spatial domain 1n KE+1 1intervals of size dx

do k=0,KE
x (k) =k*xddx
enado

#

s

ORDBER

i
!6)

Apply the 1nitial conditions for the wavefunction

ao k=0,KE
u_r(k)=sin(pir*x(k))
u_1(k)=-sin(dt*pi12)*sin(pi*x(k))
encado

This output matches the output in the error calculation

127

this effectively makes the program output a csv file should one

run the program from the commandline and

capture the output 1in a file

print *, "Timestep, tine (s). MavErvor®

start time level

cov n=1,nsteps
tnh=2.0D0*(n-0.5D0)*dt*p12

calculate the deraivatives of aimaginary

and compute exact values for the uncomputable points

call calsed(u_1,u_12p,KE)

values

u_12p(1)=ddx2+*p12*sin(tnh)*sin(pr*x (1))
u_12p(2)=ddx2*p12xsin{(tnh)*sin(p1*x(2))
u_12p(KE-1)=ddx2+*p12*sin(tnh)*sin(p1*x(KE-1))
u_12p(KE-2)=ddx2*p12*sin(tnh)*sin(p1*x(KE-2))

call calsed(u_12p,u_14p,KE)
u_14p (1)=-ddx2*p12*u_12p (1)
u_14p(2)=-ddx2*p12*u_12p (2)



153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

u_14p(KE-1)=-ddx2*pi12*u_12p(KE-1)
u_14p(KE-2)=-ddx2*p12*u_12p (KE-2)

call calsed(u_14p,u_16p,KE)
u_16p (1)=-ddx2+*pi12xu_14p (1)
u_16p(2)=-ddx2+*p12*u_14p(2)

u_16p(KE-1)=-ddx2*p12*u_14p(KE-1)
u_16p(KE-2)=-ddx2*p12*u_14p (KE-2)

call calsed(u_16p,u_18p,KE)
u_18p (1) =-ddx2*p12*u_16p (1)
u_18p (2)=-ddx2+*p12*u_16p (2)

u_18p(KE-1)=-ddx2*p12*u_16p (KE-1)
u_18p (KE-2)=-ddx2*pi12*u_16p (KE-2)

call calsed(u_18p,u_110p,KE)
u_110p (1)=~-ddx2#*p12*u_18p (1)
u_110p(2)=-ddx2*p12*u_18p (2)

u_110p(KE-1)=-ddx2*p12*u_18p (KE-1)
u_110p(KE-2)=-ddx2*p12*u_18p (KE-2)

call calsed(u_110p,u_112p,KE)
u_112p (1) =-ddx2*p12*u_110p (1)
u_112p (2)=-ddx2*p12*u_110p (2)

u_112p(KE-1)=-ddx2*p12*u_110p(KE-1)
u_212p(KE-2)=-ddx2*p12*u_110p (KE-2)

call calsed(u_112p,u_114p,KE)
u_114p (1) =-ddx2*p12*u_112p (1)
u_114p (2)=-ddx2*p12*u_112p(2)

u_114p(KE-1)=-ddx2#*p12*u_112p (KE-1)
u_114p (KE-2)=-ddx2*p12*u_112p (KE-2)

186 ¢ begin calculating the realpart

187
188
189
190
191
192
193
194
195

ao k=k_start,k_end
cvhi=vp(k)*dt
cvh2=cvhl*cvhl
cvh3=cvh2*cvhil
cvh4=cvh3*xcvhil
cvhb=cvh4d*cvhl
cvh6=cvhb5*cvhli
cvh7=cvh6*cvhil

196 ¢ calculate the realvalue

197
198 ¢ p=t
199
200
201
202
203 ¢ p=2
204
205

u_r(k)=u_r(k)-ri*xu_12p(k)+cvhl*u_1(k)

+cl_24%( r3*u_16p (k)
-¢3*%cvhl*xr2*u_14p (k)
+c3*xcvh2*ri*u_12p (k)

-cvh3*u_1(k))

-c1_.1920%( r5*%u_110p (k)
-cb*cvhi*rd*u_18p (k)
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206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

+c10*cvh2*r3*u_1i6p (k)

-cl0*cvh3*r2*u_idp (k)

+ cbxcvh4*rl*u_i2p (k)
-cvh5*u_i(k))

