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ABSTRACT 

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with pulse 

duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. 

They have been widely used in the development of new technologies in the field of 

medicine. Therefore, the study of the nanopulse bioeffects is important to ensure the 

appropriate application with nanopulses in biomedical and biotechnological settings. The 

conventional finite-difference time-domain (FDTD) method for solving Maxwell's 

equations has been proven to be an effective method to solve the problems related to 

electromagnetism. However, its application is restricted by the Courant, Friedrichs, and 

Lewy (CFL) stability condition that confines the time increment and mesh size in the 

computation in order to prevent the solution from being divergent. 

This dissertation develops a new finite difference scheme coupled with the Cole-

Cole expression for dielectric coefficients of biological tissues to simulate the 

electromagnetic fields inside biological tissues when exposed to nanopulses. The scheme 

is formulated based on the Yee's cell and alternating direction implicit (ADI) technique. 

The basic idea behind the ADI technique is to break up every time step into two half-time 

steps. At the first half-step, the finite difference operator on the right-hand side of the 

Maxwell's equation is implicit only along one coordinate axis direction. At the second 

half-step, the finite difference operator on the right-hand side of the Maxwell's equation 

is implicit only along the other coordinate axis direction. As such, only tridiagonal linear 

iii 
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systems are solved. In this numerical method, the Cole-Cole expression is approximated 

by a second-order Taylor series based on the z-transform method. In addition, the 

perfectly matched layer is employed for the boundary condition, and the total/scattered 

field technique is employed to generate the plane wave in order to prevent the wave 

reflection. 

The scheme is tested by numerical examples with two different biological tissues. 

For the purpose of comparison, both the proposed ADI-FDTD scheme and the 

conventional FDTD scheme are employed to the numerical examples. The results show 

that the proposed ADI-FDTD scheme breaks through the CFL stability condition and 

provides a stable solution with a larger time step, where the conventional FDTD scheme 

fails. Results also indicate that the computational time can be reduced with a larger time 

step. 
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CHAPTER ONE 

INTRODUCTION 

1.1 General Overview 

Nanopulses are ultra-wide-band (UWB) electromagnetic pulses with a pulse 

duration of only a few nanoseconds and electric field amplitudes greater than 105 V/m. 

They are generated by many electronic devices, including communication instruments 

such as cell phones. Since the Federal Communication Commission (FCC) adopted the 

First Report and Order in 2002 [1] that permits the marketing and operation of certain 

types of new products involving UWB technology, more and more new technologies 

incorporating nanopulses have been developed or are under consideration. In particular, 

biomedical technology is one of the important and useful applications of nanopulses, 

such as medical imaging techniques and electroporation that introduces some substance 

into a cell. However, inappropriate nanopulse exposure may cause some undesirable 

health effects, including local temperature effects, interference with the biochemical 

reactions, alteration of macromolecular structure, and tissue damage [2]. Therefore, it is 

important to study the bioeffects of nanopulses to ensure the appropriate application of 

nanopulses in medical settings. 

In the past decades, various mathematical models have been developed to 

investigate the electromagnetic field characteristics inside the tissue exposed to the 
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nanopulses. Kunz and Luebbers [3] originally developed a finite-difference time-domain 

(FDTD) program, which solves the Maxwell's equations, to predict the electromagnetic 

field inside tissues. Based on their FDTD method, Samn and Mathur [4] constructed a 

mathematical model to estimate the electromagnetic field inside the transverse 

electromagnetic cell driven by a wideband electromagnetic current pulse. Schoenbach et 

al. [5] proposed a simple spherical biological cell model to research the relationship 

between the probability for electric field interactions with cell substructures and the width 

of electric pulse duration. Joshi et al. [6] carried out a self-consistent model analysis of 

electroporation in biological matters based on an improved energy model. Joshi and his 

colleagues [7] also introduced a scheme involving the Laplace, Nernst-Planck, and 

Smoluchowski equations to study the influence of ultrashort voltage pulses to the 

temporal dynamics of cell electroporation. 

Although the FDTD method [8] has been proven to be an effective method to 

solve the problems related to the electromagnetism, it is limited by the Courant, 

Friedrichs, and Lewy (CFL) stability condition [9] for time step. Otherwise, the FDTD 

method may produce a divergent solution. To date, many techniques have been 

developed to relax the above restriction. Such techniques include the split-step approach 

[10], [11] and locally one-dimensional (LOD) FDTD methods [12], [13]. These methods 

are usually accurate only up to first order in time due to an extra noncommutativity error 

term. A more efficient method is based on the well-known alternating direction implicit 

(ADI) technique, which was originally introduced in the mid-1950s for solving parabolic 

partial differential equations with second order accuracy [14], [15]. In the 1980s, the ADI 

technique was first applied to Yee's grid for solving the three-dimensional Maxwell's 
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equations [16]. Based on a new space grid that is different from Yee's Cell, a specially 

designed two-dimensional FDTD algorithm was presented in [17], which relaxes the CFL 

condition at the cost of more grid points. Very recently, the unconditionally stable ADI 

methods were successfully applied to the solution of Maxwell's equations [18], [19]. 

For many biological tissues, the frequency dependency of dielectric properties is 

more conveniently given by the Cole-Cole expression [20], [21]. Su et al. [22] has 

developed an FDTD method coupled with the Cole-Cole expression, where the Cole-Cole 

expression was approximated by a second-order Taylor series based on the z-transform 

method [23]. However, the CFL condition is still imposed on this method. 

1.2 Motivation and Objective of the Research 

In order to investigate the bioeffects of nanopulses, the modeling of biological 

tissues are necessarily involved in the numerical simulation. The geometry sizes of many 

biological tissues that are the interest of this study are very small. For example, a normal 

red cell is only 6-8 (am in diameter. The small size of biological tissue, together with the 

CFL stability condition, leads to the small space grid and time step that can be employed 

for the conventional FDTD method. As a result, the number of the iterations needed for 

simulation may be considerably large for a certain time period, which reduces the 

computational efficiency. 

Considering the drawback of the conventional FDTD method, the objective of this 

dissertation research is to develop a finite difference time domain scheme without the 

CFL stability condition. A larger time step used for biological matters will reduce the 

running time of the program. 
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1.3 Organization of the Dissertation 

Chapter 1 proposes the objective of this dissertation research based on a general 

literature review. 

Chapter 2 introduces the background and previous works related to this research. 

First of all, the Maxwell's equations for electromagnetic field are discussed in detail. 

Then, the basic formulations and stability conditions of the conventional FDTD method 

and ADI scheme are described, respectively. Finally, the dielectric properties of 

biological tissues and the formulation of the Cole-Cole expression are introduced. 

Chapter 3 discusses the numerical simulation in detail. First, governing equations 

for studying bioeffects are set up. Then, the ADI-FDTD scheme, together with the 

boundary conditions, the technique for nanopulse simulation, and the pulse source is 

proposed. The algorithm describing the electromagnetic simulation is presented at the end 

of the chapter. 

Chapter 4 tests the applicability of the proposed scheme by two numerical 

examples with two different biological tissues, respectively. The stability, numerical 

accuracy, and computational efficiency are discussed based on the numerical results 

obtained by both the conventional FDTD method and the proposed ADI-FDTD method. 

Chapter 5 gives the conclusion of the research and provides some suggestions for 

future work. 



CHAPTER TWO 

BACKGROUND AND PREVIOUS WORK 

2.1 Electromagnetic Field Equations 

2.1.1 Maxwell's Equations 

Maxwell's equations are a set of four partial differential equations that, together 

with the material dependent constitutive relations and boundary conditions, characterize 

the fundamental relations between the electric field and the magnetic field. Maxwell's 

equations were named after the Scottish mathematician and physicist James Clerk 

Maxwell (1831-1879). They first appeared in the complete form in the "Treatise on 

Electricity and Magnetism," which he published in 1873 [24]. 

The Maxwell's equations can be written in both differential form and integral 

form. Although these two forms are mathematically equivalent, the differential forms are 

more convenient for calculating the fields in more complicated situations using numerical 

methods such as finite difference or finite element methods, while the integral forms are 

more often used to analytically calculate the fields in simple situations such as the field 

with symmetric distributions of charges and currents [25]. 

The general, time-dependent, Maxwell's equations in differential form can be 

expressed as follows [25]: 
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(2.2) 

VD = p, (2.3) 

V - B  =  0 ,  (2.4) 

where the symbols in bold represent vector quantities in three dimensions, and the 

symbols in italics represent scalar quantities. The quantities involved in Eqs. (2.1) - (2.4) 

are defined as: 

E - the electric field intensity, given in V/m, 

H - the magnetic field intensity, given in A/m, 

D - the electric flux density, given in C/m2, 

B - the magnetic flux density, given in Wb/m2, 

J - the current density, given in A/m2, 

p - the volume electric charge density, given in C/m3. 

Equation (2.1) is referred to as Faraday's law of induction. It shows the 

relationship between a time-varying magnetic field and an induced electric field on the 

basis of experimental observations made in 1831 by the English scientist Michael 

Faraday [26]. Faraday's law of induction serves as a basic law of electromagnetism 

relating to the operating principles of transformers, inductors, and many types of 

e l e c t r i c a l  m o t o r s  a n d  g e n e r a t o r s  [ 2 1 ] .  

Equation (2.2) is called Ampere's law with Maxwell's correction. Compared with 

the original Ampere's law, Ampere's law with Maxwell's correction shows that the 
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magnetic field can be produced by both electrical current (associated with J) and time-

varying electric field (associated with 5Dfdt). 

Equation (2.3) is known as Gauss's law, which states that the electric flux through 

any closed surface is proportional to the enclosed electric charge [28]. Although it is 

more clearly expressed in integral form, the differential form shown in Eq. (2.3) is 

mathematically equivalent to the integral form due to the divergence theorem. 

Equation (2.4) is associated with Gauss's law for magnetism, which shows that 

the magnetic field has divergence equal to zero. It is equivalent to the statements that 

there are no magnetic monopoles analogous to electric charges, and that the magnetic 

flux is conservative. 

2.1.2 Material Properties 

The electric and magnetic properties of the material are important factors that 

affect the interaction between the fields and materials. In terms of modeling, material 

properties define not only what type of computation is needed, but also limit the model 

[25]. The three basic material properties are conductivity, permittivity, and permeability. 

The electrical conductivity is a measure of the ability of a material to conduct an 

electric current. A high conductivity indicates a material that readily allows the 

movement of an electric charge. Since the current density J in a conductor is 

proportional to the applied electric field intensity E , the electrical conductivity a is 

defined by 

cr  =  —.  (2 .5 ;  
E 

The electric properties of dielectric material are largely determined by the 

polarization of charges within the material due to the presence of an external electric field 
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[25]. The larger the tendency of electric polarization, the less the electric flux exists in a 

medium. Permittivity is the measure of this resistance that is encountered when forming 

an electric field in a medium. Therefore, permittivity is directly related to electric 

susceptibility, which is a measure of how easily a dielectric polarizes in response to an 

electric field. Greater electric susceptibility indicates greater permittivity, thereby 

generating less of the total electric field inside the material. The permittivity is defined by 

s = s0sr=e0{\ + ze), (2.6) 

where s is the permittivity, s0 is the permittivity of free space, er  is the relative 

permittivity of the material, and %e is electric susceptibility, which is a dimensionless 

quantity. 

The magnetic properties of materials depend on the interaction between the 

moving charges within materials and the external magnetic fields. The internal magnetic 

field is determined by the organization of magnetic dipoles in the medium. Permeability 

is the measure of the ability of a material to support the formation of a magnetic field 

within itself. The higher its permeability, the more conductive a material is to a magnetic 

field. Permeability is commonly defined as 

M = (2-7) 

Where ju is the permeability, /u0 is the permeability of free space, and f.ir is the relative 

permeability. 

Technically, conductivity, permittivity, and permeability can all be complex 

numbers. They are often frequency and temperature dependent. 



2.1.3 Constitutive Relations 

Maxwell's equations defined by Eqs. (2.1) - (2.4) seems to be equivalent to 12 

scalar equations in 12 unknowns of field quantities (E, H, D, and B). This, however, is 

not the case. Applying the divergence on both sides of Eq. (2.2) gives 

V - ( V x H )  =  V - J  +  V ~ .  ( 2 . 8 )  

Since the equation V -(Vx A) = 0 holds for an arbitrary vector A, the result obtained is 

0  =  V - J  + J ^ - ( V - D ) .  ( 2 . 9 )  

Substituting Eq. (2.3) produces 

V - J  =  ~ ^ ,  ( 2 . 1 0 )  
dt 

which is called the electrical continuity equation. 

From the above derivation, it can be clearly seen that Eq. (2.3) can be derived 

from Eq. (2.2) if Eq. (2.10) is postulated. Equation (2.4) can be derived from Eq. (2.1) 

using the similar derivation. Therefore, only two of the Maxwell's equations, Eq. (2.1) 

and Eq. (2.2), are independent. In order to apply the Maxwell's equations, two additional 

relations are added to complete the system [25]: 

B  =  / / H ,  ( 2 . 1 1 )  

D  =  s E ,  (2.12) 

In addition, the current densities J can be related to the electric field intensity E 

with the following equation: 

J = crE. (2.13) 



10 

Equations (2.11) - (2.13) are referred to as the constitutive relations. They 

associate the field quantities with the material properties, and determine the important 

properties of the field equations. 

2.1.4 Maxwell's Equations in a Frequency Dependent Medium 

For simplicity, it is assumed that the mediums in this research are isotropic, 

homogeneous, and nonmagnetic: that is, B = /jqH . Since the conductivity a and the 

relative permittivity er  of most media are frequency-dependent, it is necessary to write 

down the Maxwell's equations in a more general form including the frequency, as 

follows [23]: 

where to = 2nf is the angular frequency, / is the ordinary frequency, and s*r  is the 

complex relative permittivity including the relative permittivity and conductivity, which 

can be expressed as follows: 

(2.14) 

D ((O) = £0-£'r(G> ) - E ((O), (2.15) 

(2.16) 

cr 
(2.17) e = e  +  

o 

Normalize Eqs. (2.14)-(2.16) with [23] 

(2.18) 

and 
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D  =  D ,  (2.19) 
£o'Mo 

which leads to 

—  =  ,  V x H  
^ \£oMo 

(2.20) 

D(®) = fr(®)-E(&)), (2.21) 

3H 1 
V x E .  (2.22) 

Equations (2.20)-(2.22) are the normalized Maxwell's equations in a frequency 

dependent medium. D and E can still be used instead of D and E, respectively, in the 

later discussion in order to simplify the notation. 

2.2.1 FDTD Scheme 

The finite-difference time-domain (FDTD) method, first introduced by Yee in 

1966 [29] and later developed by Taflove and others [30]-[35], is one of the important 

computational electrodynamics modeling techniques. It has been widely used for solving 

problems related to electromagnetism. The basic theory and applications of the FDTD 

method are well described and can be found in [9]. Since it is a time-domain method, the 

FDTD method can cover a wide frequency range with a single simulation run. 

For simplicity, time-dependent Maxwell's curl equations in free space are 

considered, which is written as follows: 

2.2 FDTD Method 

(2.23) 



dH 

dt M o  
V x E .  

12 

(2.24) 

Since E and H are vectors in three dimensions, Eqs. (2.23) and (2.24) are equivalent to 

the following system of scalar equations in the Cartesian coordinates: 

dt sn 

dH. dHv 

dy dz 

dEv 1 (dH. SH. 

dt s0\ dz dx 

dE, _ 1 

dt sn 

°*L = ± 
dt /u0 

dH. 

dHy dHx 

dx dy 

dEy QE. 

dz dy 

_ 1 (dE :  dEx 

dt Mo\dx dz 

dH. _ 1 

dt fiQ 

dKjE^ 

dy dx 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Yee [29] introduced the following notation for space points and functions of space 

and time. A grid point in a uniform, rectangular mesh is donated as 

Ci,j,k) = (iAx,jAy,kAz). (2.31) 

And any function F of space and time is denoted as 

F" (/, j,k) = F (/Ax, /Ay, kAz, nAt). (2.32) 

Here, Ax , Ay , and Az are, respectively, the space increments in the x, y, and z 

coordinate directions, and At is the time increment, while i, j, k, and n are integers. 
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In Yee's scheme [29], the computational domain is discretized by using the 

rectangular grids. For simplicity, the grids are assumed to be same size. Figure 2.1 shows 

an illustration of a standard Cartesian Yee's cell used for FDTD, and how electric and 

magnetic field vector components are distributed. It can be seen that each is-field vector 

component is located midway between a pair of H-field vector components, and 

conversely. The Yee's scheme can be generalized to variable size and non-orthogonal 

grid [9]. 

H. 

Figure 2.1 Positions of the electric and magnetic fields in a Yee's cell 

The FDTD method [29] utilizes the central difference approximation for the space 

and time derivatives that are second-order accurate in the space and time increments, and 

then solves the resulting equations numerically to derive the electric and magnetic field 
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distributions at each time step using an explicit leapfrog scheme. Therefore, Eqs. (2.25) 

and (2.28) with Ax = Ay = Az have 

+ - ^ _ [ w ; ( i + I y + I  * ) - / / ; ( , • + ' , - 1 ,  k )  
e0Ax 2 2 2 2 

-h;o+± j, *+ i )+//;(i+i  (2 .33 )  

and 

(/,;+i k+i> = //;(., j+i k+1) 

A t n+— | rt+~ J 
+—-[e, m,j+-,k+\)-Ey m,j+-,k) 

//0 Ax 2 2 

-<+^ (/, y + l^ + I) + <+2 (i, y, ̂  +1)]. (2.34) 

The FDTD schemes corresponding to Eqs. (2.26)-(2.27) and (2.29)-(2.30), respectively, 

can be similarly constructed. When Eqs. (2.33) and (2.34) are examined, it can be seen 

that, at any point in space, the new value of the E-field in time is calculated from the 

previous value of the £-field and the most recent numerical curl of the local distribution 

of the //-field in space, and conversely. This is the basic time-stepping relation of the 

FDTD method [29]. 

2.2.2 Stability Conditions 

The accuracy of the FDTD scheme is first constrained by the cell size. Enough 

sampling points must be taken to ensure the adequate representation of the computed 

results. The cell size must be much less than the wavelength at the highest frequency 

(shortest wavelength) of interest. A good rule of thumb is 10 points per wavelength [23]. 
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Once the cell size is determined, the time increment At must be small enough so 

that it satisfies the following bound, known as the Courant-Friedrichs-Lewy (CFL) 

stability condition [9], [36]: 

-1/2 

(2.35) 

where v is the maximum velocity of propagation in any medium in the program, usually 

the speed of light in free space. If the time step is not within the bound, the FDTD 

scheme will become numerically unstable and will produce a divergent solution. 

2.3 API Method 

The alternating direction implicit (ADI) method belongs to a class of techniques 

called the operator spilling method [37]. It was originally introduced by Peaceman, 

Douglas and Rachford in the 1950s [38], [39] and later became quite popular in fields 

such as heat transfer and fluid mechanics. In the 1980's, the ADI scheme was first 

applied to the Yee's grid for solving the three dimensional Maxwell's equations [16]. 

However, the scheme suffered instability problems. It was not until 2000 that the three 

dimensional unconditional stable ADI-FDTD methods were successfully applied to the 

solution of Maxwell's equations [18], [19]. 

The basic idea behind the unconditional stable ADI-FDTD method [18] is to 

break up the time step into two half-steps. And for each half-step, the finite difference 

operator on the right-hand sides of the Maxwell's equation is implicit only along the 

single coordinate axis. More specifically, the ADI-FDTD scheme for Eqs. (2.25) and 

(2.28) with the notations defined by Eqs. (2.31) and (2.32) is as follows: 

vA/< " -f" -
(A*) (AV)' (AZY 
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1) For the first half time step (i.e. the advancement from the «th time step to the(« +1/2) 

th time step) 

£7h i  +  \ , j , k ) -E"A i  +  \ , j , k )  
__ 

1 "+1 11 "+-11 

—• 

Az  
(2.36) 

and 

h"? VJ+ \, * + \)-H"AU j + k + i) 

A//2 

Mo Az 

£;(/,y+i,*+I)-£;(/,./,* + !) 

