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ABSTRACT 

In recent years, much research has been motivated by the idea of biologically-

inspired flight. It is a conjecture of the United States Air Force that incorporating 

characteristics of biological flight into air vehicles will significantly improve the ma­

neuverability and performance of modern aircraft. Although there are studies which 

involve the aerodynamics, structural dynamics, modeling, and control of flexible wing 

micro aerial vehicles (MAVs), issues of control and vehicular modeling as a whole are 

largely unexplored. Modeling with such dynamics lends itself to systems of partial dif­

ferential equations (PDEs) with nonlinearities, and limited control theory is available 

for such systems. 

In this work, a multiple component structure consisting of two Euler-Bernoulli 

beams connected to a rigid mass is used to model the heave dynamics of an aeroelas-

tic wing MAV, which is acted upon by a nonlinear aerodynamic lift force. We seek 

to employ tools from distributed parameter modeling and linear control theory in 

an effort to achieve agile flight potential of flexible, morphable wing MAV airframes. 

Theoretical analysis of the model is conducted, which includes generating solutions 

to the eigenvalue problem for the system and determining well-posedness and the at­

tainment of a Co-semigroup for the linearly approximated model. In order to test the 

model's ability to track to a desired state and to gain insight into optimal morphing 
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trajectories, two control objectives are employed on the model: target state tracking 

and morphing trajectory over time. 
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CHAPTER 1 

INTRODUCTION 

Throughout the past century considerable improvement has been made in the 

development of aircraft, but much work remains to be done for modern aircraft to be 

comparable to the airborne capabilities of nature. In recent years, much research has 

been motivated by the notion of biologically-inspired flight, including aerodynamics, 

structural dynamics, flight mechanics, and control. The Air Force Office of Scientific 

Research Multidisciplinary University Research Initiative (MURI) project led by 

Kenny Breuer of Brown University involves studies of the aerodynamics and structural 

dynamics of bats in free-flight. Further information about this project can be found 

in [27] and [25]. The MURI project led by Wei Shyy of the University of Michigan 

consists of similar studies of bird and insect flight, which is elaborated upon in [23] 

and [24]. These studies, along with numerous others (see, for example, [2] and [14]), 

have inspired the Air Force Research Laboratory Munitions Directorate (AFRL/RW) 

to explore aeroelastic wing micro aerial vehicles (MAVs) for both military and civilian 

utilization. 

While there are projects which involve control studies of biological flight, it 

is our goal to examine vehicular modeling as a whole while simultaneously ensuring 

that the model may be exploited for control design. Traditional controllers designed 

1 
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using methods applicable to fixed wing aircraft are unlikely to realize the agile flight 

potential of flexible wing MAV airframes. 

Figure 1.1: (Left) Bat flight is being studied as part of an Air Force Office of 
Scientific Research Multidisciplinary University Research Initiative project. Image 
credit: mime.oregonstate.edu/news/story/2103, (Right) Morphing gull wings. 

In this dissertation we seek to provide an extension of the heave dynamics 

partial differential equation (PDE) model originally presented in [9], which consisted 

of two Euler-Bernoulli beams connected at a point mass. The modifications we make 

to this model consist of the inclusion of a finite mass, gravity, a nonlinear aerodynamic 

lift force, and realistic parameter values that reflect the material of the MAV system. 

We refer to this model as the beam-mass-beam (BMB) model. 

The focus of this work is to apply tools from distributed parameter control 

theory in order to gain insight into exploiting wing flexibility for control design. We 

first begin by providing a theoretical analysis of the linearly approximated BMB 

model. This analysis includes examining the eigenvalue problem for this system and 

determining whether the model is well-posed and generates a Co-semigroup. 

We then employ control design on the BMB system. Since limited theory is 

available for control of nonlinear PDE systems, we must obtain a linear approximation 

http://mime.oregonstate.edu/news/story/2103
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of the system in order to design controllers. Two control mechanisms are analyzed 

here: target state tracking and morphing trajectory over time. Finally, we also 

present a MAV model with the presence of realistic controllers via piezoceramic patch 

actuators and point to future work involving this model. We refer to this model as 

the "BMB-PZT" model. 

Chapter 2 contains background information of the control techniques consid­

ered in this dissertation. Chapter 3 provides a description of the two models. In 

Chapter 4 the framework for well-posedness is provided, along with a proof for well-

posedness of the linearly appproximated model and an extension to the model with 

piezoceramic patches. Numerical simulations of both systems, including controlled 

results for the BMB system can be found in Chapters 5 and 6. Finally, in Chapter 7 

we conclude with observations and future work. 



CHAPTER 2 

BACKGROUND INFORMATION 

Consider a time-invariant linear partial differential equation (PDE) system 

with dynamics given by 

£(t)=A£(t) + 13u(t), £(0) = £0, (2.1) 

where the operator A represents the dynamics of the system defined on D(^4) C X 

(with X a Hilbert space) that generates a Co-semigroup by assumption (see Chapter 

4), B describes how the control is applied to the system, and u(t) is the control input, 

defined on a Hilbert space U, which is taken to be IRm in this work. 

Traditional linear quadratic control drives the state £(t) to the zero state. For a 

tracking problem, the ideal state is not the zero state. Instead, the control objective 

is to steer £(t) to some known, desired state £(£). Two linear quadratic tracking 

approaches explored in this work are described below in an infinite dimensional setting, 

and the discussion presented here is summarized from [15]. It is important to note that 

theory is in place to guarantee convergence from a finite dimensional approximation 

to the infinite dimensional system, as stated in [17] and [16]. 

4 
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2.1 Linear Quadrat ic Regulator (LQR) Tracking 

The aim of the Linear Quadratic Regulator (LQR) tracking problem is to 

minimize the cost function 

V= I ((x,Qx)x + (u,Ru)u)dt, (2.2) 
J to 

where x(t) = —x(i), Q : X —>• X is a state weighting operator, taken to be C*C 

(see Equation (2.12)) and R : U —> U is a control weighting operator taken to be of 

the form R = X, with X being the identity operator. Then for a chosen Q and R, 

an optimal u is generated. The tracking problem under consideration is posed as a 

disturbance-rejection problem with the system dynamics given by 

±(t) = Ax{t) + Bu{t) + w{t), x(0) = x0: (2.3) 

where x(t) = x(t, •) = £(t, •) — £(t, •) e X and w(t) is represented by 

w(t)=A£-i?0. (2.4) 

The solution to the tracking problem involves integrating backwards in time to obtain 

the unique stabilizing solution of the Riccati differential equation 

-fi(t) = A*U(t) + U(t)A +Q- U^BR^B^it), (2.5) 

with boundary condition II(T) = 0. The feedback control gain is defined as 

)C = R-1B*U(t). (2.6) 

The feed forward signal Ufw is 

ufw(t) = R-'B*q(t). (2.7) 
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where the solution q(t) can be expressed in terms of the transition operator for the 

system: 

q(t) = -{A - BR-i&TlitMt), (2.8) 

with q(T) = 0. The control law for the LQR state tracking is 

u(t) = —JCx(t) — Ufw. (2-9) 

Applying this control law to the original system in Equation (2.3), the following 

system is obtained 

x(t) = [A-BK]x(t)-ufw. (2.10) 

When considering the infinite-time case (steady state tracking), some simplifications 

may be made. Letting T —> oo, Equation (2.5) reduces to the algebraic Riccati 

equation 

A*U + UA-UBR~1B*U + Q = 0. (2.11) 

and since q(t) is bounded, a steady state solution can be obtained for Equation (2.8). 

2.2 Linear Quadratic Gaussian (LQG) Tracking 

While the LQR problem assumes full knowledge of the state is available 

for feedback, the Linear Quadratic Gaussian (LQG) problem assumes that only an 

estimate of the state from Equation (2.3) exists, based on a measurement 

y = Cx(t), (2.12) 

where the measurement y(t) : X —> Y, with Y a Hilbert space, is taken to be in IRP 

in this work, and a state estimate, xc(t) = xc(t, •) E X, is used in the control law in 
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Equation (2.9). The operator C describes how the state is observed. Again, the state 

from Equation (2.3) is £ — £, and it is assumed that the desired target of the state 

estimate is also £. 

We next present the following definitions, which are necessary to understand 

the control theory presented in this section. 

Definition 2 .1 . An operator A is exponentially stable if and only if A generates an 

exponentially stable Co-semigroup. 

Definition 2.2. The state linear system ^(A,B,C) is exponentially stable if A 

is exponentially stable. 

Definition 2.3. ^2(A,B,C) is stabilizable if there exists a linear operator J7 . X —> 

U such that A + BT is exponentially stable. For convenience, we refer to the pair 

{A, B) as being stabilizable. 

Definition 2.4. ^(A, B, C) is detectable if there exists a linear operator C : Y —> X 

such that A -f- CC is exponentially stable. For convenience, we refer to the pair {A. C) 

as being detectable. 

To provide a state estimate, a compensator is used that has the form 

xc(t) - Acxc(t) + Tcy(t), xc(0) = xCo, (2.13) 

and the feedback control law is written 

u(t) = -JCxc(t) - ufw, (2.14) 



where /C and Ufw are determined from the LQR tracking solution. Then by solving 

an additional filter Riccati equation 

p(t) = AP(t) + P(t)A* - P(t)C*CP(t) + BB\ (2.15) 

one can obtain the operators J-c, and Ac via 

(2.16) 
Tc = P(t)C*, 

Ac = A-BJC-TCC. 

When considering the steady state case, Equation (2.15) reduces to the filter algebraic 

Riccati equation 

AP + PA* - PC*CP + BB* = 0. (2.17) 

Under standard assumptions of stabilizability of (A,B) and detectability of (A,C), 

there are guaranteed unique solutions n and P to Equation (2.11) and Equation 

(2.17), respectively, such that the linear system given by 

(2.18) 

is stable. 

d 

dt 

x(t) 

xc(t) 

A 

T£ 

-BIC 

j \ . c 

x(t) 

xc(t) 

Ufw 

0 



CHAPTER 3 

FLEXIBLE WING AIRCRAFT MODEL 

Over time, morphable wing MAVs exhibit dynamics that are neither fast nor 

slow enough to be considered in a steady state (constant). Furthermore, since the 

bending moments of each wing are related to the mass moment of inertia of the 

fuselage, this moment varies with time as the vehicle morphs. Consequently, modeling 

with such dynamics lends itself to PDEs with time-varying coefficients. In this work a 

simplified model with constant coefficients is considered to gain insight into the more 

challenging time-varying model. 

Two Euler-Bernoulli beams connected to a rigid mass are used to model the 

heave dynamics of a flexible wing MAV. Each beam represents a wing with the rigid 

mass at the center representing a fuselage. An initial model with a point mass was 

presented in [9], and the model is elaborated upon here. In this work we consider 

two versions of this system. The first model, hereinafter referred to as the "BMB" 

model, assumes that controllers act over the entire beam structure. The second, more 

realistic model assumes piezoceramic actuators are present on each beam, and we refer 

to this model as the "BMB-PZT" model. In this chapter we first provide a derivation 

of the standard beam equation, followed by a description of the two systems. 

9 
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3.1 Derivation of the Euler-Bernoulli Beam 

Consider the linear, undamped model with no axial forces. The Euler-Bernoulli 

beam is a special case of the Timoshenko beam that does not take into account shear 

deformation or rotary inertia. The derivation presented here is taken primarily from 

[19] and [28], although one should note the sign conventions we adopt here. A diagram 

of the beam can be seen in Figure 3.1. The following notation will be used in this 

discussion: t represents time, s,y,z are the position coordinates, w(t.s) denotes the 

vertical displacement at time t and position s, £ is the length of the beam, ds is 

the length of a beam element, p is the density of the beam material, A is the cross-

sectional area of the beam, / is the area moment of inertia, M represents the bending 

moment about the 2-axis (the beam's tendency to bend in the plane of the loads), 

and V denotes the shear force (internal force acting in right angles to the neutral axis, 

or equilibrium position, of the beam). 

0 

0 £ 

• " f-ds+l 
/ 

1 

T 

1 
v(t,s) 

/ 

< 
/ 

equilibrium position 

Figure 3.1: Beam 



11 

Consider a small segment of the beam shown in Figure 3 2 For the segment 

to be m equilibrium, the vertical forces are summed about an equilibrium position 

which results m the following relationship 

which implies 

V + —ds -V + pAds—- = 0, 
OS otz 

dV . d2w 

ds df 

(3 1) 

(3 2) 

M + — ds 
as 

„ av , 
V + — ds 

as 

pA as—— K dt2 

ds 

Figure 3 2 Beam Segment 

Similarly, a moment equilibrium relationship is obtained (with counter clockwise 

being the positive direction) 

Ac, / £11/ \ -7,-
(3 3) 

„„ d M , ^ T ds 
M + d s - M - V — 

ds 2 
T / dV , \ ds n 
V + — d s — = 0 

ds I 2 

Since ds is small (ds)2 « 0, and the following relationship holds 

dM 

ds 
V (3 4) 
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Differentiating Equation (3.4) and substituting into Equation (3.2) yields 

-*E = pA*E (3.5) 
ds2 P dt2 

Furthermore, from elementary flexural theory the following moment-curvature rela­

tionship is obtained: 

M = EI^. (3-6) 
OS2 

Substituting Equation (3.6) into Equation (3.5) yields the partial differential equation 

for the Euler-Bernoulli beam: 

A d2w rd
4w to v \ 

»Aw+El^=0- (37) 

3.2 B e a m - M a s s - B e a m ( B M B ) Model 

3.2.1 Mode l Descript ion 

A graphical representation of the system can be seen in Figure 3.3. It is 

assumed that the material properties of both beams are uniform, identical, and 

composed of latex and carbon-graphite fiber with epoxy. Since one goal of this 

project is to gain insight into optimal morphing trajectories (wing deformations which 

optimize the vehicle's performance), it is assumed that the vehicle is initially in flight, 

gliding with morphable wings as opposed to performing a flapping movement. (See 

[25] and [24] for projects on flapping flight.) We denote the displacement (which is 

a combination of the vertical air position, or rigid body motions, and small flexible 

displacements in beam motion) of the left beam from its initial equilibrium position 

at time t and position si by u'£,(i,Si) and the corresponding displacement of the 

right beam at time t and position sR by wn(t. sR). Including viscous and structural 
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damping, control, and aerodynamics in the beam equation yields the following model 

pAwL(t, sL) + 7iwL( i , sL) + 7 2 / ^ " ( i , SL) + EIw'^'(t, sL) 
9 (3.8) 

= b{sL)uL{t) + — Ce, 

for 0 < sL < £i, t > 0, and 

p,4ri>fl(i, sR) + nwR{t} sR) + l2lwR{t, sR) + EIw'R"(t sR) 
•> ( 3 - 9 ) 

= b{sR)uR(t) + — Ce. 

Since this model is designed for flight, it is important that neither beam be given 

favorability. Thus, cantilevering one beam off of the other and using two coordinate 

systems is not applicable here. Therefore, we let £\ + £M < sR < £\ + £M + £2, t > 0. 

d d 

Here w^t^^ = —wt(t,st) and w[(t,sl) = ——w^tjsA with i = L,R for the left or 

right beam, respectively, p is the density of the beam material, A is the cross-sectional 

area of the beam, E is Young's modulus, / is the area moment of inertia of the beam, 

7x is the coefficient of viscous damping, 72 is the coefficient of Kelvin-Voigt damping, g 

is gravity, m& is the mass of each beam, 6Z,(SL) is the control input function for the left 

beam, bR(sR) is the control input function for the right beam, ur,(£) is the controller 

for the left beam, uR(t) is the controller for the right beam, pa is the density of air, v 

is the forward vehicle velocity, c is the chord length of each wing (beam width), and 

Cf is the aerodynamic lift coefficient. 
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Flexible Wings 

o 
t/2 N+r* 1/2-

I >s 

Rigid Mass 
(length £M) w(ts) 

Figure 3.3: MAV model system. 