L5 S S

c p=3
+cc*cl1_322560%*( r7*u_1i14p (k)
-c7xcvhl*xr6*xu_i12p (k)
+c21*cvh2*r5*xu_1i10p (k)
-c35*xcvh3*xrd4*u_i8p (k)
+c35*%cvhd*xr3*u_i6p (k)
-c21*cvhb*r2xu_idp (k)
+c7*cvh6*ri*u_i2p (k)
-cvh7*u_1i(k))

FrFTRrERERR

erddo
¢ provide exact values for th uncomputable points
tnl1=2.0D0*n*dt*pi2
u_r(1)=cos(tnl)*sin(pi*x(1))
u_r(2)=cos(tnl)*sin(pi*x(2))
u_r(KE-1)=cos(tnl)*sin(pi*x(KE-1))
u_r (KE-2)=cos(tnl)*sin(pi*x(KE-2))

¢ calculate the derivatives of real values

¢ and provide exact values for the uncomputable points

call calsed(u_r,u_r2p,KE)
u_r2p(1)=-ddx2*pi2*u_r (1)
u_r2p (2)=-ddx2*pi2*u_r (2)
u_r2p(KE-1)=-ddx2*pi2*u_r (KE-1)
u_r2p(KE-2)=-ddx2*pi2*u_r (KE-2)

call calsed(u_r2p,u_r4p,KE)
u_rdp (1)=-ddx2*pi2*u_r2p (1)
u_r4p(2)=-ddx2*pi2*u_r2p(2)
u_r4p(KE-1)=-ddx2*pi2*u_r2p (KE-1)
u_r4p(KE-2)=-ddx2*pi2*u_r2p (KE-2)

call calsed(u_rdp,u_rép,KE)
u_r6p(1)=-ddx2*pi2*u_r4p (1)
u_r6p(2)=-ddx2*pi2*u_rdp(2)
u_r6p(KE-1)=-ddx2*pi2*u_r4p (KE-1)
u_r6p (KE-2)=-ddx2*pi2*u_r4p (KE-2)

call calsed(u_r6p,u_r8p,KE)
u_r8p(1)=-ddx2*pi2*u_r6p (1)
u_r8p(2)=-ddx2*pi2*u_r6p(2)
u_r8p(KE-1)=-ddx2%pi2*u_r6p (KE-1)
u_r8p (KE-2)=-ddx2*pi2*u_ré6p (KE-2)

call calsed(u_r8p,u_ri10p,KE)
u_r10p(1)=-ddx2*pi2+*u_r8p (1)
u_r10p(2)=-ddx2*pi2*u_r8p(2)
u_r10p(KE-1)=-ddx2*pi2*u_r8p (KE-1)
u_r10p(KE-2)=-ddx2*pi2*u_r8p (KE-2)
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260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

call calsed(u_r10p,u_ri12p,KE)
u_r12p(1)=-ddx2*p12*u_ri0p (1)
u_r12p(2)=-ddx2*p12*u_ri0p(2)
u_rl12p(KE-1)=-ddx2*p12*u_r10p(XE-1)
u_rl12p(KE-2)=-ddx2*p12*u_r10p (KE-2)

call calsed(u_ri12p,u_rl4p,KE)
u_rldp (1)=-ddx2*p12*u_r12p (1)
u_rldp (2)=-ddx2*p12*u_ri12p(2)
u_rld4p(KE-1)=-ddx2*p12*u_r12p (KE-1)
u_ri4p(KE-2)=-ddx2*pi12*u_r12p (KE-2)

¢ begin calculataing the 1imaginary part

¢ calc

c p=1

IR

c Faill

do k=k_start ,k_end
cvhl=vp (k) *dt
cvh2=cvhl*cvhl
cvh3=cvh2x*cvhl
cvh4=cvh3x*cvhl
cvhb5=cvh4*cvhl
cvh6=cvhb*cvhl
cvh7=cvh6*cvhl

ulate the imaginary values
u_1{(k)=u_1(k)+u_r2p(k)*rl-cvhi*u_r (k)

-c1_24%( r3*xu_ré6p (k)
-c3*cvhi*r2xu_r4p (k)
+c3*cvh2*rlixu_r2p (k)

-cvh3*u_r (k))