Ay 
(2.37) 

with corresponding expressions for Eqs. (2.26), (2.27), (2.29) and (2.30). 
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2) For the second half time step (i.e. the advancement from the (« + l/2)th time step to 

the (« +1) th time step) 

and 

At/2 

n+I 11 „+I J J 

_ 

H? ( /  +  - ,  j ,  k  +  - )~  H" + x  ( i  +  - ,  j ,  k - - )  
y  2  2  y  2  2  

Az  
(2.38) 

1 1 « + -  1 1  
H" { i , j  +  - , k  +  - ) -H .  2 ( i , j  +  - , k  +  - )  

*  J  2  2  2  2  
A t /2  

Mo 

Ep( i , j  +  ± , k  +  D-E">( i , j  +  ̂ , k )  

Az  

Ay 
(2.39) 

with corresponding expressions for Eqs. (2.26), (2.27), (2.29) and (2.30). 

The ADI-FDTD method displayed above has second-order accuracy in time and 

space. This system is typically solved using tridiagonal matrix algorithm. 
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2.4 Dielectric Properties of Biological Tissues 

As previously mentioned, the conductivity cr and the relative permittivity e r  of 

most media vary at different frequencies. The dielectric properties of materials are mainly 

determined by their complex relative permittivity as shown in Eq. (2.17). The imaginary 

part of sr represents dielectric losses. Therefore, the dielectric properties of materials are 

determined as £r and cr values, as a function of frequency. 

The dielectric properties of a biological tissue are due to the interaction of 

electromagnetic radiation with its constituents at the cellular and molecular level. They 

are dispersive, and the variation with frequency is very complex [40]. The main features 

of the dielectric spectrum of tissues are well understood and discussed by Foster and 

Schwan [41]. Their theoretical analysis is characterized by a single relaxation process 

centered around a single relaxation time constant. The following description is taken 

largely from Foster and Schwan [41]. 

Taking the simplest case as an example, the polarization of a sample will relax 

towards the steady state as a first order process. The rate at which the response 

approaches the final value is determined by a single time constant, r . The transient 

response is illustrated in Figure 2.2, which has the form: 

where D is electric flux density, D0 is the final value of D, and Dx is the initial value 

of D. The relaxation time r is usually determined by the experiments [42]. 

(2.40) 
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D 

Dr 

D oo 

t 
-> 

Figure 2.2 Transient response of polar dielectric 

Since D = s ' r e 0 E,  D. = £ x s 0 E , and D0 = ess0E, where e \ is the complex relative 

permittivity, ew is the relative permittivity at infinite frequency (a>r» 1), at which the 

polar molecules do not have time to contribute to the polarization [42], and es is the 

static relative permittivity ( cox « 1), Eq. (2.40) can be rewritten as 

K£oe = £<»£Oe + (£.<£OE ~ £*£oE)(l ~e~"r) • 

Cancelling s0E terms from both sides and rearranging the equation leaves 

£
r = + ( £

s - £ J - ( £ s~  £«  y"h •  

(2.41) 

(2.42) 

Taking Laplace transforms on both sides to convert to the frequency domain and 

simplifying the equation, one obtains 

r cc 

£  - e  V QO 

1 + ̂ r 
(2.43) 
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Setting s = jo) in order to transform back to the frequency domain gives 

(2-44) 
1 + JCOT 

which is well known as a single relaxation Debye equation. Debye relaxation is the 

dielectric relaxation response of an ideal, noninteracting population of dipoles to an 

alternating external electric field. The magnitude of the dispersion is described as 

Ae = es-ex. Note that Eq. (2.44) omits the currents flowing at infinite time such as 

would arise due to the movement of ions in a constant field. Therefore, a static 

conductivity term, crs, is added to the model as follows: 

+ (2-45) 
1 + JCOT JO)£0 

where crs = jcoe0es. 

The single relaxation model is rare except for some pure polar compounds. For 

dielectric properties with multiple relaxation times, the complex relative permittivity can 

be written as [43]: 

er(<o) = eu+Yi-—r2L— + ——, (2-46) 
m=l 1 + JQ)Tm JCO£0 

where N is the number of relaxation regions. 

The above Debye models have often been used to describe the dielectric 

properties of biological tissues [44]-[46]. However, the structure and composition of 

biological tissues are both so complicated that each dispersion region may be broadened 

by multiple contributions to it. The Debye model does not represent the frequency 

variation of many biological tissues accurately over a wide frequency band. The Cole-

Cole expression [47] offers an alternative approach which accounts for the complexity of 
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the biological tissues by introducing a distribution parameter. The model corresponding 

to the whole spectrum is written as: 

(2.47) 
m = x \  +  { j (QT m )  JCO£ 0  

where a  (0 < a  < 1) is an adjustable parameter that allows for the broadening of the 

dispersion. This model describes the frequency response of the dielectric properties in the 

frequency range from Hz to GHz. With a choice of parameters appropriate to each tissue, 

Eq. (2.47) could be used to predict its dielectric behavior over the desired frequency 

range. The parameters of the model were adjusted to correspond to a close fit between the 

model and the most comprehensive data set available for the particular tissue [21], [48], 

2.5 Formulating the Cole-Cole Model 

As the previous section states, the relative permittivity, s'r (co), appearing in the 

normalized Maxwell's equation (2.21) is usually described by the Cole-Cole expression 

as shown in Eq. (2.47). In order to apply the ADI-FDTD method to the solution of the 

Maxwell's equations expressed by Eqs. (2.20)-(2.22), it needs to convert the Eq. (2.21) 

together with the Cole-Cole expression from the frequency domain to the time domain. It 

should be pointed out that it is a challenge to employ the conventional Fourier Transform 

method for the Cole-Cole expression since the parameters am are non-integer. This 

difficulty is usually solved by reducing the Cole-Cole expression to its predecessors, the 

Debye model [25], for which e'r(o)) is given by 

< (<») = g„+Z A£m_ , + • (2.48) 
m^\  +  { j (OT m )  JCO£ 0  
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As such, the Debye model is transferred from the frequency domain to the time domain. 

However, the parameters Asm, fm, and ds in Eq. (2.48) are needed to be recalculated 

since they are different from the parameters Ae m , x m , and crv in Eq. (2.47). 

In order to use the values of Aem, rm, and <j s directly, Dai et al. in 2005 [22] 

developed a new approach, where the Cole-Cole expression was approximated by a 

second-order Taylor series based on the z-transform method [23]. The following 

derivations are taken mainly from previous literatures [49]. 

Assuming a material is modeled by the Cole-Cole expression, Eq. (2.47), it is 

substituted into Eq. (2.21), D(<y) = s*r (<y) • E(o>) , which gives: 

D(<y) = f.E(0) + Z • (2-49) 
1  +  ( j cor n )  "  J (os Q  m = 1 

Introducing 

I (co) = ̂ ^-, (2.50) 
jcos0 

and 

S.W= • " = 1.2.3.4, (2.51) 
l+(>r„) " 

according to z-transform theorem, by taking the Z transform on Eqs. (2.50) and (2.51), 

one may obtain 

l(z) = ^rE(z)-At, (2.52) 
1 -z 

and 
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s „ ( * )  =  -
AemE (z) 

1 + 
r  x  V ~ C T »  

vA// 

m = 1,2,3,4. (2.53) 

( • - - ) '  

Rearranging the above two equations gives 

er A/ 
I(z) = -^=--E(z) + z"'l(z), (2.54) 

and 

S„(*) 1 + 
^T°-

A J 
(I-,-)' = A£ m E(z ) ,  m  = 1,2,3,4. (2.55) 

l-om 

Employing a second-order Taylor approximation to the term (l - z ' x ) as follows: 

(l-z"1) sl-(l-am)z"'-^(l-ajam^2. 

By inserting Eq. (2.56) into Eq. (2.55) and rearranging terms, one obtains 

(2.56) 

f T t°" 

S„(*) = -
At  

1 + 

+ -

f r Y""' 

V A t j  

As, 

1 + 
rT V-» 

vA/y 

0 - «„) z"'sm (z)+^0 - (z) 

•E(z). (2.57) 

Equation (2.49) in the z-domain then becomes 

D(Z) = *.E(z) + £s„(z) + I(r) 
m=\ 

4  

= ^E(z) + 2«. 
m=1 

1 
(1 -a m ) z~ x Sm (z) + -(1 -a m )a m z ' 2 S m  ( z )  + z 'l(z), (2.58) 

where 
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a crsA/ 
A  =  £ x + ~ ± —  + £ '  

As„ 

s° i | I r" 
(2.59) 

and 

s.W=s. (1" « . )  ~"' s .  M + ̂ 0 - «. )<V~!S» (z) 

+ -
As. 

1 + 
At  

z ^ -E( z ) ,  

B„. 

1 + 

f  V-"-
ZsL 

\A/y 
r r A1""0- ' m 
VA t  j  

m  = 1,2,3,4. 

Thus, Eq. (2.58) can be transferred back to the sampled time domain as follows: 

E" =^|D" -!•" -i>. (l-a.)s;-1 +|(l-a.)a,s; j 

where 

(2.60) 

(2.61) 

(2.62) 

cr A/ 
•E"+I  n-1 (2.63) 

and 

S " = B .  
m m 0 -«.)Sr'+I ( l -a„)a„S n-2 m + -

r„ \ 
E". 

1 + 
A t  

(2.64) 

2.6 Conclusion 

The behaviors of an electromagnetic field are governed by the Maxwell's 

equations. The dielectric properties of the biological tissue are more conveniently 

described by the Cole-Cole expression. Since it is difficult to apply the conventional 
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Fourier Transform method to the Cole-Cole expression to convert it from the frequency 

domain to the time domain, it is a challenge to solve the Maxwell's equations when 

coupled to the Cole-Cole expression. In order to overcome this difficulty, a new approach, 

where the Cole-Cole expression was approximated by a second-order Taylor series based 

on the z-transform method, was developed. 

The FDTD method has been widely used for solving various types of 

electromagnetic problems. However, the applications of the FDTD method are limited by 

the CFL stability condition. Very recently, the unconditionally stable ADI-FDTD 

methods were successfully applied to the solution of Maxwell's equations. 



CHAPTER THREE 

NUMERICAL SIMULATION 

3.1 Governing Equations for Analyzing Bioeffects 

For simplicity, it is assumed that the biological tissues being simulated in this 

research are isotropic, homogeneous, and nonmagnetic, that is, B = ju0H . Considering 

the frequency-dependence of the dielectric properties of most biological tissues, the 

governing equations for studying the nanopulse bioeffects in this dissertation research are 

the normalized Maxwell's equations as follows [23]: 

^ = t^=VxH, (3.1) 
y^oMo 

D(«) = e ' r ( (o ) -E(a>) , (3.2) 

^TI 1 
— = —p==V xE, (3.3) 
* Vw 

where D(<w) = ^l/(f0//0)D(<y) is the normalized electric flux density, and 

E(ty) = yJe0//J0E[(o) is the normalized electric density. In the later sections, the ~ 

notation will be dropped, and D and E will be used instead of D and E for simplicity. 

In doing three-dimensional simulation, Eqs. (3.1)-(3.3) include 9 different 

components: Ex, Ey, E_, Dx, Dy , D_, Hx, Hy , and H.. The positions of different 

26 
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components are illustrated by Yee's cell as shown in Figure 2.1. In addition, since the 

speed of light cQ =1/yje0/j0 , the scalar forms of Eqs. (3.1)-(3.3) can be expressed as 

follows: 

dDx 

d t  
= co 

' dH z  

I dy  

d H y)  

dz  ,  
(3.4) 

SDy 

d t  
= c0 

(dH x  

\  dz  

dHA 

dx  ,  
(3.5) 

3D 

d t  
= c0 
( dHy 

v  dx  

dH x )  

&  j 
(3.6) 

D x( g >)  =  £ ' , (<») e A 0 >)>  ( 3 J )  

D y {o} )  =  e ' r ( co )E y { (o ) ,  (3.8) 

D z ( co )  =  s '  (a>)E z (a>) ,  (3.9) 

dH s  

dt  
~  c o  

(dE y  

I dz 

dE z \  

Qy,  
(3.10) 

dHy 

dt  
= c o  

(  8E z  

K  dx  
a/q 
dz  ,  

(3.11) 

dH z  

dt  
= co 

(  dE x  

[  dy  

8 Ey)  
dx  /  

(3.12) 

3.2 Finite Difference Scheme 

It can be seen that the governing Eqs. (3.7)-(3.9) are in the frequency domain, 

where the relative dielectric constant, e'r (co), is modeled by the Cole-Cole expression as 

shown in Eq. (2.47). Therefore, it needs to convert the Eqs. (3.7)-(3.9) from the 

frequency domain to the time domain for implementation into the FDTD scheme. Here, 
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this research follows the method in [22] and employs the z-transform described in [23] 

and  a  second-o rde r  Tay lo r  app rox ima t ion  p roposed  in  [22] .  As  a  re su l t ,  E a t  t ime  s t ep  n  

can be written as follows: 

where 

E" = —iD"-r_l - Y 5 
A{  &  H  

1 
0-« m )S: - ' + - ( l -a m KS 

n-2 

crA t v-i A sm A = £a, + — + / —, , 00 
c ' 1 / \ l-am > 

»6)  

B.. 

Ln  
yA  t j  

1 + 
fx V-- ' 

At  

m = 1,2,3,4, 

\LU / 

r  =^AL.E"+ i"-\ 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

SI =B.  
m m ( l -Osr+jO-a .RS 

n-2 

m + -
As. 

E", m = 1,2,3,4. (3.17) 

1 + 
At  \"'7 

Equation (3.13) is in the vector form, which has corresponding expressions for E x ,  £  

and E. , respectively. 

To relax the stability constraint of the conventional FDTD method, the ADI-

FDTD procedure as described in [18] is used for the governing Eqs. (3.4)-(3.6) and 

(3.10)-(3.12). The basic idea behind this method is to break up the time step into two 

half-steps. And for each half-step, the central difference approximations are employed for 

both the temporal and spatial derivatives in the governing equations, while the finite 

difference operator on the right-hand sides of the Maxwell's equation is implicit only 
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along the single coordinate axis. As such, the finite difference scheme for the governing 

Eqs. (3.4)-(3.6) and (3.10)-(3.12) can be expressed as follows: 

1) For the first half time step (i.e., the advancement from the «th time step to the 

(n +1/2) th time step), the first partial derivatives on the right-hand sides of Eqs. 

(3.4)-(3.6) and (3.10)-(3.12) are taken implicitly, while the second partial derivatives 

on the right-hand sides of these equations are taken explicitly. The scheme can be 

written as: 

i 
n+— 

/i+— 1 1 n+— J 1 

H,  2 ( i  +  - , j  +  - , k ) -H .  +  )  
" 2 2 2 2 

4y 

Az 
(3.18) 

I 
n+— 

n+i \ 1 n+— 1 J 

x J 2  2 2 2 
Az 

Ax 
(3.19) 

I 
n+— 

d ,  1  c ,  i , k+ i )=d :  a ,  j , k+1)  •+^  

n+i 1 1 1 1 
H y  2( i  +  L , j , k  +  ±) -H y  2( /_ i f y ,*  +  i )  

Ax 

Av 
(3.20) 
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,,"4,. . 1 , K T J „ , .  .  1 , L c 0 At  
H x  ( i , j  + - , k  +  - )~  H x ( i , j  +  - , k  +  - )  +  ̂ ~  

Ep  ( i , j  +  ̂ , k  +1)  -  Ep  ( i ,  j  +  ̂ , k )  

Az  

E» ( i j + \ , k+±) -E: ( i j , k+±)  

Ay 
(3.21) 

/ /7 5 ( /+i ,y ,£+i)  = / / ; (*+- ,y ,£+-V— 
y 2 2 * 2 2 2 

i 
/»+— 

£,  J ( /+l ,y ,*+i)-£r5(''.y.* + |) 

Ax 

Az 
(3.22) 

_«4 1 

1 
rt+ — 

Ay 

E;(i + lJ + ~,k)-E;QJ + ~,k) 

Ax  
(3.23) 

2) For the second half time step (i.e., the advancement from the (« + l/2)th time step to 

the (n +1) th time step), the first partial derivatives on the right-hand sides of Eqs. 

(3.4)-(3.6) and (3.10)-(3.12) are taken explicitly, while the second partial derivatives 

on the right-hand sides of these equations are taken implicitly. The scheme can be 

written as: 
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n+\,. 1 . 1 . CnAt 
Dra+- , j , k )=D x  m+- j , k ) + - °~ 2 

n+— J 1 rt+i J | 

H
' 

2{i + ̂ j + i,k)~H: Hi + i'j~^k) __ 

//;+1(/+I 7-^+i)-//;+,(/+I j,k~) 

Az  
(3.24) 

d;" (f j+ \ , k )=D"~mj+^ ,k )+^ -

1 
«+— 1 1 1 1 

H x  
2 ( i , j  +  — , k  +  —)~H 2 ( i , j  +  - , k -~ )  

2 2 2 2 
Az 

y+i  *)  

Ax 
(3.25) 

of ('. y, *+i) = A (/J. *+j)+^ 

n+i 1 1 "+- 1 1 
H v  

2 ( i  +  - , j , k  +  —)-H 2 ( i - - , j , k  +  ~ )  
y 2 2 y 2 2 

Ax 

HT\ i , j ^ , k +
l - ) -HT\ i , j - X - , k +

X - )  _ (3.26) 

1 , 1 1 
n+— 1 , L cnAt 

H: + i ( i j+ i - , k+^ )=H x  2( i j+±k+±)+-

i 
n+— 

E y mj+±,k+i ) -Epo j+~ ,k )  

Az  

E : ' \ i j+u+±) -E: ' \ i , j , k+ l )  

AV 
(3.27) 
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1 1 1 1, cM H"  ( i  +  - , j , k  +  - )  =  H v  2 { i + ' j t k  +  ̂ )  +  _o .  
E"+'2 (' +1, j ,  * +1) - e"+2 (/, j ,  k  +  ± )  

Ax 

Az  
(3.28) 

rrn+l / .  1  • 1  i n  r r " + l / -  1  • 1  f x  Cn^ 
(l + 2,J + 2 ~ - 2,J + 2 ~2~ 

1 
«+— 

£, Hi  +  ̂ , j+ lk ) -E '  Hi  +  ̂ j , k )  

Ay  

2 '  

Ax  
(3.29) 

Equations (3.18)-(3.29) are a set of implicit equations since the right-hands sides 

of these equations contain the field values unknown and to be updated. For instance, in 

Eq. (3.18), one can see that the updated value of Dx is dependent on the stored values of 

Dx , H and unknown values of H. . By substituting the expressions for H 
i 

n+— 
2 

1 
n-\— 

represented by Eq. (3.23) into Eq. (3.18) and replacing the E z  
2  in Eq. (3.23) by Eq. 

i 
n+— 

(3.13), a tradiagonal linear system on D 2  can be obtained, which can be solved easily 

i i 
n+- n+— 

by the Thomas algorithm. D y  
2 ,  D  2 ,  D" + x ,  D"+1, and £>"+1 can be calculated using 

similar procedures. Thus, the values of E and H fields can be updated by Eqs. (3.13), 

(3.21 )-(3.23), and (3.27)-(3.29). 
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3.3 Boundary Conditions 

Since the computational domain that can be simulated using the ADI-FDTD 

scheme is limited by computer resources, absorbing boundary conditions (ABCs) play an 

important role in FDTD simulations for eliminating the unpredictable reflections from the 

boundary. Otherwise, it is difficult to distinguish the real wave from the reflected junk. 

There have been a number of techniques on ABCs [3], [9] including the Mur ABC [50], 

the Liao ABC [51], and various perfectly matched layer (PML) formulations [9], [52]-

The PML method described in [23], which is based on Berenger's PML 

formulations [52], [53], is employed in this research to implement absorbing boundaries. 

Different from the conventional boundary conditions, such as Dirichlet or Neumann 

conditions, the PML method imposes an artificial absorbing layer adjacent to the edges of 

the computational domain. The wave is attenuated by the absorption and decays 

exponentially in this absorbing layer. 

Suppose a wave is propagating from medium A into medium B, then the amount 

of reflection at the interface of two media is determined by the reflection coefficient T 

I A + I B  

where r j A  and i j B  are intrinsic impedances of two media, which are determined by 

permeabilities /u and dielectric constants e as follows: 

[54]. 