The aerodynamic lift coefficient applied to this model is the same one derived in 

[14] for a fruit fly model. Although it was derived for a flapping flight insect, it should 

be noted that its relevance also holds in this framework due to the dimensionlessness 

of the lift coefficient and the flexibility of the wings of the fruit fly. The lift coefficient 

model is scaled to the size of the MAV under consideration here by the parameters of 

the dynamic pressure, 0.5pav
2. Together the lift coefficient and the dynamic pressure 

make up the aerodynamic lift force, 0.5pav
2cCe- The lift coefficient is given by 

Ce = 
i i i , i w(t, s) + k$ . , 
k\ + k2 sin ( K3 arctan ( J + k± (3.10) 

where ^1,^2,^3,^4 are the best fit parameters determined from the experimental anal­

ysis in [14]. By equating the lift and weight functions so that the two forces balance, 

some modifications were made to Q . To obtain real solutions and to accommodate 

atmospheric conditions, it has been assumed that A4 = 0, and a new parameter, k$, 

has been included in the model to reflect the vertical wind velocity. 

The boundary conditions applied to these elastic equations arise from standard 

beam theory and are presented in Table 3.1. 
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Table 3.1: Boundary Conditions 

Boundary Condit ion 

EIw'i(t,0) + l2Iw'l(t,0) = 0 

£ / < ' ( * , 0) + 7 2 / < ( i , 0 ) = 0 

EIwR{t. h+£M + £2) + 7 2 / < ( t , £1 + £M + £2) = 0 

EIw'R'{t. £!+£M + h) + 7 2 / < ( t , h + £M + h) = 0 

-EIW'IWT) - 7 2 / < ( M i ) + EIw'R{t.,£1+£M) 
+'Y2lwR(t,e1+£M) = Izw

,
L{tJ1) 

EIw"(t, h) + 72/^L (*> h) ~ EIwR'(t, £r + £M) 
-^2IwB\t, £1 + £M)= mwL(t, (.x) 

wL(t.£l)~wR(tJ1+£M) = 0 

w'L(t.£1)-w'R(tJ1+£M) = 0 

Physical Interpretation 

No bending moment 
at free end, w'l(t,0) 

No shear force 
at free end, w'l(t, 0) 
No bending moment 

at free end, 
<(t,£1 + £M + £2) 

No shear force 
at free end, 

w'R
,(t,£1+£M + £2) 

Difference of bending 
moments at the mass 

location equals the mass 
moment of inertia (Iz) 

multiplied by the angular 
acceleration of the mass 

Difference of shear 
forces at the mass 
location equals the 

mass (m) multiplied 
by the acceleration 

of the mass 
Continuity of deflection 

at the mass location 
Continuity of slope 

at the mass location 

3.2.2 Linear Approximation of the BMB Model 

As is common for nonlinear PDE systems, one may perform a linearization 

about an equilibrium position of the PDE model (by dropping the nonlinear terms) 

and apply tools from distributed parameter system (DPS) control theory (see, for 

example. [30] and [8]). However, results from the eigenvalue analysis presented in 

Section 4.2 indicate that such a linearization is not reasonable for Equation (3.8) and 

Equation (3.9), because a mathematical representation of a linearized system sees 
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free boundary conditions for displacement and slope at the free end of each beam, 

resulting in two zero eigenvalues for the system. Although mathematically these free 

end conditions exist, physically there are two external loads, lift and gravity, acting 

in equal and opposite directions across each beam. As a result, lift and gravity 

provide support for the beams. Designing control on only the linear dynamics of 

the BMB model showed that stability was still an issue. Therefore, it is necessary to 

communicate the existence of these external loads to the linear dynamics of the system. 

The mechanisms used to make this communication are introduced here because the 

upcoming theoretical analysis in Chapter 4 is conducted on the linearly approximated 

system. 

To make the system A operator from Equation (2.1) aware of a weight force 

in the system, m^g is approximated by the following 

m,bg ~ m,bw(t,s). (3-11) 

Further, to provide the A operator with knowledge of the aerodynamic lift force, a 

linear approximation of Ce is calculated using a Taylor series expansion about a zero 

angle of attack. Consequently, it is important to note that this approximation is 

only sufficient for low angles of attack. Then for small angles of attack, the following 

approximation is reasonable and applied here: 

arctan f ' ( M ) + ^ * '^L±th, (3.12) 

Making this substitution into Equation (3.10) yields the following Taylor expansion: 
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0 0 (— -\\n fi2n+l 

Ce = h+ k2k3 V V J r~-
3 Z ^ (2n + 1 ! ' 

n=0 v y 

(3.13) 

iu(i, s) + fc5 
where d = . 

v 

Keeping only the linear term from the expansion yields 

Ce=
kf^w(t,s). (3-14) 

Note that the constant term from the Taylor expansion has been excluded since it 

would not be absorbed into the A operator. 

Substituting Equation (3.11) and Equation (3.14) into Equation (3.8) and 

Equation (3.9) yields the following linear system: 

pAwL(t, sL) + 7 I ^ L ( £ , SL) + j2lwT(t, sL) + EIw'£'{t, sL) 

= b(sL)uL(t) + —wL(t, sL) - —pav
2ck2k3wL(t, SL), 

£\ £\v 

for 0 < sL < £u t > 0, and 

pAwR(t, sR) + nwntt, sR) + l2lwR
n{t, sR) + EIwR"(t, sR) 

= b(sR)uR(t) + —wR(t, sR) - -r—PaV ck2k3wR(t, sR), 
<-2 L2V 

for £j + £M < SR <£i+£M + h,t> 0. 

(3.15) 

(3.16) 

3.3 B e a m - M a s s - B e a m Mode l wi th Piezoceramic 
Patch Actuators ( B M B - P Z T Model ) 

3.3.1 M o d e l Descript ion 

We now make the more realistic assumption that controllers are available via 

piezoceramic patch actuators (alternatively referred to as piezoelectric transducers, 

or PZTs), and we refer to this system as the "BMB-PZT" system. When excited by 

an electric field, the actuators induce a bending moment on the beam. We assume all 
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parameter values and notation are the same as those of the BMB model in Section 

3.2. A graphical representation of the BMB-PZT model can be seen in Figure 3.4. 

It is assumed the patches included on this system are the DuraAct P-876.A15 patch 

transducers, and all patch parameter values included in the BMB-PZT model reflect 

this composition. Additional information about these transducers can be found in 

[1]. This particular patch was chosen due to work done in [6], where it was shown 

that patches requiring high voltages may be employed on small air vehicles without 

compromising weight. 

Patch 

Patch S 

Flexible Wings 

e/2- H < . »1< t/2-

Patch 

= 3 
Patch 

Rigid Mass 
(length^) 

->s 

w(t,s) 

Figure 3.4: MAV model system with piezoceramic patches. 

The model is described as follows: 

[pA + 2cppehpeXpe(sL)} wL(t, sL) 

-cEpe l-h hpe + -+ EI + ̂ cEpe ( -Ah2hpe + ̂ hh% + h3
pe ) XASL) <'(t,sL) 

+ 7 W L ( M L ) + 
2 ' 3 \ 2 r , , 3 , , 2 , J.3 

72/ + ^ccDpe ( -h hpe + -hhpe + hpe ) XASL) wT{t,sL) 

ds\ 
--Epecd3i(h + hpe)xpe(sL) 

mbg 0.bpav
2c 

UV) + — 7, w» ix £1 

(3.17) 
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for 0 < sL < £i, t > 0, with the left beam piezoceramic patch actuator located on 

[si, s2], where 0 < si < s2. The characteristic function is given by 

Xpe(s) 
1 , Sj < s < s2 

0 , otherwise 

(3.18) 

The equation for the right beam follows similarly: 

[pA + 2cppehpexpe(sR)} wR(t, SR) 

+ EI + -cEpe \-hzhpe + -hhz
pe + h% ) Xpe(sR) WR(t, SR) 

+7WR(t, SR) + I2I + ^ccDpe -h hpe + -hh + h XPe(sR WR (t, SR) 
(3.19) 

ds\ 
-Epecd31(h + hpe)xPe{sR) 

mbg 0.5pav
2c 

u(t) + — - —r-Ci. 

for £\ + £M < SR < £\ + £M + £2, I > 0, with the right beam piezoceramic patch 

actuator located symmetrically on [£1 + £M + £2 — s2,£\ + £M + £2 — si\- Here, Epe 

refers to Young's modulus of the patch, ppe is the linear density of the patch material, 

cr>pe is the Kelvin-Voigt damping coefficient for the patch, hpe is the patch thickness, 

d,3\ is the piezoceramic strain constant, V\(t) is the applied voltage to the outer (top) 

patch, and V2(t) is the applied voltage to the inner (bottom) patch. It is assumed 

that the patches are excited out-of-phase, i.e. Vi(t) = —V2(t). 

The boundary conditions applied to these elastic equations are the same as 

those in the BMB model presented in Table 3.1. 
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3.3.2 Linear Approx imat ion of the B M B - P Z T Mode l 

Applying the same linearization from Section 3.2.2, the linearized BMB-PZT 

is described as 

[pA + 1cppehpexVe{sh)\ wL{t, sL) 

+ EI + ^cEpe (hl2hpe + hh2
pe + h3

pe) Xpe{sL) mi/, \ 
WL \t,SL) 

+llWL(t,SL) + 
2 / 3 3 \ 

72/ + -ccDpe ( -h2hpe + -hh2
pe + h3

pe J xPe(sL) <'(t,sL) (3.20) 

ds\ 
-Epecd3l(h + hpe)xpe(sL) u(t) + —wL{t.sL) 

0.5 
pav

2ck2k3wL(t,sL), 

for 0 < sL < £1, t > 0, and 

[pA + 2cppehpeXpe(sR)} WR{t, SR) 

+ EI + ^cEpe (-h2hpe + hh2
pe + h?p\ Xpe(sR) 

+llWR{t,SR) + 

WR"{t, SR) 

2
 ' 3 . 2 L , 3 , ^ 2 , ,,3 72/ + -ccDpe ( -h hpe + -hhpe + hpe ) xpe(*i?) 

4 

Epecd31(h + hpe)xPe(sR) 

WR(t,sR) (321^ 

d2 r 1 
'"ds\ 
° - 5 2 , , • / 

-~—paV ck2k3WR{t,SR), 
£•& 

uv) + -rwR(t,sR) 
£2 

for £M<sR<£1+£M + £2,t>0. 



CHAPTER 4 

THEORETICAL ANALYSIS 

In this chapter we perform a theoretical analysis of the linearly approximated 

BMB system in order to gain insight into well-posedness of the system and the 

attainment of a Co-semigroup. The framework for well-posedness and background 

information for semigroups is provided in Section 4.1. Eigenvalue analysis for this 

problem is shown in Section 4.2. Section 4.3 provides a proof for well-posedness and 

concluding remarks regarding semigroup analysis. 

4.1 Framework 

The approach taken here is motivated by [19] where the well-posedness of two 

multiple component structures (MCS) was validated. One model consisted of two 

beams with an angular connection, cantilevered at the left end, and the second MCS 

consisted of a hub-beam-mass-beam-mass model. Additional work which exploits 

portions of this framework for MCS models can be found in [17], where an Euler-

Bernoulli beam attached to a rotating hub at one end and a mass at the other was 

considered. In [26] a proof for well-posedness is provided for a similar model with a 

Timoshenko beam. 

Much of the general theory for well-posedness can be found in [22] and [20]. A 

summary of the existing theory, including appropriate extensions to damped second 

21 
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order (in time) systems is given in [4], and it is from this work that the general 

framework presented here is abridged. Necessary supplements have been included to 

accommodate the BMB model under consideration. 

4.1.1 Framework for Wel l -Posedness 

Let H and V be complex Hilbert spaces with norms \\-\\H and ||-||v and inner 

products (•, •)H and (•, -)v. Moreover, assume V and H form a Gelfand triple, which 

is denoted by V -̂> H = H* ^ V* with duality pairing (•, -)y» v . Here, H is known 

as the pivot space. By these assumptions V is a dense subset of H and there exists 

a positive constant c such that \\(/>\\H < <" ll^llv for (/) £ V- That is, V is densely and 

continuously embedded in H. By the Riesz Representation Theorem, H is identified 

with H*, where V* and H* denote the corresponding conjugate dual spaces. Note 

that (-, -)v, v is the extension by continuity of (•, -)H from V x H to V* x H. Therefore, 

for each v* G V* we have the representation v*(v) = (v*,v)v, v . 

Since this framework approaches the weak formulation in the context of sesquilin-

ear forms, we next define a sesquilinear form 

Definition 4 .1 . Let H and V be vector spaces over the same field K, where K = IR 

or C A sesquilinear form a on H x V is a mapping a : H x V —> K such that 

for all h, hi, h2 £ H and u, u\, v2 G V and all scalars a, /3, 

(1) &(hi + h2, v) =a(hi,v) + a(h2, v) 

(2) a(h. vi + v2) = a(h, vi) + a(h, v2) 
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(3) a(ah,v) = aa(h,v) 

(4) a(h £3v) = pa{h,v) 

That is, a is linear in the first argument and conjugate linear in the second argument 

Consider the abstract form of a second order (m time) system 

z(t) + Vz(t) + Az(t) = f(t) in V*, 
(4 1) 

z(0) = z0,z(0) = zl 

It was noted m [17] and [19] that to make the appropriate identifications needed to 

exploit this framework, A must be coercive in S First we consider the definition of 

a self-adjomt operator, which is needed to appropriately define coercivity 

Definition 4.2. A densely defined linear operator A D(X) —>• H, with H a Hilbert 

space is said to be self-adjoint iff~D{A) = D(.4*) and A = A*, where A* denotes 

the adjoint of A 

Definition 4 .3 . A self-adjomt operator A on a real Hilbert space H is coercive in 

H if there exists a constant e > 0 such that 

(A4>A)H>eU\\2
H, (4 2) 

for all <p G H 

If A is not if-coercive, a bounded self-adjomt linear operator A\ on H may 

be chosen so that A = A + A\ is coercive, an operator A\ that generates coercivity 

is nonumque and, m fact, there are an infinite number of possibilities for such an 

operator Since A is a bounded perturbation of A, well-posedness of A implies that 

A = A — A\ is also well-posed Further discussion of this involves semigroups and 

thus is piovided later on m Section 4 1 2 
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It is assumed the operators V and A are generated via sesquilinear forms d 

and a That is, 

d{z,ct>) = {Vz){4>) = {Vz,(t>)v,v, (4 3) 

and 

a{z 4>) = {Az){cj)) = {AzA)v,v (4 4) 

Furthermore, we assume a V x V —>• C is a sesquilinear form on V and satisfies the 

following hypotheses 

(HI) For all <j),tj) G V, a(<fi, ijj) = a(tp, 0) That is, a is symmetric 

(H2) There exists a constant £-a such that for all 4>,ip G V 

| | a (^) | | < M^IUMIv (4 5) 

That is, a is continuous 

(H3) There exists a constant c > 0 such that for all 0 G V 

Rea{4>,4>)>c\\4>\\2
v (4 6) 

That is, a is elliptic m V 

The sesquilinear form d is defined to be on a complex Hilbert space V2, where V C 

V2 C H Again it is assumed V2 and H form a Gelfand triple with duality pairing 

( , ) v , V2, and V ^ V2 ^ H = H* ^> V2 ^> V* In this work, however, V2 is taken to 

be V so that solutions may be obtained and the damped model may be appropriately 

considered We assume that d V2 x V2 satisfies the following hypotheses 



25 

(H4) There exists a constant k2 such that for all <j>, x\) G V2 

\\d(<P,iP)\\<h\\<t>\\V2U\\V2. (4-7) 

That is, d is continuous. 