+c1_1920%( rb*xu_r10p (k)
-c5*cvhixrd*u_r8p (k)
+cl10*cvh2*r3*u_r6p (k)
~c10*cvh3*xr2*u_rdp (k)
+cbxcvhd*rixu_r2p (k)
-cvh5*u_r (k))

—cc*cl1_322560%*( r7*u_r14dp (k)
-c7*cvhl*xr6*u_r12p (k)
+c21i*xcvh2*rb5*xu_ri10p (k)
-c35%cvh3*rd*u_r8p (k)
+c35*cvh4*xr3*xu_rép (k)
-c21*cvhb*r2*u_r4p (k)
+c7*cvh6*ri*u_r2p (k)
-cvh7*u_r (k))
cnado

in values for the uncmputable points
tnh1=2.0D0*(n+0 5D0)*dt*p12
u_1(1)=-sin(tnhl)*sin(p1*xx(1))
u_1(2)=-sin(tnhl)*sin(p1*x(2))
u_1(KE-1)=-sin{(tnhi)*sin(pir*x(KE-1))
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312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

u_i(KE-2)=-sin(tnh1)*sin(pi*x(KE-2))

¢ calculate the exact solution, and determine
¢ the max error for this iteration
emax_r=0.0D0
emax_1i=0.0DO
do k=k_start ,k_end

e_r = dcos(tnl)*dsin(pi*x(k))
e_i = -dsin(tnh1)*dsin(pi*x(k))
err_r = dabs(u_r(k)-e_r)

err_i = dabs(u_i(k)-e_1i)

if (emax_r .le. err_r) then

emax_r = err_r
endarf

1f (emax_1 .le. err_i) then
emax_1i = err_i
endaf
erddo
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¢ determine the max error, this could be rewritten using the max

O
¢ intrinsic function
if(emax_r .le. emax_1i) then

error_max{(n) = emax_i
alse

error_max{n) = emax_r
endaf

¢ praint the largest error obtained within this timestep
¢ the conditionals may be removed, the logic ensures that
¢ no more than 32000 lines are ouputed, which makes plotting
¢ and file size much smaller when working with very small mesh
¢ ratios. skipN may be changed at the start of the program if
¢ one wishes more or fewer lines of output
if (nsteps .1lt. 32000) then
praint *, n,’,’, n*xdt,’,’, error_max{n)
else
1f (mod(n,skipN) .eq. 0) then
prani *, n,’,’, nkxdt,’,’, error_max(n)
erndaf
eundif

¢ end of the time loop
erado

¢ determine the largest error observed 1in the erntire simulation

err_max=0.0D0
do n=1,nsteps
1£(err_max.LE.error_max(n)) .hen
err_max=error_max(n)
n_max=n
encif
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365
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erddo

print *, ’Largest Error: ’, n_max, err_max

366 ¢ write all errors, and assocaited time 1intervals to a file
367 ¢ this may be commented out, 1f one 1s running the program from

368
369

370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

C

O o0 o0

Cc
C

C

the command line amnd piping the output in a file
open (unit=22,file="error_max_FDTD_N_3_0_6_x_200_ra_1.00.
dat’)
do n=1,nsteps
write (22,10)n*xdt, error_max{(n)
erddo
close (22)
10 forma:(f10.8,1x,F20.16)

This 1s the end of the main program
step
snd

This routine computes the 2nd derivaitve
input: ¥ - the function to differentiate
input KE - the number of graid points, indexed from zero
output- f" ain the array fdp
csubroutine calsed(f,fdp,KE)
implicit none
dimension f(0:KE),fdp(0:KE)
double preczsion f,fdp
double precision al0,al,a2,a3
integer k,KE

Compute the 2nd deraivative using a sixth-order accurate
Central Difference

a0= 49D0/18D0

al= -1.5D0

a2= 0.15D0

a3= -1.0D0/90.0DO

ao k=3,KE-3

fdp(k)= -(a3*f(k-3)+a2*xf(k-2)+alx*f(k-1)

& +a0*f (k)+al*xf(k+1)+a2*xf (k+2)+al3*f(k+3))
enado
This 18 the end of the subroutine calsed
return
ana