[55]: 

Y  = U aZ H B.  (3.30) 

(3.31) 
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If r jA  equals to r jH  ,  then there is no reflection at the interface of medium A and medium 

B, and the pulse will continue propagating in medium B. The ideal PML should be a 

lossy medium that attenuates the wave and makes it die out before it hits the boundary. 

Therefore, both fj and s of Eq. (3.31) can be set to be complex numbers considering 

that the imaginary part of dielectric constant represents the decay. 

Following the derivations described in [23] and going back to the governing Eqs. 

(3.4)-(3.12), they can be written in the Fourier domain as follows: 

JcoDx =c0 

jcoD = c0 

jcoDz = c0 

dH,  dH v  

I dy dz  

f dH x  dH.  

y  d z  dx  

( d H y dH x  

dx  dy  

d A 0 ) )  =  K( 0 } ) E A 0 } )>  

D
y{a,) = er((D)Ey(co), 

D ,  ( co )  =  e  (« )  E ,  ( co ) ,  

jaHx — c0 
dE y  dE ,  

ja )H y  = c0 

jcoH, = c0 

dz  dy  

dE, dEx 

dx  dz  

dE x  dEy 

dy  dx  

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 
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Here, c0 = 1jyje0Mo > and 3/5/ in Eqs. (3.4)-(3.12) becomes ja> in Fourier domain in 

time. 

Adding some fictitious dielectric constants and permeabilities into the Eqs. (3.32)-

(3.34) and (3.38)-(3.40) to implement the PML gives [56], [57]: 

J'a>Dx' eFx (x) • 4 (y) • eHx (z) = c0 
f  dH .  dH v  

j(oDy • ePy (x)• e F y  ( y )  •  s , y  ( z )  =  c Q  

dy  dz  

dH r  dH.  

dz  dx  

(3.41) 

(3.42) 

jcoDz • s,z (x) • e,z (^) • e'Fz (z) = c0 
dH y  d H x  

dx  dy  
(3.43) 

j(oHx • /4 (x) • n).-x (y) • /4 (z) = co 

jcoHy • n\.y (x) • /u'„y (^) •p ' , y ( z )  =  c 0  

dE y  dE ,  

dz  dy  

' dE ,  dE r  

dx  dz  

(3.44) 

(3.45) 

i't'll, (y) • M'r, (z) = co 
dy  dx  

(3.46) 

It should be pointed out that the real value of e*  (a t ) in Eqs. (3.35)-(3.37) 

specifies the medium and it has nothing to do with the fictitious values. Therefore, Eqs. 

(3.35)-(3.37) keep the same forms in the implementation of PML. 

According to the descriptions in [23] and [58], these fictitious values should 

satisfy two conditions to form a PML: 

1) The impedances of background medium (medium A) and PML (medium B) 

must be a same constant, 
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7 1A = t 1B =  
7=- = 1, m = x,y,or z. (3-47) 

Here, the impedances equal to 1 due to the normalized units. 

2) In the direction perpendicular to the boundary, the relative dielectric constant 

and relative permeability must be the inverse of those in the other directions. For example, 

in the x direction: 

4c(*) = — 
1 1 

4W'  

/4M=— 
v l y ( x )  / 4 ( * ) '  

(3.48) 

(3.49) 

Thus, the fictitious values are chosen to be complex quantities in the following forms 

[23]: 

4* ( x)  =  i x )  =  1 + -

j<ozo J 

C y  ( x )  =  e F z  ( x )  =  (* )  =  fh i  ( * )  = 1  + • 
joeo 

(3.50) 

(3.51) 

Obviously, Eqs. (3.50) and (3.51) satisfy two conditions of PML expressed in Eqs. 

(3.47)-(3.49). If a increases gradually as it goes into the PML, then Dy , D:, Hy, and 

H.  in Eqs. (3.41)-(3.46) will be attenuated. 

The fictitious dielectric constants and permeabilities in the y  and z  directions are 

obtained using a similar procedure as above. Therefore, the governing Eqs. (3.32)-(3.34) 

and (3.38)-(3.40) in the PML can be written as: 

° { y )  
jco- 1 + 

Y. . g (^)Y,  , a ( z )^  ~ ( d H •  d H  A  

J<oe o 
[ + -

JO}£o 
. 4* -

JO}£ o 
D_  

dy  d z  
(3.52) 



JCO-

JCO-

jo>-

JCO-

JCO-

1 + -
jaeo J(oeo 

1 + -
ja>£ o 

^  = c o dH,  dH.  

1 + -
g (*)Y, .  ̂ OOY) |  a ( z )  
JO>£o 

[ + 
A"1 / 

D,  =c, 
JCO£o 

'0 
/ 

dz cbr 

a//, a//, 

dr  dy  

l + -
josQ 

1 + -
<T ( y )  
J(OSo 

1 + - Ifl 
y^0 

/ /=c ,  

1 + -
c r ( j c )V 1 ,  ^MTYi , °"( z )  

7^0 J®£  o 
' 

1 + -

J0)£o 

1 + -̂ MY^MY,,  c t ( z )  

JC0SD J(0£q 

1 + -
J(OS o 

.t 
u0 

/ /  =c n  

5£, 

dz  dy  

dE. dE, 

dx  dz  

dE .  dE v  

dy  dx  
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(3.53) 

(3.54) 

(3.55) 

(3.56) 

(3.57) 

To develop the ADI-FDTD formulation, the above equations should be 

transformed back to the time domain and split into two half-steps in time. To illustrate 

this idea, Eq. (3.52) is chosen as an example. 

For the first half time step, starting by only retaining the dependent fictitious 

values in x andy directions, Eq. (3.52) is rewritten as 

JCO- 1 + 
° ( y )  

joe* 

\  f 
D, = c, 1 +^M 

jo>£o, 

3// dll 

dy  dz  
(3.58) 

Since the left side of Eq. (3.58) can be further expressed as 

JO) - i+^W 
jO)£a . 

D x  =ja)D x +- i y )  Dx, (3.59) 

transforming it to the time domain and then taking the finite difference approximations 

give 
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«SL+2MAa 

d t  e n  

n+— 

D.  2  1 
U 2 , j , k j D " \ ! + 2 , J ' , k  

1 

+ 

At /2  

n+— f  1  
/  D  2  i  +  - , j , k  

<t (J )  I .  2 ' J '  .  
+  D"  . 1 . , 

l + 2 ' J , k  
(3.60) 

From the right-hand side of Eq. (3.58), one may use the fact that (1/ jco) can be regarded 

as an integration operator over time: 

o{x ) \ (dH t  dH y  
1 + -

J(os0 dy  dz  

dH ,  dH v  

K  dy  dz  j  
I 

•f" C(\ 
a  {x ) (dH :  dH y  

jo>£0 dy  dz  

Ay  Az  

a \ i  +  -
+ cn 

1 . 1 4 . .  l . i  
2 0  +  - J  + - , k ) -H z  

1 ( j + 2 , j ~2 , k )  

2 Ay  

^ "ST* / r j i  
+^ -L c u r l - H *  

^ 1=0 

1 ^ At i+- f 1 
i  +  ~ , j , k  +~Yd cur l_H x

2  i  +—, j , k  
^ ^ /=o V ^ 

(3.61) 

where 

curl H' 
i + \,j,k Ay 

//;</ + ! y,4 + I)-W;(i + I,y,t-i) 

Az  
(3.62) 
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Equations (3.60) and (3.61) are now substituted into Eq. (3.58). This gives 

Dx 
2 

V 

1 ^ (  1 
i  + T>J> k  =  S ,3 0) D" ' + 

i  )  \  i  

+^ ( y ) (1 + g"( i +^ 
/ J  

«+- 11 n+i i i 
H.  2 ( i  +  - , j  +  - , k ) -H .  2 { i+- , j - - , k )  
'  2  2  2  2  

+ * 
cM 

S j 2 { j )Sn  l  + -
1 

]Tcwr/_//{ i  +  K j , k  +^cur l_H X
+ 2  i  +  ̂ - J , k  

/=o V 2 / /=o V 2 
(3.63) 

The parameters g j 3 ,  g j 2 ,  and g n  are defined as 

sAJ )  
\ -a ( j )A t /4£ 0  

\  + a ( j )A t /4e 0  '  
(3.64) 

8 j2U)  =  
\  + <j ( j )A t /4e 0  '  

(3.65) 

(0 
(0A' 
2en 

(3.66) 

Equation (3.63) is only the ADI-FDTD formulation for Eq. (3.58), where the z  

dependent term from Eq. (3.52) was set aside. Using the same procedure as above, Eq. 

(3.52) can be approximated by 

i  r  «+- ' 

D 2  
X 

\ 

'  +1 'h* )  =  S j3  ( j )g k 3  (* )  D"  ( i  +  ~ , j , k  
L  J  \ L  

-^s j 2 { j ) s k 2 { k )  

1 + S,I 

V 

V 

. i^ 
i+— 

^ j ) 

i 
n+— 1 1 n+- i i 

H,  2 ( i  +  —, j  +—,k ) -H ,  2  ( /  +  —, /—,k )  
' 2  2 2 2  

/  + — 
v 2 J 

n-1 

Y^cur l_H[  i  +  K j , k )  +  Y d cur l_h[ + 2  i  +  ̂ - , j , k  
i=o \ ^ J i=o V 2 

(3.67) 
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where 

l - ( j ( k )A t /4£ 0  

*3 1 + cr[k) At/4e0 

(3.68) 

S n { k )  =  
1 

l + cr(A)A//4f0 

(3.69) 

So far, the ADI-FDTD scheme has been obtained for the governing Eq. (3.52). 

Following the same derivation as for Eq. (3.52), the full ADI-FDTD scheme for 

governing Eqs. (3.52)-(3.57) including PML can be expressed as follows: 

1) For the first half time step (i.e., at the (« + l/2)th time step), 

i / 
n+— 

Dx 
2 

v 
1+ b J' *)= 8ji ̂ 8k3 ̂  D" i+\ ,J,k 

+ ̂ g j2{ j )g k i ( k )  1 + + ̂  
yy  

„+i 11 n+I i i 
H

' 
2(^+2J+rk)~H' 2<< i+2'j~2 ,h) 

c ^AJ) s k 2 {k )  / / ; ( / + i ,y ,^+i) - / / ; ( /4- i j^- i )  

+^^2(7)^2(^)^1 
( •  1' 

Z H 
v 2y 

n-1 I . A ^ . 1 
Y^cur l_H l \ i  +  - , j , k  ] +  ] [W/_ / /  
1=0 1=0 l + 2 ' J ' k  

(3.70) 

„+!f 1 
and similar corresponding expressions for D y  

2 1 i , j  +—,k  
V 2 

n+l( 
and D,  2  h j , k  +  ̂  
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n+— 
H ,  2 

1 1 \ 
^7+-^+-J- /y3^y +  -  |/*3 

1 
k  +  -

1 

+ -
CgA/ 
2Az 

cnAt 

f ,  n 

o— f J J 2 

+ • 

2Ay 

c n  At  
f ,  j  2  

r. i' 
•/ + 2j V 

/ r. i' 
•/ + 2j V 

/« 
r. i' 

•/ + 2j V V 

r o 
•/ + 2 V 

/ 
r o 

•/ + 2 V 
/« 

r o 
•/ + 2 V V 

r. o 
7 + 2 V z V 

/ 
r. o 
7 + 2 V z V 

/« 
r. o 
7 + 2 V z V V 

1 
*+jJ(»+/,(0) 

1 
K 2 ( i , j  +  i ; , k  +  l ) -E y  

2 ( i , j  +  ̂ , k )  
1 

k  +  
2y 

*4"» '  

£;(/,y+i,*+|)-£;(/,y,*+i) 

/=o 
Jcwr/_^[ / ,y  +  ̂ ,A:  +  ̂ ]  + 5cMr/_4 + 2 ( / ,y  +  ̂ ^ + ̂  

v ^ ^ / /=o V 
(3.71) 

and similar corresponding expressions for H 
1 

i+ - , j , k+-
2 2 

n .  „-4r .  i  .  i  N  
and H, 2 

v 2 2 . 

2) For the second half time step (i.e., at the (« +1) th time step), 

1 
1 f  1 n+~ 1 

D"+1 [i+2,J,kj = gj3D* 21'+ 2'J'k 

+ • £oA/ 
2 Ay 

g j2{ j ) s k 2 {k )  
n+- J J n+- 1 J 

(/)«„(*) 1 + &. 

+ -y- gj2 {j)gki{k)ga[i + -^ 

( •  01 / + — 
v. 2y > 

o ' + * + \y- K ( i + >-k  

(  1 ^  "  n - (  1 
Y^cur l_H[  i  +  - , j , k  \  +  Y_ , cur l_H X  

2  i  +  - , j , k  
V 2 y ;=0 V 2 , /=o 

(3.72) 

»+i r i i „+i ( n and similar corresponding expressions for £)"+l i , j  +—,k  and D"+1 /, j , k  +  — .  
V 2 y v 2y 
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H n+1 •  •  W  0  r  (  •  0 / -
' •7  +  ? / :  +  ̂ = /Hy +2/" 

f n ' *+-  H:  
2 

.  . i . r 
i , j+ - , k  +  -

2 2 > 

, coA' f 

2Az 

C o A / -
J I 

2  Ay  J 2 

+$ALf 

2 Jjl 

( .  0 
"/ + 2 v L J 

/ ( .  0 
"/ + 2 v L J 

/« 
V 

{ •  0 
7 + 2 V z 

/ 
{ •  0 
7 + 2 V z 

/« 
V 

(. n 

•/ + 2 v 

/ (. n 

•/ + 2 v 
/« 

V 

k  +  
l 

(«', j+|*+1)  -  V J+ j»*) 

£ + —  
v 2 J 

i) 
( 1 + / i  (0)  £ ; + 1 (U+u+^)-£rW,*+^)  

/=0 

" ^ 1 1 ^ " /+- ( 1 1 ^ 
Y^cur l_E ' x  i , j  +  - , k  +  - \  +  Y j cur l_E x  

2  i , j  +  - , k  +  -
V *•) i=o V 1 A 

(3.73) 

and similar corresponding expressions for H"+x i+^,j,k+~ 
] "N ( \ i ^ 

and HT X  i  +  - , j  +  - , k  
* 2 2 

Here, 

g ,  i (0 -^ .  fti(0=  
1 + <T(/)A//4£c 

l -<r( i )A/ /4g„ 

1  + <r( i )  A/ /4g 0  

(3.74) 

/„(/)-4^. /«(')-
1 f 1 ~g"(/') A//4g0 

2f0 ' v 7 l + <r(/)A//4g0 ' '3 l + (j(/)A//4£:0 

and similar corresponding expressions for j  and k ,  as well as 

(3.75) 

curl H' i+ - , j , k  l =  -
Ay  

Az  
(3-76) 

curl E[ • • 1 t 1 i , j  +  - , k  +  -
2 2 

E'M, j  +  ̂ , k  +  l ) -E 'M, j  +  ] - , k )  

Az  

E ' : ( i , j  +  \ , k  +  ̂ ) -E l
: ( i , j , k  +  ̂ )  

4y 
(3.77) 
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together with similar corresponding expressions for the y and z directions. 

As suggested in [23], an auxiliary parameter is employed instead of actually 

varying the conductivities in calculating the parameters g and/expressed by Eqs. (3.74) 

and (3.75): 

(3-78) 
4s0 

which increases as it goes into the PML. Here, an empirical formula given in [23] is 

employed in the computation, 

*„(/) = 0.333 i = 1,2,...,length pml, (3.79) 
length _ pml 

where length_pml is the length of PML. Thus, parameters g and / can be calculated as 

follows: 

(3'80) 

/,(/)-2X.W. '•(')-£$ <3-81> 

and similar corresponding expressions for j  and k .  It should be pointed out that f n ,  g l 2 ,  

and gj3 are computed at the full intervals, i; while gn, fl2, and fl3 are computed at the 

half intervals, / +1/2. On the main problem space, g and/are defined as 

= «,:(') =£)(') = l- (3.82) 

/,(0 = °. /:(') = />(') = ! (3-83) 

and similar definitions for j and k. Therefore, the above parameters create a seamless 

transition from the main problem space to the PML, as shown in Figure 3.1. 
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PML 

Mam problem space 
Increasing values of 

gn 
and fa ; 

Decreasing values of 

§i2 ' Si3 ' f/2 » f,2 

Figure 3.1 Parameters related to the PML 

Figure 3.2 illustrates the effectiveness of a 10-point PML of a three-dimensional 

simulation in free space. A dipole source is located at the center of the problem space. It 

shows the contours of E. in the xy cross-section. It can be seen from this figure that the 

wave is absorbed as it reaches the PML, and that no reflection occurs. 
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(C) 

Figure 3.2 Contour of E. from a dipole source in an ADI-FDTD program with a 10-point 

PML at (a) 65 time steps, (b) 75 time steps, and (c) 85 time steps. 
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It should be pointed out that Eqs. (3.70)-(3.73) cannot be used for direct 

numerical calculation since they include unknown field components on both sides. By 

i i 
n+— n+-

substituting the corresponding expression for H, 2 similar to Eq. (3.71) and Ex 
2 

represented by Eq. (3.13) into Eq. (3.70), one may obtain 

„+If 
-P D 2 

X 

V 
i + )-,j-\,k\ + Q-D*2 (i + ̂ -,j,k]-R-Dx 

2(i + ̂ ,j + \,k = W, (3.84) 

where 

cn
2 At2 

/> = "4V"^2^g'l2^[1 + g" 

f. 1^ 
/ + — 

V 2 y y 
f. a / + -

v ** J 

( 1 \ 
/, n 0 +/.,W)p (3-85) 

2 = l+%rT-«j:(y)«t:(*) 
4Ay 

f / 
1 + Si i 

v 

1 
/ + — 

2 

• f ,  a / + -
V L J V 

f, J2 
1 

J - 2  )'+//2 J'+: (3.86) 

cn
2At2 

* = 1^5"*/'(•»*«(*) 1 + £,l 
^  j V k  
l + ~  

V  2 y y  
/X'+^Wy+^O+.M*))^ <3-87> 

v ^ y 
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W  =  g j i  { j )  g " 3  ( * )  D "  i  +  \ > j > k  

c£gAJh>M h; 
i . . ., o 

i  + — , j , k  +  —  
v 2 2 

H"y 
• 

1 • t 1 

2 2 

+^g,2(y)&2(*)&,f'+| 
" ( 1 \ «-» /+i / i 
^ c u r l_H'X i + — ,j,k \ + Y 4 C u r l _ H x  

2 \ i  +  ~ , j , k  
i=o V ) i=o \ ^ j 

cnAt 
+^gmg"(k\l+g" 

i \\ 

CpA/ 

2Ax /2 

, co^ f f 

2 

/+ — 
2 

1 
i + — 

v 2, 
/ 

//2 

•Z/2 

•/ + 2, 

1 
7 + i 

i + -

v wy 
r 

e; 

\ f »  / + -

V 2y 
\ 

n. r. i 
f, j 3 h: 

i 

v7 + 2 

/ i \ 

• * • 1 ^ i + - , j + - , k  
2 2 

E
" 

• • 1 z. 
l > j  +  2 ' k  

1 1 ^ /+- f 1 Is* 
y^curl _E[ i +—,j +—,k + y^curl _E, 2 i +—,j + — ,k 
i=o v 2 2 y /=0 v 2 2 

-/3 
/ + -

1 /, >3 7 
1 

H" 
1 1 

. 2  2  /  

cnA/ 1 

W/a ' + 2K" y"2 
e; . i . 1 , 

^ y ~
e

; 

/.,(*) 

^fcurl _E l
z  

r 

1=0 

c'At2 

1 1 
i + — , j —  

2 2 

n-1 

+ ̂  curl _ E_ 
i 4 f  1 

+ 4V"8'i(y)ft!W 
1 + &1 

/=0 

/ + -

• 1 ^ i +—,J—,k 
2 2 

•<-r. 
i 

v 
\ 4 

\\ 

J J 
fa / + — f, j)(>+/.,«)± 

i + - , j - \ , k  ~ y, k 

c0
2A/2 

/ m=l 

/ 

a„ «-

4Ay 

•<!-/: 

g j l { j ) g k 2 { k )  1  +  &  1  
f i / + -
I 2 // 

/2 

2 

/ 

• 1 • 

/ + - /, 
- / V  

J 2 
+ /, 

•/ 

y2 •/+: 
1 

V 
))('+/.,(t))7 

r 1 • 4 r 1 • i M
 

V / y m=l 
(1 -«.K + (' 1+L.J.k 

+^s^rg,1 (j)gn(k) 
4Ay2 

-/: 

1+g,i / + -

\\ 

- / y  
.0+^(1+/,,W)t 

' 1 
/ + -J + U 

^ ) m=1 
i+^-,j + l,k (3.88) 
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Equation (3.88) provides the implicit update expression for Dx at the (w + 1/2) time step, 

which is a tridiagonal linear system with respect to index j. This can be solved easily by 

i i n+— n+— . . . 
the Thomas algorithm. Using similar procedures, Dy 

2, Dz 
1, D"+ , D" , and D" can 

be obtained. 

