
Louisiana Tech University
Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 2012

Near-optimal scheduling and decision-making
models for reactive and proactive fault tolerance
mechanisms
Nichamon Naksinehaboon

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Applied Mathematics Commons, Computer Sciences Commons, and the
Mathematics Commons

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.latech.edu%2Fdissertations%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages


NEAR-OPTIMAL SCHEDULING AND DECISION-MAKING 

MODELS FOR REACTIVE AND PROACTIVE 

FAULT TOLERANCE MECHANISMS 

by 

Nichamon Naksinehaboon. B.S. 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 

COLLEGE OF ENGINEERING AND SCIENCE 
LOUISIANA TECH UNIVERSITY 

May 2012 



UMI Number: 3515665 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, ff material had to be removed, 

a note will indicate the deletion. 

UMI 3515665 
Published by proQuest LLC 2012, Copyright in the Dissertation held by the Author. 

Microform Edition © ProQuest LLC 
AN rights reserved. This work is protected against 

unauthorized copying under Tie 17, United States Code, 

-
Otearfflitart 

ProC) 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346 



LOUISIANA TECH UNIVERSITY 

THE GRADUATE SCHOOL 

2/16/2012 

by_ 

Date 

We hereby recommend that the dissertation prepared under our supervision 

NICHAMON NAKSINEHABOON 

entitled 

NEAR-OPTIMAL SCHEDULING AND DECISION-MAKING MODELS FOR 

REACTIVE AND PROACTIVE FAULT TOLERANCE MECHANISMS 

be accepted in partial fiilfillment of the requirements for the Degree of 

DOCTOR OF PHILOSOPHY 

Recommendation concurred in: 

Director of Graduate Studies 

Ai 
Dean of the College 

rO 

Supervisi 

•A 
CMead of Dei 

ation Re^eEfchf 

L/icau ui Department 

' J Department 

Advisory Committee 

Approved: 

Dean of me Graduate School 

GS Form 13a 
(6/07) 



ABSTRACT 

As High Performance Computing (HPC) systems increase in size to fulfill com­

putational power demand, the chance of failure occurrences dramatically increases, 

resulting in potentially large; amounts of lost computing time. Fault, Tolerance (FT) 

mechanisms aim to mitigate; the impact of failure occurrences to the running applica­

tions. However, the overhead of FT mechanisms increases proportionally to the HPC 

systems' size. Therefore, challenges arise in handling the expensive overhead of FT 

mechanisms while minimizing the large amount of lost computing time due to failure 

occurrences. 

In this dissertation, a near-optimal scheduling model is built to determine 

when to invoke a hybrid checkpoint mechanism, by means of stochastic processes 

and calculus of variations. The obtained schedule minimizes the waste; time caused 

by checkpoint mechanism and failure; occurrences. Generally, the checkpejint/re;start 

mechanisms periodically save' application state's and load the save>el state', upon failure 

occurrences. Furthermore', to hanelle' various FT mex'hanisnis. an adaptive decision­

making mode'l has benn ele>vele)pe'el to ele>te'nnine> the best FT strategy te) invoke' at 

e'ae h decisiejn pejint. The be;st mechanism at each de'eisiem pejint is se>le'cte>el among 

cemsieleml FT ine'chanisms te) globally mininiize' the> te>tal waste' time' for an applica-

tiejn e'xe'e ution by means e>f a elvnamic programming approaeh. In aelelition. the> mexle'l 

is aelaptive> to ele*al with e.-hange-s in failure' rate' ove>r time'. 

i i i  



APPROVAL FOR SCHOLARLY DISSEMINATION 

The author grants to the Prescott Memorial Library of Louisiana Tech University the right to 

reproduce, by appropriate methods, upon request, any or all portions of this Dissertation. It is understood 

that "proper request" consists of the agreement, on the part of the requesting party, that said reproduction 

is for his personal use and that subsequent reproduction will not occur without written approval of the 

author of this Dissertation. Further, any portions of the Dissertation used in books, papers, and other 

works must be appropriately referenced to this Dissertation. 

Finally, the author of this Dissertation reserves the right to publish freely, in the literature, at 

any time, any or all portions of this Dissertation. 

Author N. NAKSINEHABOON 

Date 02/16/2012 

GS Form 14 
(5/03) 



DEDICATION 

To niv late mother, Tanva Naksinehabooii. I dedicate this work. 

v 



TABLE OF CONTENTS 

ABSTRACT iii 

DEDICATION v 

LIST OF TABLES viii 

LIST OF FIGURES ix 

ACKNOWLEDGMENTS xi 

CHAPTER 1 INTRODUCTION 1 

1.1 Failure Prone Environment in HPC Systems 1 

1.2 Fault Tolerance Mechanisms 2 

1.2.1 Reactive FT Mechanisms 3 

1.2.2 Proactive FT Mechanisms 4 

CHAPTER 2 BACKGROUND AND RELATED WORK 8 

2.1 Checkpoint Scheduling Models 8 

2.2 Rejuvenation Scheduling Models 13 

2.3 Scheduling and Decision-making Models for More than One 
FT Mechanism 15 

CHAPTER 3 A HYBRID CHECKPOINT SCHEDULING MODEL 
FOR ARBITRARY FAILURE DISTRIBUTIONS 18 

3.1 An Optimal Checkpoint Frequency Function 21 

3.2 Estimation of the Re-computing Time Coefficient k 27 

vi 



vii  

3.3 The Optimal Number of Incremental Checkpoints between Two 
Consecutive Full Checkpoints m for Arbitrary Failure Distributions 30 

CHAPTER 4 A HYBRID CHECKPOINT SCHEDULING MODEL FOR 
WEIBULL DISTRIBUTIONS 34 

4.1 Near-optimal Checkpoint Times for Weibull Distributions 34 

4.2 Comparisons between the Hybrid and the Full Checkpoint Mechanisms 
for Weibull Distributions 38 

4.2.1 Discussion on the Number of Incremental Checkpoints rn 40 

4.2.2 Discussion on Waste Time 41 

4.2.3 Discussion on Re-computing Time. Checkpoint Overhead, and 
Recovery Cost 44 

CHAPTER 5 A DECISION-MAKING MODEL FOR REACTIVE AND 
PROACTIVE FT MECHANISMS 48 

5.1 An Adaptive Decision-making Model 49 

5.2 A Decision-making Model for Full Checkpoints. Incremental 
Checkpoints, and Rejuvenation 52 

5.3 Simulations 60 

5.4 Simulation Results 62 

5.4.1 The Best Policy 63 

5.4.2 Conditions when there is No Need for any FT Mechanisms 64 

5.4.3 Conditions when the Best Decision Interval is Less than 10% of 
the Completion Time 69 

CHAPTER 6 CONCLUSIONS 72 

APPENDIX A MINIMUM OF A SET OF RECURSIVE. LINEAR FUNCTIONS 75 

BIBLIOGRAPHY 78 



LIST OF TABLES 

Table 3.1: Notations in the hybrid checkpoint, scheduling model 21 

Table 4.1: Parameter values in simulations 40 

Table 5.1: Notations in the decision-making model 54 

Table 5/2: Parameter values in simulations 61 

Table 5.3: Cases that the best decision interval is equal to the completion 
time (A* = d) (No need for any FT mechanisms) 65 

Table 5.4: Cases that the best decision interval is loss than or equal to 10% 
of the completion time, where d is the application completion time... 68 

vii i  



LIST OF FIGURES 

Figure 3.1: Hybrid checkpoint/restart mechanism scheme 19 

Figure 3.2: Relationship between the re-computing time and the checkpoint 

interval 25 

Figure 4.1: Averages of number of incremental checkpoints between two con­
secutive full checkpoints (m) when MTTF is 3 hours, and the shape 
parameters art; 0.5 (left). 1 (middle), and 1.5 (right) 41 

Figure 4.2: Averages of the number of incremental checkpoints between two 
consecutive full checkpoints (m) when MTTF is 1 day, and the 

shape parameters are 0.5 (left). 1 (middle), and 1.5 (right) 42 

Figure 4.3: Percentages of the waste time when the system running time is 1 
day, MTTF is 1 day. and the shape parameters are 0.5 (left). 1 
(middle), and 1.5 (right) 42 

Figure 4.1: Conditional probability of a failure occurrence before time a + A, 
given that the system survives until time a, where A is the check­
point interval when the MTTF is 1 day. the shape parameter is 1, 
the full checkpoint overhead Of is 5 minutes, and the incremental 
checkpoint overhead O, is 10% of Of 43 

Figure 4.5: Percentages of the waste time when the system running time is 7 
days. MTTF is 1 day. and the shape parameters are 0.5 (left), 1 
(middle), and 1.5 (right) 44 

Figure 4.0: Percentages of the re-computing time when the system running 

time is 1 day. MTTF is 1 day. and the shape parameters are 0.5 
(left). 1 (middle), and 1.5 (right) 45 

Figure1 4.7: Average's of the number of checkpoints when the system running 
time is 1 day. MTTF is 1 day. and the shape parameters are 0.5 
(left). 1 (middle), and 1.5 (right) 46 

IX 



X 

Figure 4.8: Percentage's of the checkpoint overheads when the system running 
time is 1 day. MTTF is 1 day. and the shape parameters are 0.5 
(left). 1 (middle), and 1.5 (right) 46 

Figure 4.9: Percentages of the recovery cost when the system running time is 

1 day. MTTF is 1 day. and the shape parameters are 0.5 (left). 1 
(middle), and 1.5 (right) 47 

Figure 5.1: Three scenarios of the decision-making model of an iY— stage 
process with the decision interval of length A: a) there is no 
failure occurrence, and no FT mechanism is performed during the 
application execution: b) an FT mechanism is performed at each 
decision point, hut there is no failure occurrence; and c) an FT 
mechanism is performed at each decision point and a failure occurs 
during the application execution 50 

Figure 5.2: Example graphs of the expected total waste times when A* = d 
(Left), -ft < A* < d (Middle), and A* < 10% of d (Right), where 
A* is the decision interval that gives the smallest expected total 
waste time and d is the application completion time 63 

Figure 5.3: Conditional Probability (P(£2 < a  +  A| > a ) )  of the Weibull 
distributions with the shape parameters (/?) of 0.5. 1. and 1.5, 
completion time (d) of 2 days, the decision interval (A) of 2 days, 
and MTTF of 16 days. The x-axis is the age of the software1 state 
(a) in minutes, ranged from 0 to 4 (lavs 66 

Figure 5.4: Pie Chart of the MTTFs as multiples of the completion time ( d )  
(Left), the shape parameter (/'^(Middle), and the incremental check­
point overheads (Of) as percentages of the completion times (Right) 
for the cases that the best decision interval is less than or equal to 
10% of the completion time 69 

Figure1 5.5: Conditional Probability ( P ( Q  <  a  +- A| H > a ) )  of the Weibull 
distributions with the shape1 parameter's of 0.5. 1. and 1.5. the 

completion time (d) of 2 days, and the MTTF of 12 hours. The 
x-axis is the age ejf the1 software1 state1 (a) in minutes, range'd from 
0 te) 2 clavs 70 



ACKNOWLEDGMENTS 

This dissertation would not have been possible without the wise guidance and 

support of my advisor. Dr. Chokchai (Box) Leangsuksun. I will be forever grateful to 

him for giving me opportunities and challenges to drive this dissertation to its fullest. 

My eternal gratefulness shall be extended to Dr. Raja Nassar for his wisdom 

in probability and statistics and his patience in editing the technical papers. I would 

like to express my gratitude to my research committee: Dr. Galen Turner and Dr. 

Bernd Schroeder for suggesting and validating my research in mathematical analysis: 

Dr. Weizhong Dai for guiding rne through the CAM program; and Dr. Dexter Cahoy 

for providing insightful statistical discussion. Besides, I would like to express my 

gratitude to Dr. Richard Greechie for giving me opportunities to explore the beautiful 

world of mathematics; Dr. Mihaela Paun for suggestions in my initial research; and 

Dr. Jinko Kanno for philosophy in life. 

Personally, I would like to gratefully thank niy husband. Narate Taerat. for 

his neverending professional and personal support. This journey would have never 

begun without my family; my mother. Tanya Naksinehaboon. who had seeded in me 

a thought of pursuing a doctoral degree: my father. Wikorn-ake Naksinehaboon. who 

has always supported me and believed in me: my uncle. Somkit Naksinehapon. who 

has been a pillar of support throughout. Finally. I would like to thank my friends 

who have added fun colors in this journey. 

xi 



CHAPTER 1 

INTRODUCTION 

High Performance Computing (HPC) systems such as supercomputers play 

an important role in solving advanced computational problems because of their high 

computational power. The demand for high computational power has increased and 

has driven the HPC systems' physical sizes to a level where reliability is a major 

concern. Thus. HPC systems with a large number of compute components are prone 

to failure occurrences [14. 26, 60]. 

1.1 Failure Prone Environment in HPC Systems 

In 2006. Sehroeder and Gibson [59] analyzed the failure datasets. collected over 

9 years, of 22 HPC systems hosted at Los Alamos National Laboratory (LANL). They 

reported that the major root cause of failures is hardware1 failures. Also, the "failure 

rate1/" which is the number of failures observed in a given period of time, is high 

during the configuration period and drops when the systems are in production time. 

During the production time, the failure rate on different systems ranges from 10 to 

700 failures per year. Gibson et al. [27] showed that it is possible that the number of 

failures reaches 2.000 failures per year. Further. Sehroeder and Gibson [60] predicted 

the failure rate of exascale systems to be once every 3-26 minutes. Glosli et al. [28] 

observed that the BlueGene/L system at Lawrence Livennore National Laboratory 

1 



2 

(LLNL). which is comprised of more than 100.000 compute nodes, has experienced a 

failure1 every 7-10 days. 

Failure occurrences interrupt the running applications, resulting in lost com­

puted work. Upon a failure occurrence, the systems need to re-compute the portion 

of the applications that has been computed before the failure1. We call the amount of 

time that the system spends to re-compute the application the "re-computing time." 

Due to the high failure rate in HPC systems, the re-computing time is significant. 

Thus, the HPC community has been trying to find a solution that reduces the re­

computing time. 

1.2 Fault Tolerance Mechanisms 

Fault tolerance (FT) is ''the ability of a system or a component to continue 

normal operation in spite of the presence of hardware or software faults" [1], FT 

mechanisms are hardware1 and software techniques that alleviate1 the ef(ect,K ol failure 

occurrences on HPC systems. They can be categorized into reactive and proactive 

FT mechanisms. Reactive' FT mechanisms, such as checkpoint/restart and process 

redundancy, are mechanisms that aim te> re;due:e the failure; impact (jii the: running 

applicatiems. On the other hand, proactive? FT mechanisms, such as process migration 

anel rejuvenation, are mechanisms that aim te> pre;vent running applie ations from fail­

ure1 occurrences. Consequently, inactive and proactive FT mechanisms eomplement 

e 'rich other. 



3 

1.2.1 Reactive FT Mechanisms 

Reactive FT mechanisms aim to reduce1 the amount of lost computed work, 

upon a failure occurrence. Examples of react ive mechanisms are the checkpoint/restart 

mechanism and process redundancy. In this work, the only reactive mechanism that 

we focus on is the checkpoint/restart mechanism because it is the most widely used 

FT mechanism in HFC environments [56]. 

The checkpoint/restart mechanism periodically saves the application states to 

a stable storage. A "checkpoint" is a point at which the system saves the application 

state [35. 75]. Upon a failure occurrence, the system loads the last saved state [34, 35] 

and computes the application from the loaded state. 

Since saving an application state also interrupts the computation and requires 

additional execution time to complete the applications, the "checkpoint overhead" 

is the additional execution time due to a checkpoint [63]. Besides the checkpoint 

overhead, "checkpoint latency" is the time that the system spends to store the saved 

state to a stable1 storage [63]. If the system pauses the computation of the running 

application until completely storing the saved state, the checkpoint overhead is equal 

to the checkpoint, latency [34]. Besides the cost for saving the application states, the 

time duration that the system spends to load the saved state or recover the application 

is called the "recovery cost." 

A full checkpoint, rncchanism is a conventional checkpoint technique that saves 

a whole1 application state1 at each che>ckpe>int. Unfortunate'ly. saving a whole applica-

tion state e ause-s an expensive1 e-herkpoint overhewl. Due1 te> its high ewrhewl. the full 



4 

checkpoint technique becomes limited in large-scale HPC systems [2], Thus, there are 

alternative checkpoint techniques that aim to reduce the full checkpoint overhead. 

An incremental checkpoint mechanism is an alternative checkpoint mechanism 

that has been introduced by Bantu- [5. 6]. Instead of saving a whole application 

state, the incremental checkpoint mechanism saves only the changes made by the 

application from the previous saved state [52]. Thus, the incremental checkpoint 

overhead is potentially smaller than the full checkpoint overhead. Furthermore, 

because the application state is incrementally saved, upon a failure, the system must 

load all incremental checkpoints to recover the last saved state of the application [52]. 

Consequently, the overall cost of the incremental checkpoint technique could be larger 

than that of the full checkpoint technique. 