Listing C.2: Model problem using the sixth-order accurate scheme


http://error_max_FDTD._N_3_D_6_x_200._ra_

O~ O Ut = W N

OO0 00 00 00060000000 00000600

25
26
27
28
29
30
31
32
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C.3 Particle Simulation Using Sixth-Order Accurate Scheme

ccececececececececececececcecececeeecceccececeecceccececceccececeecececcececcececcecgececceccececcececcecceccececceccceccceccec

a0 00

33 ¢
34 ¢

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49

o]

C

o 00

C

Electron in 1D Free Space Simulation

This code utilizes a sixth-order accurate central difference
approximation of the Laplace operator. By default the program
utilizes the parameter N=3 for the Generalized FDTD Scheme.
One must comment out the appropriate sections of code should
a lower N value be desired

This code was adapated from code written by
Weizhong Dai and Fred Moxley (c) 2011

This code was modified by James Elliott (c¢) 2011

This 1s the beginning of the main program

all variables must be declared before any assignments are made
parameter values may only be assigned here, and may never be
changed (they are constants)

eokok okok ok ok ok okokok ok ko kokkxk ok TMPORTANT ok ok ok ok ok ok ok sk ok sk ok ok ok sk ok okok Kok Kok

ALWAYS wraite real values using ### . ###D##

"D" ensures the values will be double precision

alternatively, when compiling the program, utilize the flags

gfortran -0 -fdefault-real-8 -fdefault-double-8 -frange-check -
Wall

this will emnsure all real values are double precision,

as well as enable useful warnings such as unused variables or

loops running past an array’s limits

ok ok kok ok kok ok k ok ok ok ok kkkokkx  TMPORTANT ok %k sk ok sk ok ok sk ok sk ok ok ok ok ok sk ok ok ok

~rplicit none

rnteger KE
double precision ddx
These parameters are defined by Dai, and should not be changed
Input. KE - the number of spatial grid points (1ndexed from
zero)
Input. ddx - the spatial step for the x direction
paraneter (ddx=1.0D-11, KE=1600)
Declare the size of the arrays
u_r 1s an array for the real component of the wavefunction
u_1 1s an array for the imaginary component of the wavefunction
u_r#p corresponds to an #th deravative of the real component
u_21#p corresponds to an #th derivative of the 1imaginary
component
dimension vp(0-KE),
& u_r(0:KE), u_r2p(0:KE), u_r4p(0:KE), u_r6p(0:KE),
& u_r8p(0-KE) ,u_r10p(0:KE) ,u_r12p(0:KE) ,u_r14p(0:KE),
& u_1(0:KE), u_12p(0:KE), u_14p(0-KE), u_16p(0:KE),
& u_18p(0.KE),u_110p(0:KE) ,u_112p(0:KE) ,u_114p (0:KE)

Declare the type for each variable
double precrsion
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51
52
53
54
55
56
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63 ¢

64
65
66
67
68
69
70
71
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76 ¢
77 ¢

78

79 ¢
80 ¢
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82
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84
85
86
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90
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u_r, u_r2p, u_r4p, u_r6p, u_r8p, u_rlOp, u_rl2p, u_ri4p,
u_ir, u_12p, u_i4p, u_16p, u_18p, u_110p, u_112p, u_114p,
vp, vpot, pi, clambda, sigma, hbar, ptot, ra,

clap_r, clap_i, cke_r, cke_1, cmelec, ccl, PE,

cvhl, cvh2, c¢vh3, cvh4, cvhb5, cvh6, cvh7,

&ch2mi ,ch2m?2,ch2m3, ch2m4 ,ch2m5,ch2mé ,ch2m7 ,

& r1,r2,r3,rd4,r5,r6,r7,

& cc, ptotSQRT ,mu,hbar2,dt

{5 S

integer k,kstart,n,nsteps,kcenter, stopl, stop2

These values are the coefficients of the taylor series
double precircion c1_.24,c3,c5,c10,c21,¢35,c7,c1_322560,
cl1_1920
These values are the coefficients of the central difference for
energy calculations.
double precision al0,al,a2,al,dtb