3.4 Total/Scattered Field Formulation 

It is necessary to employ a plane-wave simulation for many practical problems in 

computational electromagnetics [3], [9]. The simulation of plane wave relies on the 

total/scattered field formulation, which introduces a plane wave boundary that generates 

the wave at one side and subtracts out the wave at the other side [59], [60], The reason for 

doing this is to minimize the interaction between the propagating plane wave and the 

perfectly matched layer, and then to minimize the computational load on the perfectly 

matched layer [23]. 

In order to implement the total/scattered formulation, the problem space is divided 

into two regions: the total field and the scattered field. Figure 3.3 illustrates how this is 

accomplished in a two-dimensional problem space. For the case shown in Figure 3.3, the 

incident plane wave is generated at j = ja and subtracted out at j = jb . The electric and 

magnetic fields in the total field, D lol and H m satisfies the following conditions: 

D™ = D,„,+D,„,, (3.89) 

H „ „ = H „ + H , „ ,  ( 3 . 9 0 )  

where D wc and H mc are the electric and magnetic fields that are generated by the 

propagation of plane wave in the homogeneous free space in the absence of any object, 
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while the D scal and H KO,  are the electric and magnetic fields that are pertubation due to 

the presence of the object. The incident fields (D jncand H mc), scattered fields (D scat 

and H Kal), and total fields (D ,0,and H ,0() separately satisfy the Maxwell's equations, 

respectively. And they can be solved using the ADI-FDTD scheme, respectively. 

Incident plane 
wave generated 

Incident plane 
wave subtracted 

X 

PML 
1 1 

( ib, ja)  ( ibjb)  

> 

Total field 

( ia, ja)  ( iajb)  
Scattered field 

>Y 

Figure 3.3 Total/Scattered field of the two-dimensional problem space 

It is similar to set up the total/scattered field in the three-dimensional problem 

space, except that the boundaries between the total field and the scattered field are planes 
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instead of the lines. It should be pointed out the incident fields can simply be kept in one-

dimensional arrays. Choosing a source point and adding the incident E. at that point 

generates a plane wave. Here, an XZ plane wave is supposed to be generated at j = ja 

and subtracted out at j = jb, as shown in Figure 3.4. Therefore, in the homogeneous free 

space without any object, there are only Ez inc and Hx jnc. 

ia 

One-dimensional 

incident array Source point 

Figure 3.4 Total/Scattered field of the three-dimensional problem space 

Since any point in the problem space is either in the total field or in the scattered 

field, if the updating of the field components of a point located in the total field uses the 

points in the scattered field, the updated value needs to be modified. Likewise, for the 
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points located in the scattered field, the same procedure is needed. Examining the ADI-

FDTD scheme for a rectangular domain shows that there are eight places that must be 

modified. The detailed modifications are described as follows: 

For the first half-time step: 

1) Dy value at k = ka or k-kb 

fl+— 1 n+— 1 CnAt "+- 1 
Dy 

2(i,j +—,ka) = D ^i,j + -,ka)-^-Hx 
2Jj + -) . (3.91) 

2 2 2Az - 2 

n+- 1 n+- 1 CnAt »+- 1 
Dy 

2(i,j + -,kb) = Dy 2(u+ + U/ + -). (3.92) 
2 2 2Az ~ 2 

2) D, value at j = ja or j = jb 

"+- 1 1 cnAt 1 
Dz 

2(i,ja,k + —) = D 2(/,ja,k + -) + H"x mc{ja--). (3.93) 
2 2 2Ay ' 2 

A*5(;,At+i) = ,«0*+^). (3.94) 
2 2 2 A y -  2  

3) Hx value just outside j - ja and j = jb 

n+— J 1 n+— J 1 CnAt 
Hx 

2(/, ja-—,k + —) = Hx 
2(/, ja~, A + ~) + ~~~ E" mc(ja). (3.95) 

2 2 2 2 2Ay 

2 2 2 2 2A>> 

4) Hy value just outside / = ia and / = z'6 

fl+- 1 1 n+i 1 1 CnAt n + -
Hy 

2(ia-—,j,k + —) = H 2(ia--,j,k + LU) • (3.97) 
2 2 2 2 2Axr 

n+- 1 1 »+- 1 1 CnAt n+-
Hy 2(ib + -J,k + -) = Hy 

2(ib + —,j,k + —) + E2 
2

c(j). (3.98) 
2 2 2 2 2Ax 
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For the second half-time step: 

1) Dy value at k = ka or k = kb 

£>;"(/,y' + i to) = £>;•'(/,y + + • (3-99) 
2 2 2Az ' 2 

£>;"(/,y+i kb)=ir"gj+\,kb)+^-H";iu+b. O.ioo) 
2 2 2Az - 2 

2) Z). value at 7 = ja or j = jb 

D>" (;, ja, k + i) = or1 (/, y„, * + i) + ̂  JtrLO'a -b- (3.101) 
2 2 2Ay - 2 

a'\i,jb,k+b=a" </, A k+i) -  ̂  . (3.102) 
2 2 2Ay " 2 

3) Hx value just outside j - ja and j = jb 

H;" (i, ja - l-,k + i) = «r' ('•. J" - o 4 + i)+^ «rL (AO • (3.103) 
2 2 2 2 2Ay 

//;•1 (/, y'A + i, *+i)= H;« (/, yi+1 i + i) - £_r(y i). (3.104) 
2 2 2 2 2Ay 

4) Hy value just outside / = ia and / = ib 

j, k+
l-) = H";< (ia -1, y, t + i) - ̂  E" £ (y). (3.105) 

tf,"1 («, + i y, * +1) = //;*'(» +1, y,*+1) + E, 1 (y). (3.106) 
2 2 2 2 2Ax 

3.5 Source Term 

One of the most commonly used source terms in the FDTD simulation is the 

Gaussian pulse given by 
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('"'of 

f ( t )  =  4 v - e  (3.107) 

where A is the amplitude of the pulse, t0  is the center of the pulse, and w controls the 

width of the pulse. However, the Gaussian pulse may be undesirable for some numerical 

simulation since it contains the direct current (DC) component [59], [61]. In order to 

eliminate the DC component, the differentiated Gaussian pulse can be used, which is 

obtained by taking a time derivative of the pure Gaussian pulse. The differentiated 

Gaussian pulse can be expressed as [61] 

In this research, the differentiated Gaussian pulse as defined in Eq. (3.108) is 

employed to be the source term to numerically simulate the electromagnetic fields inside 

the biological matters when exposed to a nanopulse. 

Based on the obtained numerical scheme in the previous sections, the 

computational procedure for simulating the electromagnetic fields inside the biological 

matters exposed to a nanopulse at time level n +1 from time level n can be described as 

follows: 

Step 1. Set up g and/as defined in Eqs. (3.80)-(3.83). 

Step 2. For the first half time step, calculate electric flux density D" 1/2 from Eq. 

(3.84) and corresponding expressions for the y and z directions using the Thomas 

algorithm, respectively. 

f ( t)  = -A (LJal .e  
J \ ) mp w 

(3.108) 

3.6 Computational Procedure 

Step 3. Modify D"y
+]/1 and 1/2 using Eqs. (3.91)-(3.94). 
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Step 4. Calculate electric field intensity E" 1/2 from Eq. (3.13) and update I"+1/2 

and S^+1/2 (m = 1,2,3,4) from Eqs. (3.16) and (3.17). 

Step 5. Calculate magnetic field intensity H" 1/2 from Eq. (3.71) and 

corresponding expressions for the y and z directions. 

Step 6. Modify Hn
x

+y2 and Hn
y

+l/2 using Eqs. (3.95)-(3.98). 

Step 7. For the second half time step, calculate electric flux density D" 1 from the 

corresponding expressions similar to Eq. (3.84) for x, y, and z directions using the 

Thomas algorithm, respectively. 

Step 8. Modify £>;+1 and D"+1 using Eqs. (3.99)-(3.102). 

Step 9. Calculate electric field intensity E" 1 from Eq. (3.13) and update I" 1 and 

S^+1 (m = 1,2,3,4) from Eqs. (3.16) and (3.17). 

Step 10. Calculate magnetic field intensity H"*1 from Eq. (3.73) and 

corresponding expressions for the y and z directions. 

Step 11. Modify H"+l and H"+l using Eqs. (3.103)-(3.106). 

Repeat steps 2-11 until the required time steps are reached. 



CHAPTER FOUR 

NUMERICAL EXAMPLES 

In this chapter, two numerical examples are given to test the applicability of the 

proposed ADI-FDTD scheme. In the examples, both the ADI-FDTD scheme and the 

conventional FDTD scheme in [22] are employed in order to compare their results. 

4.1 Example Description 

The objective of this research is to develop a numerical scheme that can break 

through the CFL stability condition so that a larger time step can be used for the 

electromagnetic field simulations. In order to test the applicability of the proposed ADI-

FDTD scheme, the electromagnetic fields induced by a differentiated Gaussian pulse and 

penetrating into two different biological matters are simulated. The pulse is chosen to be 

E, = -106 "710°e"("-|00)7400 y/m (4.i) 
V200 

where n is the number of time step. The shape of the pulse is shown in Figure 4.1. A 

plane wave is generated by the differentiated Gaussian pulse in an XZ plane and 

propagated in the y direction. The biological tissue is located at the center of a cube with 

the dimension of 60 (am x 60 |im x 60 fim. For both proposed ADI-FDTD scheme and 

the conventional FDTD scheme, a uniform mesh with Ax = iSy = Az = 1.0 |im is 

employed, which leads to a mesh of 60x60x60 grid points. A five-point PML is 

55 
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employed in all the simulations. AtFDTD = Ax/2c0 = 1.6667 x 10~15 s is chosen in order to 

satisfy the CFL stability conditions. On the other hand, 2AtFDm violates the CFL stability 

condition. 

x 105 

6 

4 

0 

4 

-6 

0 100 
n 

200 150 

Figure 4.1 Pulse shape of e, = -106 n 
g-<"-|0°) /400 y/m 

V200 

There are two cases in the computation. Case 1 is to consider the biological tissue 

with the properties of breast fat. It is assumed to be a cube with side length of 20 |im. In 

Case 2, the biological tissue is considered to be a blood cell. It is assumed to be a sphere 
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with the radius of 10 (im. The parameters in the Cole-Cole expression for these two cases 

are shown in Table 4.1. 

Table 4.1 Dielectric properties [20], [48] 

Case 1 Case 2 

(Breast Fat) (Blood) 

2.5 4.0 

0.01 0.7 

Af, 3 56 

A e2  15 5200 

Ae3 5 x 104 0 

A s4  5 x 107 0 

T,(ps) 17.680 8.377 

r2(ns) 63.660 132.629 

r3(ns) 454.700 159.155 

r4(ms) 13.260 15.915 

a, 0.1 0.1 

a2  0.1 0.1 

«3 0.1 0.2 

«4 0 0 



For both cases, the simulations are run for the conventional FDTD method using 

only two different time steps, AtFDm and 2AtFDrD, since it produces a divergent solution 

when 2AtFDm is used. On the other hand, the simulations are run for the ADI-FDTD 

scheme using five different time steps, AtFDm, 2AtFDTD, 4AtFDm, 6Alrim), and 8AtFD1D, 

to see how large a time step can be chosen. 

4.2 Results and Discussions 

4.2.1 Numerical Verification of the Stability 

Figures 4.2 and 4.3 show the simulation results of Case 1 obtained by the 

conventional FDTD scheme. Figure 4.2 is plotted based on the results with the time step 

to be AtFDTD. It shows the contours of E, in the xy cross-section at z = 30 (im after 120, 

144, 168, 192, and 216 time steps, respectively. This figure illustrates how the pulse 

touches the biological tissue, passes through the biological tissue, and passes over the 

biological tissue. It can be clearly seen that the frequency-dependent properties of the 

biological tissue, breast fat, affect the propagation of the nanopulse in the problem space. 

Figure 4.3 shows the results obtained with the time step to be 2AtFDTD. It shows the 

contours of E, in the xy cross-section at z = 30 |am after 5, 10, and 15 time steps, 

respectively. As can be seen, the solution with 2AtFDTD becomes more and more large 

and eventually divergent. This figure indicates that the conventional FDTD scheme will 

become numerically unstable if the time step does not satisfy the CFL stability condition. 

Figures 4.4-4.8 show the simulation results of Case 1 obtained by the proposed 

ADI-FDTD scheme with time step to be Atnyn), 2AtFDrD, 4AtFDTD, 6Atmm, and 8AtFDm, 
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respectively. Figure 4.4 shows the contours of E. in the xy cross-section at z = 30|im 

after 120, 144, 168, 192, and 216 time steps, respectively. When the time step is doubled, 

the numbers of iterations needed for a certain time period is reduced by half. Figure 4.5 

shows the contours of E. in the xy cross-section at z = 30 (am after 60, 72, 84, 96, and 

108 time steps, respectively. Figure 4.6 shows the contours of E. in the xy cross-section 

at z = 30 |im after 30, 36, 42, 48, and 54 time steps, respectively. Figure 4.7 shows the 

contours of E. in the xy cross-section at z = 30 (im after 20, 24, 28, 32, and 36 time 

steps, respectively. Figure 4.8 shows the contours of E. in the xy cross-section at 

z = 30 jam after 15, 18, 21, 24, and 27 time steps, respectively. As can be seen, the 

results obtained by ADI-FDTD scheme remain stable with AtFDrD, 2AtmTI:, 4A//,.Dro, and 

6At,.VTD, while the results with 8AtFDTD show small oscillations. This is probably caused 

by the PML since an empirical formula for PML is employed in this research and needs 

to be further investigated. Figures 4.4-4.8 imply that the larger time steps, which violate 

the CFL stability condition, can be employed in the proposed ADI-FDTD scheme. 

Figures 4.9 and 4.10 show the simulation results of Case 2 obtained by the 

conventional FDTD scheme. Figure 4.9 is plotted based on the results with the time step 

to be Atmm. It shows the contours of E. in the xy cross-section at z = 30 |im after 120, 

144, 168, 192, and 216 time steps, respectively. This figure illustrates how the frequency-

dependent properties of the blood cell affect the propagation of the nanopulse in the 

problem space. Figure 4.10 shows the results obtained with the time step to be 2AthDm. It 

shows the contours of E. in the xy cross-section at z = 30 (j.m after 5, 10, and 15 time 

steps. The drawback of the conventional FDTD scheme is seen again. 
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Figures 4.11-4.15 show the simulation results of Case 2 obtained by the proposed 

ADI-FDTD scheme with time step to be AtFDTD, 2AtFDTD, 4AtFDTD, 6AtFDm, and 8AtFDTD, 

respectively. The numbers of time step are selected according to the time step used for 

each situation. Similar to Case 1, stable solutions can be obtained with AtFDm, 2AtFDTD, 

4 AtFD1D, and 6AtFDm, while the solution with 8AtFDTD show small oscillations. 

Figures 4.2-4.15 imply the frequency-dependent properties of the nanopulse 

penetration of biological Matters. Since breast fat and the blood cell used in these 

numerical simulations have different parameters for the Cole-Cole expression, this 

indicates that they influence the propagation of nanopulse in different way. 
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Figure 4.2 Simulation results of Case 1 obtained by the conventional FDTD scheme with 

AtFUTD. Contours of E„ in the xy cross-section at z = 30 (am after (a) 120 time steps, (b) 

144 time steps, (c) 168 time steps, (d) 192 time steps, and (e) 216 time steps. 
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Figure 4.3 Simulation results of Case 1 obtained by the conventional FDTD scheme with 
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Figure 4.4 Simulation results of Case 1 obtained by the ADI-FDTD scheme with At,,nm. 

Contours of E. in the xy cross-section at z = 30 pm after (a) 120 time steps, (b) 144 

time steps, (c) 168 time steps, (d) 192 time steps, and (e) 216 time steps. 
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Figure 4.5 Simulation results of Case 1 obtained by the ADI-FDTD scheme with 2AtFDTD. 

Contours of E. in the xy cross-section at z = 30 fim after (a) 60 time steps, (b) 72 time 
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Figure 4.6 Simulation results of Case 1 obtained by the ADI-FDTD scheme with 4AtFDTD. 

Contours of E. in the xy cross-section at z = 30 (am after (a) 30 time steps, (b) 36 time 

steps, (c) 42 time steps, (d) 48 time steps, and (e) 54 time steps. 



66 

60 • 

501 

401 

I 

.§301 
fx 

201 

!01 

o] 10 
Y Clim) 

c Ez 
• 540255 

I 454052 
1 3ns 

I 3115S5 
1 2354S3 

I 1552 S3 
1 S3S" 
1 5r4 

1 -55325 1 -145532 -145532 
-221"35 

— -2 5^33 
-3 "4141 
-45C344 
-52554" 

20 30 40 
Y(Um) 

(b) 

Ez 
SS95" 
"551 "2 
5423 SS 
52SSQ3 
4148 IS 
301033 
1S"24S 
"3453 

-40322 
-15413" 
-1SSS2 
-3815~ 
-4S5452 
-535245 

55331 
5MS21 
420513 
335138 
245485 
1S""S 
"856" 

-"543 

1245055 
1123512 
1302 ^23 
SS1545 
"ssa 
5351 ~ 
51"954 
354810 
2-562" 
1544-43 

Figure 4.7 Simulation results of Case 1 obtained by the ADI-FDTD scheme with 6&trDTD. 

Contours of E. in the xy cross-section at z = 30 fim after (a) 20 time steps, (b) 24 time 

steps, (c) 28 time steps, (d) 32 time steps, and (e) 36 time steps. 
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Figure 4.8 Simulation results of Case 1 obtained by the ADI-FDTD scheme with 8Atmm . 

Contours of E. in the xy cross-section at z = 30 |im after (a) 15 time steps, (b) 18 time 

steps, (c) 21 time steps, (d) 24 time steps, and (e) 27 time steps. 
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Figure 4.10 Simulation results of Case 2 obtained by the conventional FDTD scheme 
with 2Atmrn. Contours of E. in the xy cross-section at z = 30 |im after (a) 5 time steps, 

(b) 10 time steps, and (c) 15 time steps. 



70 

601511 
573? 
44:3 S3 
3 S3"0 
233356 
201342 
12433 
45315 

-34153 
-113*13 
-15322" 
-2T40 
-352254 
-431"SS 
-5 U2 32 

533""5 
45"STS 
3 31533 
3M03" 
23C151 
154255 
"S4CC 
2504 

-"3352 
1431SS 

-225134 
-301030 
-3"S"6 
-4523 "2 
-523"SB 

Y (jim) 

346653 
268044 
1&336 
110-43 
32395 

-46545 
-12515S 
-2C3S46 
-2324M 
-36ii43 
-43rsi 
-51S440 

45®1 
-52254 
-154110 
-255555 
-35"320 
-4556"5 
-561530 

13D4S3 
icesm 
552965 
Sr05S 
5"5365 
5S4» 
4S632 
35-56 
251339 
146033 
40166 
-65"OQ 
-1-1557 

•2 ""433 
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Figure 4.12 Simulation results of Case 2 obtained by the ADI-FDTD scheme with 
2AtmrD. Contours of E. in the xy cross-section at z = 30 fim after (a) 60 time steps, (b) 
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Figure 4.13 Simulation results of Case 2 obtained by the ADI-FDTD scheme with 
4AtmrD. Contours of E. in the xy cross-section at z = 30 jam after (a) 30 time steps, (b) 
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Figure 4.14 Simulation results of Case 2 obtained by the ADI-FDTD scheme with 
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Figure 4.15 Simulation results of Case 2 obtained by the ADI-FDTD scheme with 
8AtFDm. Contours of E. in the xy cross-section at z = 30 fim after (a) 15 time steps, (b) 
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4.2.2 Numerical Accuracy Versus Time Step 

In the previous section, the stability of the proposed ADI-FDTD scheme has been 

tested by two numerical examples, indicating that the larger time steps can be used in the 

numerical simulations of electromagnetic fields. In this section, the numerical accuracy 

of the proposed ADI-FDTD scheme will be investigated since the modeling accuracy is 

very important for a numerical scheme. Because the conventional FDTD scheme has 

been widely used for solving the problems related to the electromagnetic fields, the 

results obtained by the conventional FDTD are used as the standard for the following 

comparisons. 