(H5) There exists constants r > 0 and A > 0 such that for all <p G V2 

Red(4>.4>)>c\\(p\\2
V2-\U\\2

H. (4-8) 

That is, d is coercive in V2. 

Finally, we make the following assumption on f(t). 

(H6) The function / satisfies / G L2[(0,T), V*}. 

Then a weak formulation of the system is given by 

(z(t), & + d(i(t), 4>) + a{z(t), 4>) = (/(*), <t>) for all 0 G V, 
(4.9) 

z(0) = zQ, i(0) = zx. 

We can note that Equation (4.1) and Equation (4.9) are the same if (•, •) is taken 

to be {-T^y.y, and we note that (f,cj)}v,v = {f,(p)v,y2 since / G L2[(0,T), V2}. 

Well-posedness is then established by an application of the following theorem. 

Theorem 4.4 (from [4]). If z0 G V, z\ G H, and a, d, and f satisfy (H1)-(H6) 

then there exists a unique solution z to Equation (4-9) (or equivalently Equation 

(4.1)) with z G L2[(0,T),V], z G Z,2[(0,T), Va], and 'z e L2[(0.T),V*]. Furthermore, 

the solutions of Equation (4-9) have continuous dependence on the data (zo,zi,f) 

in that the map (zQlzi,f) —>• {z,z) is continuous from V x H x L2[(0,T),V2] to 

L2[(0.T),V]x L2[(0,T),V2}. 
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4.1.2 Semigroup Discussion 

Now we consider a semigroup formulation of the system under consideration, 

which is needed to guarantee a solution exists to the control problem described in 

Equation (2.1). We begin by considering the following definitions from [21]. 

Definition 4.5. Let X be a Hilbert space. A family T(t), 0 < t < oo, of bounded 

linear operators from X into X is a semigroup of bounded linear operators on X if 

1. T(0) — T, where T is the identity operator on X. 

2. T{t + s) = T(t)T(s) for every t,s>0. 

Definition 4.6. A linear operator A defined by 

^ / ,N f , . T(t)x — x 
D(A) = < x G X : hm —^ exists 

and 

T(t)x - x d+T(t)x 
Ax = lim 

t-s-o+ t dt 
forx G T>(A) 

is the infinitesimal generator of the semigroup T(t), where D(«4) is the domain 

of A. 

Definition 4.7. A semigroup T(t), 0 < t < oo, of bounded linear operators on a 

Hilbert space X is a strongly continuous semigroup of bounded linear operators if 

lim T(t)x = r for every r G X. 

A strongly continuous semigroup of bounded linear operators on X will be called a 

semigroup of class Co or a CQ-semigroup. 

For additional discussion of semigroup theory and applications to control 

systems beyond the scope of this work, one should consult [21] and [11]. To consider 
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a semigroup formulation, we must consider the first order form of Equation (4.1) or 

Equation (4.9) which is 

l[t) = Az(t) + F(t) 
(4.10) 

i(0) = zo, 

and we cite the following theorem. 

Theorem 4.8 (from [4]). Under hypotheses (H1)-(H5) on a and d, the operator A 

generates a Co-semigroup T(t) onV x H and satisfies \\T(t)\\n < ext for any A > Ao-

Finally, we revisit the case in which A is not coercive in H. We note a converse 

argument can be made that if A is the infinitesimal generator of a Co-semigroup then 

Equation (4.10) is well-posed, and the same can be said for Equation (4.1). (See 

pages 86 - 90 of [29].) By applying the following theorem, we can infer that if A is 

well-posed then so is A = A — A\. 

Theorem 4.9 (from [21]). Let X be a Banach space and let A be the infinitesimal 

generator of a Co-semigroup T(t) on X satisfying ||7"(f)|| < Mew l . If B is a bounded 

linear operator on X, then A + B is the infinitesimal generator of a Co-semigroup 

S(t) on X satisfying \\S(t)\\ < Me^+M\\B\^. 

4.1.3 Addit ional Theorems 

Here we cite some additional theorems which are useful for conducting the 

analysis described in Section 4.1.1. 
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Lemma 4.10 (from [7]). (Fundamental Lemma of the Calculus of Variations). 

Part A. If a(-) is piecewise continuous on [a,b] and 

<-b 

ct{x)rf(x)dx = 0, (4.11) 

for all rj(-) G V0 = {n(-) piecewise smooth on (a, b) : n(a) = 0, n(b) = 0} then there is 

a constant c and a finite number of points a < x\, x2, , xp < b in (a b) such that for 

all x G (a, b) with i ^ i „ i = l , 2 ) . . , p 

a(r) = c (4.12) 

Part B. Conversely, if a(-) and /3(-) are piecewise continuous on [a, b] and 

rb 

{a(x)-y(x) + P{x)i{x))dx = 0, (4 13) 

for all 7 G VQ, then there is a constant c such that for all x G (a, b) 

P(x) = c+ a(s)ds. (4.14) 
J a 

The converse also holds. In particular, fi{) is piecewise smooth and at points r where 

a(-) IS continuous 

P'(x) = a(x) (4.15) 

Theorem 4.11 (from [22]). If a is a continuous, V-elliptic sesquilinear form on V 

then D(A) is dense in V and hence dense m H 

Theorem 4.12 (from [3]). Let A and B be self-adjomt operators on D —>- H Then 

A + B is self-adjoint. 
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4.2 Eigenvalue Analysis 

To obtain solutions to the eigenvalue problem of the linearized BMB model, 

some simplifications were made. Both a single free-free beam model and a model 

which consists of two beams connected at a point mass were examined. The beam-

point mass-beam analysis is presented here. It is important to note that the dynamics 

of the beam-point mass-beam system are the exact same as the beam-rigid mass-beam 

system, with a rigid mass merely creating a spatial separation for the two beams. 

Furthermore, since damping ultimately has no influence over the eigenvalues of the 

system, it is reasonable to analyze the undamped model here. 

Consider the uncontrolled, undamped abstract form of (3.8) and (3.9) con­

nected at a point mass. Written in second order form, we analyze the following: 

- (+\<EI i'»(*\ mb9 0-5pgV2cCe U l „ , 

for 0 < sL < £/2 and 

for £/2 < sR < £. The eigenvalue problem under consideration for this system is 

^L'(SL) = XMSL) and ~VR(SR) = A^(s^), (4.18) 

where A represents the eigenvalues and ipi with i = L.R corresponds to the natural 

modes, or eigenvectors of the system. Due to the complexities in obtaining solutions 

to the eigenvalue problem, the cases when A > 0 and A < 0 are not considered here. 

Let A = 0 for both beams. We seek to determine any nontrivial solutions 

to ft if any such solutions exist. This system is subject to the following boundary 
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conditions, as obtained from Table 3.1. (Note for a point mass IZ,£M = 0.) 

<p'L{0) = 0, <SR(i) = o, 

^ ( 0 ) = 0. ^ ' W = o. 

(4.19) 

<pL(£/2) = <pR(t/2), v/L{£/2) = ip'R(£/2), 

vim) = Mm, sum) = ̂ my 
The general solutions to (4.18) are 

tPL(sL) = c1 + c2sL + c3s
2

Ij + c4sl (4-20) 

and 

^R(SR) = d1 + d2sR + d 3 s | + d4sfj. (4-21) 

Applying boundary conditions, we see that c3 = d3 = c4 = d4 = 0 and ci = di = c2 = 

d2 = free. Thus, the system contains two zero modes. These zero modes result from 

the free end conditions (or, more clearly, the lack of any cantilevered conditions) for 

displacement and slope. 

4.3 Wel l -Posedness of the B M B System 

In this section we use the results of Section 4.2 to investigate issues of well-

posedness of the linearly approximated BMB system with a rigid mass. 

Given real Hilbert spaces V and S, we choose the state space S to be S = 

L2[0,£i] x L2[£1+£M-£I + £M + £2] X IRx IR. The strong form of Equation (3.15) and 

Equation (3.16) with boundary conditions from Table 3.1 is listed below; equations 

containing acceleration terms are written fiist 
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pAwL(t, Si) + 7iwL( i , sL) + -j2Iw^(t, sL) + Elw'^'it, sL) 

h ( \ i4\^mh - it \ 0.5pgV2ck2k3 . 

= 0L{sL)uL{t) + —WL(t, Si) WL(t, Si). 
£\ £\v 

pAwR(t, SR) + llWR{t, SR) + -f2IwR(t, SR) + EIwR(t, SR) 

h t \ (*\JL.
 mb - ft \ °-5PaV2ck2h . ,. x 

= bR{SR)uR(t) + —WR{t, SR) WR[t, SR), 
£2 £2V 

EIw'f!(t,£1) + l2Iw'^(t,£1) - EIwR\t,£1+£M)-l2lw'R'{tJi+fM) = mwL(t,h), 

-EIw'Kt, £x) - 72Iw'l(t, h) + EIw'R(t, £, + £M) + >y2IwR(t, h + £M) = Izw'L{t, £{), 

EIwl(t,0) + j2Iw'[(t,0) = 0, 

EIw'Z(t,0) + l2Iw'L
/(t,0) = 01 

EIwR(t, h + £M + £2) + l2lwR{t, h+£M + £2) = 0, 

EIw"R\t, h + £M + £2) + l2lwR\t, h + £M + £2) = 0, 

wL(t,£1)-wR(t,£1+£M)=Q, 

w'L(t,£1)-wR(t,£1 + £M) = 0, 

(4.22) 

for 0 < Si < £1, t > 0, for £\ + £M < sR < £j + £M + £2, and t > 0. These equations 

can be written as: 

mb\ . . / 0.5pavck2k3 d4 \ d4 

— • ^ — + v - - • • 

h{sL)uL{t), 

pA- — j wL(t,sL)+ I 7i + - j + 7 2 / d s T j 6jdt^L) + EI-^-wL{t,sL) 

( 4 mb\ , s ( Q.bpavck2k3 d4 \ . , . ^ r d4 

( P-4 — — J w f l(t, sfl) + I 71 H ^ h- 7 2 / ^ 4 - J ™M*, Si?) + EI-7T^WR{t, SR) 

= bR(sR)uR(t), 
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d3 d3 

mwL{t, £i) - EI—£WL{t, £x) - ^2I—jwL{t, £x) 

d3 d3 

+EI—TwR{t, £1 + £M) + ^TrjWRit, h + £M) = 0, 
OSR 0SR 

IzTT-WLit,^) + EI—jWL(t, £^+721-7^10^^1) 
osL dsz

L dsz
L 

d2 d2 

EI-^2WR^^ £i + £ M ) - 72lj^-wR{t. h + £M) = 0. 
d . ^ '- —' '-a ' i t si 

£/ |U( t , 0) + 7,/|U(.,0)=0, (423) 

d3 d3 

EI-^-jwL(t, 0) + 7 2 J — ™ L ( t , 0) = 0, 

Q2 M 2 

EI-^WRit, h+£M + £2) + 72ljrYWR(t, £1+£M + £2) = 0. 
osR dsR 

d3 d3 

EI-E~3WR^ £^ + iM + £2) + ^IjrjWRit, £X+£M + £2) = 0. 
OSR 0SR 

wL{t,£1)-wR(t.£1+£M)=0. 

u>z,(t, £1) - T7-WR(t, £x + £M) = 0. 
d s i ' dsR 

We now rewrite as 

• /. N . I 7i 0 5pavck2k3 72/ d4 . . 
MM*- s i ) + 7 r + 7T—A r + 7 T T T T WL{*, SL) 

i^pA - ^ J {^pA - mb) £pA _ mA ds\ 
EI d4 1 

-wL(t,sL) = -. ^bL(sL)uL(t), 
PA - ^ ) **L [pA - **) 

/, N . I 7 i . 0.5pauck2k3 72/ d4 . . 
< W , si?) + 7 r + To—A V + 7 \TT WR(1> SR) 

[pA-r-^j {t2pA-mb) (pA_raAds4 

WR(t,sR) = ^bR(sR)uR(t), 

J?) ds« (PA - 1 

(4.24) 
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ill d 3 'Vol d 3 

wL(tJi) - —jn;WL{t,£i) + — ^ ^ ( M i + M 
Tit CJS j Tit CJS D 

EI d3 EI d3 

wL{t, 4 ) + — - 7 r r w R ( t , £x + £M) = 0, m ds\ ' m dsfj 

d 72 / d2 72 J d2 

^L(MI) + - T - ^ T ^ ( ^ ^ I ) J ^ - ^ I M M I + ^M) C7Si J z C7S^ J z C S J J 

p r « 2 rp j o 2 

-WL{t,£l) ~ ^ " ^ ( M l +?M) = 0 , 
Jz ds2 72 ds2

R 

c\2 o 2 

7 2 / T T i uz , (« , 0) + EI—^wL{t. 0) = 0, 
C S ^ < 7 S L 

d3 d3 

72/TT3-^L(t, 0) + EI—^wL{t, 0) = 0, 
< 7 S L OSL 

Q2 Q 2 

l2l-^YWR(t, £i+£M+ £2) + EI—^WRit, £x + £M + £2) = 0, 
OSR OSR 

d3 , , , „ d3 

7 2 / T 7 T ^ ( t , ^ + £M + £2) + EI—^WRit, £x + £M + f2) = 0, 
OS r> O S n 

I / > L ( M I ) - ™ * ( M I - | - £ M ) = 0, 

d d 
-U7L(f, £x) - - — w R ( t , £1 + £M) = 0. d s i dsR 

The state is z(Z) = (Zl{t), z2(t), z3(t), z4{t)) in S, with 2 l(f) = wL(t, •), z2(*) = «>«(*, •). 

z3(t) = u>i(t,fi), and z4(t) = w'L(t.£\). The inner product on 5 is 

(z,z)s = ((pA- *%) Zl,~Zl) +((pA- a ) z2,z2) 

+7712:323 + / 2 Z 4 Z 4 -

Taking an inner product of the first four equations in Equation (4.24) with a suffi­

ciently smooth <f> = (01, 02, 03- 04) yields the abstract form 

2(f) + Vtoz{t) + A>0z(/,) = Bv(t), (4.26) 



with 

VPnz = 

and 

7i 0.5pavck2k3 

(pA - ^ ) ^PA " mb) 

0 5pavck2k3 

+ 

7l UOPa' 

(p>4 - f^) (^M 

72 ̂  

(M - ?) 
72 ̂  

d4 

34 

d4 

mb PA-^ dsR 

l2l_&_ 

m ds\ 
zi(£i) 

I2I d3 

777 8sR 
Z2(£I + £M) 

7 2 / d2 72/ d2 

j ^ i w ) —r~"H72"z2(^i 
/* 9s 7 ds2 

i z USR 

*M) 

* ( • ) 

* * ( • ) 

34 

(4-27) 

AtoZ = 

EI 

P A - ^ 

EI 

d4 

d4 

J5J d3 

777 ds\ Zl{h) 

dsR 
* 2 ( - ) 

£ / d3 

777 ds3^ 
Z2(£I+£M) 

EI d2
 l0 . EI d2 .„ „ , 
-ZI{£I)~—TTTZ2(£1+£M) 

h ds\ 1 ds2 
iz UbR 

(4.28) 

and D ( A 0 ) = {zES:Zle H4{0, £x], z2 e E\£x + ^M , ^ + £M + £2], 

zi(*i) - 23 = 0, 24 - z\{£x) = 0, 23 - z 2 (4 + £M) = 0, 4 ( 4 + £M) - 24 = 0} 

Due to the eigenvalue analysis presented m Section 4.2, Ae0z = 0 has a 

nontnvial solution and (Ae0z,z)s = (0.z)s = 0 ^ e H^Hs f° r e > 0. Therefore, Ae0 

is not coercive m S. Consequently, we seek to choose a bounded, self-adjomt linear 

operator A\ so that A = Ae0 + A\ is coercive m S. According to [17] it is natural 

to choose an operator whose null space is the orthogonal complement (m S) of the 

eigenspace of Ae0 corresponding to nonpositive eigenvalues That is. it is natural to 

choose an operator that corresponds to one's mode problem, and m [17], [19]. [26] this 
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was the motivation for choosing A\. However, such an approach is not natural for 

the BMB model under consideration due to the fact that the mode problem occurs 

at the essential boundary conditions, and only natural boundary conditions can be 

included in the Ae0 operator via the finite element method. 