1.2.2 Proactive FT Mechanisms 

Proactive FT mechanisms aim to prevent the running applications from failure 

occurrences [22]. To protect the running applications, the proactive FT mechanisms 

perform some actions according to failure prediction. Two well-known proactive FT 

mechanisms are process migration and software rejuvenation. 

Process migration is a mechanism that migrates or moves the application 

processes from the unreliable resources to more reliable resources in order to continue 

application execution. Similarly to the checkpoint/restart, mechanisms, migrating the 

processes interrupts the running applications and causes additional execution time. 

Furthermore, process migration is heavily based on failure prediction to determine a 

point in time to migrate the processes with the least impact !G7]. 



Hanng et al. [33] have proposed software rejuvenation as a complementary 

approach to the checkpoint/restart mechanism. The concept is to intentionally ter­

minate an application and restart it at a clean internal state to avoid transient 

software failures caused by the software aging phenomenon. The software aging 

phenomenon refers to the aggregation of errors during an application execution, 

resulting in performance degradation or software failures [24], Software rejuvenation 

complements the checkpoint/restart mechanism because it reduces the number of 

failures that the running applications might, encounter. If a failure occurs, the systems 

are still able to recover the applications from the checkpoints. 

Utilizing FT mechanisms does not completely eradicate the re-computing time. 

In addition, it introduces overhead and lengthens the application execution time. 

Therefore, the frequency of performing FT mechanisms is crucial to efficiently utilize 

them. For example, running applications are periodically saved because the failure 

time is random. If the applications are saved very often, the re-computing time is 

potentially small. However, the total checkpoint overhead is large. In contrast, if 

the system rarely saves the applications, it then spends a large amount of time to 

re-compute the lost work after a failure, but a small amount of time to save the 

application states. Moreover. a.s HPC systems grow in size, the checkpoint/restart 

mechanism limits application scalability. Particularly, large-scale HPC systems may 

spend large amount of their time saving application states instead of executing useful 

work [21. 12. 68]. Therefore, the means to utilize the checkpoint/restart mechanism 

should be intelligent [50]. 



6 

To improve the utilization of the checkpoint/restart mechanism, we have de­

rived a checkpoint scheduling model to determine a sequence of checkpoint times that 

minimizes the waste time. The "waste time" is the accumulation of the checkpoint 

overhead, the recovery cost and the re-computing time upon failures. A "checkpoint 

time" is a point in time at which the system initiates a checkpoint mechanism. The 

scheduling model is derived for the hybrid checkpoint mechanism that combines both 

the full and incremental checkpoint techniques. We consider the combination of the 

full and incremental checkpoint techniques because the combination balances the 

total checkpoint overhead and the recovery time. Moreover, the proposed scheduling 

model is the first scheduling model for the hybrid checkpoint mechanism. The details 

of the hybrid checkpoint mechanism are discussed in Chapter 3. Also, in Chapter 

3 we derive the optimal checkpoint frequency function for the hybrid checkpoint 

mechanism for arbitrary failure distributions. To give1 a concrete example of the 

sequence of near-optimal checkpoint times, the failure process is assumed to follow a 

Weibull distribution, which is the best fitted failure distribution [29. 59]. In Chapter 

4. the formula for checkpoint times of the hybrid checkpoint mechanism is presented 

for failures that follow a Weibull distribution. 

The checkpoint frequency depends on the failure rate of the system. With 

an increasing failure rate, the system should save application states more often over 

time to cope with the higher chance of failures. Rejuvenating the applications, when 

the failure rate is high, will keep the software in a fresh state, so the checkpoint 

frequency will not increase over time, resulting in lower total checkpoint overhead. 

For both checkpoint and rejuvenation, the critical question is when to save and to 



I 

rejuvenate the applications. This is because it might cause unnecessary overhead if 

the application is rejuvenated saved too often. Therefore, in Chapter 5. based on a 

dynamic programming approach, we have derived an adaptive decision-making model 

to determine the best mechanism at each decision point to minimize the waste time 

during an application execution. The concept of the decision-making model is general 

enough to be applied for any FT mechanisms. Moreover, the proposed decision­

making model is the first decision model that globally minimizes the application 

execution time for a given decision interval. Most existing models make a decision 

based on the local minimization at each decision point. Finally, the conclusion is 

given in Chapter 6. In the next chapter, we discuss background and related work of 

this research. 



CHAPTER 2 

BACKGROUND AND RELATED WORK 

Fault Tolerance (FT) mechanisms play an important role in dealing with 

failures in HPC systems. However, the overhead of FT mechanisms is increasing 

because of the increase in the physical size of HPC systems and the complexity of 

computational problems. This leads to the question when or how often to invoke 

these FT mechanisms so that it is worth to pay the cost of the FT mechanisms for 

maintaining low re-computing time. 

The research in answering the questions of when or how often to perform 

FT mechanisms has a rich history. Specifically, the problems of when or how often 

to perform FT mechanisms are called "FT-mechanism scheduling problems." More­

over, a mathematical model to determine the optimal frequency or times is called a 

"scheduling model." 

2.1 Checkpoint Scheduling Models 

The checkpoint/restart mechanisms can be invoked in two approaches [12]. 

Firstly, the programmers analyze their program and insert checkpoint calls in the 

codes intuitively or based on a scheduling model. Secondly, the checkpoint/restart-

8 



9 

mechanism is invoked periodically by the systems, regardless of the running applica­

tions. Most early studies in checkpoint scheduling models have the assumption that 

the failures follows an exponential distribution which is not the case in practice. 

The first study that aims to assist programmers to determine the insertion 

points for checkpoints is by Chandy and Ramarnoorthy [12]. They developed a 

decision-making algorithm to aid programmers in determining the optimum points to 

save the application states, based on the checkpoint overhead after each instruction 

in the codes. In [11], Chandy proposed another checkpoint scheduling model that 

minimizes the checkpoint overhead and the re-computing time per unit time. Most 

scheduling models concentrate on minimizing the application execution time. The 

"application execution time" is the time from the start of the computation until the 

end of the computation, including the overhead and the recovery cost of the FT 

mechanism as well as the re-computing time in case of failure occurrences. Some 

early works arc discussed as follows. 

Young [75] proposed a first order approximation of the optimal checkpoint 

interval that takes into account only the checkpoint overhead. Leung and Choo [38] 

determined a checkpoint interval which would minimize the application execution 

time and allowed failures during saving the application states. Instead of minimizing 

the application execution time. Geist et al. [25] determined an optimal checkpoint 

strategy that maximizes the probability of application completion. In 1998. Plank 

and Elwasif [54] performed experimental research to corroborate the applicability of 

some existing checkpoint scheduling models at the time (Duda's model :20]. Vaidva's 

model [()•-1] and Young s model '75]). Plank and Elwasif s work [54] serves as a good list 



10 

of significant wink, before 1998. 011 the checkpoint scheduling models that minimize 

the application execution time by employing the checkpoint overhead and the re­

computing time. 

Later. Daly [15] improved Young's work [75] by considering the re-computing 

time in the model. To obtain a more' accurate model. Daly [17] approximated the 

waste time function by using a higher order approximation, and he further refined his 

series of works again in [16]. Young [75] and Daly [15] have established a strong basis 

in developing checkpoint scheduling models that minimizes the application execution 

time. Hong et al. [31] developed a scheduling scheme to make a decision whether or 

not to save the application state based on the predicted checkpoint overhead. They 

predicted the checkpoint overhead by utilizing the' memory usage profile and time 

series analysis. Oliner et al. [49] proposed a so-called cooperative checkpointing, 

which is a checkpoint scheme based 011 Young's periodic checkpoint model [75]. The 

scheme considers the sequence of checkpoint times obtained from Young's model and 

decides whether to skip or to perform the checkpoints based on the expected cost. 

Most checkpoint scheduling models were developed based 011 the assumption 

of constant failure rates, equivalently that the failures on the systems follow an 

exponential distribution. However, there is evidence that failures in HPC systems 

are not always exponentially distributed [30. 41. 55 . 58 . 59 . 73]. Recent, studies have 

attempted to relax the assumption of exponentially distributed failures. Ling et al. 

[39! presented optimal checkpoint scheduling models for an infinite horizon time by 

using a calculus of variations technique. They theoretically concluded that the fixed 

checkpoint interval is optimal if and only if the system failures follow a Poisson process 



11 

with constant failure rate. Ozaki et al. [51] extended the concept of the variational 

calculus in [39] to a finite horizon time and incomplete system failure information. 

However, both of these papers considered the re-computing time as a linear function 

for demonstrating model applicability which is the restriction of the model. 

Liu et al. [40. 41] enhanced the model in [51] by relaxing the assumption 

of linearity of the re-computing time. Liu's model is strongly related to the hybrid 

checkpoint scheduling model in Chapter 3 because the hybrid checkpoint scheduling 

model is an extension of Liu's model. 

Kwak and Yang [36] determined the optimal checkpoint intervals in multiple 

real-time applications. The width of the optimal checkpoint interval is constant 

through each application execution, but the widths are different with respect to each 

kind of applications. Moody et al. [42] designed a scalable multi-level checkpointing 

system that saves the whole application state to different storages according to the 

severity of the predicted failures. Furthermore, they developed a Markov model to 

schedule the checkpoints to different storages. The strong point of their work is that, 

the designed multi-level checkpoint mechanism has been deployed on the clusters at 

LLNL. Bougeret et al. [9] developed a dynamic programming model to determine 

the optimal checkpoint interval that maximizes t he amount of work completed before 

the next failure. Also, they considered various models of job parallelism. This is a 

strong [joint of this work because there are a few existing studies that addressed the 

checkpoint overhead for parallel applications. To determine each checkpoint interval, 

they iteratively compared the expected execution time of tlie remaining work over 



12 

different lengths of checkpoint intervals. Tliev also proposed algorithms to solve the 

model for exponential and Weibull distributions. 

Up to this point, we have mentioned only the scheduling models for the full 

checkpoint technique. The studies to optimally schedule other checkpoint techniques 

are limited because few techniques have been implemented, and none of them have 

been deployed on HPC systems. Besides the full checkpoint technique, only the in­

cremental checkpoint technique gains attention from researchers to study the optimal 

strategy to utilize it. 

Yi et al. [74] have proposed an adaptive decision-making model for incremental 

checkpoints. However, the objective is to determine the optimal checkpoint interval. 

The model is a decision-making model because, at each decision point, the expected 

recovery costs for the cases with and without incremental checkpoints are compared. 

If the expected recovery cost without the incremental checkpoint is less than the 

expected recovery cost with the incremental checkpoint, then the model decides to 

skip the checkpoint at that particular decision point. 

The first prototype of the hybrid checkpoint mechanism was developed by 

Wang et al. [69]. They conducted experiments on the benefits of the hybrid check­

point mechanism against the full checkpoint mechanism, and the experimental results 

showed that the hybrid checkpoint mechanism outperforms the full checkpoint mech­

anism with the assumption of exponentially distributed failure's. 



13 

2.2 Rejuvenation Scheduling Models 

Software rejuvenation is tightly related to software degradation, so there are 

many studies in software degradation or aging phenomena that serve as evidence 

of the benefit's of software1 rejuvenation. Garg et al. [24] detected and estimated 

trends and time to exhaustion of operating system resources due to software aging. 

Vaidyanathan and Trividi [GG] took system workload into account and constructed 

a model for estimating resource depletion times. Bobbio et al. [7] applied Fluid 

Stochastic Petri Nets [32] to capture; the behavior of aging software systems with the 

checkpoint/restart mechanism and software rejuvenation enabled. 

There are several studies on software rejuvenation. Most existing works have 

focused on maximizing the availability of the system or minimizing the overhead 

of software rejuvenation. Dolii et al. [18. 19] formulated a stochastic model via a 

semi-Markov process to schedule software1 rejuvenation that maximizes the system 

availability. To numerically determine the optimal schedule, they also developed 

non-parametric statistical algorithms. Bobbio et al. [8] presented a fine grained 

degradation level based on the; observation of a system parameter. They then pre­

sented an optimal rejuvenation policy based on a risk criterion and an alert threshold. 

Cassidv et al. [10] employed pattern recognition methods on large on-line transaction 

processing server datasets. using their model to identify sufficient warning to initiate 

rejuvenation. Xin-vuan e>t al. [72] proposed a prediction-basexl software rejuvenation 

mechanism into a clustering architecture and analyzed the availability ejf the systems 

enabling the' proposes! rejuvenation scheduling. The* numerical results suggested that 

the- availability of the system increase:el by rejuve>natiiig software'. Xie> et al. [71] 



14 

proposed two rejuvenation policies by considering the cluster workload (peak hour 

and off-peak hour). A Markov process was modeled and numerically analyzed by 

the Stochastic Petri Net Package (SPNP) [13]. The first policy is Fixed Rejuvenation. 

When a node is in a failure-prone environment, it is rejuvenated within a deterministic 

duration after entering the failure-prone state, regardless of whether it is a peak hour 

or an off-peak hour. The second policy is Delayed Rejuvenation. During peak hours, 

a node is not rejuvenated until the off-peak hours start, although this may mean that 

the node enters the failure-prone state. 

In 2005, Vaidyanatharn and Trividi [65] extended the workload-based approach 

by performing transient analysis and formulating the estimated time to resource 

exhaustion as the mean time to accumulated reward in a semi-Markov reward model. 

Then, they developed an upper-level availability model that accounts for failure and 

rejuvenation. Lastly, they used this model to derive optimal rejuvenation schedules. 

Okamura et al. [48] derived a rejuvenation scheduling model, based on a dynamic 

programming approach, that minimizes the expected execution time. Zhao and Song 

[76] applied continuous time Markov chains and the concept of common software 

aging-related faults to study the effectiveness of software rejuvenation. According to 

their numerical example, the steady state availability of the system was improved by 

avoiding common faults. Avritzer et al. [3. 4] determined the best time to trigger 

the software rejuvenation by tracking the progress of the application computation. 

They found that utilizing software rejuvenation improves the chance of completing 

applications significantly. Tian and Meng [62] presented a coordinated selective 

rejuvenation scheme. The scheme uses Bayesian network to identify the problematic 



15 

component, that is responsible for the system violation. To make a decision for 

rejuvenation, they used a rejuvenation gain/cost model and dynamic multi-threshold 

algorithm, based on the assumption that the longer the rejuvenation interval, the 

more gain from the rejuvenation. 

2.3 Scheduling and Decision-making Models for 
More than One FT Mechanism 

There are very few existing studies that consider more than one FT mechanism. 

Such studies can be categorized into two types: scheduling models and decision­

making models. Moreover, they often consider a combination of reactive and proactive 

FT mechanisms. The differences between the scheduling models and the decision­

making models are the following. The scheduling models determine the time to 

invoke each mechanism corresponding to some predefined factors such as the number 

of checkpoints between rejuvenation. On the other hand, the decision-making models 

select the best mechanism based on some criteria with the predefined interval between 

two decision points. 

Garg et al. [23] dealt with the analysis of three scenarios; 1) without check­

points and rejuvenation. 2) with only checkpoints, and 3) with both checkpoints 

and rejuvenation. They claimed that their work is the first paper that proposed 

the combination of checkpoints and rejuvenation. They minimized the application 

execution time by means of a dynamic programming approach. In the model, the 

checkpoint interval is constant, and rejuvenation is triggered right after every kth 



1G 

checkpoint. A significant result of this paper is that if the failure process is expo­

nentially distributed, employing rejuvenation does not shorten the execution time 

because of the memoryless property of the exponential distribution. The exponential 

distribution renews the failure process every instant, so the renewal by rejuvenation 

does not help the failure process at all. Instead, it introduces additional overhead. 

The adaptive model in Chapter 5 is more flexible than Garg et al.'s model because 

the proposed model in Chapter 5 does not fix the number of checkpoints between 

rejuvenations. 

Lan and Li [37] proposed an adaptive decision-making model. At each decision 

point, three actions are considered: 1) performing a checkpoint. 2) migrating the 

processes, and 3) doing nothing. The expected cost, of each action is derived, and 

the best action at each decision point is the action that gives the minimum expected 

cost. However, the derived expected cost of each action is not the expected total cost 

until the completion of the execution. Instead, they are the expected costs for the 

interval between the current decision point and the next decision point. Therefore, 

the execution time based on their model might not be the minimum one. In contrast, 

the proposed decision-making model in Chapter 5 globally minimizes the expected 

total waste time, resulting in achieving the minimal expected execution time. 

Okamura and Dolii [46] developed a stochastic model with three reactive/ 

proactive FT mechanisms (rejuvenation, restoration and checkpoint ). To determine a 

joint optimal maintenance schedule, they proposed a dynamic programming algorithm 

to maximize the steady-state system availability Later in [47]. Okamura and Dohi 

considered a concept of full maintenance in which both checkpoint and rejuvenation 



17 

are performed. They called the duration between two full maintenances a "cycle." 

Two schemes were considered in the work. Checkpoint prior to rejuvenation (CPTR) 

is a process in which only checkpoints are performed in a cycle. Rejuvenation prior to 

checkpoint (RPTC), in contrast, is a process that only performs rejuvenations. More­

over. they proposed a dynamic programming algorithm to solve for optimal intervals 

in which the optimal maintenance schedule must be satisfied. However, the number 

of checkpoints or rejuvenations in a cycle are heuristically determined. In contrast, 

the decision-making model in this dissertation selects the best FT mechanism based 

on the least expected waste time among all considered FT mechanisms. 