p1=3.14159265358979323846D0
the mass of an electron
cmelec=9.2D-31
Reduced Planck’s constant
hbar=1.055D-34
hbar2 = hbar*hbar
mu=0.98D0
I use GNU Maxima to solve my stability condition in terms of ra
provided I supply dx, hbar, max|{V|, and m.
For comparison this mesh ration should mat Moxely and Dai’s mu
So the times are roughly the same
ra=20600.0D0
dtb 1s the oraigiral dt with stability condition as written
by Daix and Moxley, I use their dt and (mu) to compute roughly
the same timestep so I may compare against them
dtb=2.0D0*(1000.0D0%*9.2D0/1.055D0) *xddx*ddx*mnu
Because I solve for a specific mesh ratio, I may calculate my
timestep 1n the same manner as the exact problem.
dt = ddx*ddx*ra
These timesteps are roughly the same as Moxley and Dai, 1t may
be
required to add or subtract some small amount to make them
closer
stop2 = ant ({dtb*1300D0)/dt) -150
stopil = 1nt((dtb*350D0)/dt) - 100
nsteps =stop2
ri=dt/(ddx*ddx)
r2=rixrl
r3=r2x*rl
r4=r3*rl
rb=r4x*ri
ré=rb*rl
r7=ré6x*rl

98 ¢ these values are scaled from (h/2m)



99
100
101
102
103
104
105
106
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ch2m1=1.055D0/(2000.0D0*9.2D0)
ch2m2=ch2ml1*ch2m1l
ch2m3=ch2m2*ch2m1
ch2m4=ch2m3*ch2m1
ch2m5=ch2m4*ch2mi
ch2m6=ch2mb5*ch2m1
ch2m7=ch2m6*ch2ml
¢ These values define the Gaussian packet

107 clambda=10.0D0

108 s1gma=10.0D0

109 ¢ V_0 1s 100 eV

110 vpot=100.0D0

111 ¢ These values defined the inital location of the packet, and

112 ¢ where the potentaal begins

113 kstart=800

114 kcenter=400

115 cc=1.0D0

116

117 ¢ Coefficients 1n the taylor expansion, to ensure double
precision

118 ¢1_24=1.0D0/24.0D0

119 c3=3.0D0

120 c5=5.0D0

121 c10=10.0DO

122 c21=21.0D0O

123 c35=35.0D0

124 c7=7.0D0

125 c1_322560=1.0D0/322560.0D0

126 c1_1920=1.0D0/1920.0D0

127 ¢ sixth-order accurate central difference coefficients

128 a0= 49D0/18DO

129 al= -1.5D0

130 a2= 0.15D0

131 a3= -1.0D0/90.0DO

132 ¢ This out helps to realize the relation between a timestep 1n
thais

133 ¢ simulation, and a timestep 1n Dai and Moxley’s simulation

134 praint *, dt, dtb , nsteps, dtb*1300D0/dt

135 print *, 2380 = ’, stopl, ', 1300 = *, stop2

136 ¢ This code 1s parallelized using OMP, though 1t will only be
used

137 ¢ 1f you enable the compile flag -fopenmp

138 ¢ This applies the initial conditions

139 ¢$0MP PARALLEL DO

140 ¢c$0MP& SCHEDULE (static)

141 a~ k=0,KE

142 u_r(k)=0.0

143 u_1(k)=0.0

144 vp(k)=0.0

145 erado

146 ¢$0MP END PARALLEL DO

147 ¢ In this case eV 1s converted to Joules

148 ¢$0MP PARALLEL DO



149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187

c$0OMP& SCHEDULE (stataic)
ago k=kstart ,KE-10
vp(k)=vpot*1.602D-19
endado

c¢$0MP END PARALLEL DO

ptot=0.0
¢ Initiate the Gaussian packet
c$0MP PARALLEL DO REDUCTION (+:ptot)
c$0MP& SCHEDULE (statac)
do k=10,kstart -10
u_r(k)=dcos(2.0D0*p1*(k-kcenter)/clambda)
$ *dexp (-0.5D0*((k-kcenter)/sigma) **2)
u_1(k)=dsin(2.0D0*pr*(k-kcenter)/clambda)
$ *dexp (-0.5D0*((k-kcenter)/sigma) **2)
ptot=ptot+(u_r (k) **2)+(u_1 (k) **2)
enddo
c$0OMP END PARALLEL DO

ptotSQRT = sqrt(ptot)
¢ Compute the 1nitial values of the wavefunction
¢ (this 1s taken from Sullivan)
c$0OMP PARALLEL DO
c$0MP& SCHEDULE (statac)
do k=10, kstart -10
u_r{k)=u_r(k)/ptotSQRT
u_1(k)=u_1(k)/ptotSQRT
ernddo
c$0MP END PARALLEL DO