Let A\ = X, where X is the identity operator. Note that there is no physical 

significance to this chosen operator. Clearly X is linear, bounded, and self-adjoint. 

Furthermore, X is positive definite for any z G S. Then V = V2 = T>(A/ ) = T)(Ae ) 

which is contained in the set {z G S : z4 G H2[0, £1], z2 G H2\£i + £M, £\ + £M + 4 ] , 

zi(£i) - z3 = 0, z4 - 4 ( 4 ) = 0, 23 - z2(£x + £M) = 0, z'2{£4 + £M) -z4 = 0}, and 

~D(T>e0) = D(Ag0). The inner product on V can be taken to be 

(z,z}v = (AZZ.AZZ) 

= (Az,z) (4-29) 

= (EIz1, z1 )L2[oA] + (EIz2. z2 )L2ie1+iMi1+£M+t2} + \A\z, z)s . 

To verify coercivity, we must first verify that A is self-adjoint. 

Theorem 4.13. A is self-adjomt with respect to the inner product on S. 

Proof Wo begin by first showing that Ae0 is self-adjoint. The density of the domain 

of Ae0 is verified later on. This proof follows similarly to the self-adjointness proofs 

provided in [19], [26], and [18]. We must determine A}Q and T)(A}0). Assume there 

exists a $ G S such that 

{Ae0z, $ ) s - (2 , $} = 0 for all 2 G B(Aio). (4.30) 
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Note that $ belongs to T>(A}0) if there exists a <f> G 5" so that Equation (4.30) holds 

(see [13]). Expanding this in terms of the inner product on S yields 

EI z';"(sL)MsL)dsL + EI z'2
m{sR)(j>2{SR)dsR 

Jo h\-I+IM 

-Elz'l'i^fo + EIz'2
n{£x + £M)(/>3 + EIz'[(£x)fa - EIz!2\£x + £M)04 

+ pA mb 

pA-—^\ j 21(si)01(sL)dsL 

Z2{sR)4>2{sR)dsR + 7772303 + IZZ4<j)4 

(4.31) 

0. 

Next integration by parts (coupled with the Fundamental Theorem of Calculus) is 

applied four times to the last two integrals in Equation (4.31). Note the parameters 

used below are the same for both the left and right beams, although due to the 

separate spacial domains this is not necessarily the case, but provides an ease of 

notation. 

EI I' z'l"(sL)MsL)dsL + EI [ 
Jo Jei 

ei+eM+e2 

+iM 

z2"(sR)(p2(sR)dsR 

-Elz'i'Wdfo + Elz'fih + £M)(f)3 + EIz'Kh)^ - EIz'2\£x IM <P4 

pA mb 
SL 

z\{sL) I 0i(t)d/. ZI(SL) I / 0i(Od<rdi 
o 

+Z"(SL) / / / 4>\{x)dxfcdi 
Jo Jo Jo 

0 Jo 
h 

0 
[SL [I- /"? [X 

<M / / / / 4>l{T)dTdXd<;dL 
Jo Jo Jo Jo 

i rsL n f? rx 

o Jo Jo Jo Jo 
0i (r)dr dxdqdiz'"1(si)dsi 

A m b 

pA- — 
£2 

SR 

4(s*) 
SR 

Z2(SR) I 4>2{l)dl 

(j)2{<,)d<,dt 
II+IM Jh+^i 

h+t-M+t.2 

ei+(M+e2 

il+h 

(4.32) 



[sR [i [•; 

+4(sR) / / / Mx)dxd(>dt 
Jf-x+t-M Jei+eM Jh+f-M 

II+ZM+I* 

ei+eM h+eM+t2 
[SR [i [<; [X 

-z2(sR) / / / / 0 2 (T )d rdxd^d i 
Jh+tu Jei+£M Jti+eM Jd+tM 

h+l-M+t-2 [SR [t [<; [X 
+ I / / / / (t>2(T)drdxd<;diz2"(sR)dsR 

£I+£M 

llll I 

-mz34>3 + Izz4(p4 = 0. 

Rear rang ing t e r m s yields: 

[EIZ'{"(SL)MSL) 

mb 
SL [i- [<; [X 1 

pA-'-j^\ I / / / 0 i ( r ) d r d x d ? d i 2 i " / ( s i ) dsL 

£\ J Jo Jo Jo Jo 

[EIZ'2"XSR)<P2{SR) 

pA - ^) r f f f Ur)drdXd<;dizT{sR) 
L2 J JiL+eM Jd+tM Jti+eM Jh+i-M 

i 

~[pA 
nth 

dsf 

SL 

zi(sL) / 0 i ( t ) d t 
rSL [i 

ZASL) I / (pii^d^di 

o 
[SL [i- [<; 

+ZI(SL) / / / <i>i(x)dx<kdt 
Jo Jo Jo 

0 Jo 

£i 

0 

[SL [i- [<; [x 
-z'"(sL) / / / / 0i(7")drdxd?dz 

Jo Jo Jo Jo 0 

-ipA 
mb 

r-SR 

Z2(SR) / 4>2{l)dL 
Jt-l+iM 

Zl+tM+t2 

''SR 

- 4 ( s « ) / / faiAdqdi, 

h+t-A 
SR 

+Z2(SR) / / / <p2(x)dxd^di 
Jl-l+^M Jh+tM Jh+lM 

h+eM+e2 

/

SR [L [<; [X 

/ / / fcirfdrdxd^d 
i + 4 ; Jti+hi Jh+hi Jh+eM 

IIUM 

+ \-EIz^\£x) + EIz'2"(£\ + £M)} 03 + [Elz'Kh) - EIz'^I, + £M)} <p4 

7772303 + IzZ4(p4 
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Next we consider the set D4 = {2 G S : z4 G HQ[0,£I], Z2 = z3 = z4 = 0} C D ( ^ 0 ) . 

Then Equation (4.33) holds for all 2 G D4, and 

zi W 
sL r' rs rx 

EI<pl{sL)-[pA~-V^) / / / / M^drdxdsdi 
0 Jo Jo Jo 

dsi 

(4.34) 

0. 

Applying Lemma 4.10, we conclude 

/ rn,\ [SL [L /"« [X 

'0 Jo Jo Jo 

for some constants a, b, c, and d. Consequently, 

EIMSL)-IPA--^) j j I j 0! (T)dTdXdqdi = as3
L + bs2

L + csL + d, (4.35) 

<h(sL) 
PA-Jf 

EI 

sL ri ri rx 
0x (r)dTdxd(,di + as3

L + 6si + csL + d. (4.36) 
0 Jo Jo Jo 

4 This implies that 0i G / / , and 0i can be differentiated four times to obtain 

C(-'i) EI 4>i (4.37) 

or 

# / 

M-? 
CO*) (4.38) 

Similarly, D ( ^ 0 ) includes the set D2 = {2 G S : z2 G J7Q [4 + £M, 4 + £M + £2} 

z\ = z3 = 24 = 0}. Therefore, 

fl+^M+^2 

'(Sfl) [SJ02(si?) 

PA-"? 
SR ft. 

2 / Jh+l-M Jh+f-M Jtl+eM Jti+lM 

« rx (p2(r)dTdxd^di dsR = 0. 
(4.39) 

Again we apply Lemma 4.10. 

EIMSR) ~\pA-^r mb 
£• 

SR 

4>2(T)dTdxd<,di 
2 / Jti+hl Jtl+tM Jil+tM Jh+hl 

a0sR + b0sR + CQSR + d0, 

(4.40) 
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for constants a0, bo,c0, and d0. Then the following holds: 

(pA - f^ 
4>2{SR) 

EI 

SR 

ti+eM Jti+tM Jh+f-u Jh+f-M 
^{rfdrdxdsdi 

+aQsR + bQsR + c0sR + dQ. 

Thus 02 G H4 and 02 can be differentiated four times to yield 

<t>2"(sR) 

PA-^ 12 

EI 

(4.41) 

(4.42) 

or 

EI 
>2 = 

( M - ^ 
4>2'(SR). (4.43) 

We now substitute Equation (4.38) and Equation (4.43) into Equation (4.31). 

[h [h+tM+t2 
EI z;;"(sL)MsL)dsL + EI z2"'(sR)92(sR)dsR 

Jo Jh+hi 

-EIz'{'{£1)<j)3 + EIz'2"{£1 + £M 

mb 

b3 + EIz'[{£x)<\>4 - EIz'2\£x + £M)J>4 

pA 
1 EI 

ZI(SL)-? ^-<j)'"'{sL)dsL (4.44) 

pA 
1b\ 

2 ) 
/ Z2(SR) . , 02 {sR)dsR 

JI1+IM [pA - f ) 

-7772 3 03 - IzZ4(f>4 = 0. 

Integration by parts is applied four times to the first two integrals in Equation (4.44). 

EI 21(si)0'1 '"(si)dsi + E / / z2{sR)cp'2
m{sR)dsR 

Jo Jti+hi 

pA~ 
mb 

£2 

-EI 

rh+CM+f-2 

ii+e-M 

h 

z2{sR) 

*1 

EI 

P*-J? 
(j)2"(sR)dsj 

(4.45) 

4"( s7:)0i(si) - 2"(sL)0;(sL) + -iMdiisL) 
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-2i(Si)0'1"(Si) 

+z2{sR)cf>2\sR) 

EI z2{sR)4)2{sR) 
£i+eM+e2 

-z2(
sfl)02(

srt) 

ei+eM+e2 

ti+hi 

ti+tM+e2 

h+t-M+t-2 

z2(sR)(t>'2"(sR) 

£i+eM 

ti+eM 

Elz'l'i^fo 

+EIz'2"{£t + £M)4>3 + EIz'[{£4)4>4 - EIz'2\£4 + £M)4>A ~ mz34>3 - Izz4~4>4 

= 0. 

The first four terms in Equation (4.45) cancel. Applying properties of D(Ae0) to 0 

cancels additional terms, and Equation (4.45) can be regrouped to become 

-£X4"(O)0i(O) + £ / 4 ' ( ( M ( 0 ) - JB/2i(O)0'1
/(O) + EIZl(0)<t>'l'(0) 

+EIz™{h + £M + £2)<h(£i +£M+ £2) 

-El4(h + 4w + 4)0'2(4 + £M + £2) 

+EIz'2{£x +£M + 4)02 ' (4 + 4u + £2) 

-EIz2{£x +£M + 4)02"(4 + £M + £2) 

+ 23 [£/02"(4 + £M) ~ Elfish) - 77703 

+24 [£/0'1'(4) - ^/02'(4 + £M) - hk 

= 0 

Since Equation (4.46) must hold for all 2 G S, we can infer that 

Z3 

and 

^4 

£ / 0 2 " ( 4 + 4v/) " ^ / 0 l ' ( 4 ) - "703 

EI<f>'i(£l)-EI<p'2
,(£1+£M)-Izk 

0 

0, 

(4.46) 

(4.47) 

(4.48) 

and the remaining terms in Equation (4.46) sum to zero. This implies 
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and 

EI 

777 

EI 

wv 1 + * M #"&)] (4.49) 

— [0 2 ' (4 ) -0T(4+^M)] . (4.50) 

We consider subsets of the domain of Ae0 from which terms of z cancel, and infer that 

B(A*eo) C { $ G S : 0 1 G # 4 [ O , 4 ] , 0 2 e # 4 [ 4 + 4 u , 4 + 4 t f + 4 ] , 

^ ( 4 ) - 03 = 0 , 0 4 - 0 ; ( 4 ) = o, 

03 - Ci>2(4 + £M) = 0, 0'2(4 + £M) - 04 = 0} 

= D ( A ) , 

and the reverse containment is clear. Thus, 

Alp = $ 

EI 

PA-lt 
EI 

4>2'{SR) 

-—07(4) + — 02"(4 + 4w) 
777 777 

^ / l ' ( 4 ) - ^ 0 2 , ( 4 + ^ M ) 

Therefore, T>(A}.) = D ( ^ 0 ) , A*e<& = Aio$ for all $ G D ( ^ 0 ) and At0 is self-adjoint. 

Ae0$ • 

(4.51) 

(4.52) 

By applying Theorem 4.12, A is self-adjoint. • 

Theorem 4.14. A is coercive in S. 

Proof. 

Az.. (z,z)v 

(EIz1,z1)L2^(i^ + \EIz2,z2)L2^(i+l,Mjx+l,M+e^ + (*Ai2, z)s \ • ) 

(EIz", 4'}L2[OA] + (EIz'2\ z'i)L2n1+iM,e.1+hi+i2]
 + @z* 2)s 
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L2[0A 

22 , 22 ; + 7772323 + IZZ4Z4 

L2[e1+eM,e1+eM+e2] 

- (EIz'l, 4 ' )L 2 [CVI] + (EIz2,
 z2)L2{e1+eMA+eM+e2} 

+ ((pA-%)zuZl 

+ ({PA-Jt) 

> e((pA-^)zuZl) 

+e<^M-f^2 2 , 2 2 

= f(^4s 

I ^ I + ^ M A + ^ M + ^ 1 
+ £7772323 + elzz4z4 

e\\z\\z
s for 0 < e < 1. 

D 

Let <3> G V and 2 G D(_/bj0). Next we determine the sesquilinear forms 

associated with A and V = Vg0 + A\. First consider 

(Ae0z, $ ) 5 = (EIz™, 0i)i2[OAl + (i?/4"> & > L 2 [ < 1 + W I + € M + * 2 ] 

-EIZ'{'(£I)<P3 + i?/22"(4 + ^ M ) 0 3 + EIz'[{£x)fa (4-54) 

- E / 2 2 ' ( 4 + ^ M ) 0 4 . 

Integrating by parts twice results in 

(Atoz, $ ) s = (£72'/, 0,
1')i2[OA] + {EIz'2\ 02 '> i 2 l , 1 + W l + , M + , 2 ] 

-JE?/Zi/'(SL)01(SL) 

+ E/22"(Sfl)02(sK) 

EIz'{(sL)4>[(sL) 
0 

ei+eM+£2 

h+h 
EIz'2\sR)<t>'2{sR) 

h+tM+t-2 

h+h 

-EIz'l'(4)03 + EIz'2\£x + £M)^3 + EIz!{{tx)<f>i 

-EIz2\£1+£M)(/>4. 