The adaptive decision-making model in Chapter 5 is the first decision-making 

model that, globally minimizes the expected application execution time. Moreover, 

it can be applied for arbitrary failure distributions and FT mechanisms, but the 

complexity of the model varies corresponding to the mechanisms and the failure 

distributions. 



CHAPTER 3 

A HYBRID CHECKPOINT SCHEDULING 
MODEL FOR ARBITRARY FAILURE 

DISTRIBUTIONS 

The hybrid checkpoint mechanism is a checkpoint/restart mechanism that uti­

lizes both full and incremental checkpoints. We combine both checkpoint techniques 

because of the expensive overhead of full checkpoints and the large recovery cost of 

incremental checkpoints. In this chapter, the details of the hybrid checkpoint and the 

scheduling model for the hybrid checkpoint mechanism will be discussed. The work 

in this chapter is partially embedded in [43, 44, 53]. 

In the hybrid checkpoint mechanism, the first checkpoint since the starting or 

restarting point must be a full checkpoint and is followed by incremental checkpoints. 

After a certain number of incremental checkpoints, a full checkpoint will be performed 

again in order to balance between the recovery cost and the full checkpoint overhead. 

Thus, then1 are many sets of a full checkpoint followed by a certain number of 

incremental checkpoints. Upon a failure occurrence, the system loads the last full 

checkpoint and all the following incremental checkpoints to recover the application. 

Next, the system re-computes the lost computed work and then continues to compute 

the remaining work. Therefore, the recovery cost of the hybrid checkpoint mechanism 

is proportional to the number of incremental checkpoints between two consecutive full 

18 



19 

checkpoints. Thus, finding the optimal number of incremental checkpoints between 

two consecutive full checkpoints that balances the recovery cost and the total check­

point overhead is crucial. This is because a disproportionate number of incremental 

checkpoints will lead to unnecessary recovery cost. Figure 3.1 illustrates the hybrid 

checkpoint mechanism. 

( j  - 1)' failure 

• full checkpoint Q incremental checkpoint 
j"' failure 

O r  
: 

^  ;  ;  |  j  j  •  

1 H ii ii 

recovery 

a, 
T n ^ R F - r n R ,  

Figure 3.1: Hybrid checkpoint/restart mechanism scheme 

Although the checkpoint mechanism is deployed on the systems, the systems 

still need to spend an amount of time to re-compute the application after a failure 

occurrence. We call this amount of time the "re-computing time." The amount 

of time the system spends to load the checkpoints is called "recovery cost." To 

efficiently perform the hybrid checkpoint mechanism, we derive a stochastic model to 

determine an optimal checkpoint frequency that minimizes the waste time. Since an 

application might fail more than one time, the "total waste time" is the sum of the 

total checkpoint overhead, the total recovery cost, and the total re-computing time. 

Hence, the optimality of the; checkpoint frequency is contingent on the equilibrium 

of the> three costs. The following assumptions are made to derive the checkpoint 

frequency function. 



20 

1. A running application may be interrupted by a series of random failures where 

t h e  t i m e - t o - f a i l u r e  ( T T F )  h a s  a  c e r t a i n  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  ( P D F )  f { t ) .  

2. The full and incremental checkpoint overheads are constant. In practice, the 

full checkpoint overhead is quite stable during an application runtime because 

each full checkpoint is a whole application state. Moreover, programmers are 

likely to allocate the memory size expected for usage during the computation. 

Thus, the assumption is valid for the full checkpoint overhead. However, there 

are both small and large incremental checkpoint overheads for an application 

execution. The assumption of constant for incremental checkpoint overheads 

is still reasonable because we aim to globally minimize the total waste time. 

Hence, the constant incremental checkpoint overhead in the model can be the 

average of the actual incremental checkpoint overheads. 

3. The recovery costs of full and incremental checkpoints are also constant. 

4. The full checkpoint overhead is larger than the incremental checkpoint over­

head. Similarly, the recovery cost of a full checkpoint is larger than that of an 

incremental checkpoint. This assumption is valid because a full checkpoint is a 

saved state of an entire application which is likely larger than an incremental 

checkpoint. If an incremental checkpoint is as large as a full checkpoint, the 

incremental checkpoint should not be performed. 

5. The number of incremental checkpoint between two consecutive full checkpoints 

(///) is a constant. 



21 

In Section 3.1. to obtain the optimal checkpoint frequency, we first derive 

the waste time of the hybrid checkpoint mechanism. Then bv means of calculus 

of variations, we derive a checkpoint frequency function that globally optimizes the 

expected waste time with a general failure distribution. Table 3.1 gives the notations 

in the derivation. 

Table 3.1: Notations in the hybrid checkpoint scheduling model 

Notations Descriptions 

O f  Overhead of a full checkpoint 
o ,  Overhead of an incremental checkpoint 

T H e  Re-computing Time 

R F  Recovery cost of a full checkpoint 

Ri  Recovery cost of an incremental checkpoint 
r r i  Number of incremental checkpoints between two consecutive 

full checkpoints 
k  Re-computing time coefficient 
Q Random variable of TTFs 

n( t )  Checkpoint frequency function 

3.1 An Optimal Checkpoint Frequency Function 

Let Qj denote the random variable of TTF for the j i h  failure, where = 0. 

Equivalently. is the elapsed time between the (j — 1 )th and jih failures, called the 

-jtti cvc]e •• shoWn in Figure 3.1. Because the system is restarted after each failure 

occurrence, the Qj are positive independent identically distributed random variables, 

denoted by Q. and 0 < -E^j] = E[Q) < oc. for all j 6 {1.2.3. ...}. where E[-] is the 

expected value. 

According to the first assumption, multiple failure occurrences are allowed 

during an application execution, so the total waste time is the aggregation of the 



22 

waste time in each cycle. Let W )  be the waste time of the j t h  cycle. The total waste 

time until time t. denoted by \V,. can be expressed in Eq. 3.1, where J t  := urax{n £ 

{1.2.3....}|£o 
J ,  

»•-, = £»> (3.1) 
J=0 

According to [57], is a renewal process, and \V t  is a renewal-reward process. 

The elementary renewal theorem states the following. 

lim ®. (3.2) 
t->OG t 

Ecjuation 3.2 suggests that minimizing the overall expected total waste time 

is equivalent to minimizing the waste time of the first cycle. It is sufficient to derive 

only the waste time of the first cycle. Henceforth, the waste time refers to the waste 

time of the first cycle. For simplicity, it is denoted by W, and it can be derived from 

t h e  c h e c k p o i n t  f r e q u e n c y  f u n c t i o n  n ( t ) .  

The idea of the checkpoint frequency function is to formulate a function 

that describes the checkpoint frequency at a time instance. Then, the waste time 

during an elapsed time between two consecutive1 failures (W) is derived from the 

checkpoint frequency function. The checkpoint frequency function is formally defined 

in Definition 3.1. 

Definition 3.1. Let. the sequence of discrete checkpoint times in a cycle be 0 = 

to < 11 < t-2 < t,; < .... The checkpoint frequency function for the hybrid checkpoint, 

mechanism denoted by n(t) is a continuous function on [0. oc), defintd by: n(t.)dt : = 

the number of full and incremental, checkpoints from trine a to time b. Note. that, f is 

the time from the starting point, of a cycle. 



23 

i t h  and the (?' + 1)"' checkpoints is equal to 1. Proposition 3.2 follows. 

Because the number of checkpoints, whether full or incremental, between the 

\th 

Proposition 3.2. Let t, be the i'h checkpoint time. where i G {0. 1.2....} and to = 0. 

Then, we have that. 

f t i + 1 
n  ( t )  d t  =  1 .  (3.3) 

According to Figure 3.1, the total number of checkpoints in the first cycle 

is the sum of the number of the full checkpoints and the number of the incremental 

checkpoints. Hence, it can be expressed in Eq. 3.4. where NF and N[ are the numbers 

of full and incremental checkpoints in the first cycle, respectively. 

i t  ( t ) d t ,  =  N F  +  N / .  (3.4) 
• H )  

Because a full checkpoint, is followed by rn incremental checkpoints, except 

perhaps the last full checkpoint, we have that Nj ~ rnNfAlso, the approximation 

of the number of full checkpoints in the first cycle is expressed in Eq. 3.5, where in 

is the number of incremental checkpoints between two consecutive full checkpoints. 

1 
N fi­ l l  ( t )  d t .  (3.5) 

m + 1 ./„ 

Note that the exact value of the number of full checkpoints in the first cycle 

can be obtained as in Eq. 3.G. However, using the exact, value of Ny probably 

leads to unnecessarily complicated formulas that do not give better results than the 

approximation for large Ay. 

[  n ( t ) d t  

A", = 
in 

(3.6) 



24 

We recall that the waste time is the sum of the checkpoint overhead, the 

recovery cost, and the re-computing time. The total checkpoint overhead in the first 

cycle is equal to Oy NF + 0/ N{. Thus, we have that 

total checkpoint overhead in the l*' cvde ~ 0 y (  f  n  ( t )  d t )  
\m  + l j  o J  

+ C,'(mTT./l 

Total checkpoint overhead in the Is' cycle % ^ + f n  ( t )  d t .  (3.7) 
rn + 1 J 0 

Next, the re-computing time can be estimated from the checkpoint frequency 

function. Their relationship is illustrated in Figure 3.2. Note that f2 has a value be­

tween the two checkpoint times that a failure occurs in-between, say t,u and t,l{)+j. So. 

by the Mean Value Theorem for Integrals, we can estimate the checkpoint frequency 

of this interval by n(Q) as Eq. 3.8. 

I  n { t ) d t  

1  U "  u { i l ) .  (3.8) 
^o+l t'io 

The value of the re-computing time T{{c  is in the interval ((),/?0+] — t io). 

Therefore, from Eq. 3.8, TFI(, can be approximated by Eq. 3.9. where k is the re­

computing time coefficient between (0,1), of which the estimation will be given in 

Section 3.2. 

Tr , ;  = k(t. io  +, - /,•„) « where k <E (0, 1). (3.9) 

The recovery cost upon a failure occurrence is estimated by By + m R/. which 

is the upper bound of the recovery cost. Thus, the three costs that contribute to the 



25 

waste time are obtained. Now. the waste time of the first cycle can be expressed as 

in Theorem 3.3. 

failure 

T, Re 

n  
!  ! / " ( « )  :  

Figure 3.2: Relationship between the re-comptiting time and the checkpoint interval 

Theorem 3.3. Let IV be the random variable of the waste time of the first eye 

Then 

Oy + rnOi r i l  k 
n ( T ) H T  +  — —  +  ( R y  +  m R i ) .  

m  +  1  , / ( )  n ( \ l )  
(3.10) 

Recall that f ( t )  is the probability density function of the TTF random variable 

H. The expected waste time of the first cycle can be expressed as follows. 

E [ \ V ]  
Jo 

0F + mOi k 

tn 4-
-— f n (  i  ) d i  H — —  +  ( R f  +  n i R i )  
1  J o  " ( * )  

mat .  (3.11) 

By applying the calculus of variations theory, we obtain the optimal checkpoint 

frequency function n(t) as in Theorem 3.4. 

Theorem 3.4. Let f{t) and F(t) denote the probability density function (PDF) and 

the cumulative density function (CDF) of the TTF random variable iI. The optimal 

checkpoint frequency function that minimizes the expected waste time 

n ( t )  
( " i  +  I ) * '  /  f ( t - )  

Or + rnO[ V 1 - F(t) 
(3.12) 



26 

Proof. First we denote y(t) := J0 ' n(r)dr. Then. y ' ( t )  =  n ( t ) .  Thus. Eq. 3.11 

becomes: 

E f i r  
./o 

O f  + m O j  

m -\ 1 
H 7777 + { R f  + m R l )  y ' { t )  

(3.13) 

Next we denote h ( y . y ' j )  : -

Thus. Eq. 3.13 becomes: 

Of. + mO k 

771 
T- y ( t )  +  - ^  +  ( R r  +  ™ R i )  m. 

POO 

E [ W ] =  / h ( y ,  y ' ,  t ) d t .  
Jo 

(3.14) 

The extremum of Eq. 3.14 must satisfy the Euler-Lagrange's equation (Eq. 3.15). 

d h  d  (  d h  \  
n  r h r ;  = 0 '  3 - 1 5  

d y  d t  \  d y '  J  

Taking the partial derivative of h  with respect to y  and y ' .  respectively, 

we obtain 

Oil O y + TflO i 

d y  

O h  

d y '  

in + 1 

k 

( y ' ( t ) )2  

f i t ) -

f i t ) .  

(3.16) 

(3.17) 

By substituting Eqs. 3.16 and 3.17 into Eq. 3.15, we obtain 

k ° r  +  m 0 < f i t )  +  d  
f i t )  =  0 .  (3.18) 

r n  +  1  J  K  '  '  d t  \ ( y ' ( t ) ) 2 '  

Integrating from 0 to t on l)oth sides of Eq.3.18 and keeping in mind that / is a PDf. 

we obtain 

m  +  l  i j / i t ) )  
(3.19) 

where C is a constant. 



27 

W e want to obtain the unique solution of the differential equation in Eq. 3.19. 

Because the right-hand endpoint (oc) of the integral in Eq. 3.14 is undetermined, the 

function y needs to satisfy the conditions in Eqs. 3.20 and 3.21 [70]. 

y(0) = 0. (3.20) 

lini^-=0. (3.21) 
oc dy' 

It is easy to see that the function y satisfies the first condition by its definition. 

In addition, the function y satisfies the second condition because lini f(t) =0 and 
t — ¥  OC 

lim y'(t) 7^ 0. Recall that y'(t) — n(t). The checkpoint frequency function does not 
£—•00 

approach 0 because eventually the systems will fail. 

Oh , k N 
lim — = - lim ?/(*) = 0. 

*->oc dy (ij'(t)) 

Applying the second condition Eq. 3.21 to Eq.3.19. we obtain that C = 

—— because lim Fit) = 1. Bv an algebraic manipulation, the unique solution 
m + 1 t-»oc 

of the fliff'erential equation Eq. 3.19 is Eq. 3.22. 

n( t )  =  'J i t )  =  oTTTM,]/ T~Wy (3  22)  

Hence, the proof is completed. • 

3.2 Estimation of the Re-computing Time Coefficient k 

According to Figure 3.2. the re-computing time coefficient k can be estimated 

by the ratio between the re-coniputing time Tn, and the checkpoint interval in which 

the failure occurs. Additionally, by the definition of the re-computing time, it is the 

interval between the last checkpoint and the failure. Clearly the re-computing time 



28 

Th v is a random variable depending on the TTF random variable Q. Hence, the 

re-computing time coefficient k is formally defined as follows. 

Definition 3.5. Let k denote the re-computing time coefficient. It can be expressed 

as follows. 

k = (3.23) 
<-!(! '  ?o --1 'hi *»0 — J 

Because k depend s  o n  the re-computing time l){(. we will first find the expected 

value of 1 for each checkpoint interval. To obtain such expected value, we need the 

following definition. 

Definition 3.6. Excess life is a random variable X > 0 which denotes system survival 

until time t + X. given that it survives until time t. We denote the CDF. PDF, and 

the expected value of X as follows. 

F ( t  +  x \ t )  =  P ( Q < t  +  x \ Q > t ) .  

/(, + „,.) = i!0 
(IX 

/•oo 
E [ X )  =  /  . f / i /  • •  . / ' ; / )  d x .  

./() 

Because each checkpoint time t t  is the time that a failure is expected to occur, 

the re-computing time during each checkpoint interval (/,•_ i -t,)- 1 j{(,. is a random 

variable with values in the interval (0. tt  - f,;_i). According to the excess life definition, 

the expected re-computing time of each checkpoint interval VHr can be calculated as 

h'/ ' ' ' i + 1) dx 
^.1 = jr^rr-. ••--r-Trrr-

J0 Jv I-1 + •' t, i) dx 



29 

Therefore, for the expected k of the i th  checkpoint interval denoted 

by kj. we obtain 

k = (3.25) 
T, — 

Hence, the expected k denoted by k can be expressed as 

T. E;I, PH 

Ef=i Pi 
*• tl.v (3-26) 

where N is the number of checkpoints, and P t  = + x\t t^i), which is the 

probability that a failure occurs between the (/ — \)th and i tk  checkpoints. 

Now the optimal checkpoint frequency function for the hybrid checkpoint 

mechanism has been derived. Moreover, the re-computing time coefficient is de­

termined as an average. The only parameter in the checkpoint frequency function 

that has not been determined is the number of incremental checkpoints between two 

consecutive full checkpoints j i i. which plays an important role in determining the 

type of each checkpoint. First, in collaborative works [43. 44], the value of m has 

been determined based on the assumption that the failures follow an exponential 

distribution. However, evidently the exponential distributions are not the best fitted 

distribution for HPC failures [59]. Some HPC failure datasets are well fitted by a 

Weibull distribution or a gamma distribution. Therefore, the number of incremental 

checkpoints between two consecutive full checkpoints (rn) should be determined for 

arbitrary failure distributions. Moreover, it should be optimal in the sense that it 

will yield the least expected waste time. Thus, in the next section, we will show that 

then* is a unique value of m that minimizes the expected waste time for arbitrary 

failure distributions. 