For the purpose of comparison, the E. values along the line at jc = 30 |am and 

z = 30 jxm were chosen in Case 1. Figure 4.16 shows a sequence of snapshots of the E. 

values versus y position obtained by the conventional FDTD scheme with the time step to 

be AtFom and the ADI-FDTD scheme with five different time steps after various time. It 

can be seen that for a small time step, there are not significant differences between the 

conventional FDTD method and the ADI-FDTD method. With the time step increases, 

the difference becomes visible. This is because the truncation error with respect to time 

increases. When the time step is 8AtFnm, the difference becomes significant because of 

oscillation solutions. 

For Case 2, the E. values along the line at x = 30 (j.m and z = 30 |am were also 

chosen. Figure 4.17 shows a sequence of snapshots of the E. values versus y position 

after different numbers of time steps. Similar to Figure 4.16, Figure 4.17 shows the 

comparison between the results obtained by the conventional FDTD scheme with the 
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time step to be AtFDTD and the ADI-FDTD scheme with time steps to be AtFDTD, 2AtFDTD, 

4AtFDm, 6AtFDTO, and 8AtFDm . Results similar to those in Figure 4.16 can be seen, 

except the intensity of penetration is different due to the different properties of breast fat 

and blood. 
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Figure 4.16a Snapshot of the values of E. for Case 1 obtained by the 

conventional FDTD method and the ADI-FDTD method versus >> position along the line 
at x = 30 (am and z = 30 fim after 120Atmm. 
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4.2.3 Comparison of Computational Efficiency 

Since the formulations of the proposed ADI-FDTD method and the conventional 

FDTD method are both based on the Yee's cell, two methods have the same number of 

field components for a same problem. As a result, the space complexities for both 

methods are in the same order. 

Tables 4.2 and 4.3 list the running time taken by two numerical examples with 

different methods and different time steps. All the simulations are run using a HP laptop 

with a 1.87 GHz Intel Pentium Dual processor. As can be seen, if the same time step is 

employed in both methods, the running time taken by the proposed ADI-FDTD scheme is 

longer than that taken by the conventional FDTD method. This is reasonable because 

more calculations are involved in the proposed ADI-FDTD method at each time step. 

Table 4.2 Comparison of running time for Case 1 

Numerical Method and Time Steps Number of Iterations Running Time (s) 

Convention FDTD with AtFDTD 216 66.984 

ADI-FDTD with AtFnm 216 164.335 

ADI-FDTD with 2AtFom 108 86.268 

ADI-FDTD with 4AtFDTD 54 43.740 

ADI-FDTD with 6AtFDrn 36 28.194 

ADI-FDTD with 8AtFOTD 27 21.409 
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Table 4.3 Comparison of running time for Case 2 

Numerical Method and Time Steps Number of Iterations Running Time (s) 

Convention FDTD with Atmm 216 63.820 

ADI-FDTD with AtFDTD 216 177.792 

ADI-FDTD with 2Atmm 108 82.655 

ADI-FDTD with 4AtFl)I1) 54 39.888 

ADI-FDTD with 6Atmm 36 27.050 

ADI-FDTD with 8AtFmv 27 20.131 

However, since a larger time step can reduce the total number of iterations 

required by the simulation, the running time taken by the ADI-FDTD method decreases 

considerably with the time, as shown in Tables 4.2 and 4.3. In particular, the running time 

taken by the proposed ADI-FDTD method with 4AtFDm is much less than that taken by 

the conventional FDTD method with AthVTn. 

On the one hand, using a larger time step with the proposed ADI-FDTD method 

reduces the running time taken by a simulation. On the other hand, it increases the 

numerical error as shown in the previous section. Therefore, the selection of the time step 

should be well-considered, depending on the requirements for different situations. 



CHAPTER FIVE 

CONCLUSION AND FUTURE WORK 

In this dissertation, a three-dimensional ADI-FDTD scheme coupled with the 

Cole-Cole expression for relative dielectric coefficient of biological tissue to simulate the 

electromagnetic fields inside the biological tissues exposed to the nanopulses has been 

described. The Cole-Cole expression is approximated by the method described in [22]. 

The perfectly matched layer technique and the total/scattered field formulation are also 

employed to eliminate reflections from the boundary and to generate the plane wave, 

separately. 

The new scheme is illustrated by numerical examples with two different 

biological tissues. For the purpose of comparison, both the proposed ADI-FDTD method 

and the conventional FDTD method are employed to run the simulations. Since the 

formulations of the proposed ADI-FDTD method and the conventional FDTD method are 

both based on the Yee's cell, the space complexities for both methods are in the same 

order. Numerical results show that the proposed ADI-FDTD scheme is no longer 

restricted by the CFL stability conditions. The new scheme provides stable solutions with 

larger time steps, where the conventional FDTD scheme fails. Therefore, it can greatly 

reduce the running time taken by the simulation. On the other hand, the truncation errors 
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increase with the time step. As a result, the selection of the time step depends on what 

kinds of problems are simulated. 

Future work in this research may focus on the further improvement of stability 

and numerical accuracy with the ADI-FDTD method. In particular, as mentioned in the 

previous section, the oscillation with the larger time step is probably caused by the PML 

since an empirical formula for PML is employed in this research. A more suitable 

formula could be developed so that the reflection from boundary in simulation could be 

completely eliminated. In addition, the temperature distribution in the biological tissues 

exposed to the nanopulse could be modeled and investigated since it has more practical 

meanings to many biomedical applications with nanopulses. 
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NOMENCLATURE 

91 



92 

E the electric field intensity, V/m 

H the magnetic field intensity, A/m 

D the electric flux density, C/m2 

B the magnetic flux density, Wb/m2 

J the current density, A/m2 

P the volume electric charge density, C/m3 

cr the electrical conductivity 

s the permittivity 

s0 the permittivity of free space 

er the relative permittivity 

£* the complex relative permittivity 

H the permeability 

the permeability of free space 

Hr the relative permeability 

r relaxation time 

a static conductivity 

electric susceptibility 
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#include "StdAfx.h" 
# include <math.h> 
# include <stdlib.h> 
# include <stdio.h> 
# include <iostream> 

#define IE 61 
#defineJE 61 
#define KE 61 
#define ia 5 
#defineja 5 
#defineka 5 
#define NFREQS 10 
#define Emp 0.33 

double dx[IE][JE][KE],dy[IE][JE][KE],dz[IE][JE][KE]; 
double ex[IE][JE][KE],ey[lE][JE][KE],ez[IE][JE][KE]; 
double hx[IE][JE][KE],hy[lE][JE][KE],hzz[IE][JE][KE]; 
double ix[IE][JE][KE],iy[IE][JE][KE],iz[IE][JE][KE]; 
double gaxl[lE][JE][KE],gayl[IE][JE][KE],gazl[lE][JE][KE]; 
double gax2[lE][JE][KE],gay2[lE][JE][KE],gaz2[IE][JE][KE]; 
double gax3[lE][JE][KE],gay3[IE][JE][KE],gaz3[IE][JE][KE]; 
double gax4[IE][JE][KE],gay4[lE][JE][KE],gaz4[IE][JE][KE]; 

double gbxltIE][JE][KE],gbyl[IE][JE][KE],gbzl[IE][JE][KE]; 
double gbx2[IE][JE][KE],gby2[lE][JE][KE],gbz2[IE][JE][KE]; 
double gbx3[IE][JE][KE],gby3[IE][JE][KE],gbz3[IE][JE][KE]; 
double gbx4[lE][JE][KE],gby4[IE][JE][KE],gbz4[IE][JE][KE]; 

double gdxl[IE][JE][KE],gdyl[IE][JE][KE],gdzl[IE][JE][KE]; 
double gdx2[lE][JE][KE],gdy2[IE][JE][KE],gdz2[lE][JE][KE]; 
double gdx3[IE][JE][KE],gdy3[IE][JE][KE],gdz3[lE][JE][KE]; 
double gdx4[IE][JE][KE],gdy4[IE][JE][KE],gdz4[lE][JE][KE]; 
double gcx[IE][JE][KE],gcy[IE][JE][KE],gcz[lE][JE][KE]; 
double gx[IE][JE][KE],gy[IE][JE][KE],gz[IE][JE][KE]; 
double sxl[lE][JE][KE][3],syl[IE][JE][KE][3],szl[IE][JE][KE][3]; 
double sx2[IE][JE][KE][3],sy2[lE][JE][KE][3],sz2[IE][JE][KE][3]; 
double sx3[IE][JE][KE][3],sy3[lE][JE][KE][3],sz3[IE][JE][KE][3]; 
double sx4[lE][JE][KE][3],sy4[IE][JE][KE][3],sz4[IE][JE][KE][3]; 

double idxl[ia][JE][KE],idxh[ia][JE][KE]; 
double ihxI[ia][JE][KE],ihxh[ia][JE][KE]; 
double idyI[IE][ja][KE],idyh[IE][ja][KE]; 
double ihyl[IE][ja][KE],ihyh[IE][ja][KE]; 
double idzl[IE][JE]tka],idzhtIE][JE][ka]; 
double ihzl[IE][JE][ka],ihzh[IE][JE][ka]; 

double curl_hx[IE][JE][KE],curl_hy[lE][JE][KE],curl_hz[IE][JE][KE]; 
double curl_ex[IE][JE][KE],curl_ey[lE][JE][KE],curl_ez[IE][JE][KE]; 
double ex_temp[IE][JE][KE],ey_tetnp[IE][JE][KE],ez_temptIE][JE][KE]; 

double inc_gazl[JE]; 
double inc_gaz2[JE]; 
double inc_gaz3[JE]; 
double inc_gaz4[JE]; 
double inc_gbzl[JE]; 
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double inc_gbz2[JE]; 
double inc_gbz3[JE]; 
double inc_gbz4[JE]; 

double inc_gdzl[JE]; 
double incj»dz2[JE]; 
double incj>dz3[JE]; 
double inc_gdz4[JE]; 
double inc_gcz[JE]; 
double inc_gz[JE]; 
double inc_szl[JE][3]; 
double inc_sz2[JE][3]; 
double inc_sz3[JE][3]; 
double inc_sz4[JE][3]; 

int main(int argc, char* argv[]){ 

int n,ij,k,ic jc,kc,nsteps,n_pml; 
double ddx,cO,dt,epsz,muz,pi,npml,T,time_scale,cdt_2,cdt_2dx,cdt_2dx_sq; 
int ibjb,kb,numsph; 
int NCUR,NPR2,NPR1; 
double xn,xxn,curl_e; 
double tO,spread,pulse; 
double ez_inc[JE],ez_inc_temp[JE],hx_inc[JE],hx_inc_temp[JE],dzJnc[JE],iz_inc[JE]; 
double inc_iTA4[JE]; 

double ezlowml ,ez_low_m2,ez_high_m 1 ,ez_high_m2; 
clock t start, finish; 
double duration; 
int ixh, jyh, kzh; 

double gil[IE],gi2[IE],gi3[IE]; 
double gjl[JE],gj2[JE],gj3[JE]; 
double gkl[KE],gk2[KE],gk3[KE]; 
double fil[lE],fi2[IE],fi3[IE]; 
double fjl[JE],fj2[JE],fj3[JE]; 
double fkl [KE],fk2[KE],fk3[KE]; 

double radius[ 10],epsilon[ 10],sigma[ 10],eps,cond; 
double dell 1 [ 10],dell2[ 10],deI13[ 10],dell4[ 10]; 
double tau 1 [ 10],tau2 [ 10],tau3 [ 10],tau4[ 10]; 
double alpha 1 [ 10],alpha2[ 10],alpha3[ 10],alpha4[ 10]; 
double A1 ,A2,A3,A4,B 1 ,B2,B3,B4,C 1 ,C2,C3,C4; 
double dist,xdist,ydist,zdist,curl_h; 

double TA 1 [IE],TA2[IE],TA3[IE],TA4[IE]; 
double TAfIlE],TAe[IE]; 
double iTA4[IE][JE][KE]; 

FILE *fp4,*fp5,*fp6,*fp7,*fp8; 
ic = (1E-1 )/2 ; 
jc = (JE-l)/2; 
kc = (KE-l)/2 ; 
ib = IE - ia - 1; 
jb = JE-ja- 1; 
kb= KE-ka- 1; 



pi = 3.14159; 
epsz = 8.8e-12; 
muz =4*pi*l.e-7; 
ddx = 60e-6/(IE-l); 
cO = 3e8; 
time_scale=I; 
dt = (ddx/6e8)*time_scale; 
cdt_2=c0*dt/2; 
cdt_2dx=cO*dt/2/ddx; 
cdt_2dx_sq=cdt_2dx*cdt_2dx; 

NCUR=2; 
NPR1 = 1; 
NPR2=0; 

/* Initialize the arrays */ 
for(j=0;j<JE;j++) { 

for ( k=0; k < KE; k++ ) { 
for( i=0; i < IE; i++ 
ex[i]D][k]=0.0; 
ey[i]U][k]= 0.0; 
ez[i][j][k]= 0.0; 
dx[i]U][k]=0.0; 

dy[i][j][k]=0.0; 
dz[i]|j][k]= 0.0; 
hx[i][j][k]= 0.0; 

hy[i][j][k]= 0.0; 
hzz[i][j][k]= 0.0 ; 

ix[i][j][k]= 0.0; 
iy[i]U][k]=0.0; 
iz[i]D][k]=0.0; 

gex[i]0][k]= 1.0; 
gcy[i][j]M= 1.0; 
gcz[i][j][k]= 1.0; 
gx[i]D][k]=0.0; 
gy[i][)P]=0.0; 
gz[i]U][k]=0.0; 

gaxl[i][j][k]=0.0; 
gax2[i][j][k]=0.0; 
gax3[i][J][kj=0.0; 
gax4[i][jj[k]=0.0; 
gayl[i][j][k]=0.0; 
gay2[i][j][k]=0.0; 
gay3[i][j][k]=0.0; 
gay4[i][j][kj—0.0; 
gazl [i][j][k]—0.0; 
gaz2[i][j][k]=0.0; 
gaz3[i][j][k]=0.0; 
gaz4[i](j][k]=0.0; 

gbxl[i][j][k]=0.0; 
gbx2[i][j][k]=0.0; 
gbx3[i][j][k]=0.0; 
gbx4[i][j][k]=0.0; 
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} 

inc_gbzl [j]=0.0; 
inc_gbz2[j]=0.0; 
inc_gbz3[j]=0.0; 
inc_gbz4[j]=0.0; 
incgdzl [j]=0.0; 
inc_gdz2[j]=0.0; 
inc_gdz3[j]=0.0; 
inc_gdz4[j]=0.0; 
inc_iTA4[j]=0.0; 

ez_low_ml=0; 
ez_low_m2=0; 
ez_high_ml=0; 
ez_high_m2=0; 

///// 

for (i=0; i < ia; i++ ) { 
for (j=0; j < JE; j++) { 

for ( k=0; k < KE; k++) { 
idxl[i][j][k] = 0.0; 
idxh[i][j][k] = 0.0; 
ihxl[i][j][k] = 0.0; 
ihxh[i][j][k] = 0.0; 

} } } 

for ( i=0; i < IE; i++ ) { 
for (j=0; j < ja; j++) { 

for ( k=0; k < KE; k++ ) { 
idyl[i][j][k] = 0.0; 

ldyh[i]Lj][k] = 0.0; 
ihyl[i]U][k] = 0.0; 
ihyh[i][j][k] = 0.0; 

} } } 

for (i=0; i < IE; i++ ) { 
for (j=0; j < JE; j++) { 

for ( k=0; k < ka; k++ ) { 
>dzl[i][j][k] = 0.0; 
idzh[i][j][k] = 0.0; 
ihzl[i][j][k] = 0.0; 
ihzh[i][j][k] = 0.0; 

} } } 

for (i=0; i < IE; i++ ){ 
for (j=0; j < JE;j++){ 

for ( k-0; k < KE; k++ ){ 
curl_hx[i][j][k]=0.0; 
curl_hy[i][j][k]=0.0; 
curl_hz[i][j][k]=0.0; 
curl_ex[i][j][k]=0.0; 
curl_ey[i][j][k]=0.0; 
curl_ez[i][jj[k]=0.0; 
ex_temp[i][j][k]=0.0; 
ey_temp[i][j]fk]=0.0; 
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ez_temp[i][j][k]=0.0; 
} } } 

/* Boundary Conditions */ 

for (i=0; i < IE; i++ ) { 
gil[i] = 0.; 
fil [i] = 0.; 
gi2[i] = 1.; 
fi2[i] = 1.; 
gi3[i] = 1.; 
fi3[i] = 1.; 

for (j=0; j < JE;j++) { 
gjl|j] = 0.; 
fjlDI = 0.; 
&J2D3 = 1-; 
fj2U] = i-; 
gj3D] = i.; 
fj3D] = i.; 

for ( k=0; k < IE; k++ ) { 
gkl[k] = 0.; 
fk 1 [k] = 0.; 
gk2[k] = 1.; 
fk2[k] = 1.; 
gk3[k] = 1.; 
fk3[k] = 1.; 

npml=5; 
n_pml=(int) npml; 

for ( i=0; i < n_pml; i++ ) { 
xxn = (npml-i)/npml; 
xn = Emp*pow(xxn,3); 
fil[i] = 2*xn; 
fi I [IE-i-1] = 2*xn; 
gi2[i] = l./(l.+xn); 
gi2[IE-i-l] = l./(l.+xn); 
gi3[i] = (l.-xn)/(l.+xn); 
gi3[IE-i-l] = (1 .-xn)/( 1 .+xn); 
xxn = (npml-i-.5)/npml; 
xn = Emp*pow(xxn,3.); 
gil[i] =2*xn; 
gi I [IE-i-2] = 2*xn; 
fi2[i] = l./(l.+xn); 
fi2[IE-i-2]= l./(l.+xn); 
fi3[i] = (l.-xn)/(l.+xn); 
fi3 [IE-i-2] =(l.-xn)/(J.+xn); 

for (j=0; j < n_pml; j++ ) { 
xxn = (npml-j)/npml; 



100 

} 

xn = Emp*pow(xxn,3); 
fjlfj] = 2*xn; 
fj 1 [JE-j-1 ] =2*xn; 
gj2[j]= l./(l.+xn); 
gj2[JE-j-l] = l./(l.+xn); 
gj3[j] = (l.-xn)/(l.+xn); 
gj3[JE-j-l]=(l.-xn)/(l.+xn); 
xxn = (npml-j-.5)/npml; 
xn = Emp*pow(xxn,3.); 
&jl[j] = 2*xn; 
gjl[JE-j-2] = 2*xn; 
Q2[j] = l./(l.+xn); 
p[JE-j-2] = l./(l.+xn); 
f}3[j] = (l.-xn)/(l.+xn); 
Q3[JE-j-2] =(l.-xn)/(l.+xn); 

for (k=0; k < n_pml; k++ ) { 
xxn = (npml-k)/npml; 
xn = Emp*pow(xxn,3.); 
fkl [k] = 2*xn; 
fkl[KE-k-l] = 2*xn; 
gk2[k] = l./(l.+xn); 
gk2[KE-k-l] = l./(l.+xn); 
gk3 [k] = (1 .-xn)/( 1 .+xn); 
gk3[KE-k-l] = (l.-xn)/(l.+xn); 
xxn = (npml-k-.5)/npml; 
xn = Emp*pow(xxn,3.); 
gkl[k] = 2*xn; 
gkl[KE-k-2] = 2*xn; 
fk2[k] = l./(l.+xn); 
fk2[KE-k-2] = l./(l.+xn); 
fk3[k] = (l.-xn)/(l.+xn); 
fk3[KE-k-2] = (l.-xn)/(l.+xn); 