(4.55) 



This is equivalent to 

(AtoZ, $ ) s = {Elz'i, 0;')i2[oA] + (EI4, ^L^+iMA+tM+h] 

+EIz'.['(£1)M£i) ~ EIz'{'(0)^(0) - s /2; ' (4)0;(4) 

+£/2;'(o)0;(o) + EizZih + £M + 4 )0 2 (4 + £M + £2) 

- £ / 2 2 " ( 4 + 4 w ) 0 2 ( 4 + 4if) (4 

- £ / 2 ^ ( 4 + 4f + 4)0'2(4 + 4* + 4 ) 

+EIz2'(£1 + £M)WI + 4v/) - Elz'i'^h 

+EIz'2"(£l +£M)<p3 + EIz'[(£x)$4 - EIz'2\£4 +£M)<PA-

Regrouping terms yields 

(Aeoz, $>s = {EIz'l 0;')L2[o/l] + (EIz%, <t>'i)L2[h+lMA+iM+l2] 

+ J B / [ 2 ; " ( 4 ) 0 I ( 4 ) - 4 " ( O ) ^ I ( O ) 

-4 (4 )0 ; (4) + 4 W i ( o ) - 4"(^i)03 + 4(^)04] 

+ £ / [4" (4 + £M + 4)02(4 + 4w + 4) 
(4 

- 2 ^ " ( 4 + ^ M ) 0 2 ( 4 + ^ ) 

- 4 ( 4 + 4^ + 4)02(4 + 4^ + 4 ) 

+Z!2\£1+£MW2{£I + £M) 

+ 22"(4 + ^M)03 " 4(^1 + ^M)04] • 

Regrouping further we obtain 

{At0Z, $ ) s = (EIz'l, 0;,)i2[OA] + ( ^ 4 : ^ L ^ + W i + ^ + f c ] 

+ EI [2f(4) (01 (4) " 03) - 4"(O)0l(O) 

+ 4(4) (^ -0 ' 1 (4 ) ) + 4W1(o)] (4 

+EI [22"(4 + £M + 4 )0 2 (4 + £M + 4 ) 

- 4 ( 4 + 4 i 7 + 4 ) 0 ' 2 ( 4 + 4 7 + 4 ) 
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+z2"(£i + £M)(<h-M£i+tM)) 

+ 2 2 ' ( 4 + ^ ) ( 0 2 ( 4 + 4 f ) - ^ 4 ) ] . 

Since $ G V substitutions are made into the boundary terms arising from the 

definition of the state 2 and the boundary conditions for displacement and slope 

at the mass location, resulting in 

(Ae0z, $ ) s = (EIz'l, <f'[)L2[oM + (EIz'l 4>2)L2A+IMAUM+H 

-EIz'l''(0)0! (0) + £X4(O)0;(O) 

+EIz%{£x +£M + 4 ) 0 2 ( 4 + 4 * + 4 ) 

-Elz'Hh + £M + 4 ) 0 2 ( 4 + hi + 4 ) . 

Now consider 

(Veoz,$)s = (7i^i ,0i) i 2 [oA ] + < -p z i , 0 i > 
\ l l I L2\0,h\ 

+ Mz'l", 0 l)L 2 [ o / l] + (71 *2, fo)L2[h+tM/l+tM+i2] 

/0.5pavck2k3 \ 
+ ( 7 22,02 ) 

\ t 2 I L2\11UMA+ILM+12\ 

+ ( 7 2 / 4 " , & > L 2 [ , 1 + W l + < M + * 2 ] - 72/4"(^l)'/)3 

+ 7 2 / 2 2 " ( 4 + 4u)^3 + 72/4(^l )^4 " 72/4(^1 + £M)4>4 

Integrating by parts twice results in 

/-n * \ / ^ \ 1 /®-5PaVck2k3 \ 
(Veoz,$)s = (7^i,0i)i2 [ o ,£1] + ( 7 *i><Pi) 

\ ^ / L2[0A] 

+ (7l^2,02)i2 K l +^M^+^M +^2 ] 

0.5pavck2k: 3 

^2 / i2[<i+4iA+4/ +4] 

-72/4 ' (A)03 + 72/4 ' (^ l + ^A/)03 + 72/4(^l)<i>4 

-72 /22 ' (4 + 4 / ) 0 4 + (l2lz'l^[)L2\0A\ 

(4.59) 

(4.60) 

Z2A2) (4-61) 



+ (72/4, <P'2r)L2A+eMA+iM+i2} + 7 2 /4"(4)0i (4) 

-7 2 /4 ' (o)0i(o) - 7 2 / 4 ( 4 M ( 4 ) + 72/4(0)0; (0) 

+72/4" (4 + ?M + 4 ) 0 2 ( 4 + £M + 4 ) 

- 7 2 / 4 " ( 4 + ^ M ) 0 2 ( 4 + ^ M ) 

- 7 2 / 4 ( 4 + 4 / + 4)0'2(4 + hi + 4 ) 

+ 7 2 / 4 ( 4 + ^ ' M ) 0 2 ( 4 + M -

Regrouping terms yields 

(V£oZ, $ ) s = (71^1, 0l)i2[OA] + (71^2, 02)i2 [^+ £ M / ] + 4 f + £ 2 ] 

/0.5pavck2k3 \ 
+ ( T * i , M 

\ ^ / L2[0/i] 

/0.5pavck2k3 \ 
+ ( ^ ^2,02 ) 

\ C2 / i 2 [ ^ 1 + ^ M ^ 1 + £ M + £ 2 ] 

+ (72/4> 0I)L2[OA]
 + (72/4> (P2)L2A+e.MA+tM+t2] 

+72/ h 4 ' ( 4 ) 0 3 + 4"(4 + 4v/)03 + 4(^)04 

- 4 ( 4 + M 0 4 + 4"(4)0i (4) - 4"(o)0i(o) 

- 4 ( 4 ) 0 ; (4) + 4(0)0 ; (0) 

+ 4 " ( 4 + ?M + 4 ) 0 2 ( 4 + £M + 4 ) 

- 4 " ( 4 + 4 , / ) 0 2 ( 4 + 4v/) 

- 4 ( 4 + ^ / + 4 ) 0 2 ( 4 + 4 / + 4 ) 

+22 ' (4+4v/)0'2(4 + 4v/)]. 

Regrouping further we obtain 

(Ve0z, $ ) s - (7i-i>i)i2[0 ,^i + (7i22- &)L2[*1+,A,,,1+,w+,2] 

'0.5pa7jcA'2A;3 

(4 

(4 
•-1,01 

' L 2 [0 / i j 
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0.5pavck2k3 
z2,<p2 , 

' L2A+iMA+tM+h] 4 

+ (72/2^ 0;')i2[OA] + ( 7 2 / 4 , 02>L2[£1+W1+£M^2] 

+ 7 2 / (2 ;" (4)(0 l (4) - 03) + 4 " ( 4 + 4 ^ ( 0 3 " 02(4 + £M) 

+2f(4)(04 - 0'(4)) + 4 ( 4 + 4w)(02(4 + £M) - <t>*) 

-2;"(o)01(o) +4(0)0; (o) 

+4" (4 + £M + 4)02(4 + £M + 4) 

- 4 ( 4 + £M + 4)0'2(4 + £M + 4)) • 

Since $ G V substitutions are made into the boundary terms arising from the 

definition of the state 2 and the boundary conditions for displacement and slope 

at the mass location, resulting in 

(Veoz, $ ) s = (7 l2!, 0 i ) i 2 [ o / l ] + (7122, h)L2A+iMA+eM-

'0.5pavck2k3 
+ ( ~0 ^i,0i 

l l I L2[0A] 

0.5pavck2k3 

M 

(4.64) 
' L2[e1+eMA+^M+e2] 

+ (l2Iz'l 0; ,) i2 [ o / l ] + ( 7 2 / 4 , <P2)L2A+iMA+eM+t.2] 

-72/4'(o)0i(o) +72/4(0)0; (0) 

+72/22"(4 + £u + 4)02(4 + fM + 4) 

- 7 2 / 4 ( 4 + £M + 4)0'2(4 + £M + 4) • 

A weak formulation for the system is 

(z(t),*)s + d(z(t), <f>) + a(2(t), <f>) = (/377(t), $ ) s , (4.65) 
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-\T 

M ^ B L 5 ^ ^ ^ ; 0 ; 0 where u(t) — [vL; uR; 0; 0]T , B 

forms d (2 (4 , &) and a(z(t), <f>) are defined to be 

d (2 ( i ) ,$ ) = 

, and the sesquilinear 

0.5pa7jcA,2A;3 
7i + -( I 21,01 

tl J I L2[0A) 
0.5pauck2k3

s 

+ ( I 7i + 7, I Z2, <P2 
2 / / L2{h+tMA+^M+H 

(4.66) 

+ ( 7 2 / 4 , 0I)L2[O,£1] + ( 7 2 / 4 , (t>2)L2A+iMA+h •+e2] 

and 

a (2( t ) ,$ ) = {EIz'l.(j)'l)L2[0A] + (EIz'l 0 2 > L 2 [ £ 1 + W I + ^ + ^ ] 

To show the model is well-posed, we consider the system 

(4.67) 

(z(t), $> s + d(i(f) , <f>) + a(2(/), d>) = (/3T7(0, * ) s , (4.68) 

where the sesquilinear forms are defined as follows: d(z(t), <f>) = d(2(t), $) + (Aiz, <p)s 

and a(2(t), <E>) = a(z(t). $) + ( ^ z , 0 ) s . 

T h e o r e m 4 .15. TTie sesquilinear form a(0. 0) satisfies (H1)-(H3) from Section 

4.1.1. 

Proof. Symmetry holds due to the fact that a is defined via an inner product on a 

real Hilbert space. Continuity follows from an application of the Cauchy-Schwarz 

inequality, 

|a(0.7/011 = I K 0 ^ / V l l < c | | 0 | U H | y f o r C > l 
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Coercivity is established by the following: Let A = 0. 

Re a( a 

= (EIc^'l 0 ,
1

/)i2[o,, l ] + (EI<P'l <t>,2r)L2ie1+iMA+tM+i2] + (Arf- <t>)s 

> c (EI<p'l 0 ,
1 ) i 2 [ O A ] + c (EI</>'1 ^L^+^A+tM+12] + c (A^ ^s 

= C ' '•> Vlv 

= cll0ll y 

for 0 < c < 1. Therefore, a(0, 0) is also elliptic in V. 

An application of Theorem 4.11 shows that A has dense domain. 

(4.69) 

• 

Theorem 4.16. The sesquilinear form d((f>,ib) satisfies (H4)-(H5) from Section 

4.1.1. 

Proof. Again continuity follows from the Cauchy-Schwarz inequality, 

d(0,7/>) 7i+ °-5Tfc2fc3) 0i,^i 
1 / ' L2[0A 

+ / h + 0 . 5 p a v c k 2 k 3 \ ^ i p 

+ (72/0;',^I)L2[OA] + (72/02,^)^+^+^+^] 

+ {Ai(f>,ip)s 

7i 
0.5pafc/c2fc3 

01,̂ 1 
L2[0A 

+ 
4 i + o.5p^2fc3\02^\ 
V t2 J / L2[£i+eMA-

(4-70) 

2[ei+tMA+tM+e2} 

+ b M ' > < > L 2 [ 0 A ] + (72/02 ^2)/,2[£1+^ /A+£M+f2] 

+ ((^-?K*4,M 
+ <(M-^)*a.*)lt„i. 

+777 037/'3 + 4040^4 

2[ti+eA1A+eM+t2] 
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7 i + e 
0.5Pavck2k3+pA_r^\(j)i^i 

+ PA-^) 02,7/̂ 2 

L2[0,< 

i Q.5pai;cfc2fc3 
' ! ~r" £2 

L2\h+f-A4 A+hi+^2) 

+ ( 7 2 / 0 ; ' , O i 2 [ O A ] + {72/02, ^2)L2A+eMA+iM+£2] 

+ 7 7 7 0 3 ^ 3 + ^ 0 4 ^ 4 

< c (ElfiM^M + WM^+Wi +fe+^A 

M - y ) 0i,^i 
i 2 [ 0 A ] 

L2[h+tM,h+l2+lM\ 

+7/703103 + 404'04 

(EI4>'IML2[OA\ + ( ^ M ^ U ^ + W ^ ^ M ] 

+ (^!0,^)5 

= C | | (0 /0 ) y | | 

< c\\ct>\\vU\\v, 

( J2 . 0.5pQ7Jc/c2 /c3 7776 . 
lor c := max < —, ^ -\ V pA — >. Next we verify both coercivity 

{E 4 4 
and ellipticity. Let A = 0. 

Red(<p,<f>) = d (0 ,0 ) 

ri01^0l)i2[OA] + (7l02,02)i2 [ f l +^M / l + £ M +^2 ] 

0.5pavck2k3 

; 1 / L2[0,i 

^2,^2 
0.5pa?jcfc24j 

^ 2 / L2A+£MA+eM+t2\ 

(l2I<P'l 0 ; '} L 2 [ M l ] + (72/02, ^L.A+^AUM+h] 

Ml0,0)S 

(4.71) 
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> c (EI </>'{, 0; ' )L2[OA] + c (EI4>'l 4>2)L2A+lMA+tM+l2] + c ( A 0 , 0 ) S 

= C ( 0 , 0 ) y 

= cHWv, 

for <? = ] | . Therefore, d(0 , 0) is also elliptic in V. D 

By Theorem 4.4 Equation (4.68) is well-posed, and thus by Theorem 4.9 

Equation (4.65) is well-posed. Furthermore, the first order system operator generates 

a Co-semigroup. 

Finally, we consider the linear approximation of the BMB-PZT model de­

scribed in Equation (3.20) and Equation (3.21). We refer to work done in [4] where 

it was shown that the inclusion of piezoceramic patches on a cantilevered beam is 

well-posed. Since the left hand side of the equations in the BMB-PZT model merely 

consist of altered parameter values from the orginal BMB model we can see that 

(H1)-(H5) would be readily satisfied for the BMB-PZT model by merely choosing 

appropriate values so that these hypotheses hold, as was done in the work above for 

the BMB model. For (H6) we refer to [4] which shows that for Vi(-) - V2(-) G L2[0, T] 

we have that / G L2[(0,T), V*] since the second derivatives x" £ V* • Therefore, we 

can infer that (H6) is satisfied and the BMB-PZT model is well-posed and generates 

a Co-semigroup. 



CHAPTER 5 

NUMERICAL RESULTS FOR THE BMB SYSTEM 

5.1 Weak Formulation of the B M B Sys tem 

In this section we employ the Galerkin finite element method in order to obtain 

a finite dimensional approximation of the BMB system. 