30 

3.3 The Optimal Number of Incremental Checkpoints 
between Two Consecutive Pull Checkpoints in 

for Arbitrary Failure Distributions 

The hybrid checkpoint mechanism aims to reduce the checkpoint overhead 

from the full checkpoint mechanism. On the other hand, its recovery cost will 

increase proportionally to the number of subsequent incremental checkpoints because 

the system requires information from each and every incremental checkpoint since 

the last full checkpoint. Thus, the number of incremental checkpoints between two 

consecutive full checkpoints (rn) affects the minimum of the expected waste time. 

In this section, we focus on obtaining an rn value that gives the global minimum 

of the expected waste time. First, the strict convexity of the expected waste time 

(Eq. 3.27) as a function of in will be proved in Lemma 3.7. Next, the existence of the 

minimum point will be shown, and then the uniqueness holds because of the strict 

convexity, see Theorem 3.8. 

Lemma 3.7. The expected waste time as a function of m is strictly convex if m > 0. 

Proof. The expected waste time function is strictly convex if its second derivative 

with respect to rn is positive. To show that, first we substitute the optimal checkpoint 

frequency function (Eq. 3.12) into the expected waste time (Eq. 3.11) to obtain 

+  ( R y  +  m R , ) .  (3.27) 

We denote 



31 

Equation 3.27 becomes 

E [ \ V } ( t n )  =  y {0F + ™° l )k>jD + (Rh- + mR,). (3.29) 

where 0 < D < oc. 

The first and second derivatives of the expected waste time with respect to rn 

can be expressed as in Eqs. 3.30 and 3.31. 

& E m m )  _  ( O ,  -  O r ) D  I  k  ,  R i _  { : i M )  

d m  2  y  ( O f  +  m O i ) ( m  +  i y  

d 2 E \ W ] { m )  _  ( 0 F  -  ( ) , ) ( : ] ( ) F  +  O i  +  4 m O , ) D  I I 

9m'2 4 ]] (0F + mO[ f(rn + 1) 
I- (3-31) 

Because Of and O/ are the full and incremental checkpoint overheads, respec­

tively, Of — Oj > 0. If rn > 0. then 0 hQ^m'> > 0. Hence, the expected waste time 

is strictly convex. • 

Next, Theorem 3.8 shows that there is a unique value of rn > 0 that minimizes 

the expected waste time. 

Theorem 3.8. The expected waste time as a function of rn has a unique minimum 

point on [0, oc). 

Proof. We will make an argument with the first derivative of the expected waste? time 

with respect to rn. If > 0 for all rn <E [0. oc). we have that the minimum 

point is at 0. Assume that 0 is not the minimum point. Then < 0. 



32 

Because £ ,[lt'](/») is strictly convex, we suppose for a contradiction that 

Because the right-hand side of Eq. 3.32 is a constant, for large enough m(), 

the left-hand side will be larger than or equal to the right-hand side, which is a 

contradiction. Therefore, there is an m0 so that the expected waste time is decreasing 

on [0, mo) and increasing on (m(). oc). Hence, ino is the unique minimum point. • 

We can evaluate the minimum point by finding a point that, makes the first, 

derivative disappeared, i.e.. by solving the following equation. The roots of Eq. 3.33 

can be obtained by using the quartic formula. However, the closed form of the 

solutions will not be provided here because of the tediousness of the quartic formula. 

In this chapter, without any assumptions on failure distributions, the optimal 

checkpoint frequency function for the hybrid checkpoint, mechanism is derived. More-

oven*. the estimation of the re-computing time coefficient, which is a representation 

of re-computing time, is proposed. Then, it is proved that there exists a unique 

number of incremental checkpoints between two consecutive full checkpoints that 

minimizes the expected waste time. The derivations in this chapter are for arbitrary 

failure distributions. To give a concrete example of the optimal checkpoint frequency 

i(m* < 0. for all m > 0. According to Eq. 3.30. we get 

(3.32) 

(3.33) 



33 

function and checkpoint times, in the next chapter, we derive the checkpoint times 

for a Weibull distribution as it is well fitted to the failures on HPC systems. Finally, 

we show simulation results and compare the waste time of the hybrid checkpoint 

mechanism with the full checkpoint mechanism for various parameter values. 



CHAPTER 4 

A HYBRID CHECKPOINT SCHEDULING 
MODEL FOR WEIBULL 

DISTRIBUTIONS 

In this chapter, to illustrate a concrete example of the checkpoint scheduling 

model for the hybrid checkpoint mechanism, the checkpoint time function for the 

Weibull distribution will be derived because, evidently, failures in HPC environments 

follow a Weibull distribution [41, 59]. In addition, for the Weibull distribution, the 

shape parameter is greater than 1 if the failure rate increases over time, so the number 

of checkpoints performed in a given time period should be increasing. On the other 

hand, the shape parameter is less than 1 if the failure rate decreases over time. In this 

case, the checkpoint frequency should be decreasing. As such, in Section 4.1, we also 

prove that the; checkpoint intervals derived from the checkpoint time function for the 

Weibull distribution are inversely proportional to failure rates. Moreover, in Section 

4.2. the comparisons between the waste time of the hybrid checkpoint mechanism and 

the full checkpoint, mechanism are discussed. 

4.1 Near-optimal Checkpoint Times for 
Weibull Distributions 

To derive the checkpoint time function for the Weibull distribution, we first 

recall the PDF (Eq. 4.1) and CDF (Ecj. 4.2)of the Weibull distribution with shape 

34 



35 

parameter 3 and scale parameter a. respectively. 

(4.1) 

Fneih„u(t) = (4.2) 

By substituting the PDF and CDF of the Weibull distribution into Eq. 3.22, 

the optimal checkpoint frequency function for the Weibull distribution is obtained in 

Eq. 4.3. 

From the optimal checkpoint frequency function in Eq. 4.3, we obtain the 

optimal checkpoint times that minimize the expected waste time by using Proposition 

3.2 in Theorem 4.1. 

Theorem 4.1. Let t, be the i th  checkpoint time of a full or incremental checkpoint 

for i = 1,2 If the failures follow the Weibull distribution with shape parameter j3 

and scale parameter• a, then t,x can be expressed as Eq. 4-4-

(4.3) 

(4.4) 

0 ~ 1 

Proof. By Proposition 3.2 of the checkpoint frequency function n(t). 

1 



36 

Hence. 

(4.5) 

For i = 1,2,.... Eq. 4.4 is obtained by an induction procedure and using the fact that 

Next we will show that the length of the checkpoint intervals derived 

from Eq. 4.4 decreases if the system is aging (fi > 1). and that it increases if the 

s y s t e m  i s  b e c o m i n g  m o r e  r e l i a b l e  ( 3  <  1 ) .  

Theorem 4.2. Let I(i) be the width of the interval l(i) is decreasing if the 

shape parameter fi is greater than 1. and it is increasing if li is less than 1. 

Proof. According to Eq. 4.4. we obtain the following. 

to = 0 to prove the base case, where / - 1. • 

I { l )  = t . i -

i n i  T  

(/ n + 1) k /I 

Oy + m()j 
where A (4.7) 

The first derivative of /(/) can be expressed as follows. 

Hence. 



37 

We can see that if 3  >  1. I ' ( i )  < 0. and if 3  < 1. /'(/) > 0. Also, for 3  — 1, i.e.. 

failures follow the exponential distribution with rate the length of the checkpoint 

intervals is constant. • 

We note that the parameters k and m in Eq. 4.4 can be obtained from Eq. 

3.26 and Eq. 3.33. respectively. Because k and m are related, in practice, we have1 to 

calculate both values at the same time. Algorithm 4.1 is an algorithm based on the 

fixed point approach to estimate the values of k and m. 

Algorithm 4.1 Algorithm to calculate the re-computing time coefficient k and the 
number of incremental checkpoints rn 

Require: ()F. ()/. Rj. and Threshold 

Ensure: k and m 
1: k f- 0.5 
2: //Find in corresponding to k 
3: Calculate in by solving Eq. 3.33 
<1: //Finish finding in, corresponding to k 

5: Calculate the checkpoint time sequence £i, ^ £/v corresponding to k and hi 
by Eq. 4.4 

(i: Calculate k from Eqs. 3.24-3.26 
7: if |k — k\ < Threshold then 
8: k i— k 
9: Done 

10: else 
11: k' 4— k 
12: repeat line 3 
13: end if 



38 

4.2 Comparisons between the Hybrid and the Full 
Checkpoint Mechanisms for 

Weibull Distributions 

We have conducted experiments to compare the performances of the hybrid 

checkpoint and full checkpoint mechanisms on systems with Weibull distributed fail­

ures. However, the experiments in this section are not based on the failure information 

of actual HPC systems. We want to study the performance of the hybrid checkpoint 

model in different failure behaviors, so in the experiments we take various values 

of mean-time-to-failure (MTTF) and shape parameters of Weibull distributions. By 

varying values of the parameters in the models, we can study the models in various 

perspectives instead of narrowing t he study scope to particular systems. 

On a fully occupied system, the time duration from the system start to the 

present time is called "the system running time." In the experiments, we want to 

study that how much time the system spends to perform checkpoints, to recover 

applications, and to re-compute applications for a certain system running time. In 

the experiments, the shape parameters of Weibull distributions are 0.5, 1, and 1.5 

which represent decreasing, constant, and increasing failure rates, respectively. We 

take values of MTTFs to be 3 hours. 1. 3. 5. and 7 days. Also, we vary the values 

of the system running times to be 5 hours. 1. 3. and 7 days. In the experiments, 

the full checkpoint overheads are 5. It). 30. and 60 minutes, and the incremental 

checkpoint overheads are H)'/(. 30%. 50%. and 70% of the full checkpoint overheads. 

We assume that the recovery cost of a full checkpoint, is equal to the full checkpoint-

overhead. Similarly, the recovery cost of an incremental checkpoint is equal to the 



39 

incremental checkpoint overhead. Therefore, the recovery costs of a full checkpoint 

or an incremental checkpoint are varied with the checkpoint overhead. 

The equality between the full checkpoint overhead and the recovery cost of 

a full checkpoint is assumed because the recovery cost of a full checkpoint does 

not affect to the checkpoint frequency function, according to Eq. 3.22. The re­

covery cost contributes to the waste time exclusively when a failure occurs. Upon 

a failure, the system always load only one full checkpoint, excluding the following 

incremental checkpoints. Therefore, the recovery cost of a full checkpoint is a price 

to pay regardless of the checkpoint frequency. The assumption is also made for the 

incremental checkpoint because the recovery cost of an incremental checkpoint does 

not directly affect the checkpoint frequency function, similar to the recovery cost 

of a full checkpoint. However, the number of incremental checkpoints between two 

consecutive full checkpoints (m) is inversely proportional to the recovery cost of an 

incremental checkpoint. The larger the recovery cost of an incremental checkpoint 

is. the less incremental checkpoints should be scheduled between two consecutive full 

checkpoints. Otherwise, upon a failure, the system would spend a large amount of 

time to load a number of incremental checkpoints. The sensitivity of the number of 

incremental checkpoints between two consecutive full checkpoints (m) is discussed in 

Section 4.2.1. Moreover. Table 4.1 lists all parameter values used in the simulations. 

Therefore, there are 960 cases of dist inct combinat ions of parameter values. To 

have a normally distributed population, we have generated 50 sets of 200 TTFs for 

each pair of MTTF and shape parameter. Hence, in total, we have 48000 simulations 

for the hybrid checkpoint mechanism and 12000 simulations for the full checkpoint 



40 

mechanism. Note that the number of simulations for the full checkpoint model is less 

than that of the hybrid checkpoint model because there are 110 incremental checkpoints 

in the full checkpoint mechanism, i.e.. m = 0. For each simulation, we simulate the 

waste time that the system spends to perform checkpoints, to recover applications, 

and to re-compute applications. 

Table 4.1: Parameter values in simulations 

Parameter Values 

system running time 
MTTF 

Shape parameter ((3) 
Full checkpoint overhead ( O y )  

In c r e m e n t a l  c h e c k p o i n t  o v e r h e a d  ( O j )  

5 hours, 1, 3 and 7 days 
3 hours, 1, 3, 5 and 7 days 
0.5, 1 and 1.5 
5. 10, 30 and 60 minutes 
10%, 30%, 50% and 70% ;  of 0F 

4.2.1 Discussion on the Number of 
Incremental Checkpoints m 

This section focuses 011 the sensitivity study of the number of incremental 

checkpoints between two consecutive full checkpoints rn. Figure 4.1 illustrates the 

averages of the number of incremental checkpoints m when MTTF is 3 hours, and the 

failure rate is decreasing (left), constant (middle), and increasing (right). According to 

Figure 4.1. obviously the number of incremental checkpoints m is proportional to the 

values of the checkpoint overheads. When the incremental checkpoint overheads are 

50% or 70% of the full checkpoint overheads, the hybrid checkpoint model often does 

not schedule any incremental checkpoint, i.e. rn = 0. We can conclude that the hybrid 

checkpoint mechanism should be considered over the full checkpoint mechanism if the 

incremental checkpoint overhead is less than 50% of the full checkpoint overhead. 



41 

Number ot incremental checkpoints (m) 
ro( duration « 1440 sh = 0.5 MTTF = 180 ) 

2 co 
Incrc. checkpoint overhead 
• \QV, 
• 30% 

1110% (Onlv Full) 

Number of incremental checkpoints (m) 
. ( duration = 1440sh = 1 MTTF — 180 ) 

Incre. checkpoint overhead 

10 30 60 
Full checkpoint overhead (min) 

100% (Onlv Full) 

Number of incremental checkpoints (m) 
( duration = 1440 sh = 1.5 MTTF = 180 ) 

Incre. checkpoint overhead 
• 10% 

• 30% 
• 50% 
• 70% 
• 100% (Only Full) 

Full checkpoint overhead (min) 

so a 
Z 

10 30 60 
Full checkpoint overhead (min) 

Figure 4.1: Averages of number of incremental checkpoints between two consecutive 
full checkpoints (m) when MTTF is 3 hours, and the shape parameters 
are 0.5 (left). 1 (middle), and 1.5 (right) 

Moreover. Figure 4.2 illustrates the averages of the number of incremental 

checkpoints m when the MTTF is 1 day. which is longer than the MTTF in Figure 

4.1. According to Figure 4.2. the number of incremental checkpoints rri increases 

with the MTTF. MTTF is inversely proportional to the failure rate, so a large MTTF 

indicates that the chance of failure occurrences is small. This means that the chance 

that the system needs to load the checkpoints is small. Consequently, the number of 

incremental checkpoints in is larger because the total recovery cost is proportional to 

the value of m. In contrast, in should be small if the chance of failures is high. 

4.2.2 Discussion on Waste Time 

This section discusses the simulation results regarding the waste times. Figure 

4.3 illustrates the graphs of the percentages of waste time of both hybrid checkpoint 

and full checkpoint mechanisms for decreasing (left), constant (middle), and increas­

ing (right) failure rates when the system running time and the MTTF are 1 day. 



42 

Number of incremental checkpoints (m) 
- ( duration = 1440 sh = 0.5 MTTF = 1440 ) ! Q _ 
' • [Incre. checkpoint overhead 

• 10% 

• 30% 
• 50% 
• 70% 
• 100% (Only Full) 

5 10 30 60 
Full checkpoint overhead (min) 

Number of incremental checkpoints <m) 
- ( duration - 1440 sh = I MTTF = 1440 ) 

Incre. checkpoint overhead 

• 10% 

• 30% 

• 50% 
• 70% 

• 100% (Only Full) 

5 10 30 60 
Full checkpoint overhead (min) 

Number of incremental checkpoints (in) 
- ( duration = 1440 sh = 1.5 MTTF = 1440) 

Incre. checkpoint overhead 

• 10% 

•5 ^ • I m • 30% 
• 50% 
• 70% 
• 100% (Only Full) 

5 10 30 60 
Full checkpoint overhead (min) 

Figure 4.2: Averages of the number of incremental checkpoints between two consecu­
tive full checkpoints (m) when MTTF is 1 clay, and the shape parameters 
are 0.5 (left). 1 (middle), and 1.5 (right) 

Percentages of waste time 
( duration = 1440 sh = 0.5 MTTF = 1440 ) 

Percentages of waste time 
( duration = 1440 sh =1 MTTF =1440) 

Incre, checkpoint overhead 

100% (Only Full) 

Incre. checkpoint overhead 

Percentages of waste time 
( duration = 1440 sh = 1.5 MTTF = 1440) 
o 

[Incre. checkpoint overhead 

• 100% (Only Full) 

Full checkpoint overhead (min) Full checkpoint overhead (min) Full checkpoint overhead (min) 

Figure 4.3: Percentages of the waste time when the system running time is 1 day. 
MTTF is 1 day. and the shape parameters are 0.5 (left). 1 (middle), and 
1.5 (right) 

According to Figures 4.3. the waste times of the hybrid checkpoint mechanism 

are mostly smaller than or equal to those of the full checkpoint mechanism for all 

full and incremental checkpoint overheads. Specifically, if the incremental checkpoint 

overhead is 70{X of the full checkpoint overhead of 1 hour, the hybrid checkpoint 

model does not schedule any incremental checkpoints, showed in Figure 4.2. except 

for the increasing failure rate. Consequently, the waste times of the hybrid checkpoint 



43 

mechanism when the incremental checkpoint overhead is 70(Z of the full checkpoint 

overhead is equal to that of the full checkpoint mechanism. 

d = 1440, MTTF = 1 x d and A = 47 

Shape parameters 

Figure 4.4: Conditional probability of a failure occurrence before time a 4- A. given 
that the system survives until time a. where A is the checkpoint interval 
when the MTTF is 1 day. the shape parameter is 1. the full checkpoint 
overhead Op is 5 minutes, and the incremental checkpoint overhead ()[ 

is 10% of Of 

Furthermore, the percentage of waste time is highest when the failure rate is 

decreasing and it is lowest when the failure rate is increasing. This is because, for a 

decreasing failure rate, the probability of a failure occurrence in the beginning of the 

execution is very high, comparing to the constant and increasing failure rates with 

the same MTTF. shown in Figure 4.4. Therefore, the re-computing time is the major 

cause of the large amount of waste times in the decreasing failure rate cases. The more 

details for the re-computing time will be discussed in Section 4.2.3. Moreover, the 



44 

waste times are closed to each other among the three values of the shape parameter 

when observing the waste time of a long system running time, shown in Figure 4.5. 

