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ABSTRACT 

A fabrication process for vacuum-encapsulating PZT microcantilevers was 

designed in this dissertation. Initially, a low temperature wafer-bonding recipe was 

optimized with the help of plasma-activation. Conventional direct fusion bonding 

temperature was reduced from 400 °C to 85 °C, and final thermal annealing temperature 

and time of 1000 °C for 4 hours (hr) were significantly reduced to 300 °C and 1 hr 

respectively. Tensile tests conducted on dies diced from the bonded wafer stack revealed 

bond strengths of 22.15 MPa, which was close to the bulk fracture strength of 24 MPa for 

silicon. Near infrared images of the wafer stack showed no debonded regions at the 

interface. Surface and interface chemistry of oxygen plasma-activated wafers before, 

during, and after bonding were investigated. Significance of wet chemical activation 

technique, like RCA (Radio Corporation of America) cleaning, was studied. The time 

interval between plasma-activation and fusion bonding was varied, and its effect on the 

bond quality and bond strength was investigated. Decrease in the bond-quality and 

strength was observed with an increase in storage time. However, an unexpected increase 

in the bond quality was observed after 48 hr, and was attributed to the increase in the 

interfacial oxide layer. Further investigations revealed that the interfacial oxide layer was 

capable of absorbing gas molecules released as a byproduct of ongoing reactions at the 

interface of the two wafers. Gettering capability of the interfacial oxide layer was 
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confirmed through the bonding of plasma-activated and 48 hr stored silicon (Si) and 

silicon dioxide (SiCh) wafers. Infrared images showed a good bond for the wafer stack. 

Since designing a fabrication process flow for vacuum-encapsulation of 

microdevices was the primary objective, lead zirconate titanate microcantilevers were 

fabricated onto a silicon substrate. The microdevices were actuated in ambient air 

pressure as well as in a vacuum environment. Broadening of the resonance curve was 

observed with an increase in the magnitude of ambient pressure, and is a result of 

increased air-damping. Experimental results obtained were compared to theoretical 

results from finite element modeling analyses. 

Vacuum cavities were fabricated between two Si wafers. Optical lid-deflection 

method of measuring internal cavity pressure was explored and employed with the help 

of high aspect ratio pressure diaphragms on a capping wafer. An investigation of seal 

integrity of the vacuum package revealed real/virtual leaks. The gettering capability of 

the Si02 layer was employed in order to preserve the vacuum-level in the cavities. Two 

types of gettering patterns were investigated. It was concluded thatanSi02 getter layer at 

the interface increased the seal-integrity of the vacuum packages, while getter rings still 

showed signs of real leaks. In addition, it was observed that the internal vacuum-level 

was higher for cavities with getter rings as compared to cavities without getters. It was 

concluded that getter rings were capable of preventing virtual leaks but not real leaks. A 

thick interfacial getter layer, however, prevented both the real and virtual leaks. 

Finally, a vacuum-packaging fabrication method to encapsulate lead zirconate 

titanate microcantilevers was proposed. In addition, more accurate methods of measuring 

package vacuum pressure magnitudes were proposed. 
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CHAPTER 1 

INTRODUCTION 

This dissertation documents the research conducted at Louisiana Tech University 

in developing and fabricating a design-process flow for the purpose of vacuum-packaging 

MEMS devices, particularly PZT microcantilevers. The fabrication processes detailed in 

this work was designed to be able to be integrated into an industrial fabrication process 

flow. This chapter provides the readers with an introduction to the topic by defining some 

fundamental concepts like wafer-level bonding, plasma-activation, vacuum-packaging, 

microfabrication, etc. 

1.1 Wafer Bonding 

Driven by the ever-shrinking size and increased functionality of electronic devices 

three-dimensional stacking of electronic components/circuits have been extensively 

investigated and implemented. Some examples of the multi-level stacking of components 

are multi-level memory stacking, three-dimensional integrated circuits, vacuum 

packaging of micro resonators and actuators, multi-junction solar cells etc [1-4]. Wafer-

level bonding is one of the techniques employed to stack multiple layers of electronic 

devices on top of each other. Apart from a reduced electronic footprint, wafer-level 

bonding increases yield and reduces production cost. 

1 
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Wafer bonding refers to the permanent joining of two wafer substrates with or 

without using an intermediate layer. Some of the commonly used wafer-bonding 

techniques are direct fusion bonding, anodic bonding, eutectic bonding, and thermo-

compression bonding. Anodic bonding involves ionic exchange between the bonding 

substrates under the influence of temperature, pressure, and electric potential. A common 

example is the anodic bonding of Pyrex glass and Si commonly used in microfluidic 

applications. Sodium oxide (Na20) present in Pyrex glass provides Na+ ions for exchange 

with OH" ions from the Si substrate. The migration of Na+ ions into the Si substrate and 

the OH" into the glass substrate creates strong electrostatic attraction forces at the 

interface of the two substrates thereby hermetically sealing them in the process. Increased 

terhperature and electric potential facilitates the migration of ions across the interface. 

Eutectic bonding involves the bonding of substrates with low melting point eutectic 

alloys applied at the interface, while thermo-compression bonding is commonly used in 

bonding substrates with a metallic layer like gold, where temperature and pressure fuses 

the two opposing gold surfaces together. 

1.2 Micro Electro Mechanical Systems 

Micro electro mechanical systems (MEMS) are devices/systems in the micro-

scale. The idea of MEMS technology was proposed initially by Richard Feynman's 

famous lecture of 1959 entitled "There's plenty of room at the bottom". Microfabrication 

technology or processes did not exist when such an innovative idea was proposed. 

However, with the advancement in science and technology, several innovative fabrication 

methods were studied, developed, and implemented. MEMS became popular with 

advancements in silicon fabrication, metal deposition and etching techniques, wet/dry 
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substrate etching techniques, like inductively coupled plasma, reactive ion etch, etc. 

Silicon was the primary substrate of choice when MEMS devices where first fabricated. 

Hence, several processes and procedures were developed exclusively for silicon 

microfabrication. Some of the basic MEMS processes are photolithography, metal 

deposition, metal wet/dry etching, silicon wet/dry etching, etc. 

1.2.1 Photolithography 

As the name suggests, this process is used in microfabrication by utilizing light, 

specifically ultra-violet radiation, to pattern and develop a photo-sensitive layer, known 

as photoresist, to create a masking layer for the substrate underneath. This polymer mask 

would protect the underlying layer during etching of the exposed areas, thereby 

transferring the patterns on the photo-sensitive polymer onto the underlying substrate. 

1.2.2 Metal Deposition 

This step involves depositing of metallic layers of specific thicknesses onto a 

substrate for specific processes. Several deposition methods were optimized in order to 

obtain consistent film properties, quality, thickness, etc. 

1.2.3 Metal Wet/Dry Etching 

This step involves etching of a particular metallic surface using a wet chemical or 

dry plasma process. Some examples of wet chemical etchings are as follows: etching of 

aluminum using transene aluminum etchant (contains 80% phosphoric acid, 5% nitric 

acid, 5% acetic acid, and 10% deionized water), gold etching using aqua regia solution, 

etc. An example of dry etching techniques is chlorine etching of platinum using reactive 

ion etching. 
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1.2.4 Silicon Wet/Dry Etching 

Silicon substrates are wet etched using potassium hydroxide solution, TMAH, etc. 

Dry etching involves inductively coupled plasma etching using SF6. 

MEMS devices are made up of individual components with dimensions ranging 

from 1 to 100 um and overall device size range from 20 urn to 1 mm. Some applications 

where MEMS devices are employed are as accelerometers in automobile airbags, 

gyroscopes in cellphones, resonators in anti-tamper sensors, etc. Successful MEMS 

device fabrication depends on controlling environmental parameters like temperature, 

humidity, dust particulates in ambient air, etc. These parameters are controlled through 

carrying out the MEMS device fabrication processes in the controlled environment of a 

clean room. 

1.3 Project Overview 

The main objective of this research was to create a fabrication process for vacuum 

encapsulating MEMS devices between two silicon substrates. With the reduction in the 

size of the footprint on which electronic devices can be placed and with the need for 

increased functionality, three-dimensional integration of electronic components was 

necessary. This was carried out through wafer-level bonding of substrates containing the 

MEMS devices. Chapter 2 discusses the optimization techniques carried out to develop a 

recipe for bonding wafer-level substrates in order to encapsulate microdevices in vacuum. 

Surface and interface chemistry before, during, and after bonding were studied in detail 

in Chapter 3. For the purpose of optimizing a fabrication process flow for vacuum-

packaging MEMS devices, vacuum cavities that would contain the devices were 

fabricated. Methods to monitor and test the vacuum levels in the cavities were 
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investigated and implemented, and are detailed in Chapter 4. Finally, piezoelectric 

microcantilevers were fabricated on a silicon substrate. These devices were tested in 

ambient atmospheric pressure and vacuum pressure in order to compare the operating 

performance under each condition. These processes are detailed in Chapter 5 and the 

problems encountered during fabrication and testing are outlined in detail. The steps 

taken to solve these problems are also discussed. 

1.4 Research Motivation 

Wafer-level bonding has been used in the past for three-dimensional stacking of 

electronic components. However, the subjecting of the substrates to be bonded to the high 

temperature steps of the final thermal annealing stage could change the diffusion profile 

of dopants in the Si in addition to changing its material properties. High temperatures of 

1000 °C could have detrimental effects on metals or polymer layers that makeup the 

electronic components. Hence, an alternative method to thermally anneal the pre-bonded 

wafer-stack was necessary. Plasma-activation is one such method that involves dry 

surface-activation of surfaces to be bonded. This way, the highly reactive bonding 

surfaces does not require high thermal annealing temperatures to obtain a permanent and 

strong covalent bond at the interface. Plasma-activation of Si substrates has been 

extensively studied in the past. However, the type of plasmas/gases used in plasma-

activation was contingent upon their compatibility with polymers or passive layers on the 

substrate. Therefore, it was imperative to optimize a plasma-activation recipe to suit Si 

substrates with organic piezoelectric polymers, like lead zirconate titanate. 

Vacuum-encapsulation of MEMS devices in Si using glass substrates has been 

studied in the past. Glass substrates have been employed as a reliable capping layer for 
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vacuum packages. However, this poses as a termination layer for three-dimensional 

stacking, as it would be challenging to integrate another substrate (with electronic 

components) atop the glass-capping layer. Replacing the glass capping substrate with a 

Si substrate facilitates the continuation of three-dimensional stacking, since Si is a 

commonly used substrate for manufacturing electronic components. Thus, it was 

necessary to investigate vacuum-encapsulation of MEMS devices in Si substrate using a 

capping Si substrate with other MEMS devices. Some of the challenges faced in 

maintaining the integrity of the vacuum level in packages are the 

prevention/minimization of real and virtual leaks. Real leaks are comprised of ambient air 

seeping into the packages and reducing the internal vacuum level of the packages. Virtual 

leaks are comprised of interfacial gaseous molecules propagating into the vacuum 

cavities and reducing the package vacuum level. Hence, it was necessary to find remedies 

to maintain the vacuum pressures in packages using suitable gettering agents. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter is dedicated to the various research work carried out in those areas 

that pertain to the research works documented in this dissertation. Readers are made 

aware of recent developments in the field of wafer-level bonding and packaging, and the 

different techniques employed to evaluate seal integrity of vacuum packages. 

2.1 Direct Fusion-Bonding and Testing Methods 

Direct fusion bonding involves the bonding of like-substrates, such as two Si 

wafers, using only temperature and pressure (no adhesive layer) and producing nearly 

perfect hermetic seals. This method requires the mating surfaces to be highly polished 

(average roughness less than 2 nm). In addition, the pre-bonded substrates need to be 

annealed at high temperatures ranging from 800-1000 °C for several minutes. Other 

factors that affect the bond quality and strength are wafer bow and etch patterns on the 

surface of the wafers [1]. The chemistry involved in fusion bonding is illustrated in 

Figure 2.1. Si wafer surfaces have silanol groups (OH") that are ready to bond with 

opposing silanol groups from other Si wafer surfaces, as illustrated in Figure. 

2.1(a).When the two Si wafer surfaces are brought in contact, the silanol group of one 

surface forms weak bonds with the silanol groups of the opposing wafer surface through 

hydrogen bridging, as illustrated in Figure 2.1(b).During the pre-bonding process, Si 

7 
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atoms form permanent covalent bonds with oxygen atoms (O) forming Si-O-Si with the 

release of water molecules, as illustrated in Figure 2.2. It should be noted that the Si-O-Si 

covalent bond is formed after pre-bonding the wafers for a particular time period. It is 

crucial for the quality of the bond process that the released water molecules diffuse 

through the interface of the bonded wafers. However, these molecules have a tendency to 

cluster and form tetramer rings around a Si-OH:OH-Si bond during the pre-bonding 

process [2]. These tetramer rings are usually 0.4 nm in diameter and therefore have great 

difficulty in diffusing through the interface of the wafer stack, which is separated by an 

interfacial gap of 0.32 nm [1]. A. Berthold, et al. concluded that no appreciable Si-O-Si 

formation takes place at the interface so long as there is a presence of water tetramer 

rings at the interface [2]. Strong Si-O-Si covalent bonds exist at a distance of 0.16 nm. 

Therefore, strained Si-O-Si has a higher tendency to be rehydrated by water tetramer 

rings at the interface. The final thermal annealing step is responsible for breaking up 

these rings, thereby preventing the rehydration of Si-O-Si bonds. The typical final 

thermal annealing temperatures range from 1000 to 1100 °C. Such high temperatures can 

cause irreparable damage to doped SOI wafers by changing the doping profile within the 

substrate and precluding the use of most metals. This limits the application of direct-

fusion bonding of Si-Si to scenarios where such high annealing temperatures would not 

be critical. A high density of OH" groups at the interface is known to prevent the 

formation of tetramers [2-4]. Plasma-activation is a method commonly used to increase 

the density of OH" groups at the interface. Some of the commonly used plasmas are 

oxygen (O2), nitrogen, and argon [5-7]. Researchers have used several methods to plasma 



activate wafer surfaces using O2 [8, 9]. A reactive ion etch (RIE) chamber was employed 

in this work in order to plasma activate Si wafers before pre-bonding. 
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Figure 2.1 (a-b).Illustration of the chemistry involved at the surface interface during 
wafer bonding of two silicon wafers (modified from [2]). 
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Figure 2.2. Illustration of the covalent bond formed while pre-bonding the silicon wafers, 
with the release of water molecules (modified from [2]). 

Investigations on the various surface reaction effects of plasma-activated wafers 

were carried out [6, 10]. Increased density of OH" groups prevents the formation of 

tetramer rings, which prevents the rehydration of Si-O-Si covalent bonds. In addition, 

plasma-activation creates pores on the wafer surfaces that further aids in the diffusion of 

water molecules from the sides of the interface. The exact chemistry of plasma-activation 

cannot not been explained, as its mechanism has not been completely studied. However, 

it is known that plasma-activation using oxygen gives a hydrophilic and contamination-

free wafer surface [11]. In addition, the surface energy of the wafers is increased with the 

ion bombardment in the RIE chamber. Figure 2.3 shows the results obtained by V. 

Dragoi, et al. where the effect of different types of plasma-activation was investigated for 

surface energy between the two wafers for corresponding annealing times [6]. As evident 

from the figure, an increase in the annealing time increases the surface energy. This effect 

can be attributed to the increased OH" group reactivity at the interface as a result of high 

annealing temperatures. In addition, an increase in the final annealing temperature can 

lead to a decrease in the probability of the formation of water tetramer rings at the 

interface, which in turn leads to increased surface reactivity. The bond quality can be 

determined qualitatively and quantitatively. Some of the qualitative methods employed to 
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determine the bond quality are with the help of transmission inspection techniques, such 

as near infrared (NIR) spectroscopy, acoustic microscopy, x-ray inspection, etc. [12]. 

Figure 2.4 shows the scanning acoustic microscope (SAM) images of plasma-activated 

and fusion bonded wafer pairs. Figure 2.4 (a) shows the trapped air-molecules at the 

interface of Si/Si wafers that were plasma-activated using Ar. These trapped air 

molecules create debonded regions at the interface thereby reducing the bond strength 

between the wafers. In contrast, Figure 2.4 (b) shows a clean bond with no trapped air 

molecules at the interface. While SAM images show trapped molecules at the interface 

directly, NIR imagery reveals the interfacial gas molecules as Newton rings thereby 

showing the debonded regions at the interface, as shown in Figure 2.5. NIR method of 

inspection was employed here in order to determine the quality of the bond. Debonded 

regions were revealed as Newton rings in the NIR image of the wafer stack. Most of the 

NIR inspection stations project IR rays on one side of the wafer-stack while recording the 

optical field at the other side by using a detector, such as an IR camera. Most of the 

incident IR light is transmitted through the stack, as Si is translucent to IR light. 