¢ Compute the energy in the system, second, and fourth-order
accurate
¢ derivatives are provided, but sixth-order 1s the default
ccl=0.5D0%1.055D0*1.055D0%6.23D0*1000D0/9.2D0
cke_r=0.0
cke_1=0.0
PE=0.0

¢$0MP PARALLEL DO PRIVATE(clap.r,clap_1)
c$0MP& REDUCTION (+:PE) REDUCTION (+-cke_r) REDUCTION (+:cke_1)
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188 do k=10,KE-10

189 ¢ clap_r=u_r(k+1) -2.0%u_r(k)+u_r(k~-1)

190 ¢ clap_1=u_2(k+1)-2.0%u_a(k)+u_2(k-1)

191

192 clap_r=-(a3*u_r(k-3)+a2+u_r(k-2)+al*u_r(k-1)

193 & +a0xu_r(k)+al*u_r(k+1)+a2*xu_r (k+2)+a3*xu_r(k+3))

194

195 clap_1=-(a3*u_1(k-3)+a2*u_1(k-2)+al*u_1(k-1)

196 & +a0*u_a1(k)+al*xu_1(k+1)+a2*u_1(k+2)+a3*u_1(k+3))

197

198 ¢ clap_r={(-u_r{(k+2)+16.0D0*u_r(k+1) -30.0DC*u_xr (k) +16 . 0DO=u_r
(x-1)

199 ¢ & -~u_r(k=-2))/12 0DO



200

201
202
203
204
205

[of

C
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clap_a1=(-u_1(k+2)+16 ODO*u_1(k+1) ~-30 0DO*u_1(k)+16 0ODO=*u_a
(k~-1)

& -u_

1(k-2))/12 0DO

cke_r=cke_r+u_r(k)*clap_r+u_1(k)*clap_a
cke_i=cke_1+u_r(k)*clap_i1-u_1{(k)*clap_r
PE=PE+vp(k)*((u_r (k) **2)+(u_1 (k) **2))

enddo

206 c¢$0MP END PARALLEL DO
207 ¢ output the potential and kinetic energy
prant *, O, cclxsqrt(cke_r**2+cke_1*%2),

208

209

211
212
213
214
215
216
217
218
219
220
221
222
223

&

>

PEx1 0OD+19/1 602DO

cclxsqrt (cke_r**2+cke_1%*2) + PEx1 0D+19/1 602DO0
210 ¢ save the 1ntial energy to a csv file
open{unit=22,file=’psai_im-n-0 csv )

do k=1,KE-1

write (22,10)k, u_1(k)

erado

close (22)

oper (unat=1,f1
do k=1,KE-1

le=’psi_~1-n-0 csv’)

write(1,10)k, u_r (k)

erado
close (1)

ao n=1,nsteps

224 ¢ calculate the deraivatives of 1maginary values
call calsed(u_1,u_12p,KE)

225
226
227
228
229
230
231
232

233 c$0MP

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

call calsed(u_

12p ,u_14p,KE)

call calsed(u_14p,u_16p,KE)
call calsed(u_i16p,u_18p,KE)
call calsed(u_18p,u_110p,KE)

call calsed (u_

call calsed(u_

110p,u_112p ,KE)
112p,u_114p ,KE)

PARALLEL DO PRIVATE(cvhl,cvh2,cvh3,cvh4,cvh5,cvh6,cvh7)
234 c$0MP& SCHEDULE (statac)

ao k=10,KE-10
cvhl=(vp(k)*dt
cvh2=cvhl*cvhli
cvh3=cvh2*cvhi
cvh4=cvh3x*cvhlil
cvhb=cvh4x*xcvhil
cvh6=cvh5*cvhil
cvh7=cvh6*cvhi

¢ calculate the real
u_r(k)=u_r(k)-rl*ch2ml*u_12p(k)+cvhix*xu_a (k)

c p=1

+c1_24x*(
-c3
+c3

) /hbar

values

ch2m3*r3*u_16p (k)
*cvhi*xch2m2*r2*u_14p (k)
*cvh2*ch2ml*rl*u_12p (k)
-cvh3*u_1(k))