Percentages of waste time Percentages of waste time Percentages of waste time 
( duration = 10080 sh = 0.5 MTTF = 1440 ) ( duration = 10080 sh = 1 MTTF = 1440 ) ( duration = 10080 sh = 1.5 MTTF = 1440 ) 

in 

Incre. checkpoint overhead Incre. checkpoint overhead Incre. checkpoint overhead 
• 10*/. • 10% • 10% 
• 30% • 30% • J0% 
• 50*/. • 50% • 50% 
• 70% 

J 
• 70% • an • 70% 

• 100% (Only Full) • 100% (Only Full) • 100% (Only Full) 

5 10 30 60 
Full checkpoint overhead (mini 

5 10 30 60 
Full checkpoint overhead (min) 

5 10 30 60 
Full checkpoint overhead (min) 

Figure 4.5: Percentages of the waste time when the system running time is 7 days. 
MTTF is 1 day. and the shape parameters are 0.5 (left). 1 (middle), and 
1.5 (right) 

Considering a long system running time, Figure 4.5 illustrates the graphs of 

the percentages of the waste time of both hybrid checkpoint, and full checkpoint-

mechanisms for system running time of 7 days. The percentages of waste times in 

Figure 4.5 are very close for different failure rates because the hybrid checkpoint model 

aims to globally optimize the waste time. Hence, the longer the system running time 

is. the smaller the differences of waste time among failure rates are. Next, we will 

discuss the checkpoint overhead, the recovery cost, and the re-computing time that 

are aggregated into the waste time. 

4.2.3 Discussion on Re-computing Time, 
Checkpoint Overhead, 
and Recovery Cost 

In this section, the behavior of the re-computing time, the total checkpoint 

overhead, and the recovery cost when the system running time and the MTTF are 



45 

1 day will he discussed. Figure 4.6 illustrates the graphs of the percentages of the 

re-computing time of both hybrid checkpoint and full checkpoint mechanisms for 

decreasing (left), constant (middle), and increasing (right) failure rates. Similar to 

the waste time, the re-computing time is small if the checkpoint overhead is small. 

This is because, according to Figure 4.7. more checkpoints whether full or incremental 

checkpoints are performed if the checkpoint overhead is small, comparing to the 

number of checkpoints when the checkpoint overhead is large. 

Percentages of re-computing time 
( duration - 1440 sh = 0.5 MTTF = 1440) 

Percentages of re-computing time 
< duration = 1440 sh = 1 MTTF = 1440 ) 

Percentages of re-computing time 
( duration = 1440 sh = 1.5 MTTF =1440) 

incre. checkpoint overhead Incre. checkpoint overhead 41 Incre. checkpoint uverhead 
• 10% • 10% • 10% 
• 30% • 30% • 01 • 30% 
• 50% • 50% • 50% 

• 70% 
• 100% (Only Full) 

Hi 

• s 

• 70% 
• 100% (Only Full) 

_J i - • 

• 70% 
• 100% (Only Full) 

V -

5 10 30 60 
Full checkpoint overhead (niin) 

5 10 30 60 
Full checkpoint overhead (min) 

5 10 30 60 
Full checkpoint overhead (min) 

Figure 4.6: Percentages of the re-computing time when the system running time is 1 

day. MTTF is 1 day. and the shape parameters are 0.5 (left). 1 (middle), 
and 1.5 (right) 

Figure 4.8 illustrates the graphs of the percentages of the total checkpoint 

overheads of both hybrid checkpoint and full checkpoint mechanisms for decreasing 

(left), constant (middle), and increasing (right) failure rates. Obviously, the total 

checkpoint overhead is large if each checkpoint overhead is large. However, there are 

some cases that the total overheads of small incremental checkpoint overheads are 

larger than those of larger incremental checkpoint overhead, such as the cases of the 

increasing failure rate (right) and the full checkpoint overhead of 60 minutes. This is 



46 

because more checkpoints are performed within the same duration if the overhead is 

relatively small, resulting in a possibility that the total overhead of the relatively small 

incremental overhead is larger than that of the relatively large incremental overhead. 

Number of checkpoints 
( duration » 1440 sh = 0.5 MTTF = 1440 ) 

Number of checkpoints 
( duration = 1440 sh = 1 MTTF = 1440 ) 

Number of checkpoints 
( duration = 1440 sh - 1.5 MTTF = 1440 ) 

a n -

Incre. checkpoint overhead 
1 

Inert, checkpoint overhead 
ri " I Incre. checkpoint overhead 

• 30% • 30% • 30% 

• 50% 
• 70% 

• 100% (Only Full) 

W) Ft " 1 

L 1 

• 50% 
• 70% 

• 100% (Only Full) 

Is 1 1 1 GU • • 
.  HH 1 

• 50% 

• 70% 
• 10(1% (Only Full) 

I Incre. checkpoint overhead! I Inert, checkpoint overhead 
I * 10% In I • 10% 
• • 30% I • 30% 

I * 50% o.l • 50% 
I _ • 70% |r' I a • 70% 
L i s  1 0 0 %  ( O n l y  F u l l )  ©  ,  I  •  1 0 0 %  ( O n l y  F u l l )  

nkJ iLll. 
5 10 30 60 5 10 30 60 

Full checkpoint overhead (min) Full checkpoint overhead (min) 
5 10 30 60 

Full checkpoint overhead (min) 

Figure 4.7: Averages of the number of checkpoints when the system running time is 1 
day. MTTF is 1 day. and the shape parameters are 0.5 (left). 1 (middle), 
and 1.5 (right) 

Percentages of total checkpoint overhead 
( duration = 1440 sh = 0.5 MTTF = 1440 ) 

Incre. checkpoint 

UOV. 

5 10 30 60 
Full checkpoint overhead (min) 

Percentages of total checkpoint overhead 
( duration = 1440 sh = 0.5 MTTF = 1440 ) 

Incre. checkpoint overhead 

1110% (Only Full) 

5 10 30 60 
Full checkpoint overhead (min) 

Percentages of total checkpoint overhead 
( duration - 1440 sh = 1.5 MTTF = 1440 ) 

^ Incre. checkpoint a 

5 10 30 60 
Full checkpoint overhead (min) 

Figure 4.! ]: Percentages of the checkpoint overheads when the system running time is 
1 day. MTTF is 1 day. and the shape parameters are 0.5 (left). 1 (middle), 

and 1.5 (right) 

Figure 4.9 illustrates the graphs of the percentages of the recovery cost of 

both hybrid checkpoint and full checkpoint mechanisms for decreasing (left), constant 



47 

(middle), and increasing (right) failure rates. According to all graphs in Figure 4.9. 

the recovery costs of the hybrid checkpoint mechanism are slightly larger than those 

of the full checkpoint mechanism because, upon a failure occurrence, the system must 

load all incremental checkpoints that follow the last full checkpoint. 

Percentages of recovery cost 
( duration = 1440 sh = 0.5 MTTF = 1440 ) 

Incrc. checkpoint overhead 

lttO%(Onlv Full) 

Full checkpoint overhead (min) 

Percentages of recovery cost 
( duration - 1440 sh = I MTTF = 1440 ) 

Full checkpoint overhead (min) 

Percentages of recovery cost 
( duration = 1440 sh = 1.5 MTTF =1440) 

Incrc. checkpuint uverhrid 

100% (Onlv Full) 

Incrc. checkpoint overhead 

100% (Only Full) 

F ull checkpoint overhead (min) 

Figure 4.9: Percentages of the recovery cost when the system running time is 1 day. 
MTTF is 1 day. and the shape parameters are 0.5 (left), 1 (middle), and 
1.5 (right) 

We conclude that the hybrid checkpoint mechanism does not always give1 less 

waste time than the full checkpoint mechanism. However, if the incremental check­

point overhead is less than 50% of the full checkpoint overhead, the hybrid checkpoint 

mechanism is preferable. Also, the recovery cost of the hybrid checkpoint mechanism 

is larger than that of the full checkpoint mechanism, but both the re-computing time 

and the total checkpoint overhead of the hybrid checkpoint mechanism are likely to 

smaller than those of the full checkpoint mechanism, resulting in smaller waste time. 



CHAPTER 5 

A DECISION-MAKING MODEL FOR 
REACTIVE AND PROACTIVE 

FT MECHANISMS 

In this chapter, instead of focusing on only the checkpoint/restart mechanism, 

the combination of reactive and proactive FT mechanisms will be considered. Deploy­

ing the checkpoint/restart mechanism introduces additional overhead to the execution 

time. Especially in a high failure rate environment, the checkpoint mechanism needs 

to be invoked more frequently to cope with the failure occurrences. Therefore, proac­

tive FT mechanisms should be considered to prevent the application from failure. 

Moreover, we expect that deploying a proactive FT mechanism together with the 

checkpoint/restart mechanism will reduce the total waste time. 

Therefore, in this chapter, we will derive a novel decision-making model that 

determines the best choice among all considered FT mechanisms at each decision 

point to obtain the least application execution time. The "application execution 

time" is the duration of time from the start of the execution until the end. at which 

we obtain the results of the application. The "application completion time" is the 

duration of time that the system spends to compute the application in a failure-

free environment. Also, the "waste time" is the duration of time that the system 

spends to perform FT mechanisms, to recover the application, and to re-compute the 

48 



49 

application upon a failure occurrence. Therefore, the execution time is the sum of the 

completion time and the waste time. Furthermore, we study the benefits of deploying 

both reactive and proactive FT mechanisms in running applications based 011 the 

proposed decision-making model. To provide a concrete decision-making model, we 

choose the checkpoint/restart mechanisms and rejuvenation as examples of reactive 

and proactive FT mechanisms, respectively. Specifically, two checkpoint, techniques 

are considered in this work, namely full checkpoints and incremental checkpoints. 

5.1 An Adaptive Decision-making Model 

For each application and a given constant interval length, the proposed decision­

making model determines the best strategy to perform an FT mechanism at the end 

of each interval. Each interval of constant length is called a "decision interval." and 

the end of each decision interval is called a "decision point." For a decision interval of 

size A. we chunk the application completion time into N intervals of size A. except 

that the last interval can be shorter than A. In addition, we call these N decision 

intervals "'an iV-stage process" in Figure 5.1 a). 

Figure 5.1 a) illustrates the scenario that there is 110 failure occurrence, and 110 

FT mechanism is performed during the application execution. Therefore, the applica­

tion completion time and the application execution time are equal. Next. Figure 5.1 b) 

illustrates the scenario that an FT mechanism is performed at each decision point, but 

there is 110 failure occurrence. In this scenario, the execution time is the accumulation 

of the completion time and the total overhead of FT mechanisms. Lastly. Figure; 5.1 

e) illustrates the scenario that an FT mechanism is performed at each decision point 



•50 

and a failure occurs during the application execution. Consequently, the execution 

time of this scenario is the aggregation of the completion time and the total waste 

time, consisting of the total FT mechanism overhead, the recovery cost, and the 

re-computing time. "The recovery cost" is the time duration in which the system 

recovers the application, and "the re-computing time" is the time duration in which 

the system re-computes the lost work due to failure occurrences. 

!*'• decision point 

h 

a) \ 
a0 

k th  derision point 
_ execution time 

completion time (<7) 

H h 
A A 

Oi 

decision interval 
v— 
AT 

Of Oa o, 
b) !• n n n TO n n fl n 

c) 

A A A A 
a = 0 

execution time 

Q incremental checkpoint Q full checkpoint \ J  software rejuvenation 

Op Or 

I—R—(1—W—P 

fai 
O, 

A A 

ure 

i—B—0—(1—i 
A A 

R ,  +  R ,  

execution time 

Figure 5.1: Three scenarios of the decision-making model of an N -  stage process with 
the decision interval of length A: a) there is no failure occurrence, and 
no FT mechanism is performed during the application execution: b) an 

FT mechanism is performed at each decision point, but there is no failure 
occurrence: and c) an FT mechanism is performed at each decision point 
and a failure occurs during the application execution 



51 

At the k th  decision point, the model compares the expected waste time (from 

the kth decision point until the completion of the application) of each considered FT 

mechanism. Then, it chooses the FT mechanism that gives the lea.st expected waste 

time. Therefore, the FT mechanisms can he different at each decision point. In 

general, at each decision point, there are three possible cases. First, there is a failure 

before the FT mechanism completes, so a portion of the computed work is lost. Thus, 

the system needs to recover the application and then resumes the execution. Second, 

the FT mechanism completes, but a failure occurs before the next decision point. 

This case is similar to the first, case, but the amount of the lost work may be different, 

and the system has spent an amount of time to perform the FT mechanism before the 

failure occurrence. Third, the FT mechanism completes, and no failures occur before 

the next decision point. The last case differs from the second case in that there is no 

lost work and so no recovery cost. 

Given that there is no failure before the k th  decision point, PpT is the prob­

ability that a failure occurs before the FT mechanism completes. Similarly, Pk is 

the probability that a failure occurs before the (k + l)tU decision point, given that 

the FT mechanism at the klh decision point is complete. Therefore, for each FT 

mechanism, the expected waste time from the klh decision point on of an N—stage 

process (E\V[FT}^') can be expressed in Eq. 5.1. 

E W i F T ] ?  =  I * n  recovery cost + re-computing time + EI I [FT ,V - k t 1 

+ (1 - 1 % )  overhead of FT + (1 - A.)Eir[/-T]£+1 

+ Pk (recovery cost. + re-computing time1 + EW[FT}^ A ) (5.1) 



52 

The expected waste time of each FT mechanism varies based on its nature. 

For example, the recovery cost of the incremental checkpoint mechanism is the time 

duration in which the system loads all incremental checkpoints. In contrast, the 

recovery cost of the full checkpoint, mechanism is the time duration in which the 

system loads only the last full checkpoint. The least expected waste time and the 

best action at the klh decision point are formally defined in Definition 5.1. 

Definition 5.1. Let f£' be the least expected waste time of an N-stage process from 

the decision point, k on. where k = 1,2,3.... . The function is expressed in Eq. 

5.2. The best choice at the k th  decision point is the FT mechanism that gives the least 

expected waste time, expressed in Eq. 5.3, where argmin{/(x)} are values of x for 
X 

which f(x) attains the smallest value. 

flw := min{£:V^v[FT]\ FT is an FT mechanism). (5.2) 

The best choice := argmin{EW* [FT]}. (5-3) 
FT 

To show an example of a concrete decision-making model, we derive the 

decision-making model for checkpoint/restart mechanisms and rejuvenation as exam­

ples of reactive and proactive FT mechanisms, respectively. We discuss the scheme 

and give the analytical decision-making model in Section 5.2. 

5.2 A Decision-making Model for Full Checkpoints, 
Incremental Checkpoints, and Rejuvenation 

At each decision point, the model selects an FT mechanism (full checkpoint. 

incremental checkpoint, or rejuvenation) that results in the least expected waste1 time 



53 

of the application, given its completion time. Upon a failure occurrence, the appli­

cation is recovered from the last checkpoint. If the last checkpoint is an incremental 

checkpoint (Figure 5.1 c)). the last full checkpoint and all incremental checkpoints 

following it are loaded. Then, the system re-computes the lost work and continues to 

compute the rest of the work. If a failure occurs during the re-computing period, the 

same process is performed. 

During an application execution, one full checkpoint should be performed right 

before each rejuvenation to protect the computed work. Otherwise, the computed 

work will be lost and unrecoverable. Henceforth, the rejuvenation action refers to a full 

checkpoint, followed by a rejuvenation. After a failure occurrence or a rejuvenation, 

we assume that the software has a fresh state. To derive the decision-making model, 

we assume the following conditions. Moreover, all notations in the model are listed 

in Table 5.1. 