However, optical interference patterns are generated in areas with trapped gas molecules 

or dust particulates. 
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Figure 2.3. Plot showing the increase in the surface energy between two wafers with 
increase in annealing time [6]. 

Figure 2.4. Scanning acoustic microscopy images of Ar plasma-activated Si/Si and 
Si/SiQ2 wafers [5]. 



13 

Figure 2.5. Illustration showing the infrared light propagation through wafer-stack with 
trapped particulate at the interface [13]. 

Debonded regions are evident as Newton rings through light reflected from the 

air-Si interface. The height H of the debonded region can be calculated from the 

following Equation (2.1). 

H=N1/2 (2.1) 

N is the number of fringes in the Newton ring and k is the wavelength of the IR light. 

Figure 2.6 shows an example of an NIR image with debonded regions, shown as Newton 

rings, at the interface of the wafer-stack. 

Figure 2.6. An NIR image showing the debonded regions as Newton rings at the 
interface. 

The commonly used methods for quantitatively measuring the bond quality 

between two wafers in the form of bond strength are the crack propagation method and 
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tensile test method. In the former technique, a separating material, like a sharp razor 

blade, is inserted in between the interface of two wafers that causes the wafer pair to be 

debonded. NIR images of the wedged razor in the wafer-stack reveals the propagation of 

cracks away from the debonded region. Large debonded regions are evident as Newton 

rings, and the surface energy between the wafers is calculated from the length of the 

crack from the debonded region [14]. C. Liguo, et al. [14] used Equation (2.2) to 

calculate the surface energy y between the bonded wafers using the parameters illustrated 

in Figure 2.7. 

_ (5R-2L)Eb3t2 

r- X(64RL4-32L5) (2.2) 

R is the radius of the wafer, L is the length of the crack-propagation, E is the Young's 

modulus of the wafer material, t is the thickness of individual wafers (assuming the two 

wafers are of equal thicknesses), and X is the wavelength of the IR light. 

Figure 2.7. Illustration of the crack-opening method to measure surface energy between 
two bonded wafers [14]. 
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Figure 2.8 shows the crack-opening line propagation while dynamically 

inspecting the wafer-stack using NIR imagery. In the latter technique, the wafer is diced 

into individual dies that are pulled apart. The bond strength between the wafers is 

measured using a tensile test station. An example of tensile tests conducted on a die stack 

diced from a bonded wafer pair can be found in [15]. Both techniques require a 

destructive method for measuring/calculating the bond energy between the wafers. 

Figure 2.8. Dynamic NIR image of the crack-propagation method of measuring the 
surface energy between fusion bonded Si/Si wafer-stack [14]. 

Figure 2.9 shows an illustration of the sample setup for pull-testing a die stack in 

order to calculate the bond strength between the dies. The device under test (DUT) is 

placed in a ring that allows the Al stud to be pulled through while holding back the 

ceramic tile. In this way, the top and bottom substrates of the die are pulled apart. Bond 

strength between the substrates is determined as the pressure at which the interfacial bond 

fails. 
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Figure 2.9. An illustration of the tensile test sample showing the device under test (DUT) 
placed in between an aluminum stud and a ceramic tile. 

2.2 Investigation Techniques on Buried Oxide Layer 

Much attention has been given to the bonding mechanism at the interface of two 

Si wafers. Special investigations have been conducted on the atomic arrangement at the 

buried interface [16]. The thickness of the interfacial oxide layer increases at the final 

thermal annealing stage [17]. Since the oxide layer is buried, non-destructive methods 

like infrared spectroscopy are usually used to measure the stoichiometry, thickness, 

structure, etc. Using multiple internal reflective ellipsometry, the chemical composition 

and orbital states of the oxide layer can be determined. Thicknesses of the interfacial 

oxide layer can be measured using high-resolution transmission electron microscopy 

(HRTEM) by measuring the cross-section of the bonded wafer-stack, as shown in Figure 

2.10. 
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Figure 2.10. HRTEM images of the changes in the interfacial oxide layer with increase in 
final annealing temperature (a) 400 °C (b) 800 °C (c) 1100 °C [17]. 

Even though HRTEM provides detailed information, it is still a destructive 

method of analyzing the interfacial profile of bonded wafers. Up to now, IR spectroscopy 

is the only non-destructive method of inspecting the interface of pre-bonded wafer stacks. 

Changes in the interfacial oxide during final thermal annealing has been a topic of several 

studies [18, 19]. It was concluded that the interfacial oxide layer increases with an 

increase in the final thermal annealing temperature and time. However, a saturation of the 

oxide thickness was observed at about 1000 °C [20]. The internal structure of the 

interfacial oxide layer was studied and found to be the same as the surface oxide layer 

atop a Si substrate [17]. The increase in the buried interfacial oxide layer thickness is also 

influenced by decomposition of water molecules. This was found to occur at bonding 

temperatures less than 400 °C. At temperatures greater than 400 °C the silanol species 

decompose, which leads to the increase in the interface oxide thickness. At higher 

temperatures of 800-1100 °C, the oxygen from the bulk Si is known to diffuse into the 

SiC>2 layers further oxidizing the Si. Oxidation takes place at the Si-Si02 interface. 

D. Feijoo, et al. studied three types of forces known to be involved during fusion 

bonding and annealing [21]: weak Van der Waals forces, moderately strong H-bonding, 

strong covalent Si-O-Si bonds in hydrophilic fusion bonds, and Si-Si bonds in 
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hydrophobic bonds. At bonding temperatures greater than 150 °C, water monolayers and 

Si-OH groups are found at the interface. At temperatures ranging from 300-600 °C, the 

orientation of water molecules is restricted. For temperatures greater than 800 °C, the Si-

OH groups disappear. Apart from being a non-destructive means of profiling the 

chemistry of the interface, infrared spectroscopy is sensitive to the chemical and bonding 

nature of the interface of bonded wafers. For example, Van der Waals interactions are 

revealed as shifts in IR peaks (few cm"1), while the presence of hydrogen bonds produces 

large shifts (greater than 100 cm" ) with strong peak-shifts. D. Feijoo, et al. studied the 

chemical changes at the interface of wafers before and after pre-bonding, and at short 

annealing intervals, using advanced IR spectroscopy [22]. Though short annealing times 

fail to produce a stable interfacial chemical state, these studies helped reveal the 

kinetically limited reactions taking place with the increase in final annealing temperature. 

Samples investigated for interfacial chemistry profile were beveled at two opposing 

edges and IR rays were radiated into one end. The multiple internal transmission infrared 

spectroscopy studies have revealed that RCA and plasma-activation before bonding 

attacks the Si-O-Si and water molecules from the atmosphere then hydrate to form Si-OH 

groups, as shown by the reaction below. 

Si-O-Si + H20-+Si-OH + OH-Si (2.3) 

This equation is the reason for the increase in the density of silanol groups after RCA and 

plasma-activation. The increased silanol at the surfaces of activated wafers is known to 

also increase the adsorption of water molecules. During annealing most of the molecular 

water diffuses away from the bonded interface into the oxide layer reaching the Si crystal 

and oxidizing it [23]. A wafer that is RCA treated has isolated (no H-bond) Si-OH 
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groups. These groups do not contribute to the bonding mechanism. In O2 plasma treated 

wafers the Si-OH species are H-bonded and contribute to the bonding mechanism. As 

mentioned previously, water released as the byproduct of the covalent Si-O-Si gets 

reabsorbed and reoxidises the Si at the Si-SiCh interface releasing H2 in the process. 

Some of the released H2 is known to be absorbed in the oxide layer, but the remaining 

gets trapped in the interface. However, the absorption of the H2 molecule is possible only 

by a thick oxide layer [24]. In the past, the presence of H2 has been identified by Raman 

spectroscopy [25, 26]. Typical molecular H2 wavelength peaks are found around 4000-

4100 cm"1. An example of a Raman intensity peak with H2 peaks is shown in Figure 2.11. 
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Figure 2.11. An example of Raman intensity peak of H2 at 4100 cm"1 [27]. 

The oxide layer on a Si wafer surface has been related to fused silica due to their 

similar properties [28]. Two opposing Si wafers behave like two conducting planes very 

close to each other. The absence of any alkaline impurity could change the binding 

energies of adsorbed molecules at the interface: quite opposite in the case of insulated 

silica. Residual valencies of a SiCh substrate surface is highly hydrophillic and react with 
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H2O. Therefore, there is an increased density of OH groups on the surface at room 

temperature. This is the same case for non-porous amorphous silica that is fully 

hydroxilated and contains four to six Si-OH groups per 100A2 [28]. Water is adsorbed 

onto the silica surface at atmospheric pressure and temperature, as shown in Figure 

2.12.Subscripts "I" and "II" indicate the different stretching frequencies in the IR spectra. 

J.H Anderson and K.A Wickersheim investigated the presence of two types of H2O and 

OH groups on the silica surface with the help of IR spectroscopy [29]. 
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Figure 2.12. Model showing water adsorption onto the Si02 surface. H-bonds are shown 
in bold lines [28]. 

The adsorption of H2O was written into a reaction equation as shown below. 

-OHi + H20 «-• -OHi 1 + H2O1 (6 kcal/mol) (2.^) 

The subscripts " 1 " and "11" shows the different stetching frequencies in the IR spectra. 

It was also concluded that the probability of H2O adsorbtion on isolated SiOH groups was 

significantly low. Additional adsorption of H20 is shown by equation (2.5). 

H2Oi + H20 <-• H2Oi + H2O11 (10.5 kcal/mol) (2.5) 

This H2O forms tetramer clusters at the Si02 interface before being adsorbed by all the 

Si-OH groups. W.K Thompson pointed out that a network of H-bonds are formed on a 

fully hydrated silica surface by the first monolayer of H2O [30]. The characteristics of 
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this arrangement of H-bonds involves oxygen pointing down (H2O1) with hydrogen 

atoms pointing towards the surface, as shown in Figure 2.13. At temperatures greater than 

180 °C, the adsorbed H2O molecules detach from the network leaving behind a 

hydroxylated silica surface. Here, most of the Si-0 groups are linked through hydrogen 

atoms. The surface chemistry of silica is similar to that of SiC>2 on a Si wafer surface. 
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Figure 2.13. Specific model for the three-dimensional H-bonded network of H2O on a 
fully hydrated surface [28]. 

As mentioned earlier, during the wafer bonding process hydrogen bridging 

develops between the oxygen and hydrogen atoms of the adsorbed H2O molecules. These 

H2O molecules, however, have a tendency to form tetramer rings with a diameter of 4 A 

that makes it difficult to be diffused through the interface. In addition, the binding energy 

of the cyclic tetramer was calculated to be 10 kcal/mol[31]. The tetramer binding energy 

is three times greater than the bonding energy of a single hydroxyl water bond, which 

was reported to be 3 kcal/mol. Figure 2.14 shows the presence of water clusters at the 

interface with hydrogen bridges between the silanol groups. As discussed earlier, the high 

final annealing temperatures gives the H2O cluseters enough kinetic energy to breakup 

and diffuse through the interface, therby preventing a rehydration of the Si-O-Si covalent 

bond formation at the interface. 
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Figure 2.14. Presence of water molecules at the interface of two Si wafers, with hydrogen 
bridges between opposing silanol groups [28]. 

2.3 Vacuum Packaging and Testing Methods 

Resonators have been extensively used for various applications ranging from 

biosensors and molecular sensors to resonators/actuators for high and low frequency 

applications [32, 33]. An extensive study has been conducted on operating 

microcantilever resonators in vacuum. The absence of an air-damping medium increases 

the quality factor (Q-factor), narrows the bandwidth, thereby increasing the accuracy of 

the device to operate at a particular frequency, etc. The Q-factor of a vibrating device has 

been modeled extensively in the past. L.D Landau and E.M Lifshitz have studied and 

analytically modeled the fluidic solution for a vibrating structure [34]. R.K Kapania, et al. 

modeled such a structure using the COMSOL Multiphysics ™ tool where they studied 

the effect of Rayleigh damping on energy harvester devices and the impact on its 
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efficiency and accuracy [35]. Quality factor (Q-factor) is a parameter that characterizes 

the bandwidth of a resonator to its resonant frequency, as shown in Equation (2.6). 

Q=% (2-6) 

fr is the resonant frequency and Af is the bandwidth of the resonator. An increase in Q-

factor is realized by the reduction in bandwidth. A low bandwidth resonator can be used 

in applications where the operating device needs to respond to a particular frequency. The 

reduction in the resonator bandwidth can be achieved by eliminating the damping factor 

in the device, which is accomplished by operating the device in vacuum. This is the 

reason for the increased interest in vacuum encapsulation of micro-resonators and 

actuators. 

One of the major challenges in obtaining vacuum cavities between substrates is 

the maintenance of a hermetic seal. Several methods have been employed to achieve 

hermetic sealing of two substrates. One of the common ways to hermetically seal cavities 

in vacuum is to use an intermediate layer. The choice of hermetic sealants depends on the 

method of sealing as well as the equipment to be employed. General hermetic sealants are 

metals, polymers, inorganic glasses, etc. Most metal sealants are commonly used in 

applications where the expected lifetime of the device is greater than ten years with an 

operating temperature range of -55 °C-150 °C, and commonly used in military, space, 

and aviation applications. Commonly used inorganic glass sealants are used in 

applications where devices employing such materials are expected to last five to ten years 

under operating temperatures of -20 °C-65 °C. Commercial, consumer, and industrial 

applications are some of the areas where glass-frit hermetic sealants are commonly 

employed. Polymer materials are not commonly used as hermetic sealants due to their 
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outgassing probabilities. Nevertheless, they have been used as quasi-hermetic or near 

hermetic sealants for applications where devices are expected to last not more than five 

years [36, 37]. When using intermediate layers for sealants, intermediate layer bonding 

methods like eutectic bonding is used. Low melting point alloys are commonly used in 

eutectic bonding, like Au/Sn, Sn/Ag, etc [38, 39]. Other criteria for choosing an optimal 

solder for eutectic bonding are resistance to corrosion, compatibility with harsh 

environments, etc. AuSn solders have been used extensively in critical applications even 

though the solder melting point/eutectic point is 280 °C. Solder bonding involving 

materials containing Sn have been employed recently[40]. Welding is another method of 

hermetic bonding using an intermediate layer between bonding substrates. It is commonly 

carried out using laser or electron beam [41, 42]. In welding bonding, the application of 

energy is directed exclusively to the mating region. This reduces heating of adjacent 

components (that may be temperature-sensitive) through localized heating. Other types of 

intermediate adhesive layer bonding include glass-frit method (mentioned briefly earlier). 

One of the common methods used to dispense glass-frits (that are compatible with 

MEMS devices) onto the bonding substrates is screen-printing. Following a drying cycle, 

the temperature of the substrates is raised to greater than 400 °C in order to volatize any 

binders. Once the bonding surfaces are mated, the temperature of the substrate-stack is 

raised above the melting point of glass-frit. Other methods of intermediate bonding 

involve the spin-coating of benzocyclobutene (BCB), SU8, and polyimide materials. 

However, the major disadvantage of using organic polymers at the interface is 

permeability of the sealant, as well as the increased probability of outgassing. Direct 

bonding is a hermetic sealing method used without any interfacial layer. Some examples 
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of direct bonding include fusion bonding, anodic bonding, friction stir bonding, diffusion 

bonding, etc. Anodic bonding is commonly used in hermetically sealing MEMS devices 

in Si using glass-capping substrate. Here, borosilicate glass (containing Na+ ions) is 

brought into contact with the Si substrate (containing OH" ions) using temperature 

(typically 300 °C) and pressure (2><10"4mBar) with an applied potential difference of 800 

V. The migration of Na+ ions from the glass substrate to the Si interface and the OH" ions 

from the Si substrate to the glass interface creates a strong electrostatic attraction force at 

the interface. This force of attraction is responsible for the hermetically sealing of glass to 

Si. Bonding in vacuum achieves vacuum pressure levels in cavities between the glass and 

Si. One of the major criterions for a successful bonding is that the mating surfaces should 

have an average surface-roughness of less than 20 nm. Diffusion bonding is a type of 

metal-to-metal bonding where physical pressure and temperature are applied. Sometimes 

interfacial layers are employed in order to enhance bonding, although these materials are 

not adhesives. The mating surfaces are kept in close contact during the bonding process. 

Another metal-to-metal bonding technique is friction stir bonding, commonly used with 

Al and Al alloys. Bond integrity for metal-to-metal bonding is determined through peal 

strength testing, lap shear testing, and burst testing. 