} 

for( i=0; i < IE; i++ ) { 
TAl[i]=0.; 
TA2[i]=0.; 
TA3[i]=0.; 
TA4[i]=0.; 
TAf[i]=0.; 
TAe[i]=0.; 

} 

for (i=0; i < IE; i++ ){ 
for (j=0; j < JE; j++ ){ 

for (k=0; k < KE; k++ ){ 
iTA4[i][j][k]=0.0; 

}}} 

/* Specify the dielectric sphere */ 
epsilon[0] = 1.; 
sigma[0] = 0.; 
dell 1 [0]=0.; 
dell2[0]=0.; 
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dell3[0]=0.; 
dell4[0]=0.; 
taul[0]=0.; 
tau2[0]=0.; 
tau3[0]=0.; 
tau4[0]=0.; 
alpha 1[0]=0.; 
alpha2[0]=0,; 
alpha3[0]=0.; 
alpha4[0]=0.; 

radius[l]=10; 
epsilon[l]=2.5; 
sigma[l]=0.01; 
dell 1[1]=3.; 
dell2[l]=15.; 
dell3[l]=5.0e4; 
dell4[l]=5.0e7; 
taul [ 1 ]= 17.680e-12; 
tau2[l]=63.660e-9; 
tau3 [ 1 ]=454.700e-6; 
tau4[l]=13.260e-3; 
alphal [ 1 ]=0.1; 
alpha2[l]=0.1; 
alpha3[l]=0.1; 
alpha4[l]=0.; 
numsph=l; 

/* Calculate gax,gbx */ 
for ( i = 0; i < IE; i++ ) { 

for (j = 0; j < JE; j++ ) { 
for ( k = 0; k < KE; k++) { 
eps = epsilon[0]; 
cond = sigmafO]; 
C1 =pow(tau 1 [0]/dt/2,1 -alpha 1 [0]) 
C2=pow(tau2[0]/dt/2,1 -alpha2[0]) 
C3=pow(tau3 [0]/dt/2,1 -alpha3 [0]) 
C4=pow(tau4[0]/dt/2, l-alpha4[0]) 
B1 =alpha 1 [0]; 
B2=alpha2[0]; 
B3=alpha3[0]; 
B4=alpha4[0]; 
A1 =dell 1 [0]/( 1+C1); 
A2=dell2[0]/( 1+C2); 
A3=dell3[0]/(1+C3); 
A4=dell4[0]/( 1+C4); 

ydist = (jc-j); 
xdist = (ic-i-.5); 
zdist = (kc-k); 
xdist = sqrt(pow(xdist,2.)); 
ydist = sqrt(pow(ydist,2.)); 
zdist = sqrt(pow(zdist,2.)); 

for (n=l; n<= numsph; n++) { 
if((xdist<= radius[n])&&(ydist<= radius[n])&&(zdist<= radius[n])) { 
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eps = epsilon[n]; 
cond = sigma[n]; 
C1 =pow(tau 1 [n]/dt/2,1 -alpha 1 [n]); 
C2=pow(tau2 [n]/dt/2,1 -alpha2 [n]); 
C3=pow(tau3 [n]/dt/2,1 -alpha3 [n]); 
C4=pow(tau4[n]/dt/2,1 -alpha4[n]); 
Bl=alphal[n]; 
B2=alpha2[n]; 
B3=alpha3[n]; 
B4=alpha4[n]; 
A1 =dell 1 [n]/( 1+C1); 
A2=dell2[n]/( 1+C2); 
A3=dell3 [n]/( 1+C3); 
A4=del 14 [n]/( 1+C4); 

}} 

gcx[i][j][k]= 1 ./(eps+(cond*dt/2/epsz)+A 1+A2+A3+A4); 
gaxlti]U][k]=(l-Bl)*Cl/(l+Cl); 
gax2[i][j][k]=( 1 -B2)*C2/( 1+C2); 
gax3[i][j][k]=(l-B3)*C3/(l+C3); 
gax4[i][j][k]=( 1 -B4)*C4/( 1+C4); 
gbx 1 [i][j] [k]=0.5*( 1 -B1 )* B1 *C 1 /(1+C1); 
gbx2[i][j][k]=0.5*(l-B2)*B2*C2/(l+C2); 
gbx3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3); 
gbx4[i][j][k]=0.5*(l-B4)*B4*C4/(l+C4); 
gdxl[i][j][k]=Al; 
gdx2[i][j][k]=A2; 
gdx3[i][j][k]=A3; 
gdx4[i][j][k]=A4; 
gx[i][j][k]=cond*dt/2/epsz; 

/* Calculate gay,gby */ 
for (i = 0; i < IE; i++) { 

for (j = 0; j <JE;j++) { 
for ( k = 0; k < KE; k++ ) { 
eps = epsilon[0]; 

cond = sigma[0]; 
C1 =pow(tau 1 [0]/dt/2,1 -alpha 1 [0]); 
C2=pow(tau2[0]/dt/2,1 -alpha2[0]); 
C3=pow(tau3 [0]/dt/2,1 -alpha3 [0]); 
C4=pow(tau4[0]/dt/2,1-alpha4[0]); 
Bl=alphal[0]; 
B2=alpha2[0]; 
B3=alpha3[0]; 
B4=alpha4[0]; 
Al=delll[0]/(1+Cl); 
A2=dell2[0]/( 1+C2); 
A3=dell3 [0]/( 1+C3); 
A4=dell4[0]/( 1+C4); 
xdist = (ic-i); 
ydist = (jc-j-.5); 
zdist = (kc-k); 
xdist = sqrt(pow(xdist,2.)); 
ydist = sqrt(pow(ydist,2.)); 
zdist = sqrt(pow(zdist,2.)); 
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for (n= 1; n<= numsph; n++) { 
if((xdist<= radius[n])&&(ydist<= radius[n])&&(zdist<= radius[n])) { 
eps = epsilon[n]; 
cond = sigma[n]; 
C1 =pow(tau 1 [n]/dt/2,1 -alpha 1 [n]); 
C2=pow(tau2[n]/dt/2, l-alpha2[n]); 
C3=pow(tau3 [n]/dt/2,1 -alpha3 [n]); 
C4=pow(tau4[n]/dt/2,l-alpha4[n]); 
Bl=alphal[n]; 
B2=alpha2[n]; 
B3=alpha3[n]; 
B4=alpha4[n]; 
A1 =dell 1 [n]/( 1+C1); 
A2=dell2[n]/(1+C2); 
A3=dell3[n]/(1+C3); 
A4=dell4[n]/( I+C4); 

}} 

gcy[i][j][k]=l ./(eps+(cond*dt/2/epsz)+A 1+A2+A3+A4); 
gayl[i][j][k]=(l-Bl)»Cl/(l+Cl); 
gay2[i][j][k]=(l-B2)*C2/(l+C2); 
gay3[i][j][k]=( 1 -B3)*C3/( 1+C3); 
gay4[i][j][k]=( 1 -B4)*C4/( 1+C4); 
gbyl[i]|j][k]=0.5*(l-Bl)*Bl*Cl/(l+Cl); 
gby2[i][j][k]=0.5*( 1 -B2)*B2*C2/( 1+C2); 
gby3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3); 
gby4[i][j][k]=0.5*(l-B4)*B4*C4/(l+C4); 
gdyl[i]D]M=Al; 
gdy2[i][j][k]=A2; 
gdy3[i][j][k]=A3; 
gdy4[i][j][k]=A4; 
gy[i][j][k]=cond*dt/2/epsz; 

/* Calculate gaz,gbz */ 
for(i = 0; i < IE; i++) { 

for (j = 0; j < JE; j++ ) { 
for ( k = 0; k < KE; k++ ) { 
eps = epsilon[0]; 
cond = sigma[0]; 
C1 =pow(tau 1 [0]/dt/2,1 -alphal [0]); 
C2=pow(tau2[0]/dt/2,1 -alpha2 [0]); 
C3=pow(tau3[0]/dt/2,l-alpha3[0]); 
C4=pow(tau4[0]/dt/2,1 -alpha4[0]); 
Bl=alphal[0]; 
B2=alpha2[0]; 
B3=alpha3[0]; 
B4=alpha4[0]; 
A1 =dell 1 [0]/( 1+C1); 
A2=dell2[0]/( 1+C2); 
A3=dell3 [0]/( 1+C3); 
A4=dell4[0]/( 1+C4); 
xdist = (ic-i); 
ydist = (jc-j); 
zdist = (kc-k-.5); 
xdist = sqrt(pow(xdist,2.)); 
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ydist = sqrt(pow(ydist,2.)); 
zdist = sqrt(pow(zdist,2.)); 
for (n—1; n<= numsph; n++) { 

if((xdist<= radius[n])&&(ydist<= radius[n])&&(zdist<= radius[n])) { 
eps = epsilon[n]; 
cond = sigma[n]; 
C1 =pow(tau 1 [n]/dt/2,1 -alpha 1 [n]); 
C2=pow(tau2[n]/dt/2,1 -alpha2[n]); 
C3=pow(tau3 [n]/dt/2,1 -alpha3 [n]); 
C4=pow(tau4[n]/dt/2,1 -alpha4fn]); 
Bl=alphal[n]; 
B2=alpha2[n]; 
B3=alpha3[n]; 
B4=alpha4[n]; 
Al=delll[n]/(1+Cl); 
A2=dell2[n]/( 1+C2); 
A3=delI3 [n]/( 1+C3 ); 
A4=dell4[n]/( 1+C4); 

} } 

gcz[i] [j][k]= 1 ./(eps+(cond*dt/2/epsz)+A 1+A2+A3+A4); 
gazl [i]U][k]=( 1 -B1 )*C 1 /(1+C1); 
gaz2[i][j][k]=( 1 -B2)*C2/( 1+C2); 
gaz3 [i] [j][k]=( 1 -B3)*C3/( 1+C3); 
gaz4[i][j][k]=( 1 -B4)*C4/( 1+C4); 
gbzl [i]|j][k]=0.5*( 1 -B1 )*B 1 *C l/( 1+C1); 
gbz2[i][j][k]=0.5*( 1 -B2)*B2*C2/( 1+C2); 
gbz3[i][j][k]=0.5*(l-B3)*B3*C3/(l+C3); 
gbz4[i][j][k]=0.5*( 1 -B4)*B4*C4/( 1+C4); 
gdzl[i][j][k]=Al; 
gdz2[i][j][k]=A2; 
gdz3[i][j][k]=A3; 
gdz4[i](J][k]=A4; 
gz[i][j][k]=cond*dt/2/epsz; 

} } }  

tO = 40.0; 
spread = 10.0; 
T=0; 

nsteps = 2; 

fp4 = fopen("l 20.txt","w"); 
fprintf(fp4,"TITLE=ELECTRIC FIELD\n"); 
fj>rintf(f^>4,"VARIABLES=X, Y, Ez\n"); 
fj>5 = fopen(" 144.txt","w"); 
fj?rintf({^5,"TITLE=ELECTRIC FIELD\n"); 
fprintf(fp5,"VARIABLES=X, Y, Ez\n"); 
f^»6 = fopen("l 68.txt","w"); 
l^)rintfl[^)6,"TITLE=ELECTRIC FIELD\n"); 
fyrintfl[f^>6,"VARIABLES= X, Y, Ez\n"); 
ipl = fopen(" 192.txt",'"w"); 
fj>rintf(fi>7,"TITLE=ELECTRIC FIELD\n"); 
fyrintf(fi>7,"VARIABLES= X, Y, Ez\n"); 
fj)8 = fopen("216.txt","w"); 
f^rintf(f^8,"TITLE=ELECTRIC FIELDVn"); 
fyrintf(fi>8,,,VARIABLES= X, Y, Ez\n"); 
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nsteps=220; 
for ( n=l; n <=nsteps ; n++) { 

T = T + 0.5; 
NPR2=NPRI; 
NPR1=NCUR; 
NCUR=(NCUR+1)%3; 
/* — Start of the Main FDTD loop — */ 

/* Calculate the incident buffer */ 
for (j=l; j < JE;j++) { 

dz_inc[j] =dz_inc[j]+cdt_2dx*( hx_inc[j-l]- hx_inc[j]); 
} 

pulse=-1.0e6*( 100.-T)/sqrt(200.)*exp(-(T-100.)*(T-100.)/400.0); 
dz_inc[3]=pulse; 

for(j=0;j < JE;j++) { 
ezJnc_tempU]=ezJnc[j]; 

} 

for (j=l; j < JE-1; j++ ) { 

B1 =inc _gazl [j]*inc_szl [j][NPRl ]+inc_gbzl [j]*inc_szl [j][NPR2]; 
B2=inc_gaz2U]*inc_sz2[j][NPRl]+inc_gbz2|j]*inc_sz2[j][NPR2]; 
B3=inc_gaz3 [j ] * inc_sz3 [j ] [NPR 1 ]+inc_gbz3 [j ] * inc_sz3 [j] [N PR2]; 
B4=inc_gaz4[j]*inc_sz4[j][NPRl]+inc_gbz4[j]*inc_sz40][NPR2]; 
ez incjj] = inc_gcz[j]*(dz_inc[j] - iz_inc[j]-Bl-B2-B3-B4); 
iz_inc[j]= iz_inc(j] + inc_gz[j]*ez_inc[j]; 
incszl [j][NCUR]=B l+inc_gdzl [j]*ez_inc|j]; 
inc_sz2 [j ] [NCUR]=B2+inc_gdz2 [j ] * ezinc [j ]; 
inc_sz3[j][NCUR]=B3+inc_gdz3[j]!,,ez_inc|j]; 
inc_sz4[j][NCUR]=B4+incgdz4[j]*ezinc[j]; 

} 

/* Boundary conditions for the incident buffer*/ 
ez_inc[0] = ezlow_m2; 
ez_low_m2 = ezlowm 1; 
ezlowml =ez_inc[l]; 

ez_inc[JE-l] =ez_high_m2; 
ez_high_m2 = ez_high_ml; 
ezhighml = ez_inc[JE-2]; 

/* Calculate the incident field */ 
for (j=0; j < JE; j++) { 

hx_inc_temp[j]=hx_inc[j]; 
} 

for (j=0; j < JE-1; j++ ) { 
hx_inc[j] = hx_inc[j] +cdt_2dx*( ez_inc_temp[j] - ez_inc_temp[j+l]); 

} 

/* Calculate the Dx field */ 
for (i=l; i < IE-2; i++ ) { 

for(j=l;j< JE-1;j++) { 
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for ( k=l; k < K.E-1; k++ ) { 
Bl=gaxl[i][j][k]*sxl[i][j][k][NPRl]+gbxl[i][j][k]*sxl[i][j][k][NPR2]; 
B2=gax2[i]D][k]*sx2[i][j]Ik][NPRl]+gbx2[i][j][k]»sx2ti]U][k][NPR2]; 
B3=gax3[i][j][k]*sx3[i][j][k][NPRl]+gbx3[i][j][k]*sx3[i][j][k][NPR2]; 
B4=gax4[i][j][k]*sx4[i][j][k][NPRl]+gbx4[i][j][k]*sx4[i](j][k][NPR2]; 
iTA4[i][j][k] = gcx[i][j][k]*(- ix[i][j][k]-Bl-B2-B3-B4); 

} } }  

for (i=l; i < IE-2; i++) { 
for ( k=l; k < KE-1; k++ ) { 
for(j=I;j < JE-l;j++ ) { 
TAl(j]=cdt_2dx_sq*gj2[j]*gk2[k]*(l+gil[i])*fi2[i]*fj2[j-l]*(l+fkl[k])*gcx[iJ[j-l][k]; 
TA2[j]=l+cdt_2dx_sq*gj2U]*gk2[k]*(l+gil[i])*fi2[i]*(fj2D-l]+P[j])*(l+^lM)*gcx[i]U][k]; 
TA3[j]=cdt_2dx_sq*gj2[j]*gk2[k]*(l+gil[i])*fi2[i]*Q2[j]*(l+fkl[k])*gcx[i][j+l][k]; 
curl h = ( hzz[i][j][k] - hzz[i][j-l][k]- hy[i]B][k] + hy[i]D][k-l])/ddx ; 
curl_hx[i][j][k]=curl_hx[i](j][k]+curl_h; 
curl_e= ( ex[i][j+l][k] - ex[i]|J][k]- ey[i+l][j][k] + ey[i][j][k])/ddx; 
curl_ezti][j][k]=curl_ez[i][j][k]+curl_e; 
TA4[j]=gj3[j]*gk3[k]*dx[i][j][k]-cdt_2dx*gj2[j]*gk2[k]*(hy[i][j][k]-hy[i][j][k-l]) 

+gj2[j]*gk2[k]*gil [i]*cdt_2*curl_hx[i][j][k]+cdt_2dx*gj2[j]*gk2[k]*( 1 +gi 1 [i]) 
*(fi3[i]*ij3[j]*hzz[i][j][k]-cdt_2dx*fi2[i]*f]2[j]*(ey[i+l][j][k]-ey[i][j][k]) 
+fi2[i]*fj2[j]*fkl[k]*cdt 2*curl ez[i][j][k]-fi3[i]*fj3|j-l]*hzz[i]U-l][k] 
+cdt_2dx*fi2[i]*fj2U-l]*(ey[i+l]0-l][k]-ey[i]U-l][k])-fi2[i]*fj2|j-l] 
*fkl[k]*cdt_2*curl_ez[i][j-l][k]) 
+cdt_2dx_sq*gj2[j]*gk2[k]*(l+gil[i])*fi2[i]*fj2|j-l]*(l+fkl[k])*iTA4[i][j-l][k] 
-cdt_2dx_sq*gj2[j]*gk2[k]*(l+gil[i])*fi2[i]*(fj2[j-l]+f]2[j])*(l+fkl[k])*iTA4[i][j][k] 
+cdt_2dx_sq*gj2[j]*gk2[k]*(l+gil[i])*fi2[i]*fj2[j]*(l+fkl[k])*iTA4[i][j+l][k]; 

} 

TAf[0]=0.; 
TAf[JE-l]=0.; 
TAe[0]=0.; 
TAe[JE-l]=0.; 

for ( j=l; j < JE-l;j++) { 
TAfjj]=(TA4[j]+TA 1 [j]*TAflj-1 ])/(TA2[j]-TA 1 [j] *TAe[j-1 ]); 
TAe[j]=TA3[j]/(TA2[J]-TAl(j]*TAe[j-l]); 
} 

dx[i][0][k]=0; 
dx[i][JE-l][k]=0; 
for (j—JE-2; j>0; j—){ 
dx[i][j][k]=TAfjj]+TAe[j]*dx[i]Lj+l][k]; 
} 

}} 

/* Calculate the Dy field */ 
for (i=l; i < IE-1; i++ ) { 

for (j=l; j < JE-2; j++ ) { 
for ( k=l; k < KE-1; k++ ) { 
Bl=gayl[i]U][k]*syl[i]U][k][NPRl]+gbyl[i]U][k]*syl[i]U][k][NPR2]; 
B2=gay2[i]|j][k]*sy2[i][j][k][NPRl]+gby2[i][j][k]*sy2[i][j][k][NPR2]; 
B3=gay3[i]U][k]+sy3[i]0]tk][NPRl]+gby3[i]U][k]*sy3[i]U][k][NPR2]; 
B4=gay4[i]|j][k]*sy4[i][j][k][NPRl]+gby4[i][j][k]*sy4[i]|j][k][NPR2]; 

iTA4[i][j][k] = gcy[i][j][k]*(- iy[i][j][k]-Bl-B2-B3-B4); 
}}} 
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for (i=l; i < IE-1; i++ ) { 
for (j=l; j < JE-2; j++) { 
for ( k=l; k < KE-1; k++ ) { 
TAl[k]=cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*Q2[j]*fk2[k-l]*(l+fil[i])*gcy[i][j][k-l]; 
TA2[k]= 1 +cdt_2dx_sq*gk2[k]*gi2[i]*( 1 +gj 1 [j])«fj2[j]*(fk2[k-1 ]+fk2[k])»( 1 +fi 1 [i])*gcy[i][j][k]; 
TA3[k]=cdt_2dx_sq*gk2[k]*gi2[i]'»(l+gjl[j])*fi2[j]»fk2[k]*(l+filti])*gcy[i]0][k+l]; 
curlh = ( hx[i][j][k] - hx[i]|J][k-1 ]- hzz[i][j][k] + hzz[i-l][j][k])/ddx ; 
curl_hy[i][j][k]=curl_hy[i][j][k]+curl_h; 
curl_e= ( ey[i][j][k+l] - ey[i][j][k]- ez[i][j+l][k] + ez[i]|j][k])/ddx ; 
curl_ex[i][j][k]=curl_ex[i][j][k]+curl e; 
TA4[k]=gk3[k]*gi3[i]*dy[i][j][k]-cdt_2dx*gk2[k]*gi2[i]*(hzz[i][j][k]-hzz[i-l][j][k]) 