251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280 c$0MP PARALLEL DO PRIVATE(cvhil,cvh2,cvh3,cvh4d,cvh5,cvh6,cvh7)

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

c p=2

c p=3

S S S = =

F R ER

-c1_1920%*(

+cc

ernddo

ch2m5*r5*%u_1i10p (k)
-cb*cvhli*ch2mé*rd*u_i8p (k)
+cl10*cvh2*xch2m3*r3*u_i6p (k)
~cl10*cvh3*ch2m2*r2*u_i4dp (k)
+cbxcvhd*ch2ml*ri*u_i2p (k)
-cvh5*u_i(k))
*c1_322560%*( ch2m7*r7*u_il4p (k)
-c7*cvhl*xch2m6*r6*u_1i12p (k)
+c21*cvh2*xch2mb*r5*u_1i10p (k)
-c35*cvh3*ch2md*rd*u_i8p (k)
+c35%cvh4*xch2m3*r3*u_1i6p (k)
-c21*cvhS5*ch2m2*r2*u_idp (k)
+c7*cvh6*ch2ml*ri*xu_i2p (k)
—cvh7+*u_i(k))

c$0MP END PARALLEL DO

¢ calculate the derivatives of real values

call
call
call
call
call
call
call

calsed(u_r,u_r2p,KE)
calsed(u_r2p,u_r4p,KE)
calsed(u_r4p,u_r6p,KE)
calsed(u_r6p,u_r8p,KE)
calsed(u_r8p,u_ri0p,KE)
calsed{u_r10p,u_r12p ,KE)
calsed(u_r12p,u_ri4p ,KE)

c$0MP& SCHEDULE (static)

do k=
cvhils=
cvh2=
cvh3=
cvhéd=
cvhb=
cvh6=
cvh7=

10,KE-10
(vp(k)*dt)/hbar
cvhi*cvhi
cvh2x*cvhil
cvh3*cvhi
cvhé4*cvhi
cvh5*cvhi
cvh6*cvhl

¢ calculate the imaginary values
u_i(k)=u_i(k)+ch2ml*ri*u_r2p(k)~cvhl*u_r (k)

c p=1

c p=2

SR S -

&
&
&
&
&

~cl_24x*( ch2m3*r3*xu_r6p (k)

+c1_.1920%(

-c3*cvhl*xch2m2*r2*u_r4p (k)
+c3*cvh2*ch2ml*ri*u_r2p (k)
~cvh3*u_r(k))

ch2mb*r5*u_r10p (k)
~cb*cvhl*ch2mé4*rd*u_r8p (k)
+c10*xcvh2*ch2m3*r3*u_r6p (k)
-c10*cvh3*ch2m2*r2*u_rdp (k)
+chb*xcvhd*xch2mi*ri*u_r2p (k)

138
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304 & -cvh5*xu_r(k))

3056 ¢ p=3

306 & =-cc*cl_322560%( ch2m7*r7*u_r14p (k)

307 & ~c7*cvhl*ch2m6*xr6*xu_r12p (k)

308 & +c21*cvh2*xch2mb5*r5*u_r10p (k)

309 & -c3b*cvh3*ch2md*rd*u_r8p (k)

310 & +c35*xcvh4*xch2m3*r3*xu_r6p (k)

311 & ~c21l*cvhb*ch2m2*r2*u_rdp (k)

312 & +c7*cvh6xch2ml*ri*xu_r2p (k)

313 & -cvh7xu_r(k))

314 enddo

315 c$0MP END PARALLEL DO

316

317

318 ¢ Compute the energy in the system, second, and fourth-order
accurate

319 ¢ derivatives are provided, but sixth-order 1s the default

320 cke_r=0.0

321 cke_1=0.0

322 PE=0.0

323

324 c¢$0MP PARALLEL DO PRIVATE(clap_r,clap_1i)

325 ¢c$0MP& REDUCTION (+:PE) REDUCTION(+:cke_r) REDUCTION(+:cke_1)

326 do k=10,KE-10

327 ¢ clap_r=u_r(k+1)~-2.0%u_r(k)+u_r(k-1)

328 ¢ clap_a1=u_1(k+1)~-2.0xu_2(k)+u_21(k-1)

329 clap_r=-(a3*u_r(k-3)+a2*u_r(k-2)+al*u_r(k-1)