1. The overhead of each FT mechanism is constant throughout the application ex-

ecution. In practice, we expect that the full checkpoint overhead insignificantly 

changes for a particular application. This expectation might not be true for the 

incremental checkpoint overhead, but the average of the incremental checkpoint 

overhead could be used in the model. Lastly, the time taken to rejuvenate the 

software state depends on the system architecture and the number of nodes that 

the application is running on. so the assumption well represents the practical 

rejuvenation overhead. 

2. The recovery time of each full and incremental checkpoint is also constant. 

3. The system is able to recover the application from the last complete checkpoint. 



54 

4. A failure might occur during performing an FT mechanism. However, if it occurs 

during a rejuvenation, we ignore the additional overhead in the model because 

the system can recover the application from the full checkpoint completed before 

the failed rejuvenation. 

Table 5.1: Notations in the decision-making model 

Notation Descriptions 

oF Overhead of a full checkpoint 
0, Overhead of an incremental checkpoint 
0R Overhead of a rejuvenation 
lif.- Recovery cost of a full checkpoint 

R, Recovery cost of an incremental checkpoint 
d Application completion time in failure-free environment 
A Length of a decision interval 

rn F Number of full checkpoints loaded upon a failure 

ii ii Number of incremental checkpoints loaded upon a failure 
(lQ Age of the software state at the beginning of the execution 
(I Age of the software state 

PyT The probability that the FT mechanism ( F T )  fails at the 
decision point, given that the system survives until 
the kJh decision point 

k th  

Pk The probability of a failure occurrence during the k lh  decision 
interval, given that the system survives and completes the FT 
mechanism at the k th  decision point 

The expected total waste time is the expected waste time at decision point 

0. At the starting point of the execution, no FT mechanism will be performed, so 

we denote the expected total waste time of an A'-stage process by EW*. In an 

N—stage process, the expected total waste1 time is the expected waste time from the 

decision point 0 on. denoted by EW ^ (0.0. do). The first parameter is the number 

of full checkpoints that has to be loaded upon a failure occurrence (my): the second 

parameter is the number of incremental checkpoints that has to lie loaded upon a 



55 

failure occurrence ( m i ) :  and the third parameter is the age of the software state 

at the decision point 0 (a0). Because there is no FT mechanism performed at the 

decision point 0, we have that my = mi = 0 at that point. 

Moreover, there are two possible cases at the beginning of the execution 

(decision point 0). First, a failure occurs before the 1st decision point, so the work 

that is computed from the beginning is lost, and the system needs to re-compute the 

work from scratch. Second, there is no failure before the l decision point. Hence, the 

expected total waste time of an Ar—stage process (EWN (0. 0. a0)) can be expressed 

in Eq. 5.4, where P0 is the probability that a failure occurs before the rsi decision 

point, given that the system software survives until time a0. and EW* (0,0. Oo + A) 

is the expected waste time from the l*' decision point on. Note that 0 = (0.0,0). 

E\Vn(0,0, «o) = P0(A + EWn ( 0 ) )  + (1 - Pn)PHf'(0. 0. «„ + A). (5.4) 

We denote the expected waste times from the k th  decision point on of the full 

checkpoints, the incremental checkpoints, and the rejuvenation by 

EW[full]£(my, rrii. «), ElV[incre}^ (my. vi/. «), and EW[rej]£ (my. m/, a), respec­

tively. Specifically, the expected waste time is the expected waste time from the 

kth decision point in an Ar-stage process until the application completes. Assuming 

that at least one full checkpoint or a rejuvenation has been performed before the 

kth decision point, upon a failure occurrence, only the last full checkpoint needs to 

be loaded to recover the application, then my = 1. In contrast, if there is no full 

checkpoint or no rejuvenation performed before the kJh decision point, my = 0. m,/ is 

equal to the number of the incremental checkpoints following the last full checkpoint. 



•56 

Moreover, after a rejuvenation, the age of the software state is reset to 0 because 

rejuvenating leads to a fresh software state. 

According to the assumptions and Eq. 5.1. at the k th  decision point, we can 

express the expected waste times of the full checkpoint (E\V[f ull]% ). the incremental 

checkpoint (EW[incre]% ), and the rejuvenation (E\V\rej}£ ) as Eqs. 5.5. 5.6. and 5.7. 

respectively. Aflditionally, we estimate the re-computing time by the length of the 

decision interval A, so the expected waste time of each FT mechanism is an upper 

bound for the actual waste time. 

E W [ f u l l } " ( r n F ,  m j ,  a )  = P k
u l l ( a )  m,FRF + nijRi + A -f EW r N - k  fl (0) 

+ (1 -PfiM) O f  + P k ( a )  ( R f  + A + EW N ~ k (0)) 

+  (1 -  P k { a ) )  E W [ F T \ " {  1,0, a  +  0 F  +  A) (5.5) 

E\ \ "n i c r< \ }  ( r n F .  m , ,  a )  = P k
n c r e ( a )  rnFRF + m,R, + A + EWN~k+l{ 0) 

+ (1 — Pincrc(a)) o, 

+  P k { a ) ( r n F R F  +  ( m ,  +  1)/?/ + A 4- E \ V X  * « ) ) )  

+ (1 - Pk(a)) EW[FT}^(mF.m, + !.« + (), + A) 

(5.6) 

P W l r < ' j } k  
f " ' / • • •  " ' / • " )  =Pr<:M) m F R F  +  m , R ,  + A + E\Y*~k+l(0) 

+ (1-00) ( ) F  + 0 , {  + P k { 0)  (Rf f  A - f  E\V X  k (0 ) )  

+  ( 1  —  P k ( ^ ) ) E ]V { F T }* + ] ( lA). A) (5.' 



57 

Moreover. E\V^ A + 1(0) is the expected total waste time of the remaining work 

if a failure occurs before the checkpoint completes: EW*~h(0) is the expected waste 

time of the remaining work if a failure occurs before the (k + l)'h decision point: and 

EW[FT]*+ j is the expected waste time in the future, i.e.. the expected waste time 

from the (k + 1)"' decision point- on. Furthermore, the expected waste time at the 

Nl>> decision point is equal to zero because the application has completed. To obtain 

the optimal policy, we minimize EWS (0. (J. a0) by means of dynamic programming. 

For an N —  stage process, the idea is as follows. At the ( N  —  l ) t h  decision point, 

suppose that all decisions before the (N — l)th decision point are known. Then the 

expected waste time of each FT mechanism (EW[FT]1^_l) can be calculated because 

the expected waste time at the NUl decision point is equal to zero. Thus, the optimal 

expected waste time at the (N - \)lfl decision point is the least expected waste time 

among the full checkpoint, the incremental checkpoint, and the rejuvenation. Next, 

for each FT mechanism, the expected waste time at the (N - 2)th decision point is 

calculated by using the optimal expected waste time at the (N — l)th decision point. 

Again, the optimal expected waste time at (N — 2)"1 decision point is the smallest 

expected waste time among considered FT mechanisms. We repeat this process until 

the optimal expected waste time at the Is' decision point is obtained. Therefore, the 

optimal expected total waste time can be calculated by using the optimal expected 

waste t ime at the I s' decision point. The global minimum of the expected total waste 

time is formulated based on the multistage stochastic programming approach [61] as 

in Formulation 5.2. 



58 

Formulation 5.2. Let /A(0.0. a0) be the optimal expected total waste time of an 

N-stage process that starts with the software state of age a0. It can be expressed in 

Eq. 5.8. where / jV (0 ,0 .  a0) is the optimal expected waste time at the 1 s t  decision point. 

T h e  f i r s t  t w o  z e r o s  a s  t h e  p a r a m e t e r s  o f  f *  a n d  f  j v  a r e  t h e  v a l u e s  o f  m y  a n d  n i j .  

P o ( « o ) ( A  +  / - ' v ( ( ) . 0 . 0 ) )  

+ (l — Po(ao))/^ (0,0. fto + A)' ao > 0 • (5-8) 

+ /^(O, 0. A). ao = 0 

/ (0, 0, ao) = < 

^o(0)A , fN 

l--Po(O) 

In E(j. 5.8, the first relation can he obtained by substituting E W [ F T ] ^  in 

Eq. 5.4 by , and the second relation can be obtained by solving the recursive 

equation for fN{0). At the kth decision point, for k = 1, 2,3..... N — 1. the optimal 

expected waste time f^ is the minimum among the expected waste times of the 

checkpoints, incremental checkpoints, and rejuvenation. By means of multistage 

stochastic programming, we formulate the optimal expected waste time from the 

kth decision point on in Formulation 5.3. 

Formulation 5.3. Let f^' (my.mi.a) be the optimal expected waste time of an N-

stage process from the decision point k on. assuming that the software age is a; 

and my full checkpoints and m/ incremental checkpoints must be loaded upon a 

failure occurrence. It can be expressed in Eq. 5.9. where / jv(0) = / j x  (0 .0 .0)  and 

k £ {1.2.3.--- . .V}. F. I. and R are notations for the choices of full checkpoint, 

incremental checkpoint,, and, rejuvenation, respectively. 



59 

f k  i m F -  m i - .  a )  = niin < 

F  •  P f u u ( Q )  [ r n F R F  +  m , R f  + A 4- / v^'+1 (0) 

+ ( l - P £ / „ ( a ) ) ( o F  

+Pt(a) (Rf + A + f *'(0)) 

+ (1 — Pk{o>))fk+i(l, 0. a + 0F + A) 

I : ^ncre(a)(mFRF + m,R, + A + /"-*+'(0) 

+ (l-P?n c T e(a)){0, 

+ - f f e ( o )  ( m F R F  +  ( r r i f  +  1  ) R j  + A + /A ^(0)) 

+(1 - Pk{a))fk+i(mF,m, + 1, a + 0/ + A)^J 

/ ?  :  P r % ( a )  ( m F R F  +  r r i j R ,  +  A  +  f N ~ k + l ( 0 ) j  

+ (1 — Prej(a)) + OR 

+Pk(0) (i?F + A + /A'-fc(0)) 

+(l-Pfc(0))/^+1(l,0,A) 

(5.9) 

subject to mF G {0.1}, 0 < rrij < k — 1. 0 < a < Uq + A:A + (A: — 1 )0/.- and 

f £ { m F . r n , . a )  =  0 .  

The function /^v is obtained by substituting EW* ~k+l  by /*-*+'. 

by /Aand E\V[FT]*+l by fj?+l in Eqs. 5.5-5.7. If «0 = 0. Eq. 5.9 becomes a 

recursive function of/A (0) when A' = 1. By an algebraic manipulation. /A (0. 0. A) 

can be expressed as Eq. 5.10. mF and rrij are 0 because no checkpoints are performed 

before1  the first decision point. 



60 

F 
A 

1  - P f l l t ( A ) J  \  l - P o ( 0 ) .  

+ ((),-+ Pl(A) (/?/.• + A f /'v_1 (0)) 

+ (l-P1(A))/*(1.0,a + 0,- + A)) 

^L,(A) \ / A 

/1 (0. 0. A) = miri < 

R : 

1 -PZrrrMj V 1 " W) . 

+ (O/+P1(A)(/?;+A + /A'-,(0)) 

+ (l-JP1(A))/*'(0,l,a + 0, + A)} 

P£(A) \ ( A 

(5.10) 

l - P ? c j ( A ) J  \ 1 - P o ( 0 ) ,  

+ {oF + oR + p,(o) (af + a + /f-1!0)) 

+ (l~P1(0))/f(U),A)) 

To obtain the optimal decision interval, we iteratively determine the least 

expected waste times for various decision intervals by using the decision-making model. 

Therefore, the optimal decision interval is the interval that results in the least expected 

waste time among all possible decision intervals, lb study the sensitivity of the model 

for checkpoints and rejuvenation, we have run simulations with various parameter 

values. In the next section, we discuss the parameter values used in the simulations. 

5.3 Simulations 

The objective of the simulations is to study the sensitivity of the proposed 

model and the conditions when tlie applications do not require any FT mechanisms. 

The main factors of the decision-making process are the application completion time, 

the chance of failure occurrences, and the FT overhead. We range the completion 

times {<!) from three hours to eight days to represent various applications. 



61 

Schroeder and Gibson [59] have reported that the best fitted failure distri­

bution is a Weibull distribution. Thus, in the siiimlations. we use the Weibull 

distribution with various shape (ft) and seale (a) parameters. The values 0.5. 1. and 

1.5 for the shape parameters represent a decreasing, constant, or increasing failure 

rate over time. Instead of varying the scale parameters directly, we vary mean-time-to-

failure (MTTF) and then calculate the scale parameters. Moreover, we range MTTF 

from a quarter of the completion time to as large as eight times the completion time. 

All parameters and values used in the simulations are listed in Table 5.2. 

Table 5.2: Parameter values in simulations 

Parameter Values 
Completion time ( d )  

M T T F  
Shape parameter (ft) 

Increm e n t a l  c h e c k p o i n t  o v e r h e a d  ( O f )  
F u l l  c h e c k p o i n t  o v e r h e a d  ( O f )  

R e j u v e n a t i o n  o v e r h e a d  ( O n )  

3 hours. 12 hours, 2 days. 8 days 
0.25. 0.5, 1, 2. 4, 8 x d 

0.5. 1. 1.5 
0.5%. 1%. 2%. 5% of d 

1. 2. 3 x O f  
5, 10. 30. 60 minutes 

We vary the values of the incremental checkpoint overhead according to per­

centages of the completion time. Also, the full checkpoint overheads in the simulations 

are multiples of the incremental checkpoint overheads. In practice, the checkpoint 

overhead is not proportional to the? application completion time. However, we suspect 

that, if the checkpoint overhead is big enough relative1 to the completion time, it is 

not worth to perform the checkpoint mechanisms. In addition, we assume that the 

recovery costs of both full and incremental checkpoints are equal to the overhead of 

full and incremental checkpoints, respectively, i.e.. /?/. = Of and /?/ = Of. In contrast 



62 

to the checkpoint overheads, we vary the rejuvenation overhead independently from 

the other parameters because, according to the proposed scheme, a full checkpoint is 

always performed right before each rejuvenation. Thus, when the model selects the 

rejuvenation choice, the total overhead is a proportion of the completion time already. 

Since we cannot determine the best decision interval directly from the decision­

making model, in the simulations, we iteratively give different decision intervals to the 

decision-making model and determine the best policy for each decision interval. For 

each combination of the parameters, we vary the decision interval lengths as quot ients 

of the application completion time (d), ranged from 1/10 to 1. If the decision interval 

is equal to the completion time, no FT mechanism is performed. This case is the 

control case that suggests whether the FT mechanisms are beneficial or not. The 

simulation results are shown and discussed in detail in Section 5.4. 

5.4 Simulation Results 

According to Table 5.2, there are 3456 simulations with different combinations 

of parameter values. As mentioned, each simulation is run with 10 different decision 

interval lengths, and we look for the best decision interval which gives the least 

expected waste time. We categorize all simulations into 3 groups by the decision 

interval that results in the smallest expected waste time. 

The first group consists of the simulations for which the best decision interval 

(A*) is equal to the completion time (A* = d). We can infer the conditions when 

the applications do not require any of the FT mechanisms from the simulations in 

this group. The second group consists of the simulations for which the best decision 



63 

interval A* is in between the completion time and one-tenth of the completion time 

(yj, < A" < d). Lastly, the third group consists of the simulations for which the best 

decision interval is less than or equal to one-tenth or 10% of the completion time 

(A* < 75) - Example graphs of each group are illustrated in Figure 5.2. In the graphs, 

the expected waste times are plotted against the ten decision intervals. 

d = I 

a 
d ^ 180 min, MTTF - 1440 min, and shape -

Or 

u 

c. 
uj8 

180 180 54 72 90 108 144 

Decision Intervals (min) 
18 36 54 72 90 108 36 144 54 72 90 108 144 

Decision Intervals (min) 
180 

Figure 5.2: Example graphs of the expected total waste times when A* = d (Left), 
— < A * < d, (Middle), and A* < 10% of d (Right), where A* is the 
decision interval that gives the smallest expected total waste time and d 
is the application completion time 

5.4.1 The Best Policy 

Among the three FT mechanisms that we consider in this study, the incremen­

tal checkpoint has the smallest overhead, so we expect, that, the model will decide to 

perform an incremental checkpoint at most of the decision points. From the simulation 

results, then? are 16-13 cases out of 3456 cases or 48% of all simulations that the model 

exclusively selects incremental checkpoints as the best FT policy. Furthermore, we 

are interested in when a full checkpoint or a rejuvenation is preferable as the FT 

mechanism of choice. 



64 

Evidently, the model will not schedule any incremental checkpoints if its 

overhead is equal the full checkpoint because the total recovery overhead of the 

incremental checkpoints is higher than that of the full checkpoint. There are 514 

cases that a rejuvenation is scheduled, and. for those 514 cases, the failure rate is 

increasing. If the failure rate is decreasing or constant , rejuvenation will not protect 

the running applications from failure occurrences, also corresponding to the results in 

[23, 45]. This is because rejuvenation helps in refreshing the software state and. with 

increasing failure rate, we prefer to run applications in the early period of the system 

software. On the other hand, rejuvenation will aggravate the failure impact to running 

applications if the failure rate is decreasing. For constant failure rates, rejuvenation 

does not affect the chance of failure occurrences because of the memoryless property of 

exponential distribution. Therefore, rejuvenating the software state costs unnecessary 

waste time. 