5.1.1 Variational Form 

Let H2 denote the Hilbert space with at most two derivatives. The objective 

is to find a K ( t . S i ) , wR(t,sR)f E V C S = / / 2 [0 ,4 ] x / / 2 [ 4 + 4v7-4 + £M + 4 ] 

so that multiplying Equation (3.8) and Equation (3.9) by test functions 0 i ( s L ) and 

4>R(SR), respectively, yields 

[pAwL(t, sL) + 7iwL(t, Si) + -y2Iw'l'(t, sL) + EIw'l'(t, sL)} 0 i ( s L ) dsL 

b(sL)uL(t) + 
mbg _ 0.5po7;2c 

4 4 
C, 

(5.1) 

!>L(SL) dsL, 

and 

h+eM+e2 

[pAwR(t, SR) + 7iWR(t, SR) + ^2Iw"R{t, SR) + EIw'R(t. SR)] 4>R(SR) dsR 
ti+£M 

ei+eM+e2 r 

ei+e* 
b(sR)uR(t) + 

mbg 0.5pav c 

4 4 C, (/)R(SR) ds R 

(5.2) 

for all [0 L (s i ) . 4>R(SR)}T eV = {[0L(-), M'W e S : 0 L ( 4 ) = 0 ^ ( 4 + 4 7 ) , 01 (4 ) = 

0/7(4 + 4 / ) } - Applying integration by parts to Equation (5.1) and Equation (5.2) 
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results in the following 

\pAibL{t, Si)0i(Si) + i\wL(t, Si)0L(sL) + i2Iw"L(t, Si)0i(sL) 

-EIwUt,sL)#L{sL)} dsi + 7 2 / < ( i , 4 ) 0 L ( 4 ) -7 2 /< ( i ,O)0 L (O) 

- 7 2 / ^ ( t , 4 ) 0 ' L ( 4 ) + 72/<(t,o)0'i(O) + / ? / < ( t , 4 ) 0 L ( 4 ) 

-Z?4<(t, O)0L(O) - £ / < ( M i ) 0 i ( 4 ) + £ / < ( * , O)0'L(O) 

b(sL)uL(t) + 
777(,(7 0.5pa772C 

4 4 
C/ 0i(sL) dsi, 

and 
h+eM+e2 

\pAwR(t, sR)(pR(sR) + -yiWRit, sR)<f>R{sR) + -y2IwR(t, sR)<j)R(sR) 
£i+eM 

+ EIw'R(t, SR)<//R(SR)] dSR + 7 2 / < ( * , £l+£M+ 4)0i?(4 + 4u + 4 ) 

- 7 2 / < ( i - 4 + 4w)0i?.(4 + 4w) - 7 2 / '< ( i , 4 + 4w + 4 ) 0 ^ ( 4 + £M + 4 ) 

+ 7 2 / < ( t , 4 + £MWR(£I + 4w) + Elw'Ht. 4 + 4w + 4 )0« (4 + 4* + 4 ) 

-Elw'R\t, 4 + 4w)0«(4 + 4w) - £ / < ( * , £I+£M + 4 )0« (4 + 4* + 4 ) 

+Elv/R(t, 4 + 4w)0«(4 + 4 / ) 
h+eM+e2 

h+hi 
b(sR)uR(t) + 

TTtfeff _ 0.5pav
2c 

4 4 
C/ !->R [sR) ds R-

Summing Equation (5.3) and Equation (5.4) yields 

[pAwL(t, sL)0i(sL) + 7i7i)i(t, Si)0i(sL) + -)2Iw'L{t, Si)0i(sL) 

+EIwl(t,sL)(p"L{sL)} dsi 

+ / [pAwR(t, sR)4>R(sR) + -yiwR(t, SR)4>R(SR) 

+'y2IwR{t, sR)4>R(sR) + EIwR(t, sR)(p'R(sR)] dsR + ~{2Iw"l(MI)0L(4) 

-l2Iw"l(U O)0L(O) - 7 2 / ^ ( ^ 4 ) 0 ' i ( 4 ) +72/<(OO)0'L(O) 

+ £ / < ( ; . 4 ) 0 L ( 4 ) - £ / < M ) 0 i ( O ) 

- i ? / < ( t , 4 ) 0 ' i ( 4 ) + £ / < ( t O)0'L(O) 

(5 

(5 
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+ 7 2 / < ( t , £i + £M + 4 ) 0 f i ( 4 + £M + 4 ) - 7 2 / < ( ^ , 4 + 4 * ) 0 * ( 4 + 4 f ) 

-i2WR{t, 4 + 4 * + 4 ) 0 « ( 4 + £M + 4 ) + 7 2 / < ( i , 4 + 4w)0«(4 + £M) 

+Elw'R% 4 + £M + 4 ) 0 ^ ( 4 + 4w + 4 ) - £ / < ( * , 4 + 4w)0/i(4 + £M) 

-EIw'R(t, l+£M + 4 ) 0 « ( 4 + £M + 4 ) + £ 4 4 ( t , 4 + 4w)0«(4 + £ M 

0 

hi \ fl\^mb9 Q - 5 ^ C ^ 
6 (SL)WL(0 + -7 -0 Ct 

+ 
h+t-M+h 

£i+eM 

. / x /.x , ™&3 u\5pa7;2c 
b{sR)uR{t) + — C, 

to to 

i ( s i ) dsL 

R(SR) dsR. 

Next natural boundary conditions (the first six boundary conditions presented in 

Table 3.1) are applied. The remaining two essential conditions are explicitly satisfied 

by elements in V and are not part of the weak form. 

rh 
I [pAwL(t, s L )0 i ( s L ) + -y4wL(t, S i )0 i ( s L ) + ^2Iw'l(t, sL)(j)"L(sL) 

Jo 

+EIw'l(t,sL)(i>l(sL)] dsL+ / [pAwR(t, SR)4>R{SR) 

:." Ix _ \ ill , +l\wR(t1 sR)(j)R(sR) + -y2IwR(t, sR)(pR(sR) 

+ EIwR{t, SR)<p'R(SR)] ds i ? + 77777)i(t,4)0L(4) + / 2 ^ ( i , 4 ) 0 / i ( 4 ) 

(5.6) 

h 
b(sL)uL(t) + 

mbg Q.5pav
2c 

4 4 
C, 4>L(SL) dsL 

•ti+eM+e2 

£i+eM 

b(sR)uR(t) + 
7776C7 0.5pa7;2c 

4 4 
C/ <!>R(SR) dsR 

5.1.2 Discret izat ion 

A basis {e?;}f is chosen for the approximating space VN C V, where N 

corresponds to the number of basis functions used in the finite element approximation. 

Cubic Hermite interpolating polynomials are used to approximate the displacements 
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of the left and right beams. The basis vectors take the form: 

eN = 
bL(sL) 

*£>*) 
, for i = 1 , . . . , N. 

That is, the state will be approximated as 

wL(t,sL) 

wR(t, SR) WR{t,SR) 

N 

1=1 
N 

i=i 

Substituting this state approximation into Equation (5.6), we obtain 

\pAw»(t, Si)0i(sL) + 7 l7i£(t, Si)0i(si) + l2I{wN
L)"(t. sL)<j>"L{sL) 

+EI(wN
L)"(t.sL)<P"L(sL)} dsL + / [pAw»{t,sR)MsR) 

+7i«#(*, SR)<I>RM + 7 2 / « ) " ( t , SR)<PR(SR) 

+EI(wN
R)"{t. sRW'R(sR)} dsR + mivN

L ( * , 4 ) 0 L ( 4 ) + h (wN
L)' (t, 4)0'L(4) 

b{sL)uL(t) 
mbg 0.5pav

2c 
C, 

ei+tM+e2 

which implies 

u \ f+\ , mb9 0.5pav
2c b(sR)uR(t) + — Ce 

i(sL) dsi 

4>R(SR) dsR. 

N N 

pA J2 a?(t)bLit{sL)<j>L(sL) + 7i Yl ^WLMMSL) 

N 
i=l i=l 

N 

i=l 

£i+tM+h 

N 

dsi + viY^tfWLM&M + ElY,a?(tWft(sL)<f>UsL) 
1=1 

N N 

PAY^^(t)bRAsR)MsR) + liJ2^^bR^SR^R^ 
1=1 1=1 

N 

+ 7 * / ^ A W A > * ) ^ M + EI"£^WRASR)<P'R(SR) 
1=1 1=1 

N N 

+mJ]af(t)^(4)0L(^i) + /2^«f(O^(4)0L(4) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

dsi 

1=1 i=i 
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b(sL)uL{t) + — ; Ci 
4 4 

w \ u\^rHb3 0.5pQ7;2c b{sR)uR(t) + — Ci 
19. CO 

0i(s i) dsL 

R(SR) dsR. 

Let the test functions range over the appropriate basis vectors, yielding the following: 
TV TV 

[pA Y <x?{t)bL>t(sL)bLAsL)+'yi Y ^ W M ^ M - ' L ) 
1,3 = 1 

N 
* J = 1 
TV 

+72/ Y ^(t)b'UsL)blAsL) + EIJ2 ^it)b'lXsL)b"LAsL)) dSi 
1,7 = 1 *,J=1 

+ / [pA Y ^(t)bRAsR)bRAsR) + 7i Y ffW^MbRjisR) 

dh+£M l J = 1 l ) J = 1 

AT TV 

+72/ J ] ^(tW^SR^isn) + ElY ^(tKAsR)b'lAsR)} **i SR 

* J = I 

TV 

*,J=1 

TV 

-777 J ] a?(t)M4)M4) + 4 £ ^ (^ (4)6^(4) 
* J = I * J = I 

/o 
b(sL)vL(t) + 

7 7 7 ^ 0 . 5 p a f 2 C 

4 4 c, 

+ 
« l + ^ / + f e 

*1+*A/ 

bLj{sL) dsL 

b(sR)uR(t) + 
m6# 0.5pa7;2c 

C, 
4 4 

which results in the following 

pAbL)l(sL)bL)](sL) dsL ^ a>l(t) 
* J = I 

TV 

7i6L,i(.Si)6iJ(si) dsi ^ a f ( / 

bR,j(sR) dsR, 

TV 

« J = 1 

TV 

/ 0 

7 2 / ^ . ( ^ ) ^ ( 5 ^ ^ 5 > f ( 4 
M = l 

TV 

Elb'Hs^blXsL) dsL X>fW 
« J = 1 

[A+lM+t2 TV 

pAbRtt(sR)bR,,(sR) dsR J] /3f(4 
?,; = ! 

(5-11) 

(5.12) 
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e.i+f.M+z2 
TV 

libRAsR)bR,j(sR) dsR Y^(^ 
'£I+£M i,]=l 

<-h+£M+£2
 N 

+ / l2lb"RAsR)b'HsR) dSR Y ^ ( 0 
h+t-M 

li+ZM+Z2 

h+£M 

* > J = 1 

TV 

Elb'l^b'Hstt) dsR Y^(f) 
t,j=1 

TV TV 

- m M * i ) M * i ) Y ^ W + 46l,(4)6 ,
L j(4) £ «f (<) 

* j = i * J = I 

o 
b(sL)uL(t) + 

m ^ 0.5paf2c 

4 c, bL,3(sL) dsL 

+ 
•fl+«M+«2 

fc+«M 

b{sR)uR(t) + 
777feg _ 0-5pa7'2C 

4 4 c. bR,]{sR) dsR. 

Or in a more condensed form, we have 

MLa(t) + MR/3(t) + Did(t) + DRp(t) + #La(i) + KRp{t) 

= BLuL(t) + JBi?ui?(t) + GL + Gfl + FL + Ffl, 
where 

M M 

(5.13) 

py!6i,4(si)6iJ(si) dsL + 7776^(4)6^(4) + 461,(4)61,(4), 

[M, i? « j 

£l+<M+«2 

pAbRAsR)bR^(sR) dsR, 

\Dj J « j 
o 

7ibLA sL)bLj{sL) dsL+ / 72/6l, l( .Si)6l J(si) ds i , 

Pfl] * j 

^i+^Ar+^2 

7ibRAsR)bR,j(sR) ds R 

h+£M+h 

h+£M 

l2lb"RAsR)b'lASR) dsR' 

[KL. ? J 

o 
EIb"LAsL)b'HsL) dsi, 

[̂ L,, 
Cl+fM+t 

£ l + ^ 

EIb'lt(sR)b'llsR) dsR. 

(5.14) 



[BL}3 

[BR], 

b(sL)uL(t)bLt](sL) dsL, 
o 

h+f-M+h 

b(sR)uR{t)bR<J(sR) dsR, 

\Gj 

I+£M 

£ 1 mbg 

\G R 

[EL 

o *i 
£I+£M+£2 

£I+£M 

I. 

bL,](sL) dsL, 

mbg 

4 
2, 

bR,j{sR) dsR. 

1 0.5pa?j2c 

[Fi R 

°h+£M+£2
l QLpyc 

£I+£M 4 

CebL,]{sL) dsL, 

CebRtJ(sR) dsR. 

Note that Equation (5.13) can be written as 

c(t) = M~\-Dc{t) - Kc(t) + B + G + F), 

where 

c(t) 
a(t) 

Pit) 
c(t) 

a(t) 

$(t) 

m 

and 

M = 

B 

ML 0 

0 MR 

Br 

D 

B R 

G 

DL 0 

0 DR 

GL 

GR 

K 

F 

a(t) 

KL 0 

0 KR 

FR 

Converting Equation (5.15) into a first oidei system results in 
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(5.15) 

(5.16) 

(5.17) 

i(t) = Ax(t) + Bu(t) + G + F(x(t)), (5.18) 
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where 

x(t) = 

B 

c(t) 

c(t) 

0 

M~lB 

A = 

G = 

0 

-M~XK 

0 

M~lG 

I 

-M~lD 

1 (5.19) 

F = 
M~lF{x{t)) 

5.2 Target Tracking Results 

Here we test the system's abilitv to transform its flexible wings from level flight 

into some prescribed morphed state. It is assumed that the controllers act over the 

entire beam structure with constant control input functions of the form 

6(sL) = b(sR) = 30, (5.20) 

for 0 < Si < 4 and 4 + 4w < sR < 4 + 4u + 4 , and observations of the form 

y(t) = 15w{t,s), (5.21) 

for 0 < Si < 4 and 4 +4w < sR < 4 +4w + 4- In order to design control we employ 

a Galerkin finite element approximation on the linearly approximated BMB system 

described in Equation (3.15) and Equation (3.16) by applying the same approach 

from Section 5.1. This results in the following linearized discretized system 

x(t) = Aex(t) + Bu(t), (5.22) 
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where 

Af 

-M^K -M~lDz 

(5.23) 

with 

M,= 
MLe 0 

0 MRl 

D, 
DL, 0 

0 D Re 

(5.24) 

and 

[MLt %j 
pAbL}l(sL)bLj(sL) dsL - / 77766i, l(si)6iJ(si) dsL 

-777 6L,(4)6i , , (4) + / 2 6 l i Z ( 4 ) 6 l J ( 4 ) , 

[M* J«,J 

^ + * M + 4 2 

pAbRit(sR)bRj(sR) dsR 

h+£M 

£I+£M+£2 

mhbR^(sR)bRtJ(sR) dsR, 
h+t-M 

(5.25) 

[DLe. 1,3 
7i6i . , l (s i )6i J (s i ) d s L + / i2Ib"Ll(sL)b"LAsL) dsL 

£bLtt{sL)bLjJ(sL) d s i , 

fl+^M+^2 ^ 1 + ^ + ^ 2 

[DRe}tJ = 7i6T7,»(sR)bR,3(sR) dsR+ I f2IbRl(sR)bR:J(sR) dsR 

Jh+£M Jh+£M 

[£\+£M+£2 

+ / £bRjl(sR)bRj(sR) dsR. 

upon which control design is employed. Control matrices Ac, Fc, and K are then 

applied to the nonlinear system, yielding 

d 

dt 

x(t) 

xc(t) 

A -BK 

FCC Ac 

x(t) 

xc(t) 

(5.26) 

G 

G F(xc(4) 

uJu 

0 
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Note this results in a nonlinear compensator. The control objective is to morph each 

beam from equilibrium to the desired position 

5s(s - £)(2s - £)2 

w(t, s) 
8«7 peak 

(5.27) 

and slope 

w'(t,s) 
5{2s - £){8s2 - 8s£ + £2 

8w peak 

(5.28) 

where 7x>peak = 0.0762 m. The desired target is represented graphically in Figure 5.1. 

Target State, Position Target State, Slope 

0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07 

Figure 5.1: Desired State Target: Position (left), Slope (right) 

To obtain a solution to the system, initial conditions are chosen as follows: 

x(0) = [0; 0; — 2;0] ([displacement; slope; velocity; angular velocity]) and xc(0) = 

0.75 * x(0). That is, to generate a nonzero state estimate, we choose the initial 

conditions for the observer equation to be 75% of the initial conditions for the state 

equation. A convergent finite element approximation using Hermite interpolating 

cubic polynomials of order 7Y = 30 nodes for the spatial discretization of the BMB 

system is used to simulate Equation (5.18), and the parameter values for the BMB 

system are provided in Table 5.1. 
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Table 5.1: BMB System Parameters 

Parameter 
£ 

£M 

p 
w, width 
/?,, height 
a = wh 

E 
I = (whs)/12 

777 

777.6 

7i 
72 

Value 
0.6096 
0.0508 

980 
0.127 

0.0254 
0.032 

2.0 x 10b 

1.734 x 10~Y 

1.927 
1.927 
0.025 

1 x 102 

Units 
m 
m 

kg/m 3 

m 
m 
m2 

N/m 2 

4 

m kg 
kg 

kg/(m sec) 
kg/(m5 sec) 

Simulations were obtained using Matlab's ODE15s stiff system solver. For 

reference, the uncontrolled state plots of the nonlinear system are given in Figure 5.2. 