330 & +al0*u_r(k)+al*u_r(k+1)+a2*xu_r(k+2)+a3*u_r(k+3))

331

332 clap_:1=-(al3*u_1(k-3)+a2*xu_1(k-2)+al*u_a1(k-1)

333 & +al0*u_a(k)+al*xu_a(k+1)+a2*u_1(k+2)+a3*u_1(k+3))

334

335 ¢ clap_r=(-u_r(k+2)+16.0D0*u_r(k+1) -30.0D0*u_r(k)+16.0D0*u_r
(k-1

336 ¢ & -u_r(k-2))/12.0D0

337 ¢ clap_1=(-u_1(k+2)+16.0D0*u_1(k+1) -30 0DO*u_1(k)+16.0D0O*u_1
(k~-1)

338 ¢ & -u_1(k-2))/12.0D0

339 cke_r=cke_r+u_r(k)*clap_r+u_1(k)*clap_1

340 cke_i1=cke_1+u_r(k)*clap_1-u_1(k)*clap_r

341 PE=PE+vp (k) *((u_r (k) **x2)+(u_1(k)**2))

342 encdo

343 ¢$0MP END PARALLEL DO

344 ¢ output the energy in the system at this time

345 1f(moed(n,10) .eq. 0) then

346 prins *, n, ccl*xsqrt((cke_r**x2)+(cke_1%*2)), PEx*1 0D

+19/1 602D0,

347 & ccl*sqrt(cke_r#*x2+cke_1**2) + PE*1 0D+19/1.602DO

348 ¢raaf

349

350 ¢ save the wavefunctions 1f the timestep for comparison

351 1f(n .eq stop2) .ten

352 open (wn1t=22,f1le="pea_17-n-3i200 cav’)
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375
376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

[0}
C

O 0 00
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do k=1,KE-1

write (22,10)k, u_1 (k)
enddo

close (22)

open (unit=1,file=’ps1_ rl-n-1300.csv’)
ce k=1,KE-1
write(1,10)k, u_r (k)
enddo
close (1)
ensure the energy 1s pranted (1t may not because of the
modulus function above)
praint *, n, ccl*sqrt((cke_r**x2)+(cke_1**2)), PEx1.0D
+19/1.602D0,
& cclxsqrt(cke_r**2+cke_1%x%2) + PE*1.0D+19/1.602D0

clse 1f(n .eq. stopl) then
open (unit=22,fi1le=’psa_am-n-350.csv’)
co k=1,KE-1
vrite (22,10)k, u_1(k)
enddo
close (22)

open (unit=1,fi1le=’psi_rl-n-350 csv’)
ac k=1 ,KE-1
write (1,10)k, u_r(k)
enddo
close (1)
ensure the energy 1s prainted (i1t may not because of the
modulus function above)
print *, n, ccl*sqrt((cke_r+**x2)+(cke_1%*%2)), PEx1.0D
+19/1.602D0,
& cclxsqrt(cke_r**2+cke_1*%2) + PEx1.0D+19/1.602D0
crndif
This ends the time loop
erdde

10 forma+=(I5,’, ,F25.15)
This ends the program
slop

enda

This routine computes the 2nd derivaitve
input. f - the function to differentiate
input: KE - the number of grid points, indexed from =zero
output: £" 1in the array £fdp
sabroutine calsed(f,fdp,KE)
IFpa LL1T none
drnension f(0:KE),fdp(0:KE)
wonple prec.sion f,fdp,a0,al,a2,a3
Lriteger k,ke



404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

c Six-order Scheme
a0= 49.0D0/18.0D0O
al= -1.5DO
a2= 0.15D0

a3= -1.0D0/90.0DO

c$OMP PARALLEL DO
c$0MP& SCHEDULE (static)
do k=10,KE-10
fdp (k)= -(a3*xf(k-3)+a2*xf(k-2)+al*f(k-1)
& +a0*f(k)+al*xf(k+1)+al2*f(k+2)+a3*f (k+3))
erddo
¢$0MP END PARALLEL DO

¢ clamp the ends to zero
¢ an absorbing boundary condition should be here!
do k=0,9
fdp(k)=0.0
enddo

do k=KE-9,KE
fdp(KE-k)=0.0
crade

return
ena

Listing C.3: Particle simulation using the sixth-order accurate scheme
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