Diffusion bonding is carried out using temperature and pressure, without any 

adhesive layer. The bonding mechanism was detailed in previous sections. Vacuum 

cavities in Si/Si substrates were fabricated and hermetically sealed using direct fusion 

bonding of two Si substrates. Fusion bonding produces an interfacial oxide layer during 

the final annealing process. The presence of an interfacial oxide layer, before mating and 

bonding, has been studied to increase the bond quality between the two Si substrates. 
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Bond/seal integrity for different bonding methods has been extensively studied in the 

past. Acoustic microscope (AM) inspection is a commonly used non-destructive method 

where the device under test is inspected for unintended gaps or debonded regions 

between the areas of interest. During AM inspection, the device under test is placed on an 

AM stage, and the resolution and scan size of the ultrasonic transducer is adequately 

adjusted in order to obtain a detailed image of the interface. The transducer, which was 

placed over the device under test, is repositioned based on the image from the system in 

order to obtain a reference for comparison with the area of interest. Any cracks/voids in 

the interface are visible in the AM image. X-ray inspection is another method used to 

detect and characterize debonded regions in the bond-interface. It has been extensively 

used in the past on packages that were not sensitive to the radiation energy [43, 44]. In 

the X-ray inspection method, the known transmitted radiation is compared with the 

reflected or refracted radiation and the variations in radiation density are analyzed. The 

X-ray inspection method is similar to the ultrasonic inspection technique; the only 

difference being the former is through transmission unlike the latter that uses the 

reflection technique. Figure 2.15 shows an example of X-Ray inspection image of voids 

in solder joints. Fourier transform infrared inspection (FTIR) is another non-destructive 

method of inspecting the seal-integrity of a particular bond area. This technique can be 

used to detect the presence of gaseous molecules inside a cavity. The reduction or 

absence of the characteristic FTIR peak would translate to a leak in the cavity. The major 

advantage of this technique is that it can be used on a singular die stack as well. 

However, time consumption (if not automated) is a major disadvantage of this technique. 

In addition, the capping substrate should allow the reflected IR rays from the cavity back 
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into the measurement system. Hence, this technique cannot be used if the capping 

substrate strongly absorbs that particular wavelength of light. 

Figure 2.15. X-Ray Inspection image of voids in tape automated bonding solder joints 
[44]. 

Apart from imaging techniques, embedding of integrated sensors into vacuum 

cavities is a proven and widely used method of dynamically measuring the vacuum 

pressure inside the cavities of interest. Sensors integrated into the package can determine 

levels of hermeticity. Some examples of integrated sensors used for this purposes are 

pirani gauge, resonators, spark gap sensors, inter-digitated comb drives. A Pirani gauge 

works on the principle of thermal conductivity of certain materials. The difference in 

cavity pressure changes the thermal conductive properties of the materials employed in 

pirani gauges. The quality factor/damping coefficient of resonators is dependent on the 

ambient pressure conditions. Therefore, determination of the Q-factor of resonators 

reveals the vacuum pressure inside the cavities. Performances of resonators, one in a 

control chamber and the other in the cavity of a device under test, can be compared in 

order to accurately determine the internal cavity pressure of a device under test. Change 
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in internal pressure would result in a change in the magnitude of the dielectric breakdown 

of spark gaps, which in turn could be used to dynamically monitor internal cavity vacuum 

pressures. One of the major disadvantages of using the aforementioned devices in 

hermetic packages is the extensive and costly fabrication process associated with the 

already existing device fabrication process to integrate test-sensors with the devices 

under test. 

Though measurement of internal cavity vacuum pressure is important, sometimes 

the detection of hermetic package leakage would suffice. The most commonly used 

method of detecting a leak in cavities under study is by using a tracer gas. The tracer gas 

method is usually carried out by forcing a particular gas (with known properties) into the 

volume of the package, known as bombing. The evolution of the tracer gas is detected 

and the leak rate is measured. In this way the leak-rate of a particular hermetic package 

can be calculated. Helium (He), known for its inert nature and small molecular size, is a 

commonly used tracer gas. The rate of diffusion of the gas out of the hermetic package is 

known to be proportional to the difference in the package and ambient pressure. One of 

the major limitations of the tracer gas bombing method is the integrity of the seal to hold 

the bombed He pressure. Another challenge faced is the detection of leaked He from the 

small sizes of MEMS packages. The minimum detectable volume of He depends on the 

measurement technique and instrumentation. R.C Kullberg and D.J Rossiter employed a 

micro-residual gas analyzer (micro-RGA) with a relatively new, time-of-flight technique 

to measure leaked tracer gas-concentration [45]. In this technique, the package containing 

the bombed tracer gas is ruptured in a spectrometer chamber, and real-time analyse^ are 

performed on the released tracer gas. This method solves the special problem of MEMS 
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devices with very small-enclosed cavity sizes with infinitesimal leak rates, by releasing 

the encapsulated tracer gas through cavity-rupture. 

Optical lid-deflection is an inexpensive and accurate method of detecting and 

calculating the internal package vacuum pressure with respect to the ambient pressure. 

Here a lid is fabricated on top of the package cavity. According to this method, the lid is 

thin enough to deform due to the difference in the atmospheric pressure applied to the 

exterior and the internal cavity pressure. The deflection of the lid can be observed under a 

microscope or using an optical interferometer. Initial calibration of the lid deflection is 

carried out where the deflection magnitude of the lid for corresponding change in 

pressure load is measured. Typically packages under the lid are bombed with a tracer gas 

that would cause the lid to deflect. In this operation, the devices under test are placed in a 

basket, which is placed in a pressure chamber. The chamber pressure is then raised to a 

target pressure (typically 2-10 Bar) and is held for a specific time period (typically 2-10 

hr). After a nitrogen purge of the chamber, the devices with the lid are transferred to an 

optical interferometer. Once the initial deflection magnitude of the lid is recorded, the 

leakage of the tracer gas that causes a change in the deflection magnitude of the lid is 

observed and recorded. 

A typical package-bombing technique delivers a throughput of 20-200 parts per 

cycle. If vacuum pressures in packages are observed by the deflection of the lid (in the 

opposite direction as compared to the previous package-bombing case) then the 

permeation of ambient air into the vacuum cavities would be evident by the change in 

deflection magnitude of the lid. The dwell time between bombing and leak testing may 

vary. Mil-Std 883 standard recommends a dwell time less than 60 min. Consideration of 



30 

the dwell time of the devices under test is imperative for accurate measurements. The 

typical optical lid deflection technique leak detection system consists of only one 

bombing station and one leak detection chamber. Gross and fine leaks are detected using 

a single chamber. Accuracy is an issue when it comes to a very low difference between 

the ambient and package pressure. Increasing the aspect ratio of the optical lid can 

change its sensitivity. The lid employed in the optical lid deflection may be fabricated in 

many forms, like diaphragms, suspended plates, etc. A circular diaphragm was used in 

this study. The circular diaphragm lid was fabricated onto a capping wafer. Aligning the 

pressure diaphragm on the capping wafer over the cavities in the substrate wafer and 

bonding the stack in vacuum achieved diaphragm lids positioned exactly over the vacuum 

cavities. Difference in the ambient atmospheric pressure and the internal package 

pressure resulted in the deflection of the diaphragm lid. 

Devices like resonators and gyroscopes depend on hermeticity of the enclosure 

package for sustained performance and functionality. Integrity of the hermeticity is 

determined by measuring the packaged device at separate times. Shift in the output can 

be attributed to the rate of degradation of the hermeticity of the package. The optical lid 

deflection method is preferred over other techniques in MEMS devices. G. Elger, et al. 

detailed the rule-of-thumb applied in determining if a particular MEMS package design 

supports optical lid deflection testing [46], as shown in Equation (2.7). 

A<£ (2.7) 

R is the minimum free width of the lid, Eis the modulus of elasticity, 71s the thickness of 

the lid, and^4=3.9xlO"4cc/N. Figure 2.16 shows the experimental setup by G. Elger, et al. 
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to measure the deflection magnitude of the optical lid under pressure load from the 

devices under test. 
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Figure 2.16. Illustration of the experimental setup for measuring the deflection magnitude 
of the diaphragm (glass lid) under a pressure load, on an optical leak detector [46]. 

An example of an optimized thickness for a silicon lid with i?=1000 urn and 

7 7 

£=1.5x10 N/cm would be 26 urn. While designing the lid for fabrication, consideration 

should be given to the maximum pressure the lid would be exposed to. Leak-rate 

sensitivity L can be calculated using Equation (2.8). 

L is the leak rate sensitivity of the test in atm-cc/s, Vo'is the volume of package in cc, feis 

the leak test gas constant, t is the test duration in seconds, Dyt is the measured 

deformation of the package lid in cm, P^is the chamber pressure during the test in N/cm , 

and Lo is the lid stiffness constant calculated from the package dimensions in N/cm. The 

stiffness constant, L0, can be calculated from Equation (2.9). 

L0=a^ (2.9) 

a is the aspect ratio constant, and b is the lid width in cm. The aspect ratio constant 

depends on the design parameters of the deflecting media, which in this case is a circular 
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diaphragm. Typically, optical lids (to be used on devices under test) are coupled with 

calibration devices with known volumes and seal integrity and are tested for deflection by 

pressurizing and/or evacuating the packages while measuring the deflection of the 

diaphragm using an optical interferometer. This calibration is done in order to calculate 

the stiffness values of the optical lid design. The design parameters for the optical lid 

diaphragm should be chosen in such a way that the diaphragm deflect sufficiently to 

enable optical measurements. When a bombing step is involved, the diaphragm should be 

able to withstand the bombing pressure in addition to the target package vacuum pressure 

on devices under test. 

2.4 Lead Zirconate Titanate 

Lead zirconate titanate Pb(Zr,Ti)C>3 is a perovskite piezoelectric ceramic that 

consists of a face-centered and body-centered crystal lattice structure. Commonly known 

as PZT, it has been widely used in the micromanufacturing of MEMS devices, like 

resonators and actuators, utilizing its piezoelectric properties of generating current when 

mechanically deformed or vice-versa. A high piezoelectric coefficient is one of the 

advantages of this piezoceramic over other existing piezoelectric materials. Figure 2.17 

shows the crystal lattice structure of PZT. The two commonly used methods to create 

composites of PZT and Si are either by fabricating thin-film PZT onto crystalline Si or by 

bonding PZT ceramics to a Si substrate. Various other methods of depositing PZT are 

sputtering, chemical vapor deposition, and sol-gel deposition of thin film PZT. Sol-gel 

deposition technique involves the preparation of a sol-gel solution of PZT [48] and either 

spin coating or dip coating of the PZT sol-gel solution onto a substrate. This is followed 

by a series of high-temperature annealing processes that is required to obtain good 
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crystaUinity and high piezoelectricity. On the other hand, bulk PZT ceramics have been 

anodically bonded to Si substrates using an intermediate glass layer [49]. This technique 

takes advantage of the excellent piezoelectricity of bulk PZT. However, low-temperature 

bonding methods had to be developed in order to stay within the curie point of PZT. 

Curie point is the critical temperature beyond which a PZT ceramic loses its piezoelectric 

properties. Poling is a technique employed to revive the piezoelectric properties of PZT 

ceramics. Applying a potential difference across the ceramic in order to re-orient the 

perovskite crystal structure of PZT achieves poling. Typical sol-gel deposited PZT layer-

thickness range from 1-5 um. A unimorph design consists of PZT sandwiched between 

two metal layers that serve as electrodes for the piezoceramic layer. 

Figure 2.17. Illustration of the crystal lattice structure of PZT showing face-centered and 
body-centered arrangements of atoms. 
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CHAPTER 3 

ANALYTICAL AND THEORETICAL MODELING 

This chapter discusses the various theoretical and finite element models that were 

developed to study the deflection of a pressure diaphragm and its application as an optical 

deflection technique to monitor and measure vacuum pressure in packages. In addition to 

the analytical models that were designed to study the different parameters of 

microdevices, the finite element models of PZT microcantilevers developed here was 

used to optimize the design parameters of the PZT microcantilevers. The results gathered 

from these studies were later compared to experimental results and evaluated for 

consistency. 

3.1 Finite Element Modeling of Si Pressure Diaphragm 

Since the optical lid deflection method employed a circular diaphragm, a cylinder 

with fixed radius and thickness was modeled. COMSOL Multiphysics™, hereafter 

referred to as Comsol, was employed to obtain finite element solutions for the maximum 

deflection of the diaphragm for varying ambient pressure magnitudes. Initially the 

diameter and thickness of the diaphragm was to be optimized. The criteria for 

determining an optimal diaphragm design were sensitiveness of the diaphragm. 

Diaphragm sensitivity was determined by the difference in the diaphragm deflection for 

the difference in ambient pressure magnitudes. The higher the difference in deflection for 
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corresponding changes in pressure, the greater the accuracy of the system to determine 

the internal cavity pressure. The sensitivity of the diaphragm was inversely proportional 

to its thickness. Hence, a thin diaphragm would be highly sensitive to change in cavity 

pressure. However, limitations of fabricating very thin diaphragms on a Si substrate using 

inductively coupled plasma (ICP) were taken into consideration. A 50x50 um mesh was 

created using mapped mesh-type containing quadrilateral elements. The two dimensional 

mapped mesh elements were swept three dimensionally from the top face to the bottom 

face of the cylindrical diaphragm, creating 50x50x10 (im mesh elements throughout the 

solid. Figure 3.1 shows the meshed diaphragm. 

Figure 3.1. Meshed Si diaphragm model in Comsol that employed quadrilateral mesh 
type elements. 
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Solid mechanics physics was selected to solve the displacement of the diaphragm 

under applied load pressure. The boundary conditions used in solving the finite element 

model for displacement are given below: 

• Linear elastic model was applied to the entire domain, which comprises the Si 

diaphragm. In terms of the displacement gradient, the total strain tensor is given 

in Equation (3.1). 

£ = i(Vw + VuT) (3.1) 

u is the displacement variable. The Duhamel-Hooke's law relates the stress tensor 

to the strain tensor by the following Equation (3.2). 

s = s0 + c: (e — £0 — ad) (3.2) 

c is the fourth-order of the elastic tensor, so and so are the initial stresses and 

strains respectively, 6 is the difference between temperature and reference 

temperature, and a is the thermal expansion tensor. 

• Three degrees of freedom were applied to the top and bottom surfaces of the 

diaphragm in the x, y, and z- axes. 

• Fixed boundary condition applied to the sides of the cylindrical diaphragm, 

u(x)=u(y)=u(z)=0, where u is the displacement. 

• Boundary load applied in the negative z-direction with varying pressure 

magnitudes. 

Pressure magnitudes that simulate the internal cavity pressure of the vacuum cavities 

between Si wafers were varied from lxlO^mBar to 1 bar. The diaphragm diameter and 

thickness were varied in order to optimize the design specifications for the pressure 

diaphragm. It was concluded that an aspect ratio (ratio of diameter to thickness) of 80 
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would give satisfactory sensitivity to accurately measure the cavity pressure using the 

pressure diaphragm. 

Using the results obtained from the design parameter optimization, a diaphragm 

with a 4000 um diameter and 50 um thickness was modeled and meshed using 

quadrilateral mesh type elements. Grid convergence technique was used to carry out 

mesh optimization [1]. Once the volume of a coarse mesh was obtained, the grid cell size, 

h, was calculated using Equation (3.3). 

h = gliUCAVi)]173 (3-3) 

N was the number of elements on the surface of the diaphragm, and V was the volume of 

the element. Three different grid sizes for the same model were obtained through further 

finer meshing of the diaphragm. Solutions for each finer mesh were recorded. Let </>, be 

the displacement solutions obtained for corresponding finer grid sizes where hi<h,2<hi 

and so on. The criterion for choosing appropriate grid size for each consecutive mesh 

refinement was to keep the mesh refinement index at a desirable value of greater than 1.3. 

Mesh refinement index r was calculated using Equation (3.4). 

r = ^2H2£ (3.4) 
"•fine 

LB Celik, et al. based the value of 1.3 on experience rather than a formal derivation [1]. 

Therefore, r was calculated for each set of mesh sizes as shown in Equation (3.5). 

r 2 1 = ^ a n d r 3 2 = ^ (3.5) 

The apparent order/? was calculated using Equation (3.6). 
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^ = l n ( | ^ ) (3-6b> 

s = sgn{£^/£21) (3.6 c) 

and £32, £2i = 03 ~ 0 2 . 0 2 - 0 i (3.6 d) 

Relative error ea is approximately calculated using Equation (3.7). 

,21 ^ (01-02) 
a ~ (0i) 

(3.7) 

The fine-grid convergence index GCIfme was calculated using Equation (3.8). 

GCIfine = p (3.8) 
'21 ^ 

An acceptable grid convergence index percentage was chosen as less than 2.2%. This 

technique was employed for the entire following finite element modeling mesh 

refinement techniques. 