5.4.2 Conditions when there is No Need 
for any FT Mechanisms 

We observe the conditions when the applications do not require any FT mech­

anisms from the simulations in the first group (A* = d). illustrated in Figure 5.2 

(Left). The equality of the best decision interval and the completion time infers 

that performing a single FT mechanism leads to a higher execution time than doing 

nothing. This does not mean that there is no failure during the application execution, 

but it means that re-computing the work costs less than performing an FT mechanism. 

We summarize all the simulations that have this property in Table 5.3. "All" in Table 

5.3 refers to all values for that particular parameter in Table 5.2. 



65 

Table 5.3: Cases that the best decision interval is equal to the completion time 
(A* = (I) (No need for anv FT mechanisms) 

d  3  M T T F / d  0 ,% of d  oF /o ,  ()R{ min) 

3 hours 1.5 8 2 and 5 All All 
12 hours 1.5 8 2 and 5 All All 
2 days 1.5 8 2 2 and 3 All 

1 30 and 60 
5 All All 

8 days 1.5 8 2 2 and 3 All 
1 60 

5 All All 

In terms of failure characteristics, the simulation results suggest that there 

is no need for any FT mechanism only when the MTTF is 8 times larger than the 

completion time. Intuitively we might not need to perform any FT mechanisms if 

the failure rate is decreasing over time (shape parameter less than 1), but the results 

in Table 5.3 show the opposite. The reason can be seen from the failure probability 

used in the model, which is the conditional probability given that, the system survives 

until time a (age of the software state at the klh decision point or at the completion 

of the FT mechanisms at the k"1 decision point). 

Figure 5.3 illustrates the conditional probabilities of the three cases of failure 

rates (increasing, constant and decreasing) when the application completion time is 

2 days, the MTTF is 10 days, and tlx1 decision interval is 2 days. The x-axis is the 

age (in minutes) of the software state from 0 to 4 clays. The graph is an example; 

of the conditional probability Pk. of cases that A* = d. From the graph, for the 

applications with completion time of 2 days, the chance of a failure occurrence during 

the execution is very high in the early period of the execution if the shape parameter 



66 

is 0.5 (a decreasing failure rate), resulting in the necessity of the FT mechanisms. 

Besides, the conditional probability is the least if the shape parameter of 1.5 (an 

increasing failure rate). Therefore, with the MTTF = 8d and A = d. the expected 

waste time is the least if the failure rate is increasing. 

d = 2880, MTTF = 8 x d and A = 2880 

Shape parameters 

0.5 oo 
d 

+ 

Q_ 
OJ 
o 

o 

1920 3200 4480 5760 0 640 

Age of the software state (min) 

Figure 5.3: Conditional Probability ( P ( Q  <  a  + A[ Q  > a ) )  of the Weibull 
distributions with the shape parameters (,i) of 0.5. 1. and 1.5. completion 
time (d) of 2 days, the decision interval (A) of 2 days, and MTTF of 16 
days. The x-axis is the age of the software state (a) in minutes, ranged 

from 0 to 4 days. 

In the overhead perspective, according to Table 5.3. if the incremental check­

point overhead is 5% of the completion time, there is no need for any FT mechanisms, 

regardless of the other parameters. In more details, for the cases of the 3- and 12-hour 

completion times, if the incremental checkpoint overhead is 2CZ of the completion 

time, it is not worth to perform any FT mechanisms. In contrast, for the cases 



67 

with the completion time of 2 and 8 days, if the full checkpoint overhead is 2% of 

the completion time as the incremental checkpoint overhead (()/• = ()[) and the 

rejuvenation overhead is less than 30 minutes (On < 30 inin.). it is still worth to 

perform some FT mechanisms. This is because the rejuvenation overhead is relatively 

small, compared to the completion time. Besides, a rejuvenation is a preferred choice 

to perform for the best decision interval for all such cases. 

In this section, we will discuss the cases in which the decision interval that 

gives the least expected total waste time is 10% of the completion time, illustrated 

in Figure 5.2 (Right). There are 1286 cases out of 3456 cases or around 37% of all 

simulations in which the decision interval that gives the smallest expected total waste 

time is 10% of the completion time. Therefore, we can conclude that the best/optimal 

decision interval is less than or equal to 10% of the completion time. 

There are two primary reasons that the best decision interval is relatively small. 

Firstly, the chance of failure is very high due to occurrences during the execution, and 

secondly the FT overhead is small enough to perform a number of the FT mechanisms. 

According to Figure 5.4. the majority of the cases in which the best decision interval is 

small are when the MTTF is less than the complet ion time, the incremental checkpoint 

overhead is 0.5% of the completion time, and the shape parameter is 0.5 which is 

equivalent to a decreasing failure rate. This means that, with a decreasing failure rate, 

the system needs to perform full checkpoints, incremental checkpoints, or rejuvenation 

more often. 



08 

Table 5.4: Cases that the best decision interval is less than or equal to 10% of the 
completion time, where d is the application completion time 

MTTF/ d  P  0,% of d  d  (min) OFIO, Or (min) 

8 0.5 0.5 All All All 

4 0.5 0.5 All All All 
1 720 1 All 

2 0.5 0.5 and 1 All All All 

1 0.5 All 1 All 

1 0.5 0.5 and 1 All All All 
2 All 1 All 

1 0.5 All All All 

1 All 1 All 
1.5 0.5 3 hours All All 

12 hours 1 and 2 10, 30. and 60 
3 All 

2 days 1 30 and 60 

2 10. 30 and 60 
8 days 2 5 and 60 

2 and 8 days 3 All 

0.5 0.5 0.5, 1, and 2 All All All 
1 0.5 and 1 All All All 

2 All 1 All 
1.5 0.5 All All All 

1 3 hrs and 2 days All All 
12 hours and 8 days 1 10. 30 and 60 

2 and 3 All 
2 3 and 12 hours 1 30 and 60 

0.25 0.5 All All All All 
1 0.5, 1. and 2 All All All 

5 All 1 All 
1.5 0.5, 1, and 2 All All All 

5 3 hours 1 10. 30 and 60 
5 12 hours 1 5 and 60 

2 days 1 5 and 10 
8 days 1 All 



69 

5.4.3 Conditions when the Best Decision 
Interval is Less than 10% of 
the Completion Time 

Obviously, from Figure 5.4 (Middle), most cases have an incremental check­

point overhead of 0.5% of the completion time because the overhead is so small 

that frequent checkpoints do not significantly lengthen the execution time. The 

incremental checkpoint overheads in the simulations are unpractically large for the 

large completion times. However, we are able to conclude that, for the applications 

running on a system with MTTF less than the completion time, the best decision 

interval is less than 10% of the completion time. All cases in which the best decision 

interval is less than or equal to 10% of the completion time are listed in Table 5.4. 

Pie Chart of MTTF/complction time Pie Chart of Pie Chart uf the shape parameter 
the percentages of the incremental checkpoint overhead 

0.5 | 45.18% ) 

1 ( 27.37% ) 
I ( 16.56% ) 

Figure 5.4: Pie Chart of the MTTFs as multiples of the completion time (d) 
(Left), the shape parameter (,<:?)(Middle), and the incremental checkpoint 
overheads (Oj) as percentages of the completion times (Right) for the 
cases that the best decision interval is less than or equal to 10% of the 
completion time 

Figure 5.5 illustrates the conditional probabilities of failures in the simulations 

in which the application completion time is 2 days and the MTTF is 12 hours (25% of 

the completion time). The left graph is for a decision interval of 288 minutes which is 

the smallest decision interval considered in the simulations for the completion time of 2 



70 

days. The right graph is for a decision interval of 144 minutes which is not a part of the 

simulations. It is plotted solely for an illustration that the conditional probability of 

failures for a smaller decision interval is less than those of decision intervals considered 

in the simulations. The x-axis is the age (in minutes) of the system software from 0 

to 2 days. According to both graphs, when the shape parameter is 0.5. the chance 

of failure occurrences in the early period of the software state is very high, compared 

to the shape parameters of 1 and 1.5. Therefore, the FT mechanisms are required 

to perform more often. Besides, the probability of a failure occurrence for the 144-

minute decision interval is less than that of the 288-minute decision interval by 0.1. 

Consequently, the best decision interval should be less than 288 minutes. 

d = 2880, MTTF = 0.25 x d and A = 144 d = 2880, MTTF = 0.25 x d and A = 288 

Shape parameters 

! 1 r 

0 640 1920 3200 4480 

Age of the software state (min) 

5760 

Shape parameter 

0 640 1920 3200 

Age of the software state (min) 

i r~ 
4480 5760 

Figure 5.5: Conditional Probability { P ( Q  <  a  +  A| f l  > a ) )  of the Weibull 
distributions with the shape parameters of 0.5. 1. and 1.5. the completion 
time (d) of 2 days, and the MTTF of 12 hours. The x-axis is the age of 

the software state (a) in minutes, ranged from 0 to 2 days 

In conclusion, a novel decision-making model has been derived to determine 

the best strategy to invoke various FT mechanisms. A concrete example of the 



71 

decision-making model is given which is for full checkpoints, incremental checkpoints, 

and software rejuvenation. Finally, simulations to study the sensitivity have been 

conducted. According to the simulation results, combining reactive and proactive FT 

mechanisms does not always yield the least expected waste time. Moreover, some 

short applications do not require any FT mechanisms. 



chapter 6 

conclusions 

To attack the problem of expensive overhead of FT mechanisms, we have 

derived a near-optimal scheduling model for the hybrid checkpoint mechanism that 

combines the full and incremental checkpoint techniques for arbitrary failure distribu­

tions in a HPC environment. To determine a sequence of optimal checkpoint times, 

we derived the formula for near-optimal checkpoint times for Weibull distributions. 

Moreover, in contrast to other existing scheduling models for the checkpoints, linearity 

of the re-computing time has not been assumed to derive the model. Instead, the 

proposed algorithm numerically estimates the re-computing time coefficient k that is 

a key contribution. Also, the existence and uniqueness of the number of incremental 

checkpoints between two consecutive full checkpoints (m) that minimizes the waste 

time have been proved. From the derived formula for m. the number of incremen­

tal checkpoints m depends on the full and incremental checkpoint overheads, the 

incremental recovery cost, the re-computing time, and the failure rate. 

To study the benefits of the proposed scheduling model for the hybrid check­

point mechanism, the waste times of the full checkpoint mechanism and the hybrid 

checkpoint mechanism have been studied, simulated, and compared. In most cases, 

tlit1 waste times of the hybrid checkpoint mechanism are less than those of the full 

72 



73 

checkpoint mechanism, especially when the incremental checkpoint overhead is less 

than 50% of the full checkpoint overhead. Furthermore, the proportion of the waste 

times of the hybrid and full checkpoint mechanisms does not relate to the ratio of the 

incremental and full checkpoint overheads. 

To further improve the utilization of the FT mechanisms, we have also devel­

oped a novel adaptive decision-making model that determines the best choice among 

all considered FT mechanisms at each decision point in order to obtain the global 

minimum of the application execution time. The concept of the model can be applied 

to any FT mechanisms; however, to give a concrete example, we have derived the 

model for full and incremental checkpoints as well as software rejuvenation. To study 

the sensitivity of the decision-making model, we have; run simulations with various 

parameter values in the decision-making model. The simulation results suggest that 

applications with completion time longer than 2 days definitely require some FT 

mechanisms to alleviate the failure impacts. Because of the low overhead of the 

incremental checkpoint, the model preferably selects the incremental checkpoint at 

each decision point. However, the best policy might be not to perform any FT 

mechanisms if the overhead of the FT mechanisms and MTTF are relatively large 

compared to the application completion time. 

In the future, the proposed scheduling model should address the fluctuation 

of the incremental checkpoint, overheads. A more accurate estimation of the re­

computing time coefficient would enhance the accuracy of the scheduling model. For 

the decision-making model, a challenge is to solve the proposed decision-making model 

for a small decision interval because of the1 time complexity. Therefore, we have 



planned to develop) an algorithm to estimate the optimal policy that reduces the time 

complexity. Furthermore, because the proposed model is based 011 constant decision 

interval which does not handle the increasing or decreasing failure rate cases well, we 

have planned to add t he choice of doing nothing at each decision point to dynamically 

vary the decision interval based on the FT overhead and the failure characteristics. 



APPENDIX A 

MINIMUM OF A SET OF RECURSIVE, 
LINEAR FUNCTIONS 

(b 



The minimum of a finite set of real numbers is the infimum of that set. 

Lemma A.l. Let A and B be real values, f min{A£?} iff 

(A < B => f = A) and (B < A => / = B) 

Axiom A.2. / := iiiii,(.4.B(/)} i f f  \ ( A  <  B ( f )  =j. f  = .4) a n d  ( B ( f )  <  A  = >  f  

B ( f ) )  

Lemma A.3. I f  B ( f )  =  a f  +  b ,  w h e r e  0 < a < 1 and b > 0. then f = B(f) iff 

f = X. where X = J 1 —a 

Proof. (=>) / = B(f) = af + b. By solving the equation, we have f  =  =  X .  
1 — a 

« = ) / - A ' - r f ; ,  t h e n  B ( f ) - « < £ ) + » -  ^  -  / •  • 

Theorem A.4. I f  B ( f )  —  a f  +  b ,  3a 6 (0,1), b  >  0, t h e n  f  =  n i m { A ,  B ( f ) }  = >  

( A < X  = >  f  =  A )  and (X < A  = >  / = X) , where X i - « "  

Proof. Suppose / = min{j4, B ( f ) } .  To show that [A < X => f — A), we assume 

that / A. Then / = B(f). By Lemma A.3, we have that / = A'. Then, by Axiom 

A . 2 .  B { f )  <  A .  T h e r e f o r e ,  X  =  f  =  B ( f )  <  A  

To show that ( X  <  A  = >  f  =  X ) ,  we assume that / ^ X .  By Lemma A.3. 

/ 7^ B(f). then / = A by Axiom A.2. Therefore. A < B(f) by Axiom A.2. Thus. 

A  <  B ( f )  =  a f  +  b  =  a A  +  b .  Hence. A  <  1 a X .  • 

Axiom A.5. / := m m { A ( f ) . B ( f ) }  i f f  

A ( f )  /  =  B ( / ) )  

(,4(/) < B ( . f )  / = -4(/)) nnrf ( /?(/) < 



77 

Theorem A.6. I f  A ( f )  =  a i f  +  a 2  a n d  B ( f )  =  b ^ f  - f  b 2 .  i n h e r e  0 <  a ^ . b i  < 1 a n d  

a2.b2 > 0. then f = min{A(f). B(f)} => / = min{XA.XB}. where XA = and 

Xu = for some 0 < a,. 6i < 1 and a2. b2 > 0. 

Proof. Suppose / = min { A ( f ) .  B ( f ) } .  To prove that / = min{AA. X B } .  we will 

s h o w  t h a t  ( <  X B  = >  f  =  A 5 )  a n d  ( A B  <  X A  = >  f  =  X B ) .  

To show that (XA < XB => / = XA). we assume that / / A'/5. By Lemma 

A .3. / ^ v4(/). By Axiom A.5, we know that / = i3(/) and B(f) < A(f). Thus, 

by Lemma A.3, we have that XB = B(f) < A(f) = a\f + a2 = a\XB + a2. Then. 

X B  <  =  X A .  

To show that [ X B  <  X A  => / = X B } ,  we use a similar argument. • 



BIBLIOGRAPHY 

[1] IEEE 100 The Authoritative Dictionary of IEEE Standards Terms Seventh 

Edition. IEEE Std 100-2000. 2000. 

[2] S. Agarwal, R. Garg. M. S. Gupta, and J. E. Moreira, Adaptive incremental 

checkpointing for massively parallel systems, in Proceedings of the 18th annual 

international conference on Supercomputing, ICS '04, pp. 277-286, ACM, New 

York, NY, USA, 2004. 

[3] A. Avritzer. R. Cole, and E. Weyuker, Methods and opportunities for rejuvena­

tion in aging distributed software systems, in Software Reliability Engineering 

Workshops. 2008. ISSRE Wksp 2008. IEEE International Conference on, pp. 

1-6, 2008. 

[4] A. Avritzer, R. G. Cole, and E. .1. Weyuker, Methods and opportunities for 

rejuvenation in aging distributed software systems. J. Syst. Softw., vol. 83, pp. 

1568 1578, September 2010. 

[5] H. Bauer and C. Spoiler. Reducing Rollback Overhead In Tinie-warp Based 

Distributed Simulation Wit h Optimized Incremental State Saving, in Simulation 

Symposium. 1993. Proceedings.. 26th Annual, pp. 12 20. 1993. 

[6] H. Bauer. C. Sporrer. and T. H. Krodel. On Distributed Logic Simulation Using 

Time Warp., in VLSI'91. pp. 127 136. 1991. 