+gk2[k]*gi2[i]*gjl[j]*cdt_2*curl_hy[i]|j][k]+cdt_2dx*gk2[k]*gi2[i]*(l+gjl[j]) 
*(fj3[j]*fk3[k]*hx[i][j][k]-cdt_2dx*Q2[j]*fk2[k]*(ez[i][j+l][k]-ez[i]|j][k]) 
+fj2U]*fk2[k]*fil[i]*cdt_2*curl_ex[i][j][kH3[j]*fk3[k-l]*hx[i][j][k-l] 
+cdt_2dx*f]20]*fk2[k-l]*(ez[i][j+l][k-l]-ez[i][j][k-l])-g2[j]*fk2[k-l] 
*fil[i]*cdt_2*curl_ex[i][j][k-l]) 
+cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*fj2D]*fk2[k-I]»(l+fil[i])*iTA4[i][j][k-l] 
-cdt_2dx_sq*gk2[k]*gi2[i]*(l+gilO])*Q2U]*(fk2[k-l]+fk2[k])*(l+fil[i])*iTA4ti][j][k] 
+cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjiy])*:02[j]*fk2[k]*(l+fil[i])*iTA4[i]|j][k+l]; 

} 

TAf[0]=0.; 
TAf[KE-l]=0.; 
TAe[0]=0.; 
TAe[KE-l]=0.; 

if (i>=ia&&i<=ib&&j>=ja&&j<=(jb-1)) { 

TA4[ka]=TA4[ka]-cdt 2dx*hx_inc[j]; 
TA4[kb]=TA4[kb]+cdt_2dx*hx inc[j]; 

} 

for (k=l;k< KE-1; k++ ) { 
T AfJk]=(T A4 [k]+TA 1 [k]*TAftk-1 ])/(TA2[k]-TA 1 [k] *TAe[k-1 ]); 
TAe[k]=TA3 [k]/(TA2[k]-TA 1 [k] *TAe[k-1 ]); 

} 

dy[i]D][0]=0.; 
dy[i][j][KE-l]=0.; 

for (k=KE-2; k>0; k-){ 
dy[i][j][k]=TAf[k]+TAe[kpdy[i][j][k+l]; 

}}} 

/* Calculate the Dz field */ 

for (i=l; i < IE-1; i++ ) { 
for (j=l; j < JE-1; j++ ) { 

for ( k=l; k < KE-2; k++ ) { 
Bl=gazl[i][j][k]*szl[i][j][k][NPRl]+gbzl[i][j][k]*szl [i][j][k][NPR2]; 
B2=gaz2[i][j][k]*sz2[i][j][k][NPRl]+gbz2[i][j][k]*sz2[i][j][k][NPR2]; 
B3=gaz3[i][j][k]*sz3[i]|j][k][NPRl]+gbz3[i][j][k]*sz3[i][j][k][NPR2]; 
B4=gaz4[i][j][k]»sz4[i]D][k][NPRl]+gbz4[i]D][k]*sz4[i][j][k][NPR2]; 
iTA4[i][j][k] = gcz[i][j][k]*(- iz[i][j][k]-Bl-B2-B3-B4); 

} } }  
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ex temp[i]•][k]=ex[i][j][k];/*for the calculation of h*/ 

B l=gaxl [i][j][k]*sx 1 [i][j][k][NPRl ]+gbxl [i][j][k]*sxl [i][j][k][NPR2]; 
B2=gax2[i][j][k]*sx2[i][j][k][NPRl]+gbx2[i][j][k]*sx2[i][j][k][NPR2]; 
B3=gax3[i][j][k]*sx3[i][j][k][NPRl]+gbx3[i][j][k]*sx3[i]|J]MtNPR2]; 
B4=gax4[i][j][k]*sx4[i][j][k][NPRl]+gbx4[i][j][k]*sx4[i][j][k][NPR2]; 
ex[i][j][k] = gcx[i][j][k]*(dx[i][j][k] - ix[i][j][k]-Bl-B2-B3-B4); 
mUm = ixMUP] + gx[i][j][k]*ex[i][j][k]; 
sxl[i]0][k]tNCUR]=Bl+gdxl[i][j][k]*ex[i]U][k]; 
sx2[i][j][k]rNCUR]=B2+gdx2[i]Ij][k]*ex[i][j][k]; 
sx3[i][j][k][NCUR]=B3+gdx3[i]0]Ik]*ex[i][j][k]; 
sx4[i][j][k][NCUR]=B4+gdx4[i]|j][k]*ex[i][j][k]; 

}}}  

for( i=l; i < IE-1; i++ ) { 
for (j=l; j < JE-2; j++ ) { 

for (k=l; k < KE-1; k++) { 
ey_temp[i][j][k]=ey[i][j][k];/*for the calculation of h*/ 

Bl=gayl[i]U][k]*syl[i]G][k][NPRl]+gbyl[i][j][k]*syl[i][j][k][NPR2]; 
B2=gay2[i]U][k]*sy2[i]tj][k][NPRl]+gby2[i]U][k]*sy2[i]U][k][NPR2]; 
B3=gay3[i]0][k]*sy3[i][j][k][NPRl]+gby3[i][j][k]*sy3[i][J][k]tNPR2]; 
B4=gay4 [i] [j] [k] * sy4[i] [j ] [k] [NPR1 ] +gby4 [i] [j ] [k] *sy4 [i] [j ] [k] [N P R2]; 
ey[i]U][k] = gcy[i][j][k]*(dy[i]0][k] - iy[i][j][k]-Bl-B2-B3-B4); 
iyWUlM = mUm + gy[i]U][k]*ey[i]D][k]; 

syl[i]U]M[NCUR]=Bl+gdyl[i][j][k]*ey[i]0][k]; 
sy2[i][j]tk][NCUR]=B2+gdy2[i][j][k]*ey[i][j][k]; 
sy3[i] [j] [k] [NCUR]=B3+gdy3f i][j ] [k]*ey[i] [j] [k]; 
sy4[i][J][k][NCUR]=B4+gdy4[i][j][k]*ey[i][j][k]; 

} } }  

for ( i=l; i < IE-1; i++ ) { 
for (j=l; j < JE-1; j++) { 

for (k=l; k < KE-2; k++) { 
ez_temp[i][j][k]=ez[i][j][k];/*for the calculation ofh*/ 

B1 =gazl[i][j][k]*szl ti][j][k][NPRl ]+gbzl [i][j][k]*szl [i][j][k][NPR2]; 
B2=gaz2[i]U]tk]*sz2[i][j][k][NPRl]+gbz2[i][j][k]*sz2[i][j][k][NPR2]; 
B3=gaz3[i][j][k]*sz3[i](j][k][NPRl]+gbz3[i][j][k]*sz3[i]U][k][NPR2]; 
B4=gaz4[i]|j][k]*sz4[i][j][k][NPRl]+gbz4[i]|j][k]*sz4[i]|j][k][NPR2]; 
ez[i][j][k] = gcz[i]|]][k]*(dz[i]|j][k] - iz[i]|j][k]-Bl-B2-B3-B4); 
mum = mum+ 
szl[i]IJ][k][NCUR]=Bl+gdzl [i][j]M*ez[i][j][k]; 
sz2[i][j][k][NCUR]=B2+gdz2[i][j][k]*ez[i]|j][k]; 
sz3[i]U][k][NCUR]=B3+gdz3[i](j][k]*ez[i][j][k]; 
sz4[i][j][k][NCUR]=B4+gdz4[i][j][k]*ez[i]Lj][k]; 

}}} 

/* Calculate the Hx field */ 
for (i=0; i < ia; i++) { 
for ( j=0; j < JE-1; j++ ) { 
for ( k=0; k < KE-1; k++) { 
hx[i][j][k] = Ij3[j]*fk3[k]*hx[i][j][k]+cdt_2dx*ij2[j]*fk2[k]*(l+fil[i])*(ey[i]|j][k+l]-ey[i][j][k]) 

-cdt2dx*fj2[j]*fk2[k]*(ez_temp[i]|j+l][k]-eztemp[i](J][k]) 
+Q2 [j ] * fk2 [k] * fi 1 [i] *cdt_2 *curl_ex[ i] [j ] [k]; 

} } } 
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for (i=ia; i <= ib; i++ ) { 
for (j=0; j < JE-1; j++ ) { 
for ( k=0; k < KE-1; k++ ) { 
hx[i][j][k] = fj3[j]*fk3[k]*hx[i]|j][k]+cdt_2dx*Q2[j]*fk2[k]*(l+fil[i])*(ey[i][j][k+l]-ey[i][j][k]) 

-cdt_2dx*Q2[j]*fk2[k]*(ez_temp[i][j+l][k]-ez_temp[i]{j][k]); 
} } } 

for ( i=ib+1; i < IE; i++ ) { 
ixh = i - ib-1; 
for(j=0;j < JE-l;j-H-) { 

for (k=0;k< KE-1; k++) { 
hx[i][j][k] = fj3[j]*fk3[k]*hx[i]jj][k]+cdt_2dx*Q2[j]*fk2[k]*(l+fil[i])*(ey[i][j][k+l]-ey[i][j][k]) 

-cdt 2dx*fj2[i]*fk2[k]*(ez temp[i][j+l][k]-ez_temp[i][j][k]) 
+Q2[j]*fk2[k]*fil[i]*cdt_2*curl_ex[i][j][k]; 

} } } 

/* Incident Hx */ 
for ( i=ia; i <= ib; i++ ) { 
for ( k=ka; k <= kb-1; k++ ) { 

hx[i][ja-l][k] = hx[i][ja-l][k] + cdt_2dx*ez_inc_temp[ja]; 
hx[i][jb][k] = hx[i](jb][k] - cdt_2dx*ez_inc_temp[jb]; 

} } 

/* Calculate the Hy field */ 
for ( i=0; i < IE-1; i++ ) { 
for ( j=0; j < ja; j++) { 
for (k=0;k< KE-1; k++ ) { 

hytiJUlM = fk3[k]*fi3[i]*hy[i][j][k]+Cdt_2dx*fk2[k]*fi2[i]*(l+fjl[j])*(ez[i+l][j]tk]-ez[i][j]tk]) 
-cdt_2dx*fk2[k]*fi2[i]*(ex_temp[i][j][k+l ]-ex_temp[i][j][k]) 
+fk2[k]*fi2[i]*fj 1 U]*cdt_2*curl_ey[i][j][k]; 

} } } 

for ( i=0; i < IE-1; i++ ) { 
for (j=ja; j <=jb;j++) { 
for ( k=0; k < KE-1; k++) { 
hy[i][j][k] = fk3[k]*fi3[i]*hy[i]U][k]+cdt_2dx*fk2[k]*fi2[i]*(l+fjl[j])*(ez[i+l][j][k]-ez[i][j][k]) 

-cdt_2dx*fk2[k]*fi2[i]*(ex_temp[i][j][k+l]-ex_temp[i][j][k]); 
} } } 

for ( i=0; i < IE-1; i++ ) { 
for(j=jb+l;j <JE;j++) { 
jyh =j - jb-1; 
for ( k=0; k < KE-1; k++ ) { 
hy[i][j]M = fk3[k]*fi3[i]*hy[i][j][k]+cdt_2dx*fk2[k]*fi2[i]*(l+fjl[j])*(ez[i+lj[j][k]-ez[i][j][k]) 

-cdt 2dx*fk2[k]*fi2[i]*(ex temp[i][j]tk+l]-ex temp[i]|J][k]) 
+fk2[k]*fi2[i]*fj 1 [j ] * cdt2 *c urley [ i ] [j ] [k]; 

} } } 

/* Incident Hy */ 
for(j=ja;j <=jb;j++) { 
for ( k=ka; k <= kb-1; k++ ) { 

hy[ia-l][j][k] = hy[ia-l][j][k] -cdt_2dx*ez_inc[j]; 
hy[ib][j][k] = hy[ib][j][k] + cdt_2dx*ezinc[j]; 

} } 
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/* Calculate the Hz field */ 
for ( i=0; i < IE-1; i++ ) { 

for (j=0; j < JE-1; j++ ) { 
for ( k=0; k < ka; k++ ) { 
hzz[i][j][k] = fi3[i]*fj3[j]*hzz[i][j][k]+cdt_2dx*fi2[i]*lj2[j]*(H-fkl[k])*(ex[i][j+l][k]-ex[i][j][k]) 

-cdt_2dx*fi2[i]*fj2[j]*(ey_temp[i+l]|J][k]-ey_temp[i][j][k]) 
+fi2[i]*fj2[j]*fkl[k]*cdt_2*curl_ez[i][j][k]; 

} } } 

for (i=0; i < 1E-1; i++ ) { 
for (j=0; j < JE-1; j++ ) { 
for ( k=ka; k <= kb; k++ ) { 

hzz[i][j][k] = fi3[i]*Q3(j]*hzz[i][j][k]+cdt_2dx*fi2[i]*Q2[j]*(l+fkl[k])*(ex[i][j+l][k]-ex[i][j][k]) 
-cdt_2dx*fi2[i]*fj2[j]*(ey_temp[i+l][j][k]-ey_temp[i][j][k]); 

} } } 

for ( i=0; i < IE-1; i++ ) { 
for (j=0;j< JE-1; j++) { 
for ( k=kb+1; k < KE; k++ ) { 
kzh = k - kb - 1; 
hzz[i][j][k] = fi3[i]*fj3[j]*hzz[i](j][k]+cdt_2dx*fl2[i]*fj2[j]*(l+fkl[k])*(ex[i]|j+l][k]-ex[i]Lj][k]) 

-cdt_2dx*fi2[i]s"ij2(J]*(ey_temp[i-+-l ](j][k]-ey _temp[i][j][k]) 
+fi2[i]*Q20]*fkl[k]*cdt_2*curl_ez[i]D][k]; 

} } } 

//n=n+0.5; 
T = T + 0.5; 
NPR2=NPR1; 
NPR1=NCUR; 
NCUR=(NCUR+1 )%3; 

/* Calculate the incident buffer */ 

for ( j=l;j< JE-1; j++){ 

Bl=inc_gazl[j]*inc_szl[j][NPRl]+inc_gbzl|j]*inc_szl[j][NPR2]; 
B2=inc_gaz2[j]*inc_sz2[j][NPRl]+inc_gbz2[j]*inc_sz2(j][NPR2]; 
B3=inc_gaz3U]",inc sz3[j][NPRl]+inc_gbz3[j]*inc_sz3[j][NPR2]; 
B4=inc_gaz4[j]*inc sz4[j][NPRl]+inc_gbz4[j]*inc sz4[j][NPR2]; 
inc_iTA4[j] = inc_gcz[j]*(- iz_inc[j]-Bl-B2-B3-B4); 

} 

for(j=l; j < JE-l;j++ ) { 
TAl [j]=cdt_2dx_sq*inc_gcz[j-l]; 
TA2[j]=l+cdt_2dx_sq*2.0*inc_gcz[j]; 
TA3 [j]=cdt_2dx_sq*inc_gcz[j+1 ]; 
TA4U]=dz_inc[j]+cdt_2dx*( hx_inc[j-l]- hx_inc[j]) 

+cdt_2dx_sq*inc_iTA4[j-l ] 
-cdt_2dx_sq *2.0 * inciT A4 [j ] 
+cdt_2dx_sq* inciT A4 [j+1 ]; 

} 

TAfI0]=0.; 
TAf[JE-l]=0.; 
TAe[0]=0.; 
TAe[JE-l]=0.; 
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for(j=l;j<JE-l;j++){ 

TAf[j]=(TA4[j]+TAl[j]*TAflj-l])/(TA2[j]-TAl[j]*TAe[j-l]); 
TAe[j]=TA3[i]/(TA2[j]-TA 1 [j]*TAe[j-1 ]); 

} 

dz_inc[0]=0.; 
dz_inc[JE-]]=0.; 
for (j=JE-2; j>0; j—){ 

dz_incO]=TAfU]+TAe[j]*dz_inc[j+l]; 
} 

pulse=-1.0e6*( 100.-T)/sqrt(200.)*exp(-(T-100.)*(T-100.)/400.0); 
dz_inc[3]=pulse; 

for (j=0; j < JE; j++ ) { 
ezinctemp [j ] =ez_inc [j ]; 

} 

for (j=l; j < JE-1; j++ ) { 
Bl=inc_gazl[j]*inc_szl[j][NPRl]+inc_gbzl[j]*inc_szl[j][NPR2]; 
B2=inc_gaz2[j]*inc_sz2(j][NPRl]+inc_gbz2[j]*inc_sz2[j][NPR2]; 
B3=inc_gaz3[j]*inc_sz3[j][NPRl]+inc_gbz3[j]*inc_sz3[j][NPR2]; 
B4=inc_gaz4[j]*inc_sz4[j][NPRl]+inc_gbz4[j]*inc_sz4[j][NPR2]; 
ez_inc[j] = inc_gcz[j]*(dz_inc[j] - iz_inc[j]-Bl-B2-B3-B4); 
iz_inc[j]= iz_inc[j] + inc_gz[j]*ez_inc[j]; 
incsz 1 [j ] [NC U R]=B 1 +inc_gdz 1 [j ] * ez_inc[j ]; 
inc_sz2[j][NCUR]=B2+inc_gdz2[j]*ez_inc|j]; 
inc_sz3[j][NCUR]=B3+inc_gdz3[j]*ez_inc|j]; 
inc_sz4[j][NCUR]=B4+inc_gdz4[j]*ez_inc[j]; 
} 

/* Boundary conditions for the incident buffer*/ 
ez_inc[0] = ez_low_m2; 
ez_low_m2 = ezlowml; 
ezlowml =ez_inc[l]; 

ez_inc[JE-1 ] = ez_high_m2; 
ez high m2 = ez high m 1; 
ezhighml = ez_inc[JE-2]; 

for (j=0; j < JE; j++ ) { 
hx_inc_temp[j]=hx_inc[j]; 

} 

for (j=0;j < JE-1; j++) { 
hx_inc[j] = hx_inc[j] +cdt_2dx*( ez_inc[j] - ez_inc[j+l]); 

} 

/* Calculate the Dx field */ 
for ( i—1; i < IE-2; i++) { 

for(j=l;j < JE-l;j++) { 
for ( k=l; k < KE-1; k++ ) { 

B1 =gax 1 [i][j][k]*sx 1 [i][j][k][NPR 1 ]+gbx 1 [i]U][k]*sx 1 [i][j][k][NPR2] 
B2=gax2[i][j][k]*sx2[i][j][k][NPRl]+gbx2[i][j][k]*sx2[i][j][k][NPR2] 
B3=gax3[i][j][k]*sx3[i][j][k][NPRl]+gbx3[i]|j][k]*sx3[i]|j][k][NPR2] 
B4=gax4[i][j][k]*sx4[i](J][k][NPR I ]+gbx4[i][j][k]*sx4[i][j][k][NPR2] 
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B4=gay4[i][j][k]*sy4[i][j][k][NPRl]+gby4[i][j][k]*sy4[i]|j][k][NPR2]; 
iTA4[i][j][k] = gcy[i][j][k]*(- iy[i](j][k]-Bl-B2-B3-B4); 

}}} 

for (j=l; j < JE-2;j++ ) { 
for (k=l; k < KE-1; k++ ) { 
for( i=l; i < IE-1; i++) { 