Once an optimized mesh size was determined (50x50x10 um), the Si diaphragm 

was loaded with pressure magnitudes ranging from lxlO^mBar to 1 Bar. Figure 3.2 

shows the sample displacement solutions obtained for the Si pressure diaphragm for load 

pressures applied in the negative z-axis. As evident from the figure, maximum deflection 

was observed in the central region of the pressure diaphragm. Therefore, when measuring 

the diaphragm deflection experimentally, care should be taken to accurately perform 

surface profilometry along the central region of the diaphragm. Since these pressure 

diaphragms were etched into the Si wafer substrate using ICP, displacement solutions for 

varying pressure magnitudes were obtained for a range of diaphragm thicknesses in order 

to accurately predict the pressure magnitudes inside vacuum cavities, even though the 

ICP failed to uniformly etch the diaphragms resulting in varying diaphragm thicknesses. 
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Figure 3.2. Finite element solutions for the displacement of the diaphragm for applied 
load pressure in the negative z-axis. 

A parametric study was conducted using the finite element model to vary the 

diaphragm thickness and solve for diaphragm displacement for corresponding load 

pressure on the top surface. Hence, a library of maximum diaphragm deflection vs. 

diaphragm thickness for varying pressure magnitude was created. Figure 3.3 shows the 

results obtained from this parametric study. In order to evaluate the sensitivity of the 

diaphragm for different thicknesses, the difference between each consecutive diaphragm 

deflection magnitudes for corresponding loading pressure magnitudes were calculated. 

The average of the differences of the deflection magnitude was calculated and was 

plotted against the diaphragm thicknesses. Figure 3.4 shows the results obtained. From 

the plot, it was evident that diaphragms with the lowest thicknesses were highly sensitive 

to pressure changes. Therefore, the target diaphragm thickness that needed to be achieved 
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using ICP was kept at 50 um. If they were any lower, the diaphragms in the Si substrate 

would run the risk of being ruptured through over-etching. 
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Figure 3.3. Plot showing the finite element diaphragm deflection solutions obtained for 
diaphragm with varying thicknesses and for various pressure magnitudes. 
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3.2 Optimization of PZT Composite Beam 

A PZT composite rectangular cantilever beam was constructed in Comsol in order 

to optimize beam design parameters, like length and width, in order to obtain a 

measurable resonant frequency and voltage. Plus, the beam must be thick and long 

enough on which to focus a large-sized (300 urn) laser spot (from laser vibrometer used 

for calculating resonant frequency amplitude). Figure 3.5 shows the different layers of the 

composite beam designed in Comsol. The layers illustrated in Figure 3.5 are of the 

following thicknesses: Pt = 0.125 u.m, PZT = 1 urn, Ti = 0.025 um, SiC«2 = 1 um. Beam 

width and length were the parameters chosen for optimization, while keeping the total 

thickness of the beam fixed at 2.275 jam. 

Figure 3.5. Illustration of the layers of the composite beam. 

Initially, rectangular beam geometry was used to design each layer with the 

specified thicknesses. Solid mechanics physics was employed to linearly solve the model 

of a composite PZT beam for displacement. The boundary conditions used in solving the 

composite PZT beam are as follows: 
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• Fixed constraints applied to all faces at u(x)=0, which clamps one end of the 

beam to zero displacement in all three axes, i.e. u(x)=u(y)=u(z)=0 where u is the 

displacement component. 

• Bottom Pt layer was designated as the positive electrode, while the top Pt layer 

was designated as the ground electrode. 

• Loading condition of input actuating voltage = 50 mV was applied to the top and 

bottom electrodes of the beam. 

• The beam layers were assumed to have zero initial stress. 

Static solver was used to simulate the maximum displacement produced for 

corresponding input actuating voltage. Quadrilateral mesh type was used for meshing the 

entire beam geometry. Mesh optimization was carried out using the grid convergence 

technique discussed in Section 3.1. 

First, the beam length Lb was varied from 100-1000 um while keeping the beam 

width constant at ^=350 um. Static solutions for maximum beam-tip displacement was 

obtained and plotted against corresponding varying beam lengths. Figure 3.6 shows the 

results obtained for varying beam lengths and corresponding maximum tip-

displacements. The plot shows a linear characteristic behavior, which is confirmed by the 

square of regression value R2=\. Next the beam width Wb was varied from 50-500 um 

and corresponding maximum tip displacements were plotted, keeping the beam-length 

constant at 1^=1000 um. Figure 3.7 shows the results obtained from this study. The 

square of regression value shows a near linear characteristic behavior of the maximum tip 

displacement for varying beam width. From Figures 3.6 and 3.7, it was concluded that 

beam length had a larger impact on tip displacement than beam width. Hence, an 
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optimized design of Z^=1000 um and 0^=350 urn was obtained. This would give a 

maximum tip displacement of 4.2 um while the beam width was wide enough for the 

laser vibrometer laser. 
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Figure 3.6. Plot showing the maximum tip displacement of the beam for varying beam 
length. Wb = 350 um. 
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3.3 Analytical Modeling of PZT Composite Beam 

An analytical model for the resonant frequency of the composite beam was 

obtained. The resonant frequency of an undamped beam with a uniform cross-section can 

be derived from the fundamental one-dimensional Euler-Bernoulli equation for 

transversal vibrations of a cantilever beam is shown in Equation (3.8). 

w(x,t) is the time dependent transverse-displacement of the central line of the cantilever 

beam from the neutral position, EI is the beam bending stiffness, p is the beam density, 

and A is the area of cross-section [2]. The time dependent function, w(x,t), can be 

separated independently into its position and time functions as shown in Equation (3.9). 

w(x,t) = W(x)Y{t) (3.9) 
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Substituting Equation (3.9) into (3.8) generates ordinary differential equation, as shown 

below. 

Y(t) + co2J(t) = 0 (3.10) 

£w(x) + a£(!£)wtxy=0 (3.11) 

con is the natural frequency of the beam. Equation (3.10) depicts the oscillation of an 

undamped harmonic oscillator with one degree of freedom. Solving Equation (3.11) gives 

the modal shapes of a vibrating cantilever beam. Equation (3.12) shows the solution 

obtained below. 

Wn(x) = cosh^f - c o s ^ - Cn ( s i n h ^ - s i n ^ ) (3.12) 

L is the beam length and C„ depicts the integration constants. X„ is defined by Equation 

(3.13). Since the cantilever beam modeled in this study is clamped at one end while free 

at the other, applying the aforementioned boundary conditions from Equation (3.8-3.11) 

to Equation (3.12) yields the resonant frequency equation, shown in Equation (3.13). 

cos(AnL) cosh(AnL) + 1 = 0 (3.13) 

The boundary conditions applied in Equation (3.12) determined the integration constants 

for different modal vibrations, as shown in Equation (3.14). 

_ sinhAKL-sinAnL . . .. . 
n coshAnL+cosAnL ^ ' ' 

Quadratic solutions for Equation (3.14) were obtained, which yielded the roots of the 

equation XiL=\.%15, ^=4 .694 , and 23Z=7.855. These roots denoted the first three modes 

of vibration of an undamped beam. Hence, Equation (3.15) was derived that solves the 

resonant frequency of an undamped beam vibrating in mode 1. 

_ (1-875)2 [ F 
h ~ 27TZ.2 JpA ( J - 1 ! > ) 
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N. Hossaine, et al. derived the equation for resonant frequency of an undamped 

composite beam by substituting composite-beam bending stiffness and composite-beam 

density equations into Equation (3.15) [3]. The composite beam stiffness and density is 

given by Equation (3.16) and (3.17). 

El^Z^EJi (3.16) 

P = % ^ (3-17) 
£•1=1 >-i 

Hence, the resonant frequency for a composite beam was derived by substituting 

Equations (3.16) and (3.17) back into Equation (3.15) yielding Equation (3.18). 

fn-~irJ—fr- (318) 

The moment of inertia for individual layers is given by Equation (3.19). 

Ii=^§ + Aidf (3.19) 

b is the beam-width, t is the thickness of each layer, A is the cross-sectional area of each 

layer, and d is the distance between the beam centroidal axis and the individual layer 

neutral axis. From Equation (3.15) and the beam parameters optimized from the 

COMSOL model, the analytical resonant frequency was calculated to be 1060.15 Hz. 

3.4 Theoretical Modeling of Composite Undamped PZT Beam 

The model used in optimizing beam design parameters was used in this study. A 

1000 urn long and 350 urn wide PZT composite beam, with the layers described in 

Section 3.2, was designed and solved using Eigen frequency analysis for the purpose of 

theoretically determining the resonant frequency for mode 1 vibration. The theoretically 

solved resonant frequency magnitude was found to be 1082 Hz, which was close to the 
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analytical modeling. The reason for the slight discrepancy in both the resonant 

frequencies was due to the fact that the Comsol model accurately models the beam more 

than the analytical model .Once the resonant frequency for mode 1 was obtained, a 

frequency sweep was performed, around the resonant frequency, on the model with an 

input actuating voltage of 50 mV. Figure 3.8 shows the results obtained from the 

frequency sweep analysis. 
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Figure 3.8. Frequency vs. maximum tip deflection magnitude of undamped PZT 
composite beam with an actuating voltage F"a=50 mV. 

3.5 Frequency Analyses of Damped Composite PZT Beam 

The same model used in Section 3.4 was modeled for damped beam vibration. For 

the purpose of simulating the operation of the cantilever beam in air, 100 urn thick air 

columns were modeled above and below the beam under study, as shown in Figure 3.9. 

The same boundary conditions employed in Section 3.4 were used here. Quadrilateral 

mesh type with linear elements was used. A separate mesh distribution was employed for 

each layer, due to the large difference in the thicknesses of the layers. After mesh 

refinement using the grid convergence technique, a final optimized 50x10x0.05 um mesh 
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was used for the PZT and S1O2 layer. Mesh size of 50x10x0.0125 urn were used for the 

top and bottom 0.125 um thick Pt electrodes, while a mesh size of 50x10x0.0025 um 

were used for the 0.025 um thick Ti layer. Since the air columns were 100 um thick, 

mesh of sizes 50x10x1 um were used. Multiple physics of solid mechanics with 

piezoelectric module was coupled with pressure acoustics module in this model. Some 

additional boundary conditions applied to this model were as follows: 

• Acoustics pressure applied to the top and bottom surfaces of the composite 

cantilever beam. 

• Acoustics pressure coupled as viscous damping in the piezoelectric module. 

The model was solved for maximum tip displacement for varying ambient air pressure 

magnitudes using a frequency sweep from 1000-1150 Hz. The beam was solved for three 

pressure magnitudes-lxl0"4mbar, 0.5 mBar, and 1000 mBar. The purpose of this study 

was to simulate the change in the resonant frequency curve with change in ambient air 

pressure magnitudes, as shown in Figure 3.10. As evident from the figure, broadening of 

the resonance peak was observed as the ambient air pressure magnitude was increased. 

This is trivial as the Q-factor of the device reduces with increase in the air damping. 

Quality factor calculations for resonance curves for beams showed Q=\06 for 10"4 mBar, 

Q=\04 for 0.5 mBar, and Q=40 for 1000 mBar ambient pressure magnitudes. These 

results further signifies the need for vacuum-encapsulation of PZT microcantilever beams 

in order to fine-tune the resonance curve for specific applications, in addition to 

increasing the efficiency of the device by the increase in the Q-factor. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURES 

This chapter discusses the experimental methods and test benches designed in the 

various stages of the research work. 

4.1 Direct Fusion-Bonding of Si/Si 

Initially two p-type 100 mm diameter prime (100) Si wafers were taken and 

cleaned with acetone and isopropyl alcohol (IPA) in order to remove organic impurities. 

The wafers chosen had an average roughness of less than 2 nm and less than 30 um wafer 

bow. After a quick dump rinse (QDR) in de-ionized (DI) water, the wafers were spin 

rinse dried (SRD). The wafers were then treated with 5:1 buffered oxide etch (BOE) in 

order to remove any native oxide present on the wafer surfaces. Following QDR and 

SRD, the wafers were treated with standard cleaning procedures, like RCA 1 and RCA 2. 

RCA 1, consisting of 5:1:1 proportion of H20:NH40H:H202, was used in order to 

remove all organic impurities while RCA 2, consisting of 5:1:1 proportion of 

H20:HC1:H202, was used in order to remove all metallic impurities from the surface of 

the wafers. First the wafers were dipped into RCA 2 bath at 85°C for 10 min. After a 

QDR and SRD the wafers were dipped into RCA 1 bath at 85°C for 10 min. Finally, any 

remaining chemical residues were removed with QDR and SRD, and the wafers were 

ready to be pre-bonded. 

56 
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A substrate bond aligner was employed to align the two wafers onto a fixture that 

kept the wafers in position and clamped with 100 urn separation. Figure 4.1 shows a 

picture of two wafers mounted onto the fixture. The fixture was then manually placed 

into the substrate bonder. Once a target chamber vacuum pressure of 2xlO"4mBar was 

achieved, the wafers were brought into contact by the removal of the clamps and spacers. 

Bonding was carried out at 400 °C for 30 min. This step is generally referred to as pre-

bonding. Following pre-bonding, the wafer stack was transferred into a furnace and 

thermally annealed at 1000 °C for 4 hr to permanently seal and bond the wafers. NIR and 

tensile tests were conducted on dies diced from the bonded wafer stack to qualitatively 

and quantitatively determine the bond integrity of the wafer-stack. 

Figure 4.1. Picture of the wafer-stack clamped onto the fixture. Spacers are shown 
inserted between the wafers keeping the stack 100 um apart. 
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4.2 Plasma-Activated Wafer Bonding 

Plasma-activation was carried out in a reactive ion etch (RIE) chamber. Figure 4.2 

shows an illustration of the plasma-activation setup. Plasma-activation was carried out 

immediately following wet chemical activation of the surfaces using RCA 1 and 2. 

Wafers were plasma-activated using O2 gas at a flow rate of 25 seem and pressure of 

266x10"3mBar. Activation was carried out using an RF power of 100 W for 60 s. The 

plasma-activation recipe was optimized through trial and error. Activation time and 

plasma-power was found to have the most impact on the surface of the wafers. Too much 

power or time had detrimental effects on the surface of the wafers, such as increased 

surface roughness. After the dry surface activation, the wafers were aligned, clamped, 

and placed into the substrate bonder. Since the wafer surfaces were activated and were 

highly reactive, the pre-bonding recipe was modified. The bonding temperature was 

reduced from 400 °C to 85 °C for 2 hr. In addition, the final thermal annealing 

temperature was reduced from 1000 °C for 4 hr to 300 °C for 1 hr. For the purpose of 

measuring the bond strength between the wafers, dies from random locations of the diced 

wafer were chosen to be pull-tested. Individual dies were sandwiched between an 

aluminum stud and a ceramic backing tile. The aluminum stud and the ceramic tile were 

pre-coated with epoxies that were cured at 150 °C for 1 hr. A Sebastian V tensile test 

station was employed to pull test the die. One end of the aluminum stud was fixed to a 

clamp and pulled. A swivel ring let the aluminum stud through but held back the ceramic 

tile. This enabled the two dies to be pulled apart at right angles ensuring accurate tensile 

test results. 
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Figure 4.2. Illustration of plasma-activation of Si wafers in an RIE chamber. 

4.3 Investigation on Interfacial Oxide Formation and Growth 

Plasma-activated and fusion bonded wafers were diced in order to study the oxide 

layer at the interface of the wafer-stack. However, the diamond resin blade employed in 

the dicing operation creates heavy scratches and striations at the interface of the dies, 

which causes the inability to effectively observe and study the true interface. Figure 4.3 

shows an SEM image of the interface of a diced die from a fusion-bonded wafer-stack. In 

order to observe the true surface, the edges of the die were immersed in 32 % wt/wt 

potassium hydroxide solution (KOH) at 80 °C for 30 min. This process etched a small 

portion of Si material from the interface, exposing the true interface in the process. The 

apparatus was setup in such a way so that only the edges of the dies were immersed in the 

KOH etchant and not the entire die, as illustrated in Figure 4.4. SEM images of the 



60 

interface of the etched die revealed the presence of an interfacial oxide layer. The role of 

the oxide layer at the interface was also investigated. 

Figure 4.3. SEM micrograph of the interface of a cleaved die from a Si/Si wafer stack. 
Inset shows a close-up revealing the hairline interface. 

Teflon clamp 

Die stack -

•KOH 

Figure 4.4. Illustation of KOH etching of die-stacks to obtain true interface for SEM 
imagery. 

Plasma-activation is an interim process that is carried out in between RCA 

cleaning and wafer fusion bonding. It was therefore important to study the effects of 

storage time (time interval between plasma-activation and bonding) on the bond strength 

and bond quality of the wafers. Two (100) Si wafers (one single-side polished and 

another double-side polished) wafers were chosen and cleaned with acetone and 
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isopropyl alcohol. After QDR and SRD, the native oxides on the wafer surfaces were 

removed by BOE etching. After plasma-activation using RIE, the wafers were stored for 

various time intervals before being pre-bonded. Immediately following bonding, the 

wafers were inspected for bond-quality using NIR imagery, and were diced and measured 

for bond strength. 