Controlled results are presented in Figures 5.3 and 5.4. To obtain stabilizing solutions 

to the algebraic Riccati equations, a Newton-Kleinman algorithm was used (see [12]). 

For the results presented here, it is assumed that measurements are available for 

the position and slope states. Numerical instabilities in solving finite dimensional 

approximations to the algebraic Riccati equations occurred when it was assumed 

that only velocity and angular velocity were available for measurement. 
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Displacement, Nonlinear Uncontrolled System Slope, Nonlinear Uncontrolled System 

Velocity, Nonlinear Uncontrolled System Angular Velocity, Nonlinear Uncontrolled System 

Figure 5.2: Uncontrolled System: Position (top left), Slope (top right), Velocity 
(bottom left), Angular Velocity, (bottom right) 
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Displacement, LQR-Controlled Nonlinear System Slope, LQR-Controlled Nonlinear System 

"of o. 

Velocity, LQR-Controlled Nonlinear System Angular Velocity, LQR-Controlled Nonlinear System 

Figure 5.3: LQR Controlled System: Position (top left), Slope (top right), Velocity 
(bottom left), Angular Velocity (bottom right) 
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Displacement, LQG-Controlled Nonlinear System Slope, LQG-Controlled Nonlinear System 

Velocity, LQG-Controlled Nonlinear System Angular Velocity, LQG-Controlled Nonlinear System 

Figure 5.4: LQG Controlled System: Position (top left), Slope (top right), Velocity 
(bottom left), Angular Velocity (bottom right) 

Initially, it was not known if the system would be able to track to the desired 

state in a reasonable amount of time without significant overshoot. After perturbing 

the parameters in Equation (3.10) so that lift and weight balance, and applying 

appropriate magnitudes for control effort by manipulating Equation (5.20), it can 

be seen that the system effectively reaches its target shape. As expected, the full 

state feedback results outperform those of the LQG-controlled system, although both 

systems reach unrealistically high magnitudes for angular velocity. Control effort 

results are shown in Figure 5.5. 



LQR Control Effort 

2 5 r — 1 — — . 

2 

15 

- 0 5 L - ' — — J L_ 
0 5 10 15 

t 

Figure 5.5: Control Effort: LQG (left), LQR (right) 

5.3 W i n g Morphing Trajectory Resul ts 

In this section we employ the same control design in Section 5.2, only here 

we test the system's ability to achieve a morphing trajectory over time. In order to 

alleviate overshoot in the LQG-controlled system constant control input functions are 

taken to be of the form 

b(sL) = b(sR) = 1000, (5.29) 

for 0 < Si < £i and £\ + £M < sR < £\ + £M + h, and observations of the form 

y(t) = 6b0w(t,s), (5.30) 

for 0 < Si < £\ and £\ + £M < sR < £4 + £M + £2- The control objective is to 

morph each beam (linearly in time) from equilibrium to twice the magnitude of 

Equation (5.27) in a five second time interval. The desired trajectories for each of 

the four states are represented graphically in Figure 5.6. To obtain a solution to the 

system, initial conditions are chosen as follows: .x(0) = [0; 0; 0; 0] ([displacement; slope; 

velocity; angular velocity]) and xc(0) = 0.75*x(0). Again, a convergent finite element 

approximation using Hermite interpolating cubic polynomials of order N = 30 nodes 
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LQG Control Effort 
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for the spatial discretization of the BMB system is used to simulate Equation (5.18), 

and the parameter values for the BMB system are provided in Table 5.1. 

Target Displacement Target Slope 

-02 
6 

» 0 

0 0 

Target Velocity Target Angular Velocity 

Figure 5.6: Target Trajectory: Position (top left), Slope (top right), Velocity (bottom 
left), Angular Velocity, (bottom right) 

Controlled results are presented in Figures 5.7 and 5.8. For the results 

presented here, we again assume that measurements are available for the position 

and velocity states. Control effort results are shown in Figure 5.9. 
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Displacement, LQR-Controlled Nonlinear System Slope, LQR-Controlled Nonlinear System 

Velocity, LQR-Controlled Nonlinear System Angular Velocity, LQR-Controlled Nonlinear System 

Figure 5.7: LQR Controlled Morphing Trajectory System: Position (top left), Slope 
(top right), Velocity (bottom left), Angular Velocity (bottom right) 
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Displacement, LQG-Controlled Nonlinear System Slope, LQG-Controlled Nonlinear System 

Velocity, LQG-Controlled Nonlinear System Angular Velocity, LQG-Controlled Nonlinear System 

I o 

3 . 

I? 2 

J 1-
•o 

S. o. 
"» -1 . 
3*-2. r)H •% 

Figure 5.8: LQG Controlled Morphing Trajectory System: Position (top left), Slope 
(top right), Velocity (bottom left), Angular Velocity (bottom right) 

LQR Control Effort LQG Control Effort 

Figure 5.9: Control Effort, Morphing Trajectory: LQG (left), LQR (right) 

The position and slope states morph quite efficiently for both the LQR and 

LQG controlled systems. The desired trajectory for the velocity and angular velocity 
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states is not achieved, although when comparing the LQR controlled results for 

the target tracking and the morphing trajectory we can see significant improvement 

regarding the magnitudes of the angular velocity state. One should note that velocity 

and angular velocity are not being measured in the LQG controlled system, and some 

improvement may be made if these states are available for measurement. Further, 

difficulties in obtaining stabilizing solutions to the algebraic Ricatti equations indicate 

that there may be Ricatti conditioning issues with this particular model, and point 

to the limitations of Linear Quadratic control on this nonlinear model. These results 

were compared with a nonlinear finite dimensional control mechanism, known as 

feedback linearization, in [10]. 



CHAPTER 6 

NUMERICAL RESULTS FOR THE BMB-PZT MODEL 

6.1 Weak Formulation of the BMB-PZT System 

Here we present the weak formulation of the left beam of the BMB-PZT system. 

The right beam follows similarly. We desire a solution [w^t. sL), wR(t,sR)]T EVC 

S = H2[0, £x] x H2[£x + £M,£I+£M + h] such that 

[pA + 2cppehpexPe(sL)} wL(t, sL)4>L{sL) dsL + / -jiWL(t, sL)cj>L(sL) dsL 

+ 
2 / 3 3 

EI + -cEpe i-h2hpe + -hh2
pe + h3

pe ) xPe{sL) w'l,'{t.sL)<t>L{sL) dSl 

-y2I + -ccDpe I ^h2hpe + -hh2
pe + h^ ) xPe(sL 

ds2 -Epecd31(h + hpe)Xpe{sL) 

w'Kt, sL)(i)L(sL) dsL 

u(t)cj)L(sL) dsL 

(6.1) 

+ f mb9 • ( \ A 
/ —5—<£>L\SL) dsL -
'o l i JO 

-1 0.5pa7;2c 
CI*4>L{SL) dsL, 

for all [0i(sL). MSR)]T eV = {[0L(-), MY <E S : M?i) = < M ^ i + M , < / W ) = 

^i?(^i + hi)}- We integrate the second, fourth, and fifth integrals in Equation (6.1) 

by parts twice to get 

70 
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i r£\ 

[pA + 2cppehpexpe(sL)}wL(t,sL)(f)L(sL) dsL + / 7i77Ji(i,Si)0L(si) dsL 
o Jo 

+ 
£i r 

2 " ' 3 ' . 2 L , 3 L L 2 , 7,3 EI + -cEpe [ -h2hpe + -hh2
pe + / ^ j Xpe(sL) wl{t.sL)4)"L(sL) dsL 

£i 

I2I + ^ccDpe -h hpe + -hh + h XPe(sL w'[{t,sL)<p"L(sL) dsL 

+ EI + -0Epe -h2hpe + -hh* + hL Xpe(il) fc(AK'(Mi)-^(4K(Mi)] 

+ EI + \cEpe {^h2hpe + hh2
pe + tfp)j Xpe(0) -Mo)<(tiO) + Mu)<(tM 

+ 
2 

3C I2I + ~ccDpe ( -Ah2hpe + ^hh2
pe + h3

pe ) Xpei 
3 . 
— / 
2 [ ^ i W M O - &(*iKMi)] 

2 / 3 3 \ 
72/ + gCCDpe f -/72/7pe + - / l /£ , + h?pe \ Xpe(0) •fe(o)<(t,o) + ^(oK(t,o)] 

--Epecd31(h + hpe)xPe(sL) u(t)(j)"L(sL) dsi 

+ -Epecd31(h + hpe)xpe(£i) ? Mw :^eC41( /7 + /lpe)Xpe(0) 0L(O) 

-Epecd3l(h + hpe)xpe(£i) <PL& -Epecd31(h + hpe)xpe{0) &(0) 

ll mb9' A t \ A I °^Pafln W W 
</>i(sL) dsL - / 7 Q0L(sL) dsi. 4 fi 

(6.2) 
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Since we have assumed that the piezoceramic patches are not located at the ends of 

the beams, Xpe(£i) = Xpe(O) = 0 and Equation (6.2) reduces to 

£i rh 
[pA + 2cppehpeXpe(sL)] wL(t, Si)(/>i(sL) dsL + / nfiwL(t, sL)(pL(sL) dsL 

EI + ~cEpe -h2hpe + -hhL + h* Xpe{sL wl{t,sL)<j)"L(sL) dsL 

2 ' 3 \ 2 T 3 J , L 2 , , 3 72J + ^ccDpe ( -jh hpe + -hhpe + hpe ) xPe{sL) w'i{t,sL)4>"L{sL) dsL 

+EI<l>L(£1)w'Z(t,£1) - EI<t>'L{£r)vfi{tJx) - ^ ( O X ^ O ) + EI</>'L(0)wl(t:0) 

*y2I<l>L(£iX(t,£i) - 7 2 / 0 i ( ^ i K ( M i ) - l2lM0)<(t,0) + 72/01 (0)w'[(t,0) 

--Epecd31(h + hpe)xPe(sL) 
1 TTlhO 

u(t)(j)"L(sL) dsL+ I —-0i(sL) ds 
0 <-! 

1 0.5pa7-2c 
CI4)L{SL) dsL. 

o Li 
(6.3) 

Rearranging some terms, we have 

[pA + 2c/ope/iPeXpe(sz,)] ^i(*, SL)4>L(SL) dsL + / 7iiwi,(i, sL)0i(si) ds 

2 / 3 3 \ 
E / + scEpe ( 4 ^ V + 2hhPe + ^ ) ^Pe(-Si) w'l(t,sL)<f>l(sL) dsL 

2 / 3 3 
72 J + ^CCDpe f "/72/7pe + -hh2

pe + / i j e ) Xpe(Si) wl(t,sL)(j)"L(sL) dsL 

(6.4) 
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+M£i) [EIw'Z(t, h) + -y2Iw'Z(t, £,)} + 0L(O) [-EIw'£(t, 0) - 72 /<(* , 0)] 

b'L(£4) [-EIwKtJJ - 7 2 M M 1 ) ] + 0'L(O) [Elwl(t,0) + ~/2lw'l(t,0)} 

£i 

--Epecd31(h + hpe)xPe(sL) mbg u(t)4>l(sL) dsL + / —r-0i(si) ds. 
o c i 

£l 0.5pa7;2c 
Ce(f>L{sL) dsL. 

Jo £i 

Similarly the weak form of the right beam equation would be 

rh+eM+t2 . 
[pA + 2cppehpexpe{sR)] wR(t, sR)4>R(sR) dsR + / -}iwR(t, sR)(f>R(sR) dsR 

£i+£M Jo 

+ 
£I+£M+£2 

£I+£M 

2 / 3 3 \ 
EI + -cEpe f -h2hpe + -hh2

pe + h\e \ xPe(sR) wR(t,sR)(f>R(sR) dst 

+ 
e.i+£M+e-2 

£i+£M 

2 / 3 3 \ 
72-f + ^CCDpe ( jh2hpe + - / l / l j , + / l j e j Xpe(Sfl) wR{t,sR)(j)"R(sR) dsR 

+M?i + ?M + h) [EIwR'(t. £j + £M + h) + l2lw'R\t, £X+£M+ h)] 

+Mh + hi) [-EIwR% £j + iM) - l2lwR(t,£i + hi)} 

-<1>R{£I + hi + h) [-EIwR(t,£, + £M + £2) - i2lw'(t,£X + £M+ h)\ 

-<t>R{£i + hi) [EIw'R(t, £x + £M) + j2Iw'R(t, h + hi)} 

l+£-M+£2 

£I+£M 

-,Epecd31(h + hpe)xpe{sR) u(t)<p"R(sR) dsR 

(6.5) 



74 

h+£M ^2 
4>R(SR) dsR 

ti+iM+t* Q,bpyc 
C(.4>R{SR) dsR. 

£i+£M 

We now apply the free end boundary conditions from Table 3.1, i.e. the first four, to 

Equation (6.4) and Equation (6.5), and we add the left and right beam weak forms, 

which yields 

f£i rh 

[pA + 2cppehpeXpe{sL)} wL{t, sL)(j)L(sL) dsL + / -jiwL(t: sL)(j)L{sL) dsL 

+ 
£i 

EI + -cEpe -h2hpe + -hh2 + hL xPe(sL) wl(t.sL)4>"L{sL) dsL 

+ 
2 / 3 3 \ 

72/ + -ccDpe l-h2hpe + -hh2
pe + h3

pe J xPe(sL) w'l(t,SL)4>l{SL) dS! 

rh+£M+£2 rh 

+ / [pA + 2cppehpexPe(sR)}wR(t,sR)(j)R(sR) dsR+ / ^iWR(t, sR)<j)R(sR) dsR 

ti+eM Jo 

+ 
£I+£M+£2 

£I+£M 

2 
— i 
3 

EI + ^cEpe ( -h2hpe + -hh2
pe + h\e j xPe(sR) wR(t, sR)(f)R(sR) ds} 

+ 
£I+£M+£2 

h+£M 

2 

3 ( 72/ + ^ccDpe ( -Ah2hpe + ^hh2
pe + hle ) xPe(sR) 

3 
- / 
2 

wR(t, sR)(pR(sR) dsR 

+M£i) [EIw'Z(t, £1) + J2lw'l(t. £4)} + ^(h) [-EIwl(t, £,) - j2Iw'l(t, £,)} 

+<t>n(£i + £M) [-EIw"R\t. £x + £M) - l2IwR\t, £x + hi)} 

+$R{£i + hi) [EIwR{U £1 + hi) + l2lw'R(t. £x + £M)\ 

(6.6) 
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rh 

-Epecd31(h + hpe)Xpe(sL) u(t)(j)"L(sL) dsL+ I -+ -0 i ( s L ) ds 
o h 

^ 0.bpav
2c^ fl 

/ -B Ce(j)L{sL) dsL + / 
Jo li Jh 

£I+£M+(-2 

+£M 

-Epecd3i(h + hpe)xpe(sR) u(t)(f)'R(sR) dsR 

£i+£M+£2 mbg 
0R(SR) dsR - / 

Jh 

A+eM+e2 0.bpav
2c 

C^R(SR) dsR. 