TAl[i]=cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*fi2[i-l]*fj2|j]*(l+fkl[k])*gcy[i-l][j][k]; 
TA2[i]=l+cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*(fi2[i]+fi2[i-l])*fj2[j]*(l+fkl[k])*gcy[i][j][k]; 
TA3fi]=cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*fi2[i]*Q2[j]*(l+fkl[k])*gcy[i+l][j][k]; 
curl h = ( hxti]|j][k] - hx[i][j][k-l]- hzz[i]U][k] + hzz[i-l][j][k])/ddx ; 
curl hy[i] [j ] [k]=curl_hy[i] [j ] [k]+curl_h; 
curl_e= ( ex[i][j+l][k] - ex[i][j][k]- ey[i+l]0][k] + ey[i][j][k])/ddx ; 
curl_ez[i]|j][k]=curl_ez[i][j][k]+curl_e; 
TA4[i]=gk3[k]*gi3[i]*dy[i][j][k]+cdt_2dx*gk2[k]*gi2[i]*(hx[i][j][k]-hx[i][j][k-l]) 

+gk2[k]*gi2[i]*gjl[j]*cdt_2*curl_hy[i][j][k]-cdt_2dx*gk2[k]*gi2[i]*(l+gjl[j]) 
*(f>3[i]*03[j]*hzz[i][j][k]+cdt_2dx*fi2[i]*g2[j]*(ex[i][j+l][k]-ex[i][j][k]) 
+fi2[i]*Q2[j]*fkl[k]*cdt_2*curl_ez[i][j][k]-fi3[i-l]*fj3[j]*hzz[i-l][j][k] 
-cdt_2dx*fi2[i-l]*ij2[j]*(ex[i-l][j+l][k]-ex[i-l][j][k])-fi2[i-l] 
*fj2[j]*fkl[k]*cdt_2*curl_ez[i-l][j][k]) 
+cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*fi2[i-l]*fj2[j]*(l+fkl[k])*iTA4[i-l][j][k] 
-cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*(fi2[i]+fi2[i-l])*fj2[j]*(l+fkl[k])*iTA4[i][j][k] 
+cdt_2dx_sq*gk2[k]*gi2[i]*(l+gjl[j])*fi2[i]*g2[j]*(l+fkl[k])*iTA4[i+l][j][k]; 

} 

for(i=ia;i<=ib;i++){ 
if (j>=ja&&j<=(jb-l)&&k==ka){ 

TA4[i]=TA4[i]-cdt_2dx*hx_inc_temp[j];} 
if (j>=ja&&j<=(jb-l)&&k==kb){ 

TA4[i]=TA4[i]+cdt_2dx*hx_inc_temp[j]; 
} 

} 

TAfI0]=0.; 
TAf[IE-l]=0.; 
TAe[0]=0.; 
TAe[IE-l]=0.; 

for ( i=l; i < IE-1; i++) { 
TAfti]=(TA4[i]+TA 1 [i] *TAfli-1 ])/(TA2[i]-TA 1 [i] *TAe[i-1 ]); 
TAe[i]=TA3[i]/(TA2[i]-TA 1 [i]*TAe[i-1 ]); 

} 

dy[0][j][k]=0.; 
dy[IE-l]D][k]=0.; 
for (i=IE-2; i>0; i--){ 

dy[i]D]M=TAfIi]+TAe[i]*dy[i+l]U][k]; 
}}} 

/* Calculate the Dz field */ 

for ( i=l; i < IE-1; i++ ) { 
for ( j— 1; j < JE-l;j++) { 

for ( k= 1; k < KE-2; k++ ) { 

Bl=gazl [i][j][k]*szl[i][j][k][NPRl]+gbzl[i][j][k]*szl [i][jP][NPR2]; 
B2=gaz2[i][j][k]*sz2[i][j][k][NPRl]+gbz2[i][j][k]*sz2[i][j][k][NPR2]; 
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B3=gaz3[i][j][k]*sz3[i][j][k][NPRl]+gbz3[i][j]tk]*sz3[i](j][k][NPR2]; 
B4=gaz4[i][j][k]*sz4[i][j][k][NPRl]+gbz4[i][j][k]*sz4[i](j][k][NPR2]; 
iTA4[i][j][k] = gcz[i][j][k]*(- iz[i][j][k]-Bl-B2-B3-B4); 

} } }  

for (i=l; i < IE-1; i++) { 
for (k= 1; k < KE-2; k++ ) { 
for(j=l; j < JE-1; j++ ){ 
TAl|]]=cdt_2dx_sq*gi2[i]*gj2Ij]*(l+gkl[k])*fj2[j-l]*fk2[k]*(l+fil[i])*gcz[i][j-l][k]; 
TA2[j]=l+cdt_2dx_sq*gi2[i]*gj2|j]*(l+gkl[k])*(fj2[j]+fj2[j-l])*fk2[k]*(l+fil[i])*gcz[i][j][k]; 
TA3[j]=cdt_2dx_sq*gi2[i]*gj2[j]*(l+glcl[k])*fj20]*fk2[k]*(1+filti])*gcz[i]U+l][k]; 
curlh = (hy[i][j][k] - hy[i-l][j][k]- hx[i]|]][k] + hx[i][j-l][k])/ddx ; 
curl_hz[i][j][k]=curl_hz[i]|J][k]+curl_h; 
curl_e= (ey[i][j][k+l] - ey[i][j][k]- ez[i]|j+l][k] + ez[i][j][k])/ddx ; 
curl_ex[i][j][k]=curl_ex[i]U][k]+curl_e; 
TA4[j]=gi3[i]*gj3[j]*dz[i][j][k]+cdt_2dx*gi2[i]*gj2[j]*(hy[i]|j][k]-hy[i-l][j][k]) 

+gi2[i]*"gj2[j]*gkl[k]*cdt_2*curl_hz[i][j][k]-cdt_2dx*gi2[i]*gj2|j]*(l+gkl[k]) 
*(Q3[j]*fk3[k]*hx[i]|j][k]+cdt_2dx*Q2|j]*fk2[k]*(ey[i]lj][k+l]-ey[i]|j][k]) 
+fj2D]*fk2[k]*fil[i]*cdt_2*curl_ex[i][j][k]-fj30-l]','fk3[k]*hx[i]n-l][k] 
-cdt_2dx*fj2[j-1 ]*fk2[kp(ey[i][j-1 ][k+1 ]-ey[i][j-1 ][k])-fj2[j-l ] 
*fk2[k]*fi 1 [i]*cdt_2»curl_ex[i][j-l ][k]) 
+cdt_2dx_sq*gi2[i]*gj2[j]*(l+gkl[k])*fj2[j-l]*fk2[k]*(l+fil[i])*iTA4[i][j-l]tk] 
-cdt_2dx_sq*gi2[i]*gj2[j]*(l+gkl[k])*(g2[j]+g2[j-l])*fk2[k]*(l+fil[i])*iTA4[i][j][k] 
+cdt_2dx_sq*gi2[i]*gj2[j]*(l+gkl[k])*fj2[j]*fk2[k]*(l+fil[i])*iTA4[i][j+l][k]; 

} 

TAf[0]=0.; 
TAfIJE-l]=0.; 
TAe[0]=0.; 
TAe[JE-l]=0.; 

if(k>=ka&&k<=kb-1 &&i>=ia&&i<=ib) { 
TA4[ja]=TA4[ja]+cdt_2dx*hx_inc[ja-1 ]; 
TA4[jb]=TA4[jb]-cdt_2dx*hxJnc[jb];} 

for ( j=l;j< JE-1; j++){ 
TAfjj]=(TA4[j]+TAl[j]*TAf|j-l])/(TA2[j]-TAl[j]*TAe[j-l]); 
TAe[j]=TA3[j]/(TA2[j]-TA 1 [j]*TAe[j-1 ]); 

} 

dz[i][0][k]=0.; 
dz[i][JE-l][k]=0.; 
for (j=JE-2; j>0; j—){ 

dz[i]U][k]=TAfU]+TAeO]*dz[i]U+l][k]; 
} } }  

/* Calculate the E from D field */ 

for (i=l; i < IE-2; i++) { 
for (j=l; j < JE-1;) { 

for ( k=l; k < KE-1; k++ ) { 
ex_temp[i][j][k]=ex[i][j][k];/*forthe calculation ofh*/ 

Bl=gaxl[i][j][k]*sxl[i][j][k][NPRl]+gbxl[i][j][k]*sxl[i][j][k][NPR2]; 
B2=gax2[i][j][k]*sx2[i][j][k][NPRl]+gbx2[i][j][k]*sx2[i][j][k][NPR2]; 
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B3=gax3[i][j][k]*sx3[i][j][k][NPRl]+gbx3[i][j][k]*sx3[i][j][k][NPR2]; 
B4=gax4[i][j][k]*sx4[i][j][k][NPRl]+gbx4[i][j][k]*sx4[i][j][k][NPR2]; 
ex[i]U][k] = gcx[i][j][k]*(dx[i][]][k] - ix[i][j][k]-Bl-B2-B3-B4); 
ix[i][j][k] = ix[i][j][k] + gx[i][j][k]*ex[i][j][k]; 
sxl[i]D][k][NCUR]=Bl+gdxl[i][j][k]*ex[i]U][k]; 
sx2[i]D][k][NCUR]=B2+gdx2[i][j]tk]*ex[i][j][k]; 
sx3[i][j][k][NCUR]=B3+gdx3[i][j][k]*ex[i][j][k]; 
sx4[i][j][k][NCUR]=B4+gdx4[i][j][k]*ex[i][j][k]; 

}}} 

for (i=l; i < IE-1; i++ ) { 
for (j=l; j < JE-2; j++ ) { 

for ( k= 1; k < KE-1; k++ ) { 
ey_temp[i][j]M=:ey[i][j][k];/*for the calculation of h*/ 

Bl=gayl[i][j][k]*syl[i][j][k][NPRl]+gbyl[i][j][k]*syl[i](j][k][NPR2]; 
B2=gay2[i][j][k]*sy2[i][j][k][NPRl]+gby2[i][j][k]*sy2[i][j][k][NPR2]; 
B3=gay3[i][j][k]*sy3[i][j][k][NPRl]+gby3[i][j][k]*sy3[i]|j][k]fNPR2]; 
B4=gay4[i][j][k]*sy4[i][j][k][NPRl]+gby4[i][j][k]*sy4[i][j][k][NPR2]; 
ey[i][j][k] = gcy[i][j][k]*(dy[i][j][k] - iy[i]Ultk]-B 1-B2-B3-B4); 
iy[i]D][k] = iy[i]U][k] + gy[i]U][k]*ey[i][j][k]; 
syl[i][j][k][NCUR]=Bl+gdyl[i][j][k]*ey[i][j][k]; 
sy2[i][j][k][NCUR]=B2+gdy2[i]|j][k]*ey[i][j]tk]; 
sy3[i][j][k][NCUR]=B3+gdy3[i][j][k]*ey[i][j][k]; 
sy4[i]D][k][NCUR]=B4+gdy4[i][j][k]*ey[i]tj][k]; 

} } }  

for ( i=l; i < IE-1; i++ ) { 
for(j=l; j <JE-l;j++) { 

for ( k=l; k < KE-2; k++ ) { 
ez_temp[i][j][k]=ez[i][j][k];/*for the calculation of h*/ 

Bl=gazl[i]U][k]*szl[i][j][k][NPRl]+gbzl[i][j][k]*szl[i][j][k][NPR2]; 
B2=gaz2[i][j][k]*sz2[i][j][k][NPRl]+gbz2[i][j][k]*sz2[i][j][k][NPR2]; 

B3=gaz3[i][j][k]*sz3[i][j][k][NPRl]+gbz3[i][j][k]*sz3[i]|j][k][NPR2]; 
B4=gaz4[i][j][k]*sz4[i][j][k][NPRl]+gbz4[i][j][k]*sz4[i]lj][k][NPR2]; 
ez[i]U][k] = gcz[i][j][k]*(dz[i][j][k] - iz[i][j][k]-Bl-B2-B3-B4); 
iz[i]0][k] = iz[i]D][k] + gz[i]U][k] *ez[i]U][k]; 

szl[i][j][k][NCUR]=Bl+gdzl[i][j][k]*ez[i][j][k]; 
sz2[i][j][k][NCUR]=B2+gdz2[i][j][k]*ez[i][j][k]; 
sz3[i]D][k][NCUR]=B3+gdz3[i][j][k]*ez[i][j][k]; 
sz4[i]U][k][NCUR]=B4+gdz4[i][j][k]*ez[i][j][k]; 

} } }  

I* Calculate the Hx field */ 
for (i=0; i < ia; i++ ) { 
for (j—0; j < JE-1; j++ ) { 
for ( k=0; k < KE-1; k++ ) { 
hx[i][j][k] = fj3[j]*fk3[k]*hx[i][j][k]+cdt_2dx*g2[j]*fk2[k]*(ey_temp[i][j][k+l]-ey_temp[i][j][k]) 

-cdt_2dx*fj2[j]*fk2[k]*( 1 +fi 1 [i])*(ez[i] [j+1 ][k]-ez[i][j][k]) 
+Q2[j]*fk2[k]*fi 1 [i]*cdt_2*curl_ex[i][j][k]; 

} } } 

for (i—ia; i <= ib; i++ ) { 
for (j=0;j < JE-1; j++ ) { 
for ( k=0; k < KE-1; k++ ) { 
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hx[i][j][k] = Ij3[j]*fk3[k]*hx[i][j][k]+cdt_2dx*fj2|j]*fk2[k]*(ey_temp[i][j][k+l]-ey_temp[i][j][k]) 
-cdt_2dx*Q2[j]*fk2[k]*(l+fil[i])*(ez[i](j+l][k]-ez[i][j][k]); 

} } } 

for( i=ib+l; i < IE; i++ ) { 
ixh = i - ib-1; 
for (j=0; j < JE-1; j++ ) { 
for ( k=0; k < KE-1; k++) { 
hx[i][j][k] = Q3[j]*fk3[k]*hx[i][j][k]+cdt_2dx*g2[j]*fk2[k]*(ey_temp[i][j][k+l]-ey_tenip[i][j][k]) 

-cdt_2dx*fj2[j]*fk2[k]*(l+fil[i])*(ez[i](j+l][k]-ez[i]lj][k]) 
+fj2[j]*fk2[k]*fil[i]*cdt_2*curl_ex[i][j][k]; 

} } } 

/* Incident Hx */ 
for (i=ia; i <= ib; i++ ) { 

for (k=ka; k <= kb-1; k++) { 
hx[i][ja-l][k] = hx[i][ja-l][k] + cdt_2dx*ez_inc[ja]; 
hx[i]0b][k] = hx[i][jb][k] - cdt2dx*ezinc[jb]; 

} } 

/* Calculate the Hy field */ 
for (i=0; i < IE-1; i++ ) { 
for (j=0; j < ja; j++ ) { 
for (k=0;k< KE-1; k++) { 
hy[i][j]M = fk3[k]*fi3[i]*hy[i][j][k]+cdt_2dx*fk2[k]*fi2[i]*(ez_temp[i+l][j][k]-ez_ternp[i][j][k]) 

-cdt_2dx*fk2[k]*fi2[i]*(l+Ql [j])*(ex[i][j][k+l]-ex[i][j][k]) 
+fk2[k]*fi2[i]*fj 1 [j]*cdt_2*curl_ey[i][j][k]; 

} } } 

for( i=0; i < IE-1; i++ ) { 
for(j=ja;j <=jb;j++) { 

for (k=0;k< KE-1; k++) { 
hy[i][j][k] = fk3[k]*fi3ti]*hy[i][j][k]+cdt_2dx*fk2[k]*fi2[i]*(ez_temp[i+l][j][k]-ez_temp[i][j][k]) 

-cdt_2dx*fk2[k]*fi2[i]*(l+Q10])*(ex[i][j][k+l]-ex[i][j][k]); 
} } } 

for (i=0;i< IE-1; i++) { 
for(j=jb+l;j <JE;j++) { 
jyh = j - jb-l; 
for (k=0;k< KE-1; k++) { 
hy[i][j][k] = fk3[k]*fi3[i]*hy[i][j][k]+cdt_2dx*fk2[k]*fi2[i]*(ez_temp[i+l][j][k]-ez_temp[i][j][k]) 

-cdt_2dx*fk2[k]*fi2[i]*(l+fjl[j])*(ex[i][j][k+l]-ex[i](j]tk]) 
+fk2[k]*fi2[i]*fj 1 [j]*cdt_2*curl_ey[i][j][k]; 

} } } 

/* Incident Hy */ 

for (j=ja; j <=jb;j++) { 
for (k=ka; k <= kb-1; k++ ) { 
hy[ia-l][j][k] = hy[ia-l][j][k] - cdt_2dx*ez_inc temp[j]; 
hy[ib][j][k] = hy[ib][j][k] + cdt_2dx*ez_inc temp[j]; 

} } 

/* Calculate the Hz field */ 
for (i=0; i < IE-1; i++ ) { 
for (j=0;j< JE-1; j++){ 
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for ( k=0; k < ka; k++ ) { 
hzz[i][j][k] = fi3[i]*fj3U]*hzz[i][j][k]+cdt_2dx*fi2[i]*Q2[j]*(ex_temp[i][j+l][k]-ex_temp[i][j][k]) 

-cdt_2dx*fi2[i]*fj2[j]*(l+fkl[k])*(ey[i+l][j][k]-ey[i][j][k]) 
+fi2[i]*f]2[j]*fkl[k]*cdt 2*curl ez[i][j][k]; 

} } } 

for (i=0; i < IE-1; i++ ) { 
for (j=0; j < JE-1; j++ ) { 
for ( k=ka; k <= kb; k++ ) { 
hzz[i][j][k] = fi3[i]*Q3[j]*hzz[i][j][k]+cdt_2dx*fi2[i]*Q2[j]*(ex_temp[i][j+l][k]-ex_temp[i]U][k]) 

-cdt_2dx*fi2[i]*fj2[j]*(l+fkl[k])*(ey[i+l][j][k]-ey[i]|j][k]); 
} } } 

for ( i=0; i < IE-1; i++ ) { 
for ( j=0; j < JE-1; j++ ) { 
for ( k=kb+l; k < KE; k++ ) { 
hzz[i][j][k] = fi3[i]*fj3U]*hzz[i][j][k]+cdt_2dx*fi2[i]*Q2(J]*(ex_temp[i]|j+l][k]-ex_temp[i][j][k]) 

-cdt_2dx*fi2[i]*fj2|j]*(l+fkl[k])*(ey[i+l]|j][k]-ey[i][j][k]) 
+fi2[i]*fj2|j]*fkl[k]*cdt_2*curl_ez[i][j][k]; 

} } } 

if(n==(int)(120)){ 
fprintf(fp4,"ZONE 1=61, J=61, F=POINT\n"); 
int ks=(int)((lE-l)/2); 
for(int ys=0;ys<JE;ys++) 
for(int xs=0;xs<IE;xs++) 

fprintf(fp4,"%d %d %lf \n",xs,ys,ez[xs][ys][ks]); 
} 

if(n==(int)(144)){ 
f^rintfl;fp5,"ZONE 1=61, J=61, F=PO!NT\n">; 
int ks=(int)((IE-l)/2); 
for(int ys=0;ys<JE;ys++) 
for(int xs=0;xs<lE;xs++) 

fprintf(fp5,"%d %d %lf\n",xs,ys,ez[xs][ys][ks]); 
} 

if(n==(int)(168)){ 
f^rintf(f^6,"ZONE 1=61, J=61, F=POINT\n"); 
int ks=(int)((IE-l)/2); 
for(int ys=0;ys<JE;ys++) 
for(int xs=0;xs<IE;xs++) 

fprintf(fp6,"%d %d %lf \n",xs,ys,ez[xs][ys][ks]); 
} 

if(n==(int)(192)){ 
fprintf(fp7,"ZONE 1=61, J=61, F=POIN1An"); 
int ks=(int)((IE-l)/2); 
for(int ys=0;ys<JE;ys++) 
for(int xs=0;xs<IE;xs++) 

fprintf(fp7,"%d %d %lf \n",xs,ys,ez[xs][ys][ks]); 
} 

if(n==(int)(216)){ 
fprintf(flj8,"ZONE 1=61, J=61, F=P01NT\n"); 
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int ks=(int)((IE-l)/2); 
for(int ys=0;ys<JE;ys++) 
for(int XS=0;XS<1E;XS++) 

fprintf(fp8,"%d %d %lf \n",xs,ys,ez[xs][ys][ks]); 
} 

} 

fclose(fp4);fclose(fp5);fclose(ip6); fclose(fp7); fclose(fp8); 

/* — End of the main FDTD loop — */ 

return 0; 
} 
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