4.4 Fabrication of Cavities and Pressure Diaphragms in Silicon 

Fabricating cavities in one Si wafer and capping them using another Si wafer in 

vacuum realized the vacuum encapsulation of cavities. Since the optical lid-deflection 

method of measuring cavity vacuum pressure was employed, high-aspect ratio pressure 

diaphragms were also fabricated and etched into the capping Si wafer. Three major 

studies were conducted with vacuum cavities between two Si wafers. The initial study 

conducted was the fabrication of vacuum cavities without any gettering material. 

Following this, a gettering intermediate layer and gettering rings were fabricated, and 

their application in maintaining the integrity of the vacuum seal and pressure were 

studied. 

4.4.1 Fabrication of Cavities in Si Substrate 

Initially a 100 mm diameter prime (100) Si wafer with 1 urn thick SiC>2 layer was 

chosen and cleaned with acetone and isopropyl alcohol in order to remove any organic 

impurities from the surface of the substrate. After QDR and SRD, the wafer was 

dehydrated at 250 °C for 5 min on a hot plate in order to remove any H2O molecules, thus 

preparing the wafer for photolithography. A wafer spinner was used to spin-coat priming 

agent Hexamethyldisilazane (HMDS) onto the Si substrate using the recipe mentioned in 

Appendix B. A 4 um thick SPR220 positive photoresist (see Appendix A for details) was 
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then spin-coated onto the Si surface. The spin recipes for HMDS and photoresist are 

included in Appendix B. The entire fabrication process flow is illustrated in Figure 4.5. 

Figure 4.5. Illustration of the cavity fabrication process, (a) Si wafer with 1 urn oxide, (b) 
Photoresist spin-coating, (c) Exposure to UV light, (d) Developing, (e) BOE etching of 
oxide, (f) KOH etching of Si, and (g) Oxide stripping. 

In order to enhance photoresist adhesion, the wafer was soft-baked at 110 °C for 

3.5 min on a hot plate. This was done by first heating the wafer to 90 °C and then 100 °C, 

each for 1.5 min. The slow ramping up to the desired soft-baking temperature was done 

in order to prevent cracking of the thermal shock-sensitive photoresist. Ramping down of 

the temperature was carried out by first transferring the wafer at 110 °C to 100 °C and 

then 90 °C, each for 1.5 min. Wafer was then exposed to ultra-violet (UV) radiation at 

1000 W for 7 s. Figure 4.6 shows the mask used for patterning the cavities on the 

photoresist. Multiple exposures were employed during UV irradiation at three cycles with 

10 min wait per cycle. This also was done to prevent any thermal shocking of the 

polymer. After exposure, the photoresist was developed in MF319 developer. Following 
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a QDR and SRD, the wafers were inspected for defects under a microscope. Finally, hard 

baking at 125 °C for 5 min hardened and bonded the patterned photoresist onto the wafer 

surface. 

Figure 4.6. Picture of the dark-field mask used to pattern cavities into the Si wafer. 

Following photolithography, the exposed oxide windows were etched through to 

the bare Si substrate in 5:1 BOE for 20 min. After stripping of the photoresist using 

acetone, the wafer was then rinsed in isopropyl alcohol and DI water. In order to obtain 

60 urn deep square cavities with trapezoidal cross-section, the Si wafer with the patterned 

oxide layer was immersed in KOH at 80 °C for 60 min. The oxide layer served as a hard 

mask during the Si etching. The oxide layer was finally stripped by immersing the wafer 

in BOE. This was followed by QDR and SRD. From this point on, the wafer with cavities 

is referred to as 'cavity wafer'. 

4.4.2 Fabrication of Pressure Diaphragms in Si Wafer 

The magnitudes of the deflection of the pressure diaphragms were measured by 

stylus tip profilometry. The opposite side of the wafer was also patterned with 'trace 
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guides' so as to ensure that the stylus profilometer tip was scanned across the exact 

central region of the diaphragm. This ensured accurate measurement of the maximum 

deflection of the pressure diaphragm. 

Initially a (100) double side polished 100 mm diameter Si wafer, with 300 nm of a 

thermally deposited Al layer on both sides, was chosen and cleaned with acetone and 

isopropyl alcohol. After a QDR and SRD in DI water, the wafers were dehydrated at 250 

°C for 5 min. First, the trace guide patterns for the stylus profilometer were patterned on 

one side of the wafer. The entire fabrication process is illustrated in Figure 4.7. After 

spin-coating SPR220 onto the Al layer, the wafer was soft-baked at 110 °C with the 

temperature ramp-up process discussed earlier. 

Figure 4.7. Illustration of the fabrication process-flow for the pressure diaphragms and 
trace-guides on Si substrate, (a) Si wafer with top and bottom Al layer, (b) Photoresist 
spin-coated on both sides, (c) UV irradiation, (d) Resist development, (e) Al etching, (f) 
ICP etching, and (g) Al stripping. 

The photoresist was then exposed under UV light using the "trace guide" mask 

pattern shown in Figure 4.8, and then developed. Following the hardbaking of the 
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patterned and developed side, the other side of the wafer was also spin-coated with 

photoresist. After spin-coating SPR220 onto the Al layer, the pressure diaphragms were 

patterned and developed. Figure 4.9 shows the mask used to transfer the pressure 

diaphragm patterns onto the photoresist. 

Figure 4.8. Picture of the dark-field trace-guide mask used to pattern trace guides on the 
center of the pressure diaphragm (on the other side of wafer). 

Figure 4.9. Dark-field pressure diaphragm mask showing circular patterns that would be 
ICP etched. 
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During exposure, alignment marks on the "pressure diaphragms" mask was used 

to align the mask to the patterned trace guides on the opposite side. In this way, the 

alignment marks for the stylus profilometer was positioned accurately over the central 

region of the pressure diaphragms. Following developing and inspection of the patterns, 

the wafer was hardbaked. 

Commonly known as PAN solution because of its chemical composition, the Al 

etchant comprising ofH3P04:CH3COOH:HN03:DIH20 (16:1:1:2), was used to transfer 

the photoresist patterns into the Al layer. The Al layer was etched in the etchant at 45 °C 

for 3 min. Finally, the photoresist was stripped and the wafer was rinsed and dried using 

QDR and SRD. Using the Al layer as a hardmask, the trace guide side of the wafer was 

etched up to a depth of 10 urn. The BOSCH recipe used in the ICP etching of the Si 

substrate is detailed in Appendix B. The wafer was then flipped over and the pressure 

diaphragms were etched until diaphragms of approximately 50 umin thickness were 

obtained across the wafer. Finally, the Al layer was stripped off with a final immersion in 

the Al etchant. Figure 4.10 shows a contour plot of the etch-depth profile of the pressure 

diaphragms across the wafer surface. As evident from the figure, the ICP etching was not 

uniform across the wafer and thus diaphragms of varying thicknesses were obtained. 

Hereafter, the wafer with the pressure diaphragms is referred to as 'pressure diaphragm 

wafer'. 



67 

Figure 4.10. Contour plot created in Excel from the etch-depth profile of ICP etched 
pressure diaphragms. 

4.5 Experimental Procedure for Measuring Vacuum Pressure 

The cavity wafer and the pressure diaphragm wafers were plasma-activated in O2 

plasma using the recipe mentioned previously. Following QDR and SRD, the wafers 

were aligned and bonded at IxlO^mBar vacuum pressure. Figure 4.11 shows an 

illustration of the wafer-stack with the pressure diaphragm and vacuum cavity. Once the 

bonded wafer-stack was unloaded, deflection of the pressure diaphragms (as a result of 

the difference in the pressure between ambient and internal cavity pressure) was clearly 

evident. NIR image of the wafer-stack is shown in Figure 4.12.The wafer-stack was 

measured for diaphragm deflection magnitude using a stylus tip profilometer. Figure 4.13 

shows an illustration of the trace-path of the stylus tip along the trace-guides etched into 

the pressure diaphragm wafer. As illustrated in the figure, the tip was traced from a 

reference start point (Rl) to the reference finish point (R2). Rl and R2 were kept on either 
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side of the diaphragm, thus having the same step height. Step height (h) of Rl and the 

mid-point (MP) were measured by the profilometer, which gave the maximum deflection 

magnitude of the pressure diaphragm. This measurement technique was repeated over 

several diaphragms and the deflection magnitudes of the diaphragm were recorded. 

Figure 4.11. Illustration of the pressure diaphragm-vacuum cavity stack. 

Figure 4.12. NIR image of the pressure diaphragm-vacuum cavity wafer-stack showing a 
good bond quality with no debonded regions at the interface. 
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Figure 4.13. Illustration of the trace followed by the stylus tip profilometer to measure the 
maximum deflection magnitude of the pressure diaphragm, (a) side-view (b) top-view. 

4.6 PZT Thin-Film Deposition 

Thin-film PZT was deposited onto a Si substrate through sol-gel deposition 

technique. A top-down fabrication approach was carried out to fabricate PZT 

microcantilevers, where the composite beam layers were deposited first followed by 

patterning and etching of the consecutive layers. Initially, a (100) Si wafer with 1 um 

thick thermal SiC>2 layer was selected and cleaned with acetone and isopropyl alcohol. 

After QDR and SRD in DI H2O, the wafers were sputter coated with 25 nm thick Ti layer 

followed by 125 nm thick Pt layer. Ti served as an adhesion layer for increasing the 

adherence of Pt to SiC>2. 

Sol-gel deposition of thin-film PZT began first with the spin-coat deposition of 

lead titanate (PT) on the Pt surface of the wafer. The spin coating recipe is included in 

Appendix B. PT deposition was followed by annealing in a furnace at 450 °C for 30 min. 

Annealing was carried out in such a way so as not to thermally shock the deposited layer. 

Hence, the furnace-temperature was raised from room temperature to the target 
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temperature at a ramp rate of 2 °C/min. The same process was carried out for cooling the 

wafers back to room temperature. Following the PT deposition, 5 ml of PZT was pipetted 

onto the wafer and spin-coated (refer Appendix B for spin-coating recipe). PT served as 

the adhesion seed layer to enhance the adhesion of PZT onto the Pt surface. Following 

the spin coating of PZT, the layer was pyrolized at 110 °C for 10 min on a hot plate to 

sublimate polymers from the PZT layer. The wafers were then transferred to the furnace 

and annealed at 450 °C, where the furnace temperature was ramped up from room 

temperature to the target temperature at a rate of 2 °C/min. This process was repeated 

until 1 urn of PZT was achieved. The deposition of the PT adhesion layer was carried out 

after every three layers of PZT deposition in order to ensure a crack-free continuous PZT 

thin-film across the wafers. The final 1 um thick PZT layer was annealed at 600 °C in 

order to improve the crystal orientation of PZT, significantly reducing film-stress in the 

process. Following the sol-gel deposition, a final Pt layer was sputtered onto the PZT 

layer. This deposition process ensured a continuous thin-film PZT layer with top and 

bottom Pt electrodes. Finally, a500nm gold (Au) layer was sputtered onto the top Pt 

layer, following a 25 nm Ti sputter deposition (in order to improve Au adhesion to Pt). 

4.7 Fabrication of PZT Microcantilevers 

The objective was to fabricate PZT microcantilever beams onto a Si substrate. A 

device package containing several beams were placed into a ceramic package in order to 

electrically interface the top and bottom Pt electrodes to external actuation or data 

acquisition systems. Initially the wafers were cleaned with acetone and isopropyl alcohol. 

After a DI H2O rinse using QDR and SRD, the wafers were dehydrated at 250 °C on a 

hot plate for 5 min. Following dehydration, HMDS primer was spin-coated onto the 
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wafer surface (recipe included in Appendix B) in order to improve the adhesion of the 

photoresist in the next step. SPR 220 positive photoresist was spin-coated onto the wafer, 

using spin-recipe included in Appendix B, and was soft baked in order to sublimate 

dissolved polymers in addition to improving the photoresist adhesion onto the Pt surface. 

Soft baking was carried out first by heating the wafer substrate to 90 °C for 1.5 min on a 

hot plate, thenat 100 °C for 1.5 min, and finally at 110 °C for 3.5 min. Following a ramp-

down of the temperature after soft baking by reversing the ramp-up process, the wafer 

was transferred onto the mask-aligner. The photoresist was initially exposed with the Au 

bond-pad mask pattern at 1000 W for 7 s. A multiple exposure technique was carried out 

in three cycles with 10 s interval between each cycle in order to prevent thermally 

shocking the temperature-sensitive photoresist. After developing the exposed wafer in 

MF319 developer, the wafer was rinsed in DI water and dried. Once the patterns were 

inspected under a microscope, the photoresist was hard-baked at 125 °C. Following 

lithography, exposed regions of the Au layer were etched using Aqua-regia Au etchant at 

80 °C for 3 min. A final photoresist strip using acetone left behind Au bond pads on the 

top Pt surface. These bond pads would serve as electrodes to which Au wires could be 

wire-bonded later in the device packaging stage. Figure 4.14 shows an illustration of the 

etched Au bond-pads and the mask-pattern used in the fabrication of the Au bond pads. 

Following the Au bond-pad fabrication, the top Pt electrodes and PZT beams were 

patterned and developed using the same process discussed above. After lithography, the 

patterns were permanently transferred onto the wafer with the help of dry plasma etching 

of the top Pt and PZT layers. Chlorine (CI) plasma was used to carry out the etching 

process. A combination of CI gas at a 20 seem flow-rate and Ar gas at 25 seem flow-rate 
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wasselected in an RIE chamber at chamber pressure and power of 6.67xlO~3mBar and 

300 W respectively. 

^m PR (5 jam) 

» i i ( •> i n 

Figure 4.14. Illustration of patterning and etching of Au bond-pads on the top Pt surface 
of the Si wafer. 

Plasma etching of the exposed layers resulted in a profile illustrated in Figure 

4.15. The employment of optimized recipes for etching Pt and PZT helped in obtaining 

accurate layer thicknesses. The bottom Pt electrode was patterned in the same way. 

Figure 4.15. Illustration of the patterning and etching of top Pt and PZT layer using the 
top Pt light-field mask. 
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Meanwhile, the light-field Pt bottom mask protected the top Pt electrode pattern 

as well. The same etching recipe used for the top Pt and PZT was used to etch the bottom 

Ptelectrode pattern as well as the Ti adhesion layer. Figure 4.16 shows an illustration of 

the mask employed as well as the side-view profile of the etched layer-stack. The next 

step was to pattern and etch the oxide layer to open up windows for the Xenon difluride 

(XeF2) etching of Si. XeF2 was used to dry-etch the Si substrate for the purpose of 

releasing the fabricated cantilever beams. SiC>2 served as the masking agent for the XeF2 

etching of Si. Oxide etching was carried out using RTE: CHF3 at 35 seem, CF4 at 5 seem, 

and He at 266.64 mBar chamber pressure and 100 W RF power.Figure 4.17 shows an 

illustration of the XeF2 etch pattern of the oxide layer and the dark-field mask used in the 

lithography process. Since RIE etching of S1O2 was found to have detrimental effects on 

the Au bond pads, they were protected during the oxide etching using photoresist. 

Figure 4.16. Illustration of the bottom Pt electrode and Ti adhesion layer etching using a 
light-field bottom Pt mask. 
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Figure 4.17. Illustration of the XeF2 patterning and etching of Si02 layer with a dark-field 
mask. 

The wafer was finally stripped of photoresist and was cleaned and dried using 

QDR and SRD. Figure 4.18 shows a picture of the patterned and etched device wafer 

before being diced for XeF2 etching. A Xactix XeF2 etching station was used to etch the 

exposed Si around the cantilever beams. SiC>2 was used as the masking agent during the 

etching process. In this way, the cantilever beams were released from the Si substrate. 

Figure 4.18. Picture of the device wafer showing the fabricated PZT cantilever beams. 
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The wafer was diced into individual dies using a dicing saw. Each of the 

individual dies consisted of four PZT beams in total that were electrically isolated from 

each other. This meant that each of the devices could be actuated or measured for 

voltage/current independently. Figure 4.19 shows an illustration of a device die. The 

device die was mounted onto a ceramic package using a tri-bond epoxy. The epoxy was 

cured at 85 °C for 4 hr. Au wires were used to wire-bond the Au bond pads on the dies 

with the bond pads of the ceramic package, using a ball bonder. 

Figure 4.19. Illustration of the device die containing four PZT beams on a Si substrate. 

Figure 4.20 shows a picture of the packaged device. Glass lid that seals the 

packaged device from external elements was not placed over the device die since the 

packaged device was to be tested in ambient air pressure and vacuum pressures. Sealing 

the device with the glass lid would prevent the cantilever beams from being subjected to 

the controlled ambient air pressure studies. 
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Figure 4.20. Picture of a packaged device die onto ceramic package. 

4.8 Experimental Setup and Results for Device Capacitance Measurements 

Capacitance of the PZT composite beam was accurately measured using a 

Keithley electrical test-bench. The experimental setup is shown in Figure 4.21. As shown 

in the figure, actuators were used to electrically connect to the bond pads of the device. 