78 



[7] A. Bobbio. S. Garg. M. Gribaudo. A. Horvath. et al.. Modeling software 

systems with rejuvenation, restoration and checkpointing through fluid stochastic 

Petri nets, in Petri Nets and Performance Models. 1999. Proceedings. The 8th. 

International Workshop on, pp. 82-91. 1999. 

[8] A. Bobbio. M. Sereno, and C. Anglano. Fine grained software degradation models 

for optimal rejuvenation policies, Perform. Eval.. vol. 46. pp. 45 62. August 2001. 

[9] M. Bougeret. H. Casanova, M. Rabie, Y. Robert, et al., Checkpointing strategies 

for parallel jobs, in Proceedings of 2011 International Conference for High 

Performance Computing, Networking, Storage and Analysis, SC '11, pp. 33:1-

33:11, ACM, New York, NY, USA. 2011. 

[10] K. Cassidy, K. Gross, and A. Malekpour. Advanced pattern recognition for 

detection of complex software aging phenomena in online transaction processing 

servers, in Dependable Systems and Networks, 2002. DSN 2002. Proceedings. 

International Conference on. pp. 478 482, 2002. 

[11] K. M. Chandy, J. C. Browne, C. W. Dissly, and W. R. Uhrig, Analytic Models 

for Rollback and Recovery Strategies in Data Base Systems. IEEE Transactions 

on Software Engineering, vol. 1(1), pp. 100 110. 1975. 

112] K. M. Chandy and C. V. Ramamoorthy. Rollback and Recovery Strategies for 

Computer Programs. Computers. IEEE Transactions on. vol. C'-21(6). pp. 546 

556. 1972. 

13] G. Ciardo. .1. Muppala. and K. Trivedi. SPNP: stochastic Petri net package, in 

Petri Nets and Performance Models. 1989. PNPM8D.. Proceedings of the Third 

International Workshop on. pp. 142 151. December 1989. 



80 

[14] .J. Coffin an. E.G. and E. Gilbert. Optimal strategies for scheduling checkpoints 

and preventive maintenance. Reliability. IEEE Transactions on. vol. 39(1). pp. 

9 18. 1990. 

[15] J. Daly. A model for predicting the optimum checkpoint interval for restart 

dumps, in Proceedings of the. 2003 international conference on Computational 

science. ICCS'03. pp. 3-12. Springer-Verlag, Berlin. Heidelberg. 2003. 

[16] .J. Daly. A strategy for running large scale applications based on a model that 

optimizes the checkpoint interval for restart dumps, IEE Seminar Digests, vol. 

2004(903), pp. 70 74, 2004. 

[17] J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart 

dumps. Future Gtrier. Comput. Systvol. 22, pp. 303 312, February 2006. 

[18] T. Dolii. K. Goseva-Popstojanova, and K. Trivedi, Analysis of software cost 

models with rejuvenation, in High Assurance Systems Engineering, 2000, Fifth 

IEEE International Syrnposirri on. HASE 2000. pp. 25 34 , 2000. 

[19] T. Dolii. K. Goseva-popstojanova, and K. S. Trivedi. Statistical Non-Parametric 

Algorithms to Estimate the Optimal Software Rejuvenation Schedule, in Pacific 

Rim Intl. Symp. Dependable Computing (PRDC). IEEE Computer Soc. Press. 

Los Alamitos. Calif, pp. 77 84. Press. 2000. 

[20] A. Duda. The Effects of Checkpointing on Program Execution Time.. Inf. 

Process. Lett... vol. 16(5). pp. 221 229. 1983. 

[21] E. Elnozahy and Plank. Checkpointing for peta-scale systems: a look into the 

future of practical rollback-recovery. Dependable and Secure Computing. IEEE 

Transactions on. vol. 1(2). pp. 97 108. April-.June 2004. 



[22] C. Engelmann. G. R. Vallee, T. Naughton, and S. L. Scott. Proactive Fault Tol­

erance Using Preemptive Migration, in Proceedings of the 2009 17th Euromicro 

International Conference on Parallel. Distributed and Network-based Processing, 

pp. 252-257, IEEE Computer Society. Washington. DC. USA. 2009. 

[23] S. Garg, Y. Huang. C. Kintala. and K. S. Trivedi, Minimizing completion time 

of a program by checkpointing and rejuvenation, SIGMETR1CS Perform. Eval. 

Rev., vol. 24(1), pp. 252 261. 1996. 

[24] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. Trivedi, A methodology for 

detection and estimation of software aging, in Software Reliability Engineering, 

1998. Proceedings. The Ninth International Symposium on. pp. 283 292, Novem­

ber 1998. 

[25] R. Geist, R. Reynolds, and J. Westall. Selection of a checkpoint interval in a 

critical-task environment, Reliability, IEEE Transactions on, vol. 37(4). pp. 395 

400, 1988. 

[26] S. Ghemawat. H. Gobioff, and S.-T. Leung. The Google file system. SIGOPS 

Oper. Syst. Rev., vol. 37. pp. 29 43. 2003. 

[27] S. B. D. .J. Gibson. Garth A.. Failure Tolerance in Petascale computers. CTWatch 

Quarterly, vol. 3(4). November 2007. 

[28] .1. N. Glosli. D. F. Richards. K. J. Caspersen, R. E. Rudd. et al.. Extending 

stability beyond CPU millennium: a micron-scale atomistic simulation of Kelvin-

Helmholtz instability, in Supercomputing. 2007. SO 07. Proceedings of the 2007 

AChl/IEEE Conference on. pp. 1 11. November 2007. 



82 

[29] N. Gottunmkkala. R. Nassar, M. Paun. C. Leangsuksun. et al.. Reliability of a 

System of k Nodes for High Performance Computing Applications. Reliability. 

IEEE Transactions on, vol. 59(1). pp. 162 169, 2010. 

[30] T. Heath, R. P. Martin, and T. D. Nguyen. Improving cluster availability using 

workstation validation, SIGMETRICS Perform. Eval. Rev., vol. 30, pp. 217 227. 

June 2002. 

[31] J. Hong, S. Kim, Y. Cho, H. Yeom, et al., On the choice of checkpoint interval 

using memory usage profile and adaptive time series analysis, in Dependable 

Computing, 2001. Proceedings. 2001 Pacific Rim International Symposium on, 

pp. 45-48, 2001. 

[32] G. Horton, V. G. Kulkarni, D. M. Nicol, and K. S. Trivedi, Fluid stochastic 

Petri nets: Theory, applications, and solution techniques, European Journal Of 

Operational Research, vol. 105(1), pp. 184 201, 1998. 

[33] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation: 

analysis, module and applications, in Fault-Tolerant Computing, 1995. Digest 

of Papers.. Twenty-Fifth International Symposium on. pp. 381-390, .June 1995. 

[34] .1. Hursey, Coordinated checkpoint/restart process fault tolerance for mpi applica­

tions on hpc systems, Ph.D. thesis. Indianapolis. IN. USA. 2010. 

[35] D. P. Jasper. A discussion of checkpoint/restart. Software Age, vol. 9. pp. 9 14. 

October 1969. 

[36] S. Kwak and J.-M. Yang. Schedulability and optimal checkpoint placement for 

real-time multi-tasks, in Industrial Engineering and Engineering Management, 

(1EEM). 2010 IEEE International Conference on. pp. 778 782. 2010. 



83 

[37] Z. Lan and Y. Li. Adaptive Fault Management of Parallel Applications for High-

Performance Computing. Computers. IEEE Transactions on. vol. 57(12), pp. 

1647 1660. December 2008. 

[38] C. H. C. Leung and Q. H. Clioo, On the Execution of Large Batch Programs 

in Unreliable Computing Systems, Software Engineering. IEEE Transactions on. 

vol. SE-10(4), pp. 444 450. July 1984. 

[39] Y. Ling, J. Mi, and X. Lin, A variational calculus approach to optimal checkpoint 

placement, Computer,s. IEEE Transactions on, vol. 50(7), pp. 699-708, July 

2001. 

[40] Y. Liu. R. Nassar. C. Leangsuksun, N. Naksinehaboon, et al., A reliability-

aware approach for an optimal checkpoint/restart model in HPC environments, 

in Proceedings of the 2007 IEEE International Conference on Cluster Computing, 

CLUSTER '07. pp. 452- 457. IEEE Computer Society, Washington, DC, USA, 

2007. 

[41] Y. Liu. R. Nassar, C. Leangsuksun, N. Naksinehaboon, et al., An optimal 

checkpoint/restart model for a large scale high performance computing system, 

in Parallel and Distributed Processing. 2008. IPDPS 2008. IEEE International 

Symposium on. pp. 1 -9. 2008. 

[42] A. Moody. G. Bronevetsky. K. Mohror. and B. de Supinski. Design. Modeling, 

and Evaluation of a Scalable Multi-level Checkpointing System, in High Perfor­

mance Computing. Networking. Storage, and Analysis (SC). 2010 International 

Conference for. pp. 1 11. 2010. 



84 

[43] N. Naksinehaboon. Y. Liu, C. Leangsuksun. R. Nassar. et al.. Reliability-Aware 

Approach: An Incremental Checkpoint/Restart Model in HPC Environments, in 

Cluster• Computing and the Grid. 2008. CCGRID '08. 8th IEEE International 

Symposium on, pp. 783 788. May 2008. 

[44] N. Naksinehaboon. M. Faun, R. Nassar. C. Leangsuksun. et al.. High Perfor­

mance Computing Systems with Various Checkpointing Schemes. International 

Journal of Computers Communications & Control, vol. 4(4). pp. 386-400, 2009. 

[45] X. Naksinehaboon. N. Taerat, C. Leangsuksun, C. Chandler, et al., Benefits of 

Software Rejuvenation on HPC Systems, in Parallel and Distributed Processing 

with Applications (ISPA), 2010 International Symposium on. pp. 499-506, 

September 2010. 

[46] H. Okamura and T. Dohi. Analysis of a software system with rejuvenation, 

restoration and checkpointing, in Proceedings of the 5th international conference 

on Service availability, ISAS'08, pp. 110 128, Springer-Verlag, Berlin, Heidelberg, 

2008. 

[47] H. Okamura and T. Dohi. Comprehensive evaluation of aperiodic checkpointing 

and rejuvenation schemes in operational software system. ,/. Syst. Softw.. vol. 83, 

pp. 1591-1604. September 2010. 

[48] H. Okamura. K. Iwamoto. and T. Dohi. A Dynamic Programming Algorithm 

for Software Rejuvenation Scheduling under Distributed Computation Circum­

stance. in Parallel and Distributed Systems. 2005. Proceedings. 11th International 

Conference on. vol. 2. pp. 493 499. 2005. 



85 

[49] A. Oliner. L. Rudolph, and R. Sahoo, Cooperative checkpointing theory, 

in Parallel and Distributed Processing Symposium. 2006. IPDPS 2006. 20th 

International, p. 10. April 2006. 

[50] A. Oliner. R. Sahoo. J. Moreira, and M. Gupta, Performance implications of 

periodic checkpointing on large-scale cluster systems, in Parallel and Distributed 

Processing Symposium. 2005. Proceedings. 19th IEEE International, p. 8, April 

2005. 

[51] T. Ozaki, T. Dohi, H. Okamura, and N. Kaio, Distribution-free checkpoint 

placement algorithms based on min-max principle, vol. 3. pp. 130 140, April-

.lune 2006. 

[52] A. C. Palaniswamy and P. A. Wilsey, An analytical comparison of periodic 

checkpointing and incremental state saving, SIGSIM Sirnul. Dig., vol. 23, pp. 

127 134, July 1993. 

[53] M. Paun. N. Naksinehaboon. R. Nassar, C. Leangsuksun, et al.. Incremental 

Checkpoint Schemes for Weibull Failure Distribution, International Journal of 

Foundations of Computer Science, vol. 21(3), pp. 329 344, 2010. 

[54] J. Plank and W. Elwasif, Experimental assessment of workstation failures and 

their impact on checkpointing systems, in Fault-Tolerant Computing, 1998. 

Digest of Papers. Twenty-Eighth Annual International Symposium on. pp. 48 57. 

June 1998. 



86 

[55] N. Raju. Y. Liu. C. B. Leangsuksun. R. Nassar. ot al., Reliability Analysis in 

HPC clusters, in High Availability and Performance Workshop (HAPCW). in 

conjunction with Los Alamos Computer Science Institute (LACSI) Symposium. 

October 2006. 

[56] E. Roman, A Survey of Checkpoint/Restart Implementations, Tech. rep., 

Lawrence Berkeley National Laboratory, Tech, 2002. 

[57] S. M. Ross, Stochastic Processes, Wiley. 1995. 

[58] R. Sahoo. M. Squillante. A. Sivasubramaniam. and Y. Zhang, Failure data 

analysis of a large-scale heterogeneous server environment, in Dependable 

Systems and Networks, 2004 International Conference on, pp. 772 781, June-

July 2004. 

[59] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-

performance computing systems, in DSN 06: Proceedings of the International 

Conference on Dependable Systems and Networks, pp. 249- 258, IEEE Computer 

Society, Washington, DC. USA, 2006. 

[60] B. Schroeder and G. A. Gibson. Disk failures in the real world: what does an 

MTTF of 1,000.000 hours mean to you?, in FAST '07: Proceedings of the 5th 

USENIX conference on File and Storage Technologies, p. 1. USENIX Association, 

Berkeley. CA. USA. 2007. 

[61] A. Shapiro. D. Dentcheva. and A. Ruszczy?ski. Lectures on Stochastic Program­

ming. Society for Industrial and Applied Mathematics. Philadephia. PA. 2009. 



[62] G. Tian and D. Meng. Coordinated Selective Rejuvenation for Distributed 

Services, in Parallel and Distributed Systems (1CPADS). 2010 IEEE 16th 

International Conference on. pp. 389 396. 2010. 

[63] N. Vaidya. On Checkpoint Latency, in In Proceedings of the Pacific Rim 

International Symposium on Fault-Tolerant Systems, pp. 60 65. 1995. 

[64] N. Vaidya. Impact of checkpoint latency on overhead ratio of a checkpointing 

scheme, Computers, IEEE Transactions on, vol. 46(8). pp. 942 947, August 

1997. 

[65] K. Vaidyanathan and K. Trivedi, A comprehensive model for software rejuvena­

tion, vol. 2. pp. 124- 137, April-.June 2005. 

[66] K. Vaidyanathan and K. S. Trivedi, A Measurement-Based Model for Estimation 

of Resource Exhaustion in Operational Software Systems, in ISSRE '99: Proceed­

ings of the 10th International Symposium on Software, Reliability Engineering, 

p. 84, IEEE Computer Society. Washington. DC. USA. 1999. 

[67] G. Vallee, C. Engelmann, A. Tikotekar, T. Naughton. et al.. A Framework for 

Proactive Fault- Tolerance, in Availability. Reliability and Security. 2008. ARES 

08. Third International Conference on. pp. 659 664. March 2008. 

[68] M. Varela. K. Ferreira, and R. Riesen. Fault-tolerance for exaseale systems, in 

Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS). 2010 

IEEE International Conference on. pp. 1 4. 2010. 

[69] C. Wang. F. Mueller, C. Engelmann. and S. Scott. Hybrid Checkpointing for MFI 

.Jobs in HPC Environments, in Parallel and Distributed Systems (ICPADS). 2010 

IEEE 10th International Conference on. pp. 524 533. 2010. 



170] R. Weinstock, Calculus of Variations: With Applications to Physics and 

Engineering. Dover. 1974. 

[71] W. Xie. Y. Hong, and K. Trivedi. Software rejuvenation policies for cluster 

systems under varying workload, in Dependable Computing. 2004- Proceedings. 

10th IEEE Pacific Rim International Symposium on, pp. 122 129. March 2004. 

[72] F. Xin-yuan, X. Guo-zhi. Y. Ren-dong. Z. Hao, et al.. Performance analysis 

of software rejuvenation, in Parallel and Distributed Computing. Applications 

and Technologies. 2003. PDCAT'2003. Proceedings of the Fourth International 

Conference on, pp. 562 566, August 2003. 

[73] .J. Xu, Z. Kalbarczvk, and R. Iyer, Networked Windows NT system field failure 

data analysis, in Dependable Computing. 1999. Proceedings. 1999 Pacific Run 

International Symposium on, pp. 178 185, 1999. 

[74] S. Yi. J. Heo, Y. Clio, and J. Hong, Taking Point Decision Mechanism for Page-

level Incremental Checkpointing based on Cost Analysis of Process Execution 

Time, J. Inf. Sci. Eng.. vol. 23(5), pp. 1325 1337, 2007. 

[75] J. W. Young. A first order approximation to the optimum checkpoint interval. 

Commun. ACM. vol. 17. pp. 530 531. September 1974. 

[76] L. Zhao and Q. Song. Availability and Cost Analysis of a Fault-Tolerant Software 

System with Rejuvenation, in Advanced Computer Theory and Engineering. 

2008. ICACTE '08. International Conference on. pp. 261 265. December 2008. 


	Louisiana Tech University
	Louisiana Tech Digital Commons
	Spring 2012

	Near-optimal scheduling and decision-making models for reactive and proactive fault tolerance mechanisms
	Nichamon Naksinehaboon

	tmp.1562849364.pdf.9tI3M