>£I+£M ^ Jti+£M
 C 2 

Applying the boundary conditions which hold at the mass location, i.e. the last two 

conditions in Table 3.1, we have 

/ [pA + 2cppehpeXpe(sL)}'wL(t,sL)4>L(sL) dsL+ 7iwL(t, sL)cj)L(sL) dsL 
Jo Jo 

2 

3< 
EI + -cEpe[-h2hpe , 2"""pe ' -pe hh2 + h3 ) xPe(sL) ™l{t,sL)(t)"L(sL) dsi 

72/ + ~ccDpe ( -h hpe + -hhpe + hpe J xPe(sL wl(t,sL)(j)"L{sL) dsL 

£I+£M+£2 

[pA + 2cppehpeXpe(sR)] wR(t, sR)(f)R(sR) dsR 

h+h 

r£i+eM+£2 

+ 1 liWR(t. SR)<PR(SR) dsR 

'h+£M 

+ 
,A+£M+£2 

<£I+£M 

EI + -cEpe (-h2hpe + ~hh2
pe + h3

pej Xpe(sR) wR(t, sR)4>R(sR) dsR 

(6.7) 
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+ 
A+£M+£2 

£I+£A 

2 / 3 
72/ + -ccD r.--jjpe \ A'1 "-pe + r) pe + hpe Xpe(sR) wR(t. SR)<J)R(SR) dsR 

+mwL(t,£1) + Izw'L(t,£1] 

-Epecd31(h + hpe)Xpe(sL) u(t)(f)'[(sL) dsL 

A 
mbg 

:(SL) dsL 

1 0.5pa7>2c 

£1 
Ct4>L(sL) dsi 

+ 
A+£M+£2 r 

£I+£M 

1 
Epecd31(h + hpe)xpe(sR) u(t)4>"R{sR) ds R 

+ R{SR) dsR - / Ci0R{sR) dsR. 
+eM ^ h+eM 

£2 

6.2 Discret ization 

A basis {et}^ is chosen for the approximating space VN C V, where N 

corresponds to the number of basis functions used in the finite element approximation. 

Cubic Hermite interpolating polynomials are used to approximate the displacements 

of the left and right beams. The basis vectors take the form: 

eN = 
bUsL) 

bN
RA*R) 

for 1 = 1 N. (6.8) 

That is, the state will be approximated as 

wL(t,sL) 

wR(t.sR) 

<(t,sL) 

w%{tsR) 

N 

Y^WLASL) 
1=1 
N 

Y^'WRASR) 
1=1 

(6.9) 
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Substituting the state approximation Equation (6.9) into Equation (6.7) yields the 

matrix equation 

where 

[ML. M 

MLa(t) + MRJ3(t) + DLa(t) + DR$(t) + KLa(t) + KRp{t) 

= BLuL(t) + BRuR(t) + GL + GR + FL + FRJ 

[pA + 2cppehpeXpe(sL)} &L,j(Si)6iJ (sL) G?Si + mbL^(£i)bL^(h) 

(6.10) 

-hb'LA£i)bl3{£l 

[MR] 
1,1 

\+£M+£2 

[pA + 2cppehpeXpe(sR)} bRtl(sR)bR3(sR) dsR 
ti+£M 

\Dj 
u,3 

libLAsL)bL,](sL) dsL+ 

2 
3 ( 72/ + icCDpe I -h2hpe + -hh2 + h3 j Xpe{sL) blAsL)b'lAsL) dsi 

[DR. 
I-,3 

h+eM+t2 

7 i ^ ( s i 7 ) & i ? j ( s R ) dsR 

£i+eM 

+ 
h+£M+£2 

h+£M 

72/ + xCCDpe I ~h2hpe 

hh\e + h3
pe ) Xpe(sR) b'ktMb'kjM dsR 

(6.11) 
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[KL. 1,3 

2 
— c 
3 

EI + -CEpe I ~h2hpe + -hh2 + hL ) Xpe{sL) blAsL)bLASL)dSL 

[KR. 1,3 

£\+£M+£2 

£I+£M 

EI + -cEve -h2h p e i i u ,upe 

hh2
pe + h3

pe ) Xpe(sR) b'kAsR)bR,3(sR) dsR 

[BL] 
£I r 

-Epecd31(h + V)Xpe(sL) uL{t)b'L,ASL) dSL 

[BRI = 
^l+^M+^2 

*1+^M 

-Epecd31(h + hpe)xpe(sR) URWRSSR) dsR 

\Gj 
mbg 

o £i 
bij(sL) dsL< 

[GR} 
h+hi+e2 

h+tM 

mbg bR,j(sR) dsR 

[EL} 

h 0 5paV2C 

£i 
CebLtJ(sL) dsL, 

[Fn], 
^+£M+£2 0 5f?aV2c 

CtbRj(sR) dsR. 
'£I+£K 

To simplify further, define 

c(t) = 
a(t) 

m 
=*c(t) 

a (0 
c(t) 

Kt) 

a(t) 
(6.12) 



Substituting these relationships into Equation (6.10) yields 

ML 

0 

0 

MR 

c(t) + 
DL 0 

0 DR 

c{t) 
KL 0 

0 KR 

c(t) 

~ 
BL 

BR 

+ 
GL 

GR 

+ 

~ 
FL 

FR 

which can be re-written as 

c(t) = M-\-Dt{t) - Kc(t) + B + G + F), 

where 

M 

B = 

ML 0 

0 MR 

Br 

D 

B R 

DL 0 

0 DR 

GJ 

K 

G 

G R 

F 

KL 0 

0 KR 

FL 

FR 

Converting Equation (6.14) into a first order system results in 
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(6.13) 

(6.14) 

(6.15) 

x(t) = Ax(t) + Bu(t) + G + F(x), (6.16) 
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where 

x(t) 

B 

c(t) 

c(t) 

0 

M-lB 

F 

M~lF{x) 

A 

G 

0 / 

-M~XK -M^D 

0 

M'lG 

(6.17) 

6.3 Simulation 

System parameters are provided in Table 6.1, and initial conditions are chosen 

as follows: x(0) = [0; 0; — 2;0] ([displacement; slope; velocity; angular velocity]). Un­

controlled results are provided in Figure 6.1. Again, simulations were obtained using 

Matlab's ODE15s solver for stiff systems. A convergent finite element approximation 

using Hermite interpolating cubic polynomials of order N = 30 nodes for the spatial 

discretization of the BMB-PZT system is used to simulate Equation (6.16). 



Table 6.1: BMB-PZT System Parameters 

Parameter 

h2 

£M 

P 
w, width 

h, height 

a = wh 

E 

I = (wh3)/12 

777 

7776 

71 

72 

-T-'pe 

Ppe 

cDpe 

"-pe 

4 i 

Value 

0.6096 

0.0508 

980 

0.127 

0.0254 

0.032 

2.0 x 106 

1.734 x 10~7 

1.927 

1.927 

0.025 

1 x 102 

0.061 

3.47 x 1010 

4215.46 

10 

0.0008 

0.0057 

Units 

m 

m 

kg/m 3 

m 

m 
9 

m 
N/m 2 

4 

m 
kg 

kg 

kg/(m sec) 

kg/(m5 sec) 

777, 

N/m 2 

kg/m 3 

kg/(m5 sec) 

m 

m/volts 
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Displacement, Nonlinear Uncontrolled System Slope, Nonlinear Uncontrolled System 

Velocity, Nonlinear Uncontrolled System Angular Velocity, Nonlinear Uncontrolled System 

Figure 6.1: Uncontrolled BMB-PZT System: Position (top left), Slope (top right), 
Velocity (bottom left), Angular Velocity, (bottom right) 

In [5] both the limitations of and necessity for using finite elements with 

piezoceramic patches was discussed. One disadvantage to the finite element approach 

is the fact that a computational representation of the patches must correspond with 

the grid. Therefore, in our code a patch begins at the nearest element which is 

approximately two inches from each of the free ends in these simulations. Furthermore, 

note that the finite element vectors BL and BR from Equation (6.11) contain two 

spatial derivatives. Hermite cubic splines are natural basis functions to apply to this 

model due to the continuity of displacement and slope conditions at the mass location, 

but enough smoothness exists at the nodes so that the control vectors BL and BR 

are continuous. Therefore, more work needs to be done to determine if other basis 
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functions (or a hybrid of basis functions) may be applied to this model so that control 

design may be employed. 



CHAPTER 7 

CONCLUSIONS 

In this work two models are presented to represent the heave dynamics of a 

flexible wing MAV. The BMB system is described in Equation (3.8) and Equation 

(3.9), and the model is extended to include realistic actuation in the BMB-PZT 

system described in Equation (3.17) and Equation (3.19). Both of these systems 

are approximated by Hermite interpolating cubic polynomials with two displacement 

and two slope degrees of freedom for each beam element. A proof for well-posedness 

and the attainment of a Co-semigroup is provided for the BMB model and extended 

to the BMB-PZT model. Steady state linear quadratic tracking control was applied 

to the BMB system by obtaining a linear approximation of the nonlinear lift function, 

employing control design, and applying the control matrices to the nonlinear system. 

Two control objectives were analyzed: target state tracking and morphing trajectory 

over time. Both of these approaches resulted in a nonlinear controller for the BMB 

system. 

Target state tracking results showed that the model effectively reached all 

four target states, although unrealistically high magnitudes were obtained for the 

angular velocity states. Morphing trajectory results indicated that the position and 

slope states morph quite efficiently for both the LQR and LQG controlled systems. 

84 
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Improvement is made in the magnitudes for the angular velocity states of the LQR 

controlled system. However, both the velocity and angular velocity states (which were 

not assumed to be available for measurement) showed growth for the LQG controller. 

Overall, results indicate that although tools from linear distributed parameter 

control theory can be successfully applied to this model there are limitations to linear 

control design, primarily difficulties in obtaining stabilizing solutions to algebraic 

Ricatti equations. We also observe that although the boundary conditions applied to 

the these models lend themselves to the use of Hermite cubic splines, discontinuities 

occur at the nodes when considering the second derivatives of these basis functions, 

which prevents implementation of control via piezoceramic actuators with these basis 

functions. 

As a result, a natural extension of the theoretical work provided here would 

include stability analysis and verification of the existence of unique infinite dimen­

sional Riccati solutions to the control problem. A rigorous theoretical analysis of the 

nonlinear model, including nonlinear semigroup theory, would help to gain further 

insight into the system. Additional future work includes investigation of an appropri­

ate use of basis functions for the BMB-PZT model so that control can be modeled. 

Once control is implemented via realistic actuation, additional work from distributed 

parameter control theory would help to gain further insight into optimal morphing 

trajectories. We also seek to investigate the performance of other nonlinear controllers 

on this model, as done in [10]. Other modeling involves the inclusion of more realistic 

aerodynamics beyond that of heave dynamics, such as the model's ability to roll, pitch, 

and yaw. Finally, we seek to upgrade the system to a more realistic wing model. The 
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most natural step towards this two dimensional model may include modeling with 

one dimensional narrow plates and later the inclusion of two dimensional plates. 



BIBLIOGRAPHY 

http://www.pi-usa.us/. 

R. Albertani, R. DeLoach, B. Stanford, J.P. Hubner, and P. Ifju. Wind tunnel 
testing and nonlinear modeling applied to powered micro air vehicles with flexible 
wings. AIAA Journal of Aircraft, 45(3), 2008. 

W. Amrein. Hilbert Space Methods in Quantum Mechanics. Birkhauser Verlag, 
Basel, 2009. 

H. T. Banks, R. C. Smith, and Y. Wang. Smart Material Structures. Masson 
and Wiley, Paris, 1996. 

H. T. Banks, H.T. Tran, and R. C. H del Rosario. Proper orthogonal 
decomposition based control of transverse beam vibrations: Experimental 
implementation. IEEE Transactions on Control Systems Technology, 10(5) :717-
726, September 2002. 

O. Bilgen, K.B. Kochersberger, D.J. Inman, and O.J. Ohanian III. Macro-fiber 
composite actuators for a swept wing unmanned aircraft. The Aeronautical 
Journal, 113(1144):385-395, 2009. 

J. Burns. Lecture notes on modern calculus of variations with applications to 
control theory, numerical methods, and differential equations. 2000. 

J. A. Burns and B. Batten King. A reduced basis approach to the design of low 
order feedback controllers for nonlinear continuous systems. Journal of Vibration 
and Control, 4:297-323, 1998. 

A. Chakravarthy, K.A. Evans, and J. Evers. Sensitivities and functional gains 
for a flexible aircraft-inspired model. Proceedings of the 2010 American Control 
Conference, pages 4893-4898, 2010. 

A. Chakravarthy, K.A. Evans, J. Evers, and L. Kuhn. Nonlinear controllers for 
wing morphing trajectories of a heave dynamics model. Proceedings of the 2011 
Conference on Decision and Control, to appear. 

R. F. Curtain and H. J. Zwart. An Introduction to Infinite-Dimensional Linear 
Systems Theory. Springer-Verlag, New York, 1995. 

B. Datta. Numerical Methods for Linear Control Systems. Elsevier Academic 
Press, London. 2004. 

87 

http://www.pi-usa.us/


[13] M. Demuth and J. van Casteren. Stochastic Spectral Theorey for Self-Adjoint 
Feller Operators. EPFL Press, Spain, 2000. 

[14] B. Dickinson, J. Singler, and B. Batten. The detection of unsteady flow sepa­
ration with bioinspired hair-cell sensors. 26th AIAA Aerodynamic Measurement 
Technology and Ground Testing Conference, pages AIAA 2008-3937, 2008. 

[15] P. Dorato, C. Abdallah, and V. Cerone. Linear-Quadratic Control, An 
Introduction. Prentice Hall, Englewood Cliffs, 1995 

[16] J. S. Gibson. An analysis of optimal model regulation: convergence and stability. 
SIAM J. Contr. Opt, 19:686-707, 1981. 

[17] J. S. Gibson and A. Adamian. Approximation theory for linear quadratic 
gaussian contiol of flexible structures. SIAM J. Contr. Opt., 29:1-37, 1991. 

[18] Z. Liu R. Spies J. Burns, E Cliff. On coupled transversal and axial motions 
of two beams with a joint. Journal of Mathematical Analysis and Applications, 
pages 182-196, 2008. 

[19] B. Batten King. Modeling and Control of Multiple Component Structures. PhD 
thesis, Clemson University, December 1991. 

[20] J. L. Lions. Optimal Control of Systems Governed by Partial Differential 
Equations. Springer-Verlag, Berlin, 1971. 

[21] A. Pazy. Semigroups of Linear Operators and Applications to Partial Differential 
Equations. Springer-Verlag, New York, 1983. 

[22] R. Showalter. Hilbert Space Methods in Partial Differential Equations. Dover 
Publications, Inc., New York, 2010. 

[23] W. Shyy, P.G. Ifju, and D. Viieru. Membrane wing-based micro air vehicles. 
Applied Mechanics Reviews, 58:283-301, 2005. 

[24] W. Shyy, P. Trizila, C. Kang, and H. Aono. Can tip vortices enhance lift of a 
flapping wing? AIAA Journal, 47:289-293, 2009. 

[25] A. Song, X. Tian, E. Israeli, R. Galvao, K. Bishop, S. Swartz, and K. Breuer. 
Aeromechanics of membrane wings, with implications for animal flight. AIAA 
Journal, 46(8):2096-2196, 2008. 

[26] M. Tadi. An Optimal Control Problem for a Timoshenko Beam PhD thesis, 
Virginia Polytechnic Institute and State University, August 1991. 

[27] X. Tian, J. Iriarte-Diaz, K. Middleton, R. Galvao, E. Israeli, A. Roemer, 
A. Sullivan. A. Song, S. Swartz. and K. Breuer. Direct measurements of the 
kinematics and dynamics of bat flight Bioinspiration & Biomimetics, 1.S10-
S18, 2006. 



89 

[28] Jr. W. Weaver, S. P. Timoshenko, and D. H. Young. Vibration Problems in 
Engineering. 5th ed., John-Wiley & Sons, 1990. 

[29] J. L. Walker. Dynamical Systems and Evolution Equations. Plenum Press, New 
York, 1980. 

[30] L. Zietsman, K. A. Evans, J. T. Brown, and R. A. Idowu. Riccati conditioning 
and sensitivity for a minmax controlled cable-mass system. Proceedings of IEEE 
Conference on Decision and Control, pages 4007-4011, 2008. 


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Summer 2011

	Modeling and control for heave dynamics of a flexible wing micro aerial vehicle distributed parameter system
	Lisa M. Kuhn
	Recommended Citation


	ProQuest Dissertations