Using BNC cables attached to the actuators, a multimeter was interfaced with the test-

bench that measured the device capacitance. 

Actuators 

BNC to _ 
Multimeter 

Stage 

Device 
Wafer 

Figure 4.21. Picture of the experimental setup of capacitance measurement of the devices 
using a Keithley test bench. 
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PZT composite beam with top and bottom electrodes act as a parallel plate 

capacitor. Capacitance of a parallel plate capacitor can be calculated using Equation 

(4.1). 

C = £ 2 T ^ (4.1) 
a 

C is the capacitance, so is the permittivity of free-space (8.85x10"12 m"3 kg"1 s4 A2), sr is 

the relative permittivity, A is the surface area of the parallel plates, and d is the distance 

between the plates. er of PZT was found to be 1700 (from the manufacturer listed in 

Appendix B), surface area of the Pt electrodes was calculated to be ^4=35000 um2, and 

the distance between the electrodes was 1 um. Substituting these constants into Equation 

(4.1), the theoretical capacitance of the composite beam was calculated to be C=5.27 nF. 

Similarly the capacitance of the top electrode bond pad (the other just containing a 

bottom electrode layer of Pt) was calculated to be 2.41 nF. Since the capacitors are in 

parallel, the capacitances add up to give overall device capacitance of 7.63 nF. Using the 

experimental setup shown in Figure 4.21, the device capacitance was measured to be 9 

nF. The reason for the discrepancy in the theoretical and electrical capacitances was due 

to the added parasitic capacitances in the composite beam. 

4.9 Experimental Setup for Testing PZT Resonators in Vacuum and Air 

The fabricated and packaged device was operated in varying air pressure 

magnitudes in order to study the air-damping effects on the resonance characteristics of 

the PZT beam. First, the beam was operated in atmospheric air pressure of 1000 mBar. 

This was accomplished by connecting the top and bottom electrode pins of the ceramic 

package to an external function generator. A sine waveform of 50 mV amplitude was 

used to actuate the beams. A function generator aboard a cathode ray oscilloscope was 
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used to generate the sine wave. The deflection magnitude of the beam was measured 

using a laser Doppler vibrometer. The fiber optic cable from the laser interferometer was 

connected to an optical microscope so that the laser spot could be accurately focused onto 

the tip of the actuating PZT beam placed atop the microscope stage. The experimental 

setup used to actuate and measure beam deflection is shown in Figure 4.22. The 

deflection magnitude of the beam, measured by the laser vibrometer, was recorded using 

a PC interfaced to a digital signal processor module. A frequency sweep from 300-1700 

Hz was performed for the aforementioned voltage amplitude on the device, and the 

corresponding maximum tip deflection magnitudes were recorded. The change in the 

resonance characteristics of the PZT beam was studied by actuating the beam in vacuum. 

This was accomplished by placing the device package in a vacuum chamber as shown in 

Figure 4.23. The device inside the vacuum chamber was electrically connected to the 

function generator by means of electrical feed-throughs that came equipped with the 

chamber. 

Figure 4.22. Picture of the experimental setup of PZT beam actuation in atmospheric air 
pressure. 
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Figure 4.23. Picture of the experimental setup for actuating PZT beam in vacuum. 

The chamber was evacuated and internal pressure was held at 0.5 mBar. Chamber 

pressure was monitored using a vacuum gage interfaced with the system. The laser 

vibrometer fiber optic was placed above the window of the vacuum chamber lid, and the 

laser spot from the interferometer was roughly focused on the tip of the PZT beam. Since 

an Al chuck was used as a flat platform for the device package, an insulating electric tape 

was used below the pins of the ceramic package in order to prevent an electrical short 

circuit. The beam was actuated at 50 mV using a sine wave for frequencies ranging from 

350-1700 Hz. Corresponding deflection magnitudes of the beam was recorded using a PC 

interfaced to the digital signal processor of the laser vibrometer. 



CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter documents the results obtained from the different theoretical and 

experimental models. It compares the results obtained from various test-benches and 

discusses the reasons for certain characteristics. Solutions to problems faced in certain 

areas of study were also discussed. 

5.1 Bond Integrity Results of Plasma-Activated Fusion-Bonded Wafers 

Immediately following pre-bonding and annealing, the wafer-stack was inspected 

for bond integrity. A closer look at the surface of the wafer-stack using an optical 

microscope showed cracks at 90° angles. Figure 5.1 shows the microscope image 

obtained. The cracks were formed at exactly 90° to each other due to the perfect 

crystalline nature of the Si wafers used in the fusion bond. This phenomenon, known as 

stacking faults, was caused due to the uneven application of pressure during the fusion-

bonding process. The reason for uneven pressure application was caused by large 

particulates trapped in between the wafer substrates. A thorough cleaning of the wafer 

surface, in addition to meticulously inspecting and handling exposed wafer surfaces 

solved this problem. Stacking faults had detrimental effects on the bond quality of the 

wafers. This was revealed when the bond failed during the dicing of the wafer-stack. 

80 
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Figure 5.1. Microscope image of the top surface of fusion-bonded Si wafer-stack showing 
stacking faults. 

NIR imagery was used to inspect the bond quality between wafers. Debonded 

regions were evident as Newton rings. Figure 5.2 shows an NIR image of a plasma-

activated and bonded wafer pair in comparison with wafer pairs with debonded/air-

pocket regions. As evident from the figure, plasma-activated wafers showed no debonded 

regions at the interface ensuring a good bond. Tensile test results of random dies diced 

from plasma-activated and bonded wafer-stacks showed a bond strength of 22.5 MPa, 

which was close to the bulk fracture strength of 24 MPa for Si. 

Figure 5.2. NIR images of fusion-bonded Si-Si wafers showing (a) a good bond (b) 
debonded regions at the interface revealed by Newton rings. 
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The integrity of the bond was also further confirmed by examining the interface 

of the bonded wafer. In order to achieve this, a small die was cleaved from the wafer 

stack and was examined under a scanning electron microscope (SEM). Figure 5.3 shows 

the SEM micrograph of the interface of the cleaved die. As evident from the figure, the 

interface was barely visible. This ensured that the bonded surfaces were in fact fused 

together ensuring a permanent seal. 

Figure 5.3. SEM micrograph of the interface region of a cleaved die diced from plasma-
activated Si wafer stack. Inset: Close-up of the edge of the cleaved die showing a hairline 
of what was the interface between the two wafers. 

5.2 Significance of RCA Cleaning 

This study was conducted in order to determine the significance of an RCA wet 

chemical activation technique when a dry surface activation technique, like plasma-

activation, was employed. RCA cleaning was usually carried out before plasma-

activation and immediately following the BOE treatment of the wafers. In this study the 

wafers were treated for native oxide removal using BOE and then rinsed in DI water 

using QDR and SRD. The RCA 1 and 2 treatments, which were the next steps before pre-

bonding the wafers, were eliminated here. Hence, the wafers were plasma-activated and 

pre-bonded immediately following the QDR and SRD after BOE treatment. After the 
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final thermal annealing process, the wafers were inspected using NIR imagery. As 

evident from Figure 5.4, wafers that were not treated with RCA had debonded regions at 

the interface. While the surface of the wafers was activated during plasma-activation, 

removal of metallic and organic impurities was imperative, which could only be possible 

with an RCA treatment. Even though the initial acetone and IPA treatment of the wafer 

surfaces removes organic impurities, a thorough organic strip was absent with the 

elimination of RCA process as a whole. Tensile tests revealed that wafers bonded without 

an RCA treatment had an average bond strength of 18 MPa, which was significantly 

lower than those wafers given an RCA treatment (22 MPa). 

Figure 5.4. NIR image of (a) wafers bonded with RCA treatment (b) wafers bonded 
without RCA treatment. 

5.3 Sequential Plasma-Activation 

This study was conducted in order to improve the bond quality of plasma-

activated and stored wafers. Storage time was found to cause detrimental effects on 

plasma-activated wafers. Sequential plasma-activation initially involves the O2 plasma-

activating of substrates followed by activation of the same surface using N2 radicals in 
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the same RJE chamber. Several studies have been conducted on the effects of sequential 

plasma-activation and its improvements on the bond quality [20, 21]. Improved bond 

quality was reported. After the O2 plasma-activation, N2plasma-activation was carried out 

in the same RIE chamber at a chamber pressure of 266 x 10"3mBar, 25 seem of N2 gas, and 

100 W. Plasma-activation was carried out for 1 min. NIR images of the wafer-stack after 

the sequential plasma-activation were examined. Figure 5.5 shows the NIR images of the 

wafer-stack. As evident from the figure, a high density of debonded regions was evident 

at the interface. An investigation of the surface roughness of the sequentially plasma-

activated wafers revealed that the wafer surface roughness was significantly higher after 

N2 plasma-activation as compared to just O2 plasma-activated wafers. Further 

investigation revealed that N2 ions were bombarding and slowly roughening the Si 

substrate during the plasma-activation. Multiple areas of the sequentially activated Si 

surface were profiled for surface roughness. 

Figure 5.5. NIR images of the wafer-stack bonded after sequential plasma-activation in 
O2 and N2 plasma. 

The average roughness was found to be 7 nm, which was significantly higher as 

compared to 2 nm in O2 plasma-activated wafers. The increased surface roughness not 
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only reduced the contact surface area during bonding, but also led to the increased 

absorption of water molecules at the surface of the wafers. The increased density of H2O 

molecules at the interface resulted in the increased density of released H2 molecules at the 

interface. The released H2 molecules were trapped at the interface during the bonding 

process, which in turn led to the increased density of voids/debonded regions at the 

interface of sequentially plasma-activated wafers. 

5.4 Final Thermal Annealing Study 

Final thermal annealing was an important part of the wafer bonding process as it 

provides enough kinetic energy to the H2O molecules at the interface to diffuse out of the 

interface. This increases the formation of permanent covalent bonds between Si-O-Si at 

the interface of the wafer substrates. Final thermal annealing was conventionally carried 

out in an external furnace at 1000 °C. Using plasma-activation, the final annealing 

temperature was reduced to 300 °C. Annealing of the wafer-stack in the external furnace, 

however, had detrimental effects on the bond quality. Figure 5.6 shows the NIR image of 

the plasma-activated wafer-stack. As evident from the figure, a high density of debonded 

regions was observed at the interface. This was caused due to the presence of impurities 

in the ambient atmosphere of the tube furnace. Final bond quality was found to be very 

sensitive to ambient conditions during annealing. Hence, an in-situ thermal annealing was 

carried out where the prebonded wafer-stack was final thermal annealed within the 

substrate bonder itself. An NIR image of in-situ annealed wafer-stack is shown in Figure 

5.7. 
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Figure 5.6. NIR image of plasma-activated and bonded wafer-stack annealed in an 
external tube furnace at 300 °C. 

Figure 5.7. NIR image of wafer-stack annealed at 300 °C in-situ the substrate bonder 
immediately following pre-bonding. 

After plasma-activation, four Si wafers were stored for 3 hr before being pre-

bonded. After pre-bonding, one pair of the Si wafers was pre-bonded and thermal 

annealed in an external furnace at 300 °C while the other pair was annealed in-situ the 

substrate bonder. Figure 5.8 shows a comparison of the NIR images from this study. As 

evident from the figure, the wafer-stack bonded in-situ showed better bond strength as 

compared to those annealed in the external furnace. Bond strength measurements of in-

situ annealed wafers were measured to be 15 MPa, which was significantly higher than 
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the 5.5 MPa of externally annealed wafers. This proved that in-situ annealed wafer bond 

quality was superior. Hereafter, all final thermal annealing processes were carried out in-

situ the substrate bonder immediately following pre-bonding. In-situ annealing was only 

applicable for low temperature annealing. The external furnace had to be used for higher 

temperatures of 1000 °C. 

Figure 5.8. Comparison of the NIR images of plasma-activated, 3 hr stored, and pre-
bonded wafers annealed (a) in an external furnace (b) in-situ substrate bonder. 

5.5 Evidence of Intel-facial Oxide Layer in Plasma-Activated 

Si/Si Fusion- Bonding 

KOH etched dies diced from the wafer stack were analyzed under SEM. Figure 

5.9 shows an SEM micrograph of the interface of the etched die. As evident from the 

figure, a close inspection of the interface of the etched die revealed an inverted V-shaped 

etch profile. The etch pattern at the interface followed the (111) plane of the Si substrate. 

SiC«2 layers are known to mask KOH etchant. As mentioned before, the formation of Si02 

was evident at the interface after fusion bonding. Therefore, it was concluded that the 

reason for the inverted V-shaped feature at the interface was the KOH etch following the 
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(111) plane after being masked by the interfacial oxide layer. In the absence of an 

interfacial oxide layer, the Si etching would have been more uniform in the (010) 

directions. An illustration of the etch pattern of KOH is shown in Figure 5.10. From the 

figure it was very clear how the inverted V-shaped etch feature was formed at the 

interface after the KOH etching of the dies, which confirmed the presence of an oxide 

layer at the interface of plasma-activated and fusion bonded Si wafers. 

Figure 5.9. SEM micrograph showing the interface of a KOH etched die that was diced 
from a plasma-activated and fusion bonded wafer-stack. Inset shows a closer look at the 
inverted V-shaped feature at the interface. 
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Figure 5.10. An illustration of the etch profile followed by KOH etching on two opposing 
Si wafers, which was the primary reason for the inverted V-shaped etch feature at the 
interface. 
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5.6 Effect of Storage Time on Bond Strength 

Varying the time interval between plasma-activation and pre-bonding evaluated 

the effect of storage time of plasma-activated wafers on bond strength. The objective of 

this study was to investigate a moderate storage time before the bonding-quality was 

compromised. The storage time was varied from 0 to 168 hr before they were pre-

bonded. Tensile tests conducted on dies diced from the wafer-stack quantified the bond 

strength by measuring the force required to pull the die-stack apart. 4.3><4.3mm dies were 

used in the tensile test. Table 5.1 shows the tensile test results often dies that were diced 

from wafers that were immediately bonded after being plasma-activated (storage time = 0 

hr). Dies from the center and edge portions of the wafer-stack were chosen since the 

bond-strength varied from the central region to the sides. The reason for this variation 

was attributed to the wafer bow (less than 30 um) present at the time of pre-bonding. 

Average bond strength was calculated along with the standard deviation for each storage 

times. Finally the average standard deviation of all storage times were calculated and was 

included in the uncertainty of the tensile test results.Figure 5.11 shows a plot of the 

results obtained from the tensile tests on wafers stored for varying storage times. From 

the plot, it was evident that the bond strength deteriorated with the increase in the storage 

time. Figure 5.12 shows the NIR images of the wafers bonded with various storage times. 

As evident from the figures, the bond quality increased after 48 hr of storage. Three 

different samples were taken through the same process cycle in order to rule out any 

experimental errors. The reason for the decrease in the bond quality and bond strength 

with the increase in storage time was due to the presence of gas molecules 

(predominantly H2) at the interface. As storage time was increased, the amount of water 
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molecules adsorbed onto the surface increased as well. This resulted in an increase in the 

density of released H2 molecules at the interface as a result of the byproduct of the 

oxidation reaction in the Si substrate. 

Table 5.1: Table showing the bond strength measurements from tensile tests conducted 
on dies diced from wafers with 0 hr storage time. 

Sample Bond strength Wafer region 

(MPa) 

1 

2 

3 

4 
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7 

8 
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Figure 5.11. Plot showing the bond strength magnitudes of wafers stored for varying time 
intervals before being pre-bonded. 
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Figure 5.12. Pictures of the NIR images of wafers stored for (a) 0 hr, (b) 3 hr, (c) 6 hr, (d) 
12 hr, (e) 24 hr, (f) 48 hr, (g) 72 hr,and (h) 168 hr after plasma-activation and before 
bonding. 

An interesting phenomenon was observed after 48 hr of storage time when the 

bond strength started to increase again and saturate at 168 hr. This characteristic self-

healing nature of bond quality was attributed to the growth of the oxide layer at the 

surface of the plasma-activated wafers. A separate study was conducted to evaluate the 

growth of an oxide layer on top of the plasma-activated Si surface. An ellipsometer, with 

70° incidence angle, was employed to measure the thickness of the oxide layer. Figure 

5.13 shows the results obtained. A thick oxide layer can reabsorb interfacial H2 

molecules. After 48 hr of storage time, the oxide layer was thick enough to absorb any 

interfacial gas molecules. This increased the bond strength as the density of debonded 

regions decreased due to the increased absorption of H2 molecules by the increased oxide 

layer thickness. Hence, the sudden increase in bond strength for wafers stored for greater 

than 48 hr after plasma-activation and before pre-bonding. This demonstrated the ability 

of an interfacial oxide layer to getter interfacial gas molecules. 
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Figure 5.13. Plot showing the increase in the oxide thickness with increase in storage 
time of plasma-activated wafers. 

5.7 Plasma-Activated Si/SiC>2 Bonding 

The gettering capability of an SiC>2 layer was investigated by performing a fusion 

bond between Si-SiCh wafers. The SiC>2 wafer had an oxide thickness of 2 urn. Since the 

bond strength and quality was the lowest for a 48 hr storage time, both of the wafers were 

plasma-activated and stored for 48 hr before being bonded. Figure 5.14 shows the NIR 

images of the wafer-stack. From the figure, it was evident that the Si-Si02 wafer-stack 

showed better bond quality when compared to the Si-Si wafer-stack. The 2 um thick 

oxide layers was able to getter and absorb the interfacial gas molecules thereby rendering 

a void-free interface. It was necessary to plasma-activate both the Si and SiC>2 wafer. 

Though hydrophilic in nature, a thick oxide layer will prevent the water molecules from 

reaching the Si substrate to further oxidize it and release H2 molecules. In addition, thick 

oxide layers are unable to bond to a Si substrate at a low temperature of 85 °C due to the 

lack of bonding sites. Plasma-activation of SiC>2 wafers creates a porous oxide layer that 

facilitates the propagation of water molecules to the underlying Si substrate to oxidize Si, 

in addition to creating bonding sites (OH groups) at the interface. Figure 5.15 shows a 
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comparison of Si-SiCh wafers that were and were not plasma-activated before fusion 

bonding. 

(a) (lb) 

Figure 5.14. Comparison of NIR images of (a) Si-SiC>2and (b) Si-Si plasma-activated 
wafers both stored for 48 hr. 

Figure 5.15. NIR images of Si-Si02 where (a) both wafers were plasma-activated (b) only 
the Si wafer was plasma-activated. 

5.8 Plasma-Activation Before or After Storage 

From plasma-activation vs. storage time studies, it was concluded that storing the 

wafers for 48 hr produced the worst case scenario of low bond strength and bond quality. 

Since the purpose of storage time was to simulate the time lapse that may occur in an 

industrial fabrication process flow, it was interesting to evaluate the bond quality of 
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waters that were plasma-activated after being stored for a specified time interval. In this 

case, the wafers were stored after being RCA cleaned and rinsed/dried in DI water. 

Following storage for 48 hr, the wafers were plasma-activated and immediately bonded. 

NIR images of the wafers that were plasma-activated before and after storage time were 

taken and compared, as shown in Figure 5.16. As evident from the figure, wafers that 

were plasma-activated after being stored for 48 hr showed superior bond quality as 

compared to those that were activated and then stored. In the case of wafers stored after 

plasma-activation, a thin layer of oxide was formed on the wafer surfaces. The 

hydrophilic wafer surfaces attracted H2O molecules from the ambient air. During 

bonding, these H2O molecules contributed to the increase in H2 molecules at the 

interface, which in turn increased the density of voids at the interface. In the case of 

wafers stored and then plasma-activated, the absorbed H2O molecules were evaporated 

off in the RIE due to the vacuum pressure in the chamber. In addition, plasma-activation 

further increased the OH" groups at the surfaces of the wafers. The combination of 

reduced H2O molecules and increased reactivity of the surfaces contributed to the 

decrease in the density of voids at the interface. The bond strength of wafers stored 

before plasma-activation was found to be 19 MPa, which was significantly higher than 

the bond strength of 5.6 MPa for wafers that were stored after plasma-activation. It was 

concluded that wafers that needed to be stored for longer time periods could be plasma-

activated and bonded immediately in order to obtain good bond quality between the 

wafers. 
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Figure 5.16. NIR images of bonded wafer-stack comparing the wafer-pairs that were 
plasma-activated (a) before 48 hr storage time (b) after 48 hr storage time. 

5.9 Modified Wafer Bonding Without Final Thermal Annealing 

This study was conducted in order to evaluate the bond quality of wafers that 

were bonded at slightly higher temperatures but without a final thermal annealing. Here, 

the bonding temperature was increased from 85 °C to 300 °C and the bonding time from 

2 to 3 hr. The bonding recipe in the substrate bonder was changed in order to terminate 

the bonding process immediately following pre-bonding. The objective of this study was 

to analyze the effectiveness of plasma-activation on bonding wafers without a final 

annealing step. Following bonding, the wafer was diced and tensile tests were conducted 

on dies from the wafer-stack. Bond strength of 18 MPa was obtained. This was 

significantly less compared to the 24 MPa of bond strength of wafers that were pre-

bonded and annealed. Therefore, it was concluded that a separate bonding and annealing 

step was required in the bond recipe in order to ensure a good bond quality and superior 

bond strength between the wafers. 
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5.10 Bond Integrity vs. Storage of Plasma-Activated and Bonded Wafers 

In this study the wafers were stored after being bonded for extended time periods 

to evaluate the change in the bond quality with increase in shelf-life. The purpose of this 

study was to investigate the interfacial chemical changes of plasma-activated and bonded 

wafers. After RCA cleaning, the wafers were stored for 24 hr before being plasma-

activated. Plasma-activation and wafer bonding were carried out using the conventional 

processes discussed in the Chapter 4. After bonding, NIR images of the wafer-stack were 

taken at different time intervals starting from time-zero. Figure 5.17 shows the NIR 

images at different time intervals of the plasma-activated and bonded wafer-stack. Time 

period was varied from 0-336 hr. Wafers was stored in ambient pressure and room 

temperature. As evident from the figure, certain improvement in the form of reduced void 

density was observed for wafers immediately analyzed after bonding and wafers analyzed 

after 336 hr of storage. This phenomenon was interesting to further investigate and, 

therefore, bonding and storing of wafers before dicing and tensile testing was carried out 

for bond strength measurements. Table 5.2 shows the results obtained from the tensile 

tests. The differences in bond strengths from consecutive shelf-times were calculated, as 

shown in Table 5.2. As evident from the table, the highest difference was observed for a 

shelf life of 120 hr. Although an increase in the bond strength was observed for an 

increase in shelf life, a point of saturation was observed after 144 hr. With the increase in 

shelf life, some interfacial chemical reactions take place in the form of oxidation of Si. 

The decrease in the density of voids was a result of the slow growth of the interfacial 

oxide layer. 
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Figure 5.17. NIR images of wafer-stacks at (a) 0 hr(b) 24 hr (c) 48 hr (d) 120 hr (e) 144 
hr (f) 168 hr (g) 312 hr (h) 336 hr after being plasma-activated and fusion bonded. 

Table 5.2: Tensile test results obtained from 24 hr stored, plasma-activated, and bonded 
wafers with respect to different shelf lives. 

Shelf-life 

(hr) 

0 

24 

48 

120 

144 

168 

312 

336 

(Ibi) 

17.44 

23.30 

25.44 

34.44 

48.58 

49.80 

50.21 

50.12 

Bond strength 

(MPa) 

4.21 

5.63 

6.14 

8.36 

11.73 

12.02 

12.12 

12.10 

Difference 

(MPa) 

1.42 

0.52 

2.22 

3.37 

0.29 

0.10 

0.02 
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5.11 Vacuum-Cavity Seal-Integrity Measurements 

This section discusses the results obtained from the vacuum and seal integrity 

tests conducted on the encapsulated cavities within two Si wafers. The vacuum pressure 

in the cavity was measured using results obtained from the pressure diaphragm 

magnitude measurements. The deflection magnitude was compared to the finite element 

results obtained for the Si pressure diaphragm, and the corresponding loading pressure 

used for deflecting the diaphragm was considered to be the pressure inside the vacuum 

cavities. Measuring the volumetric change of the diaphragm-cavity enclosure over a long 

period of time helped to study the seal-integrity of the encapsulated cavities. Equation 

(5.7) for calculating the volume was derived from the volume formulae that corresponded 

to the fundamental geometric shapes, which made up the diaphragm-cavity enclosure. 

The breakdown of the diaphragm-cavity enclosure into basic geometrical shapes is 

illustrated in Figure 5.18. The cuboidal-shaped portion corresponds to the vacuum cavity 

etched into the Si substrate. The cavity resembled a cuboid. Similarly, the pressure 

diaphragm with zero deflection resembled a cylinder, and the deflection of the diaphragm 

was analogous to a spherical cap, as illustrated in the figure. The equation for the volume 

of the entire cavity-diaphragm enclosure was derived. 

Figure 5.18. Illustration of the basic geometrical shapes that make up the diaphragm-
cavity enclosure. 
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Consider a spherical cap as shown in Figure 5.19. Consider a segment plane 

parallel to the spherical segment as shown in the figure. Let r be the radius of the 

segment. 
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Figure 5.19. A drawing of (a) spherical cap (b) spherical cap with segment plane (in the 
middle) parallel to the spherical segments (top and bottom). 
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Volume V of the spherical segment is given by the following set of equations. 

V = / nr2dy 

V = n L d + V - y2)dy 

V = n[ChR2dy-Chy2dy] 

[ r 3-.d+h.-\ 

/ ? 2 - d 2 - d h - f t 2 / 3 V = 7ra 

a = Vi?2 - d2 

b = jR2-(d + h)2 

(5.1) 

(5.1 a) 

(5.1b) 

(5.1 c) 

(5.1 d) 

(5.1 e) 

(5.1 f) 

(5-1 g) 
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b is the radius of the upper segment in Figure 5.19 (b). 

b2 - R2 - d2 - h2 - 2dh (5.1 h) 

_, a2-b2-h2 

2h 

>2 _ „2 _i_ J 2 

(5.1 i) 

R* = ad + dz (5.1 j) 

Substituting Equation (5.1i) in Equation (5.1 j) and factorizing it we get Equation (5.2). 

R _ V[(a-&)2+ft2H(a+ft)2+ft2) (5 2) 

2ft V • ) 

V = nh g (a2 + b2 + h2) - \ h2] (5.3 a) 

.:V = —[3a2 + 3b2 + h2] (5.3 b) 

For a spherical cap, b=0. 

•••Vcap=^(3a2 + h2) (5.4) 

Volume of a cuboid with length /, width w, and height h is given by Equation (5.5). 

Vcuboid = Iwh (5.5) 

Volume of a cylinder with radius r and height h is given by Equation (5.6). 

Vcylinder = Kr2h (5.6) 

Combining Equation (5.4), (5.5), (5.6), and renaming the variables, the equation for the 

total volume of the diaphragm-cavity enclosure Vlot\% given by Equation (5.7). 

Vtot = Iwd + n r 2 h - ^ (3r2 + d2
cap) (5.7) 

l,w,d are the length, width, and depth of the cavity in the Si substrate respectively, r is the 

radius of the pressure diaphragm, h is the difference in the thickness of the wafer and 

diaphragm, and dcap is the deflection magnitude of the diaphragm. 
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5.12 Vacuum Cavities without Getter 

The bonding mechanism carried out while sealing the cavities with the pressure 

diaphragms in vacuum was plasma-activated direct fusion bonding between Si-Si wafers. 

Immediately following bonding, the wafers were NIR inspected. No debonded regions 

were found. Prior to bonding, a photograph of the pressure diaphragm wafer was taken, 

and each diaphragm position and thickness was recorded. The deflection magnitudes of 

the diaphragms were measured and recorded against the corresponding diaphragm 

thicknesses. Differences in the barometric ambient air pressures, for the days the pressure 

diaphragm deflections were measured, were taken into consideration. Table 5.3 shows the 

results obtained. As evident from the table, the average pressure magnitude inside the 

vacuum cavities was found to be 1x10" mBar, which, according to literature sources, was 

reported to be an ideal vacuum pressure for packaging MEMS devices. 

Table 5.3: Results obtained from the pressure diaphragm-vacuum cavity wafer stack with 
no interfacial getter. 

Diaphragm deflection Diaphragm thickness Equivalent FEA pressure 

(um) (urn) (urn) 

12.5 54 lxlO"3 

7.5 59 

3.2 77 

4.6 68 

1.5 102 

The deflection magnitudes of the diaphragms were measured over a one month 

period to monitor any changes in the magnitude of diaphragm deflection. Any leakage of 

lxlO"3 

lxlO"3 

lxlO"3 

lxlO'3 
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vacuum pressure in the cavities was observed as a change in the volume of the cavity. 

Figure 5.20 shows the results obtained from the investigations carried out on the change 

in the volume of the cavities over a one month period. As evident from the figure, the 

vacuum cavities failed to maintain constant vacuum pressure. The change in vacuum 

pressure was due to leakage of air into the cavity, thereby increasing the internal pressure 

of the cavities. This, in turn, led to the increase in the volume of the cavity. 
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Figure 5.20. Plot showing the average change in the volume of vacuum cavities over one 
month period. 

The plot in Figure 5.20 shows the average cavity volume that increased slightly 

over a one month period. A number of cavities were considered for calculating the 

internal vacuum pressure from measuring the pressure diaphragm deflection magnitude, 

and the average change in volume was calculated and recorded. The criterion for 

choosing the appropriate cavity-diaphragm enclosure was to choose diaphragms of 

approximately equal thicknesses (57 um). The average initial deflection magnitude of the 

* • 

• 
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diaphragm (right out of the bonder) was 10.26 jam, with a cavity pressure of 1 x 10"3mBar. 

This vacuum pressure was significantly reduced after a period of one month. Thus, it was 

necessary to employ a gettering agent inside the cavity in order to maintain the vacuum 

pressure at a constant level. 

It was imperative to determine if the leak was real or virtual. Leakage of ambient 

air into the vacuum cavities was characterized as real leaks. The propagation of 

interfacial gaseous molecules into the vacuum cavities was characterized as virtual leaks. 

In order to characterize the type of leak present, first the wafer was placed in a vacuum 

chamber at lxlO^mBar for a period of 48 hr. If a change in the cavity volume was 

observed after 48 hr of the wafer being taken out of the vacuum chamber, then that would 

infer that the change in volume was caused due to a real leak. If not, the change in 

volume was caused due to a virtual leak. Changes in the cavity volume before and after 

placing the wafers in the vacuum chamber were recorded. This was repeated with several 

wafer-stack samples for the purpose of repeatability. Figure 5.21 shows the results 

obtained from this study. From the figure, it was evident that the volumes of the cavities 

at the edges of the wafer were lower than those in the central region. This was due to the 

fact that the diaphragms were thinner at the edges as compared to the center of the wafer, 

which was evident from Figure 5.21.Thinner diaphragms produced larger deflections, and 

thus the volume of the cavity-diaphragm enclosure was significantly lower. The x-axis 

shows the position of each cavity relative to the center of the wafer. The volume of the 

cavities, before the wafers were put into the vacuum chamber, was evidently larger than 

afterwards. The percentage difference between the volume of the cavity-diaphragm 

enclosure before and after re-exposure to vacuum was calculated to be 0.25%. This 
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inferred the presence of a real leak in the cavities, as the cavities were re-exposed to 

vacuum when the wafer was put back into the vacuum chamber. This was possible only if 

the air in the cavities could be pumped out, thus proving the existence of a real leak. The 

reason for the existence of a real leak in the packages was concluded to be due to the poor 

sealing of the packages using the plasma-activated fusion-bonding recipe. This signified 

the need for investigating the employment of an interfacial oxide layer as a sealant for the 

packages. 
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Figure 5.21. Plot showing the cavity enclosure volume, for cavities without any getter, 
across wafer before and after introducing wafer into vacuum chamber. 

5.13 Vacuum Cavities with Getter Layer 

The need for an interfacial or internal gettering agent was necessary in order to 

maintain or hermetically seal the vacuum cavities with the capping wafer. From previous 

studies, it was found that interfacial gaseous molecules were successfully gettered using 

anSi02 layer. Superior bond quality was observed with wafers employing an interfacial 
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Si02 layer. This concept was applied to the vacuum cavity-pressure diaphragm wafer 

stack. An illustration of the oxide getter layer around the vacuum cavity is shown in 

Figure 5.22. 

Figure 5.22. Illustration of oxide gettering layer around vacuum cavity. 

The interfacial oxide gettering layer was achieved in the vacuum cavity-pressure 

diaphragm stack by retaining the thermal oxide layer (used as a hardmask for KOH 

etching), and wafer bonding the vacuum cavity and pressure diaphragm wafer substrates. 

As mentioned earlier, several cavity-diaphragm enclosures (across the wafer) were 

considered for volume measurements. The criterion for choosing the cavity-diaphragm 

enclosures was to choose diaphragms with approximately equal thicknesses (53 um). 

Immediately following bonding, the vacuum pressure inside the vacuum cavities 

employing oxide getters was found to be lxlO"4 mBar. The average change in cavity 

volume was calculated from the measured diaphragm deflection magnitudes for a period 

of one month. Figure 5.23 shows the results obtained. As evident from the figure, no 
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significant change in cavity volume was observed. This inferred a superior seal integrity 

for the wafer stack with an interfacial oxide layer. The deflection magnitude of the 

diaphragms and the thickness of the corresponding diaphragms revealed an average 

cavity vacuum pressure of 1x10" mBar, which was significantly higher than the cavities 

without any oxide getter. It was imperative to investigate the presence of any real/virtual 

leaks. As mentioned in the previous section, the vacuum cavity-pressure diaphragm stack 

with oxide getter layers was placed inside a vacuum chamber at lxlO"4mBar for a period 

of 48 hr. The change in cavity volume was investigated once the wafer was removed and 

left in ambient atmospheric pressure for 48 hr. Figure 5.24 shows the results obtained 

from this study. As evident from the figure, no significant change was observed from 

before and after re-exposing the wafer to vacuum. This revealed good seal integrity 

between the vacuum cavity and pressure diaphragm wafer with no real/virtual leaks in the 

vacuum cavities. This proved that an interfacial oxide layer resulted in a good seal/bond 

between a vacuum cavity and its capping wafer substrate. 
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Figure 5.23. Plot showing the average change in the volume of the vacuum cavities with 
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Figure 5.24. Plot showing the cavity enclosure volume, for cavities with oxide getter, 
across the wafer before and after introducing the wafer into the vacuum chamber. 
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5.14 Vacuum Cavities with Getter Rings 

Since an interfacial oxide layer was found to be successful in gettering interfacial 

gaseous molecules, it was important to find out if an oxide strip would be able to 

maintain the internal cavity vacuum pressure for long time periods. This study was of 

particular importance for these instances where a gettering agent was necessary, and 

when the bond between the substrates needed to be purely between two Si substrates. In 

such a scenario, gettering ribbons/strips would have to maintain the vacuum pressure 

inside the cavities. Figure 5.25 shows a comparison of the pictures of the dark-field 

vacuum-cavity mask and the light-field oxide getter-ring mask. The square patterns on 

the getter-ring mask were slightly bigger than the square hole-patterns of the vacuum-

cavity mask. When both these masks were used consecutively, an oxide ring was created 

around the vacuum cavities, as illustrated in Figure 5.26. Plasma-activation and wafer 

bonding of the getter-ring cavity wafer and the pressure-diaphragms wafer was carried 

out in the same manner as mentioned in the previous sections. Following bonding, the 

deflection magnitudes of the pressure diaphragms were measured, and the cavity volumes 

were calculated. As mentioned earlier, the criterion for choosing the right cavity-

diaphragm enclosure was to choose the diaphragms with approximately equal thicknesses 

(54 [mi). Cavity volume was monitored over a period of one month for any changes. The 

initial vacuum cavity pressure (immediately following bonding) was found to be 5^10" 

4mBar. Figure 5.27 shows the results obtained from this study. As evident from the 

figure, only a very small change was observed in the cavity volume over a period of one 

month. Thus, it can be inferred that the oxide getter rings were able to maintain the 

vacuum level in the vacuum cavity for a long time period. 



Figure 5.25. Comparison of the pictures of (a) Dark-field vacuum-cavity mask and (b) 
Light-field oxide getter-ring mask. 

Oxide ring 

Figure 5.26. An illustration of the oxide getter rings around a vacuum cavity in a Si 
substrate. 
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Figure 5.27. Plot showing the average change in the volume of vacuum cavities with 
oxide getter rings over a one month period. 

Similar to the previous studies, the existence of real/virtual leaks in the system 

was investigated through repeated experimentation on several wafer-stacks. Measuring 

the deflection magnitude of the pressure diaphragm after 48 hr of bonding, carried out 

calculation of the change in cavity-diaphragm enclosure volume, and then placing the 

wafer-stack into a vacuum chamber at SxlO^mBar for 48 hr followed by another 

diaphragm deflection measurement. Figure 5.28 shows the results obtained from the 

real/virtual leak investigations. As evident from the figure, a small change in cavity 

volume was observed for cavities before and after being placed in the vacuum chamber. 

The percentage change in the volume of the cavity-diaphragm enclosure was calculated 

to be 0.09%. This revealed that there was a very small real-leak in the packages, but 

significantly lowers when compared to cavities without an oxide getter. The reason for 

this difference was attributed to the seal quality for interfaces without an initial virtual-

* • 
* * * * * * * * * * * 

* * * * * * * * * * * * 4 * * * * * 
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leakage. Immediately following the wafer bond, cavities without an oxide getter 

contained interfacial gas molecules that would have prevented a good seal between the 

surfaces in contact. In the case of cavities with getter rings, the oxide rings were able to 

absorb the interfacial gas molecules, which improved the seal integrity between the 

surfaces in contact. As a result, the seal integrity of packages with getter rings, even 

though not perfect when compared to packages with an entire oxide getter layer, was 

better than the seal integrity of packages without any oxide getters. 
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Figure 5.28. Plot showing the cavity enclosure volume of cavities, with oxide getter 
rings, across wafer before and after introducing wafer into vacuum chamber. 

5.15 High Film-Stress in Released Beams 

PZT cantilever beams were released through the XeF2 etching of the Si substrate. 

Figure 5.29 shows an SEM image of a released beam. As evident from the figure, curling 

of the composite beam was observed after releasing of the devices. Increased film-stress 

was traced back to the film deposition process. During the PZT film sol-gel deposition 

process, the PZT layers were not subjected to adequate annealing temperatures and times, 
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and hence the reason for the high stress in the crystal structure. The initial PZT deposition 

and annealing recipe was designed for beam widths less than 50 um, and beam thickness 

of 1 um. In this case, the beams were much wider (350 um) and the beam thickness was 

0.3 um. Therefore the effects of stress in the film were magnified with a less wide and 

thinner beam, as in the case of the beam shown in Figure 5.29. 

Figure 5.29. SEM micrograph of a curled PZT composite beam as a result of high film-
stress. 

5.16 Experimental Results of PZT Resonators in Vacuum and Air 

In this study, PZT beam thicknesses were scaled up from 0.3 um to 1 jam through 

additional layer depositions. In addition, additional thermal annealing at 600 °C for 8hr 

after the final PZT layer was laid down reduced the film-stress significantly in the final 

released PZT beams, as shown in Figure 5.30. The PZT beams were actuated at Va= 50 

mV. The beams were swept for frequencies ranging from 1000-1150 Hz. Initial testing 

were carried out in ambient air. The maximum tip deflection obtained for corresponding 

resonant frequencies were recorded, plotted, and compared to theoretically obtained 
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results from the finite element modeling of the beam displacement, as shown in Figure 

5.31. As evident from the figure, maximum beam deflection was observed at the resonant 

frequency of 1080 Hz with a maximum beam deflection magnitude of 2.9 (am. This was 

slightly different from theoretical modeling results that showed a beam resonant 

frequency of 1082 Hz at an ambient air pressure of 1000 mBar. The reason for the slight 

discrepancy was attributed to additional damping factors, like material damping, 

electrical damping (due to resistances in electrical contacts), etc. 

Figure 5.30. SEM micrograph showing the released PZT composite beam. No significant 
film stress was evident. 
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Figure 5.31. Comparison of the FEA and experimental results obtained for maximum tip 
deflection magnitude of the PZT beam at a resonant frequency of 1080 Hz. 

Finally, the device was operated in a near vacuum environment by placing the 

device package in a vacuum chamber at a chamber pressure of 0.5 mBar. Figure 5.32 

shows a comparison of theoretical and experimental results obtained for the beam 

actuated in different ambient air pressures. As evident from the figure, maximum tip-

deflection was observed at near-vacuum pressure conditions due to the reduced air-

damping in the system. Slight difference in the theoretically and experimentally obtained 

results was observed. This effect was attributed to additional damping losses of material 

damping, coupling losses, electrical damping, etc. that were assumed to be zero in the 

theoretical model. Additional discrepancies observed at 0.5 mBar vacuum pressure was 

attributed to the inaccurate laser spot placement on the beam tip (due to inaccurate 

sighting of the beam tip through the thick-walled glass lid of the vacuum chamber) and 
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the loss of beam intensity through refraction of the beam through the glass-air interface. 

Quality factor calculated for the beam at 3 dB of the deflection magnitude showed Q=42 

for a beam operating at 1000 mBar and Q=104 for beam operating at 0.5 mBar. The 

results obtained emphasize the need for the vacuum-encapsulation of MEMS devices for 

the purpose of increasing the Q-factor as well as increasing the efficiency of the devices. 
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Figure 5.32. Plot showing a comparison of theoretical and experimental results obtained 
for an air-damped PZT beam at different ambient pressures. 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Initially the mechanism of wafer fusion bonding was investigated and studied in 

detail. The problems of increased final annealing temperature were detailed and methods 

to significantly decrease the temperature were proposed. In addition to wet chemical 

wafer surface activation, dry surface activation techniques, like plasma-activation using 

O2 was investigated. An optimized plasma-activated wafer bonding recipe was designed. 

The bond integrity was qualitatively and quantitatively evaluated. NIR images of the 

plasma-activated and bonded wafer-stack showed no debonded regions at the interface. 

Tensile tests conducted on dies diced from the wafer-stack showed bond strength 

magnitudes of 22 MPa, which were close to the bulk-fracture strength of Si (24 MPa). 

Plasma-activated wafers were stored for varying time-intervals, before being bonded, in 

order to investigate the detrimental effects of storage time on the bond-quality. Interfacial 

chemical reactions taking place before, during, and after bonding were investigated by 

closely observing the interfacial layer. It was concluded that the thickness of the Si02 

layer increased with an increase in storage time. An interesting phenomenon of sudden 

increase in the bond-quality and bond-strength of plasma-activated wafers stored for 

more than 48 hr was observed. This increase in bond quality was concluded to be a result 
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of increased interfacial oxide layer thickness. Further investigations revealed that a 

thicker SiC>2 layer was capable of reabsorbing interfacial gas molecules like H2, which as 

a result decreased the density of the interfacial voids/debonded regions, thus increasing 

the bond-strength of the wafer-stack. 

The possibility of fabricating vacuum-cavities between two Si substrates was 

explored. Etching cavities in a Si substrate wafer and sealing the cavities in vacuum using 

another Si capping wafer through plasma-activated wafer-fusion bonding carried this out. 

Vacuum seal-integrity was evaluated and found to be significantly low due to the 

evolution of interfacial gas molecules and their migration into the vacuum-cavities. In 

addition, the low seal-integrity resulted in the permeation of ambient air into the vacuum-

cavities pressurizing them in the process. Possibilities of using the gettering capability of 

interfacial SiC>2 layer were investigated. Fabrication techniques to realize oxide getters at 

the interface of the wafer-stack were designed and carried out. Evaluation of the seal 

integrity and the maintaining of vacuum-pressure inside the cavities were investigated. 

Optical lid-deflection techniques employing high-aspect ratio circular pressure 

diaphragms were investigated. The pressure diaphragms were first finite-element 

modeled in order to study their characteristics with varying ambient pressure magnitudes. 

These diaphragms were coupled to the vacuum cavities in substrate Si by fabricating the 

pressure diaphragms onto the capping wafer and measuring the deflection magnitude of 

the diaphragm. The change in the deflection magnitude of the pressure diaphragms 

verified that there was a change in the internal cavity pressure, which indicated the 

presence of real/virtual leaks. Results showed that the interfacial SiCh layer was 

successful in preventing real/virtual leaks of the vacuum cavities. 
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Finally, PZT composite cantilever beams were fabricated on a Si substrate. 

Problems of high film-stress, as evident from curling of the beams, were investigated. 

Increasing the annealing temperature and time solved this. The cantilever beam was 

actuated in different ambient air pressures. Results were obtained for maximum tip-

deflection for corresponding actuating voltage frequencies. Widening of the resonance-

peak with an increase in air damping was obtained. The experimental results were 

compared to the finite element modeling results, and the reasons for the slight shift in the 

resonant frequency were explained. 

6.2 Future Work 

It would be interesting to integrate sensors, like pirani gage, spark-plug sensors, 

and resonators, in order to dynamically monitor the internal cavity pressure magnitudes. 

The fabricated PZT microcantilever characteristics in varying ambient pressure 

conditions were investigated by placing the package in a vacuum chamber. Future works 

could include the realization of vacuum-packaging these PZT beams using another 

capping Si wafer. However, running feed-through interconnects pose a fabrication 

challenge. Having diffusion layers as feed-through contacts for the purpose of actuating 

the vacuum-sealed beams could solve this. An illustration of the vacuum-sealed PZT 

device die with feed-through diffusion layer is shown in Figure 6.1. As illustrated in the 

figure, the proposed design would include metallic interconnects on the capping wafer 

with metal-filled through-holes for the purpose of electrically connecting the packaged 

bond pads of the sealed devices. This design would provide accurate seal-integrity study 

for vacuum-encapsulation of PZT microcantilevers using plasma-activated Si/Si fusion 

bonding. 
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Metallic interconnects 

Vacuum cavity 

PZT beam 

Capping substrate 

Diffused feed-i 
contacts 

Device substrate 

Figure 6.1. Illustration of vacuum-packaged PZT microcantilevers with buried feed-
through interconnects and bond-pad interconnects. 



APPENDIX A 

EQUIPMENT AND MATERIAL SPECIFICATIONS 

120 



Equipment/Material Name Manufacturer Model/Chemical Comp. 

Inductive Coupled Plasma 

Reactive Ion Etcher 

E-Beam Evaporator 

Thermal Evaporator 

Sputtering Station 

Spin Coater 

Mask Aligner 

Wafer Substrate Bonder 

Wafer Dicing Station 

Ball Bonder 

Epoxy Dispenser 

Scanning Electron Microscope 

Surface Profilometer 

Surface Interferrometer 

Ellipsometer 

Laser Vibrometer 

Positive Photoresist 

Alcatel 

PlasmaTherm 

CHA Industries 

Denton Vacuum Inc. 

AJA International, Inc. 

Cost Effective Equipment 

SussMicrotec 

SussMicrotec 

Micro Automation Inc. 

Marpet Enterprises Inc. 

EFD 

Hitachi 

Dektak 

Veeco 

Sentech 

Polytec 

Sigma Aldrich 

Resist Developer Rohm & Haas Elec. Mat. LLC 

Epoxy 

Ceramic Packages 

Vulcan Box Furnace 

Emerson & Cuming 

Spectrum 

DentsplyCeramco 

A610E 

-

BEC-600-RAP 

DV-502A 

ATC 2200-V 

100 

MA6/BA6 

SB6 

M-1006 

1024B 

2000XL 

S4800 

150 

NT 102680 

SE850 

DFE-650 

SPR220 

MF319 

Tra-bond2116Kit 

CSB02482 

3-550 
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Initial spin speed 

Ramp rate 

Initial time 

Final spin speed 

Ramp rate 

Final time 

Initial spin speed 

Ramp rate 

Initial time 

Final spin speed 

Ramp rate 

Final time 

Initial spin speed 

Ramp rate 

Initial time 

Final spin speed 

Ramp rate 

Final time 

B.l HMDS & FT spin-coating 

= 

= 

= 

= 

= 

= 

B.2 PZT 

B.3 

= 

= 

= 

= 

= 

= 

500 rpm 

150rpm/min 

5s 

1000 rpm 

150 rpm/min 

30 s 

spin-coating 

500 rpm 

150 rpm/min 

5s 

1200 rpm 

500 rpm/min 

60s 

SPR220 spin-coating 

= 

= 

= 

= 

= 

= 

500 rpm 

150 rpm/min 

5s 

4000 rpm 

10000 rpm/min 

90s 



B.4 ICP Bosch Process 

Gas 

SF6 

C4F8 

Mode 

Pulsed 

Pulsed 

Flow rate 

(seem) 

280 

40 

Priority 

1 

2 

Time 

(s) 

10 

3 

B.5 RIE Dry Etch Process 

Parameters 

Chlorine gas flow rate (seem) 

Argon gas flow rate (seem) 

Helium gas flow rate (seem) 

CHF3 gas flow rate (seem) 

CF4 gas flow rate (seem) 

Chamber pressure (mBar) 

Plasma power (W) 

ForPt 

20 

40 

-

-

-

6.67xl0-3 

300 

ForPZT 

7 

45 

-

-

-

6.67x10"3 

500 

For Si02 

-

-

50 

12.5 

37.5 

0.33 

400 

B.6 Pyrolisys recipe program for PT and PZT 

Temperature 1 = 200 °C 

Ramp rate 

Hold time 

Temperature 2 

Ramp rate 

Hold time 

25 °C/min 

Omin 

450 °C 

2 °C/min 

30min 



Temperature 3 

Ramp rate 

Hold time 

END 

200 °C 

2 °C/min 

Omin 

B.7 

Temperature 1 

Ramp rate 

Hold time 

Temperature 2 

Ramp rate 

Hold time 

Temperature 3 

Ramp rate 

Hold time 

END 

PZT final annealing recipe program 

= 

= 

= 

= 

= 

= 

= 

= 

= 

200 °C 

25 °C/min 

Omin 

650°C 

-2 °C/min 

8hr 

200 °C 

2 °C/min 

Omin 
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